WO2016017524A1 - 放電ランプ点灯装置、光源装置、画像形成装置 - Google Patents

放電ランプ点灯装置、光源装置、画像形成装置 Download PDF

Info

Publication number
WO2016017524A1
WO2016017524A1 PCT/JP2015/070977 JP2015070977W WO2016017524A1 WO 2016017524 A1 WO2016017524 A1 WO 2016017524A1 JP 2015070977 W JP2015070977 W JP 2015070977W WO 2016017524 A1 WO2016017524 A1 WO 2016017524A1
Authority
WO
WIPO (PCT)
Prior art keywords
segment
period
signal
discharge lamp
control unit
Prior art date
Application number
PCT/JP2015/070977
Other languages
English (en)
French (fr)
Inventor
宏二 山田
茂義 松本
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Priority to US15/329,338 priority Critical patent/US10021359B2/en
Publication of WO2016017524A1 publication Critical patent/WO2016017524A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3155Modulator illumination systems for controlling the light source
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2026Gas discharge type light sources, e.g. arcs
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • G09G3/002Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to project the image of a two-dimensional display, such as an array of light emitting or modulating elements or a CRT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/288Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps without preheating electrodes, e.g. for high-intensity discharge lamps, high-pressure mercury or sodium lamps or low-pressure sodium lamps
    • H05B41/2885Static converters especially adapted therefor; Control thereof
    • H05B41/2887Static converters especially adapted therefor; Control thereof characterised by a controllable bridge in the final stage
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0247Flicker reduction other than flicker reduction circuits used for single beam cathode-ray tubes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the present invention relates to a discharge lamp lighting device suitably used for a light source such as a projector.
  • the present invention also relates to a light source device that is turned on by such a lighting device, and an image forming apparatus including the light source device.
  • a high mercury vapor pressure discharge lamp is used as the light source of the projector device.
  • Such a high-pressure mercury lamp can obtain light in the visible wavelength region with high output by increasing the mercury vapor pressure.
  • the discharge lamp has a substantially spherical light-emitting portion formed by a discharge vessel, and a pair of electrodes are arranged facing each other at a very small interval of, for example, 2 mm or less in this light-emitting portion.
  • a plurality of minute protrusions may be formed due to high temperature, or minute irregularities may be generated on the surface of the tip of the electrode.
  • These micro-protrusions and irregularities are formed by agglomeration of the compound formed by melting the material constituting the electrode (for example, tungsten) and combining with the gas sealed in the light emitting part. The shape of the surface part of the is changed. Along with this, the starting point of the arc moves, the discharge position becomes unstable, and there is a problem that flickering of projection light called so-called flicker occurs.
  • FIG. 13 is a diagram showing an example of the conventional lamp current waveform.
  • the current pulse P shown in FIG. 13 includes a pulse P1 that is normally input to the discharge lamp, and a pulse P2 that is obtained by increasing the input current amount from the pulse P1 at a predetermined timing.
  • the degree of heating of the electrode is increased at this timing, and heat can be transmitted not only to the tip of the electrode but also to a place away from the tip. Therefore, heat is also transmitted to a part away from the electrode tip during this period, and the minute protrusions and irregularities generated in the part can be melted and evaporated. Thereby, protrusions and irregularities other than the electrode tip that may adversely affect can be eliminated, and the bright spot of the arc can be stabilized.
  • the pulse P2 Since the pulse P2 has a higher peak value than the pulse P1, the amount of current applied to the discharge lamp increases at the timing when the pulse P2 is applied, and the luminance instantaneously increases at this timing. However, since the insertion interval of the pulse P2 is usually about several tens of Hz to several hundreds of Hz, blinking due to this luminance change is not visually recognized.
  • an image forming apparatus such as a projector has a light modulation element such as a liquid crystal panel. Then, a drive signal for driving the liquid crystal panel is generated based on the input video signal. The liquid crystal panel is driven based on this drive signal to modulate the light from the discharge lamp, and the light of each color that has passed through the liquid crystal panel is synthesized and projected onto the screen via the projection optical system.
  • the driving signal of the liquid crystal panel indicates a frequency corresponding to the video signal, and is usually set to 60 Hz or 120 Hz.
  • an object of the present invention is to provide a discharge lamp lighting method capable of suppressing flickering of a projected image as compared with the conventional one in an image forming apparatus such as a projector using an AC-driven discharge lamp. And It is another object of the present invention to provide a light source device such as a discharge lamp that is turned on by such a lighting method, and an image forming apparatus including the light source device.
  • the present invention is a discharge lamp lighting device for supplying an alternating current to a discharge lamp in which a pair of electrodes are arranged to face each other in a discharge vessel filled with a predetermined gas,
  • a power supply control unit to which a video synchronization signal is input from the outside;
  • a DC power supply is converted into an alternating current based on a control signal output from the power supply control unit, and includes a power supply unit that supplies the alternating current to the discharge lamp,
  • the power supply control unit A segment signal generating unit for generating a segment signal indicating a plurality of segment periods obtained by dividing a specific period indicated by the video synchronization signal;
  • a peak value control unit that generates a first control signal according to the peak value of the alternating current for each segment period and outputs the first control signal to the power feeding unit;
  • a frequency control unit that generates a second control signal indicating a timing of polarity reversal of the alternating current based on the segment signal and outputs the second control signal to the power
  • the timing for changing the amount of current applied to the lamp is synchronized with the video synchronization signal for driving a liquid crystal panel or the like. This had an effect on the image quality. In view of this point of view, it is considered that image quality deterioration such as rolling bars and fringe noise can be prevented by synchronizing the timing of changing the current amount and the video synchronization signal.
  • the time defined between the first time when the level of the video synchronization signal changes and the second time when the level of the video synchronization signal changes next (corresponding to the “specific period”).
  • a video signal is normally transmitted to an image forming apparatus such as a projector every specific unit (usually one frame). Then, a video synchronization signal indicating the switching timing of this unit is transmitted to the lighting device.
  • the length of the video signal may vary. As described above, when the length of the frame (the length of the specific period) varies, the image projected between the frames may flicker depending on how the input current amount is changed.
  • the integral which is the product of the length of each segment period obtained by dividing the specific period into a plurality of peak values (corresponding to the amount of lamp current to be input) set in the segment period.
  • the specific segment period whose value is the most distant from the average value of the integral values within the specific period is set to a value other than the final segment period.
  • the discharge lamp is turned on while finely changing the amount of current applied to the lamp not only for the purpose of stabilizing the bright spot of the arc in the discharge lamp but also for other purposes such as 3D driving.
  • the configuration of the present invention has an effect of improving the image quality of the projected image when the discharge lamp is lit while changing the amount of current to be input in this way.
  • the peak value control unit may arrange the segment period indicating the integral value closest to the average value in the final segment period.
  • the segment signal generation unit may generate the segment signal by multiplying the video synchronization signal.
  • the light source device includes: The discharge lamp lighting device; And a discharge lamp that is lit by receiving a current supply from the discharge lamp lighting device.
  • An image forming apparatus is The light source device; A light modulation element that generates image information by modulating light emitted from the discharge lamp based on an externally input video signal; And a projection optical system for projecting the light emitted from the light modulation element.
  • FIG. 1 is a block diagram schematically illustrating a configuration of an image forming apparatus using a liquid crystal panel. It is a cross-sectional schematic diagram of a discharge lamp. It is the cross-sectional schematic diagram which expanded the electrode tip vicinity of the discharge lamp. It is a circuit block diagram which shows typically the structure of a discharge lamp lighting device. It is the time chart which contrasted the video synchronizing signal and the segment signal. It is the time chart which contrasted the video synchronizing signal and the segment signal. It is the time chart which contrasted the video synchronous signal, the segment signal, and the polarity signal. It is another time chart which contrasted the video synchronous signal, the segment signal, and the polarity signal.
  • 6 is a time chart comparing a video synchronization signal, a segment signal, a polarity signal, and a lamp current waveform when blinking occurs between frames. It is an example of the time chart which contrasted the video synchronizing signal and the lamp current waveform. It is a table
  • FIG. 1 is a block diagram schematically showing an example of the configuration of an image forming apparatus using a liquid crystal panel as a light modulation element.
  • a liquid crystal projector is assumed as the image forming apparatus 60.
  • the image forming apparatus 60 includes a light source device 61, a liquid crystal panel 63, a projection optical system 64, a video control unit 65, a panel control unit 66, and a lamp control unit 67.
  • the light source device 61 includes the discharge lamp lighting device 1, the discharge lamp 10, and a concave reflecting mirror 62.
  • the discharge lamp 10 is an AC lighting type lamp, and is arranged so that the arc luminescent spot of the lamp and the first focal point of the concave reflecting mirror 62 substantially coincide.
  • the discharge lamp 10 is turned on by the discharge lamp lighting device 1. The configuration of the discharge lamp 10 and the configuration of the discharge lamp lighting device 1 will be described later.
  • the liquid crystal panel 63 is a transmissive liquid crystal panel, and is used as a light modulation element (light valve) that modulates irradiation light in accordance with a drive signal from the panel control unit 66.
  • An image is formed by the light emitted from the light source device 61 passing through the liquid crystal panel 63, and the image light is projected onto the screen 72 via the projection optical system 64.
  • the video control unit 65 receives a video signal Sa from a video information input unit 71 composed of a PC, a DVD, or the like.
  • the video controller 65 converts the video signal Sa into a processable data format and performs image processing such as brightness adjustment, contrast adjustment, sharpness adjustment, and keystone distortion correction. Further, the video control unit 65 performs a frame rate conversion process on the video data so as to synchronize with the drive frequency of the liquid crystal panel 63, and outputs it to the panel control unit 66. That is, the video control unit 65 outputs the processed video data signal Sb and the video synchronization signal Sc to the panel control unit 66.
  • the panel control unit 66 generates a drive signal Sd for driving the liquid crystal panel 63 based on the video data signal Sb and the video synchronization signal Sc generated by the video control unit 65, and controls the liquid crystal panel 63.
  • the lamp control unit 67 receives an input of the video synchronization signal Sc from the video control unit 65 and outputs the synchronization signal to the lighting device 1. Further, the lamp control unit 67 outputs a set power signal Se for adjusting the power consumption of the discharge lamp 10 to the discharge lamp lighting device 1.
  • the set power signal Se changes the level of the set power signal Se when performing control such as reducing the power consumption of the light source device 60 and driving it, and the level of the set power signal Se on the lighting device 1 side. This signal is used to perform control to detect the output and reduce the output.
  • the video synchronization signal Sc may be output directly from the video control unit 65 to the lighting device 1.
  • the lighting device 1 controls the current supplied to the discharge lamp 10 based on the input video synchronization signal Sc and the set power signal Se as described later.
  • the image forming apparatus 60 includes three liquid crystal panels 63 corresponding to the three colors R, G, and B, and includes a video control unit 65 and a panel control unit 66. Has a function of processing image data for three colors.
  • the light source device 61 includes an optical system that separates white light into three colors of light, and the projection optical system 64 combines the three colors of image light to generate image light indicating a color image. It has.
  • FIG. 2A and 2B are schematic sectional views of the discharge lamp.
  • 2B is a schematic cross-sectional view enlarging the vicinity of the electrode tip of FIG. 2A.
  • the discharge lamp 10 has a substantially spherical light emitting portion 11 formed by a discharge vessel made of quartz glass.
  • the material of the discharge vessel is not limited to quartz glass, and may be made of other materials.
  • a pair of electrodes 20a and 20b are disposed to face each other at an extremely small interval of, for example, 2 mm or less.
  • sealing portions 12 are formed at both ends of the light emitting portion 11.
  • a conductive metal foil 13 made of molybdenum or the like is hermetically embedded in the sealing portion 12 by, for example, a shrink seal.
  • the shaft portions of the electrodes 20a and 20b are joined to one end of the metal foil 13, and the external lead 14 is joined to the other end of the metal foil 13, and power is supplied from a discharge lamp lighting device to be described later.
  • Mercury is used to obtain the necessary visible light wavelength, for example, radiation having a wavelength of 360 to 780 nm, and, in terms of specific values, 0.20 mg / mm 3 or more is enclosed.
  • a high vapor pressure of 200 atm or more is realized as the pressure inside the light emitting unit during lighting.
  • a discharge lamp having a high mercury vapor pressure such that the mercury vapor pressure during lighting is 250 atm or higher or 300 atm or higher can be produced by enclosing more mercury.
