WO2016017511A1 - Electronic component and method for producing same - Google Patents

Electronic component and method for producing same Download PDF

Info

Publication number
WO2016017511A1
WO2016017511A1 PCT/JP2015/070908 JP2015070908W WO2016017511A1 WO 2016017511 A1 WO2016017511 A1 WO 2016017511A1 JP 2015070908 W JP2015070908 W JP 2015070908W WO 2016017511 A1 WO2016017511 A1 WO 2016017511A1
Authority
WO
WIPO (PCT)
Prior art keywords
main body
electronic component
coating film
magnetic powder
manufacturing
Prior art date
Application number
PCT/JP2015/070908
Other languages
French (fr)
Japanese (ja)
Inventor
博信 久保田
光典 井上
上田 佳功
裕介 荒川
北島 正樹
剛太 篠原
典子 清水
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2016017511A1 publication Critical patent/WO2016017511A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils

Definitions

  • the present invention relates to an electronic component and a manufacturing method thereof, and more particularly, to an electronic component using a mixture of metal magnetic powder and an insulating material and a manufacturing method thereof.
  • an end surface electrode forming method for an electronic component described in Patent Document 1 is known.
  • electrolytic plating is performed using the conductive material attached to the end face of the main body as a conductive layer. Thereby, an end surface electrode is formed on the end surface of the main body of the electronic component.
  • a mixture of metal magnetic powder and an insulating material may be used as a material for the main body of an electronic component.
  • the main body is produced by cutting the mother main body with a dicer or the like. Then, at the time of cutting, the metal magnetic powder exposed on the surface of the main body falls off, and a recess is formed on the surface of the main body. Therefore, when the end face electrode is formed on the main body by the end face electrode forming method described in Patent Document 1, a plating film may not be sufficiently formed in the recess, and a pin hole may be formed in the end face electrode.
  • a pinhole means the part in which a conductor film is not formed in an end surface electrode.
  • the shape of the pinhole is generally a circle or an ellipse in many cases, but is not particularly limited to these shapes.
  • An object of the present invention is to provide an electronic component capable of suppressing the formation of a pinhole in an external electrode and a manufacturing method thereof.
  • An electronic component includes a main body made of a mixture of metal magnetic powder and an insulating material, a circuit element provided in the main body, and a coating that covers at least a part of the surface of the main body. And a film, and an external electrode electrically connected to the circuit element and provided on the coating film.
  • An electronic component manufacturing method includes a main body manufacturing step in which a mother body, which is an assembly of a plurality of main bodies each provided with a circuit element, is manufactured using a mixture of metal magnetic powder and an insulating material.
  • pinholes can be prevented from being formed in the external electrode.
  • FIG. 1 is an external perspective view of an electronic component 1.
  • FIG. 1 is an exploded perspective view of a main body 10 of an electronic component 1.
  • FIG. 2 is a sectional structural view and a partially enlarged view taken along line AA of FIG.
  • FIG. 3 is a process cross-sectional view when the electronic component 1 is manufactured.
  • FIG. 3 is a process cross-sectional view when the electronic component 1 is manufactured.
  • FIG. 3 is a process cross-sectional view when the electronic component 1 is manufactured.
  • FIG. 3 is a process cross-sectional view when the electronic component 1 is manufactured.
  • FIG. 3 is a process cross-sectional view when the electronic component 1 is manufactured.
  • FIG. 3 is a process cross-sectional view when the electronic component 1 is manufactured.
  • FIG. 3 is a process cross-sectional view when the electronic component 1 is manufactured.
  • FIG. 3 is a process cross-sectional view when the electronic component 1 is manufactured.
  • FIG. 3 is a process cross-sectional view when the
  • FIG. 3 is a process cross-sectional view when the electronic component 1 is manufactured.
  • FIG. 3 is a process cross-sectional view when the electronic component 1 is manufactured.
  • FIG. 3 is a process cross-sectional view when the electronic component 1 is manufactured. It is the figure which planarly viewed the jig
  • FIG. FIG. 2 is a view showing a main body 10 when forming external electrodes 20 and 25.
  • FIG. 2 is a view showing a main body 10 when forming external electrodes 20 and 25.
  • FIG. 2 is a view showing a main body 10 when forming external electrodes 20 and 25.
  • FIG. 1 is an external perspective view of the electronic component 1.
  • FIG. 2 is an exploded perspective view of the main body 10 of the electronic component 1.
  • 3 is a cross-sectional structural view and a partially enlarged view taken along line AA in FIG.
  • the stacking direction of the main body 10 is defined as the vertical direction. Further, when viewed from above, the direction in which the long side of the main body 10 extends is defined as the left-right direction, and the direction in which the short side of the main body extends is defined as the front-back direction.
  • the up-down direction, the left-right direction, and the front-rear direction are orthogonal to each other.
  • the electronic component 1 includes a coating film 9, a main body 10, external electrodes 20, 25, and a circuit element 30, as shown in FIGS.
  • the main body 10 has a rectangular parallelepiped shape.
  • the upper surface of the main body 10 is referred to as the upper surface, the lower surface as the bottom surface S1, the right surface as the right surface S2, the left surface as the left surface S3, the front surface as the front surface, and the rear surface as the rear surface.
  • the main body 10 includes insulator layers 11 to 14, an insulator substrate 16, and a magnetic path 18.
  • the insulator layers 11 and 12, the insulator substrate 16, and the insulator layers 13 and 14 have a rectangular shape when viewed from above, and are stacked in this order from the upper side to the lower side.
  • the upper main surface of the insulator layers 11 to 14 and the insulator substrate 16 is referred to as a front surface
  • the lower main surface of the insulator layers 11 to 14 and the insulator substrate 16 is referred to as a back surface.
  • the bottom surface S1 is a mounting surface that faces the circuit board when the electronic component 1 is mounted on the circuit board.
  • the insulator layers 11 and 14 are made of a mixture of a metal magnetic powder and an insulating material.
  • the insulator layers 11 and 14 are made of a mixture of a metal magnetic powder and an epoxy resin.
  • the insulator layers 11 and 14 include two types of metal magnetic powders having different particle sizes.
  • the metal magnetic powder is a mixed powder of magnetic powder (maximum particle size 100 ⁇ m) made of an Fe—Si—Cr alloy having an average particle size of 80 ⁇ m and magnetic powder made of carbonyl Fe having an average particle size of 3 ⁇ m. .
  • the metal magnetic powder is contained in an amount of 90 wt% or more with respect to the insulator layers 11 and 14.
  • the material of the insulator layers 11 and 14 may be a mixture of metal magnetic powder and an insulating inorganic material such as glass ceramics, or a mixture of metal magnetic powder and polyimide resin.
  • the thickness of the insulator layers 11 and 14 in this embodiment is about 60 ⁇ m, which is smaller than the maximum particle size of the metal magnetic powder contained in the insulator layers 11 and 14.
  • the insulator layers 12 and 13 are made of an insulating material, and in this embodiment, are made of an epoxy resin.
  • the insulator layers 12 and 13 may be made of an insulating resin such as benzodiclobutene or an insulating inorganic material such as glass ceramics.
  • the insulator substrate 16 is a printed wiring board in which a glass cloth is impregnated with an epoxy resin, and is sandwiched between the insulator layer 12 and the insulator layer 13 from above and below.
  • the insulator substrate 16 may be made of an insulating resin such as benzodic clobutene or an insulating inorganic material such as glass ceramics.
  • the magnetic path 18 is made of a mixture of metal magnetic powder and an insulating material located substantially in the center of the main body 10. In the present embodiment, 90% by weight or more of magnetic powder is included in consideration of the L value of the electronic component 1 and the direct current superposition characteristics. Furthermore, in order to improve the filling property to the magnetic path 18, two kinds of powders having different particle sizes are mixed as the magnetic powder.
  • the magnetic path 18 has a column shape penetrating the insulating layers 12 and 13 and the insulating substrate 16 in the vertical direction, and has an oval cross-sectional shape. Further, the magnetic path 18 is provided so as to be positioned on the inner periphery of coils 32 and 37 described later.
  • the circuit element 30 is provided in the main body 10 and is built in the main body 10 in this embodiment.
  • the circuit element 30 is made of a conductive material.
  • the circuit element 30 is made of a material containing a metal such as Au, Ag, Cu, Pd, or Ni.
  • the circuit element 30 includes a coil 32, a lead conductor 32a, a coil 37, a lead conductor 37a, and a via-hole conductor 39.
  • the coil 32 is a spiral conductor layer that is provided on the surface of the insulator substrate 16 and approaches the center while turning clockwise when viewed from above.
  • the upstream end of the coil 32 in the clockwise direction is referred to as an upstream end
  • the downstream end of the coil 32 in the clockwise direction is referred to as a downstream end.
  • the coil 37 is a spiral conductor layer that is provided on the back surface of the insulating substrate 16 and turns away from the center while turning clockwise when viewed from above.
  • the coil 37 is illustrated on the surface of the insulating layer 13 from the viewpoint of ease of visual recognition.
  • the upstream end of the coil 37 in the clockwise direction is referred to as an upstream end
  • the downstream end of the coil 37 in the clockwise direction is referred to as a downstream end.
  • the via-hole conductor 39 penetrates the insulator substrate 16 in the vertical direction, and connects the downstream end of the coil 32 and the upstream end of the coil 37. Thereby, the coil 32 and the coil 37 are electrically connected in series.
  • the lead conductor 32 a is provided on the surface of the insulator substrate 16 and is connected to the upstream end of the coil 32. Further, the lead conductor 32 a is drawn to the right short side of the insulator substrate 16. Thereby, the lead conductor 32a is exposed outside the main body 10 from the right surface S2, as shown in FIG.
  • the lead conductor 37 a is provided on the back surface of the insulating substrate 16 and is connected to the downstream end of the coil 37.
  • the lead conductor 37 a is illustrated on the surface of the insulator layer 13 from the viewpoint of easy visual recognition. Further, the lead conductor 37 a is drawn to the left short side of the insulating substrate 16. Thereby, the lead conductor 37a is exposed outside the main body 10 from the left surface S3, as shown in FIG.
  • the coating film 9 covers at least a part of the surface of the main body 10, and covers substantially the entire surface of the main body 10 in this embodiment. However, the coating film 9 does not cover the portion where the circuit element 30 is exposed on the surface of the main body 10 (that is, the lead conductors 32a and 37a).
  • the coating film 9 contains a metal and a resin contained in the metal magnetic powder material. That is, the coating film 9 contains an acrylic resin and Fe.
  • the acrylic resin contained in the coating film 9 has a crosslinked structure. In consideration of using solder when mounting the electronic component 1 on the circuit board, it is preferable that the thermal decomposition temperature of the resin constituting the coating film 9 is higher.
  • the thermal decomposition temperature is 240 ° C. or higher.
  • the thermal decomposition temperature can be measured by the following analyzer and analysis conditions. ⁇ Analyzer: TG-DTA 2000SA (manufactured by Netch Japan) ⁇ Analysis conditions Temperature profile: RT ⁇ 300 °C (10 °C / min) Measurement atmosphere: Reduced pressure (using a rotary pump: 0.1 Pa) Sample container (cell) material: Al Measurement sample weight: 100 mg
  • the coating film 9 flattens the surface of the electronic component 1 as shown in the enlarged view of FIG. More specifically, innumerable depressions C are formed on the surface of the main body 10.
  • the dent C is formed by the metal magnetic powder buried in the vicinity of the surface of the main body 10 falling off during manufacturing (particularly during the cutting process).
  • the coating film 9 fills the recess C.
  • the unevenness of the coating film 9 is smaller than the unevenness of the main body 10. That is, the surface roughness Ra of the coating film 9 is smaller than the surface roughness Ra of the main body 10.
  • the external electrode 20 covers the right surface S ⁇ b> 2 of the electronic component 1 and is folded back to the top surface, the bottom surface S ⁇ b> 1, the front surface, and the rear surface of the electronic component 1.
  • the external electrode 20 is provided on the coating film 9. That is, a part of the coating film 9 is provided between the main body 10 and the external electrode 20. Further, the external electrode 20 is electrically connected to the circuit element 30.
  • the lead conductor 32a is not covered with the coating film 9 on the right surface S2, as shown in FIG. Therefore, the external electrode 20 and the lead conductor 32a are in contact with each other.
  • the external electrode 20 is composed of a conductor film in which a Cu film, a Ni film, and a Sn film are laminated from the lower layer side to the upper layer side.
  • the external electrode 25 covers the left surface S ⁇ b> 3 of the electronic component 1 and is folded back to the top surface, the bottom surface S ⁇ b> 1, the front surface, and the rear surface of the electronic component 1.
  • the external electrode 25 is provided on the coating film 9. That is, a part of the coating film 9 is provided between the main body 10 and the external electrode 25. Further, the external electrode 25 is electrically connected to the circuit element 30.
  • the lead conductor 37a is not covered with the coating film 9 on the left surface S3, as shown in FIG. Therefore, the external electrode 25 and the lead conductor 37a are in contact with each other.
  • the external electrode 25 is composed of a conductor film in which a Cu film, a Ni film, and a Sn film are laminated from the lower layer side to the upper layer side.
  • the electronic component 1 configured as described above functions as an inductor when, for example, a signal input from the external electrode 20 is output from the external electrode 25 via the circuit element 30.
  • FIG. 4 to 12 are process cross-sectional views when the electronic component 1 is manufactured.
  • FIG. 13 is a plan view of the jig 200 for holding the main body 10.
  • 14 to 16 are views showing the main body 10 when the external electrodes 20 and 25 are formed.
  • a mother insulator substrate 116 to be a plurality of insulator substrates 16 is prepared. Then, as shown in FIG. 5, the through-hole H ⁇ b> 1 is formed by irradiating a beam to the position where the via-hole conductor 39 of the mother insulator substrate 116 is provided.
  • the thickness of the insulating substrate 16 is preferably 60 ⁇ m or less.
  • Cu plating is further performed to form coils 32 and 37 having a sufficient thickness as shown in FIG.
  • the mother insulating substrate 116 is sandwiched from both the upper and lower sides by the insulating sheets 112 and 113 to be the plurality of insulating layers 12 and 13. Further, the step of sandwiching the mother insulator substrate 116 between the insulator sheets 112 and 113 is preferably performed in a vacuum in order to allow the insulator sheets 112 and 113 to enter the minute gap between the coils 32 and 37. In order to suppress the generation of stray capacitance due to the coils 32 and 37, the relative dielectric constant of the insulator sheets 112 and 113 is preferably 4 or less.
  • a plurality of through holes ⁇ penetrating the mother insulator substrate 116 and the insulator sheets 112 and 113 in the vertical direction are formed by irradiating a beam.
  • the position where the through hole ⁇ is formed is a position where the magnetic path 18 is provided, and is on the inner peripheral side of each of the plurality of coils 32 and 37 provided on the mother insulator substrate 116.
  • the laminated body in which the insulator sheet 112, the mother insulator substrate 116, and the insulator sheet 113 are stacked in this order is moved up and down by the resin sheets 111 and 114 corresponding to the insulator layers 11 and 14.
  • the both sides are sandwiched and crimped in the same manner as the insulator sheets 112 and 113 shown in FIG.
