WO2016017333A1 - Magnetic shield and method of producing same - Google Patents

Magnetic shield and method of producing same Download PDF

Info

Publication number
WO2016017333A1
WO2016017333A1 PCT/JP2015/068425 JP2015068425W WO2016017333A1 WO 2016017333 A1 WO2016017333 A1 WO 2016017333A1 JP 2015068425 W JP2015068425 W JP 2015068425W WO 2016017333 A1 WO2016017333 A1 WO 2016017333A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
magnetic shield
caulking
portions
shield
Prior art date
Application number
PCT/JP2015/068425
Other languages
French (fr)
Japanese (ja)
Inventor
達之 山口
Original Assignee
株式会社東海理化電機製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東海理化電機製作所 filed Critical 株式会社東海理化電機製作所
Publication of WO2016017333A1 publication Critical patent/WO2016017333A1/en
Priority to US15/390,919 priority Critical patent/US20170108631A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices

Definitions

  • the present invention relates to a magnetic shield and a manufacturing method thereof, and more particularly, to a magnetic shield used in a current sensor for detecting a current flowing in a conductor and a manufacturing method thereof.
  • a current sensor that detects a current flowing through a conductor by measuring a magnetic flux generated by a current flowing through the conductor is known (see, for example, Patent Documents 1 and 2).
  • the current sensors disclosed in Patent Documents 1 and 2 include an annular core (magnetic shield) having a gap on one side.
  • the core is made of a grain-oriented electrical steel sheet having an easy axis of magnetization in a certain direction.
  • a conductor such as a conductive wire or a bus bar is inserted in the hollow portion of the core, and the detection element is arranged in the gap of the core, thereby detecting a magnetic flux change generated in the core as a current. Yes.
  • the core (magnetic shield) used in the current sensor disclosed in Patent Document 1 is manufactured by the following manufacturing processes (1) to (4).
  • a step of extracting the first core member having concave and convex attachment portions at four corners by pressing (2) A step of extracting the second core member having uneven mounting portions at four corners by pressing, (3) By pressing the second core member into the previously extracted first core member, the convex portion of the mounting portion of the second core member is press-fitted into the concave portion of the mounting portion of the first core member.
  • the core (magnetic shield) used in the current sensor disclosed in Patent Document 2 is manufactured by the following manufacturing processes (5) to (10).
  • the manufacturing method of the core used for the current sensor disclosed in Patent Document 1 is formed by forming a concave and convex mounting portion on each of the directional electromagnetic steel sheets, and superimposing multiple directional electromagnetic steel sheets. Unless the steps (1) to (3) for forming the core shape are repeated, the core cannot be mass-produced. Therefore, production efficiency is low.
  • An object of the present invention is to provide a magnetic shield that is low in cost and excellent in dimensional accuracy, and a method for manufacturing the same.
  • a magnetic shield according to an embodiment of the present invention includes a shield part that surrounds a current path through which a current flows and a magnetic detection element that detects a current flowing through the current path, and the shield part includes at least two magnetic elements.
  • a plate material is laminated, a bending portion where the laminated magnetic plate material is bent, and a caulking portion that is caulked together by plastic deformation of predetermined portions of the bending portion.
  • the bending portion according to [1] includes two opposing side wall portions and a connecting wall portion that connects the two side wall portions.
  • the caulking portion according to [1] or [2] is caulked in a lump by plastically deforming predetermined portions of both edge portions of the bent portion.
  • the caulking portion according to [2] is formed at at least three locations including two locations on the two sidewall portions and one location on the connecting wall portion at one end in the width direction of the sidewall portion. .
  • the caulking portion according to [1] to [4] includes a plastic deformation structure formed in a direction orthogonal to the stacking direction of the magnetic plate members.
  • the caulking portion according to [1] to [4] includes a plastic deformation structure formed in a direction along the stacking direction of the magnetic plate members.
  • a method of manufacturing a magnetic shield according to an embodiment of the present invention includes a step of laminating at least two long belt-like magnetic plates, and bending a plurality of bent portions along the longitudinal direction of the laminated magnetic plates. And a step of collectively caulking predetermined portions of the plurality of bent portions, and a step of cutting the plurality of bent portions into a predetermined length.
  • FIG. 1 is an explanatory diagram showing a current sensor including a magnetic shield according to a first embodiment suitable for the present invention.
  • FIG. 2 is a perspective view showing the magnetic shield according to the first embodiment.
  • FIG. 3A is an explanatory diagram illustrating the method of manufacturing the magnetic shield according to the first embodiment.
  • FIG. 3B is an explanatory diagram illustrating the method of manufacturing the magnetic shield according to the first embodiment.
  • FIG. 3C is an explanatory view showing the method of manufacturing the magnetic shield according to the first embodiment.
  • FIG. 3D is an explanatory view showing the method of manufacturing the magnetic shield according to the first embodiment.
  • FIG. 3E is an explanatory view showing the method of manufacturing the magnetic shield according to the first embodiment.
  • FIG. 4A is a perspective view showing a magnetic shield according to the second embodiment.
  • FIG. 4B is an enlarged perspective view showing a caulking portion of the magnetic shield.
  • FIG. 5 is a perspective view showing a magnetic shield according to the third embodiment.
  • reference numeral 10 generally indicates a current sensor having a typical magnetic shield in the first embodiment.
  • the current sensor 10 is used to detect the magnitude of a current flowing through a drive motor and an external device such as a battery in a hybrid vehicle or an electric vehicle, for example.
  • the current sensor 10 includes a current path 20 such as a bus bar or a cable through which a current flows, a magnetic detection element 30 that detects a magnetic field generated by a current flowing through the current path 20, and the current path 20 and the magnetic detection. And a magnetic shield 40 surrounding the element 30.
  • a current path 20 such as a bus bar or a cable through which a current flows
  • a magnetic detection element 30 that detects a magnetic field generated by a current flowing through the current path 20, and the current path 20 and the magnetic detection.
  • a magnetic shield 40 surrounding the element 30.
  • the magnetic detection element 30 for example, a Hall IC in which electronic components such as an amplifier are packaged as an integrated circuit, a packaged magnetoresistive IC, or the like is used.
  • a material of the magnetic shield 40 for example, a magnetic plate material (hereinafter referred to as “electromagnetic steel plate”) such as a directional electromagnetic steel plate or a non-oriented electromagnetic steel plate made of a silicon steel plate is used.
  • the magnetic detection element 30 is mounted on a substrate (not shown).
  • the board is provided with a connector having connection terminals electrically connected to a processing circuit for processing the output from the magnetic detection element 30.
  • the connector is electrically connected to an external device such as a control unit (not shown).
  • the magnetic shield 40 is used to reduce the influence of a disturbance magnetic field other than a magnetic field due to an electric current.
  • the magnetic shield 40 is formed by stacking at least two electromagnetic steel plates 41 and bending them.
  • the magnetic shield 40 includes a substantially U-shaped bent portion 44 in which one side ends of the opposed long strip-like side wall portions 42, 42 are bent with a connecting wall portion 43.
  • the bending portion 44 is configured as a shield portion of the magnetic shield 40.
  • a caulking portion 45 is formed at a predetermined portion of the edge portion of the bending portion 44, and the electromagnetic steel plates 41 are fixed by the caulking portion 45 so as not to be relatively displaced.
  • the caulking portion 45 is not a caulking portion that fits and press-fits an uneven caulking portion processed on each electromagnetic steel sheet itself.
  • the caulking portion 45 is formed by plastically deforming predetermined portions of the edge portions of the laminated electromagnetic steel plates 41 and caulking them together.
  • the caulking portion 45 it is preferable that the caulking portion 45 is caulked in a lump by plastically deforming a position closer to the tip of both end edges of the side wall portion 42 of the magnetic shield 40 and an intermediate position between both end edges of the connecting wall portion 43. is there. Predetermined portions of these edge portions have a substantially wedge-shaped cross-sectional shape that narrows toward the inside of the plate thickness.
  • the method of manufacturing the magnetic shield 40 includes a step of laminating the three long belt-like electromagnetic steel plates 41,..., 41, and bending the laminated electromagnetic steel plates 41 into a wave shape. This is effectively achieved by a series of steps including a step, a step of caulking each of the bent electromagnetic steel plates 41, and a step of cutting each of the bent electromagnetic steel plates 41.
  • the magnetic shield 40 In manufacturing the magnetic shield 40, first, as shown in FIG. 3A, three long strip-shaped electromagnetic steel plates 41 having a predetermined length and width are overlapped and stacked.
  • the thickness of the magnetic plate made of the three electromagnetic steel plates 41 is, for example, about 1 mm.
  • the laminated long strip-shaped electromagnetic steel plates 41 are bent into a wave shape over the longitudinal direction by an upper mold and a lower mold (not shown).
  • a plurality of substantially U-shaped bent portions 44 are formed in which one side ends of the opposed long belt-like side wall portions 42 are bent by the connecting wall portions 43.
  • each bending portion 44 is pressed from a substantially horizontal direction by the pressing surface 51 of the caulking jig 50.
  • the pressing surface 51 corresponding to the connecting wall portion 43 in the caulking jig 50 into an oblique structure, the steel plate end face is plastically deformed inward in the vertical direction by pressing the caulking jig 50 from the horizontal direction.
  • a crimped caulking portion 45 is formed.
  • the electromagnetic steel sheet 41 is separated into a large number of bending parts 44 by cutting the side wall part 42 of each bending part 44 into a predetermined length along the cutting line CL.
  • the cut bending portion 44 is subjected to an annealing treatment. By annealing, the distortion in the electromagnetic steel sheet 41 is removed, the magnetic characteristics are stabilized, and the shape of the bending portion 44 is corrected.
  • the laminated long strip-shaped electromagnetic steel sheet 41 When the laminated long strip-shaped electromagnetic steel sheet 41 is bent into a wave shape, a position closer to the tip of both end edges of the side wall 42 in the bent portion 44 and an intermediate position between both end edges of the connecting wall 43 are set. Of course, they can be caulked together. Since the laminated bending portions 44 are caulked together, the electromagnetic steel plates 41 are not separated from each other when the laminated long strip-like electromagnetic steel plates 41 are folded back. It can prevent that a clearance gap arises in a steel plate lamination
  • FIG. 4A and 4B schematically illustrate a configuration example of the magnetic shield 40 according to the second embodiment.
  • the caulking portion 45 is formed on the edge portion of the magnetic shield 40.
  • the inner surface of the edge portion of the magnetic shield 40 is used. This is different from the first embodiment in that the caulking portion 45 is formed. Therefore, by using the same member code as the member code used in the first embodiment, detailed description about the member is omitted.
  • the caulking portion 45 formed on the inner surface of the edge portion of the magnetic shield 40 can be formed at the same time as the laminated strip-shaped electromagnetic steel sheet 41 is bent into a wave shape over the longitudinal direction.
  • the caulking portion 45 is formed at a position closer to the tip of the inner surface of both ends of the side wall portion 42 of the magnetic shield 40 and an intermediate position of the inner surface of both ends of the connecting wall portion 43. It has a concave cross-sectional shape toward the thickness direction.
  • FIG. 5 schematically illustrates a configuration example of the magnetic shield 40 according to the third embodiment.
  • the caulking pieces 46 are formed at both end edges near the tip of the side wall 42 of the magnetic shield 40 corresponding to the innermost electromagnetic steel plate 41 and both end edges of the connecting wall 43.
  • the caulking piece 46 is formed by punching out the electromagnetic steel plates 41 laminated and arranged at the bottom of the three electromagnetic steel plates 41. A jig is applied to the caulking piece 46, and the caulking piece 46 is pressed inward so as to be plastically deformed, and the magnetic shield 40 is caulked and fixed together.
  • FIG. 6 schematically illustrates a configuration example of the magnetic shield 40 according to the fourth embodiment.
  • the caulking hole 47 and the rivet 48 are configured as caulking portions.
  • caulking holes 47 are formed penetrating at positions closer to the tips of the inner surfaces of both end edges of the side wall 42 and intermediate positions of the inner surfaces of both end edges of the connecting wall 43.
  • Three electromagnetic steel plates 41 each having a caulking hole 47 are stacked on top of each other, a shaft portion of a rivet 48 is inserted into each caulking hole 47, and a tip portion of the shaft portion is crushed to form three sheets.
  • the electromagnetic steel plates 41 are fixed together by rivet caulking.
  • the magnetic shield 40 according to the present invention can be modified as follows.
  • the magnetic shield 40 can be applied to a core that collects magnetic flux generated by the current flowing through the current path 20.
  • the arrangement position, the arrangement number, the shape, and the like of the caulking portion of the magnetic shield 40 can be appropriately selected according to the magnetic performance, strength, and the like of the magnetic shield 40.
  • the present invention can be applied to electric circuits other than electric circuits connected to vehicle motors and batteries.
  • the present invention can be applied to a drive motor used in a hybrid vehicle or an electric vehicle, and a current sensor having a magnetic detection element for detecting a current flowing in a battery.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measuring Magnetic Variables (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

Provided are a low-cost magnetic shield having excellent dimensional accuracy and a method of producing the same. A magnetic shield (40) is provided with a shield part (42, 43) surrounding a current path (20) through which current flows and a magnetic detection element (30) for detecting the current flowing through the current path (20). The shield part (42, 43) has at least two laminated magnetic plate members (41), a bent portion (44) at which the laminated magnetic plate members (41) are bent, and a crimped portion (45) where a prescribed location of the bent portion (44) is crimped as a whole through plastic deformation.