  • a light source suitable for a projector can be realized.
  • argon gas is sealed at about 13 kPa. Its function is to improve the lighting startability.
  • halogen gas iodine, bromine, chlorine, etc. are enclosed in the form of a compound with mercury or other metals.
  • the amount of enclosed halogen is selected from the range of 10 ⁇ 6 ⁇ mol / mm 3 to 10 ⁇ 2 ⁇ mol / mm 3 .
  • the biggest reason for enclosing the halogen is to extend the life of the discharge lamp using a so-called halogen cycle.
  • the discharge lamp 10 is extremely small and has a very high lighting vapor pressure, the effect of preventing devitrification of the discharge vessel can be obtained by enclosing the halogen.
  • Devitrification means that crystallization proceeds from a metastable glass state and changes to an aggregate of crystal grains grown from many crystal nuclei. If such a phenomenon occurs, light is scattered at the grain boundaries of the crystal and the discharge vessel becomes opaque.
  • the gas enclosed with the light emission part 11 is not limited to the said gas.
  • the maximum outer diameter of the light emitting part is 9.4 mm
  • the distance between the electrodes is 1.0 mm
  • the inner volume of the discharge vessel is 55 mm 3
  • the rated voltage is 70 V
  • the rated power is 180 W. It can be set as a structure.
  • the discharge lamp 10 when it is assumed that a discharge lamp 10 is built in and used in a projector that has been miniaturized in recent years, the discharge lamp 10 is required to be extremely small as a whole size, and on the other hand, a high light emission amount is also required. . For this reason, the thermal influence in the light emitting portion is extremely severe, and the lamp wall load value of the lamp is 0.8 to 2.5 W / mm 2 , specifically 2.4 W / mm 2 . As described above, the discharge lamp 10 having a high mercury vapor pressure and a tube wall load value is mounted on a presentation device such as a projector or an overhead projector, thereby providing the presentation device with emitted light having good color rendering properties. be able to.
  • a presentation device such as a projector or an overhead projector
  • the electrode 20a is composed of a head portion 29a and a shaft portion 30a
  • the electrode 20b is composed of a head portion 29b and a shaft portion 30b.
  • Each of the electrode 20a and the electrode 20b has a protrusion 21 at the tip.
  • the protrusion 21 is formed by agglomerating molten electrode material at the electrode tip when the lamp is turned on.
  • the electrode 20a and the electrode 20b are described as both made of tungsten, but the material is not limited to this.
  • the electrode 20a and the electrode 20b are energized, the electrode 20a is heated to a high temperature, and the tungsten constituting them is sublimated.
  • the sublimated tungsten is combined with the enclosed halogen gas in the inner wall surface region of the light emitting portion 11 which is a relatively low temperature portion to form tungsten halide. Since the vapor pressure of tungsten halide is relatively high, the tungsten halide moves again in the vicinity of the tips of the electrodes 20a and 20b in a gas state. When heated again at this point, the tungsten halide is separated into halogen and tungsten.
  • tungsten returns to the tips of the electrodes 20 a and 20 b and aggregates, and the halogen returns as the halogen gas in the light emitting unit 11. This corresponds to the “halogen cycle” described above.
  • the agglomerated tungsten adheres to the vicinity of the tips of the electrode 20a and the electrode 20b, whereby the protrusion 21 is formed.
  • FIG. 3 is a circuit block diagram schematically showing the configuration of the discharge lamp lighting device of the present invention.
  • the lighting device 1 includes a power feeding unit 3 and a power feeding control unit 5.
  • the power feeding unit 3 includes a step-down chopper unit 31, a DC / AC conversion unit 32, and a starter unit 33.
  • the configuration of the power feeding unit 3 is merely an example.
  • the step-down chopper unit 31 steps down the supplied direct-current voltage Vdc to a desired direct-current voltage and outputs it to the subsequent DC / AC conversion unit 32.
  • the step-down chopper unit 31 includes a switching element Qx, a reactor Lx, a diode Dx, a smoothing capacitor Cx, a resistor Rx, and a voltage dividing resistor (R1, R2). Yes.
  • Switching element Qx has one end connected to the + side power supply terminal to which DC voltage Vdc is supplied and the other end connected to one end of reactor Lx.
  • the diode Dx has a cathode terminal connected to a connection point between the switching element Qx and the reactor Lx, and an anode terminal connected to the negative side power supply terminal.
  • the smoothing capacitor Cx has one end (+ side terminal) connected to the output side terminal of the reactor Lx and the other end ( ⁇ side terminal) connected to the output side terminal of the resistor Rx.
  • the resistor Rx is connected between the negative terminal of the smoothing capacitor Cx and the anode terminal of the diode Dx, and realizes a current detection function.
  • the voltage dividing resistors (R1, R2) are connected between the negative side terminal and the positive side terminal of the smoothing capacitor Cx to realize a voltage detection function.
  • the switching element Qx is driven by a gate signal Gx output from the power supply controller 5. Based on the duty of the gate signal Gx, the step-down chopper unit 31 steps down the input DC voltage Vdc to a voltage corresponding to the duty and outputs it to the DC / AC conversion unit 32 at the subsequent stage. That is, the voltage applied to the discharge lamp 10 is determined by the signal from the power supply control unit 5.
  • the DC / AC conversion unit 32 converts the input DC voltage into an AC voltage having a desired frequency and outputs the AC voltage to the subsequent starter unit 33.
  • FIG. 3 shows a specific configuration example in which the DC / AC conversion unit 32 is configured by switching elements Q1 to Q4 connected in a bridge shape (full bridge circuit).
  • the switching element Q1 is driven by a gate signal G1 output from the driver 35.
  • the switching element Q2 is driven by the gate signal G2
  • the switching element Q3 is driven by the gate signal G3
  • the switching element Q4 is driven by the gate signal G4.
  • the driver 35 outputs a gate signal to alternately repeat on / off for the pair of switching elements Q1 and Q4 and the pair of switching elements Q2 and Q3 arranged diagonally. Thereby, a rectangular wave AC voltage is generated between the connection point of the switching elements Q1 and Q2 and the connection point of the switching elements Q3 and Q4.
  • the starter unit 33 is a circuit unit for boosting the AC voltage supplied from the DC / AC conversion unit 32 when starting the discharge lamp and supplying the boosted voltage to the discharge lamp 10.
  • the starter unit 33 is configured by a coil Lh and a capacitor Ch.
  • an AC voltage having a high switching frequency for example, several hundred kHz
  • a high switching frequency for example, several hundred kHz
  • the frequency of the AC voltage supplied from the DC / AC converter 32 is shifted to a steady frequency (for example, 60 to 1000 Hz), and a steady lighting operation is performed.
  • the change in the frequency of the AC voltage supplied to the starter unit 33 is performed by switching on / off the switching element Q1 and Q4 group and the switching element Q2 and Q3 group in the DC / AC conversion unit 32. This can be achieved by adjusting the period.
  • the on / off control of each switching element (Q1, Q2, Q3, and Q4) is performed based on the control signal from the driver 35.
  • the driver 35 receives a signal output from the power supply control unit 5 and outputs a control signal to each switching element (Q1, Q2, Q3, and Q4) based on this signal.
  • the change of the peak value of the AC voltage supplied to the starter unit 33 can be achieved by adjusting the operation duty of the switching element Qx in the step-down chopper unit 31. That is, the switching element Qx of the step-down chopper unit 31 is turned on / off at a switching frequency corresponding to the duty of the gate signal Gx output from the power supply control unit 5, thereby changing the power supplied to the discharge lamp 10. For example, when it is desired to increase the power supplied to the discharge lamp 10, the power supply control unit 5 performs control to increase the duty of the gate signal Gx so that a desired power value is obtained.
  • the power supply control unit 5 includes a segment signal generation unit 51, a frequency control unit 53, a power control unit 55, and a peak value control unit 57.
  • the segment signal generator 51 generates a segment signal Sg based on the video synchronization signal Sc input from the outside. More specifically, the segment signal generation unit 51 measures the period of the video synchronization signal Sc and includes a segment signal including information obtained by dividing the period (corresponding to the “specific period”) into a plurality of times at a predetermined ratio. Sg is generated. In the present embodiment, a case will be described in which the segment signal generation unit 51 generates the segment signal Sg by dividing the period of the video synchronization signal Sc into a plurality of equal periods.
  • FIG. 4 is a time chart comparing the video synchronization signal Sc and the segment signal Sg.
  • the segment signal generation unit 51 divides the period Ta of the video synchronization signal Sc into six periods will be described as an example.
  • the segment signal generation unit 51 detects the fall of the video synchronization signal Sc at time t0
  • the segment signal generation unit 51 changes the output of the segment signal Sg at that timing (time tg).
  • the segment signal generation unit 51 changes the output of the segment signal Sg again.
  • the segment signal generator 51 changes the output of the segment signal Sg each time the time T1, the time T2, the time T3, and the time T4 elapse.
  • the segment signal generation unit 51 detects the falling edge of the video synchronization signal Sc again. Thereafter, this operation is repeated.
  • the segment signal generation unit 51 generates the segment signal Sg indicating the output change six times within one period of the video synchronization signal Sc.
  • the segment signal Sg generates a segment period according to the interval between two successive output change timings. That is, in the present embodiment, one period Ta of the video synchronization signal Sc is divided into six segment periods S0 to S5 by the segment signal Sg generated by the segment signal generator 51.
  • the period Ta of the video synchronization signal Sc depends on the normal frame rate. For this reason, the length of the cycle Ta can be grasped on the power supply control unit 5 side. Therefore, the segment signal generation unit 51 can recognize the timing for changing the output of the segment signal Sg based on the length of the period Ta. In the present embodiment, since the lengths (T0 to T5) of the segment periods are all the same length, the segment signal generator is generated every time when the time obtained by dividing the length of the period Ta into 6 passes. 51 may change the output of the segment signal Sg.
  • the video synchronization signal Sc is generated in synchronization with the drive frequency of the liquid crystal panel 63 based on the video signal Sa input from the video information input unit 71 in the video control unit 65. For this reason, the video synchronization signal Sc is usually a signal indicating a certain period. However, if the length of the video signal Sa varies, the length of the video synchronization signal Sc may also vary due to this.
  • FIG. 5 is a time chart comparing the video synchronization signal Sc and the segment signal Sg when the length of the video synchronization signal Sc varies.
  • FIG. 5 shows a case where the frame 100 and the frame 103 are configured with an appropriate time, the frame 101 is configured with a shorter time than the appropriate state, and the frame 102 is configured with a longer time than the appropriate state. Yes.
  • the segment signal generation unit 51 cannot recognize the timing at which the frame is switched until it detects the change timing of the video synchronization signal Sc.
  • the video synchronization signal Sc output from the video control unit 65 is usually a signal indicating a predetermined cycle.
  • the segment signal generation unit 51 generates the segment signal Sg so as to be divided into a plurality of segment periods at a predetermined ratio based on the predetermined period (appropriate frame period).
  • the period Ta of the video synchronization signal Sc shown in FIG. 4 is an appropriate frame period.
  • the segment signal generation unit 51 changes the output of the segment signal Sg immediately after detecting the video synchronization signal Sc, The output of the same signal is changed every time the period Ta is divided into six (Ts).
  • each frame period Ta is divided into segment periods (S0 to S5) having the same time Ts as shown in FIG.
  • the output change of the segment signal Sc is changed to the time to indicate the start of the last segment period of the frame 101. If it is performed at t14, an output change of the video synchronization signal Sc indicating the start of the next frame 102 is detected before the time Ts elapses from the time t14 (time t2). Therefore, if the segment signal generator 51 changes the output of the segment signal Sg at the timing when the time Ts has elapsed from the time t14, the segment signal Sg and the video synchronization signal Sc cannot be synchronized.
  • the output change of the segment signal Sc is changed to the time to indicate the start of the last segment period of the frame 102. If it is performed at t24, the output change of the video synchronization signal Sc indicating the start of the next frame 103 is not detected even when the time period obtained by dividing the period Ta by 6 has elapsed from the time t14. Therefore, if the segment signal generator 51 changes the output of the segment signal Sg at the timing when the time Ts has elapsed from the time t24, the segment signal Sg and the video synchronization signal Sc cannot be synchronized.
  • the segment signal generator 51 generates a segment signal Sg for dividing the frame period (100, 102, 102, 103,...) Into a plurality of segment periods. After the output change for indicating the start timing of the last segment period (corresponding to the “final segment period”) S5 is performed, the output change of the segment signal Sg is detected until the output change of the video synchronization signal Sc is detected. Do not do.
  • the segment signal generator 51 detects the output change of the video synchronization signal Sc indicating the start of the next frame 102 even before the time Ts has elapsed from the time t14. To change the level. Similarly, in the case of the frame 102, the segment signal generation unit 51 does not change the level of the video synchronization signal Sc at the time when the time Ts has elapsed from the time t24, and thereafter the video synchronization signal indicating the start of the next frame 103. The level of the segment signal Sg is changed when the change in output of Sc is detected.
  • the segment signal generation unit 51 generates the segment signal Sg synchronized with the video synchronization signal Sc. be able to.
  • the length of the segment period (final segment period) located immediately before the frame is switched among the plurality of segment periods generated by dividing each frame period in accordance with the variation in the frame period. Variation occurs.