  • the resin sheets 111 and 114 enter the plurality of through holes ⁇ , and a plurality of magnetic paths 18 are formed.
  • the resin sheets 111 and 114 are cured by heat treatment using a thermostat such as an oven.
  • the surfaces of the resin sheets 111 and 114 are ground by buffing, lapping and grinders.
  • the metal magnetic powder embedded in the vicinity of the upper surface and the bottom surface of the mother insulator substrate 116 is dropped, and innumerable depressions are formed on the upper surface and the bottom surface of the mother insulator substrate 116.
  • a mother substrate 120 that is an assembly of a plurality of electronic components is completed.
  • the steps of FIGS. 4 to 10 are main body manufacturing steps for manufacturing the mother substrate 120 that is an aggregate of a plurality of main bodies 10 each provided with the circuit element 30.
  • the mother substrate 120 is cut into a plurality of main bodies 10 with a dicer or the like.
  • the lead conductors 32a and 37a are exposed from the main body 10.
  • the metal magnetic powder embedded in the vicinity of the surface of the main body 10 falls off, and innumerable depressions are formed on the surface of the main body 10.
  • an etching process or a polishing process is performed in order to remove cut chips adhering to the portions where the lead conductors 32 a and 37 a are exposed from the main body 10.
  • the main body 10 was immersed in a ferric chloride solution and subjected to an etching process.
  • a coating film 9 is formed on the surface of the main body 10. More specifically, the main body 10 is immersed in a mixed solution containing a commercially available latex in which an etching component and a resin component are dispersed in an aqueous solvent and an etching promoting component and a surfactant added as necessary.
  • the specific composition of the mixed solution is shown in Table 1.
  • the surface of the main body 10 is etched. This etching is due to the action of sulfuric acid and hydrogen peroxide contained in the mixed solution.
  • various organic acids such as hydrofluoric acid, nitric acid, hydrochloric acid, phosphoric acid, and carboxylic acid may be used in place of the sulfuric acid and the hydrogen peroxide solution in the mixed solution.
  • this etching ionizes Fe, which is a cationic element, which is a constituent element of the insulator layers 11 and 14. Further, the ionized cationic element reacts with Nipo lLATEX SX-1706A (manufactured by Nippon Zeon Co., Ltd.) in the mixed solution. As a result, as shown in FIG. 12, the resin component in the mixed solution is neutralized and settles on the surface of the main body 10 constituting the electronic component, and the main body 10 is covered with the coating film 9. However, the lead conductors 32 a and 37 a are not covered with the coating film 9.
  • the metal (Cu) contained in the material of the lead conductors 32a and 37a is less likely to be ionized than the metal (Fe) contained in the material of the metal magnetic powder, and does not easily react with the resin component in the mixed solution.
  • Eleminol JS-2 (manufactured by Sanyo Chemical Co., Ltd.) contained in the mixed solution is a surfactant that adjusts the reaction amount of Fe and the resin component. Thereby, the thickness of the coating film 9 can be adjusted.
  • the coating film 9 is subjected to heat treatment after being washed with pure water and drained.
  • the resin component contained in the coating film 9 is crosslinked through Fe or between the resin components.
  • the coating film 9 penetrates into the depressions caused by the drop of the metal magnetic material generated by the dicer or polishing process (buffing or lapping), and the size of the depressions is reduced.
  • FIG. 13 is a plan view of the jig 200 for holding the main body 10.
  • 14 to 16 are views showing the main body 10 when the external electrodes 20 and 25 are formed.
  • the surface of the main body 10 is cleaned by a method such as degreasing or etching.
  • a jig 200 shown in FIG. 13 is prepared. Holes 202 are arranged in a matrix in the jig 200. Then, the main body 10 is inserted into the hole 202 as shown in FIG. When the main body 10 is inserted into the hole 202, only a portion where the external electrode 20 is formed is exposed to the outside of the jig 200.
  • the jig 200 is lowered, and the main body 10 is placed in a conductive solution containing a conductive material containing at least one selected from the group consisting of palladium, tin, silver, and copper. Immersion is performed, and a conductive solution is applied to the portion where the external electrode 20 is formed on the surface of the main body 10. Thereby, a conductive layer is formed in a portion where the external electrode 20 is formed.
  • the conductive material is a material that can be attached to the main body 10 to impart conductivity, and examples thereof include transition metal ions as described above, colloids containing them, conductive polymers, and graphite.
  • the minimum value of the surface tension of the conductive solution is preferably 30 ⁇ 10 ⁇ 3 N / m or more, and more preferably 40 ⁇ 10 ⁇ 3 N / m or more.
  • the maximum value of the surface tension in the conductive solution is preferably 70 ⁇ 10 ⁇ 3 N / m or less, and more preferably 60 ⁇ 10 ⁇ 3 N / m or less.
  • the minimum value of the viscosity of the conductive solution is preferably 0.003 Pa ⁇ s (3 mPa ⁇ s) or more, more preferably 0.1 Pa ⁇ s or more, and 1 Pa ⁇ s or more. Is even more preferred.
  • the maximum value of the viscosity in the conductive solution is preferably 30 Pa ⁇ s or less.
  • the surface tension and viscosity of the conductive solution may be adjusted using additives. Any additive may be used as long as it does not affect the physical properties of the conductive material in the conductive solution.
  • the adhesion amount of the conductive material to the main body 10 may be an amount that can be plated by electrolytic plating. Further, the surface tension and viscosity of the conductive solution are determined by the size of the main body 10.
  • the main body 10 may be immersed in a surfactant before being immersed in the conductive solution. With this surfactant, the adhesion of the conductive material to the surface of the main body 10 can be increased.
  • the surfactant used here is selected from any of anionic, cationic, nonionic and amphoteric surfactants so as to match the type of conductive material applied to the main body 10.
  • the conductive material adheres to the surface so that the applied amount (0.2 ⁇ g / cm 2 to 50 ⁇ g / cm 2 ) of the conductive material necessary for electrolytic plating is left on the surface.
  • the main body 10 is washed with water or a solvent. Further, the main body 10 is dried.
  • a conductive solution is applied to a portion of the surface of the main body 10 where the external electrode 25 is formed by repeating the same steps as those described with reference to FIGS.
  • External electrodes 20 and 25 are formed on the conductive layer made of the conductive material of the main body 10 by electrolytic plating.
  • electrolytic plating is performed in the order of copper plating, nickel plating, and tin plating.
  • the electronic component 1 is completed through the above steps.
  • the metal species that can be used in electrolytic plating are not particularly limited, and at least one metal selected from the group consisting of tin, tin alloy, nickel, copper, silver, gold, palladium, and the like is used. Can be used.
  • the tin alloy is preferably tin-lead, tin-silver, tin-copper, tin-zinc, tin-bismuth, tin-indium or the like.
  • this method can be applied to any of an acidic bath, a neutral bath, and an alkaline bath.
  • various electrolytic plating methods such as a barrel plating method and a rack plating method can also be used for the electrolytic plating method.
  • the coating film 9 covers the surface of the main body 10. Thereby, the coating film 9 fills the depression formed on the surface of the main body 10 by dropping the metal magnetic powder embedded in the main body 10 at the time of manufacture. As a result, the surface roughness of the coating film 9 is smaller than the surface roughness of the surface of the main body 10.
  • the external electrodes 20 and 25 are provided on the flat coating film 9. Thereby, the formation of pinholes in the external electrodes 20 and 25 is suppressed.
  • the electronic component 1 after the mother substrate 120 is cut into the plurality of main bodies 10, an etching process or a polishing process is performed in order to remove cut waste.
  • the etching process is performed, a part of the surface of the metal magnetic powder is dissolved by the etching solution, so that the bonding strength between the metal magnetic powder and the insulating material is lowered. Thereby, dropping of the metal magnetic powder embedded near the surface of the main body 10 is further promoted.
  • the polishing process when the polishing process is performed, the abrasive or the like collides with the metal magnetic powder, and the falling of the metal magnetic powder embedded near the surface of the main body 10 is further promoted. Therefore, like the electronic component 1, the coating film 9 covers the surface of the main body 10, and the external electrodes 20 and 25 are provided on the coating film 9, so that pinholes are more effectively formed in the external electrodes 20 and 25. Is suppressed.
  • the metal (Cu) included in the material of the lead conductors 32a and 37a is less likely to be ionized than the metal (Fe) included in the material of the metal magnetic powder.
  • the metal (Cu) contained in the material of the lead conductors 32 a and 37 a is unlikely to react with the resin component in the mixed solution used when forming the coating film 9. Therefore, the coating film 9 does not cover the lead conductors 32a and 37a.
  • the external electrode 20 and the lead conductor 32a can be connected, and the external electrode 25 and the lead conductor 37a can be connected.
  • the inventor of the present application conducted an experiment described below in order to clarify the effects of the electronic component 1 and the manufacturing method thereof.
  • the inventor of the present application produced the electronic component 1 by the method for manufacturing the electronic component 1 according to the above embodiment, and used it as the first sample. Further, the inventor of the present application produced an electronic component without forming the coating film 9 in the method for manufacturing the electronic component 1 according to the above embodiment, and used it as a second sample.
  • the inventor of the present application does not perform the etching process for removing the cut waste after the mother substrate 120 is cut and does not form the coating film 9. A part was produced as a third sample.
  • the unevenness is a parameter related to the surface roughness Ra, and is an average of the depths of the recesses C formed in the main body 10 (or the coating film 9 when the coating film 9 is formed).
  • the depth of the recess C is a distance from the surface of the main body 10 to the bottom of the recess C of the main body 10 or a distance from the surface of the coating film 9 to the bottom of the recess of the coating film 9.
  • the pinhole occurrence rate is a value obtained by dividing the area of the pinhole by the area of the external electrodes 20 and 25 and multiplying by 100.
  • the DC resistance value was determined by OK or NG.
  • the determination criteria for OK and NG are OK within ⁇ 5% with respect to the resistance value of the circuit element 30 itself in the main body 10, and NG is a value exceeding the OK.
  • Table 2 is a table showing experimental results.
  • the DC resistance value between the external electrodes 20 and 25 is large. (That is, the DC resistance value is NG).
  • the direct current resistance value between the external electrodes 20 and 25 is reduced by performing the etching process (that is, the direct current resistance value is OK). )
  • the unevenness of the main body 10 is larger in the second sample subjected to the etching process than in the third sample not subjected to the etching process, It can be seen that the pinhole incidence is increasing. That is, in the second sample, pin holes are easily formed in the external electrodes 20 and 25 instead of decreasing the DC resistance value.
  • the coating film 9 is formed in the first sample. Thereby, it can be seen that the unevenness of the main body 10 is reduced and the pinhole occurrence rate is reduced.
  • the electronic component and the manufacturing method thereof according to the present invention are not limited to the electronic component 1 and the manufacturing method thereof according to the embodiment, and can be variously changed within the scope of the gist.
  • Ba, Ti, Ca, Zr, Ni, Cu, Zn, Mn, Co, Al, etc. may be used as the metal magnetic powder used in the insulator layer in consideration of the ionization tendency with the electrode material.
  • the resin constituting the coating film 9 may be an epoxy resin, a polyimide resin, a silicone resin, a polyamideimide resin, a polyether ether ketone resin, a fluorine resin, an acrylic silicone resin, or the like.
  • Examples thereof include polymer resins composed of one or more selected monomers. It should be noted that the presence of a polymerization initiator such as ammonium persulfate, potassium persulfate, or t-butyl hydroperoxide for obtaining the resin in the resin does not affect the properties of the coating film 9.
  • a polymerization initiator such as ammonium persulfate, potassium persulfate, or t-butyl hydroperoxide for obtaining the resin in the resin does not affect the properties of the coating film 9.
  • an anionic surfactant or a nonionic surfactant may be used in place of the surfactant Eleminol JS-2 (manufactured by Sanyo Kasei Co., Ltd.).
  • an activator, naphthalenesulfonic acid formalin condensate, polycarboxylic acid type surfactant and the like can be mentioned.
  • Nonionic surfactants include polyoxyethylene alkyl ethers (alkyl groups; octyl, decyl, lauryl, stearyl, oleyl, etc.), polyoxyethylene alkyl phenyl ethers (alkyl groups; octyl, nonyl, etc.), polyoxyethylene polyoxy A propylene block copolymer etc. are mentioned.
  • the water-soluble resin which has a sulfonic acid group and its salt, a carboxyl group and its salt, a phosphoric acid group, its salt, etc. is mentioned.
  • the mixed solution for forming the coating film 9 is a tannin that improves corrosion resistance, a plasticizer such as dibutyl phthalate that gives the coating film 9 flexibility, and the film formability of the coating film 9 is improved.
  • a mixed solution of metal ions such as silver fluoride and a lubricant for preventing scratches on the surface of the coating film 9 and improving water resistance, for example, fluororesin lubricant, polyolefin wax, melamine cyanurate, molybdenum disulfide You may add to.
  • a pigment such as carbon black or phthalocyanine blue may be added to the mixed solution for forming the coating film 9 for the purpose of improving the corrosion resistance of the coating film 9 and coloring the electronic parts.
  • a polymer having an acid group containing phosphorus for example, a main chain of a phosphoric acid group, a phosphorous acid group, a phosphonic acid group, a phosphinic acid group,
  • corrosion resistance and chemical resistance can be improved by adding an organic polymer compound having a side chain.
  • fillers such as glass fiber, calcium carbonate, aramid fiber, graphite, alumina, aluminum nitride, boron nitride are added to the mixed solution. Also good.
  • the external electrodes 20 and 25 are formed by electrolytic plating, but may be formed by other methods. Examples of the method of forming the external electrodes 20 and 25 include a method of applying a conductive paste in which a conductive material such as Ag and a resin are mixed, a method of forming by sputtering, and the like.
  • the coating film 9 may be an iron phosphate film or a zinc phosphate film formed by a chemical conversion treatment.
  • the coating film 9 may be a glass coat or an organic film.
  • the circuit element 30 is not limited to an inductor, and may be another element such as a capacitor.
  • the external electrodes 20 and 25 are electrically connected to the circuit element 30 in addition to the state in which the external electrodes 20 and 25 and the circuit element 30 are in physical contact with each other. And a state in which a signal is transmitted between the external electrodes 20 and 25 and the circuit element 30 without physically contacting the circuit element 30.
  • the shape of the external electrode 20 is not limited to the shape straddling the five surfaces as shown in FIG. 1, but may be, for example, a shape straddling the two surfaces of the bottom surface S1 and the right surface S2, or the bottom surface S1. It may be a flat surface provided only on the surface.
  • the shape of the external electrode 25 is the same as that of the external electrode 20.
  • the main body 10 is not limited to the laminate, and may be manufactured by, for example, solidifying a mixture of metal magnetic powder and resin.
  • the present invention is useful for an electronic component and a manufacturing method thereof, and is particularly excellent in that the occurrence of pinholes in an external electrode can be suppressed.

