WO2016017452A1 - Method for producing laminated sheet - Google Patents

Method for producing laminated sheet Download PDF

Info

Publication number
WO2016017452A1
WO2016017452A1 PCT/JP2015/070501 JP2015070501W WO2016017452A1 WO 2016017452 A1 WO2016017452 A1 WO 2016017452A1 JP 2015070501 W JP2015070501 W JP 2015070501W WO 2016017452 A1 WO2016017452 A1 WO 2016017452A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastic layer
resin
resin film
layer
curing
Prior art date
Application number
PCT/JP2015/070501
Other languages
French (fr)
Japanese (ja)
Inventor
裕貴 木上
弘宣 玉井
翠 東城
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2016017452A1 publication Critical patent/WO2016017452A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate

Definitions

  • the present invention relates to a method for manufacturing a laminated sheet.
  • This application claims priority based on Japanese Patent Application No. 2014-155503 filed on Jul. 30, 2014, the entire contents of which are incorporated herein by reference.
  • Patent Document 1 discloses a laminated sheet including an elastic layer and a protective film that sandwiches the elastic layer from both sides, as an electronic device inspection contact sheet disposed between the electronic device and the inspection circuit board.
  • Patent Documents 2 to 6 are documents disclosing methods for manufacturing and laminating a laminated sheet having an elastic layer.
  • Patent Document 1 the electronic device inspection contact sheet of Patent Document 1 is manufactured by laminating a protective film on both sides of an elastic layer and then heating, but is already laminated using a cured elastic layer.
  • the interlayer adhesion has a limit.
  • Patent Document 2 can be said to be a similar technique.
  • the solvent is volatilized when the rubber solution sandwiched between two supports is dried.
  • Patent Document 4 employs a technique in which a laminate in which an uncrosslinked product is sandwiched between two films is wound into a roll, and then the uncrosslinked product is crosslinked. It is not stable until it is made, and the unevenness of interlayer adhesion and thickness accuracy is large.
  • Patent Document 5 discloses a method in which a primer layer is interposed between a resin film and an elastic layer. This method is basically a method applied to one side of an elastic layer.
  • Patent Document 6 an ultraviolet curable pressure-sensitive adhesive is provided between a substrate or the like and the release film by irradiating ultraviolet rays with the ultraviolet curable pressure-sensitive adhesive composition sandwiched between the base material or the release film and the release film.
  • a laminated body provided with a layer (elastic layer) is produced.
  • the present invention was created in view of the above circumstances, and an object of the present invention is to provide a method for producing a laminated sheet with improved performance quality such as interlayer adhesion, which is excellent in productivity.
  • a method for producing a laminated sheet comprising a first resin layer, a second resin layer, and an elastic layer disposed between the first resin layer and the second resin layer.
  • This method includes a laminating step of forming a laminate in which an elastic layer forming composition is disposed between a first resin film to be the first resin layer and a second resin film to be the second resin layer; Followed by a curing step of curing the elastic layer forming composition to form an elastic layer after the laminating step.
  • the composition for forming an elastic layer before curing has fluidity in the lamination process environment and is non-volatile in the curing process environment.
  • the elastic layer forming composition is non-volatile, problems caused by vaporization of volatile components in the production process (for example, a decrease in interlayer adhesion and a decrease in the appearance of the laminated sheet) are prevented or suppressed.
  • the said manufacturing method is also a method excellent in productivity applicable to continuous production, such as a roll-to-roll system. Therefore, according to the manufacturing method disclosed herein, the performance quality of the laminated sheet can be improved by a method with excellent productivity.
  • the curing step is a heating step.
  • volatile components in the composition are vaporized during heating, which may deteriorate the interlaminar adhesion or deteriorate the appearance, but the elastic layer forming composition disclosed herein is non-volatile, so such a problem The occurrence of is prevented or suppressed. Therefore, in the embodiment in which the elastic layer forming composition is cured by heating, the effects of the technique disclosed herein are preferably exhibited.
  • the heating step includes: a preheating step of heating the elastic layer forming composition at a temperature T P ° C; and the elastic layer forming composition; And a main heating step of heating at a temperature T M ° C. (where T P ⁇ T M is satisfied).
  • the laminating step includes: supplying the first resin film to a first roll; and arranging the second resin film so as to face the first roll. And supplying the elastic layer forming composition between the first resin film supplied to the first roll and the second resin film supplied to the second roll. Including.
  • the laminated structure provided with a 1st resin film, an elastic layer, and a 2nd resin film is implement
  • the thickness of the elastic layer can be adjusted with high accuracy by setting the interval between the two rolls.
  • the laminated body 5 in which the elastic layer forming composition 15 is disposed is formed (lamination process).
  • the first resin film 31 and the second resin film 32 are prepared in advance, for example, in a roll state, and set in the laminated sheet manufacturing apparatus 100. And in the lamination sheet manufacturing apparatus 100 provided with the 1st roll 51 and the 2nd roll 52 which are arrange
  • the elastic layer forming composition 15 is supplied between the first resin film 31 supplied to the first roll 51 and the second resin film 32 supplied to the second roll 52 (specifically, throw into. At this time, the elastic layer forming composition 15 can be in close contact with the first resin film 31 and the second resin film 32 by setting the arrangement (interval) between the first roll 51 and the second roll 52. Further, after curing, the elastic layer 10 can have a high thickness accuracy. In this way, the laminate 5 in which the elastic layer forming composition 15 is disposed between the first resin film 31 and the second resin film 32 is obtained.
  • the supply amount (typically, the input amount) of the elastic layer forming composition 15 is not particularly limited, and may be set according to the thickness of the elastic layer and the like.
  • the supply (typically, charging) timing of the elastic layer forming composition 15 is not particularly limited as long as it is before lamination.
  • the desired distance is obtained using the arrangement interval between the first resin film 31 and the second resin film 32. It is also possible to adjust.
  • the 1st roll 51 and the 2nd roll 52 are both non-heating rolls, you may use a heating roll from viewpoints, such as the external appearance of a lamination sheet.
  • the method for supplying the elastic layer forming composition 15 between the first resin film 31 and the second resin film 32 (which may be a charging method) is not particularly limited, and is a comma coater, a die coater, or a roll. A known coater such as a coater or a bar coater may be used.
  • the elastic layer forming composition 15 is subsequently cured to form the elastic layer 10 (curing step).
  • “continue” means that it does not include an operation of winding the laminate 5 on a roll after the lamination step and before the curing step.
  • the time from the end of the lamination process to the start of the curing process is generally within 30 minutes (for example, within 10 minutes, typically within 5 minutes). It is appropriate to do.
  • the conveyance speed of the laminated body 5 is set to an appropriate range in consideration of the lamination process, the curing process, and the like.
  • a conveyance speed can be adjusted according to the hardening conditions (for example, hardening temperature and time) of the composition 15 for elastic layer formation, the size (length) of a heater, etc.
  • the laminated body 5 in which the first resin film 31, the elastic layer forming composition 15 and the second resin film 32 are laminated in this order is specifically unidirectional by the first roll 51 and the second roll 52.
  • the curing means 70 To reach the curing means 70.
  • the elastic layer forming composition 15 is cured while being sandwiched between the first resin film 31 and the second resin film 32 to become the elastic layer 10.
  • the curing process is a heating process, and a heater 71 is used as the curing means 70. Therefore, the elastic layer forming composition 15 is a thermosetting composition. Since the elastic layer forming composition 15 has fluidity at the start of the curing step, the elastic layer forming composition 15 is cured in close contact with the first resin film 31 and the second resin film 32.
  • the formed elastic layer 10 is firmly adhered to the first resin layer 21 and the second resin layer 22.
  • the conditions for the curing step are set based on the composition of the elastic body forming composition 15, the transport speed of the laminate 5, and the like.
  • the curing means 70 can be an infrared irradiator, an ultraviolet (UV) irradiator, a high humidity environment, or the like, depending on the curing mode of the elastic layer forming composition 15.
  • the time t of the heating step can be set to be longer than the 90% curing time of the elastic layer forming composition 15 at the temperature T (° C.) of the heating step.
  • the temperature T (° C.) of the heating process is such that the 90% curing time of the elastic layer forming composition 15 is 5 minutes (more preferably 3 minutes, typically 1). It is preferable that it is higher than the temperature (cure temperature) T x (° C.).
  • the heating temperature T (° C.) in the heating step is preferably 100 ° C. or higher (eg, 120 ° C. to 300 ° C., typically 140 ° C. to 200 ° C.).
  • the time t of the heating step is preferably about 10 seconds to 10 minutes (eg, 30 seconds to 5 minutes, typically 1 minute to 3 minutes) from the viewpoint of productivity and the like.
  • the 90% curing time and cure temperature can be measured using a commercially available curast meter.
  • the 90% curing time is the time required to reach 90% of the torque value (typically the maximum torque value) when there is no torque change in the measurement with a curast meter.
  • the time of a heating process is the time from the start of a heating process to completion
  • the temperature of the heating step for convenience, the temperature of the laminate surface or the atmospheric temperature (for example, the temperature in the dryer) in which the heating step is performed may be employed.
  • a plurality of heaters 71 are installed as the curing means 70 along the feeding direction of the laminate 5 (the direction indicated by the arrow in FIG. 1).
  • the heater 71 is disposed below and above the stacked body 5. By disposing the curing means 70 above and below the laminate 5, uniform curing of the elastic layer 10 is realized.
  • the heater 71 is not particularly limited, and a heater such as a known hot air dryer may be used. There is no restriction
  • the plurality of heaters 71 may be housed in one chamber.
  • the hardening of the composition for elastic layer formation is not heat hardening but other hardening forms, such as UV hardening, it is preferable to perform a heating process before a hardening process from a viewpoint of a lamination sheet external appearance.
  • the heating conditions in that case, the above-mentioned heating process conditions can be preferably applied.
  • a laminated sheet comprising the first resin layer 21, the second resin layer 22, and the elastic layer 10 disposed between the first resin layer 21 and the second resin layer 22 through the above-described lamination process and curing process. 1 is obtained.
  • This laminated sheet 1 is excellent in adhesion between the respective layers, and is manufactured by a method excellent in productivity as described above.
  • the laminated sheet 1 produced through the curing step may be wound around a roll 80 (recovery step) or may be cut into a desired size as it is. Moreover, as described in Patent Document 1, as necessary, the laminated sheet 1 may be subjected to any processing step such as forming a through hole.
  • the composition for forming an elastic layer before lamination has fluidity in a lamination process environment.
  • the lamination process environment is not particularly limited, but is usually an atmospheric environment of approximately 5 ° C. to 40 ° C. (for example, 20 ° C. to 30 ° C.), and in such an environment, the elastic layer forming composition exhibits fluidity. Can have.
  • the elastic layer forming composition is a liquid composition having fluidity in a normal temperature (25 ° C.) and normal pressure environment. Liquid forms include syrup, slurry, and paste.
  • the elastic layer forming composition has a viscosity in the above-described environment, and typically has a viscosity of a predetermined level or more.
  • the viscosity of the composition for forming an elastic layer can usually be set to about 0.1 Pa ⁇ s or more from the viewpoints of coating properties, lamination properties, and the like.
  • the viscosity is preferably about 1 Pa ⁇ s or more (for example, 10 Pa ⁇ s or more, typically 30 Pa ⁇ s or more).
  • the upper limit of the viscosity is suitably about 500 Pa ⁇ s or less (for example, 300 Pa ⁇ s or less, typically 100 Pa ⁇ s or less) from the viewpoint of coating properties and the like.
  • the viscosity is a viscosity at 30 ° C., and after heating the elastic layer forming composition in a warm bath at 30 ° C. for 1 hour, at the same temperature, using a commercially available B-type viscometer, the viscosity of the object to be measured is adjusted. Measurements can be made using a suitable rotor and rotational speed.
  • the elastic layer forming composition is non-volatile in the curing process environment.
  • the non-volatile composition means that the proportion of volatile components (typically solvents) that vaporize in the curing process environment is less than 10% by weight (eg less than 3% by weight, typically less than 1% by weight). ).
  • the proportion of the volatile component that vaporizes in the curing process environment is preferably less than 0.1% by weight (for example, less than 0.01% by weight), and may be substantially free of the volatile component. More preferred.
  • the elastic layer forming composition is a solvent-free composition substantially free of a solvent. In this case, the elastic layer forming composition is substantially composed of only a non-volatile component.
  • the curing process environment is not particularly limited, but may be a substantially atmospheric pressure environment of approximately 60 ° C. or higher (eg, 100 ° C. to 300 ° C., typically 120 ° C. to 200 ° C.). In such an environment, the elastic layer forming composition may be non-volatile.
  • the above-mentioned composition for forming an elastic layer is a curable composition that is cured by a curing treatment to become an elastic layer.
  • the elastic layer forming composition is a thermosetting composition, but is not limited thereto. Curing may be, for example, active energy ray curing (UV curing, gamma ray curing, electron beam curing, etc.), moisture curing, etc., and can typically be done by a crosslinking reaction.
  • the elastic layer forming composition is preferably a thermosetting type or a photocurable type, and particularly preferably a thermosetting type. Further, the composition may be a one-component type or a two-component type.
  • the elastic layer forming composition is typically a curable resin composition as a main component (a component that is contained most in the composition, preferably a component that is contained in excess of 50% by weight; the same shall apply hereinafter).
  • an uncrosslinked product (uncrosslinked composition) containing at least a polymer and a crosslinking agent capable of undergoing a crosslinking reaction with the polymer.
  • the uncrosslinked product includes not only those in which the crosslinking reaction has not substantially started, but also partially crosslinked products that have been partially crosslinked.
  • the polymer and the crosslinking agent are not particularly limited, and may be appropriately selected from known ones according to characteristics required for the elastic layer after curing.
  • the crosslinking agent is a thermal crosslinking agent when the elastic layer forming composition is a thermosetting composition.
  • the composition for elastic layer formation is an active energy ray hardening type
  • inclusion of a crosslinking agent is not essential.
  • the composition for forming an elastic layer may be a partially reacted product (partially polymerized product).
  • the elastic layer forming composition may be a tackifier, a leveling agent, a crosslinking aid (catalyst), a plasticizer, a softener, a filler, a colorant (pigment, dye, etc.), a dispersant, a flame retardant.
  • various additives common in this field such as processing aids, antistatic agents, anti-aging agents, ultraviolet absorbers, antioxidants, and light stabilizers may be contained.
  • the elastic layer forming composition may be used as the elastic layer forming composition.
  • a polymer capable of exhibiting desired characteristics is synthesized, a crosslinking agent capable of crosslinking reaction with the polymer is prepared, and if necessary, an additive is prepared, and a mixture thereof can be used. it can.
  • a defoaming treatment preferably defoaming treatment under reduced pressure, also referred to as vacuum defoaming
  • a known defoaming device preferably a vacuum defoaming device.
  • An elastic layer forming composition may be used.
  • the defoaming treatment is typically effective for a mixture of two-component compositions in which air is likely to be mixed, and can exhibit remarkable air removability when the mixed material has a high viscosity.
  • the elastic layer forming composition may be preliminarily cured before being supplied to the laminating step for the purpose of making the viscosity suitable.
  • An elastic layer (an elastic layer after the curing step; the same applies hereinafter) is a cured layer obtained by curing the composition for forming an elastic layer as described above, and is a layer having elasticity at room temperature.
  • the elastic layer includes a viscoelastic layer.
  • the elastic modulus (storage elastic modulus) of the elastic layer is usually 0.1 ⁇ 10 5 Pa to 200 ⁇ 10 5 Pa (eg, 0.5 ⁇ 10 5 Pa to 100 ⁇ 10 5 Pa, typically 1 ⁇ 10 5 Pa to 50 ⁇ 10 5 Pa).
  • the elastic layer has mechanical properties different from those of the first resin layer and the second resin layer (hereinafter sometimes collectively referred to as “resin layer”).
  • the elastic layer can have, for example, an elastic modulus lower than that of the resin layer (typically about 1/100 or less of the elastic modulus of the resin layer).
  • the storage elastic modulus is a storage elastic modulus measured at a frequency of 1 Hz and a temperature of 23 ° C., for example, a general viscoelasticity measuring device (for example, dynamic viscoelastic spectrum measurement manufactured by Rheometric Scientific, Inc.). And a model “ARES”), a sample having a thickness of 2 mm is set on a parallel plate having a diameter of 8 mm, and measurement is performed at the above frequency. What is necessary is just to set a measurement temperature range and a temperature increase rate suitably according to the model etc. of a viscoelasticity measuring apparatus.
  • the elastic layer may be sticky or non-sticky.
  • the elastic layer surface is measured by a measurement value based on a 180 ° peel test specified in JIS Z 0237: 2000.
  • the value is less than 0 N / 20 mm (for example, less than 0.1 N / 20 mm, typically less than 0.01 N / 20 mm), it can be evaluated as non-tacky.
  • the thickness of the elastic layer is usually about 10 ⁇ m to 1000 ⁇ m. From the viewpoints of curing efficiency in the curing process, function expression of the elastic layer, thickness accuracy, and the like, the thickness of the elastic layer is preferably about 20 ⁇ m to 500 ⁇ m (for example, 30 ⁇ m to 300 ⁇ m, typically 50 ⁇ m to 200 ⁇ m).
  • the first resin film and the second resin film are films mainly composed of a resin, typically a non-porous film, This is a concept that is distinguished from so-called non-woven fabrics and woven fabrics.
  • the resin film has a predetermined rigidity (strength), and is excellent in workability and handleability, so that it can be a suitable material that is unlikely to break down in continuous production such as a roll-to-roll method. . Moreover, it is excellent also in the supportability of the composition for elastic layer formation.
  • a filler inorganic filler, organic filler, etc.
  • an anti-aging agent an antioxidant, an ultraviolet absorber, an antistatic agent, a lubricant, a plasticizer, a colorant (pigment, Various additives such as dyes) may be blended.
  • the first resin film and the second resin film are not particularly limited, but can usually have a tensile strength of about 10 MPa to 1000 MPa. From the viewpoint of handleability, productivity, etc., it is preferable to select and use a resin film having a tensile strength of about 100 MPa to 800 MPa (for example, 200 MPa to 600 MPa). The tensile strength is measured according to JIS K 7127: 1999. In addition, the tensile strength of the 1st resin film and the 2nd resin film may be the same, and may differ.
  • the density of the first resin film and the second resin film is 0.80 g / cm 3 to 2.0 g / cm 3 (for example, 1.00 g / cm 3 to 1.60 g / cm 3 , typically 1.20 g / cm 3 ). cm 3 to 1.50 g / cm 3 ).
  • a resin film having a predetermined density in this manner, the composition for forming an elastic layer can be satisfactorily laminated. In such an embodiment, a configuration excellent in interlayer adhesion with the elastic layer is preferable. Realized.
  • the density is measured according to ASTM D 1505.
  • the density of the 1st resin film and the 2nd resin film may be the same, and may differ.
  • the first resin film and the second resin film may have low light transmittance (for example, ultraviolet transmittance) and / or moisture permeability.
  • a thermosetting type is preferably employed as the elastic layer forming composition, and a heating step can be preferably employed as the curing step.
  • the resin film may have an average light transmittance at a wavelength of 400 nm or less (for example, a wavelength range of 200 nm to 400 nm), for example, 50% or less (for example, 20% or less, typically 10% or less).
  • the light transmittance can be measured using a known spectrophotometer (for example, model “U-4100” manufactured by Hitachi High-Technologies Corporation).
  • the said light transmittance of a 1st resin film and a 2nd resin film may be the same, and may differ.
  • the thicknesses of the first resin film and the second resin film can be appropriately selected according to the purpose, but generally those having a thickness of about 2 ⁇ m to 500 ⁇ m (for example, 10 ⁇ m to 200 ⁇ m) can be preferably used. Increasing the thickness tends to improve productivity, and limiting the upper limit of the thickness increases the efficiency of curing the elastic layer. In addition, the thickness of the 1st resin film and the 2nd resin film may be the same, and may differ.
  • a primer layer is formed on the elastic layer forming surfaces of the first resin film and the second resin film before the lamination step.
  • a surface treatment for improving adhesion is not limited to the formation of the primer layer, and may be a surface treatment such as corona discharge treatment or plasma treatment.
  • the primer layer forming material an appropriate material may be selected based on the technical common knowledge of those skilled in the art in consideration of the elastic layer material and the resin film material.
  • the formation of the primer layer preferably includes a drying step, and the lamination step is preferably performed using the resin film with the primer layer after the drying step.
  • the thickness of the primer layer is usually less than 10 ⁇ m (for example, less than 3 ⁇ m).
  • an additional layer may be further laminated on the surface opposite to the elastic layer forming surface.
  • the additional layer is not particularly limited, and a material having a desirable thickness and thickness may be appropriately selected according to the purpose.
  • a metal layer such as a copper foil described in Patent Document 1 may be laminated, or a protective layer for protecting the resin film surface may be laminated.
  • These additional layers may be provided on at least a part of the resin film surface (surface opposite to the elastic layer forming surface) (for example, so as to cover the entire surface).
  • the additional layer may be laminated on the resin film before lamination of the resin film and the elastic layer forming composition or after the lamination (typically after the curing step).
  • the first resin film and the second resin film become the first resin layer and the second resin layer, respectively, in the cured laminated sheet. Therefore, the first resin layer and the second resin layer can also be formed from the same material as the first resin film and the second resin film and have the same tensile strength, density, and thickness when viewed as a single body. .
  • the first resin layer and the second resin layer have higher mechanical strength (for example, the above-described tensile strength and elastic modulus) than the elastic layer, and thermal expansion. The coefficient is small.
  • the first resin layer and the second resin layer those having the same structure are preferably used from the viewpoint of the stability of the laminated sheet (for example, anti-curl property).
  • the first resin layer and the second resin layer are made of the same material, and have the same thickness and the same mechanical strength.
  • first resin layer and the second resin layer is typically non-peelable with respect to the elastic layer.
  • the two layers are non-peelable, in the usage mode of the laminated sheet, the two layers are used without being separated. Or at least it is used on the premise of not separating.
  • the laminated sheet can be used in such a manner that it is evaluated as a failure when peeling occurs between the two layers. Therefore, the first resin layer and the elastic layer, and the second resin layer and the elastic layer each have a predetermined delamination strength.
  • the delamination strength between the first resin layer or the second resin layer and the elastic layer both exceeds approximately 1 N / 20 mm (for example, greater than 5 N / 20 mm, typically greater than 10 N / 20 mm), or delamination. If not, the first resin layer or the second resin layer can be determined to be non-peelable with respect to the elastic layer.
  • the delamination strength a strip-shaped test piece having a width of 20 mm is prepared, and using a tensile tester, the first resin layer or the second resin layer is formed from the elastic layer at a measurement temperature of 23 ° C. and a tensile speed of 50 mm / min.
  • the elastic layer and the first resin layer are partly forcibly peeled off, and the first resin layer and the remaining layers (elastic layer and second resin layer) of the partly peeled test piece are removed.
  • Each may be carried out by gripping with a chuck of a tensile tester.
  • the non-peelability evaluation of the second resin layer can also be performed in the same manner as described above.
  • the tensile tester a known one (for example, “Autograph” manufactured by Shimadzu Corporation) may be used. The same method as described above is adopted for the embodiments described later.
  • the material of the elastic layer (typically a cured resin layer), the first resin layer, and the second resin layer is not limited to this, for example, an acrylic resin layer, a rubber polymer layer , Polyester layer, urethane resin layer, polyether layer, polyamide layer, fluorine resin layer, epoxy resin layer, vinyl chloride resin layer, polyphenylene sulfide resin layer, polycarbonate resin layer, phenol resin layer, polyolefin layer , Styrene resin layer, polyvinyl acetate layer, ethylene-vinyl acetate resin layer, vinyl alcohol resin layer, melamine resin layer, urea resin layer, resorcinol resin layer It may be selected from the layer of resin (the layer containing a resin component as the main component). When the curing step is a heating step, it is preferable to select
  • the heating process in the second embodiment includes a preheating process in which the elastic layer forming composition is heated to a temperature T P ° C, and a main heating in which the elastic layer forming composition is heated to a temperature T M ° C. And a process.
  • the preheating step and the main heating step are performed in the above order. Here, it is preferable to satisfy T P ⁇ T M. Further, when the time of the preheating step is t P and the time of the main heating step is t M , t P ⁇ t M (more preferably t P > t M , for example, t P ⁇ 2t M ) is satisfied. preferable.
  • the elastic layer forming composition is reduced in viscosity before being cured, and air and trace volatile components that can be contained in the composition are removed from the composition from the laminated sheet. Easier to escape. As a result, deterioration of interlayer adhesion and deterioration of the laminated sheet appearance are prevented.
  • the temperature T P and the time t P in the preheating step may be set based on the curing temperature, the curing time, etc. of the elastic layer forming composition.
  • the time t P of the preheating step can be set to be smaller than the 90% curing time of the elastic layer forming composition at the temperature T P (° C.).
  • the temperature T P (° C.) of the preheating step is such that the 90% curing time of the elastic layer forming composition is 2 minutes (more preferably 3 minutes, typically 5 minutes). It is preferable that the temperature (cure temperature) T X1 (° C.) is lower.
  • the heating temperature T P (° C.) in the preheating step is preferably less than 140 ° C. (for example, 130 ° C. or less, typically 60 ° C. to 90 ° C.).
  • the time t P of the preheating step is preferably about 30 seconds to 5 minutes (for example, 1 minute to 3 minutes) from the viewpoint of productivity.
  • the temperature T P (° C.) and the time t P are the main thermosetting elastic layer forming compositions that are widely used (for example, a temperature of 100 ° C. to 150 ° C. and a heating time of about 1 to 3 minutes cures 90%. Therefore, the range of application is wide.
  • the temperatures T M and t M of the main heating step may be set based on the curing temperature, the curing time, etc. of the elastic layer forming composition as in the case of the heating step.
  • the time t M of the main heating step can be set to be longer than the 90% curing time of the elastic layer forming composition at the temperature T M (° C.) of the main heating step.
  • the temperature T M (° C.) of the main heating step is the same as the 90% curing time of the elastic layer forming composition is 5 minutes (more preferably 3 minutes, typically It is preferably higher than the temperature (curing temperature) T X2 (° C.) at which it is 1 minute).
  • the heating temperature T M (° C.) in the main heating step is preferably 100 ° C. or higher (eg, 120 ° C. to 300 ° C., typically 140 ° C. to 200 ° C.).
  • Time t M of the heating step, from the viewpoint of productivity, is preferably 30 seconds to 5 minutes (e.g. 1 to 3 minutes) degree.
  • the temperature T M (° C.) and the time t M are generally suitable for the above-mentioned main thermosetting elastic layer forming compositions.
  • the preheating step and the main heating step can be preferably performed by a configuration in which a plurality of heaters are installed along the feeding direction of the laminate.
  • the conditions (temperature, time) of the preheating step and the main heating step can be set within a desired range by arranging a plurality of heaters and setting the individual temperatures thereof.
  • a laminated sheet sample (1) was produced by the method described in the first embodiment. Specifically, the laminated sheet sample (1) supplies the first resin film 31 to the first roll 51 and the second resin film 32 to the second roll 52 using the laminated sheet manufacturing apparatus 100 shown in FIG. Between the first resin film 31 passing over the first roll 51 and the second resin film 32 passing over the second roll 52 using a coater, the elastic layer forming composition 15 (thermosetting elasticity The first resin film 31, the elastic layer forming composition 15, and the second resin film 32 were laminated in this order (lamination step). After the laminating step, the laminated body 5 containing the elastic layer forming composition 15 is conveyed to a heater 71, and predetermined heating is performed by the heater 71 to cure the elastic layer forming composition 15. Thus, the elastic layer 10 was formed (curing step). In this way, a laminated sheet sample (1) having the same configuration as that of the first embodiment was produced.
  • a laminated sheet sample (2) prepared by a conventional method was prepared.
  • an elastic film to be an elastic layer is formed as a single unit using the elastic layer forming composition used in the sample (1), and then a first resin film, an elastic film, and a second resin are formed.
  • the film was produced by laminating in this order and then heating.
  • the material and thickness of each layer of the sample (2) are the same as those of the sample (1).
  • the interlaminar adhesion between the first resin layer and the elastic layer, and the second resin layer and the elastic layer was evaluated by measuring the delamination strength by T-type delamination.
  • the target delamination strength is achieved and the resin layer and the elastic layer are firmly adhered, it is evaluated as “ ⁇ ”, and the delamination strength does not reach the target value, and it is relatively easily peeled off.
  • it was was evaluated as “ ⁇ ”.
  • Table 1 The results are shown in Table 1.
  • samples (1), (3) and (4) all had a level of appearance with no practical problem. Samples (3) and (4) were further reduced in bubble generation than sample (1) and had a better appearance. In particular, Sample (4) had a particularly excellent appearance with no generation of bubbles.