  • the segment period S5 corresponds to the last segment period. Since the length T5 of the last segment period S5 belonging to the frame 100 and the frame 103 is formed under the appropriate frame period Ta, it is equal to a predetermined time.
  • the length of the final segment period S5 belonging to the frame 101 is shorter than the appropriate length, and the length of the final segment period S5 belonging to the frame 102 is longer than the appropriate length.
  • the segment signal Sg generated by the segment signal generation unit 51 is output to the frequency control unit 53 and the peak value control unit 57.
  • the frequency control unit 53 generates a polarity signal Sp that reverses the polarity at a predetermined frequency based on the segment signal Sg, and outputs the polarity signal Sp to the driver 35. For example, when supplying an alternating current whose polarity is inverted according to the period of the segment signal Sg to the discharge lamp 10, the frequency control unit 53 generates a polarity signal Sp whose polarity is inverted at the timing when the output of the segment signal Sg varies. To the driver 35.
  • the driver 35 outputs a gate signal (G1, G2, G3, G4) to each switching element (Q1, Q2, Q3, and Q4) based on the polarity signal Sp.
  • a gate signal G1, G2, G3, G4
  • each switching element Q1, Q2, Q3, and Q4
  • the polarity signal Sp corresponds to the “second control signal”.
  • FIGS. 6A and 6B are time charts showing an example of the polarity signal Sp generated by the frequency control unit 53 that has received the segment signal Sg shown in FIG.
  • the frequency control unit 53 generates the polarity signal Sp whose output is changed at each timing when the output of the segment signal Sg changes.
  • the frequency control unit 53 generates the polarity signal Sp whose output is changed at a predetermined timing among the timings when the output of the segment signal Sg changes.
  • the frequency of the alternating current supplied to the discharge lamp 10 can be changed by changing the timing of changing the output of the polarity signal Sp.
  • the period of each polarity is made uniform, but the period can be made different for each polarity.
  • the frequency control unit 53 has information on the polarity of the alternating current input to the discharge lamp 10 for each segment period (segment periods S0 to S5 in the example of FIG. 5). It can be configured to change the output of the polarity signal Sp based on this information.
  • the power control unit 55 calculates the power at the present time. Also, the power value (target power value) indicated by the set power signal Se input from the outside is compared with the calculated current power value, and the peak value setting signal Sw corresponding to the comparison result is sent to the peak value control unit 57. Output.
  • the peak value control unit 57 indicates a duty ratio set based on the peak value setting signal Sw input from the power control unit 55, and generates a gate signal Gx synchronized with the segment signal Sg input from the segment signal generation unit 51. Generate. This gate signal Gx corresponds to the “first control signal”.
  • the voltage signal V L corresponds to a voltage generated by dividing the DC voltage stepped down by the step-down chopper unit 31 by the voltage dividing resistors (R1, R2), and is a voltage applied to the discharge lamp 10. According to the voltage. Further, the current signal IL is also a current corresponding to the current supplied to the discharge lamp 10. Therefore, the power supply control unit 5 makes the lighting power of the discharge lamp 10 constant unless an instruction to change the power consumption of the discharge lamp 10 is given from the outside, that is, unless the value of the set power signal Se changes. Has a function of feedback control.
  • the discharge lamp lighting device 1 of the present embodiment performs control to vary the absolute value (crest value) of the alternating current input to the discharge lamp 10 at a predetermined timing. More specifically, an object is to stabilize the arc bright spot by increasing the absolute value of the amount of current supplied to the discharge lamp 10 at a predetermined timing.
  • Control is performed to increase the input current amount in the first segment period S0. The case will be described.
  • the crest value controller 57 stores in advance information relating to the input current amount in each segment period (S0 to S5) (for example, current ratio information). Then, the peak value controller 57 detects the arrival of each segment period (S0 to S5) based on the segment signal Sg supplied from the segment signal generator 51, and the current amount stored for each segment period is obtained. As described above, the gate signal Gx with the adjusted duty ratio is generated. Thereby, for example, an alternating current Ip as shown in FIG. 7 is supplied to the discharge lamp 10.
  • FIG. 7 is a diagram in which the waveform of the lamp current Ip input to the discharge lamp 10 is added to the time chart of FIG.
  • the length of the frame period may vary due to the length of the video signal Sa.
  • the peak value control unit 57 generates the gate signal Gx so that the input current amount becomes high in the first segment period S0.
  • the peak value control unit 57 generates the gate signal Gx so that the input current amount becomes high in the final segment period S5, there is a possibility that blinking may occur between frames. is there. This point will be described.
  • FIG. 8 shows the change of the average current IpA in each frame (100, 101, 102, 103) together with the waveform of the lamp current Ip.
  • the “average current” here refers to the time average value of the absolute value of the input current amount.
  • the time of the final segment period S5 is shorter than that of the frame 100.
  • the input current amount is increased at the timing of the final segment period S5. Therefore, the average value IpA of the input current in the frame 101 is lower than the average value IpA of the input current in the frame 100 by Ia01.
  • the average value IpA of the input current in frame 102 is higher than the average value IpA of the input current in frame 103 by Ia23. ing.
  • the last segment period S5 has a function of adjusting the length of each frame period. Therefore, as shown in FIG. 7, by raising the input current amount during the segment period other than the final segment period S5, the difference between the frames with respect to the average value of the input current amount is made as small as possible, and the blinking visibility is suppressed. can do.
  • the input current amount is increased in the segment period S0. However, if the input current amount is increased in any one of the segment periods S0 to S4, the effect of suppressing blinking between frames. Is obtained.
  • each segment period is made uniform and the input current amount is changed only in one segment period.
  • a mode in which the amount of input current is changed in a plurality of segment periods is also possible.
  • the frame period (corresponding to the “specific period”) can be divided into a plurality of segment periods including segment periods having different lengths.
  • the peak value control unit 57 has an integral value that is the product of the length of the segment period and the current value (peak value) set in the segment period among the plurality of segment periods (S0 to S5).
  • a segment period (hereinafter referred to as “specific segment period” where appropriate) that is farthest from the average value of the integral values within the frame period (hereinafter referred to as “integrated average value” as appropriate) is defined as the final segment period. Arranged in other segment periods. This will be described first with reference to the example of FIG.
  • FIG. 9A is a drawing in which waveforms of the video synchronization signal Sc and the lamp current Ip are extracted from the time chart of FIG.
  • the integral value in the segment period Si is defined by the product of the length Ti of the segment period Si and the lamp current Ii input in the segment period.
  • the average value of the integral values is defined by a value obtained by calculating ⁇ (Ti ⁇ Ii) for all the segment periods and dividing the calculation result by the frame period, that is, ⁇ Ti.
  • the video synchronization signal Sc is 120 Hz, that is, the frame period is 0.0083 seconds, the lamp current amount in the segment periods S1 to S5 is 1 (A), and the lamp current amount in the segment period S0 is 3 It is the table
  • the peak value control unit 57 generates the gate signal Gx whose duty ratio is controlled so as to obtain the lamp current Ip as shown in FIG. The occurrence of flicker associated with movement can be suppressed.
  • the lighting device 1 of the present invention is not limited to such a case, and generally exhibits a function of suppressing blinking between frames even when the lamp current Ip is changed at a predetermined timing.
  • such an example will be described.
  • FIG. 10A is a drawing obtained by extracting waveforms of the video synchronization signal Sc and the lamp current Ip in a state different from that in FIG. 9A.
  • the lamp current Ip in FIG. 10A has a longer period in which the alternating current supplied to the discharge lamp 10 has the same polarity as the lamp current Ip in FIG. 9A.
  • the lamp current Ip shown in FIG. 10A has a high current absolute value in the segment period S0 and the segment period S3, and a low current absolute value in the other segment periods (S1, S3, S4, S5).
  • FIG. 10B is a table in which the integration value in each segment period (S0 to S5) and the deviation rate from the integration average value of the integration value are calculated when the frame period is 0.0083 seconds as in FIG. 9B. It is.
  • the peak value control unit 57 generates the gate signal Gx whose duty ratio is controlled so as to obtain the lamp current Ip as shown in FIG. 10A, thereby suppressing the blinking between frames and the starting point of the arc. The occurrence of flicker associated with movement can be suppressed.
  • FIG. 11A is a diagram in which waveforms of the video synchronization signal Sc and the lamp current Ip are extracted in a state different from those in FIGS. 9A and 10A.
  • the lamp current waveform in FIG. 11A corresponds to the case where the image forming apparatus 60 is driven in 3D.
  • 3D driving the image forming apparatus 60 repeats the processing of right eye video generation, shutter driving, left eye video generation, and shutter driving.
  • the image forming apparatus 60 increases the absolute value of the current input to the discharge lamp 10 at the timing of generating the image, and decreases the absolute value of current input to the timing discharge lamp 10 that drives the shutter.
  • By controlling the alternating current supplied to the discharge lamp 10 in this way it is possible to suppress the occurrence of crosstalk, which is a phenomenon peculiar to 3D video.
  • FIG. 11A is a table in which the divergence rate from the integral value and the integral average value of each integral value in each segment period (S0 to S5) is calculated when the frame period is 0.0083 seconds as in FIG. 9B. is there.
  • the peak value control unit 57 generates the gate signal Gx whose duty ratio is controlled so as to obtain the lamp current Ip as shown in FIG. 11A, thereby suppressing the blinking between frames and the starting point of the arc. The occurrence of flicker associated with movement can be suppressed.
  • the right eye period and the left eye period each straddle the frame.
  • the peak value control unit 57 controls the peak value of the lamp current Ip as in the present embodiment, the difference in the average input current amount between frames can be reduced, so that the right eye period and the left eye period can be reduced. Flickering can be suppressed.
  • the segment signal generation unit 51 divides the frame period by a predetermined ratio to generate the segment signal Sc indicating the segment periods S0 to S5.
  • FIG. 12A is a drawing obtained by extracting waveforms of the video synchronization signal Sc and the lamp current Ip in a state different from those in FIGS. 9A, 10A, and 11A.
  • the waveform shown in FIG. 12A shows a mode in which the polarities are partially different in the continuous frame 120 and the frame 121, although the current absolute values supplied to the discharge lamp 10 within the same segment period are equal.
  • the frame 121 is intended for the effect of suppressing flicker when the dimming or the lamp voltage increases.
  • FIG. 12B is a table in which, as in FIG. 9B, when the frame period is set to 0.0083 seconds, the integration value and the deviation rate from the integral average value of the integration value in each segment period (S0 to S5) are calculated. is there.
  • the peak value control unit 57 generates the gate signal Gx whose duty ratio is controlled so as to obtain the lamp current Ip as shown in FIG. 12A, thereby suppressing the blinking between frames and the starting point of the arc. The occurrence of flicker associated with movement can be suppressed.
  • the frequency of occurrence of a frame with a high alternating current frequency as in the frame 120 is extremely higher than the frequency of occurrence of a frame with a low alternating current frequency as in the frame 121.
  • the temperature of the electrodes (20a, 20b) can be appropriately controlled, and the life of the discharge lamp 10 can be extended.
  • the segment signal generation unit 51 stores the length of an appropriate frame period (“specific period”) and the ratio of the length of each segment period, and based on these information
  • the timing for changing the output of the segment signal Sc is determined.
  • the segment signal generation unit 51 detects the average value of the length of the immediately preceding frame period or the length of the immediately preceding several frame periods, and outputs the segment signal Sc based on the detected length of the frame period. It does not matter if the timing for changing is determined.
  • the segment signal Sg may be generated simply by multiplying the video synchronization signal Sc.
  • a period in which the lamp current Ip whose polarity is inverted every segment period is input (high frequency period), and a period in which the lamp current Ip having the same polarity is input over a plurality of segment periods (low frequency). (Period) may be combined to perform the lighting control of the discharge lamp 10. That is, the segment period is not necessarily the timing of polarity reversal of the lamp current Ip input to the discharge lamp 10.
  • the peak value controller 57 arranges the specific segment period other than the last segment period for both periods. It is preferable to control the peak value in each segment period.
  • the image forming apparatus using the liquid crystal panel 63 as the light modulation element has been described.
  • the present invention may be applied to a system using a DMD (digital mirror device).
  • Discharge lamp lighting device 3 Power supply part 5: Power supply control part 10: Discharge lamp 11: Light emission part 12: Sealing part 13: Metal foil 14: External lead 20a, 20b: Electrode 21: Protrusion 22: 29a, 29b: Electrode heads 30a, 30b: Electrode shaft part 31: Step-down chopper part 32: DC / AC conversion part 33: Starter part 35: Driver 51: Segment signal generation part 53: Frequency control part 55: Power control Unit 57: Crest value control unit 60: Image forming device 61: Light source device 62: Concave reflector 63: Liquid crystal panel 64: Projection optical system 65: Video control unit 66: Panel control unit 67: Lamp control unit 71: Video information input Unit 72: Screen Sa: Video signal Sb: Video data signal after image processing Sc: Video synchronization No. Sd: driving signal of the liquid crystal panel Se: set power signal