Abstract

The objective of the present invention is to provide an electronic component that can suppress pinholes from being formed at an external electrode, and a method for producing the electronic component. The electronic component is characterized by being provided with: a main body having a mixture of metal magnetic powder and an insulating material as the materials thereof; a circuit element provided to the main body; a coating film that covers at least a portion of the surface of the main body; and an external electrode that is electrically connected to the circuit element and is provided on the coating film.

Description

電子部品及びその製造方法Electronic component and manufacturing method thereof
 本発明は、電子部品及びその製造方法、特に、金属磁性粉と絶縁性材料との混合物を用いた電子部品及びその製造方法に関する。 The present invention relates to an electronic component and a manufacturing method thereof, and more particularly, to an electronic component using a mixture of metal magnetic powder and an insulating material and a manufacturing method thereof.
 従来の電子部品に関する発明としては、例えば、特許文献1に記載の電子部品の端面電極形成方法が知られている。該端面電極形成方法では、導電化材料を含む導電化溶液に電子部品の本体の端面を浸漬した後、本体の端面に付着した導電化材料を導電層として電解めっきを行う。これにより、電子部品の本体の端面に端面電極が形成される。 As an invention related to a conventional electronic component, for example, an end surface electrode forming method for an electronic component described in Patent Document 1 is known. In the end face electrode forming method, after the end face of the main body of the electronic component is immersed in a conductive solution containing a conductive material, electrolytic plating is performed using the conductive material attached to the end face of the main body as a conductive layer. Thereby, an end surface electrode is formed on the end surface of the main body of the electronic component.
 ところで、電子部品の本体には、金属磁性粉と絶縁性材料との混合物が材料として用いられる場合がある。該本体は、マザー本体をダイサー等によりカットすることにより作製される。そして、カットの際、本体の表面に露出している金属磁性粉が脱落し、本体の表面に窪みが形成される。そのため、特許文献1に記載の端面電極形成方法により端面電極が本体に形成されると、窪み内にめっき膜が十分に形成されずに、端面電極にピンホールが形成されるおそれがある。なお、ピンホールとは、端面電極において導体膜が形成されない部分を意味する。ピンホールの形状は、一般的には円形や楕円形であることが多いが、特にこれらの形状に限定されるものではない。 Incidentally, a mixture of metal magnetic powder and an insulating material may be used as a material for the main body of an electronic component. The main body is produced by cutting the mother main body with a dicer or the like. Then, at the time of cutting, the metal magnetic powder exposed on the surface of the main body falls off, and a recess is formed on the surface of the main body. Therefore, when the end face electrode is formed on the main body by the end face electrode forming method described in Patent Document 1, a plating film may not be sufficiently formed in the recess, and a pin hole may be formed in the end face electrode. In addition, a pinhole means the part in which a conductor film is not formed in an end surface electrode. The shape of the pinhole is generally a circle or an ellipse in many cases, but is not particularly limited to these shapes.
特許第4710204号Japanese Patent No. 4710204
 本発明の目的は、外部電極にピンホールが形成されることを抑制できる電子部品及びその製造方法を提供することである。 An object of the present invention is to provide an electronic component capable of suppressing the formation of a pinhole in an external electrode and a manufacturing method thereof.
 本発明の一形態に係る電子部品は、金属磁性粉と絶縁性材料との混合物を材料とする本体と、前記本体に設けられている回路素子と、前記本体の表面の少なくとも一部を覆うコーティング膜と、前記回路素子に電気的に接続され、かつ、前記コーティング膜上に設けられている外部電極と、を備えていること、を特徴とする。 An electronic component according to an aspect of the present invention includes a main body made of a mixture of metal magnetic powder and an insulating material, a circuit element provided in the main body, and a coating that covers at least a part of the surface of the main body. And a film, and an external electrode electrically connected to the circuit element and provided on the coating film.
 本発明の一形態に係る電子部品の製造方法は、それぞれに回路素子が設けられた複数の本体の集合体であるマザー本体を、金属磁性粉と絶縁性材料との混合物により作製する本体作製工程と、マザー本体を前記複数の本体にカットするカット工程と、前記本体の表面にコーティング膜を形成する膜形成工程と、前記回路素子と電気的に接続される外部電極を、前記コーティング膜上に形成する電極形成工程と、を備えていること、を特徴とする。 An electronic component manufacturing method according to an aspect of the present invention includes a main body manufacturing step in which a mother body, which is an assembly of a plurality of main bodies each provided with a circuit element, is manufactured using a mixture of metal magnetic powder and an insulating material. A cutting process for cutting the mother body into the plurality of bodies, a film forming process for forming a coating film on the surface of the body, and an external electrode electrically connected to the circuit element on the coating film. And an electrode forming step to be formed.
 本発明によれば、外部電極にピンホールが形成されることを抑制できる。 According to the present invention, pinholes can be prevented from being formed in the external electrode.
電子部品1の外観斜視図である。1 is an external perspective view of an electronic component 1. FIG. 電子部品1の本体10の分解斜視図である。1 is an exploded perspective view of a main body 10 of an electronic component 1. 図1のA-Aにおける断面構造図及び部分拡大図である。FIG. 2 is a sectional structural view and a partially enlarged view taken along line AA of FIG. 電子部品1の製造時の工程断面図である。FIG. 3 is a process cross-sectional view when the electronic component 1 is manufactured. 電子部品1の製造時の工程断面図である。FIG. 3 is a process cross-sectional view when the electronic component 1 is manufactured. 電子部品1の製造時の工程断面図である。FIG. 3 is a process cross-sectional view when the electronic component 1 is manufactured. 電子部品1の製造時の工程断面図である。FIG. 3 is a process cross-sectional view when the electronic component 1 is manufactured. 電子部品1の製造時の工程断面図である。FIG. 3 is a process cross-sectional view when the electronic component 1 is manufactured. 電子部品1の製造時の工程断面図である。FIG. 3 is a process cross-sectional view when the electronic component 1 is manufactured. 電子部品1の製造時の工程断面図である。FIG. 3 is a process cross-sectional view when the electronic component 1 is manufactured. 電子部品1の製造時の工程断面図である。FIG. 3 is a process cross-sectional view when the electronic component 1 is manufactured. 電子部品1の製造時の工程断面図である。FIG. 3 is a process cross-sectional view when the electronic component 1 is manufactured. 本体10を保持するための治具200を平面視した図である。It is the figure which planarly viewed the jig | tool 200 for hold | maintaining the main body 10. FIG. 外部電極20,25を形成する際の本体10を示した図である。FIG. 2 is a view showing a main body 10 when forming external electrodes 20 and 25. 外部電極20,25を形成する際の本体10を示した図である。FIG. 2 is a view showing a main body 10 when forming external electrodes 20 and 25. 外部電極20,25を形成する際の本体10を示した図である。FIG. 2 is a view showing a main body 10 when forming external electrodes 20 and 25.
(電子部品の構成)
 以下に、本発明の一実施形態に係る電子部品について図面を参照しながら説明する。図1は、電子部品1の外観斜視図である。図2は、電子部品1の本体10の分解斜視図である。図3は、図1のA-Aにおける断面構造図及び部分拡大図である。
(Configuration of electronic parts)
Hereinafter, an electronic component according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an external perspective view of the electronic component 1. FIG. 2 is an exploded perspective view of the main body 10 of the electronic component 1. 3 is a cross-sectional structural view and a partially enlarged view taken along line AA in FIG.
 以下では、本体10の積層方向を上下方向と定義する。また、上側から平面視したときに、本体10の長辺が延在する方向を左右方向と定義し、本体の短辺が延在する方向を前後方向と定義する。上下方向、左右方向及び前後方向は互いに直交している。 Hereinafter, the stacking direction of the main body 10 is defined as the vertical direction. Further, when viewed from above, the direction in which the long side of the main body 10 extends is defined as the left-right direction, and the direction in which the short side of the main body extends is defined as the front-back direction. The up-down direction, the left-right direction, and the front-rear direction are orthogonal to each other.
 電子部品1は、図1ないし図3に示すように、コーティング膜9、本体10、外部電極20,25及び回路素子30を備えている。本体10は、直方体状をなしている。本体10の上側の面を上面、下側の面を底面S1、右側の面を右面S2、左側の面を左面S3、前側の面を前面、後ろ側の面を後面と呼ぶ。本体10は、図2に示すように、絶縁体層11~14、絶縁体基板16及び磁路18を含んでいる。 The electronic component 1 includes a coating film 9, a main body 10, external electrodes 20, 25, and a circuit element 30, as shown in FIGS. The main body 10 has a rectangular parallelepiped shape. The upper surface of the main body 10 is referred to as the upper surface, the lower surface as the bottom surface S1, the right surface as the right surface S2, the left surface as the left surface S3, the front surface as the front surface, and the rear surface as the rear surface. As shown in FIG. 2, the main body 10 includes insulator layers 11 to 14, an insulator substrate 16, and a magnetic path 18.
 絶縁体層11,12、絶縁体基板16、絶縁体層13,14は、上側から平面視したときに、長方形状をなしており、上側から下側へとこの順に積層されている。以下では、絶縁体層11~14、絶縁体基板16の上側の主面を表面と呼び、絶縁体層11~14、絶縁体基板16の下側の主面を裏面と呼ぶ。底面S1は、電子部品1が回路基板上に実装される際に、回路基板と対向する実装面である。 The insulator layers 11 and 12, the insulator substrate 16, and the insulator layers 13 and 14 have a rectangular shape when viewed from above, and are stacked in this order from the upper side to the lower side. Hereinafter, the upper main surface of the insulator layers 11 to 14 and the insulator substrate 16 is referred to as a front surface, and the lower main surface of the insulator layers 11 to 14 and the insulator substrate 16 is referred to as a back surface. The bottom surface S1 is a mounting surface that faces the circuit board when the electronic component 1 is mounted on the circuit board.
 絶縁体層11,14は、金属磁性粉と絶縁性材料との混合物を材料としており、本実施形態では、金属磁性粉とエポキシ系樹脂との混合物により作製されている。また、絶縁体層11,14における金属磁性粉の密度を高めるため、絶縁体層11,14は、粒径の異なる2種類の金属磁性粉を含んでいる。具体的には、金属磁性粉は、平均粒径80μmのFe-Si-Cr合金からなる磁性粉(最大粒径100μm)、及び、平均粒径3μmのカルボニルFeからなる磁性粉の混合粉である。また、これらの粉末に対しては化成処理により、金属酸化物からなる絶縁コーティングが予め施されている。さらに、電子部品1のL値及び直流重畳特性を考慮して、金属磁性粉は、絶縁体層11,14に対して90wt%以上含まれている。また、絶縁体層11,14の材料は、金属磁性粉とガラスセラミックス等の絶縁性無機材料との混合物や金属磁性粉とポリイミド樹脂との混合物であってもよい。本実施形態における絶縁体層11,14の厚みは、約60μmであり、該絶縁体層11,14に含まれる金属磁性粉の最大粒径よりも小さい。 The insulator layers 11 and 14 are made of a mixture of a metal magnetic powder and an insulating material. In this embodiment, the insulator layers 11 and 14 are made of a mixture of a metal magnetic powder and an epoxy resin. Moreover, in order to increase the density of the metal magnetic powder in the insulator layers 11 and 14, the insulator layers 11 and 14 include two types of metal magnetic powders having different particle sizes. Specifically, the metal magnetic powder is a mixed powder of magnetic powder (maximum particle size 100 μm) made of an Fe—Si—Cr alloy having an average particle size of 80 μm and magnetic powder made of carbonyl Fe having an average particle size of 3 μm. . In addition, an insulating coating made of a metal oxide is previously applied to these powders by chemical conversion treatment. Further, in consideration of the L value of the electronic component 1 and the direct current superposition characteristics, the metal magnetic powder is contained in an amount of 90 wt% or more with respect to the insulator layers 11 and 14. The material of the insulator layers 11 and 14 may be a mixture of metal magnetic powder and an insulating inorganic material such as glass ceramics, or a mixture of metal magnetic powder and polyimide resin. The thickness of the insulator layers 11 and 14 in this embodiment is about 60 μm, which is smaller than the maximum particle size of the metal magnetic powder contained in the insulator layers 11 and 14.
 絶縁体層12,13は、絶縁性材料により作製されており、本実施形態では、エポキシ樹脂により作製されている。なお、絶縁体層12,13は、ベンゾジクロブテン等の絶縁性樹脂や、ガラスセラミックス等の絶縁性無機材料により作製されていてもよい。 The insulator layers 12 and 13 are made of an insulating material, and in this embodiment, are made of an epoxy resin. The insulator layers 12 and 13 may be made of an insulating resin such as benzodiclobutene or an insulating inorganic material such as glass ceramics.
 絶縁体基板16は、ガラスクロスにエポキシ樹脂を含浸させたプリント配線基板であり、絶縁体層12と絶縁体層13とに上下両側から挟まれている。なお、絶縁体基板16は、ベンゾジクロブテン等の絶縁性樹脂や、ガラスセラミックス等の絶縁性無機材料により作製されていてもよい。 The insulator substrate 16 is a printed wiring board in which a glass cloth is impregnated with an epoxy resin, and is sandwiched between the insulator layer 12 and the insulator layer 13 from above and below. The insulator substrate 16 may be made of an insulating resin such as benzodic clobutene or an insulating inorganic material such as glass ceramics.
 磁路18は、本体10の内部の略中央に位置する金属磁性粉と絶縁性材料との混合物を材料としている。本実施形態では、電子部品1のL値及び直流重畳特性を考慮して、磁性粉を90wt%以上含んでいる。さらに、磁路18への充填性を高めるため、磁性粉として、粒度の異なる2種類の粉体を混在させている。また、磁路18は、絶縁体層12,13及び絶縁体基板16を上下方向に貫通する柱状をなし、オーバル状の断面形状を有している。更に、磁路18は、後述するコイル32,37の内周に位置するように設けられている。 The magnetic path 18 is made of a mixture of metal magnetic powder and an insulating material located substantially in the center of the main body 10. In the present embodiment, 90% by weight or more of magnetic powder is included in consideration of the L value of the electronic component 1 and the direct current superposition characteristics. Furthermore, in order to improve the filling property to the magnetic path 18, two kinds of powders having different particle sizes are mixed as the magnetic powder. The magnetic path 18 has a column shape penetrating the insulating layers 12 and 13 and the insulating substrate 16 in the vertical direction, and has an oval cross-sectional shape. Further, the magnetic path 18 is provided so as to be positioned on the inner periphery of coils 32 and 37 described later.
 回路素子30は、本体10に設けられており、本実施形態では、本体10に内蔵されている。回路素子30は、導電性材料により作製されており、本実施形態では、Au,Ag,Cu,Pd,Ni等の金属を含む材料により作製されている。回路素子30は、コイル32、引き出し導体32a、コイル37、引き出し導体37a及びビアホール導体39を含んでいる。 The circuit element 30 is provided in the main body 10 and is built in the main body 10 in this embodiment. The circuit element 30 is made of a conductive material. In this embodiment, the circuit element 30 is made of a material containing a metal such as Au, Ag, Cu, Pd, or Ni. The circuit element 30 includes a coil 32, a lead conductor 32a, a coil 37, a lead conductor 37a, and a via-hole conductor 39.