Abstract

Provided is a highly productive method for producing a laminated sheet in which performance qualities such as interlayer adhesion are improved. The present invention provides a method for producing a laminated sheet provided with a first resin layer, a second resin layer, and an elastic layer that is arranged between the first resin layer and the second resin layer. The method comprises: a laminating step for forming a laminate in which an elastic layer-forming composition is arranged between a first resin film that serves as the first resin layer and a second resin film that serves as the second resin layer; and a curing step in which, continuing from the lamination step, the elastic layer-forming composition is cured to form the elastic layer. In addition, the curing step is preferably a heating step. The elastic layer-forming composition has fluidity in the laminating step environment prior to the curing thereof and is non-volatile in the curing step environment.

Description

積層シートの製造方法Method for producing laminated sheet
 本発明は、積層シートの製造方法に関する。本出願は、2014年7月30日に出願された日本国特許出願2014-155503号に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。 The present invention relates to a method for manufacturing a laminated sheet. This application claims priority based on Japanese Patent Application No. 2014-155503 filed on Jul. 30, 2014, the entire contents of which are incorporated herein by reference.
 弾性層を有する積層シートは、自動車や建築、電子機器、医療等の分野において、封止材や衝撃吸収材、機能性材料等として広く利用されている。例えば特許文献1には、電子機器と検査用回路基板との間に配設される電子機器検査用コンタクトシートとして、弾性層と該弾性層を両面から挟む保護膜とを備える積層シートが開示されている。特許文献2~6は、弾性層を有する積層シートの製造方法や積層方法を開示する文献である。 A laminated sheet having an elastic layer is widely used as a sealing material, an impact absorbing material, a functional material, and the like in the fields of automobiles, architecture, electronic equipment, medicine, and the like. For example, Patent Document 1 discloses a laminated sheet including an elastic layer and a protective film that sandwiches the elastic layer from both sides, as an electronic device inspection contact sheet disposed between the electronic device and the inspection circuit board. ing. Patent Documents 2 to 6 are documents disclosing methods for manufacturing and laminating a laminated sheet having an elastic layer.
日本国特許出願公開2004-101410号公報Japanese Patent Application Publication No. 2004-101410 日本国特許出願公開平10-264344号公報Japanese Patent Application Publication No. 10-264344 日本国特許出願公開2004-269786号公報Japanese Patent Application Publication No. 2004-269786 日本国特許出願公開平7-138381号公報Japanese Patent Application Publication No. 7-138381 日本国特許出願公開平8-143834号公報Japanese Patent Application Publication No. 8-143834 日本国特許出願公開2008-88408号公報Japanese Patent Application Publication No. 2008-88408
 上記のように、2つの樹脂層の間に弾性層を配置した積層シートは種々提案されているが、より高性能、高品質なものが求められている。典型的には、積層シートを構成する層同士の密着性(層間密着性)や外観、厚み精度等が向上した積層シートが要望されている。例えば、特許文献1の電子機器検査用コンタクトシートは、弾性層の両面に保護膜を積層してから加熱することによって作製されているが、すでに硬化した弾性層を用いて積層を行っているため、その層間密着性には限度がある。その意味では特許文献2も同種の技術といえる。特許文献3の方法では、2枚の支持体に挟まれたゴム溶液は乾燥時に溶剤が揮発する。この揮発成分は層間に留まるため、得られた弾性層と支持体との層間密着性はそれほど高くならない。乾燥時における溶剤の揮発は積層シートの外観に悪影響を及ぼすという問題もある。特許文献4では、未架橋物を2枚のフィルムで挟んだ積層体をロール状に巻いた後、該未架橋物を架橋するという手法を採用しているため、ロール状態の未架橋物は架橋されるまで安定せず、層間密着性や厚み精度のムラが大きい。特許文献5は、樹脂フィルムと弾性層との間にプライマー層を介在させる方法を開示しているが、この方法は、基本的に弾性層の片面に適用する手法である。なお特許文献6では、基材または剥離フィルムと剥離フィルムとの間に紫外線硬化型粘着剤組成物を挟んで、紫外線を照射することにより、基材等と剥離フィルムとの間に紫外線硬化粘着剤層(弾性層)を設けた積層体を作製している。このように、積層シートの高性能化、高品質化において、製法による制限は依然として大きい。従来技術と比べて層間密着性等の性能品質が向上した積層シートを、生産性に優れた方法で提供することができれば有益である。 As described above, various types of laminated sheets in which an elastic layer is disposed between two resin layers have been proposed, but higher performance and higher quality are required. Typically, there is a demand for a laminated sheet having improved adhesion (interlayer adhesion) between layers constituting the laminated sheet, appearance, thickness accuracy, and the like. For example, the electronic device inspection contact sheet of Patent Document 1 is manufactured by laminating a protective film on both sides of an elastic layer and then heating, but is already laminated using a cured elastic layer. The interlayer adhesion has a limit. In that sense, Patent Document 2 can be said to be a similar technique. In the method of Patent Document 3, the solvent is volatilized when the rubber solution sandwiched between two supports is dried. Since this volatile component remains between the layers, interlayer adhesion between the obtained elastic layer and the support is not so high. There is also a problem that the volatilization of the solvent during drying adversely affects the appearance of the laminated sheet. Patent Document 4 employs a technique in which a laminate in which an uncrosslinked product is sandwiched between two films is wound into a roll, and then the uncrosslinked product is crosslinked. It is not stable until it is made, and the unevenness of interlayer adhesion and thickness accuracy is large. Patent Document 5 discloses a method in which a primer layer is interposed between a resin film and an elastic layer. This method is basically a method applied to one side of an elastic layer. In Patent Document 6, an ultraviolet curable pressure-sensitive adhesive is provided between a substrate or the like and the release film by irradiating ultraviolet rays with the ultraviolet curable pressure-sensitive adhesive composition sandwiched between the base material or the release film and the release film. A laminated body provided with a layer (elastic layer) is produced. Thus, in the performance enhancement and quality improvement of a laminated sheet, the restrictions by a manufacturing method are still large. It would be beneficial if a laminated sheet with improved performance qualities such as interlayer adhesion compared to the prior art can be provided by a method with excellent productivity.
 本発明は、上記の事情に鑑みて創出されたものであり、層間密着性等の性能品質が改善された積層シートの、生産性に優れた製造方法を提供することを目的とする。 The present invention was created in view of the above circumstances, and an object of the present invention is to provide a method for producing a laminated sheet with improved performance quality such as interlayer adhesion, which is excellent in productivity.
 本発明によると、第一樹脂層と、第二樹脂層と、該第一樹脂層および該第二樹脂層の間に配置された弾性層と、を備える積層シートを製造する方法が提供される。この方法は、前記第一樹脂層となる第一樹脂フィルムと前記第二樹脂層となる第二樹脂フィルムとの間に弾性層形成用組成物が配置された積層体を形成する積層工程と;前記積層工程の後、続けて、該弾性層形成用組成物を硬化させて弾性層を形成する硬化工程と;を含む。前記硬化前の弾性層形成用組成物は、前記積層工程環境において流動性を有し、かつ前記硬化工程環境において不揮発性である。
 上記のように、弾性層形成用組成物が流動性を有する状態で2枚の樹脂フィルムの間に該弾性層形成用組成物が配置された積層体を形成し、続けて硬化させることで、層間密着性に優れた積層シートを効率よく製造することができる。弾性層形成用組成物は不揮発性であるので、揮発成分が製造工程で気化することによる不具合(例えば層間密着性の低下、積層シート外観の低下)は防止または抑制される。また、上記製造方法は、ロール・ツー・ロール方式等の連続的生産に適用可能な生産性に優れた方法でもある。したがって、ここに開示される製造方法によると、生産性に優れた方法で積層シートの性能品質の改善を実現することができる。
According to the present invention, there is provided a method for producing a laminated sheet comprising a first resin layer, a second resin layer, and an elastic layer disposed between the first resin layer and the second resin layer. . This method includes a laminating step of forming a laminate in which an elastic layer forming composition is disposed between a first resin film to be the first resin layer and a second resin film to be the second resin layer; Followed by a curing step of curing the elastic layer forming composition to form an elastic layer after the laminating step. The composition for forming an elastic layer before curing has fluidity in the lamination process environment and is non-volatile in the curing process environment.
As described above, by forming a laminate in which the elastic layer forming composition is disposed between two resin films in a state where the elastic layer forming composition has fluidity, and subsequently curing, A laminated sheet excellent in interlayer adhesion can be produced efficiently. Since the elastic layer forming composition is non-volatile, problems caused by vaporization of volatile components in the production process (for example, a decrease in interlayer adhesion and a decrease in the appearance of the laminated sheet) are prevented or suppressed. Moreover, the said manufacturing method is also a method excellent in productivity applicable to continuous production, such as a roll-to-roll system. Therefore, according to the manufacturing method disclosed herein, the performance quality of the laminated sheet can be improved by a method with excellent productivity.
 ここに開示される技術の好ましい一態様では、前記硬化工程は加熱工程である。通常、加熱時には組成物中の揮発成分が気化して層間密着性を低下させたり外観を悪化させ得るが、ここに開示される弾性層形成用組成物は不揮発性であるため、そのような不具合の発生は防止または抑制される。したがって、加熱によって弾性層形成用組成物を硬化させる態様において、ここに開示される技術による効果は好ましく発揮される。 In a preferred embodiment of the technology disclosed herein, the curing step is a heating step. Normally, volatile components in the composition are vaporized during heating, which may deteriorate the interlaminar adhesion or deteriorate the appearance, but the elastic layer forming composition disclosed herein is non-volatile, so such a problem The occurrence of is prevented or suppressed. Therefore, in the embodiment in which the elastic layer forming composition is cured by heating, the effects of the technique disclosed herein are preferably exhibited.
 ここに開示される技術の好ましい一態様では、前記加熱工程は:前記弾性層形成用組成物に対して、温度T℃で加熱を行うプレ加熱工程と;前記弾性層形成用組成物に対して、温度T℃で加熱を行う主加熱工程と(ここで、T<Tを満たす。);を含む。主加熱よりも低温のプレ加熱を実施することで、当該組成物は硬化する前に低粘度化し得る。これにより、組成物中に含まれ得るエアや微量揮発成分は該組成物から積層シート外に抜け出しやすくなり、層間密着性の低下や外観の悪化は防止される。 In a preferred aspect of the technology disclosed herein, the heating step includes: a preheating step of heating the elastic layer forming composition at a temperature T P ° C; and the elastic layer forming composition; And a main heating step of heating at a temperature T M ° C. (where T P <T M is satisfied). By performing preheating at a lower temperature than the main heating, the composition can be reduced in viscosity before being cured. As a result, air and trace volatile components that can be contained in the composition can easily escape from the composition to the outside of the laminated sheet, and deterioration of interlayer adhesion and appearance are prevented.
 ここに開示される技術の好ましい一態様では、前記積層工程は:前記第一樹脂フィルムを第一ロールに供給すること;前記第二樹脂フィルムを、前記第一ロールと向かいあうように配置された第二ロールに供給すること;および前記第一ロールに供給された前記第一樹脂フィルムと前記第二ロールに供給された前記第二樹脂フィルムとの間に、前記弾性層形成用組成物を供給すること;を含む。このように構成することで、第一樹脂フィルム、弾性層および第二樹脂フィルムを備える積層構造が好ましく実現される。また、2つのロール間隔の設定によって、弾性層の厚さを精度よく調整することができる。 In a preferred aspect of the technology disclosed herein, the laminating step includes: supplying the first resin film to a first roll; and arranging the second resin film so as to face the first roll. And supplying the elastic layer forming composition between the first resin film supplied to the first roll and the second resin film supplied to the second roll. Including. By comprising in this way, the laminated structure provided with a 1st resin film, an elastic layer, and a 2nd resin film is implement | achieved preferably. Further, the thickness of the elastic layer can be adjusted with high accuracy by setting the interval between the two rolls.
実施形態に係る積層シートの製造方法を模式的に示す説明図である。It is explanatory drawing which shows typically the manufacturing method of the lamination sheet which concerns on embodiment.
 以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、本明細書に記載された発明の実施についての教示と出願時の技術常識とに基づいて当業者に理解され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
 なお、以下の図面において、同じ作用を奏する部材・部位には同じ符号を付して説明することがあり、重複する説明は省略または簡略化することがある。また、図面に記載の実施形態は、本発明を明瞭に説明するために模式化されており、製品として実際に提供される本発明の積層シートのサイズや縮尺を必ずしも正確に表したものではない。
Hereinafter, preferred embodiments of the present invention will be described. Note that matters other than the matters specifically mentioned in the present specification and necessary for the implementation of the present invention are based on the teachings on the implementation of the invention described in the present specification and the common general technical knowledge at the time of filing. Can be understood by those skilled in the art. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field.