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)
  • Projection Apparatus (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

 投射画像のちらつきを従来よりも抑制することのできる放電ランプの点灯方式を提供する。 給電制御部は、映像同期信号が示す特定期間を分割して複数のセグメント期間を示すセグメント信号を生成するセグメント信号生成部と、セグメント期間毎に交流電流の波高値に応じた第一制御信号を生成する波高値制御部を有する。波高値制御部は、特定期間に属する複数のセグメント期間のうち、セグメント期間の長さとセグメント期間に設定される波高値の積である積分値が特定期間内における積分値の平均値から最も離れた値を示す特定セグメント期間を、特定期間の最終に位置する最終セグメント期間以外に設定する。

Description

放電ランプ点灯装置、光源装置、画像形成装置
 本発明はプロジェクタ等の光源に好適に使用される放電ランプの点灯装置に関する。また、本発明は、このような点灯装置によって点灯される光源装置、及びこの光源装置を備えた画像形成装置に関する。
 プロジェクタ装置の光源には、高い水銀蒸気圧の放電ランプが用いられている。このような高圧水銀ランプは、水銀蒸気圧を高くすることで、可視波長域の光を高い出力で得ることができる。
 放電ランプは、放電容器によって形成されたほぼ球形の発光部を有し、この発光部の中には、一対の電極が例えば2mm以下という極めて小さい間隔で対向して配置されている。
 このような放電ランプを長期間同じ状態で交流点灯した場合、高温により微小な突起が複数形成されたり、電極の先端表面部に微小な凹凸が発生したりすることがある。これらの微小突起や凹凸は、電極を構成する材料(例えばタングステン)が溶融し、発光部内に封入されたガスと結合して生じた化合物が凝集して生じたものであり、この存在が電極先端の表面部の形状を変化させる。これに伴ってアークの起点が移動し、放電位置が不安定となり、いわゆるフリッカと呼ばれる投射光のちらつきが発生することが問題となっていた。
 このような問題を解決するため、下記特許文献1には、所定のタイミングで入力電流量を増加させた交流電流をランプに投入する技術が開示されている。図13は、この従来のランプ電流波形の一例を示す図である。図13に示される電流パルスPは、通常時に放電ランプに投入されるパルスP1と、所定のタイミングでパルスP1より投入電流量を増加させたパルスP2とを含んで構成されている。
 パルスP2を間欠的に挿入することで、このタイミングで電極に対する加熱の度合いが高まり、電極先端のみならず先端から離れた箇所に対しても熱を伝達させることができる。よって、この間に電極先端から離れた箇所に対しても熱が伝達され、かかる箇所に生じていた微小突起や凹凸を溶融、蒸発させることができる。これにより、悪影響を及ぼし兼ねない電極先端部以外の突起や凹凸を消滅させることができ、アークの輝点を安定化させることができる。
特表平10-501919号公報
 パルスP2はパルスP1よりも波高値が高いため、パルスP2が投入されるタイミングで放電ランプへの投入電流量が上昇し、このタイミングで瞬間的に輝度が上昇する。しかし、パルスP2の挿入間隔は通常数十Hz~数百Hz程度であるため、この輝度変化に伴う明滅が視認されることはない。
 ところで、プロジェクタ等の画像形成装置は、液晶パネル等の光変調素子を有している。そして、入力される映像信号に基づいてこの液晶パネルを駆動するための駆動信号を生成する。液晶パネルは、この駆動信号に基づいて駆動されることで放電ランプからの光を変調し、液晶パネルを通過した各色の光が合成されて投射光学系を介してスクリーンに投射される。液晶パネルの駆動信号は映像信号に応じた周波数を示し、通常60Hzや120Hzに設定される。
 このため、液晶パネルの駆動周波数と、波高値の高いパルスP2の周波数が非同期である場合、投射される画像にローリングバーや縞ノイズなどが現れ、画質が低下するおそれがある。
 本発明は、上記の課題に鑑み、交流駆動する放電ランプを用いたプロジェクタ等の画像形成装置において、投射画像のちらつきを従来よりも抑制することのできる放電ランプの点灯方式を提供することを目的とする。また、本発明は、このような点灯方式で点灯される放電ランプ等の光源装置、及びこの光源装置を備えた画像形成装置を提供することを目的とする。
 本発明は、所定のガスが封入された放電容器内に一対の電極が対向配置された放電ランプに対して交流電流を供給する放電ランプ点灯装置であって、
 外部から映像同期信号が入力される給電制御部と、
 供給される直流電圧を前記給電制御部から出力される制御信号に基づいて交流電流に変換すると共に、前記交流電流を前記放電ランプに供給する給電部とを備え、
 前記給電制御部は、
  前記映像同期信号が示す特定期間を分割してなる複数のセグメント期間を示すセグメント信号を生成するセグメント信号生成部と、
  前記セグメント期間毎に前記交流電流の波高値に応じた第一制御信号を生成して前記給電部に出力する波高値制御部と、
  前記セグメント信号に基づいて前記交流電流の極性反転のタイミングを示す第二制御信号を生成して前記給電部に出力する周波数制御部とを有し、
 前記波高値制御部は、前記特定期間に属する複数の前記セグメント期間のうち、前記セグメント期間の長さと当該セグメント期間に設定される前記波高値の積である積分値が前記特定期間内における前記積分値の平均値から最も離れた値を示す特定セグメント期間を、前記特定期間の最終に位置する最終セグメント期間以外に設定することを特徴とする。
 「発明が解決しようとする課題」の項で記載したように、従来は、ランプに投入する電流量を変化させるタイミングが、液晶パネル等を駆動するための映像同期信号に対して同期が取られていなかったため、画質への影響が生じていた。かかる観点に鑑みれば、電流量を変化させるタイミングと映像同期信号に同期させることで、ローリングバーや縞ノイズなどの画質劣化が防止されると考えられる。
 上記の構成では、映像同期信号のレベルが変化した第一時刻と、次に映像同期信号のレベルが変化した第二時刻との間で規定される時間(上記「特定期間」に対応する。)を複数のセグメント期間に分割し、このセグメント期間単位で放電ランプへの投入電流量を変更することができる。これにより、電流量が変動するタイミングを映像同期信号のタイミングに同期させることができる。
 ところで、通常、映像信号は特定の単位(通常1フレーム)毎にプロジェクタ等の画像形成装置に送信される。そして、この単位の切り替えタイミングを示す映像同期信号が点灯装置に送信される。しかし、場合によってはこの映像信号の長さにバラツキが生じることがある。このようにフレームの長さ(特定期間の長さ)にバラツキが生じると、投入電流量の変更の態様によっては、フレーム間で投射される映像に明滅が生じる場合がある。
 本発明の構成によれば、特定期間が複数に分割されてなる各セグメント期間の長さと当該セグメント期間に設定される波高値(投入されるランプ電流量に対応する。)との積である積分値が、特定期間内における各積分値の平均値から最も離れた値を示す特定セグメント期間を、最終セグメント期間以外に設定している。これにより、フレーム間での明滅を抑制しながらも、上述したローリングバーや縞ノイズの発生を抑制することができる。この内容については、「発明の詳細な説明」の項で後述される。
 ところで、放電ランプにおけるアークの輝点を安定化させる目的だけではなく、3D駆動などの他の目的においても、ランプに投入する電流量を細かく変更しながら放電ランプを点灯する場合がある。本発明の構成は、このように投入する電流量を変更しながら放電ランプを点灯する場合において、投射される画像の画質を向上させる効果がある。
 上記構成において、前記波高値制御部は、前記最終セグメント期間には、前記平均値に最も近い前記積分値を示した前記セグメント期間を配置するものとしても構わない。
 また、前記セグメント信号生成部は、前記映像同期信号を逓倍処理することで前記セグメント信号を生成するものとしても構わない。
 また、本発明に係る光源装置は、
 前記放電ランプ点灯装置と、
 前記放電ランプ点灯装置からの電流供給を受けて点灯する放電ランプとを備えたことを特徴とする。
 また、本発明に係る画像形成装置は、
 前記光源装置と、
 外部から入力される映像信号に基づいて、前記放電ランプからの射出光を変調して画像情報を生成する光変調素子と、
 前記光変調素子から射出された光を投射する投射光学系とを備えたことを特徴とする。
 本発明によれば、放電ランプからの光を用いて投射面に投射される画像のちらつきを従来方法よりも大幅に抑制することが可能となる。
液晶パネルを利用する方式の画像形成装置の構成を模式的に示すブロック図である。 放電ランプの断面模式図である。 放電ランプの電極先端付近を拡大した断面模式図である。 放電ランプ点灯装置の構成を模式的に示す回路ブロック図である。 映像同期信号とセグメント信号を対比したタイムチャートである。 映像同期信号とセグメント信号を対比したタイムチャートである。 映像同期信号、セグメント信号、及び極性信号を対比したタイムチャートである。 映像同期信号、セグメント信号、及び極性信号を対比した別のタイムチャートである。 映像同期信号、セグメント信号、極性信号、及びランプ電流波形を対比したタイムチャートである。 フレーム間で明滅が生じる場合における、映像同期信号、セグメント信号、極性信号、及びランプ電流波形を対比したタイムチャートである。 映像同期信号とランプ電流波形を対比したタイムチャートの一例である。 図9Aの状態における各セグメント期間の積分値及び積分平均値からの乖離率を示す表である。 映像同期信号とランプ電流波形を対比したタイムチャートの一例である。 図10Aの状態における各セグメント期間の積分値及び積分平均値からの乖離率を示す表である。 映像同期信号とランプ電流波形を対比したタイムチャートの一例である。 図11Aの状態における各セグメント期間の積分値及び積分平均値からの乖離率を示す表である。 映像同期信号とランプ電流波形を対比したタイムチャートの一例である。 図12Aの状態における各セグメント期間の積分値及び積分平均値からの乖離率を示す表である。 従来のランプ電流波形の一例を示す図である。
 [画像形成装置]
 点灯装置の構成に先駆けて、まず本発明の点灯装置の利用が想定される画像形成装置の構成について図面を参照して説明する。
 図1は、光変調素子として液晶パネルを利用する方式の画像形成装置の構成の一例を模式的に示すブロック図である。ここでは、画像形成装置60として、液晶プロジェクタを想定している。画像形成装置60は、光源装置61、液晶パネル63、投射光学系64、映像制御部65、パネル制御部66、及びランプ制御部67を備えている。
 光源装置61は、放電ランプ点灯装置1、放電ランプ10及び凹面反射鏡62を備える。放電ランプ10は交流点灯タイプのランプであり、ランプのアーク輝点と凹面反射鏡62の第一焦点がほぼ一致するように配置されている。放電ランプ10は放電ランプ点灯装置1によって点灯制御がなされる。放電ランプ10の構成、及び放電ランプ点灯装置1の構成については後述される。
 凹面反射鏡62からの反射光は液晶パネル63に照射される。本実施形態では、液晶パネル63は透過型の液晶パネルであり、パネル制御部66からの駆動信号に応じて照射光を変調する光変調素子(ライトバルブ)として利用される。光源装置61から放出された光が液晶パネル63を通過することで画像が形成され、当該画像光が投射光学系64を介してスクリーン72に投射される。
 映像制御部65は、PCやDVDなどで構成された映像情報入力部71から映像信号Saが入力される。映像制御部65は、映像信号Saを処理可能なデータ形式に変換すると共に、輝度調整、コントラスト調整、シャープネス調整、台形歪補正などの画像処理を施す。更に、映像制御部65は、液晶パネル63の駆動周波数に同期するように、この映像データに対してフレームレートの変換処理を行い、パネル制御部66に出力する。すなわち、映像制御部65は、処理後の映像データ信号Sb及び映像同期信号Scをパネル制御部66に出力する。