 コイル32は、図2に示すように、絶縁体基板16の表面上に設けられており、上側から平面視したときに、時計回りに旋回しながら中心に近づく渦巻状の導体層である。以下では、コイル32の時計回り方向の上流側の端部を上流端と呼び、コイル32の時計回り方向の下流側の端部を下流端と呼ぶ。 As shown in FIG. 2, the coil 32 is a spiral conductor layer that is provided on the surface of the insulator substrate 16 and approaches the center while turning clockwise when viewed from above. Hereinafter, the upstream end of the coil 32 in the clockwise direction is referred to as an upstream end, and the downstream end of the coil 32 in the clockwise direction is referred to as a downstream end.
 コイル37は、図2に示すように、絶縁体基板16の裏面上に設けられており、上側から平面視したときに、時計回りに旋回しながら中心から遠ざかる渦巻状の導体層である。なお、図2では、視認のしやすさの観点から、コイル37を絶縁体層13の表面上に記載してある。以下では、コイル37の時計回り方向の上流側の端部を上流端と呼び、コイル37の時計回り方向の下流側の端部を下流端と呼ぶ。 As shown in FIG. 2, the coil 37 is a spiral conductor layer that is provided on the back surface of the insulating substrate 16 and turns away from the center while turning clockwise when viewed from above. In FIG. 2, the coil 37 is illustrated on the surface of the insulating layer 13 from the viewpoint of ease of visual recognition. Hereinafter, the upstream end of the coil 37 in the clockwise direction is referred to as an upstream end, and the downstream end of the coil 37 in the clockwise direction is referred to as a downstream end.
 ビアホール導体39は、絶縁体基板16を上下方向に貫通しており、コイル32の下流端とコイル37の上流端とを接続している。これにより、コイル32とコイル37とが電気的に直列接続されている。 The via-hole conductor 39 penetrates the insulator substrate 16 in the vertical direction, and connects the downstream end of the coil 32 and the upstream end of the coil 37. Thereby, the coil 32 and the coil 37 are electrically connected in series.
 引き出し導体32aは、図2に示すように、絶縁体基板16の表面上に設けられており、コイル32の上流端に接続されている。また、引き出し導体32aは、絶縁体基板16の右側の短辺に引き出されている。これにより、引き出し導体32aは、図3に示すように、右面S2から本体10外に露出している。 As shown in FIG. 2, the lead conductor 32 a is provided on the surface of the insulator substrate 16 and is connected to the upstream end of the coil 32. Further, the lead conductor 32 a is drawn to the right short side of the insulator substrate 16. Thereby, the lead conductor 32a is exposed outside the main body 10 from the right surface S2, as shown in FIG.
 引き出し導体37aは、図2に示すように、絶縁体基板16の裏面上に設けられており、コイル37の下流端に接続されている。なお、図2では、視認のしやすさの観点から、引き出し導体37aを絶縁体層13の表面上に記載してある。また、引き出し導体37aは、絶縁体基板16の左側の短辺に引き出されている。これにより、引き出し導体37aは、図3に示すように、左面S3から本体10外に露出している。 As shown in FIG. 2, the lead conductor 37 a is provided on the back surface of the insulating substrate 16 and is connected to the downstream end of the coil 37. In FIG. 2, the lead conductor 37 a is illustrated on the surface of the insulator layer 13 from the viewpoint of easy visual recognition. Further, the lead conductor 37 a is drawn to the left short side of the insulating substrate 16. Thereby, the lead conductor 37a is exposed outside the main body 10 from the left surface S3, as shown in FIG.
 コーティング膜9は、図3に示すように、本体10の表面の少なくとも一部を覆っており、本実施形態では、本体10の表面の略全面を覆っている。ただし、コーティング膜9は、回路素子30が本体10の表面に露出している部分(すなわち、引き出し導体32a,37a)を覆っていない。コーティング膜9は、金属磁性粉の材料に含まれる金属及び樹脂を含んでいる。すなわち、コーティング膜9は、アクリル系樹脂及びFeを含んでいる。そして、コーティング膜9に含まれるアクリル系樹脂は、架橋構造を成している。なお、電子部品1を回路基板に実装する際にはんだを用いることを考慮し、コーティング膜9を構成する樹脂の熱分解温度は高い方が好ましい。例えば、コーティング膜9を構成する樹脂が5%程度質量減少する温度を熱分解温度とした場合、その熱分解温度は240℃以上である。ここで、熱分解温度は以下の分析装置及び分析条件により測定できる。
・分析装置:TG-DTA 2000SA(ネッチ・ジャパン社製)
・分析条件
 温度プロファイル   :RT→300℃ (10℃/min) 
 測定雰囲気      : 減圧(ロータリーポンプを使用:0.1Pa) 
 試料容器(セル)材質 :Al
 測定試料重量     :100mg
As shown in FIG. 3, the coating film 9 covers at least a part of the surface of the main body 10, and covers substantially the entire surface of the main body 10 in this embodiment. However, the coating film 9 does not cover the portion where the circuit element 30 is exposed on the surface of the main body 10 (that is, the lead conductors 32a and 37a). The coating film 9 contains a metal and a resin contained in the metal magnetic powder material. That is, the coating film 9 contains an acrylic resin and Fe. The acrylic resin contained in the coating film 9 has a crosslinked structure. In consideration of using solder when mounting the electronic component 1 on the circuit board, it is preferable that the thermal decomposition temperature of the resin constituting the coating film 9 is higher. For example, when the temperature at which the resin constituting the coating film 9 is reduced by about 5% in mass is the thermal decomposition temperature, the thermal decomposition temperature is 240 ° C. or higher. Here, the thermal decomposition temperature can be measured by the following analyzer and analysis conditions.
・ Analyzer: TG-DTA 2000SA (manufactured by Netch Japan)
・ Analysis conditions Temperature profile: RT → 300 ℃ (10 ℃ / min)
Measurement atmosphere: Reduced pressure (using a rotary pump: 0.1 Pa)
Sample container (cell) material: Al
Measurement sample weight: 100 mg
 また、コーティング膜9は、図3の拡大図に示すように、電子部品1の表面を平坦化している。より詳細には、本体10の表面には無数の窪みCが形成されている。窪みCは、本体10の表面近傍に埋まっていた金属磁性粉が製造時(特にカット工程時)に脱落することによって形成される。そして、コーティング膜9は、窪みCを埋めている。これにより、コーティング膜9の凹凸が本体10の凹凸よりも小さくなっている。すなわち、コーティング膜9の表面粗さRaは、本体10の表面粗さRaより小さくなっている。 The coating film 9 flattens the surface of the electronic component 1 as shown in the enlarged view of FIG. More specifically, innumerable depressions C are formed on the surface of the main body 10. The dent C is formed by the metal magnetic powder buried in the vicinity of the surface of the main body 10 falling off during manufacturing (particularly during the cutting process). The coating film 9 fills the recess C. Thereby, the unevenness of the coating film 9 is smaller than the unevenness of the main body 10. That is, the surface roughness Ra of the coating film 9 is smaller than the surface roughness Ra of the main body 10.
 外部電極20は、図3に示すように、電子部品1の右面S2を覆っていると共に、電子部品1の上面、底面S1、前面及び後面に折り返されている。これにより、外部電極20は、コーティング膜9上に設けられている。すなわち、コーティング膜9の一部は、本体10と外部電極20との間に設けられている。更に、外部電極20は、回路素子30と電気的に接続されている。本実施形態では、引き出し導体32aは、図3に示すように、右面S2においてコーティング膜9に覆われていない。よって、外部電極20と引き出し導体32aとが接触している。外部電極20は、下層側から上層側へと、Cu膜、Ni膜及びSn膜が積層された導体膜により構成されている。 As shown in FIG. 3, the external electrode 20 covers the right surface S <b> 2 of the electronic component 1 and is folded back to the top surface, the bottom surface S <b> 1, the front surface, and the rear surface of the electronic component 1. Thereby, the external electrode 20 is provided on the coating film 9. That is, a part of the coating film 9 is provided between the main body 10 and the external electrode 20. Further, the external electrode 20 is electrically connected to the circuit element 30. In the present embodiment, the lead conductor 32a is not covered with the coating film 9 on the right surface S2, as shown in FIG. Therefore, the external electrode 20 and the lead conductor 32a are in contact with each other. The external electrode 20 is composed of a conductor film in which a Cu film, a Ni film, and a Sn film are laminated from the lower layer side to the upper layer side.
 外部電極25は、図3に示すように、電子部品1の左面S3を覆っていると共に、電子部品1の上面、底面S1、前面及び後面に折り返されている。これにより、外部電極25は、コーティング膜9上に設けられている。すなわち、コーティング膜9の一部は、本体10と外部電極25との間に設けられている。更に、外部電極25は、回路素子30と電気的に接続されている。本実施形態では、引き出し導体37aは、図3に示すように、左面S3においてコーティング膜9に覆われていない。よって、外部電極25と引き出し導体37aとが接触している。外部電極25は、下層側から上層側へと、Cu膜、Ni膜及びSn膜が積層された導体膜により構成されている。 As shown in FIG. 3, the external electrode 25 covers the left surface S <b> 3 of the electronic component 1 and is folded back to the top surface, the bottom surface S <b> 1, the front surface, and the rear surface of the electronic component 1. Thereby, the external electrode 25 is provided on the coating film 9. That is, a part of the coating film 9 is provided between the main body 10 and the external electrode 25. Further, the external electrode 25 is electrically connected to the circuit element 30. In the present embodiment, the lead conductor 37a is not covered with the coating film 9 on the left surface S3, as shown in FIG. Therefore, the external electrode 25 and the lead conductor 37a are in contact with each other. The external electrode 25 is composed of a conductor film in which a Cu film, a Ni film, and a Sn film are laminated from the lower layer side to the upper layer side.
 以上のように構成された電子部品1は、例えば、外部電極20から入力された信号が、回路素子30を経由して、外部電極25から出力されることで、インダクタとして機能する。 The electronic component 1 configured as described above functions as an inductor when, for example, a signal input from the external electrode 20 is output from the external electrode 25 via the circuit element 30.
(電子部品の製造方法)
 次に、電子部品1の製造方法について図面を参照しながら説明する。図4ないし図12は、電子部品1の製造時の工程断面図である。図13は、本体10を保持するための治具200を平面視した図である。図14ないし図16は、外部電極20,25を形成する際の本体10を示した図である。
(Method for manufacturing electronic parts)
Next, a method for manufacturing the electronic component 1 will be described with reference to the drawings. 4 to 12 are process cross-sectional views when the electronic component 1 is manufactured. FIG. 13 is a plan view of the jig 200 for holding the main body 10. 14 to 16 are views showing the main body 10 when the external electrodes 20 and 25 are formed.
 まず、図4に示すように、複数の絶縁体基板16となるべきマザー絶縁体基板116を用意する。そして、図5に示すように、マザー絶縁体基板116のビアホール導体39が設けられる位置にビームを照射してスルーホールH1を形成する。なお、インダクタンス値の取得効率を高めるため、絶縁体基板16の厚さは60μm以下が好ましい。 First, as shown in FIG. 4, a mother insulator substrate 116 to be a plurality of insulator substrates 16 is prepared. Then, as shown in FIG. 5, the through-hole H <b> 1 is formed by irradiating a beam to the position where the via-hole conductor 39 of the mother insulator substrate 116 is provided. In order to increase the acquisition efficiency of the inductance value, the thickness of the insulating substrate 16 is preferably 60 μm or less.
 次に、マザー絶縁体基板116の表面及び裏面にCuめっきを施す。これにより、マザー絶縁体基板116の表面の全面及び裏面の前面にめっき膜が形成される。更に、スルーホールH1内もめっきされビアホール導体39が形成される。その後、図6に示すように、フォトリソグラフィにより、マザー絶縁体基板116の表面及び裏面に、コイル32,37に対応する導体パターン132,137を形成する。 Next, Cu plating is applied to the front and back surfaces of the mother insulator substrate 116. As a result, a plating film is formed on the entire front surface of the mother insulator substrate 116 and the front surface of the back surface. Further, the via hole conductor 39 is also formed by plating in the through hole H1. After that, as shown in FIG. 6, conductor patterns 132 and 137 corresponding to the coils 32 and 37 are formed on the front and back surfaces of the mother insulator substrate 116 by photolithography.
 導体パターン132,137の形成後、更にCuめっきを施し、図7に示すように、十分な太さのコイル32,37を形成する。 After forming the conductor patterns 132 and 137, Cu plating is further performed to form coils 32 and 37 having a sufficient thickness as shown in FIG.
 次に、図8に示すように、複数の絶縁体層12,13となるべき絶縁体シート112,113によりマザー絶縁体基板116を上下両側から挟み込む。また、絶縁体シート112,113によりマザー絶縁体基板116を挟み込む工程は、コイル32,37間の微小な隙間に絶縁体シート112,113を入り込ませるために、真空中で行われることが好ましい。また、コイル32,37に起因する浮遊容量の発生を抑制するために、絶縁体シート112,113の比誘電率は、4以下が好ましい。 Next, as shown in FIG. 8, the mother insulating substrate 116 is sandwiched from both the upper and lower sides by the insulating sheets 112 and 113 to be the plurality of insulating layers 12 and 13. Further, the step of sandwiching the mother insulator substrate 116 between the insulator sheets 112 and 113 is preferably performed in a vacuum in order to allow the insulator sheets 112 and 113 to enter the minute gap between the coils 32 and 37. In order to suppress the generation of stray capacitance due to the coils 32 and 37, the relative dielectric constant of the insulator sheets 112 and 113 is preferably 4 or less.
 次に、図9に示すように、ビームを照射して、マザー絶縁体基板116及び絶縁体シート112,113を上下方向に貫通する複数の貫通孔δを形成する。貫通孔δが形成される位置は、磁路18が設けられる位置であり、マザー絶縁体基板116に設けられた複数のコイル32,37それぞれの内周側である。 Next, as shown in FIG. 9, a plurality of through holes δ penetrating the mother insulator substrate 116 and the insulator sheets 112 and 113 in the vertical direction are formed by irradiating a beam. The position where the through hole δ is formed is a position where the magnetic path 18 is provided, and is on the inner peripheral side of each of the plurality of coils 32 and 37 provided on the mother insulator substrate 116.
 そして、図10に示すように、絶縁体シート112、マザー絶縁体基板116及び絶縁体シート113の順で積層された積層体を、絶縁体層11,14に対応する樹脂シート111,114により上下両側から、図8で示した絶縁体シート112,113と同様に挟み、圧着する。この圧着により、複数の貫通孔δに対して、樹脂シート111,114が入り込み、複数の磁路18が形成される。その後、オーブン等の恒温槽を用いて熱処理を施すことで樹脂シート111,114を硬化させる。 Then, as shown in FIG. 10, the laminated body in which the insulator sheet 112, the mother insulator substrate 116, and the insulator sheet 113 are stacked in this order is moved up and down by the resin sheets 111 and 114 corresponding to the insulator layers 11 and 14. The both sides are sandwiched and crimped in the same manner as the insulator sheets 112 and 113 shown in FIG. By this pressure bonding, the resin sheets 111 and 114 enter the plurality of through holes δ, and a plurality of magnetic paths 18 are formed. Thereafter, the resin sheets 111 and 114 are cured by heat treatment using a thermostat such as an oven.
 硬化後、厚さを調整するために、樹脂シート111、114の表面を、バフ研磨、ラップ研磨及びグラインダ等により研削する。この際、マザー絶縁体基板116の上面及び底面付近に埋め込まれた金属磁性体粉が脱落し、マザー絶縁体基板116の上面及び底面に無数の窪みが形成される。これにより、図10に示すように、複数の電子部品の集合体であるマザー基板120が完成する。以上のように、図4から図10の工程は、それぞれに回路素子30が設けられた複数の本体10の集合体であるマザー基板120を作製する本体作製工程である。 After curing, in order to adjust the thickness, the surfaces of the resin sheets 111 and 114 are ground by buffing, lapping and grinders. At this time, the metal magnetic powder embedded in the vicinity of the upper surface and the bottom surface of the mother insulator substrate 116 is dropped, and innumerable depressions are formed on the upper surface and the bottom surface of the mother insulator substrate 116. As a result, as shown in FIG. 10, a mother substrate 120 that is an assembly of a plurality of electronic components is completed. As described above, the steps of FIGS. 4 to 10 are main body manufacturing steps for manufacturing the mother substrate 120 that is an aggregate of a plurality of main bodies 10 each provided with the circuit element 30.