Description

磁気シールド及びその製造方法Magnetic shield and manufacturing method thereof
本発明は、磁気シールド及びその製造方法に係り、特に、導体に流れる電流を検出する電流センサに用いられる磁気シールド及びその製造方法に関する。 The present invention relates to a magnetic shield and a manufacturing method thereof, and more particularly, to a magnetic shield used in a current sensor for detecting a current flowing in a conductor and a manufacturing method thereof.
導体に流れる電流が発生する磁束を計測することで、導体の通電電流を検出する電流センサが知られている(例えば、特許文献1及び2参照)。 2. Description of the Related Art A current sensor that detects a current flowing through a conductor by measuring a magnetic flux generated by a current flowing through the conductor is known (see, for example, Patent Documents 1 and 2).
特許文献1及び2に開示された電流センサは、一辺にギャップが設けられた環状のコア(磁気シールド)を備えている。コアは、一定の方向に磁化容易軸を有する方向性電磁鋼板からなる。コアの中空部には、導電線又はバスバー等の導体が挿通して設けられており、検出素子をコアのギャップ中に配置することで、コアに生じる磁束変化を電流として検出する構成となっている。 The current sensors disclosed in Patent Documents 1 and 2 include an annular core (magnetic shield) having a gap on one side. The core is made of a grain-oriented electrical steel sheet having an easy axis of magnetization in a certain direction. A conductor such as a conductive wire or a bus bar is inserted in the hollow portion of the core, and the detection element is arranged in the gap of the core, thereby detecting a magnetic flux change generated in the core as a current. Yes.
特許文献1に開示された電流センサに用いられるコア(磁気シールド)は、次の(1)~(4)の製造工程により製造される。 The core (magnetic shield) used in the current sensor disclosed in Patent Document 1 is manufactured by the following manufacturing processes (1) to (4).
(1)4つの角部に凹凸状の取付部を有する第1のコア部材をプレスにより抜き取る工程、
(2)4つの角部に凹凸状の取付部を有する第2のコア部材をプレスにより抜き取る工程、
(3)先に抜き取られた第1のコア部材に第2のコア部材を押し込むことにより、第1のコア部材の取付部の凹部に第2のコア部材の取付部の凸部を圧入して、第1のコア部材と第2のコア部材とを結合する工程、及び
(4)上記(1)~(3)の工程を繰り返すことにより、第1のコア部材と第2のコア部材とを積層する工程。
(1) A step of extracting the first core member having concave and convex attachment portions at four corners by pressing,
(2) A step of extracting the second core member having uneven mounting portions at four corners by pressing,
(3) By pressing the second core member into the previously extracted first core member, the convex portion of the mounting portion of the second core member is press-fitted into the concave portion of the mounting portion of the first core member. A step of joining the first core member and the second core member, and (4) repeating the steps (1) to (3) above, thereby combining the first core member and the second core member. Lamination process.
一方、特許文献2に開示された電流センサに用いられるコア(磁気シールド)は、次の(5)~(10)の製造工程により製造される。 On the other hand, the core (magnetic shield) used in the current sensor disclosed in Patent Document 2 is manufactured by the following manufacturing processes (5) to (10).
(5)芯棒にシート状の方向性電磁鋼板を環状に巻くことで積層する工程、
(6)積層された方向性電磁鋼板の所定の箇所にスポット溶接する工程、
(7)芯棒を取り出すことで環状に巻かれた積層コアを形成する工程、
(8)環状の積層コアに焼鈍を行う工程、
(9)環状の積層コアに接着剤を含浸させ、乾燥させることで固着する工程、及び
(10)固着された環状の積層コアを2つに分割する工程。
(5) A step of laminating a core-shaped sheet-like directional electrical steel sheet by winding it in an annular shape,
(6) a step of spot welding to a predetermined portion of the laminated grain-oriented electrical steel sheet;
(7) A step of forming a laminated core wound in an annular shape by taking out the core rod,
(8) Annealing the annular laminated core,
(9) impregnating the annular laminated core with an adhesive and fixing it by drying; and (10) dividing the fixed annular laminated core into two.
特開2011-43422号公報JP 2011-43422 A 特開2013-148513号公報JP 2013-148513 A
特許文献1に開示された電流センサに用いられるコアの製造方法は、方向性電磁鋼板の一枚ずつに凹凸状の取付部を形成し、多数枚の方向性電磁鋼板を重ね合わせることにより、一体のコア形状を形成する上記(1)~(3)の工程を繰り返さなければ、コアを大量生産することはできない。従って、生産効率が低い。 The manufacturing method of the core used for the current sensor disclosed in Patent Document 1 is formed by forming a concave and convex mounting portion on each of the directional electromagnetic steel sheets, and superimposing multiple directional electromagnetic steel sheets. Unless the steps (1) to (3) for forming the core shape are repeated, the core cannot be mass-produced. Therefore, production efficiency is low.
一方、特許文献2に開示された電流センサに用いられるコアの製造方法にあっては、環状に巻かれた積層コアの内外径の寸法精度がばらつき、一回の工程で得られる製品の量も少ない。従って、寸法精度が低く生産効率が低い。 On the other hand, in the manufacturing method of the core used for the current sensor disclosed in Patent Document 2, the dimensional accuracy of the inner and outer diameters of the laminated core wound in an annular shape varies, and the amount of product obtained in a single process is also large. Few. Therefore, the dimensional accuracy is low and the production efficiency is low.
本発明の目的は、低コストで、寸法精度に優れた磁気シールド及びその製造方法を提供することにある。 An object of the present invention is to provide a magnetic shield that is low in cost and excellent in dimensional accuracy, and a method for manufacturing the same.
[1]本発明の一実施形態による磁気シールドは、電流が流れる電流路と前記電流路に流れる電流を検出する磁気検出素子とを囲むシールド部を備え、前記シールド部は、少なくとも2枚の磁性板材が積層され、前記積層された磁性板材が曲げ加工された曲げ加工部と、前記曲げ加工部の所定の箇所を塑性変形させて一括してかしめられたかしめ部とを有する。 [1] A magnetic shield according to an embodiment of the present invention includes a shield part that surrounds a current path through which a current flows and a magnetic detection element that detects a current flowing through the current path, and the shield part includes at least two magnetic elements. A plate material is laminated, a bending portion where the laminated magnetic plate material is bent, and a caulking portion that is caulked together by plastic deformation of predetermined portions of the bending portion.
[2][1]に記載の前記曲げ加工部は、対向する2枚の側壁部と、前記2枚の側壁部を接続する連結壁部を有する。 [2] The bending portion according to [1] includes two opposing side wall portions and a connecting wall portion that connects the two side wall portions.
[3][1]又は[2]に記載の前記かしめ部は、前記曲げ加工部の両端縁部の所定の箇所を塑性変形させて一括してかしめられる。