 パネル制御部66は、映像制御部65で生成された映像データ信号Sb及び映像同期信号Scに基づいて、液晶パネル63を駆動するための駆動信号Sdを生成し、液晶パネル63の制御を行う。
 ランプ制御部67は、映像制御部65から映像同期信号Scの入力を受け付け、当該同期信号を点灯装置1に出力する。また、ランプ制御部67は、放電ランプ10の消費電力を調整する際の設定電力信号Seを放電ランプ点灯装置1に出力する。設定電力信号Seは、例えば光源装置60の消費電力を低下させて駆動するなどの制御を行う際に、当該設定電力信号Seのレベルを変化させ、点灯装置1側で当該設定電力信号Seのレベルを検知して出力を低下させる制御を行うために用いられる信号である。なお、映像同期信号Scは、映像制御部65から直接点灯装置1に出力されるものとしても構わない。
 点灯装置1は、入力される映像同期信号Sc及び設定電力信号Seに基づいて、後述するように、放電ランプ10に投入する電流の制御を行う。
 なお、図1では図示を省略しているが、画像形成装置60は、R,G,Bの3色に対応した3枚の液晶パネル63を備えており、映像制御部65及びパネル制御部66は、3色分の画像データを処理する機能を有している。また、光源装置61は、白色光を3色の光に分離する光学系を備えており、投射光学系64は3色の画像光を合成してカラー画像を示す画像光を生成する合成光学系を備えている。
 [ランプの構成]
 次に、放電ランプ10の構成につき、説明する。図2A及び図2Bに、放電ランプの断面模式図を示す。図2Bは、図2Aの電極先端付近を拡大した断面模式図である。
 放電ランプ10は、石英ガラスからなる放電容器によって形成された、ほぼ球形の発光部11を有する。放電容器の材料は石英ガラスに限定されず、他の材料で構成されていても構わない。
 この発光部11の中には、一対の電極20a、20bが例えば2mm以下という極めて小さい間隔で対向配置している。
 また、発光部11の両端部には封止部12が形成される。この封止部12には、モリブデン等で構成された導電用の金属箔13が、例えばシュリンクシールにより気密に埋設されている。金属箔13の一端には電極20a、20bの軸部が接合しており、金属箔13の他端には外部リード14が接合し、後述する放電ランプ点灯装置から電力が供給される。
 放電ランプ10の発光部11には、水銀、希ガス、及びハロゲンガスが封入されている。
 水銀は、必要な可視光波長、例えば、波長360~780nmの放射光を得るためのものであり、具体的数値でいうと、0.20mg/mm以上封入されている。この封入量は温度条件によっても異なるが、点灯時における発光部内部の圧力を200気圧以上という高い蒸気圧を実現するものである。また、水銀をより多く封入することで点灯時の水銀蒸気圧が250気圧以上や300気圧以上といった高い水銀蒸気圧の放電ランプを作ることができる。水銀蒸気圧が高くなるほどプロジェクタに適した光源を実現できる。
 希ガスとしては、例えばアルゴンガスが約13kPa封入される。その機能は点灯始動性を改善することにある。
 また、ハロゲンガスとしては、ヨウ素、臭素、塩素などが水銀又はその他の金属との化合物形態で封入される。ハロゲンの封入量は、10-6μmol/mm~10-2μmol/mmの範囲から選択される。ハロゲンを封入する最大の理由は、いわゆるハロゲンサイクルを利用した放電ランプの長寿命化のためである。また、放電ランプ10を極めて小型で且つ極めて高い点灯蒸気圧とした場合には、ハロゲンを封入することで放電容器の失透防止という作用も得られる。失透とは、準安定のガラス状態から結晶化が進行し、多くの結晶核から成長した結晶粒の集合体へと変化することをいう。仮にこのような現象が生じると、結晶の粒界で光が散乱されて放電容器が不透明になってしまう。
 なお、同様の機能を実現できるのであれば、発光部11に封入されるガスは上記ガスに限定されるものではない。
 放電ランプ10の一実施例としては、発光部の最大外径9.4mm、電極間距離1.0mm、放電容器内容積55mm、定格電圧70V、定格電力180Wであり交流方式で電力が供給される構成とすることができる。
 また、近年において小型化が進行するプロジェクタに放電ランプ10を内蔵して利用することを想定した場合、放電ランプ10は全体寸法として極めて小型化が要請され、その一方で高い発光光量も要求される。このため、発光部内の熱的影響は極めて厳しいものとなり、ランプの管壁負荷値は0.8~2.5W/mm、具体的には2.4W/mmとなる。このように、高い水銀蒸気圧や管壁負荷値を有する放電ランプ10が、プロジェクタやオーバーヘッドプロジェクタのようなプレゼンテーション用機器に搭載されることで、プレゼンテーション用機器に演色性の良い放射光を提供することができる。
 図2Bに示すように、電極20aは頭部29aと軸部30aによって構成され、電極20bは頭部29bと軸部30bによって構成される。そして、電極20a及び電極20bには、いずれも先端に突起21が形成されている。この突起21は、ランプ点灯時、電極先端において溶融した電極材料が凝集して形成されるものである。本実施形態では、電極20a及び電極20bがいずれもタングステンで構成されるものとして説明するが、材料はこれに限定されるものではない。
 電極20a及び電極20bに対して通電がされると、白熱して高温化され、これらを構成するタングステンが昇華する。昇華したタングステンは、比較的に低温部である発光部11の内壁面領域において、封入されていたハロゲンガスと結合して、ハロゲン化タングステンを形成する。ハロゲン化タングステンの蒸気圧は比較的高いことから、ガスの状態で再び電極20a及び電極20bの先端付近に移動する。そして、この箇所で再度加熱されると、ハロゲン化タングステンはハロゲンとタングステンに分離される。このうちタングステンは、電極20a及び電極20bの先端に戻って凝集され、ハロゲンは発光部11内のハロゲンガスとして復帰する。これが上記の「ハロゲンサイクル」に対応する。なお、この凝集されたタングステンが、電極20a及び電極20bの先端近傍に付着することで、突起21が形成される。
 [点灯装置の構成]
 次に、上述した放電ランプ10を点灯する点灯装置1の構成について説明する。
 図3は、本発明の放電ランプ点灯装置の構成を模式的に示す回路ブロック図である。図3に示すように、点灯装置1は、給電部3、及び給電制御部5を含んで構成される。
  〈給電部3〉
 給電部3は、降圧チョッパ部31、DC/AC変換部32、及びスタータ部33を備える。なお、この給電部3の構成はあくまで一例である。
 降圧チョッパ部31は、供給される直流電圧Vdcを所望電圧の直流電圧に降圧し、後段のDC/AC変換部32に出力する。図3では、具体的な構成例として、降圧チョッパ部31は、スイッチング素子Qx、リアクトルLx、ダイオードDx、平滑コンデンサCx、抵抗Rx、及び分圧抵抗(R1,R2)を有するものが図示されている。
 スイッチング素子Qxは、直流電圧Vdcが供給される+側電源端子に一端が接続され、他端がリアクトルLxの一端に接続される。ダイオードDxは、カソード端子がスイッチング素子Qx及びリアクトルLxの接続点に接続され、アノード端子が-側電源端子に接続される。平滑コンデンサCxは、一端(+側端子)がリアクトルLxの出力側端子に接続され、他端(-側端子)が抵抗Rxの出力側端子に接続される。抵抗Rxは、平滑コンデンサCxの-側端子とダイオードDxのアノード端子の間に接続され、電流検出の機能を実現している。また、分圧抵抗(R1,R2)は、平滑コンデンサCxの-側端子と+側端子の間に接続され、電圧検出の機能を実現している。
 スイッチング素子Qxは、給電制御部5が出力するゲート信号Gxによって駆動される。このゲート信号Gxのデューティにより、降圧チョッパ部31は入力直流電圧Vdcをこのデューティに応じた電圧に降圧して後段のDC/AC変換部32に出力する。つまり、給電制御部5からの信号によって放電ランプ10への印加電圧が決定される。
 DC/AC変換部32は、入力された直流電圧を所望の周波数の交流電圧に変換して、後段のスタータ部33に出力する。図3では、具体的な構成例として、DC/AC変換部32が、ブリッジ状に接続したスイッチング素子Q1~Q4から構成されたものが図示されている(フルブリッジ回路)。
 スイッチング素子Q1は、ドライバ35から出力されるゲート信号G1によって駆動される。同様に、スイッチング素子Q2はゲート信号G2によって駆動され、スイッチング素子Q3はゲート信号G3によって駆動され、スイッチング素子Q4はゲート信号G4によって駆動される。ドライバ35は、対角に配置されたスイッチング素子Q1及びQ4の組と、スイッチング素子Q2及びQ3の組に対して、交互にオン/オフを繰り返すようにゲート信号を出力する。これにより、スイッチング素子Q1及びQ2の接続点と、スイッチング素子Q3及びQ4の接続点の間に、矩形波状の交流電圧が発生する。
 スタータ部33は、放電ランプ始動時にDC/AC変換部32から供給される交流電圧を昇圧して放電ランプ10に供給するための回路部である。図3では、具体的な構成例として、スタータ部33が、コイルLh及びコンデンサChで構成されたものが図示されている。放電ランプ始動時に、コイルLh、コンデンサChからなるLC直列回路の共振周波数近傍の、高いスイッチング周波数(例えば数百kHz)の交流電圧をDC/AC変換部32から印加することで、スタータ部33の二次側において放電ランプの始動に必要な高い電圧が生成され、これが放電ランプ10に供給される。なお、放電ランプが点灯した後はDC/AC変換部32から供給される交流電圧の周波数を定常周波数(例えば60~1000Hz)に移行し、定常点灯動作が行われる。
 なお、上記回路において、スタータ部33に供給される交流電圧の周波数の変更は、DC/AC変換部32におけるスイッチング素子Q1及びQ4の組と、スイッチング素子Q2及びQ3の組のオン/オフ切替の周期を調整することで達成できる。上述したように、各スイッチング素子(Q1、Q2、Q3、及びQ4)のオンオフ制御は、ドライバ35からの制御信号に基づいて行われる。このドライバ35は、給電制御部5から出力される信号を受け取り、この信号に基づいて制御信号を各スイッチング素子(Q1、Q2、Q3、及びQ4)に出力する。
 また、スタータ部33に供給される交流電圧の波高値の変更は、降圧チョッパ部31におけるスイッチング素子Qxの動作デューティを調整することで達成できる。すなわち、降圧チョッパ部31のスイッチング素子Qxは、給電制御部5が出力するゲート信号Gxのデューティに応じたスイッチング周波数でオン/オフし、これによって放電ランプ10に供給される電力が変化する。例えば放電ランプ10への供給電力を上昇させたい場合、給電制御部5は、所望の電力値となるようにゲート信号Gxのデューティを上げる制御を行う。
  〈給電制御部5〉
 本実施形態では、給電制御部5は、セグメント信号生成部51、周波数制御部53、電力制御部55、及び波高値制御部57を備えている。
 セグメント信号生成部51は、外部から入力される映像同期信号Scに基づいてセグメント信号Sgを生成する。より詳細には、セグメント信号生成部51は、映像同期信号Scの周期を測定すると共に、この周期(「特定期間」に対応する。)を所定の比率で複数に時間分割した情報を含むセグメント信号Sgを生成する。本実施形態では、セグメント信号生成部51が映像同期信号Scの周期を均等な複数の期間に分割することでセグメント信号Sgを生成する場合について説明する。
 図4は、映像同期信号Scとセグメント信号Sgを対比したタイムチャートである。ここでは、セグメント信号生成部51が、映像同期信号Scの周期Taを、6つの期間に分割する場合を例に挙げて説明する。セグメント信号生成部51は、時刻t0において映像同期信号Scの立ち下がりを検知すると、そのタイミングでセグメント信号Sgの出力を変化させる(時間tg)。その後、時間T0が経過すると、セグメント信号生成部51は、再びセグメント信号Sgの出力を変化させる。以後、時間T1、時間T2、時間T3、時間T4が経過する毎にセグメント信号生成部51はセグメント信号Sgの出力を変化させる。その後、時間T5が経過すると、再びセグメント信号生成部51は、映像同期信号Scの立ち下がりを検知する。以後、この動作が繰り返される。