In the following drawings, members / parts having the same action may be described with the same reference numerals, and redundant descriptions may be omitted or simplified. Further, the embodiments described in the drawings are schematically illustrated for clearly explaining the present invention, and do not necessarily accurately represent the size and scale of the laminated sheet of the present invention actually provided as a product. .
 図1に模式的に示すように、第一実施形態に係る積層シート1の製造方法では、第一樹脂層21となる第一樹脂フィルム31と第二樹脂層22となる第二樹脂フィルム32との間に弾性層形成用組成物15が配置された積層体5を形成する(積層工程)。 As schematically shown in FIG. 1, in the method for manufacturing the laminated sheet 1 according to the first embodiment, the first resin film 31 that becomes the first resin layer 21 and the second resin film 32 that becomes the second resin layer 22. The laminated body 5 in which the elastic layer forming composition 15 is disposed is formed (lamination process).
 具体的には、第一樹脂フィルム31および第二樹脂フィルム32を、例えばロール状態であらかじめ用意しておき、積層シート製造装置100にセットする。そして、上下に所定の間隔をおいて配置された第一ロール51と第二ロール52とを備える積層シート製造装置100において、下方に配置された第一ロール51に第一樹脂フィルム31を供給し、上方に配置された第二ロール52に第二樹脂フィルム32を供給する。第一ロール51と第二ロール52とは、そのロール面が互いに向かいあうように配置されており、第一樹脂フィルム31と第二樹脂フィルム32とは、第一ロール51と第二ロール52との間から一方向に送られる。図1では、第一樹脂フィルム31と第二樹脂フィルム32とは、水平状態で左方に送られる。 Specifically, the first resin film 31 and the second resin film 32 are prepared in advance, for example, in a roll state, and set in the laminated sheet manufacturing apparatus 100. And in the lamination sheet manufacturing apparatus 100 provided with the 1st roll 51 and the 2nd roll 52 which are arrange | positioned at predetermined intervals up and down, the 1st resin film 31 is supplied to the 1st roll 51 arrange | positioned below. The second resin film 32 is supplied to the second roll 52 disposed above. The 1st roll 51 and the 2nd roll 52 are arrange | positioned so that the roll surface may face each other, The 1st resin film 31 and the 2nd resin film 32 are the 1st roll 51 and the 2nd roll 52 Sent from one direction to the other. In FIG. 1, the first resin film 31 and the second resin film 32 are sent leftward in a horizontal state.
 上記構成において、第一ロール51に供給された第一樹脂フィルム31と第二ロール52に供給された第二樹脂フィルム32との間に、弾性層形成用組成物15を供給(具体的には投入)する。このとき、第一ロール51と第二ロール52との配置(間隔)の設定によって、弾性層形成用組成物15は、第一樹脂フィルム31および第二樹脂フィルム32に密接し得る。また、硬化後には厚み精度の高い弾性層10になり得る。このようにして、第一樹脂フィルム31と第二樹脂フィルム32との間に弾性層形成用組成物15が配置された積層体5が得られる。なお、弾性層形成用組成物15の供給量(典型的には投入量)は、特に制限されず、弾性層の厚さ等に応じて設定すればよい。 In the above configuration, the elastic layer forming composition 15 is supplied between the first resin film 31 supplied to the first roll 51 and the second resin film 32 supplied to the second roll 52 (specifically, throw into. At this time, the elastic layer forming composition 15 can be in close contact with the first resin film 31 and the second resin film 32 by setting the arrangement (interval) between the first roll 51 and the second roll 52. Further, after curing, the elastic layer 10 can have a high thickness accuracy. In this way, the laminate 5 in which the elastic layer forming composition 15 is disposed between the first resin film 31 and the second resin film 32 is obtained. The supply amount (typically, the input amount) of the elastic layer forming composition 15 is not particularly limited, and may be set according to the thickness of the elastic layer and the like.
 弾性層形成用組成物15の供給(典型的には投入)タイミングは、積層前であれば特に制限されない。例えば、下方に位置する第一樹脂フィルム31の上に弾性層形成用組成物15を付与した後、第一樹脂フィルム31と第二樹脂フィルム32との配置間隔を利用して所望の厚さに調整することも可能である。また、この実施形態では、第一ロール51および第二ロール52は、ともに非加熱ロールであるが、積層シートの外観等の観点から、加熱ロールを用いてもよい。なお、第一樹脂フィルム31と第二樹脂フィルム32との間への弾性層形成用組成物15の供給方法(投入方法でもあり得る。)は、特に限定されず、コンマコーターやダイコーター、ロールコーター、バーコーター等の公知のコーターを使用すればよい。 The supply (typically, charging) timing of the elastic layer forming composition 15 is not particularly limited as long as it is before lamination. For example, after applying the elastic layer forming composition 15 on the first resin film 31 located below, the desired distance is obtained using the arrangement interval between the first resin film 31 and the second resin film 32. It is also possible to adjust. Moreover, in this embodiment, although the 1st roll 51 and the 2nd roll 52 are both non-heating rolls, you may use a heating roll from viewpoints, such as the external appearance of a lamination sheet. The method for supplying the elastic layer forming composition 15 between the first resin film 31 and the second resin film 32 (which may be a charging method) is not particularly limited, and is a comma coater, a die coater, or a roll. A known coater such as a coater or a bar coater may be used.
 上述の積層工程の後、続けて、弾性層形成用組成物15を硬化させて弾性層10を形成する(硬化工程)。ここで「続けて」とは、積層工程の後であって硬化工程の前に積層体5をロールに巻き取る操作を含まないことを意味する。積層工程と硬化工程との間には時間的な制限はないが、積層工程の終了から硬化工程の開始までの時間は概ね30分以内(例えば10分以内、典型的には5分以内)とすることが適当である。積層工程と硬化工程との間には他の工程(例えば保管)を含まないことが好ましい。例えば、ロール・ツー・ロール方式のように、積層体5を停止することなく連続的に積層、硬化工程を実施することが好ましい。なお、この実施形態において、積層体5の搬送速度は、積層工程、硬化工程等を考慮して適当な範囲に設定されている。通常、弾性層形成用組成物15の硬化条件(例えば硬化温度や時間)や加熱器のサイズ(長さ)等に応じて搬送速度は調整され得る。 After the above-described laminating step, the elastic layer forming composition 15 is subsequently cured to form the elastic layer 10 (curing step). Here, “continue” means that it does not include an operation of winding the laminate 5 on a roll after the lamination step and before the curing step. There is no time limit between the lamination process and the curing process, but the time from the end of the lamination process to the start of the curing process is generally within 30 minutes (for example, within 10 minutes, typically within 5 minutes). It is appropriate to do. It is preferable not to include other steps (for example, storage) between the lamination step and the curing step. For example, like the roll-to-roll method, it is preferable to continuously perform the lamination and curing process without stopping the laminated body 5. In this embodiment, the conveyance speed of the laminated body 5 is set to an appropriate range in consideration of the lamination process, the curing process, and the like. Usually, a conveyance speed can be adjusted according to the hardening conditions (for example, hardening temperature and time) of the composition 15 for elastic layer formation, the size (length) of a heater, etc.
 第一樹脂フィルム31と弾性層形成用組成物15と第二樹脂フィルム32とがこの順序で積層された積層体5は、具体的には、第一ロール51と第二ロール52とによって一方向に方向づけられて硬化手段70に到達する。この硬化手段70により、弾性層形成用組成物15は、第一樹脂フィルム31および第二樹脂フィルム32に挟まれた状態で硬化して弾性層10となる。この実施形態では、硬化工程は加熱工程であり、硬化手段70として加熱器71が用いられている。したがって、弾性層形成用組成物15は熱硬化型組成物である。硬化工程開始時には弾性層形成用組成物15は流動性を有するので、第一樹脂フィルム31および第二樹脂フィルム32と密接した状態で弾性層形成用組成物15は硬化する。これにより、形成される弾性層10は、第一樹脂層21および第二樹脂層22と強固に密着する。硬化工程の条件は、弾性体形成用組成物15の組成や積層体5の搬送速度等に基づいて設定される。なお、弾性層形成用組成物15の硬化形態に応じて、硬化手段70は赤外線照射器や紫外線(UV)照射器、高湿度環境等となり得る。 The laminated body 5 in which the first resin film 31, the elastic layer forming composition 15 and the second resin film 32 are laminated in this order is specifically unidirectional by the first roll 51 and the second roll 52. To reach the curing means 70. By this curing means 70, the elastic layer forming composition 15 is cured while being sandwiched between the first resin film 31 and the second resin film 32 to become the elastic layer 10. In this embodiment, the curing process is a heating process, and a heater 71 is used as the curing means 70. Therefore, the elastic layer forming composition 15 is a thermosetting composition. Since the elastic layer forming composition 15 has fluidity at the start of the curing step, the elastic layer forming composition 15 is cured in close contact with the first resin film 31 and the second resin film 32. As a result, the formed elastic layer 10 is firmly adhered to the first resin layer 21 and the second resin layer 22. The conditions for the curing step are set based on the composition of the elastic body forming composition 15, the transport speed of the laminate 5, and the like. Note that the curing means 70 can be an infrared irradiator, an ultraviolet (UV) irradiator, a high humidity environment, or the like, depending on the curing mode of the elastic layer forming composition 15.
 加熱工程の温度および時間は、弾性層形成用組成物15の硬化温度(典型的には架橋温度)、硬化時間(例えば90%硬化時間)等に基づいて設定すればよい。例えば、加熱工程の時間tは、加熱工程の温度T(℃)における弾性層形成用組成物15の90%硬化時間よりも大きくなるよう設定され得る。また、硬化工程を短時間で終了する観点から、加熱工程の温度T(℃)は、弾性層形成用組成物15の90%硬化時間が5分(より好ましくは3分、典型的には1分)となるときの温度(キュア温度)T(℃)よりも高いことが好ましい。具体的には、加熱工程における加熱温度T(℃)は、100℃以上(例えば120℃~300℃、典型的には140℃~200℃)であることが好ましい。加熱工程の時間tは、生産性等の観点から、10秒~10分(例えば30秒~5分、典型的には1分~3分)程度とすることが好ましい。90%硬化時間やキュア温度は、市販のキュラストメーターを用いて測定することができる。なお、90%硬化時間とは、キュラストメーターによる測定において、トルク変化がなくなったときのトルク値(典型的には最大トルク値)の90%に達するまでの時間である。また、加熱工程の時間は、加熱工程の開始から終了までの時間であり、積層体が移動している場合には、積層体の一点が加熱工程を通過するのに要する時間である。また、加熱工程の温度としては、便宜的に、積層体表面の温度や加熱工程が行われる雰囲気温度(例えば乾燥器内の温度)を採用してもよい。 What is necessary is just to set the temperature and time of a heating process based on the hardening temperature (typically crosslinking temperature) of the elastic layer forming composition 15, hardening time (for example, 90% hardening time), etc. For example, the time t of the heating step can be set to be longer than the 90% curing time of the elastic layer forming composition 15 at the temperature T (° C.) of the heating step. From the viewpoint of completing the curing process in a short time, the temperature T (° C.) of the heating process is such that the 90% curing time of the elastic layer forming composition 15 is 5 minutes (more preferably 3 minutes, typically 1). It is preferable that it is higher than the temperature (cure temperature) T x (° C.). Specifically, the heating temperature T (° C.) in the heating step is preferably 100 ° C. or higher (eg, 120 ° C. to 300 ° C., typically 140 ° C. to 200 ° C.). The time t of the heating step is preferably about 10 seconds to 10 minutes (eg, 30 seconds to 5 minutes, typically 1 minute to 3 minutes) from the viewpoint of productivity and the like. The 90% curing time and cure temperature can be measured using a commercially available curast meter. The 90% curing time is the time required to reach 90% of the torque value (typically the maximum torque value) when there is no torque change in the measurement with a curast meter. Moreover, the time of a heating process is the time from the start of a heating process to completion | finish, and when a laminated body is moving, it is the time required for one point of a laminated body to pass a heating process. Moreover, as the temperature of the heating step, for convenience, the temperature of the laminate surface or the atmospheric temperature (for example, the temperature in the dryer) in which the heating step is performed may be employed.
 この実施形態では、硬化手段70として複数の加熱器71が積層体5の送り方向(図1中、矢印で示す方向)に沿って設置されている。加熱器71は積層体5の下方および上方に配置されている。硬化手段70を積層体5の上下に配置することにより、弾性層10の均質な硬化が実現される。なお、加熱器71は、特に制限されず、公知の熱風乾燥器等の加熱器を用いればよい。加熱器71の数に特に制限はなく、1または2以上である。また、上記複数の加熱器71は、一のチャンバー内に収容されていてもよい。 In this embodiment, a plurality of heaters 71 are installed as the curing means 70 along the feeding direction of the laminate 5 (the direction indicated by the arrow in FIG. 1). The heater 71 is disposed below and above the stacked body 5. By disposing the curing means 70 above and below the laminate 5, uniform curing of the elastic layer 10 is realized. The heater 71 is not particularly limited, and a heater such as a known hot air dryer may be used. There is no restriction | limiting in particular in the number of the heaters 71, and it is 1 or 2 or more. The plurality of heaters 71 may be housed in one chamber.
 なお、弾性層形成用組成物の硬化が熱硬化ではなく、UV硬化等の他の硬化形態の場合も、積層シート外観の観点から、硬化工程の前に加熱工程を行うことが好ましい。その場合の加熱条件としては、上述の加熱工程の条件を好ましく適用することができる。 In addition, also when the hardening of the composition for elastic layer formation is not heat hardening but other hardening forms, such as UV hardening, it is preferable to perform a heating process before a hardening process from a viewpoint of a lamination sheet external appearance. As the heating conditions in that case, the above-mentioned heating process conditions can be preferably applied.