 次に、図11に示すように、ダイサー等でマザー基板120を複数の本体10にカットする。このカットによって、引き出し導体32a,37aが本体10から露出する。この際、本体10の表面付近に埋め込まれた金属磁性粉が脱落し、本体10の表面に無数の窪みが形成される。この後、引き出し導体32a,37aが本体10から露出した部分に付着したカットくずを除去するために、エッチング処理又は研磨処理を行う。本実施形態では、本体10を塩化第二鉄溶液に浸漬して、エッチング処理を施した。 Next, as shown in FIG. 11, the mother substrate 120 is cut into a plurality of main bodies 10 with a dicer or the like. By this cutting, the lead conductors 32a and 37a are exposed from the main body 10. At this time, the metal magnetic powder embedded in the vicinity of the surface of the main body 10 falls off, and innumerable depressions are formed on the surface of the main body 10. Thereafter, an etching process or a polishing process is performed in order to remove cut chips adhering to the portions where the lead conductors 32 a and 37 a are exposed from the main body 10. In this embodiment, the main body 10 was immersed in a ferric chloride solution and subjected to an etching process.
 次に、図12に示すように、本体10の表面にコーティング膜9を形成する。より詳細には、本体10を、エッチング成分と樹脂成分が水系の溶媒に分散した市販のラテックスに、必要に応じてエッチング促進成分と界面活性剤を添加したものを含む混合溶液に浸漬する。混合溶液の具体的な組成を表1に示す。この浸漬により、本体10の表面がエッチングされる。このエッチングは、混合溶液に含まれる硫酸及び過酸化水素水の作用によるものである。なお、混合溶液中の硫酸及び過酸化水素水に代えて、フッ化水素酸、硝酸、塩酸、リン酸、カルボン酸等の各種有機酸を用いてもよい。 Next, as shown in FIG. 12, a coating film 9 is formed on the surface of the main body 10. More specifically, the main body 10 is immersed in a mixed solution containing a commercially available latex in which an etching component and a resin component are dispersed in an aqueous solvent and an etching promoting component and a surfactant added as necessary. The specific composition of the mixed solution is shown in Table 1. By this immersion, the surface of the main body 10 is etched. This etching is due to the action of sulfuric acid and hydrogen peroxide contained in the mixed solution. Note that various organic acids such as hydrofluoric acid, nitric acid, hydrochloric acid, phosphoric acid, and carboxylic acid may be used in place of the sulfuric acid and the hydrogen peroxide solution in the mixed solution.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 また、このエッチングによって、絶縁体層11,14の構成元素であるカチオン性の元素であるFeがイオン化される。さらに、イオン化したカチオン性の元素は、混合溶液中のNipo lLATEX SX-1706A(日本ゼオン社製)と反応する。その結果、図12に示すように、混合溶液中の樹脂成分が中和され、電子部品を構成する本体10の表面に沈降し、本体10がコーティング膜9に覆われる。ただし、引き出し導体32a,37aはコーティング膜9に覆われない。これは、引き出し導体32a,37aの材料に含まれる金属(Cu)が、金属磁性粉の材料に含まれる金属(Fe)よりもイオン化されにくく、混合溶液中の樹脂成分と反応しにくいためである。なお、混合溶液に含まれるエレミノールJS-2(三洋化成社製)は、Feと樹脂成分との反応量を調節する界面活性剤である。これにより、コーティング膜9の厚みを調節することができる。 Further, this etching ionizes Fe, which is a cationic element, which is a constituent element of the insulator layers 11 and 14. Further, the ionized cationic element reacts with Nipo lLATEX SX-1706A (manufactured by Nippon Zeon Co., Ltd.) in the mixed solution. As a result, as shown in FIG. 12, the resin component in the mixed solution is neutralized and settles on the surface of the main body 10 constituting the electronic component, and the main body 10 is covered with the coating film 9. However, the lead conductors 32 a and 37 a are not covered with the coating film 9. This is because the metal (Cu) contained in the material of the lead conductors 32a and 37a is less likely to be ionized than the metal (Fe) contained in the material of the metal magnetic powder, and does not easily react with the resin component in the mixed solution. . In addition, Eleminol JS-2 (manufactured by Sanyo Chemical Co., Ltd.) contained in the mixed solution is a surfactant that adjusts the reaction amount of Fe and the resin component. Thereby, the thickness of the coating film 9 can be adjusted.
 その後、純水による洗浄及び液きりを経て、コーティング膜9に対して加熱処理を施す。この加熱処理により、コーティング膜9に含まれる樹脂成分がFeを介して、若しくは、樹脂成分同士で架橋する。この際ダイサーや研磨処理(バフ研磨やラップ研磨等)で発生した金属磁性体の脱落による窪みに、コーティング膜9が侵入し、窪みの凹みの大きさが減少する。 Thereafter, the coating film 9 is subjected to heat treatment after being washed with pure water and drained. By this heat treatment, the resin component contained in the coating film 9 is crosslinked through Fe or between the resin components. At this time, the coating film 9 penetrates into the depressions caused by the drop of the metal magnetic material generated by the dicer or polishing process (buffing or lapping), and the size of the depressions is reduced.
 ここで、コーティング膜9の塗膜強度及び耐薬品性の向上を目的として、エチルアミン、プロピルアミン、イソプロピルアミン、ブチルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、トリエチルアミン、トリプロピルアミン、アリルアミン、ジアリルアミン、トリアリルアミン、ジメメルエタノールアミン、ジエエルエタノールアミン、エタノールアミン、ジエタノールアミン、トリエタノールアミン等のアミン化合物や、メラミン樹脂、グアナミン樹脂、尿素樹脂等のアミノ樹脂、フェノール樹脂、エポキシ樹脂、イソシアネート化合物等の硬化剤を加え、熱処理を行う等の処理を追加してもよい。 Here, for the purpose of improving the coating strength and chemical resistance of the coating film 9, ethylamine, propylamine, isopropylamine, butylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, triethylamine, tripropylamine, allylamine, Amine compounds such as diallylamine, triallylamine, dimmelethanolamine, dieleethanolamine, ethanolamine, diethanolamine, triethanolamine, amino resins such as melamine resin, guanamine resin, urea resin, phenol resin, epoxy resin, isocyanate compound A treatment such as adding a curing agent such as heat treatment may be added.
 次に、以下に説明するように、電解めっきにより本体10の表面に外部電極20,25を形成する。図13は、本体10を保持するための治具200を平面視した図である。図14ないし図16は、外部電極20,25を形成する際の本体10を示した図である。 Next, as will be described below, external electrodes 20 and 25 are formed on the surface of the main body 10 by electrolytic plating. FIG. 13 is a plan view of the jig 200 for holding the main body 10. 14 to 16 are views showing the main body 10 when the external electrodes 20 and 25 are formed.
 まず、脱脂やエッチング等の手法によって、本体10の表面を洗浄する。 First, the surface of the main body 10 is cleaned by a method such as degreasing or etching.
 次に、図13に示す治具200を準備する。治具200には、穴202がマトリクス状に配列されている。そして、図14に示すように、本体10を穴202に挿入する。本体10は、穴202に挿入されることにより、外部電極20が形成される部分のみが治具200外に露出するようになる。 Next, a jig 200 shown in FIG. 13 is prepared. Holes 202 are arranged in a matrix in the jig 200. Then, the main body 10 is inserted into the hole 202 as shown in FIG. When the main body 10 is inserted into the hole 202, only a portion where the external electrode 20 is formed is exposed to the outside of the jig 200.
 次に、図15に示すように、治具200を下降させて、パラジウム、スズ、銀、銅からなる群から選択される少なくとも1種を含有する導電化材料を含む導電化溶液に本体10を浸漬して、本体10の表面において外部電極20が形成される部分に導電化溶液を付与する。これにより、外部電極20が形成される部分に導電層が形成される。導電化材料とは、本体10に付着して導電性を与えることができる材料であり、例えば、前記のような遷移金属のイオン、それらを含むコロイド、導電性高分子やグラファイト等が挙げられる。 Next, as shown in FIG. 15, the jig 200 is lowered, and the main body 10 is placed in a conductive solution containing a conductive material containing at least one selected from the group consisting of palladium, tin, silver, and copper. Immersion is performed, and a conductive solution is applied to the portion where the external electrode 20 is formed on the surface of the main body 10. Thereby, a conductive layer is formed in a portion where the external electrode 20 is formed. The conductive material is a material that can be attached to the main body 10 to impart conductivity, and examples thereof include transition metal ions as described above, colloids containing them, conductive polymers, and graphite.
 ここで、導電化溶液の表面張力の最小値は、30×10-3N/m以上であることが好ましく、40×10-3N/m以上であることがより一層好ましい。また、導電化溶液における表面張力の最大値は、70×10-3N/m以下であることが好ましく、60×10-3N/m以下であることがより一層好ましい。また、導電化溶液における粘度の最小値は、0.003Pa・s(3mPa・s)以上であることが好ましく、0.1Pa・s以上であることがより一層好ましく、1Pa・s以上であることがさらにより一層好ましい。また、導電化溶液における粘度の最大値は、30Pa・s以下であることが好ましい。導電化溶液の表面張力および粘度は、添加剤を用いて調節すればよい。この添加剤は、導電化溶液における導電化材料の物性に影響を与えないものであればいかなるものであってもよい。 Here, the minimum value of the surface tension of the conductive solution is preferably 30 × 10 −3 N / m or more, and more preferably 40 × 10 −3 N / m or more. Further, the maximum value of the surface tension in the conductive solution is preferably 70 × 10 −3 N / m or less, and more preferably 60 × 10 −3 N / m or less. Further, the minimum value of the viscosity of the conductive solution is preferably 0.003 Pa · s (3 mPa · s) or more, more preferably 0.1 Pa · s or more, and 1 Pa · s or more. Is even more preferred. In addition, the maximum value of the viscosity in the conductive solution is preferably 30 Pa · s or less. The surface tension and viscosity of the conductive solution may be adjusted using additives. Any additive may be used as long as it does not affect the physical properties of the conductive material in the conductive solution.
 なお、本体10への導電化材料の付着量は、電解めっきによりめっきが可能となる量であればよい。また、導電化溶液の表面張力および粘度は、本体10の大きさによって決定される。 In addition, the adhesion amount of the conductive material to the main body 10 may be an amount that can be plated by electrolytic plating. Further, the surface tension and viscosity of the conductive solution are determined by the size of the main body 10.
 また、本体10の材料の種類によっては、これらの導電化材料が本体10に付着しにくい場合がある。その場合には、本体10を、導電化溶液に浸漬させる前に界面活性剤に浸漬させてもよい。この界面活性剤により、本体10の表面への導電化材料の付着力を高めことができる。ここで用いる界面活性剤は、本体10に付与する導電化材料の種類に適合するように、アニオン型、カチオン型、ノニオン型、両性のいずれかの界面活性剤から選択する。 Also, depending on the type of material of the main body 10, these conductive materials may be difficult to adhere to the main body 10. In that case, the main body 10 may be immersed in a surfactant before being immersed in the conductive solution. With this surfactant, the adhesion of the conductive material to the surface of the main body 10 can be increased. The surfactant used here is selected from any of anionic, cationic, nonionic and amphoteric surfactants so as to match the type of conductive material applied to the main body 10.
 図16に示すように、電解めっきを行うのに必要な導電化材料の付与量(0.2μg/cm2 ~50μg/cm2 )を表面上に残すようにして、表面に導電化材料が付着した本体10を水や溶剤等により洗浄する。更に、本体10を乾燥させる。 As shown in FIG. 16, the conductive material adheres to the surface so that the applied amount (0.2 μg / cm 2 to 50 μg / cm 2 ) of the conductive material necessary for electrolytic plating is left on the surface. The main body 10 is washed with water or a solvent. Further, the main body 10 is dried.
 次に、図14ないし図16を用いて説明した工程と同様の工程を繰り返すことにより、本体10の表面において外部電極25が形成される部分に導電化溶液を付与する。 Next, a conductive solution is applied to a portion of the surface of the main body 10 where the external electrode 25 is formed by repeating the same steps as those described with reference to FIGS.
 本体10の導電化材料からなる導電層上に、電解めっきによって外部電極20,25を形成する。本実施形態では、銅めっき、ニッケルめっき及びスズめっきの順に電解めっきを行う。以上の工程により、電子部品1が完成する。 External electrodes 20 and 25 are formed on the conductive layer made of the conductive material of the main body 10 by electrolytic plating. In the present embodiment, electrolytic plating is performed in the order of copper plating, nickel plating, and tin plating. The electronic component 1 is completed through the above steps.
 なお、電解めっきで用いることが可能な金属種は、特に限定されるものではなく、スズ、スズ合金、ニッケル、銅、銀、金、パラジウム等からなる群から選択される少なくとも1種の金属を使用することができる。また、スズ合金としては、スズ-鉛、スズ-銀、スズ-銅、スズ-亜鉛、スズ-ビスマス、スズ-インジウム等が好ましい。 The metal species that can be used in electrolytic plating are not particularly limited, and at least one metal selected from the group consisting of tin, tin alloy, nickel, copper, silver, gold, palladium, and the like is used. Can be used. The tin alloy is preferably tin-lead, tin-silver, tin-copper, tin-zinc, tin-bismuth, tin-indium or the like.
 また、めっき浴の性質も、酸性浴、中性浴、アルカリ性浴のいずれの浴においても本方法を適用できる。さらに、電解めっき法も、バレルめっき法、ラックめっき法等種々の電解めっき法を用いることができる。 In addition, as for the properties of the plating bath, this method can be applied to any of an acidic bath, a neutral bath, and an alkaline bath. Further, various electrolytic plating methods such as a barrel plating method and a rack plating method can also be used for the electrolytic plating method.
(効果)
 以上のように構成された電子部品1及びその製造方法によれば、外部電極20,25にピンホールが形成されることを抑制できる。より詳細には、コーティング膜9は、本体10の表面を覆っている。これにより、コーティング膜9は、本体10に埋まっていた金属磁性粉が製造時に脱落することによって、本体10の表面に形成された窪みを埋めている。その結果、コーティング膜9の表面粗さは、本体10の表面の表面粗さよりも小さくなっている。そして、外部電極20,25は、平坦なコーティング膜9上に設けられている。これにより、外部電極20,25にピンホールが形成されることが抑制される。
(effect)
According to the electronic component 1 configured as described above and the manufacturing method thereof, it is possible to suppress the formation of pinholes in the external electrodes 20 and 25. More specifically, the coating film 9 covers the surface of the main body 10. Thereby, the coating film 9 fills the depression formed on the surface of the main body 10 by dropping the metal magnetic powder embedded in the main body 10 at the time of manufacture. As a result, the surface roughness of the coating film 9 is smaller than the surface roughness of the surface of the main body 10. The external electrodes 20 and 25 are provided on the flat coating film 9. Thereby, the formation of pinholes in the external electrodes 20 and 25 is suppressed.
 また、電子部品1では、マザー基板120を複数の本体10にカットした後に、カットくずを除去するために、エッチング処理又は研磨処理を行っている。エッチング処理が行われると、金属磁性粉の表面の一部がエッチング液により溶かされるので、金属磁性粉と絶縁材料との接合強度が低下する。これにより、本体10の表面付近に埋め込まれた金属磁性粉の脱落がより促進される。また、研磨処理が行われると、研磨剤等が金属磁性粉に衝突し、本体10の表面付近に埋め込まれた金属磁性粉の脱落がより促進される。したがって、電子部品1のように、コーティング膜9が本体10の表面を覆い、外部電極20,25がコーティング膜9上に設けられることにより、より効果的に外部電極20,25にピンホールが形成されることが抑制される。 Further, in the electronic component 1, after the mother substrate 120 is cut into the plurality of main bodies 10, an etching process or a polishing process is performed in order to remove cut waste. When the etching process is performed, a part of the surface of the metal magnetic powder is dissolved by the etching solution, so that the bonding strength between the metal magnetic powder and the insulating material is lowered. Thereby, dropping of the metal magnetic powder embedded near the surface of the main body 10 is further promoted. Further, when the polishing process is performed, the abrasive or the like collides with the metal magnetic powder, and the falling of the metal magnetic powder embedded near the surface of the main body 10 is further promoted. Therefore, like the electronic component 1, the coating film 9 covers the surface of the main body 10, and the external electrodes 20 and 25 are provided on the coating film 9, so that pinholes are more effectively formed in the external electrodes 20 and 25. Is suppressed.