 かかる動作により、セグメント信号生成部51は、映像同期信号Scの1周期内に6回の出力変化を示すセグメント信号Sgを生成する。このセグメント信号Sgは、連続する2つの出力変化のタイミングの間隔によって、セグメント期間を生成する。すなわち、本実施形態では、セグメント信号生成部51が生成したセグメント信号Sgによって、映像同期信号Scの1周期Taが、6つのセグメント期間S0~S5に分割される。
 映像同期信号Scの周期Taは、通常フレームレートに依存する。このため、この周期Taの長さは給電制御部5側で把握することができる。そこで、セグメント信号生成部51は、この周期Taの長さに基づいてセグメント信号Sgの出力を変化させるタイミングを認識することができる。本実施形態の場合は、各セグメント期間の長さ(T0~T5)を全て同じ長さとしているため、周期Taの長さを6分割して得られる時間が経過するごとに、セグメント信号生成部51がセグメント信号Sgの出力を変化させるものとすればよい。
 上述したように、映像同期信号Scは、映像制御部65において映像情報入力部71から入力された映像信号Saに基づいて、液晶パネル63の駆動周波数に同期するように生成される。このため、通常、映像同期信号Scは一定の周期を示す信号となる。しかし、映像信号Saの長さにバラツキが生じている場合、映像同期信号Scの長さもこれに起因してバラツキが生じる場合がある。
 図5は、映像同期信号Scの長さにバラツキが生じている場合における、映像同期信号Scとセグメント信号Sgを対比したタイムチャートである。図5において、フレーム100及びフレーム103が適正な時間で構成され、フレーム101が適正な状態よりも短い時間で構成され、フレーム102が適正な状態よりも長い時間で構成されている場合を示している。
 セグメント信号生成部51は、映像同期信号Scの変化のタイミングを検知するまでフレームが切り替わるタイミングを認識することができない。ただし、上述したように、映像制御部65から出力される映像同期信号Scは、通常は所定の周期を示す信号である。このため、セグメント信号生成部51は、この所定の周期(適正なフレーム期間)に基づいて、予め定められた比率で複数のセグメント期間に分割するよう、セグメント信号Sgを生成する。ここでは、図4に示した映像同期信号Scの周期Taが適正なフレーム期間であるものとして説明する。
 本実施形態では、6つのセグメント期間(S0~S5)を均一の時間で構成するため、セグメント信号生成部51は、映像同期信号Scを検知した直後にセグメント信号Sgの出力を変化させた後、周期Taを6分割した時間(Ts)が経過する毎に同信号の出力を変化させる。この構成により、映像同期信号Scが適正な周期を有している限り、図4に示されるように、各フレーム期間Taが同一の時間Tsを有するセグメント期間(S0~S5)に分割される。
 ところが、図5に示すフレーム101のように、映像同期信号Scの長さが適正な状態よりも短い場合には、フレーム101の最後のセグメント期間の開始を示すべくセグメント信号Scの出力変化を時刻t14で行うと、その時刻t14から時間Tsが経過する前に次のフレーム102の開始を示す映像同期信号Scの出力変化が検知されてしまう(時刻t2)。従って、仮に時刻t14から時間Tsが経過したタイミングでセグメント信号生成部51がセグメント信号Sgの出力を変化させてしまうと、セグメント信号Sgと映像同期信号Scの同期が取れなくなってしまう。
 また、図5に示すフレーム102のように、映像同期信号Scの長さが適正な状態よりも長い場合には、フレーム102の最後のセグメント期間の開始を示すべくセグメント信号Scの出力変化を時刻t24で行うと、その時刻t14から周期Taを6分割した時間が経過しても次のフレーム103の開始を示す映像同期信号Scの出力変化が検知されない。従って、仮に時刻t24から時間Tsが経過したタイミングでセグメント信号生成部51がセグメント信号Sgの出力を変化させてしまうと、セグメント信号Sgと映像同期信号Scの同期が取れなくなってしまう。
 このような事態を避けるために、セグメント信号生成部51は、フレーム期間(100、102,102,103,…)を複数のセグメント期間に分割するためのセグメント信号Sgを生成するに際し、フレーム期間の最終に位置するセグメント期間(「最終セグメント期間」に対応する。)S5の開始タイミングを示すための出力変化を行った後は、映像同期信号Scの出力変化を検知するまでセグメント信号Sgの出力変化を行わない。
 つまり、フレーム101であれば、セグメント信号生成部51は、時刻t14から時間Tsが経過する前であっても、次のフレーム102の開始を示す映像同期信号Scの出力変化を検知するとセグメント信号Sgのレベルを変化させる。同様に、フレーム102であれば、セグメント信号生成部51は、時刻t24から時間Tsが経過した時点では映像同期信号Scのレベルを変化させず、その後に次のフレーム103の開始を示す映像同期信号Scの出力変化を検知した時点でセグメント信号Sgのレベルを変化させる。
 このように構成することで、映像同期信号Scによって規定されるフレーム期間にバラツキが生じている場合であっても、セグメント信号生成部51は、映像同期信号Scに同期したセグメント信号Sgを生成することができる。ただし、この構成によれば、フレーム期間のバラツキに伴って、各フレーム期間を分割して生成される複数のセグメント期間のうち、フレームが切り替わる直前に位置するセグメント期間(最終セグメント期間)の長さにバラツキが生じる。図5の例でいえば、セグメント期間S5が最終セグメント期間に対応する。フレーム100及びフレーム103に属する最終セグメント期間S5の長さT5は適正なフレーム期間Taの下で形成されたものであるため、予め定められた時間に等しい。これに対し、フレーム101に属する最終セグメント期間S5の長さは適正な長さよりも短くなり、フレーム102に属する最終セグメント期間S5の長さは適正な長さより長くなる。
 セグメント信号生成部51が生成したセグメント信号Sgは、周波数制御部53及び波高値制御部57に出力される。周波数制御部53は、セグメント信号Sgに基づいて予め定められた周波数で極性反転をする極性信号Spを生成し、ドライバ35に出力する。例えば、セグメント信号Sgの周期に応じて極性反転する交流電流を放電ランプ10に供給する場合、周波数制御部53は、セグメント信号Sgの出力が変動するタイミングで極性が反転する極性信号Spを生成してドライバ35に出力する。ドライバ35は、この極性信号Spに基づいて各スイッチング素子(Q1、Q2、Q3、及びQ4)に対してゲート信号(G1,G2,G3,G4)を出力する。これにより、極性信号Spに応じた周波数で極性が反転する矩形波の交流電流が放電ランプ10に供給される。極性信号Spが「第二制御信号」に対応する。
 図6A及び図6Bは、図5に示されるセグメント信号Sgを受信した周波数制御部53が生成する極性信号Spの一例を示すタイムチャートである。図6Aの例では、周波数制御部53は、セグメント信号Sgの出力が変化する各タイミングで出力を変化させた極性信号Spを生成している。また、図6Bの例では、周波数制御部53は、セグメント信号Sgの出力が変化するタイミングのうち、所定のタイミングで出力を変化させた極性信号Spを生成している。図6A及び図6Bに示すように、極性信号Spの出力を変化させるタイミングを異ならせることで、放電ランプ10に投入する交流電流の周波数を変更することができる。なお、図6Bでは、各極性の周期を均一にしているが、極性毎に周期を異ならせることも可能である。
 より具体的には、周波数制御部53が、セグメント期間(図5の例であれば、セグメント期間S0~S5)毎に、放電ランプ10に投入する交流電流の極性に関する情報(正極性であるか負極性であるか)を記憶しており、この情報に基づいて、極性信号Spの出力を変更させる構成とすることができる。
 電力制御部55は、分圧抵抗(R1,R2)によって検出した電圧信号V、及び抵抗Rxによって検出した電流信号Iが入力され、現時点における電力を算定する。また、外部から入力された設定電力信号Seが示す電力値(目標電力値)と、算定された現時点の電力値を比較し、比較結果に応じた波高値設定信号Swを波高値制御部57に出力する。波高値制御部57は、電力制御部55から入力された波高値設定信号Swに基づいて設定されるデューティ比を示し、セグメント信号生成部51から入力されたセグメント信号Sgに同期したゲート信号Gxを生成する。このゲート信号Gxが「第一制御信号」に対応する。
 電圧信号Vは、降圧チョッパ部31で降圧された直流電圧が分圧抵抗(R1,R2)で分圧されて生成された電圧に対応するものであり、放電ランプ10に印加される電圧に応じた電圧である。また、電流信号Iについても、放電ランプ10に投入される電流に対応する電流である。よって、給電制御部5は、放電ランプ10の消費電力を変更する指示が外部から与えられない限り、すなわち、設定電力信号Seの値が変化しない限り、放電ランプ10の点灯電力が一定になるようにフィードバック制御する機能を有している。
 本実施形態の放電ランプ点灯装置1は、所定のタイミングで放電ランプ10に投入する交流電流の絶対値(波高値)を異ならせる制御を行う。より詳細には、所定のタイミングで放電ランプ10に投入される電流量の絶対値を上昇させて、アークの輝点を安定化させることを目的としている。ここでは、各フレーム期間(T100,T101,T102,T103,…)を分割して生成される各セグメント期間(S0~S5)のうち、最初のセグメント期間S0において投入電流量を増加させる制御を行う場合について説明する。
 なお、このような制御を行うに際しては、例えば以下の方法で行うことができる。波高値制御部57は、予め各セグメント期間(S0~S5)における投入電流量に関する情報(例えば電流比の情報など)を記憶しておく。そして、波高値制御部57は、セグメント信号生成部51から供給されるセグメント信号Sgに基づいて、各セグメント期間(S0~S5)の到来を検知し、セグメント期間毎に記憶された電流量になるように、デューティ比を調整したゲート信号Gxを生成する。これにより、例えば、図7に示すような交流電流Ipが放電ランプ10に供給される。図7は、図6のタイムチャートに放電ランプ10に投入されるランプ電流Ipの波形を付加した図面である。
 ところで、上述したように、映像信号Saの長さに起因してフレーム期間の長さにバラツキが生じる場合がある。図7の例では、最初のセグメント期間S0の期間において投入電流量が高くなるように、波高値制御部57がゲート信号Gxを生成していた場合を想定して説明した。ここで、仮に、図8に示すように、波高値制御部57が最終セグメント期間S5において投入電流量が高くなるようにゲート信号Gxを生成していた場合、フレーム間で明滅が生じる可能性がある。この点につき説明する。
 図8では、ランプ電流Ipの波形と共に、各フレーム(100,101,102,103)における平均電流IpAの変化を示している。なお、ここでいう「平均電流」とは投入した電流量の絶対値の時間平均値を指している。
 フレーム101では、フレーム100と比べて最終セグメント期間S5の時間が短くなっている。図8の例では、この最終セグメント期間S5のタイミングで投入電流量を高くしている。このため、フレーム101における投入電流の平均値IpAは、フレーム100における投入電流の平均値IpAよりもIa01だけ低下している。逆に、フレーム102では、フレーム103と比べて最終セグメントS5の時間が長くなっているため、フレーム102における投入電流の平均値IpAは、フレーム103における投入電流の平均値IpAよりもIa23だけ上昇している。
 ここで、連続するフレーム101とフレーム102を比較すると、フレーム101における投入電流の平均値IpAとフレーム102における投入電流の平均値IpAは、極めて大きな差が生じている。このような状況が発生すると、フレーム101からフレーム102に切り替わったときに、スクリーン72で投射される映像の明度が視認される範囲内で変化してしまう。
 このような事態が生じるのは、映像信号Saの長さに起因して最終セグメント期間S5の長さにバラツキが生じる場合があるためである。最終セグメント期間S5は、各フレーム期間の長さを調整する機能を有している。よって、図7に示すように、最終セグメント期間S5以外のセグメント期間に投入電流量を上昇させることで、投入される電流量の平均値に関してフレーム間で差をできるだけ小さくし、明滅の視認を抑制することができる。図7の例では、セグメント期間S0において投入電流量を上昇させているが、セグメント期間S0~S4のいずれか一の期間内で投入電流量を上昇させれば、フレーム間における明滅を抑制する効果が得られる。