 上述の積層工程および硬化工程を経て、第一樹脂層21と、第二樹脂層22と、第一樹脂層21および第二樹脂層22の間に配置された弾性層10と、を備える積層シート1が得られる。この積層シート1は、各層間の密着性に優れており、上記のような生産性に優れた方法で製造される。 A laminated sheet comprising the first resin layer 21, the second resin layer 22, and the elastic layer 10 disposed between the first resin layer 21 and the second resin layer 22 through the above-described lamination process and curing process. 1 is obtained. This laminated sheet 1 is excellent in adhesion between the respective layers, and is manufactured by a method excellent in productivity as described above.
 硬化工程を経て作製された積層シート1は、ロール80に巻き取られてもよく(回収工程)、そのまま所望のサイズにカットされてもよい。また必要に応じて、特許文献1に記載されるように、積層シート1に貫通孔を形成するなど任意の処理工程に供され得る。 The laminated sheet 1 produced through the curing step may be wound around a roll 80 (recovery step) or may be cut into a desired size as it is. Moreover, as described in Patent Document 1, as necessary, the laminated sheet 1 may be subjected to any processing step such as forming a through hole.
 次に、積層シートの材料について説明する。積層前の弾性層形成用組成物は、積層工程環境において流動性を有する。積層工程環境は、特に限定されないが、通常は凡そ5℃~40℃(例えば20℃~30℃)のほぼ大気圧環境であり、そのような環境において上記弾性層形成用組成物は流動性を有し得る。典型的には、弾性層形成用組成物は、常温(25℃)常圧環境において流動性を有する液状の組成物である。なお、液状には、シロップ状やスラリー状、ペースト状が包含される。 Next, the material of the laminated sheet will be described. The composition for forming an elastic layer before lamination has fluidity in a lamination process environment. The lamination process environment is not particularly limited, but is usually an atmospheric environment of approximately 5 ° C. to 40 ° C. (for example, 20 ° C. to 30 ° C.), and in such an environment, the elastic layer forming composition exhibits fluidity. Can have. Typically, the elastic layer forming composition is a liquid composition having fluidity in a normal temperature (25 ° C.) and normal pressure environment. Liquid forms include syrup, slurry, and paste.
 上記弾性層形成用組成物は、上述の環境において粘性を有し、典型的には所定以上の粘度を有するものであり得る。弾性層形成用組成物の粘度は、塗工性、積層性等の観点から、通常は凡そ0.1Pa・s以上に設定され得る。上記粘度は、好ましくは凡そ1Pa・s以上(例えば10Pa・s以上、典型的には30Pa・s以上)である。また上記粘度の上限は、塗工性等の観点から、凡そ500Pa・s以下(例えば300Pa・s以下、典型的には100Pa・s以下)とすることが適当である。上記粘度は30℃における粘度であり、弾性層形成用組成物を30℃の温浴で1時間加温した後、同温度にて、市販のB型粘度計を用いて、測定対象物の粘度に適したロータ、回転速度を採用して測定することができる。 The elastic layer forming composition has a viscosity in the above-described environment, and typically has a viscosity of a predetermined level or more. The viscosity of the composition for forming an elastic layer can usually be set to about 0.1 Pa · s or more from the viewpoints of coating properties, lamination properties, and the like. The viscosity is preferably about 1 Pa · s or more (for example, 10 Pa · s or more, typically 30 Pa · s or more). The upper limit of the viscosity is suitably about 500 Pa · s or less (for example, 300 Pa · s or less, typically 100 Pa · s or less) from the viewpoint of coating properties and the like. The viscosity is a viscosity at 30 ° C., and after heating the elastic layer forming composition in a warm bath at 30 ° C. for 1 hour, at the same temperature, using a commercially available B-type viscometer, the viscosity of the object to be measured is adjusted. Measurements can be made using a suitable rotor and rotational speed.
 また、上記弾性層形成用組成物は、硬化工程環境において不揮発性である。ここで、組成物が不揮発性であるとは、硬化工程環境において気化する揮発成分(典型的には溶剤)の割合が10重量%未満(例えば3重量%未満、典型的には1重量%未満)であることをいう。弾性層形成用組成物は、硬化工程環境において気化する揮発成分の割合が0.1重量%未満(例えば0.01重量%未満)であることが好ましく、揮発成分を実質的に含まないことがより好ましい。典型的には、弾性層形成用組成物は、溶剤を実質的に含まない無溶剤型の組成物である。この場合、弾性層形成用組成物は実質的に不揮発成分のみから構成されている。上記硬化工程環境は、特に限定されないが、凡そ60℃以上(例えば100℃~300℃、典型的には120℃~200℃)のほぼ大気圧環境であり得る。そのような環境において上記弾性層形成用組成物は不揮発性であり得る。 The elastic layer forming composition is non-volatile in the curing process environment. Here, the non-volatile composition means that the proportion of volatile components (typically solvents) that vaporize in the curing process environment is less than 10% by weight (eg less than 3% by weight, typically less than 1% by weight). ). In the elastic layer forming composition, the proportion of the volatile component that vaporizes in the curing process environment is preferably less than 0.1% by weight (for example, less than 0.01% by weight), and may be substantially free of the volatile component. More preferred. Typically, the elastic layer forming composition is a solvent-free composition substantially free of a solvent. In this case, the elastic layer forming composition is substantially composed of only a non-volatile component. The curing process environment is not particularly limited, but may be a substantially atmospheric pressure environment of approximately 60 ° C. or higher (eg, 100 ° C. to 300 ° C., typically 120 ° C. to 200 ° C.). In such an environment, the elastic layer forming composition may be non-volatile.
 上記弾性層形成用組成物は、硬化処理を行うことで硬化し弾性層となる硬化型組成物である。この実施形態では、弾性層形成用組成物は熱硬化型の組成物であるが、これに限定されない。硬化は、例えば活性エネルギー線硬化(UV硬化、γ線硬化、電子線硬化等)、湿気硬化等であってもよく、典型的には架橋反応によってなされ得る。生産性の観点から、弾性層形成用組成物は、熱硬化型または光硬化型であることが好ましく、熱硬化型であることが特に好ましい。また、上記組成物は一液型であってもよく二液型であってもよい。 The above-mentioned composition for forming an elastic layer is a curable composition that is cured by a curing treatment to become an elastic layer. In this embodiment, the elastic layer forming composition is a thermosetting composition, but is not limited thereto. Curing may be, for example, active energy ray curing (UV curing, gamma ray curing, electron beam curing, etc.), moisture curing, etc., and can typically be done by a crosslinking reaction. From the viewpoint of productivity, the elastic layer forming composition is preferably a thermosetting type or a photocurable type, and particularly preferably a thermosetting type. Further, the composition may be a one-component type or a two-component type.
 弾性層形成用組成物は、典型的には硬化型樹脂組成物であり、主成分(組成物中に最も多く含まれる成分。好ましくは50重量%を超えて含まれる成分。以下同じ。)としての重合体と、該重合体と架橋反応し得る架橋剤とを少なくとも含む未架橋物(未架橋の組成物)であり得る。ここで未架橋物には、架橋反応が実質的に開始していないものだけでなく、部分的に架橋された部分架橋物が包含される。重合体および架橋剤は、特に限定されず、硬化後の弾性層に要求される特性にあわせて公知のものから適切に選択すればよい。架橋剤は、弾性層形成用組成物が熱硬化型組成物の場合には熱架橋剤である。なお、弾性層形成用組成物が活性エネルギー線硬化型である場合には、架橋剤の含有は必須ではない。その場合、弾性層形成用組成物は、部分反応物(部分重合物)であり得る。弾性層形成用組成物は、必要に応じて、粘着付与剤、レベリング剤、架橋助剤(触媒)、可塑剤、軟化剤、充填剤、着色剤(顔料、染料等)、分散剤、難燃剤、加工助剤、帯電防止剤、老化防止剤、紫外線吸収剤、酸化防止剤、光安定剤等の、この分野において一般的な各種の添加剤を含有してもよい。 The elastic layer forming composition is typically a curable resin composition as a main component (a component that is contained most in the composition, preferably a component that is contained in excess of 50% by weight; the same shall apply hereinafter). And an uncrosslinked product (uncrosslinked composition) containing at least a polymer and a crosslinking agent capable of undergoing a crosslinking reaction with the polymer. Here, the uncrosslinked product includes not only those in which the crosslinking reaction has not substantially started, but also partially crosslinked products that have been partially crosslinked. The polymer and the crosslinking agent are not particularly limited, and may be appropriately selected from known ones according to characteristics required for the elastic layer after curing. The crosslinking agent is a thermal crosslinking agent when the elastic layer forming composition is a thermosetting composition. In addition, when the composition for elastic layer formation is an active energy ray hardening type, inclusion of a crosslinking agent is not essential. In that case, the composition for forming an elastic layer may be a partially reacted product (partially polymerized product). If necessary, the elastic layer forming composition may be a tackifier, a leveling agent, a crosslinking aid (catalyst), a plasticizer, a softener, a filler, a colorant (pigment, dye, etc.), a dispersant, a flame retardant. Further, various additives common in this field such as processing aids, antistatic agents, anti-aging agents, ultraviolet absorbers, antioxidants, and light stabilizers may be contained.
 弾性層形成用組成物としては、市販品を用いるとよい。あるいは、所望の特性を発揮し得る重合体を合成し、該重合体と架橋反応し得る架橋剤を用意し、さらに必要であれば添加剤を用意し、これらを混合したものを使用することもできる。積層シートの外観等の観点から、公知の脱泡装置(好適には真空脱泡装置)を用いて脱泡処理(好ましくは減圧下での脱泡処理。真空脱泡ともいう。)を行った弾性層形成用組成物を使用するとよい。上記脱泡処理は、典型的には、エアが混入しやすい二液型組成物の混合物に対して効果的であり、混合材料が高粘度である場合には顕著なエア除去性を発揮し得る。また、弾性層形成用組成物は、適当な粘度にする等の目的で、積層工程に供給する前に、あらかじめ予備的な硬化を行っておいてもよい。 Commercially available products may be used as the elastic layer forming composition. Alternatively, a polymer capable of exhibiting desired characteristics is synthesized, a crosslinking agent capable of crosslinking reaction with the polymer is prepared, and if necessary, an additive is prepared, and a mixture thereof can be used. it can. From the viewpoint of the appearance and the like of the laminated sheet, a defoaming treatment (preferably defoaming treatment under reduced pressure, also referred to as vacuum defoaming) was performed using a known defoaming device (preferably a vacuum defoaming device). An elastic layer forming composition may be used. The defoaming treatment is typically effective for a mixture of two-component compositions in which air is likely to be mixed, and can exhibit remarkable air removability when the mixed material has a high viscosity. . In addition, the elastic layer forming composition may be preliminarily cured before being supplied to the laminating step for the purpose of making the viscosity suitable.
 弾性層(硬化工程後の弾性層。以下同じ。)は、上記のように弾性層形成用組成物を硬化することにより得られる硬化層であり、常温において弾性を有する層である。弾性層には、粘弾性層も包含される。弾性層の弾性率(貯蔵弾性率)は、通常は0.1×10Pa~200×10Pa(例えば0.5×10Pa~100×10Pa、典型的には1×10Pa~50×10Pa)程度であり得る。特に限定されないが、弾性層は第一樹脂層、第二樹脂層(以下、まとめて「樹脂層」と略す場合がある。)とは異なる機械的性質を有する。弾性層は、例えば、樹脂層の弾性率よりも低い(典型的には、樹脂層の弾性率の1/100以下程度の)弾性率を有するものであり得る。なお、上記貯蔵弾性率は、周波数1Hz、温度23℃で測定される貯蔵弾性率であり、例えば、一般的な粘弾性測定装置(例えば、レオメトリックサイエンティフィック社製の動的粘弾性スペクトル測定器、型式「ARES」)を使用し、厚み2mmのサンプルを直径8mmのパラレルプレートにセットして、上記周波数にて測定を行うことにより把握することができる。測定温度域および昇温速度は、粘弾性測定装置の機種等に応じて適切に設定すればよい。 An elastic layer (an elastic layer after the curing step; the same applies hereinafter) is a cured layer obtained by curing the composition for forming an elastic layer as described above, and is a layer having elasticity at room temperature. The elastic layer includes a viscoelastic layer. The elastic modulus (storage elastic modulus) of the elastic layer is usually 0.1 × 10 5 Pa to 200 × 10 5 Pa (eg, 0.5 × 10 5 Pa to 100 × 10 5 Pa, typically 1 × 10 5 Pa to 50 × 10 5 Pa). Although not particularly limited, the elastic layer has mechanical properties different from those of the first resin layer and the second resin layer (hereinafter sometimes collectively referred to as “resin layer”). The elastic layer can have, for example, an elastic modulus lower than that of the resin layer (typically about 1/100 or less of the elastic modulus of the resin layer). The storage elastic modulus is a storage elastic modulus measured at a frequency of 1 Hz and a temperature of 23 ° C., for example, a general viscoelasticity measuring device (for example, dynamic viscoelastic spectrum measurement manufactured by Rheometric Scientific, Inc.). And a model “ARES”), a sample having a thickness of 2 mm is set on a parallel plate having a diameter of 8 mm, and measurement is performed at the above frequency. What is necessary is just to set a measurement temperature range and a temperature increase rate suitably according to the model etc. of a viscoelasticity measuring apparatus.
 また弾性層は、粘着性であってもよく非粘着性であってもよい。例えば、積層シートから弾性層表面を露出させるか、表面が露出した弾性層を別途作製した場合において、弾性層表面が、JIS Z 0237:2000に規定する180°剥離試験に基づく測定値で1.0N/20mm未満(例えば0.1N/20mm未満、典型的には0.01N/20mm未満)の値を示す場合、非粘着性と評価することができる。 The elastic layer may be sticky or non-sticky. For example, when the elastic layer surface is exposed from the laminated sheet or an elastic layer having an exposed surface is prepared separately, the elastic layer surface is measured by a measurement value based on a 180 ° peel test specified in JIS Z 0237: 2000. When the value is less than 0 N / 20 mm (for example, less than 0.1 N / 20 mm, typically less than 0.01 N / 20 mm), it can be evaluated as non-tacky.
 弾性層の厚さは、通常は凡そ10μm~1000μmとすることが適当である。硬化工程における硬化効率、弾性層の機能発現、厚み精度等の観点から、弾性層の厚さは、20μm~500μm(例えば30μm~300μm、典型的には50μm~200μm)程度とすることが好ましい。 The thickness of the elastic layer is usually about 10 μm to 1000 μm. From the viewpoints of curing efficiency in the curing process, function expression of the elastic layer, thickness accuracy, and the like, the thickness of the elastic layer is preferably about 20 μm to 500 μm (for example, 30 μm to 300 μm, typically 50 μm to 200 μm).