 また。電子部品1の製造方法では、引き出し導体32a,37aの材料に含まれる金属(Cu)が、金属磁性粉の材料に含まれる金属(Fe)よりもイオン化されにくい。これにより、引き出し導体32a,37aの材料に含まれる金属(Cu)が、コーティング膜9の形成時に用いられる混合溶液中の樹脂成分と反応しにくい。そのため、コーティング膜9は、引き出し導体32a,37aを覆わない。その結果、外部電極20と引き出し導体32aとを接続することが可能となると共に、外部電極25と引き出し導体37aとを接続することが可能となる。 Also. In the method for manufacturing the electronic component 1, the metal (Cu) included in the material of the lead conductors 32a and 37a is less likely to be ionized than the metal (Fe) included in the material of the metal magnetic powder. Thereby, the metal (Cu) contained in the material of the lead conductors 32 a and 37 a is unlikely to react with the resin component in the mixed solution used when forming the coating film 9. Therefore, the coating film 9 does not cover the lead conductors 32a and 37a. As a result, the external electrode 20 and the lead conductor 32a can be connected, and the external electrode 25 and the lead conductor 37a can be connected.
 次に、本願発明者は、電子部品1及びその製造方法が奏する効果をより明確にするために、以下に説明する実験を行った。本願発明者は、前記実施形態に係る電子部品1の製造方法により電子部品1を作製して、第1のサンプルとした。また、本願発明者は、前記実施形態に係る電子部品1の製造方法においてコーティング膜9を形成せずに電子部品を作製して、第2のサンプルとした。また、本願発明者は、前記実施形態に係る電子部品1の製造方法において、マザー基板120のカット後のカットくず除去のためのエッチング処理を行わず、かつ、コーティング膜9を形成せずに電子部品を作製して、第3のサンプルとした。そして、第1のサンプルないし第3のサンプルの凹凸、ピンホールの発生率及び外部電極20,25間の直流抵抗値を測定した。凹凸とは、表面粗さRaに関連するパラメータであり、本体10(コーティング膜9が形成されている場合にはコーティング膜9)に形成されている窪みCの深さの平均である。なお、窪みCの深さとは、本体10の表面から本体10の窪みCの底までの距離、又は、コーティング膜9の表面からコーティング膜9の窪みの底までの距離である。ピンホール発生率とは、ピンホールの面積を外部電極20,25の面積で割って100を乗じた値である。直流抵抗値については、OK又はNGで判定した。OKとNGの判断基準は、本体10内部の回路素子30自体の抵抗値に対して±5%以内をOK、それを超えた値をNGとしている。表2は、実験結果を示した表である。 Next, the inventor of the present application conducted an experiment described below in order to clarify the effects of the electronic component 1 and the manufacturing method thereof. The inventor of the present application produced the electronic component 1 by the method for manufacturing the electronic component 1 according to the above embodiment, and used it as the first sample. Further, the inventor of the present application produced an electronic component without forming the coating film 9 in the method for manufacturing the electronic component 1 according to the above embodiment, and used it as a second sample. In addition, in the method for manufacturing the electronic component 1 according to the embodiment, the inventor of the present application does not perform the etching process for removing the cut waste after the mother substrate 120 is cut and does not form the coating film 9. A part was produced as a third sample. And the unevenness | corrugation of the 1st sample thru | or 3rd sample, the incidence rate of a pinhole, and the direct current | flow resistance value between the external electrodes 20 and 25 were measured. The unevenness is a parameter related to the surface roughness Ra, and is an average of the depths of the recesses C formed in the main body 10 (or the coating film 9 when the coating film 9 is formed). The depth of the recess C is a distance from the surface of the main body 10 to the bottom of the recess C of the main body 10 or a distance from the surface of the coating film 9 to the bottom of the recess of the coating film 9. The pinhole occurrence rate is a value obtained by dividing the area of the pinhole by the area of the external electrodes 20 and 25 and multiplying by 100. The DC resistance value was determined by OK or NG. The determination criteria for OK and NG are OK within ± 5% with respect to the resistance value of the circuit element 30 itself in the main body 10, and NG is a value exceeding the OK. Table 2 is a table showing experimental results.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 第3のサンプルによれば、エッチング処理が行われないことにより、引き出し導体32a,37aが本体10から露出した部分にカットくずが付着するために、外部電極20,25間の直流抵抗値が大きくなっていること(すなわち、直流抵抗値がNGとなっていること)が分かる。これに対して、第2のサンプルによれば、エッチング処理が行われることにより、外部電極20,25間の直流抵抗値が小さくなっていること(すなわち、直流抵抗値がOKとなっていること)が分かる。 According to the third sample, because the etching process is not performed and the cut scraps adhere to the portions where the lead conductors 32a and 37a are exposed from the main body 10, the DC resistance value between the external electrodes 20 and 25 is large. (That is, the DC resistance value is NG). On the other hand, according to the second sample, the direct current resistance value between the external electrodes 20 and 25 is reduced by performing the etching process (that is, the direct current resistance value is OK). )
 ただし、第2のサンプルと第3のサンプルとを比較すると、エッチング処理が行われた第2のサンプルでは、エッチング処理が行われていない第3のサンプルよりも、本体10の凹凸が大きくなり、ピンホール発生率が大きくなっていることが分かる。すなわち、第2のサンプルでは、直流抵抗値が小さくなる代わりに、外部電極20,25にピンホールが形成されやすくなっている。 However, when comparing the second sample and the third sample, the unevenness of the main body 10 is larger in the second sample subjected to the etching process than in the third sample not subjected to the etching process, It can be seen that the pinhole incidence is increasing. That is, in the second sample, pin holes are easily formed in the external electrodes 20 and 25 instead of decreasing the DC resistance value.
 そこで、第1のサンプルでは、コーティング膜9が形成されている。これにより、本体10の凹凸が小さくなり、ピンホール発生率が低減されていることが分かる。 Therefore, the coating film 9 is formed in the first sample. Thereby, it can be seen that the unevenness of the main body 10 is reduced and the pinhole occurrence rate is reduced.
(他の実施形態)
 本発明に係る電子部品及びその製造方法は実施形態に係る電子部品1及びその製造方法に限定するものではなく、その要旨の範囲内で種々に変更することができる。例えば、電極材料とのイオン化傾向を考慮の上で、絶縁体層に用いられる金属磁性粉として、Ba,Ti,Ca,Zr,Ni,Cu,Zn,Mn,Co,Al等を用いてもよい。また、コーティング膜9を構成する樹脂は、エポキシ系樹脂、ポリイミド系樹脂、シリコーン系樹脂、ポリアミドイミド系樹脂、ポリエーテルエーテルケトン系樹脂、フッ素系樹脂、アクリルシリコーン系樹脂等であってもよい。これら以外にも、コーティング膜9を構成する樹脂として、メチルアクリレート、エチルアクリレート、n-ブチルアクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、2-エチルヘキシルアクリレート、メチルメタクリレート、エチルメタクリレート、n-ブチルメタクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート、グリシジルアクリレート、グリシジルメタクリレート、アクリルアミド、メタクリルアミド、アクリロニトリル、スチレン、エチレン、ブタジエン、塩化ビニル、塩化ビニリデン、ビニルアセテート、アクリル酸、メタクリル酸等から選ばれるモノマー1種ないしそれ以上からなる重合体樹脂等が挙げられる。なお、上記の樹脂中に該樹脂を得るための過硫酸アンモニウム、過硫酸カリウム、t-ブチルハイドロパーオキシドといった重合開始剤が含まれていることは、コーティング膜9の特性に影響しない。
(Other embodiments)
The electronic component and the manufacturing method thereof according to the present invention are not limited to the electronic component 1 and the manufacturing method thereof according to the embodiment, and can be variously changed within the scope of the gist. For example, Ba, Ti, Ca, Zr, Ni, Cu, Zn, Mn, Co, Al, etc. may be used as the metal magnetic powder used in the insulator layer in consideration of the ionization tendency with the electrode material. . The resin constituting the coating film 9 may be an epoxy resin, a polyimide resin, a silicone resin, a polyamideimide resin, a polyether ether ketone resin, a fluorine resin, an acrylic silicone resin, or the like. In addition to these, as the resin constituting the coating film 9, methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, n- From butyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, glycidyl acrylate, glycidyl methacrylate, acrylamide, methacrylamide, acrylonitrile, styrene, ethylene, butadiene, vinyl chloride, vinylidene chloride, vinyl acetate, acrylic acid, methacrylic acid, etc. Examples thereof include polymer resins composed of one or more selected monomers. It should be noted that the presence of a polymerization initiator such as ammonium persulfate, potassium persulfate, or t-butyl hydroperoxide for obtaining the resin in the resin does not affect the properties of the coating film 9.
 また、コーティング膜9の厚みを調節する材料として、界面活性剤エレミノールJS-2(三洋化成社製)に代えて、アニオン系界面活性剤やノニオン系界面活性剤を用いてもよい。具体的には、アニオン系界面活性剤として、アルキルベンゼンスルホネート、アルキルジサルフェート、アルキルジフェニルエーテルジスルホネート、ポリオキシエチレンアルキルフェニルエーテルサルフェート、ポリオキシエチレンアリールエーテルサルフェート、カルボキシレート系界面活性剤、フォスフェート系界面活性剤、ナフタレンスルホン酸ホルマリン縮合物、ポリカルボン酸型界面活性剤等が挙げられる。ノニオン性界面活性剤として、ポリオキシエチレンアルキルエーテル(アルキル基;オクチル、デシル、ラウリル、ステアリル、オレイル等)、ポリオキシエチレンアルキルフェニルエーテル(アルキル基;オクチル、ノニル等)、ポリオキシエチレン・ポリオキシプロピレンブロックコポリマー等が挙げられる。また、スルホン酸基及びその塩、カルボキシル基及びその塩、並びにリン酸基及びその塩等を有する水溶性の樹脂が挙げられる。 Further, as a material for adjusting the thickness of the coating film 9, an anionic surfactant or a nonionic surfactant may be used in place of the surfactant Eleminol JS-2 (manufactured by Sanyo Kasei Co., Ltd.). Specifically, as an anionic surfactant, alkylbenzene sulfonate, alkyl disulfate, alkyl diphenyl ether disulfonate, polyoxyethylene alkylphenyl ether sulfate, polyoxyethylene aryl ether sulfate, carboxylate surfactant, phosphate interface An activator, naphthalenesulfonic acid formalin condensate, polycarboxylic acid type surfactant and the like can be mentioned. Nonionic surfactants include polyoxyethylene alkyl ethers (alkyl groups; octyl, decyl, lauryl, stearyl, oleyl, etc.), polyoxyethylene alkyl phenyl ethers (alkyl groups; octyl, nonyl, etc.), polyoxyethylene polyoxy A propylene block copolymer etc. are mentioned. Moreover, the water-soluble resin which has a sulfonic acid group and its salt, a carboxyl group and its salt, a phosphoric acid group, its salt, etc. is mentioned.
 上記材料に加えて、コーティング膜9を形成するための混合溶液に、耐腐食性を向上させるタンニン、コーティング膜9に柔軟性を付与するジブチルフタレートといった可塑剤、コーティング膜9の成膜性を向上させるフッ化銀などの金属イオン、及びコーティング膜9の表面の傷付き防止及び耐水性を向上させる潤滑剤、例えば、フッ素樹脂系潤滑剤、ポリオレフィン系ワックス、メラミンシアヌレート、二硫化モリブデンを混合溶液に添加してもよい。 In addition to the above materials, the mixed solution for forming the coating film 9 is a tannin that improves corrosion resistance, a plasticizer such as dibutyl phthalate that gives the coating film 9 flexibility, and the film formability of the coating film 9 is improved. A mixed solution of metal ions such as silver fluoride and a lubricant for preventing scratches on the surface of the coating film 9 and improving water resistance, for example, fluororesin lubricant, polyolefin wax, melamine cyanurate, molybdenum disulfide You may add to.
 更に、コーティング膜9を形成するための混合溶液に、コーティング膜9の耐腐食性の向上と電子部品の着色を目的として、カーボンブラックやフタロシアニンブルー等の顔料を添加してもよい。 Furthermore, a pigment such as carbon black or phthalocyanine blue may be added to the mixed solution for forming the coating film 9 for the purpose of improving the corrosion resistance of the coating film 9 and coloring the electronic parts.
 そして、コーティング膜9を形成するための混合溶液に、リンを含有する酸基を有する高分子重合体、例えば、リン酸基、亜リン酸基、ホスホン酸基、ホスフィン酸基等を主鎖、又は側鎖に有する有機高分子化合物を添加することで、耐腐食性、耐薬品性を向上させることができる。 And, in the mixed solution for forming the coating film 9, a polymer having an acid group containing phosphorus, for example, a main chain of a phosphoric acid group, a phosphorous acid group, a phosphonic acid group, a phosphinic acid group, Alternatively, corrosion resistance and chemical resistance can be improved by adding an organic polymer compound having a side chain.
 また、コーティング膜9の強度や熱伝導性、電気伝導性向上等の観点から、ガラス繊維、炭酸カルシウム、アラミド繊維、グラファイト、アルミナ、窒化アルミニウム、窒化ホウ素などのフィラー等を混合溶液に添加してもよい。 Further, from the viewpoint of improving the strength, thermal conductivity, and electrical conductivity of the coating film 9, fillers such as glass fiber, calcium carbonate, aramid fiber, graphite, alumina, aluminum nitride, boron nitride are added to the mixed solution. Also good.
 また、外部電極20,25は、電解めっきにより形成されていたが、その他の方法により形成されてもよい。外部電極20,25の形成方法としては、例えば、Ag等の導電性材料と樹脂とが混合された導電性ペーストを塗布して形成する方法や、スパッタにより形成する方法等が挙げられる。 Further, the external electrodes 20 and 25 are formed by electrolytic plating, but may be formed by other methods. Examples of the method of forming the external electrodes 20 and 25 include a method of applying a conductive paste in which a conductive material such as Ag and a resin are mixed, a method of forming by sputtering, and the like.
 また、コーティング膜9は、化成処理によって形成されるリン酸鉄膜やリン酸亜鉛膜であってもよい。また、コーティング膜9は、ガラスコートであってもよいし、有機膜であってもよい。 Further, the coating film 9 may be an iron phosphate film or a zinc phosphate film formed by a chemical conversion treatment. The coating film 9 may be a glass coat or an organic film.
 なお、回路素子30は、インダクタに限らず、コンデンサ等の他の素子であってもよい。また、外部電極20,25が回路素子30と電気的に接続されているとは、外部電極20,25と回路素子30とが物理的に接触している状態の他に、外部電極20,25と回路素子30とが物理的に接触せずに外部電極20,25と回路素子30との間に信号が伝送される状態も含む。 The circuit element 30 is not limited to an inductor, and may be another element such as a capacitor. The external electrodes 20 and 25 are electrically connected to the circuit element 30 in addition to the state in which the external electrodes 20 and 25 and the circuit element 30 are in physical contact with each other. And a state in which a signal is transmitted between the external electrodes 20 and 25 and the circuit element 30 without physically contacting the circuit element 30.
 また、外部電極20の形状は、図1に示したように5つの面に跨る形状に限らず、例えば、底面S1と右面S2との2つの面に跨る形状であってもよいし、底面S1のみに設けられた平面状であってもよい。外部電極25の形状についても外部電極20の形状と同様である。 Further, the shape of the external electrode 20 is not limited to the shape straddling the five surfaces as shown in FIG. 1, but may be, for example, a shape straddling the two surfaces of the bottom surface S1 and the right surface S2, or the bottom surface S1. It may be a flat surface provided only on the surface. The shape of the external electrode 25 is the same as that of the external electrode 20.
 なお、本体10は、積層体に限らず、例えば、金属磁性粉と樹脂との混合物が固められることにより作製されていてもよい。 In addition, the main body 10 is not limited to the laminate, and may be manufactured by, for example, solidifying a mixture of metal magnetic powder and resin.
 以上のように、本発明は、電子部品及びその製造方法に有用であり、特に、外部電極にピンホールが発生することを抑制できる点で優れている。 As described above, the present invention is useful for an electronic component and a manufacturing method thereof, and is particularly excellent in that the occurrence of pinholes in an external electrode can be suppressed.
1:電子部品
9:コーティング膜
10:本体
11~14:絶縁体層
16:絶縁体基板
18:磁路
20,25:外部電極
30:回路素子
32,37:コイル
32a,37a:引き出し導体
39:ビアホール導体
111,114:樹脂シート
112,113:絶縁体シート
116:マザー絶縁体基板
120:マザー基板
132,137:導体パターン
1: Electronic component 9: Coating film 10: Main body 11-14: Insulator layer 16: Insulator substrate 18: Magnetic path 20, 25: External electrode 30: Circuit element 32, 37: Coil 32a, 37a: Lead conductor 39: Via-hole conductors 111 and 114: Resin sheets 112 and 113: Insulator sheet 116: Mother insulator substrate 120: Mother substrates 132 and 137: Conductor pattern