 なお、本実施形態では、各セグメント期間の長さを均一にした上で、一のセグメント期間においてのみ投入電流量を変化させる場合を説明した。しかし、複数のセグメント期間において投入電流量を変化させる態様も可能である。また、フレーム期間(上記「特定期間」に対応する。)を、異なる長さのセグメント期間を含む複数のセグメント期間に分割することも可能である。
 かかる場合を鑑み、波高値制御部57は、複数のセグメント期間(S0~S5)のうち、セグメント期間の長さと当該セグメント期間に設定される電流値(波高値)の積である積分値が、フレーム期間内における当該積分値の平均値(以下、適宜「積分平均値」と呼ぶ。)から最も離れた値を示すセグメント期間(以下、適宜「特定セグメント期間」と呼ぶ。)を、最終セグメント期間以外のセグメント期間に配置する。この内容につき、まず図7の例を再び参照して説明する。
 図9Aは、図7のタイムチャートから、映像同期信号Sc及びランプ電流Ipの波形を抜き出した図面である。セグメント期間Siにおける前記積分値は、セグメント期間Siの長さTiと、当該セグメント期間に投入されたランプ電流Iiの積で規定される。また、積分値の平均値は、全てのセグメント期間に関してΣ(Ti・Ii)を計算し、この計算結果をフレーム期間すなわちΣTiで除した値で規定される。図9Bは、一例として、映像同期信号Scを120Hzとし、すなわちフレーム期間を0.0083秒とし、セグメント期間S1~S5におけるランプ電流量を1(A)とし、セグメント期間S0におけるランプ電流量を3(A)とした場合の、各セグメント期間における上記積分値と、当該積分値の積分平均値からの乖離率を計算した表である。
 図9A及び図9Bの態様によれば、積分値が積分平均値から最も乖離している特定セグメント期間がセグメント期間S0に該当し、この期間は最終セグメント期間S5には該当していない。このため、波高値制御部57が、図9Aに示すようなランプ電流Ipになるようにデューティ比を制御したゲート信号Gxを生成することで、フレーム間における明滅を抑制しながら、アークの起点が移動することに伴うフリッカの発生を抑えることができる。
 なお、上述した例では、放電ランプ10のアーク起点の移動を抑制することを意図して、一時的にランプ電流を上昇させる場合について説明した。しかし、本発明の点灯装置1は、かかる場合に限られず、一般的にランプ電流Ipを所定のタイミングで変化させる場合においても、フレーム間での明滅を抑制する機能を示す。以下、このような例について説明する。
 図10Aは、図9Aとは別の状態における、映像同期信号Sc及びランプ電流Ipの波形を抜き出した図面である。図10Aにおけるランプ電流Ipは、図9Aにおけるランプ電流Ipと比較して放電ランプ10に対して投入される交流電流が同一の極性を示す期間が長くなっている。このようなランプ電流Ipを放電ランプ10に投入することで、調光やランプ電圧が上昇した場合におけるフリッカ抑制の効果が得られる。
 図10Aに示すランプ電流Ipは、セグメント期間S0及びセグメント期間S3において電流絶対値が高く、他のセグメント期間(S1,S3,S4,S5)において電流絶対値が低くなっている。図10Bは、図9Bと同様にフレーム期間を0.0083秒とした場合において、各セグメント期間(S0~S5)における上記積分値、及び当該積分値の積分平均値からの乖離率を計算した表である。
 図10A及び図10Bの態様によれば、積分値が積分平均値から最も乖離している特定セグメント期間はセグメント期間S0及びS3に該当し、この期間は最終セグメント期間S5には該当していない。このため、波高値制御部57において、図10Aに示すようなランプ電流Ipになるようにデューティ比を制御したゲート信号Gxを生成することで、フレーム間における明滅を抑制しながら、アークの起点が移動することに伴うフリッカの発生を抑えることができる。
 図11Aは、図9A及び図10Aとは別の状態における、映像同期信号Sc及びランプ電流Ipの波形を抜き出した図面である。図11Aのランプ電流波形は、画像形成装置60を3D駆動する場合に対応している。画像形成装置60は、3D駆動時においては、右目用映像の生成、シャッター駆動、左目用映像の生成、シャッター駆動という処理を繰り返す。この画像形成装置60は、映像を生成するタイミングで放電ランプ10に投入する電流絶対値を上昇させ、シャッターを駆動するタイミング放電ランプ10に投入する電流絶対値を低下させる。放電ランプ10に投入される交流電流をこのように制御することで、3D映像特有の現象であるクロストークの発現を抑制することができる。
 図11Aのランプ電流Ipでは、セグメント期間S0~S2及びS5において電流絶対値が高く、セグメント期間S3~S4において、電流絶対値が低くなっている。図11Bは、図9Bと同様にフレーム期間を0.0083秒とした場合において、各セグメント期間(S0~S5)における上記積分値及び各積分値の積分平均値からの乖離率を計算した表である。
 図11A及び図11Bの態様によれば、積分値が積分平均値から最も乖離している特定セグメント期間はセグメント期間S3及びS4に該当し、この期間は最終セグメント期間S5には該当していない。このため、波高値制御部57において、図11Aに示すようなランプ電流Ipになるようにデューティ比を制御したゲート信号Gxを生成することで、フレーム間における明滅を抑制しながら、アークの起点が移動することに伴うフリッカの発生を抑えることができる。
 また、図11Aに示すようなランプ電流Ipを放電ランプ10に投入した場合、右目期間と左目期間が、それぞれフレームを跨いでいる。しかし、本実施形態のように波高値制御部57がランプ電流Ipの波高値を制御することで、フレーム間における平均投入電流量の乖離を小さくすることができるため、右目期間と左目期間でのチラツキを抑制することができる。
 更に、上述した実施形態では、各セグメント期間S0~S5の長さが均一な場合について説明したが、セグメント期間S0~S5のうち、少なくとも一つのセグメント期間の長さが異なっていても構わない。この場合は、上述したように、セグメント信号生成部51がフレーム期間を予め定められた比率で分割して各セグメント期間S0~S5を示すセグメント信号Scを生成する。
 図12Aは、図9A、図10A、及び図11Aとは更に別の状態における、映像同期信号Sc及びランプ電流Ipの波形を抜き出した図面である。図12Aに示す波形は、連続するフレーム120とフレーム121において、同一のセグメント期間内に放電ランプ10に投入する電流絶対値は等しいものの、極性については一部異なる態様を示している。フレーム121は、図10Aに示されるランプ電流Ipと同様に、調光やランプ電圧が上昇した場合におけるフリッカ抑制の効果を意図したものである。
 図12Bは、図9Bと同様にフレーム期間を0.0083秒とした場合において、各セグメント期間(S0~S5)における上記積分値及び当該積分値の積分平均値からの乖離率を計算した表である。
 図12A及び図12Bの態様によれば、積分値が積分平均値から最も乖離している特定セグメント期間はセグメント期間S0及びS1に該当し、この期間は最終セグメント期間S5には該当していない。このため、波高値制御部57において、図12Aに示すようなランプ電流Ipになるようにデューティ比を制御したゲート信号Gxを生成することで、フレーム間における明滅を抑制しながら、アークの起点が移動することに伴うフリッカの発生を抑えることができる。
 なお、図12Aに示す電流波形において、フレーム120のように交流電流の周波数の高いフレームの発現頻度は、フレーム121のように交流電流の周波数の低いフレームの発現頻度よりも極めて高いものとすることができる。フレーム120とフレーム121の割合を調整することで、電極(20a,20b)の温度を適切に制御でき、放電ランプ10の長寿命化が図られる。
 [別実施形態]
 以下、別実施形態について説明する。
 〈1〉 上述した実施形態では、セグメント信号生成部51は、適正なフレーム期間(「特定期間」)の長さ及び各セグメント期間の長さの比率を記憶しており、これらの情報に基づいて、セグメント信号Scの出力を変化させるタイミングを決定するものとして説明した。しかし、セグメント信号生成部51は、直前のフレーム期間の長さ又は直前の数フレーム期間の長さの平均値を検知し、当該検知されたフレーム期間の長さに基づいてセグメント信号Scの出力を変化させるタイミングを決定するものとしても構わない。
 なお、上記において、各セグメント期間の長さが均一である場合には、単に映像同期信号Scを逓倍処理することでセグメント信号Sgを生成するものとして構わない。
 〈2〉 上述した実施形態では、フレーム期間を6つのセグメント期間に分割する場合を例に挙げて説明した。しかし、セグメント期間の数はこの例に限られるものではない。
 また、図12Aに示すように、セグメント期間毎に極性を反転させたランプ電流Ipを投入する期間(高周波期間)と、複数のセグメント期間にわたって同一極性を示すランプ電流Ipを投入する期間(低周波期間)とを組み合わせて、放電ランプ10の点灯制御を行う構成としても構わない。つまり、セグメント期間は、必ずしも放電ランプ10に投入されるランプ電流Ipの極性反転のタイミングとは限らない。
 ここで、例えば低周波期間に関してのみ、特定セグメント期間が最終セグメント期間に配置されていた場合であっても、この低周波期間が出現する周期でスクリーン72に投射される映像の明度が変化する結果、明滅が視認されるおそれが生じる。よって、放電ランプ10に投入されるランプ電流に関して高周波期間と低周波期間の両者を有する場合においては、両期間に関して、上記特定セグメント期間を最終セグメント期間以外に配置するように波高値制御部57が各セグメント期間における波高値を制御するのが好ましい。
 〈3〉 上記実施形態では、光変調素子として液晶パネル63を用いた画像形成装置について説明したが、DMD(デジタル・ミラー・デバイス)を利用する方式に本発明を適用しても構わない。
      1       :    放電ランプ点灯装置
      3       :    給電部
      5       :    給電制御部
     10       :    放電ランプ
     11       :    発光部
     12       :    封止部
     13       :    金属箔
     14       :    外部リード
     20a,20b  :    電極
     21       :    突起
     22       :
     29a,29b  :    電極の頭部
     30a,30b  :    電極の軸部
     31       :    降圧チョッパ部
     32       :    DC/AC変換部
     33       :    スタータ部
     35       :    ドライバ
     51       :    セグメント信号生成部
     53       :    周波数制御部
     55       :    電力制御部
     57       :    波高値制御部
     60       :    画像形成装置
     61       :    光源装置
     62       :    凹面反射鏡
     63       :    液晶パネル
     64       :    投射光学系
     65       :    映像制御部
     66       :    パネル制御部
     67       :    ランプ制御部
     71       :    映像情報入力部
     72       :    スクリーン
     Sa       :    映像信号
     Sb       :    画像処理後の映像データ信号
     Sc       :    映像同期信号
     Sd       :    液晶パネルの駆動信号
     Se       :    設定電力信号