 第一樹脂フィルムおよび第二樹脂フィルム(以下、まとめて「樹脂フィルム」と略す場合がある。)は、樹脂を主成分とするフィルムであり、典型的には非多孔質のフィルムであって、いわゆる不織布や織布とは区別される概念である。樹脂フィルムは、所定の剛性(強度)を有し、加工性、取扱い性に優れるので、例えばロール・ツー・ロール方式等の連続的生産において、千切れる等の不具合が生じ難い好適な材料となり得る。また、弾性層形成用組成物の支持性にも優れる。上記樹脂フィルムには、必要に応じて、充填剤(無機充填剤、有機充填剤等)、老化防止剤、酸化防止剤、紫外線吸収剤、帯電防止剤、滑剤、可塑剤、着色剤(顔料、染料等)等の各種添加剤が配合されていてもよい。 The first resin film and the second resin film (hereinafter sometimes collectively referred to as “resin film”) are films mainly composed of a resin, typically a non-porous film, This is a concept that is distinguished from so-called non-woven fabrics and woven fabrics. The resin film has a predetermined rigidity (strength), and is excellent in workability and handleability, so that it can be a suitable material that is unlikely to break down in continuous production such as a roll-to-roll method. . Moreover, it is excellent also in the supportability of the composition for elastic layer formation. For the resin film, if necessary, a filler (inorganic filler, organic filler, etc.), an anti-aging agent, an antioxidant, an ultraviolet absorber, an antistatic agent, a lubricant, a plasticizer, a colorant (pigment, Various additives such as dyes) may be blended.
 第一樹脂フィルムおよび第二樹脂フィルムは、特に限定されないが、通常、10MPa~1000MPa程度の引張強さを有するものであり得る。取扱い性、生産性等の観点から、100MPa~800MPa(例えば200MPa~600MPa)程度の引張強さを有する樹脂フィルムを選択して使用することが好ましい。上記引張強さは、JIS K 7127:1999に準拠して測定される。なお、第一樹脂フィルムおよび第二樹脂フィルムの引張強さは同じであってもよく異なっていてもよい。 The first resin film and the second resin film are not particularly limited, but can usually have a tensile strength of about 10 MPa to 1000 MPa. From the viewpoint of handleability, productivity, etc., it is preferable to select and use a resin film having a tensile strength of about 100 MPa to 800 MPa (for example, 200 MPa to 600 MPa). The tensile strength is measured according to JIS K 7127: 1999. In addition, the tensile strength of the 1st resin film and the 2nd resin film may be the same, and may differ.
 第一樹脂フィルムおよび第二樹脂フィルムの密度は、0.80g/cm~2.0g/cm(例えば1.00g/cm~1.60g/cm、典型的には1.20g/cm~1.50g/cm)程度であり得る。このように所定の緻密さを有する樹脂フィルムを用いることで、弾性層形成用組成物を良好に積層することができ、このような態様において、弾性層との層間密着性に優れた構成が好ましく実現される。上記密度は、ASTM D 1505に準拠して測定される。なお、第一樹脂フィルムおよび第二樹脂フィルムの密度は同じであってもよく、異なっていてもよい。 The density of the first resin film and the second resin film is 0.80 g / cm 3 to 2.0 g / cm 3 (for example, 1.00 g / cm 3 to 1.60 g / cm 3 , typically 1.20 g / cm 3 ). cm 3 to 1.50 g / cm 3 ). By using a resin film having a predetermined density in this manner, the composition for forming an elastic layer can be satisfactorily laminated. In such an embodiment, a configuration excellent in interlayer adhesion with the elastic layer is preferable. Realized. The density is measured according to ASTM D 1505. In addition, the density of the 1st resin film and the 2nd resin film may be the same, and may differ.
 また、第一樹脂フィルムおよび第二樹脂フィルムは、光線透過率(例えば紫外線透過率)および/または透湿性が低いものであり得る。そのような樹脂フィルムを用いる場合には、弾性層形成用組成物として熱硬化型が好ましく採用され、硬化工程として加熱工程が好ましく採用され得る。上記樹脂フィルムは、波長400nm以下(例えば200nm~400nmの波長範囲)における平均光線透過率が、例えば50%以下(例えば20%以下、典型的には10%以下)であり得る。上記光線透過率は、公知の分光光度計(例えば、日立ハイテクノロジーズ社製の型式「U-4100」)を用いて測定することができる。なお、第一樹脂フィルムおよび第二樹脂フィルムの上記光線透過率は同じであってもよく、異なっていてもよい。 In addition, the first resin film and the second resin film may have low light transmittance (for example, ultraviolet transmittance) and / or moisture permeability. When such a resin film is used, a thermosetting type is preferably employed as the elastic layer forming composition, and a heating step can be preferably employed as the curing step. The resin film may have an average light transmittance at a wavelength of 400 nm or less (for example, a wavelength range of 200 nm to 400 nm), for example, 50% or less (for example, 20% or less, typically 10% or less). The light transmittance can be measured using a known spectrophotometer (for example, model “U-4100” manufactured by Hitachi High-Technologies Corporation). In addition, the said light transmittance of a 1st resin film and a 2nd resin film may be the same, and may differ.
 第一樹脂フィルムおよび第二樹脂フィルムの厚さは、目的に応じて適宜選択できるが、一般的には概ね2μm~500μm(例えば10μm~200μm)のものを好ましく使用し得る。上記厚さを大きくすることにより、生産性が向上する傾向があり、上記厚さの上限を制限することにより、弾性層の硬化作業が効率化される。なお、第一樹脂フィルムおよび第二樹脂フィルムの厚さは同じであってもよく、異なっていてもよい。 The thicknesses of the first resin film and the second resin film can be appropriately selected according to the purpose, but generally those having a thickness of about 2 μm to 500 μm (for example, 10 μm to 200 μm) can be preferably used. Increasing the thickness tends to improve productivity, and limiting the upper limit of the thickness increases the efficiency of curing the elastic layer. In addition, the thickness of the 1st resin film and the 2nd resin film may be the same, and may differ.
 この実施形態では、積層工程の前に、第一樹脂フィルムおよび第二樹脂フィルムの弾性層形成面に、プライマー層が形成されている。これによって、第一樹脂層、第二樹脂層と弾性層との密着性(投錨性)がさらに向上する。このような密着性向上のための表面処理は、プライマー層の形成に限定されず、コロナ放電処理、プラズマ処理等の表面処理であってもよい。プライマー層形成材料としては、弾性層材料、樹脂フィルム材料を考慮して、当業者の技術常識に基づき適切なものを選択すればよい。積層シート外観の観点から、プライマー層の形成は乾燥工程を含むことが好ましく、当該乾燥工程を経た後のプライマー層付き樹脂フィルムを使って積層工程を行うことが好ましい。プライマー層の厚さは、通常は10μm未満(例えば3μm未満)程度である。 In this embodiment, a primer layer is formed on the elastic layer forming surfaces of the first resin film and the second resin film before the lamination step. Thereby, the adhesiveness (throwing property) between the first resin layer, the second resin layer and the elastic layer is further improved. Such a surface treatment for improving adhesion is not limited to the formation of the primer layer, and may be a surface treatment such as corona discharge treatment or plasma treatment. As the primer layer forming material, an appropriate material may be selected based on the technical common knowledge of those skilled in the art in consideration of the elastic layer material and the resin film material. From the viewpoint of the appearance of the laminated sheet, the formation of the primer layer preferably includes a drying step, and the lamination step is preferably performed using the resin film with the primer layer after the drying step. The thickness of the primer layer is usually less than 10 μm (for example, less than 3 μm).
 また、第一樹脂フィルムおよび第二樹脂フィルムには、それらの弾性層形成面とは反対側の面に、追加の層がさらに積層されてもよい。上記追加の層としては、特に限定されず、その目的に応じて望ましい材質、厚さのものを適宜選定すればよい。例えば、特許文献1に記載されるような銅箔等の金属層を積層してもよく、樹脂フィルム表面を保護する保護層を積層してもよい。これら追加の層は、樹脂フィルム表面(弾性層形成面とは反対側の面)の少なくとも一部に(例えば全面を覆うように)設けられ得る。また上記追加の層は、樹脂フィルムと弾性層形成用組成物との積層の前に、あるいは当該積層後(典型的には硬化工程後)に、樹脂フィルムに積層され得る。 In the first resin film and the second resin film, an additional layer may be further laminated on the surface opposite to the elastic layer forming surface. The additional layer is not particularly limited, and a material having a desirable thickness and thickness may be appropriately selected according to the purpose. For example, a metal layer such as a copper foil described in Patent Document 1 may be laminated, or a protective layer for protecting the resin film surface may be laminated. These additional layers may be provided on at least a part of the resin film surface (surface opposite to the elastic layer forming surface) (for example, so as to cover the entire surface). The additional layer may be laminated on the resin film before lamination of the resin film and the elastic layer forming composition or after the lamination (typically after the curing step).
 第一樹脂フィルムおよび第二樹脂フィルムは、硬化後の積層シートにおいて、それぞれ第一樹脂層および第二樹脂層となる。そのため、第一樹脂層、第二樹脂層も、それぞれを単体としてみたとき、第一樹脂フィルム、第二樹脂フィルムと同じ材料から形成され、同等の引張強さ、密度、厚さを有し得る。特に限定されるものではないが、この実施形態では、第一樹脂層、第二樹脂層は、弾性層よりも機械的強度(例えば、上述の引張強さ、弾性率等)が高く、熱膨張係数が小さい。第一樹脂層および第二樹脂層は、積層シートの安定性(例えばカール防止性)等の観点から、同じ構成を有するものが好ましく用いられる。この実施形態では、第一樹脂層および第二樹脂層は、同じ材料から構成されており、同等の厚さ、同等の機械的強度を有する。 The first resin film and the second resin film become the first resin layer and the second resin layer, respectively, in the cured laminated sheet. Therefore, the first resin layer and the second resin layer can also be formed from the same material as the first resin film and the second resin film and have the same tensile strength, density, and thickness when viewed as a single body. . Although not particularly limited, in this embodiment, the first resin layer and the second resin layer have higher mechanical strength (for example, the above-described tensile strength and elastic modulus) than the elastic layer, and thermal expansion. The coefficient is small. As the first resin layer and the second resin layer, those having the same structure are preferably used from the viewpoint of the stability of the laminated sheet (for example, anti-curl property). In this embodiment, the first resin layer and the second resin layer are made of the same material, and have the same thickness and the same mechanical strength.
 第一樹脂層および第二樹脂層は各々、弾性層に対して典型的には非剥離性である。ここで、2つの層(第一樹脂層と弾性層、または第二樹脂層と弾性層)が非剥離性であるとは、積層シートの使用態様において、当該2層が分離せずに用いられる、あるいは少なくとも分離しない前提で用いられることを意味する。典型的には、積層シートは、上記2層間に剥がれが生じた場合には不具合と評価されるような態様で使用され得る。したがって、第一樹脂層と弾性層、第二樹脂層と弾性層は、それぞれ所定以上の層間剥離強度を有している。 Each of the first resin layer and the second resin layer is typically non-peelable with respect to the elastic layer. Here, the two layers (the first resin layer and the elastic layer, or the second resin layer and the elastic layer) are non-peelable, in the usage mode of the laminated sheet, the two layers are used without being separated. Or at least it is used on the premise of not separating. Typically, the laminated sheet can be used in such a manner that it is evaluated as a failure when peeling occurs between the two layers. Therefore, the first resin layer and the elastic layer, and the second resin layer and the elastic layer each have a predetermined delamination strength.
 具体的には、第一樹脂層または第二樹脂層と弾性層との層間剥離強度がいずれも凡そ1N/20mmを超えるか(例えば5N/20mm超、典型的には10N/20mm超)、剥離できなかった場合、第一樹脂層または第二樹脂層は弾性層に対して非剥離性であると判断することができる。層間剥離強度は、幅20mmの短冊状の試験片を用意し、引張試験機を用いて、測定温度23℃、引張速度50mm/分の条件において、弾性層から第一樹脂層または第二樹脂層をT字状に剥離し(T型剥離)、そのときの剥離力(層間剥離強度)を測定することにより行われる。上記測定は、例えば弾性層と第一樹脂層とを一部強制的に剥離させ、その一部剥離させた試験片の第一樹脂層と残りの層(弾性層および第二樹脂層)とをそれぞれ引張試験機のチャックで掴み、実施するとよい。第二樹脂層の非剥離性評価も上記と同様にして行われ得る。引張試験機としては、公知のもの(例えば、島津製作所製の「オートグラフ」)を使用すればよい。後述の実施例についても上記と同様の方法が採用される。 Specifically, the delamination strength between the first resin layer or the second resin layer and the elastic layer both exceeds approximately 1 N / 20 mm (for example, greater than 5 N / 20 mm, typically greater than 10 N / 20 mm), or delamination. If not, the first resin layer or the second resin layer can be determined to be non-peelable with respect to the elastic layer. For the delamination strength, a strip-shaped test piece having a width of 20 mm is prepared, and using a tensile tester, the first resin layer or the second resin layer is formed from the elastic layer at a measurement temperature of 23 ° C. and a tensile speed of 50 mm / min. Is peeled into a T shape (T-type peeling), and the peeling force (interlaminar peeling strength) at that time is measured. In the measurement, for example, the elastic layer and the first resin layer are partly forcibly peeled off, and the first resin layer and the remaining layers (elastic layer and second resin layer) of the partly peeled test piece are removed. Each may be carried out by gripping with a chuck of a tensile tester. The non-peelability evaluation of the second resin layer can also be performed in the same manner as described above. As the tensile tester, a known one (for example, “Autograph” manufactured by Shimadzu Corporation) may be used. The same method as described above is adopted for the embodiments described later.