[4][2]記載の前記かしめ部は、前記側壁部の幅方向の一端において、前記2枚の側壁部における2箇所と、前記連結壁部における1箇所を含む少なくとも3箇所に形成される。
[5][1]~[4]に記載の前記かしめ部は、前記磁性板材の積層方向に直交する方向において形成される塑性変形構造を含む。
[6][1]~[4]に記載の前記かしめ部は、前記磁性板材の積層方向に沿う方向において形成される塑性変形構造を含む。
[3] The caulking portion according to [1] or [2] is caulked in a lump by plastically deforming predetermined portions of both edge portions of the bent portion.
[4] The caulking portion according to [2] is formed at at least three locations including two locations on the two sidewall portions and one location on the connecting wall portion at one end in the width direction of the sidewall portion. .
[5] The caulking portion according to [1] to [4] includes a plastic deformation structure formed in a direction orthogonal to the stacking direction of the magnetic plate members.
[6] The caulking portion according to [1] to [4] includes a plastic deformation structure formed in a direction along the stacking direction of the magnetic plate members.
[7]本発明の一実施形態による磁気シールドの製造方法は、少なくとも2枚の長尺帯状の磁性板材を積層する工程と、前記積層した磁性板材の長手方向にわたって複数の曲げ加工部を折り曲げ形成する工程と、前記複数の曲げ加工部の所定の箇所を一括してかしめる工程と、前記複数の曲げ加工部を所定の長さに切断する工程と、を有する。 [7] A method of manufacturing a magnetic shield according to an embodiment of the present invention includes a step of laminating at least two long belt-like magnetic plates, and bending a plurality of bent portions along the longitudinal direction of the laminated magnetic plates. And a step of collectively caulking predetermined portions of the plurality of bent portions, and a step of cutting the plurality of bent portions into a predetermined length.
 本発明の一実施形態によると、低コストで、寸法精度に優れた磁気シールド及びその製造方法磁気シールドの製造方法を提供することができる。 According to an embodiment of the present invention, it is possible to provide a magnetic shield with excellent dimensional accuracy at low cost and a method for manufacturing the magnetic shield.
図1は、本発明に好適な第1の実施の形態に係る磁気シールドを備えた電流センサを示す説明図である。FIG. 1 is an explanatory diagram showing a current sensor including a magnetic shield according to a first embodiment suitable for the present invention. 図2は、第1の実施の形態に係る磁気シールドを示す斜視図である。FIG. 2 is a perspective view showing the magnetic shield according to the first embodiment. 図3Aは、第1の実施の形態に係る磁気シールドの製造方法を示す説明図である。FIG. 3A is an explanatory diagram illustrating the method of manufacturing the magnetic shield according to the first embodiment. 図3Bは、第1の実施の形態に係る磁気シールドの製造方法を示す説明図である。FIG. 3B is an explanatory diagram illustrating the method of manufacturing the magnetic shield according to the first embodiment. 図3Cは、第1の実施の形態に係る磁気シールドの製造方法を示す説明図である。FIG. 3C is an explanatory view showing the method of manufacturing the magnetic shield according to the first embodiment. 図3Dは、第1の実施の形態に係る磁気シールドの製造方法を示す説明図である。FIG. 3D is an explanatory view showing the method of manufacturing the magnetic shield according to the first embodiment. 図3Eは、第1の実施の形態に係る磁気シールドの製造方法を示す説明図である。FIG. 3E is an explanatory view showing the method of manufacturing the magnetic shield according to the first embodiment. 図4Aは、第2の実施の形態に係る磁気シールドを示す斜視図である。FIG. 4A is a perspective view showing a magnetic shield according to the second embodiment. 図4Bは、磁気シールドのかしめ部を拡大して示す斜視図である。FIG. 4B is an enlarged perspective view showing a caulking portion of the magnetic shield. 図5は、第3の実施の形態に係る磁気シールドを示す斜視図である。FIG. 5 is a perspective view showing a magnetic shield according to the third embodiment. 図6は、第4の実施の形態に係る磁気シールドを示す斜視図である。FIG. 6 is a perspective view showing a magnetic shield according to the fourth embodiment.
以下、本発明の好適な実施の形態を添付図面に基づいて具体的に説明する。 Preferred embodiments of the present invention will be specifically described below with reference to the accompanying drawings.
[第1の実施の形態]
(電流センサの構成)
図1において、全体を示す符号10は、この第1の実施の形態における典型的な磁気シールドを備えた電流センサを模式的に示している。この電流センサ10は、例えばハイブリッド車や電気自動車における駆動モータとバッテリー等の外部装置とに流れる電流の大きさを検出するために用いられる。
[First Embodiment]
(Configuration of current sensor)
In FIG. 1, reference numeral 10 generally indicates a current sensor having a typical magnetic shield in the first embodiment. The current sensor 10 is used to detect the magnitude of a current flowing through a drive motor and an external device such as a battery in a hybrid vehicle or an electric vehicle, for example.
電流センサ10は、図1に示すように、電流が流れるバスバー又はケーブル等の電流路20と、電流路20に流れる電流が発生する磁界を検出する磁気検出素子30と、電流路20及び磁気検出素子30を囲む磁気シールド40とを備えている。 As shown in FIG. 1, the current sensor 10 includes a current path 20 such as a bus bar or a cable through which a current flows, a magnetic detection element 30 that detects a magnetic field generated by a current flowing through the current path 20, and the current path 20 and the magnetic detection. And a magnetic shield 40 surrounding the element 30.
磁気検出素子30としては、例えば増幅器等の電子部品が集積回路としてパッケージ化されたホールIC、又はパッケージ化された磁気抵抗IC等が用いられる。磁気シールド40の素材としては、例えば珪素鋼板からなる方向性電磁鋼板や無方向性電磁鋼板等の磁性板材(以下、「電磁鋼板」という。)が用いられる。 As the magnetic detection element 30, for example, a Hall IC in which electronic components such as an amplifier are packaged as an integrated circuit, a packaged magnetoresistive IC, or the like is used. As a material of the magnetic shield 40, for example, a magnetic plate material (hereinafter referred to as “electromagnetic steel plate”) such as a directional electromagnetic steel plate or a non-oriented electromagnetic steel plate made of a silicon steel plate is used.
磁気検出素子30は、図示しない基板に実装されている。基板には、磁気検出素子30からの出力を処理する処理回路に電気的に接続された接続端子を有するコネクタが設けられている。コネクタは、図示しない制御ユニットなどの外部装置に電気的に接続されるようになっている。 The magnetic detection element 30 is mounted on a substrate (not shown). The board is provided with a connector having connection terminals electrically connected to a processing circuit for processing the output from the magnetic detection element 30. The connector is electrically connected to an external device such as a control unit (not shown).