Claims (11)

  1.  金属磁性粉と絶縁性材料との混合物を材料とする本体と、
     前記本体に設けられている回路素子と、
     前記本体の表面の少なくとも一部を覆うコーティング膜と、
     前記回路素子に電気的に接続され、かつ、前記コーティング膜上に設けられている外部電極と、
     を備えていること、
     を特徴とする電子部品。
    A body made of a mixture of metal magnetic powder and insulating material,
    Circuit elements provided in the body;
    A coating film covering at least a part of the surface of the main body;
    An external electrode electrically connected to the circuit element and provided on the coating film;
    Having
    Electronic parts characterized by
  2.  前記本体に埋まっていた前記金属磁性粉が製造時に脱落することによって、該本体の表面には窪みが形成されていること、
     を特徴とする請求項1に記載の電子部品。
    A depression is formed on the surface of the main body by dropping the metal magnetic powder embedded in the main body during manufacturing,
    The electronic component according to claim 1.
  3.  前記コーティング膜の表面粗さは、前記本体の表面の表面粗さよりも小さいこと、
     を特徴とする請求項1又は請求項2のいずれかに記載の電子部品。
    The surface roughness of the coating film is smaller than the surface roughness of the surface of the main body,
    The electronic component according to claim 1, wherein:
  4.  前記コーティング膜は、前記回路素子が該本体の表面に露出している部分を覆っていないこと、
     を特徴とする請求項1ないし請求項3のいずれかに記載の電子部品。
    The coating film does not cover a portion where the circuit element is exposed on the surface of the body;
    The electronic component according to any one of claims 1 to 3, wherein:
  5.  前記回路素子の材料に含まれる金属は、前記金属磁性粉の材料に含まれる金属よりもイオン化されにくいこと、
     を特徴とする請求項1ないし請求項4のいずれかに記載の電子部品。
    The metal contained in the material of the circuit element is less ionized than the metal contained in the material of the metal magnetic powder;
    The electronic component according to claim 1, wherein:
  6.  前記コーティング膜は、前記金属磁性粉の材料に含まれる金属及び樹脂を含んでいること、
     を特徴とする請求項5に記載の電子部品。
    The coating film includes a metal and a resin included in the material of the metal magnetic powder;
    The electronic component according to claim 5.
  7.  それぞれに回路素子が設けられた複数の本体の集合体であるマザー本体を、金属磁性粉と絶縁性材料との混合物により作製する本体作製工程と、
     マザー本体を前記複数の本体にカットするカット工程と、
     前記本体の表面にコーティング膜を形成する膜形成工程と、
     前記回路素子と電気的に接続される外部電極を、前記コーティング膜上に形成する電極形成工程と、
     を備えていること、
     を特徴とする電子部品の製造方法。
    A main body manufacturing step of manufacturing a mother main body, which is an assembly of a plurality of main bodies each provided with a circuit element, by a mixture of metal magnetic powder and an insulating material;
    A cutting step of cutting the mother body into the plurality of bodies;
    Forming a coating film on the surface of the main body; and
    Forming an external electrode electrically connected to the circuit element on the coating film;
    Having
    A method of manufacturing an electronic component characterized by
  8.  前記回路素子の材料に含まれる金属は、前記金属磁性粉の材料に含まれる金属よりもイオン化されにくく、
     前記膜形成工程では、前記金属磁性粉に含まれる金属をイオン化させるエッチング成分及び樹脂成分を含む溶液に前記本体を浸漬することにより、該金属磁性粉の材料に含まれる金属及び該樹脂成分を含む前記コーティング膜を形成すること、
     を特徴とする請求項7に記載の電子部品の製造方法。
    The metal contained in the circuit element material is less ionized than the metal contained in the metal magnetic powder material,
    In the film forming step, the metal contained in the metal magnetic powder material and the resin component are included by immersing the main body in a solution containing an etching component and a resin component that ionizes the metal contained in the metal magnetic powder. Forming the coating film;
    The manufacturing method of the electronic component of Claim 7 characterized by these.
  9.  前記カット工程の後に、エッチング処理又は研磨処理によりカットくずを除去する除去工程を、
     更に備えていること、
     を特徴とする請求項7又は請求項8のいずれかに記載の電子部品の製造方法。
    After the cutting step, a removal step of removing cut waste by etching treatment or polishing treatment,
    More
    The method of manufacturing an electronic component according to claim 7, wherein:
  10.  前記電極形成工程では、めっきにより前記外部電極を形成すること、
     を特徴とする請求項7ないし請求項9のいずれかに記載の電子部品の製造方法。
    In the electrode forming step, forming the external electrode by plating,
    A method for manufacturing an electronic component according to claim 7, wherein:
  11.  前記電極形成工程では、前記本体の表面において前記外部電極が形成される部分に導電化材料を含む導電化溶液を付与した後に、該外部電極を形成すること、
     を特徴とする請求項10に記載の電子部品の製造方法。
    In the electrode forming step, after applying a conductive solution containing a conductive material to a portion where the external electrode is formed on the surface of the main body, forming the external electrode;
    The method of manufacturing an electronic component according to claim 10.
PCT/JP2015/070908 2014-07-28 2015-07-23 Electronic component and method for producing same WO2016017511A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-152736 2014-07-28
JP2014152736 2014-07-28