 この実施形態では、弾性層、第一樹脂層および第二樹脂層の材質および厚さは、特許文献1の実施例1に記載の積層材の構成と基本的に同じであるため、ここでは具体的な説明は省略するが、弾性層(典型的には硬化樹脂層)、第一樹脂層および第二樹脂層の材質は、これに限定されず、例えば、アクリル系樹脂層、ゴム系ポリマー層、ポリエステル層、ウレタン系樹脂層、ポリエーテル層、ポリアミド層、フッ素系樹脂層、エポキシ系樹脂層、塩化ビニル系樹脂層、ポリフェニレンサルファイド系樹脂層、ポリカーボネート系樹脂層、フェノール系樹脂層、ポリオレフィン層、スチレン系樹脂層、ポリ酢酸ビニル層、エチレン-酢酸ビニル系樹脂層、ビニルアルコール系樹脂層、メラミン樹脂層、ユリア樹脂層、レゾルシノール系樹脂層等の樹脂層(樹脂成分を主成分として含む層)から選択され得る。硬化工程が加熱工程である場合には、第一樹脂層および第二樹脂層として耐熱性のよいものを選択するとよい。例えば、第一樹脂層、第二樹脂層の構成材料としてエンジニアリングプラスチックが好ましく用いられる。 In this embodiment, since the materials and thicknesses of the elastic layer, the first resin layer, and the second resin layer are basically the same as the configuration of the laminated material described in Example 1 of Patent Document 1, here However, the material of the elastic layer (typically a cured resin layer), the first resin layer, and the second resin layer is not limited to this, for example, an acrylic resin layer, a rubber polymer layer , Polyester layer, urethane resin layer, polyether layer, polyamide layer, fluorine resin layer, epoxy resin layer, vinyl chloride resin layer, polyphenylene sulfide resin layer, polycarbonate resin layer, phenol resin layer, polyolefin layer , Styrene resin layer, polyvinyl acetate layer, ethylene-vinyl acetate resin layer, vinyl alcohol resin layer, melamine resin layer, urea resin layer, resorcinol resin layer It may be selected from the layer of resin (the layer containing a resin component as the main component). When the curing step is a heating step, it is preferable to select one having good heat resistance as the first resin layer and the second resin layer. For example, an engineering plastic is preferably used as a constituent material for the first resin layer and the second resin layer.
 次に、第二実施形態に係る積層シートの製造方法について説明する。第二実施形態に係る積層シートの製造方法は、加熱工程を除いては第一実施形態と基本的に同じであるので、この実施形態については加熱工程を中心に説明し、その他の点についての説明は省略する。 Next, a method for manufacturing a laminated sheet according to the second embodiment will be described. Since the manufacturing method of the laminated sheet according to the second embodiment is basically the same as the first embodiment except for the heating step, this embodiment will be described with a focus on the heating step, and other points will be described. Description is omitted.
 第二実施形態における加熱工程は、弾性層形成用組成物に対して温度T℃の加熱を行うプレ加熱工程と、弾性層形成用組成物に対して温度T℃の加熱を行う主加熱工程と、を含む。プレ加熱工程と主加熱工程とは、上記の順序で実施される。ここで、T<Tを満たすことが好ましい。また、プレ加熱工程の時間をtとし、主加熱工程の時間をtとしたとき、t≧t(より好ましくはt>t、例えばt≧2t)を満たすことが好ましい。上記のようなプレ加熱工程を実施することにより、弾性層形成用組成物は硬化する前に低粘度化し、該組成物中に含まれ得るエアや微量揮発成分は該組成物から積層シート外に抜け出しやすくなる。その結果、層間密着性の低下や積層シート外観の悪化は防止される。 The heating process in the second embodiment includes a preheating process in which the elastic layer forming composition is heated to a temperature T P ° C, and a main heating in which the elastic layer forming composition is heated to a temperature T M ° C. And a process. The preheating step and the main heating step are performed in the above order. Here, it is preferable to satisfy T P <T M. Further, when the time of the preheating step is t P and the time of the main heating step is t M , t P ≧ t M (more preferably t P > t M , for example, t P ≧ 2t M ) is satisfied. preferable. By carrying out the preheating step as described above, the elastic layer forming composition is reduced in viscosity before being cured, and air and trace volatile components that can be contained in the composition are removed from the composition from the laminated sheet. Easier to escape. As a result, deterioration of interlayer adhesion and deterioration of the laminated sheet appearance are prevented.
 プレ加熱工程の温度Tおよび時間tは、弾性層形成用組成物の硬化温度、硬化時間等に基づいて設定すればよい。例えば、プレ加熱工程の時間tは、温度T(℃)における弾性層形成用組成物の90%硬化時間よりも小さくなるよう設定され得る。また、積層シート外観の観点から、プレ加熱工程の温度T(℃)は、弾性層形成用組成物の90%硬化時間が2分(より好ましくは3分、典型的には5分)となるときの温度(キュア温度)TX1(℃)よりも低いことが好ましい。具体的には、プレ加熱工程における加熱温度T(℃)は、140℃未満(例えば130℃以下、典型的には60℃~90℃)であることが好ましい。プレ加熱工程の時間tは、生産性の観点から、30秒~5分(例えば1分~3分)程度とすることが好ましい。上記温度T(℃)および時間tは、汎用されている主要な熱硬化型弾性層形成用組成物(例えば、温度100℃~150℃および1分~3分程度の加熱で90%硬化する弾性層形成用組成物)に対して総じて好適であるので、その適用範囲は広い。 The temperature T P and the time t P in the preheating step may be set based on the curing temperature, the curing time, etc. of the elastic layer forming composition. For example, the time t P of the preheating step can be set to be smaller than the 90% curing time of the elastic layer forming composition at the temperature T P (° C.). Further, from the viewpoint of the appearance of the laminated sheet, the temperature T P (° C.) of the preheating step is such that the 90% curing time of the elastic layer forming composition is 2 minutes (more preferably 3 minutes, typically 5 minutes). It is preferable that the temperature (cure temperature) T X1 (° C.) is lower. Specifically, the heating temperature T P (° C.) in the preheating step is preferably less than 140 ° C. (for example, 130 ° C. or less, typically 60 ° C. to 90 ° C.). The time t P of the preheating step is preferably about 30 seconds to 5 minutes (for example, 1 minute to 3 minutes) from the viewpoint of productivity. The temperature T P (° C.) and the time t P are the main thermosetting elastic layer forming compositions that are widely used (for example, a temperature of 100 ° C. to 150 ° C. and a heating time of about 1 to 3 minutes cures 90%. Therefore, the range of application is wide.
 主加熱工程の温度Tおよびtも、上記加熱工程の場合と同様に、弾性層形成用組成物の硬化温度、硬化時間等に基づいて設定すればよい。例えば、主加熱工程の時間tは、主加熱工程の温度T(℃)における弾性層形成用組成物の90%硬化時間よりも大きくなるよう設定され得る。また、硬化工程を短時間で終了する観点から、主加熱工程の温度T(℃)は、弾性層形成用組成物の90%硬化時間が5分(より好ましくは3分、典型的には1分)となるときの温度(キュア温度)TX2(℃)よりも高いことが好ましい。具体的には、主加熱工程における加熱温度T(℃)は、100℃以上(例えば120℃~300℃、典型的には140℃~200℃)であることが好ましい。加熱工程の時間tは、生産性の観点から、30秒~5分(例えば1分~3分)程度とすることが好ましい。上記温度T(℃)および時間tは、上記汎用されている主要な熱硬化型弾性層形成用組成物に対して総じて好適である。 The temperatures T M and t M of the main heating step may be set based on the curing temperature, the curing time, etc. of the elastic layer forming composition as in the case of the heating step. For example, the time t M of the main heating step can be set to be longer than the 90% curing time of the elastic layer forming composition at the temperature T M (° C.) of the main heating step. Further, from the viewpoint of completing the curing step in a short time, the temperature T M (° C.) of the main heating step is the same as the 90% curing time of the elastic layer forming composition is 5 minutes (more preferably 3 minutes, typically It is preferably higher than the temperature (curing temperature) T X2 (° C.) at which it is 1 minute). Specifically, the heating temperature T M (° C.) in the main heating step is preferably 100 ° C. or higher (eg, 120 ° C. to 300 ° C., typically 140 ° C. to 200 ° C.). Time t M of the heating step, from the viewpoint of productivity, is preferably 30 seconds to 5 minutes (e.g. 1 to 3 minutes) degree. The temperature T M (° C.) and the time t M are generally suitable for the above-mentioned main thermosetting elastic layer forming compositions.
 プレ加熱工程および主加熱工程は、第一実施形態と同様、複数の加熱器が積層体の送り方向に沿って設置された構成によって好ましく実施され得る。複数の加熱器の配置とその個別温度設定により、プレ加熱工程、主加熱工程の条件(温度、時間)を所望の範囲とすることができる。 As in the first embodiment, the preheating step and the main heating step can be preferably performed by a configuration in which a plurality of heaters are installed along the feeding direction of the laminate. The conditions (temperature, time) of the preheating step and the main heating step can be set within a desired range by arranging a plurality of heaters and setting the individual temperatures thereof.
 以下、本発明に関するいくつかの実施例を説明するが、本発明を実施例に示すものに限定することを意図したものではない。 Hereinafter, some examples related to the present invention will be described, but the present invention is not intended to be limited to the examples shown in the examples.
 <実験1>
 上記第一実施形態に記載の方法で積層シートサンプル(1)を製造した。具体的には、積層シートサンプル(1)は、図1に示す積層シート製造装置100を用いて、第一ロール51に第一樹脂フィルム31を供給し、第二ロール52に第二樹脂フィルム32を供給し、第一ロール51上を通る第一樹脂フィルム31と第二ロール52上を通る第二樹脂フィルム32との間に、コーターを用いて弾性層形成用組成物15(熱硬化型弾性層形成用組成物)を投入し、第一樹脂フィルム31と弾性層形成用組成物15と第二樹脂フィルム32とをこの順序で積層した(積層工程)。上記積層工程の後、続けて、弾性層形成用組成物15を含む積層体5を加熱器71に搬送し、該加熱器71により所定の加熱を行い、弾性層形成用組成物15を硬化させて弾性層10を形成した(硬化工程)。このようにして、上記第一実施形態と同様の構成を有する積層シートサンプル(1)を作製した。
<Experiment 1>
A laminated sheet sample (1) was produced by the method described in the first embodiment. Specifically, the laminated sheet sample (1) supplies the first resin film 31 to the first roll 51 and the second resin film 32 to the second roll 52 using the laminated sheet manufacturing apparatus 100 shown in FIG. Between the first resin film 31 passing over the first roll 51 and the second resin film 32 passing over the second roll 52 using a coater, the elastic layer forming composition 15 (thermosetting elasticity The first resin film 31, the elastic layer forming composition 15, and the second resin film 32 were laminated in this order (lamination step). After the laminating step, the laminated body 5 containing the elastic layer forming composition 15 is conveyed to a heater 71, and predetermined heating is performed by the heater 71 to cure the elastic layer forming composition 15. Thus, the elastic layer 10 was formed (curing step). In this way, a laminated sheet sample (1) having the same configuration as that of the first embodiment was produced.
 従来の方法で作製した積層シートサンプル(2)を用意した。このサンプル(2)は、上記サンプル(1)で使用した弾性層形成用組成物を用いて、弾性層となる弾性フィルムを単体で形成し、次いで、第一樹脂フィルムと弾性フィルムと第二樹脂フィルムとを、この順序で積層した後、加熱することにより作製されたものである。上記サンプル(2)の各層の材料や厚さは上記サンプル(1)と同じである。 A laminated sheet sample (2) prepared by a conventional method was prepared. In this sample (2), an elastic film to be an elastic layer is formed as a single unit using the elastic layer forming composition used in the sample (1), and then a first resin film, an elastic film, and a second resin are formed. The film was produced by laminating in this order and then heating. The material and thickness of each layer of the sample (2) are the same as those of the sample (1).
 上記サンプル(1)および(2)について、第一樹脂層と弾性層、第二樹脂層と弾性層の層間密着性を、T型剥離による層間剥離強度測定によって評価した。目標とする層間剥離強度を達成し、樹脂層と弾性層とが強固に密着していた場合は「○」と評価し、層間剥離強度が目標の値に達せず、比較的簡単に剥がれてしまった場合は「×」と評価した。結果を表1に示す。 For the samples (1) and (2), the interlaminar adhesion between the first resin layer and the elastic layer, and the second resin layer and the elastic layer was evaluated by measuring the delamination strength by T-type delamination. When the target delamination strength is achieved and the resin layer and the elastic layer are firmly adhered, it is evaluated as “◯”, and the delamination strength does not reach the target value, and it is relatively easily peeled off. When it was, it was evaluated as “×”. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、サンプル(2)よりもサンプル(1)の方が層間密着性に優れていたことが確認された。この結果から、ここに開示される製造方法を採用することで、生産性に優れた方法で、積層シートの層間密着性を改善し得ることがわかる。 As shown in Table 1, it was confirmed that the sample (1) was superior in interlayer adhesion to the sample (2). From this result, it can be seen that by adopting the manufacturing method disclosed herein, the interlayer adhesion of the laminated sheet can be improved by a method having excellent productivity.
 <実験2>
 次に、加熱工程の条件について検討を行った。具体的には、硬化工程(加熱工程)を表2に示す条件に変更した他は上記サンプル(1)と同様にして積層シートサンプル(3)および(4)を作製した。対比のため、サンプル(1)も用意し、これらサンプル(1)、(3)および(4)について外観評価を行った。
<Experiment 2>
Next, the conditions of the heating process were examined. Specifically, laminated sheet samples (3) and (4) were produced in the same manner as the sample (1) except that the curing step (heating step) was changed to the conditions shown in Table 2. For comparison, sample (1) was also prepared, and the appearance of these samples (1), (3), and (4) was evaluated.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 外観評価の結果、サンプル(1)、(3)および(4)は、いずれも実用上問題のないレベルの外観を有していた。また、サンプル(3)および(4)は、サンプル(1)よりも気泡の発生がさらに低減されており、より優れた外観を有していた。なかでも、サンプル(4)は気泡の発生がまったく認められず特に優れた外観を有していた。 As a result of the appearance evaluation, the samples (1), (3) and (4) all had a level of appearance with no practical problem. Samples (3) and (4) were further reduced in bubble generation than sample (1) and had a better appearance. In particular, Sample (4) had a particularly excellent appearance with no generation of bubbles.
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。 Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.
  1  積層シート
  5  積層体
 10  弾性層
 15  弾性層形成用組成物
 21  第一樹脂層
 22  第二樹脂層
 31  第一樹脂フィルム
 32  第二樹脂フィルム
 51  第一ロール
 52  第二ロール
DESCRIPTION OF SYMBOLS 1 Laminated sheet 5 Laminated body 10 Elastic layer 15 Composition for elastic layer formation 21 First resin layer 22 Second resin layer 31 First resin film 32 Second resin film 51 First roll 52 Second roll