磁気シールド40は、図1及び2に示すように、電流による磁界以外の外乱磁界の影響を低減させるために用いられるものである。磁気シールド40は、少なくとも2枚以上の電磁鋼板41を積層して折り曲げ形成されている。 As shown in FIGS. 1 and 2, the magnetic shield 40 is used to reduce the influence of a disturbance magnetic field other than a magnetic field due to an electric current. The magnetic shield 40 is formed by stacking at least two electromagnetic steel plates 41 and bending them.
磁気シールド40は、図1及び2に示すように、相対する長尺帯状の側壁部42,42の一側端同士が連結壁部43をもって折り曲げ形成された略U字状の曲げ加工部44を有している。曲げ加工部44は、磁気シールド40のシールド部として構成されている。曲げ加工部44の端縁部の所定の箇所には、かしめ部45が形成されており、かしめ部45により、各電磁鋼板41が相対変位不能に固定されている。 As shown in FIGS. 1 and 2, the magnetic shield 40 includes a substantially U-shaped bent portion 44 in which one side ends of the opposed long strip-like side wall portions 42, 42 are bent with a connecting wall portion 43. Have. The bending portion 44 is configured as a shield portion of the magnetic shield 40. A caulking portion 45 is formed at a predetermined portion of the edge portion of the bending portion 44, and the electromagnetic steel plates 41 are fixed by the caulking portion 45 so as not to be relatively displaced.
図示例によるかしめ部45は、各電磁鋼板自体に加工された凹凸状のかしめ部を嵌め合わせて圧入するカシメ部ではない。この第1の実施の形態では、積層した各電磁鋼板41の端縁部の所定の箇所を塑性変形させて、一括してかしめることで、かしめ部45が形成される。 The caulking portion 45 according to the illustrated example is not a caulking portion that fits and press-fits an uneven caulking portion processed on each electromagnetic steel sheet itself. In the first embodiment, the caulking portion 45 is formed by plastically deforming predetermined portions of the edge portions of the laminated electromagnetic steel plates 41 and caulking them together.
かしめ部45としては、磁気シールド40における側壁部42の両端縁部の先端寄り位置と連結壁部43の両端縁部の中間位置とを塑性変形させることで、一括してかしめることが好適である。これらの端縁部の所定の箇所は、板厚の内方に向けて狭まった略楔状の断面形状となっている。 As the caulking portion 45, it is preferable that the caulking portion 45 is caulked in a lump by plastically deforming a position closer to the tip of both end edges of the side wall portion 42 of the magnetic shield 40 and an intermediate position between both end edges of the connecting wall portion 43. is there. Predetermined portions of these edge portions have a substantially wedge-shaped cross-sectional shape that narrows toward the inside of the plate thickness.
(磁気シールドの製造方法)
以上のように構成された磁気シールド40は、以下の製造方法により効率的に製造される。磁気シールド40を製造する方法は、図3A~3Eに示すように、3枚の長尺帯状の電磁鋼板41,…,41を積層する工程と、積層した各電磁鋼板41を波状に曲げ加工する工程と、曲げ加工した各電磁鋼板41をかしめ加工する工程と、曲げ加工した各電磁鋼板41を切断する工程とを含む一連の工程により効果的に達成される。
(Magnetic shield manufacturing method)
The magnetic shield 40 configured as described above is efficiently manufactured by the following manufacturing method. As shown in FIGS. 3A to 3E, the method of manufacturing the magnetic shield 40 includes a step of laminating the three long belt-like electromagnetic steel plates 41,..., 41, and bending the laminated electromagnetic steel plates 41 into a wave shape. This is effectively achieved by a series of steps including a step, a step of caulking each of the bent electromagnetic steel plates 41, and a step of cutting each of the bent electromagnetic steel plates 41.
(積層工程)
磁気シールド40を製造するにあたっては、先ず、図3Aに示すように、所定の長さ及び幅の3枚の長尺帯状の電磁鋼板41が重ね合わされて積層される。3枚の電磁鋼板41からなる磁性板材の厚みは、例えば約1mm程度としている。
(Lamination process)
In manufacturing the magnetic shield 40, first, as shown in FIG. 3A, three long strip-shaped electromagnetic steel plates 41 having a predetermined length and width are overlapped and stacked. The thickness of the magnetic plate made of the three electromagnetic steel plates 41 is, for example, about 1 mm.
(折り曲げ工程)
図3Bにおいて、図示しない上型と下型とにより、積層した長尺帯状の各電磁鋼板41が長手方向にわたって波状に曲げ加工される。これにより、相対する長尺帯状の側壁部42の一側端同士が連結壁部43をもって折り曲げられた略U字状の複数の曲げ加工部44が形成される。
(Bending process)
In FIG. 3B, the laminated long strip-shaped electromagnetic steel plates 41 are bent into a wave shape over the longitudinal direction by an upper mold and a lower mold (not shown). As a result, a plurality of substantially U-shaped bent portions 44 are formed in which one side ends of the opposed long belt-like side wall portions 42 are bent by the connecting wall portions 43.
(かしめ工程)
図3Cにおいて、各曲げ加工部44における側壁部42の両端縁部の先端寄り位置と連結壁部43の両端縁部の中間位置とをプレスして塑性変形させ、一括してかしめることで、3枚の電磁鋼板41が一体に固定される。これにより、3枚の電磁鋼板41が一体の形状を確保する。
(Caulking process)
In FIG. 3C, by pressing the positions closer to the tips of both end edges of the side wall part 42 and the intermediate positions of both end edges of the connecting wall part 43 in each bending part 44 and plastically deforming, Three electromagnetic steel plates 41 are fixed integrally. Thereby, the three electromagnetic steel plates 41 ensure an integral shape.
かしめ加工は、図3Dに示すように、かしめ治具50の押圧面51により、各曲げ加工部44の鋼板積層端面を略水平方向からプレスする。かしめ治具50における連結壁部43と対応する押圧面51を斜め構造にすることで、かしめ治具50の水平方向からのプレスにより、鋼板積層端面が垂直方向内方に向けて塑性変形してかしめられたかしめ部45が形成される。 In the caulking process, as shown in FIG. 3D, the steel plate lamination end surface of each bending portion 44 is pressed from a substantially horizontal direction by the pressing surface 51 of the caulking jig 50. By making the pressing surface 51 corresponding to the connecting wall portion 43 in the caulking jig 50 into an oblique structure, the steel plate end face is plastically deformed inward in the vertical direction by pressing the caulking jig 50 from the horizontal direction. A crimped caulking portion 45 is formed.
(切断工程)
図3Eにおいて、各曲げ加工部44の側壁部42を切断線CLに沿って所定の長さに切断することで、電磁鋼板41が多数の曲げ加工部44に分離される。必要に応じて、切断した曲げ加工部44には、焼鈍処理が施される。焼鈍処理により、電磁鋼板41内の歪を取り除いて磁気特性が安定化され、曲げ加工部44の形状が矯正される。
(Cutting process)