Publications (1)

Publication Number Publication Date
WO2016017511A1 true WO2016017511A1 (en) 2016-02-04

Family

ID=55217412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070908 WO2016017511A1 (en) 2014-07-28 2015-07-23 Electronic component and method for producing same

Country Status (1)

Country Link
WO (1) WO2016017511A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018195760A (en) * 2017-05-19 2018-12-06 Tdk株式会社 Electronic component
US11227721B2 (en) 2016-11-24 2022-01-18 Tdk Corporation Electronic component

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008133026A1 (en) * 2007-04-13 2008-11-06 Hitachi Metals, Ltd. Magnetic core for antenna, method for producing magnetic core for antenna, and antenna
JP2014013815A (en) * 2012-07-04 2014-01-23 Tdk Corp Coil component and manufacturing method therefor
WO2014119564A1 (en) * 2013-01-29 2014-08-07 株式会社村田製作所 Ceramic electronic component and manufacturing method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008133026A1 (en) * 2007-04-13 2008-11-06 Hitachi Metals, Ltd. Magnetic core for antenna, method for producing magnetic core for antenna, and antenna
JP2014013815A (en) * 2012-07-04 2014-01-23 Tdk Corp Coil component and manufacturing method therefor
WO2014119564A1 (en) * 2013-01-29 2014-08-07 株式会社村田製作所 Ceramic electronic component and manufacturing method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11227721B2 (en) 2016-11-24 2022-01-18 Tdk Corporation Electronic component
US11894195B2 (en) 2016-11-24 2024-02-06 Tdk Corporation Electronic component
JP2018195760A (en) * 2017-05-19 2018-12-06 Tdk株式会社 Electronic component
JP7106817B2 (en) 2017-05-19 2022-07-27 Tdk株式会社 electronic components

Similar Documents

Publication Publication Date Title
JP6176405B2 (en) Electronic component and manufacturing method thereof
US11817244B2 (en) Method for manufacturing electronic component
US11120934B2 (en) Electronic component and method for manufacturing electronic component
JP6583003B2 (en) Electronic component and manufacturing method thereof
JP6508023B2 (en) Electronic component and method of manufacturing electronic component
KR101871029B1 (en) Copper foil for printed wiring board, method for producing said copper foil, resin substrate for printed wiring board, and printed wiring board
US10959329B2 (en) Circuit board using non-catalytic laminate with catalytic adhesive overlay
US11653453B2 (en) Electroless and electrolytic deposition process for forming traces on a catalytic laminate
CN103443335A (en) Copper foil for printed circuit
TW201640964A (en) Surface-treated copper foil for forming high frequency signal transmission circuit, copper clad laminate board and printed wiring board
CN102265712B (en) Method for forming electronic circuit
WO2016017511A1 (en) Electronic component and method for producing same
CN102714915A (en) Electronic circuit, method for forming same, and copper clad laminate for electronic circuit formation
JP2011139010A5 (en)
KR20120115339A (en) Copper foil for printed circuit board and copper-clad laminate for printed circuit board
KR101088410B1 (en) Surface treatment method for metal pcb substrate for improving heat dissipation
EP3501242A1 (en) Plasma etched catalytic laminate with traces and vias
WO2019208077A1 (en) Printed-wiring board base material and method of manufacturing printed-wiring board base material
JP7325000B2 (en) Surface-treated copper foil, and copper-clad laminate, resin-coated copper foil and circuit board using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15826717

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15826717

Country of ref document: EP

Kind code of ref document: A1