Claims (4)

  1.  第一樹脂層と、第二樹脂層と、該第一樹脂層および該第二樹脂層の間に配置された弾性層と、を備える積層シートを製造する方法であって、
     前記第一樹脂層となる第一樹脂フィルムと前記第二樹脂層となる第二樹脂フィルムとの間に弾性層形成用組成物が配置された積層体を形成する積層工程と;
     前記積層工程の後、続けて、該弾性層形成用組成物を硬化させて弾性層を形成する硬化工程と;
     を含み、
     前記硬化工程は加熱工程であり、
     前記硬化前の弾性層形成用組成物は、前記積層工程環境において流動性を有し、かつ前記硬化工程環境において不揮発性である、積層シートの製造方法。
    A method for producing a laminated sheet comprising a first resin layer, a second resin layer, and an elastic layer disposed between the first resin layer and the second resin layer,
    A laminating step of forming a laminate in which the elastic layer forming composition is disposed between the first resin film to be the first resin layer and the second resin film to be the second resin layer;
    Subsequently to the laminating step, a curing step of curing the elastic layer forming composition to form an elastic layer;
    Including
    The curing step is a heating step;
    The method for producing a laminated sheet, wherein the composition for forming an elastic layer before curing has fluidity in the lamination process environment and is non-volatile in the curing process environment.
  2.  前記加熱工程は、
      前記弾性層形成用組成物に対して、温度T℃で加熱を行うプレ加熱工程と;
      前記弾性層形成用組成物に対して、温度T℃で加熱を行う主加熱工程と(ここで、T<Tを満たす。);
     を含む、請求項1に記載の製造方法。
    The heating step includes
    A preheating step of heating the elastic layer forming composition at a temperature T P ° C;
    A main heating step of heating the elastic layer forming composition at a temperature T M ° C. (where T P <T M is satisfied);
    The manufacturing method of Claim 1 containing this.
  3.  前記第一樹脂層および前記第二樹脂層は前記弾性層に対して非剥離性である、請求項2に記載の製造方法。 The manufacturing method according to claim 2, wherein the first resin layer and the second resin layer are non-peelable with respect to the elastic layer.
  4.  前記積層工程は、
      前記第一樹脂フィルムを第一ロールに供給すること;
      前記第二樹脂フィルムを、前記第一ロールと向かいあうように配置された第二ロールに供給すること;および
      前記第一ロールに供給された前記第一樹脂フィルムと前記第二ロールに供給された前記第二樹脂フィルムとの間に、前記弾性層形成用組成物を供給すること;
     を含む、請求項1~3のいずれか一項に記載の製造方法。
     