In FIG. 3E, the electromagnetic steel sheet 41 is separated into a large number of bending parts 44 by cutting the side wall part 42 of each bending part 44 into a predetermined length along the cutting line CL. As necessary, the cut bending portion 44 is subjected to an annealing treatment. By annealing, the distortion in the electromagnetic steel sheet 41 is removed, the magnetic characteristics are stabilized, and the shape of the bending portion 44 is corrected.
なお、積層した長尺帯状の電磁鋼板41を波状に曲げ加工する際に、曲げ加工部44における側壁部42の両端縁部の先端寄り位置と連結壁部43の両端縁部の中間位置とを一括してかしめることができることは勿論である。積層した曲げ加工部44を一括してかしめるようにしたので、積層した長尺帯状の電磁鋼板41を折り返す際に、各電磁鋼板41が互いに剥離してしまうことはなく、各電磁鋼板41の鋼板積層端面に隙間を生じることを防止することができる。 When the laminated long strip-shaped electromagnetic steel sheet 41 is bent into a wave shape, a position closer to the tip of both end edges of the side wall 42 in the bent portion 44 and an intermediate position between both end edges of the connecting wall 43 are set. Of course, they can be caulked together. Since the laminated bending portions 44 are caulked together, the electromagnetic steel plates 41 are not separated from each other when the laminated long strip-like electromagnetic steel plates 41 are folded back. It can prevent that a clearance gap arises in a steel plate lamination | stacking end surface.
以上の工程により、一回の製造プロセスで、電磁鋼板41の曲げ加工部44を多数個取りすることができる。従って、多数個の独立した磁気シールド40を効率的に製造することが可能となる。 Through the above steps, a large number of bending portions 44 of the electromagnetic steel sheet 41 can be obtained in a single manufacturing process. Accordingly, a large number of independent magnetic shields 40 can be efficiently manufactured.
(第1の実施の形態の効果)
以上のように構成された磁気シールド40を採用することで、上記効果に加えて以下の効果が得られる。
(Effects of the first embodiment)
By adopting the magnetic shield 40 configured as described above, the following effects can be obtained in addition to the above effects.
(1)積層した多数枚の電磁鋼板41の所定の箇所を塑性変形させてかしめているため、電磁鋼板の一枚ずつに形成した通常の凹凸状かしめ部をかしめる磁気シールドと比べて、磁気性能に優れた磁気シールド40を提供することができる。
(2)かしめ部45の配置位置を電磁鋼板41の端縁部に設定し、磁気回路を形成する最短経路上にかしめ部45を配置しない構成とすることで、磁気性能への影響を少なくすることができる。
(3)溶接や溶着等により固定する場合に比べて、少ない工数で多数枚の電磁鋼板41を低コストで強固に固定することができる。
(4)電磁鋼板41の所定の箇所を塑性変形させて一括してかしめることで、シールド形状を矯正する効果も付随的に得られるため、寸法精度のよい磁気シールド40を得ることができる。
(5)電磁鋼板41を搬送する工程で製造可能であり、安価な磁気シールド40を得ることができる。
(1) Since a predetermined portion of a large number of laminated electromagnetic steel sheets 41 is plastically deformed and caulked, it is magnetic compared to a magnetic shield that caulks an ordinary uneven caulking portion formed on each of the electromagnetic steel sheets. The magnetic shield 40 with excellent performance can be provided.
(2) The arrangement position of the caulking portion 45 is set at the edge of the electromagnetic steel plate 41, and the caulking portion 45 is not arranged on the shortest path forming the magnetic circuit, thereby reducing the influence on the magnetic performance. be able to.
(3) Compared with the case where it fixes by welding, welding, etc., many electromagnetic steel plates 41 can be firmly fixed at low cost with few man-hours.
(4) Since the effect of correcting the shield shape is also obtained by plastically deforming predetermined portions of the electromagnetic steel sheet 41 and collectively caulking, the magnetic shield 40 with good dimensional accuracy can be obtained.
(5) An inexpensive magnetic shield 40 can be obtained that can be manufactured in the process of conveying the electromagnetic steel sheet 41.
[第2の実施の形態]
図4A及び4Bには、第2の実施の形態に係る磁気シールド40の一構成例が模式的に例示されている。
[Second Embodiment]
4A and 4B schematically illustrate a configuration example of the magnetic shield 40 according to the second embodiment.
(磁気シールドの構造)
上記第1の実施の形態では、磁気シールド40の端縁部にかしめ部45を形成した構成であったものを、この第2の実施の形態にあっては、磁気シールド40の端縁部内面にかしめ部45を形成した点で上記第1の実施の形態とは異なっている。従って、上記第1の実施の形態で用いた部材符号と同じ部材符号を用いることで、その部材に関する詳細な説明は省略する。
(Magnetic shield structure)
In the first embodiment, the caulking portion 45 is formed on the edge portion of the magnetic shield 40. In the second embodiment, the inner surface of the edge portion of the magnetic shield 40 is used. This is different from the first embodiment in that the caulking portion 45 is formed. Therefore, by using the same member code as the member code used in the first embodiment, detailed description about the member is omitted.
磁気シールド40の端縁部内面に形成されたかしめ部45としては、積層した長尺帯状の電磁鋼板41を長手方向にわたって波状に曲げ加工すると同時に形成することができる。かしめ部45は、磁気シールド40における側壁部42の両端縁部内面の先端寄り位置と、連結壁部43の両端縁部内面の中間位置とに形成されており、これらの端縁部内面が板厚方向に向けて凹状の断面形状となっている。 The caulking portion 45 formed on the inner surface of the edge portion of the magnetic shield 40 can be formed at the same time as the laminated strip-shaped electromagnetic steel sheet 41 is bent into a wave shape over the longitudinal direction. The caulking portion 45 is formed at a position closer to the tip of the inner surface of both ends of the side wall portion 42 of the magnetic shield 40 and an intermediate position of the inner surface of both ends of the connecting wall portion 43. It has a concave cross-sectional shape toward the thickness direction.
(第2の実施の形態の効果)
第2の実施の形態に係る磁気シールド40にあっても、塑性変形によるかしめ加工により多数枚の電磁鋼板41を密に接合することができる。
(Effect of the second embodiment)
Even in the magnetic shield 40 according to the second embodiment, a large number of electromagnetic steel plates 41 can be closely joined by caulking by plastic deformation.
[第3の実施の形態]
図5には、第3の実施の形態に係る磁気シールド40の一構成例が模式的に例示されている。
[Third Embodiment]
FIG. 5 schematically illustrates a configuration example of the magnetic shield 40 according to the third embodiment.
(磁気シールドの構造)
この第3の実施の形態にあっては、磁気シールド40の両端縁部にかしめ片46を形成した構成を除いて、他の構成は上記各実施の形態と実質的に同様の構成を備えている。従って、上記各実施の形態で用いた部材符号と同じ部材符号を用いることで、その部材に関する詳細な説明は省略する。
(Magnetic shield structure)