Claims (5)

  1.  所定のガスが封入された放電容器内に一対の電極が対向配置された放電ランプに対して交流電流を供給する放電ランプ点灯装置であって、
     外部から映像同期信号が入力される給電制御部と、
     供給される直流電圧を前記給電制御部から出力される制御信号に基づいて交流電流に変換すると共に、前記交流電流を前記放電ランプに供給する給電部とを備え、
     前記給電制御部は、
      前記映像同期信号が示す特定期間を分割してなる複数のセグメント期間を示すセグメント信号を生成するセグメント信号生成部と、
      前記セグメント期間毎に前記交流電流の波高値に応じた第一制御信号を生成して前記給電部に出力する波高値制御部と、
      前記セグメント信号に基づいて前記交流電流の極性反転のタイミングを示す第二制御信号を生成して前記給電部に出力する周波数制御部とを有し、
     前記波高値制御部は、前記特定期間に属する複数の前記セグメント期間のうち、前記セグメント期間の長さと当該セグメント期間に設定される前記波高値の積である積分値が前記特定期間内における前記積分値の平均値から最も離れた値を示す特定セグメント期間を、前記特定期間の最終に位置する最終セグメント期間以外に設定することを特徴とする放電ランプ点灯装置。
  2.  前記波高値制御部は、前記最終セグメント期間には、前記平均値に最も近い前記積分値を示した前記セグメント期間を配置することを特徴とする請求項1に記載の放電ランプ点灯装置。
  3.  前記セグメント信号生成部は、前記映像同期信号を逓倍処理することで前記セグメント信号を生成することを特徴とする請求項1又は2に記載の放電ランプ点灯装置。
  4.  請求項1~3のいずれか1項に記載の放電ランプ点灯装置と、
     前記放電ランプ点灯装置からの電流供給を受けて点灯する放電ランプとを備えたことを特徴とする光源装置。
  5.  請求項4に記載の光源装置と、
     外部から入力される映像信号に基づいて、前記放電ランプからの射出光を変調して画像情報を生成する光変調素子と、
     前記光変調素子から射出された光を投射する投射光学系とを備えたことを特徴とする画像形成装置。
     
PCT/JP2015/070977 2014-07-29 2015-07-23 放電ランプ点灯装置、光源装置、画像形成装置 WO2016017524A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/329,338 US10021359B2 (en) 2014-07-29 2015-07-23 Discharge lamp lighting device, light source device, and image formation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-153959 2014-07-29
JP2014153959A JP5930230B2 (ja) 2014-07-29 2014-07-29 放電ランプ点灯装置、光源装置、画像形成装置

Publications (1)

Publication Number Publication Date
WO2016017524A1 true WO2016017524A1 (ja) 2016-02-04

Family

ID=55217425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070977 WO2016017524A1 (ja) 2014-07-29 2015-07-23 放電ランプ点灯装置、光源装置、画像形成装置

Country Status (3)

Country Link
US (1) US10021359B2 (ja)
JP (1) JP5930230B2 (ja)
WO (1) WO2016017524A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10379427B2 (en) * 2017-09-26 2019-08-13 Seiko Epson Corporation Projector and method of driving projector

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009198886A (ja) * 2008-02-22 2009-09-03 Necディスプレイソリューションズ株式会社 液晶プロジェクタおよびその投射画像調整方法
JP2009288349A (ja) * 2008-05-27 2009-12-10 Panasonic Electric Works Co Ltd 放電灯点灯装置およびそれを用いる画像表示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW339496B (en) 1994-06-22 1998-09-01 Philips Electronics Nv Method and circuit arrangement for operating a high-pressure discharge lamp
JP5565584B2 (ja) * 2010-12-15 2014-08-06 セイコーエプソン株式会社 プロジェクター

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009198886A (ja) * 2008-02-22 2009-09-03 Necディスプレイソリューションズ株式会社 液晶プロジェクタおよびその投射画像調整方法
JP2009288349A (ja) * 2008-05-27 2009-12-10 Panasonic Electric Works Co Ltd 放電灯点灯装置およびそれを用いる画像表示装置

Also Published As

Publication number Publication date
JP5930230B2 (ja) 2016-06-08
JP2016031844A (ja) 2016-03-07
US10021359B2 (en) 2018-07-10
US20170237954A1 (en) 2017-08-17

Similar Documents

Publication Publication Date Title
US8459802B2 (en) High-pressure discharge lamp lighting device with current control, high-pressure discharge lamp device using same, projector using said high-pressure discharge lamp device, and high-pressure discharge lamp lighting method with current control
US8937436B2 (en) Light source device, projector, and driving method of discharge lamp
JP5309775B2 (ja) 放電灯の駆動装置および駆動方法、光源装置並びに画像表示装置
JP3851343B2 (ja) 高圧放電ランプ点灯装置
JP5895977B2 (ja) 放電ランプ点灯装置
JP2012516010A (ja) ガス放電ランプを駆動させるための電子駆動装置と方法ならびにプロジェクタ
US9152033B2 (en) Discharge lamp lighting device and projector
JP5151565B2 (ja) プロジェクタ用の光源装置の駆動方法
US8598801B2 (en) Electric supply device
JP5930230B2 (ja) 放電ランプ点灯装置、光源装置、画像形成装置
JP5565711B1 (ja) 高圧放電ランプ点灯装置及びこれを備えた画像形成装置
EP3010314B1 (en) Light source device, projector, and projection system
JP6673080B2 (ja) 放電ランプ点灯装置、及びこれを備えた画像形成装置
US8344645B2 (en) Method of driving discharge lamp, driving device, and projector
JP2018022560A (ja) 放電灯駆動装置、光源装置、プロジェクター、および放電灯駆動方法
JP6673081B2 (ja) 放電ランプ点灯装置、及びこれを備えた画像形成装置
US20160323984A1 (en) Discharge lamp lighting apparatus
WO2018043199A1 (ja) 放電ランプ点灯装置
JP2008123890A (ja) 放電灯点灯装置及びプロジェクタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15827819

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15329338

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15827819

Country of ref document: EP

Kind code of ref document: A1