    The laminating step includes
    Supplying the first resin film to a first roll;
    Supplying the second resin film to a second roll disposed so as to face the first roll; and the first resin film supplied to the first roll and the second roll supplied to the second roll. Supplying the elastic layer-forming composition between the second resin film;
    The production method according to any one of claims 1 to 3, comprising
PCT/JP2015/070501 2014-07-30 2015-07-17 Method for producing laminated sheet WO2016017452A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014155503A JP5758031B1 (en) 2014-07-30 2014-07-30 Laminated sheet manufacturing method
JP2014-155503 2014-07-30

Publications (1)

Publication Number Publication Date
WO2016017452A1 true WO2016017452A1 (en) 2016-02-04

Family

ID=53887548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070501 WO2016017452A1 (en) 2014-07-30 2015-07-17 Method for producing laminated sheet

Country Status (3)

Country Link
JP (1) JP5758031B1 (en)
TW (1) TW201604017A (en)
WO (1) WO2016017452A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54101884A (en) * 1978-01-07 1979-08-10 Bayer Ag Platinum catalyst added organopolysiloxane for use in making light transmitting laminates
JP2004066556A (en) * 2002-08-02 2004-03-04 Shin Etsu Polymer Co Ltd Transparent joining member, transparent laminate, and method for producing the laminate
JP2012221682A (en) * 2011-04-07 2012-11-12 Bando Chemical Industries Ltd Flexible light guide plate and method for manufacturing the same
JP2014029432A (en) * 2012-07-31 2014-02-13 Bando Chem Ind Ltd Flexible light guide plate and method for manufacturing flexible light guide plate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012082320A (en) * 2010-10-12 2012-04-26 Nitto Denko Corp Semi-cured silicone resin sheet
JP2012183520A (en) * 2011-03-08 2012-09-27 Kansai Paint Co Ltd Multi-layered coated film formation method, and coated article
JP2014127575A (en) * 2012-12-26 2014-07-07 Nitto Denko Corp Sealing sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54101884A (en) * 1978-01-07 1979-08-10 Bayer Ag Platinum catalyst added organopolysiloxane for use in making light transmitting laminates
JP2004066556A (en) * 2002-08-02 2004-03-04 Shin Etsu Polymer Co Ltd Transparent joining member, transparent laminate, and method for producing the laminate
JP2012221682A (en) * 2011-04-07 2012-11-12 Bando Chemical Industries Ltd Flexible light guide plate and method for manufacturing the same
JP2014029432A (en) * 2012-07-31 2014-02-13 Bando Chem Ind Ltd Flexible light guide plate and method for manufacturing flexible light guide plate

Also Published As

Publication number Publication date
JP2016032869A (en) 2016-03-10
TW201604017A (en) 2016-02-01
JP5758031B1 (en) 2015-08-05

Similar Documents

Publication Publication Date Title
TWI593551B (en) Surface treating film, surface protection film, and precision electrical and electronic components attached with the same
JP6353184B2 (en) Adhesive sheet with protective film, method for producing laminate, and method for producing printed wiring board
JP6098289B2 (en) Thermally conductive sheet
JP5485721B2 (en) Adhesive composition and adhesive sheet using the same
JP2010176022A (en) Method for producing polarizing plate
JP5522935B2 (en) Adhesive composition and adhesive sheet
JP2013176985A (en) Method of producing surface protection plate
KR102215979B1 (en) Adhesive sheet and method for producing electronic component using adhesive sheet
CN107541149A (en) Optical-use pressure-sensitive adhesive sheet, polarizing coating and liquid crystal display device with adhesive phase
JP5958610B1 (en) Hot melt adhesive sheet, method for producing adhesive structure using the same, and method for peeling
JP6582904B2 (en) Hot melt adhesive sheet for electromagnetic induction heating, adhesive structure using the same, and method for producing adhesive structure
TW201937213A (en) Polarizing plate
JP2015079948A (en) Thermally conductive sheet
JP6897674B2 (en) Self-adhesive layer
CN110591582A (en) Process film production method for OLED module manufacturing process easy to tear off after UV and product thereof
TWI696853B (en) Method of producing polarizing plate
JP5758031B1 (en) Laminated sheet manufacturing method
KR20150089207A (en) Double-sided adhesive sheet for polishing pad
JP6311759B2 (en) Adhesive sheet with protective film, method for producing laminate, and method for producing printed wiring board
JP2016060128A (en) Transfer film, production method of resin/glass laminate using the same, and resin/glass laminate
JP5089050B2 (en) Release film
TWI772095B (en) Release film for fabricating printed circuit board
CN111073545B (en) Method for manufacturing laminated film material and laminated film material manufactured by same
WO2024019156A1 (en) Adhesive sheet, optical film with adhesive sheet, and methods for manufacturing adhesive sheet and optical film with adhesive sheet
JP2018123331A (en) Adhesive sheet with protective film, manufacturing method of laminate and manufacturing method of printed wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15827576

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15827576

Country of ref document: EP

Kind code of ref document: A1