In the third embodiment, except for the configuration in which the caulking pieces 46 are formed at both end edges of the magnetic shield 40, the other configurations have substantially the same configurations as the above embodiments. Yes. Therefore, by using the same member code as the member code used in each of the above embodiments, a detailed description of the member is omitted.
かしめ片46は、最内周の電磁鋼板41と対応する磁気シールド40の側壁部42の先端寄りの両端縁部と連結壁部43の両端縁部とに形成されている。かしめ片46は、3つの電磁鋼板41のうち、最下部に積層配置される電磁鋼板41を打ち抜き加工することで形成される。かしめ片46に治具を当てて、かしめ片46を内側に倒すようにプレスすることで塑性変形させ、磁気シールド40が一括してかしめ固定されている。 The caulking pieces 46 are formed at both end edges near the tip of the side wall 42 of the magnetic shield 40 corresponding to the innermost electromagnetic steel plate 41 and both end edges of the connecting wall 43. The caulking piece 46 is formed by punching out the electromagnetic steel plates 41 laminated and arranged at the bottom of the three electromagnetic steel plates 41. A jig is applied to the caulking piece 46, and the caulking piece 46 is pressed inward so as to be plastically deformed, and the magnetic shield 40 is caulked and fixed together.
(第3の実施の形態の効果)
第3の実施の形態に係る磁気シールド40にあっても、塑性変形によるかしめ加工により多数枚の電磁鋼板41を密に接合することができる。
(Effect of the third embodiment)
Even in the magnetic shield 40 according to the third embodiment, a large number of electromagnetic steel plates 41 can be closely joined by caulking by plastic deformation.
[第4の実施の形態]
図6には、第4の実施の形態に係る磁気シールド40の一構成例が模式的に例示されている。
[Fourth Embodiment]
FIG. 6 schematically illustrates a configuration example of the magnetic shield 40 according to the fourth embodiment.
(磁気シールドの構造)
この第4の実施の形態にあっては、磁気シールド40の両端縁部内面にかしめ用孔47を貫通して形成した構成を除いて、他の構成は上記各実施の形態と実質的に同様の構成を備えている。従って、上記各実施の形態で用いた部材符号と同じ部材符号を用いることで、その部材に関する詳細な説明は省略する。
(Magnetic shield structure)
In the fourth embodiment, except for the configuration in which the caulking holes 47 are formed through the inner surfaces of both ends of the magnetic shield 40, the other configurations are substantially the same as those in the above embodiments. It has the composition of. Therefore, by using the same member code as the member code used in each of the above embodiments, a detailed description of the member is omitted.
第4の実施の形態では、かしめ用孔47とリベット48とがかしめ部として構成される。磁気シールド40における側壁部42の両端縁部内面の先端寄り位置と、連結壁部43の両端縁部内面の中間位置とには、かしめ用孔47が貫通して形成されている。かしめ用孔47を有する3枚の電磁鋼板41を互いに重ね合わせて積層し、各かしめ用孔47にリベット48の軸部を挿入し、この軸部の先端部が押し潰されることで、3枚の電磁鋼板41がリベットかしめにより一括して固定される。 In the fourth embodiment, the caulking hole 47 and the rivet 48 are configured as caulking portions. In the magnetic shield 40, caulking holes 47 are formed penetrating at positions closer to the tips of the inner surfaces of both end edges of the side wall 42 and intermediate positions of the inner surfaces of both end edges of the connecting wall 43. Three electromagnetic steel plates 41 each having a caulking hole 47 are stacked on top of each other, a shaft portion of a rivet 48 is inserted into each caulking hole 47, and a tip portion of the shaft portion is crushed to form three sheets. The electromagnetic steel plates 41 are fixed together by rivet caulking.
(第4の実施の形態の効果)
第4の実施の形態に係る磁気シールド40にあっても、塑性変形によるかしめ加工により多数枚の電磁鋼板41を密に接合することができる。
(Effect of the fourth embodiment)
Even in the magnetic shield 40 according to the fourth embodiment, a large number of electromagnetic steel plates 41 can be closely joined by caulking by plastic deformation.
[変形例]
本発明における磁気シールド40は、次に示すような変形例も可能である。
[Modification]
The magnetic shield 40 according to the present invention can be modified as follows.
磁気シールド40としては、電流路20を流れる電流により発生した磁束を集磁するコアに適用することができる。 The magnetic shield 40 can be applied to a core that collects magnetic flux generated by the current flowing through the current path 20.
磁気シールド40の側壁部42の板間隔、磁気検出素子30及び磁気シールド40の間隔などについては、磁気検出素子30の仕様に応じて適宜に選択すればよい。 What is necessary is just to select suitably the board | plate space | interval of the side wall part 42 of the magnetic shield 40, the space | interval of the magnetic detection element 30 and the magnetic shield 40, etc. according to the specification of the magnetic detection element 30.
磁気シールド40のかしめ部の配置位置、配置個数や形状などについては、磁気シールド40の磁気性能、強度等に応じて適宜に選択可能である。 The arrangement position, the arrangement number, the shape, and the like of the caulking portion of the magnetic shield 40 can be appropriately selected according to the magnetic performance, strength, and the like of the magnetic shield 40.
車両のモータやバッテリーに接続される電路以外の他の電路に適用することができる。 The present invention can be applied to electric circuits other than electric circuits connected to vehicle motors and batteries.
以上の説明からも明らかなように、本発明に係る代表的な各実施の形態、変形例及び図示例を例示したが、上記各実施の形態、変形例及び図示例は特許請求の範囲に係る発明を限定するものではない。従って、上記各実施の形態、変形例及び図示例の中で説明した特徴の組合せの全てが本発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。 As is clear from the above description, each of the exemplary embodiments, modifications, and illustrations according to the present invention has been illustrated. However, the above-described embodiments, modifications, and illustrations relate to the claims. The invention is not limited. Therefore, it should be noted that not all the combinations of features described in the above embodiments, modifications, and illustrated examples are essential to the means for solving the problems of the present invention.
本発明は、ハイブリッド車や電気自動車で使用される駆動モータ、バッテリーに流れる電流を検出するための磁気検出素子を有する電流センサに適用できる。 The present invention can be applied to a drive motor used in a hybrid vehicle or an electric vehicle, and a current sensor having a magnetic detection element for detecting a current flowing in a battery.
10 電流センサ
20 電流路
30 磁気検出素子
40 磁気シールド
41 電磁鋼板
42 側壁部
43 連結壁部
44 曲げ加工部
45 かしめ部
DESCRIPTION OF SYMBOLS 10 Current sensor 20 Current path 30 Magnetic detection element 40 Magnetic shield 41 Electrical steel plate 42 Side wall part 43 Connection wall part 44 Bending part 45 Caulking part

Claims (7)

  1. 電流が流れる電流路と前記電流路に流れる電流を検出する磁気検出素子とを囲むシールド部を備え、
    前記シールド部は、少なくとも2枚の磁性板材が積層され、前記積層された磁性板材が曲げ加工された曲げ加工部と、前記曲げ加工部の所定の箇所を塑性変形させて一括してかしめられたかしめ部とを有する磁気シールド。
    A shield portion surrounding a current path through which a current flows and a magnetic detection element that detects a current flowing through the current path;
    The shield portion is formed by laminating at least two magnetic plate materials, and bending the laminated magnetic plate material and bending the predetermined portions of the bent portion by plastic deformation. A magnetic shield having a caulking portion.
  2. 前記曲げ加工部は、対向する2枚の側壁部と、前記2枚の側壁部を接続する連結壁部を有する、請求項1に記載の磁気シールド。 2. The magnetic shield according to claim 1, wherein the bending portion includes two opposing side wall portions and a connecting wall portion connecting the two side wall portions.
  3. 前記かしめ部は、前記曲げ加工部の両端縁部の所定の箇所を塑性変形させて一括してかしめられる、請求項1又は2に記載の磁気シールド。 3. The magnetic shield according to claim 1, wherein the caulking portion is caulked in a lump by plastically deforming predetermined portions of both end edges of the bending portion.
  4. 前記かしめ部は、前記側壁部の幅方向の一端において、前記2枚の側壁部における2箇所と、前記連結壁部における1箇所を含む少なくとも3箇所に形成される、請求項2に記載の磁気シールド。 3. The magnetism according to claim 2, wherein the caulking portion is formed at at least three locations including two locations on the two sidewall portions and one location on the connecting wall portion at one end in the width direction of the sidewall portion. shield.
  5. 前記かしめ部は、前記磁性板材の積層方向に直交する方向において形成される塑性変形構造を含む、請求項1~4の何れか1項に記載の磁気シールド。 The magnetic shield according to any one of claims 1 to 4, wherein the caulking portion includes a plastic deformation structure formed in a direction orthogonal to a stacking direction of the magnetic plate members.
  6. 前記かしめ部は、前記磁性板材の積層方向に沿う方向において形成される塑性変形構造を含む、請求項1~4の何れか1項に記載の磁気シールド。 The magnetic shield according to any one of claims 1 to 4, wherein the caulking portion includes a plastic deformation structure formed in a direction along a stacking direction of the magnetic plate members.
  7. 少なくとも2枚の長尺帯状の磁性板材を積層する工程と、
    前記積層した磁性板材の長手方向にわたって複数の曲げ加工部を折り曲げ形成する工程と、
    前記複数の曲げ加工部の所定の箇所を一括してかしめる工程と、
    前記複数の曲げ加工部を所定の長さに切断する工程と、を含む磁気シールドの製造方法。
     
    Laminating at least two long strip-shaped magnetic plates; and
    A step of bending a plurality of bent portions along the longitudinal direction of the laminated magnetic plates; and
    A step of collectively caulking predetermined portions of the plurality of bent portions;
    Cutting the plurality of bent portions into a predetermined length.
PCT/JP2015/068425 2014-06-30 2015-06-25 Magnetic shield and method of producing same WO2016017333A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/390,919 US20170108631A1 (en) 2014-06-30 2016-12-27 Band-pass filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014153958A JP2016031293A (en) 2014-07-29 2014-07-29 Magnetic shield, and manufacturing method thereof
JP2014-153958 2014-07-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/390,919 Continuation US20170108631A1 (en) 2014-06-30 2016-12-27 Band-pass filter

Publications (1)

Publication Number Publication Date
WO2016017333A1 true WO2016017333A1 (en) 2016-02-04

Family

ID=55217238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068425 WO2016017333A1 (en) 2014-06-30 2015-06-25 Magnetic shield and method of producing same

Country Status (2)

Country Link
JP (1) JP2016031293A (en)
WO (1) WO2016017333A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109313223A (en) * 2016-06-15 2019-02-05 株式会社电装 Current sensor
CN110709711A (en) * 2017-06-14 2020-01-17 三菱电机株式会社 Current detection device and power conversion device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6385632B1 (en) * 2017-06-14 2018-09-05 三菱電機株式会社 Current detection device and power conversion device
EP3726227B1 (en) 2017-12-13 2022-05-04 Alps Alpine Co., Ltd. Current sensor
WO2023188787A1 (en) * 2022-03-30 2023-10-05 アルプスアルパイン株式会社 Current sensor, and method for manufacturing insert molded member

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5649654A (en) * 1979-09-28 1981-05-06 Sanyo Electric Co Ltd Fixing method of laminated iron core
JP2001006957A (en) * 1999-06-23 2001-01-12 Mitsubishi Electric Corp Iron core and its manufacture
JP2013152221A (en) * 2011-12-27 2013-08-08 Denso Corp Current sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5649654A (en) * 1979-09-28 1981-05-06 Sanyo Electric Co Ltd Fixing method of laminated iron core
JP2001006957A (en) * 1999-06-23 2001-01-12 Mitsubishi Electric Corp Iron core and its manufacture
JP2013152221A (en) * 2011-12-27 2013-08-08 Denso Corp Current sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109313223A (en) * 2016-06-15 2019-02-05 株式会社电装 Current sensor
CN109313223B (en) * 2016-06-15 2021-02-26 株式会社电装 Current sensor
CN110709711A (en) * 2017-06-14 2020-01-17 三菱电机株式会社 Current detection device and power conversion device

Also Published As

Publication number Publication date
JP2016031293A (en) 2016-03-07

Similar Documents

Publication Publication Date Title
WO2016017333A1 (en) Magnetic shield and method of producing same
JP6127499B2 (en) Current sensor
JP4855239B2 (en) Insulation housing for motor
CN111033980B (en) Divided core connection body and armature manufacturing method
US10320254B2 (en) Permanent magnet motor and electric power steering apparatus
EP2741090B1 (en) Electrical current transducer with wound magnetic core
JP5936782B2 (en) Electronic control device and manufacturing method thereof, electric power steering control device
US20140009031A1 (en) Motor stator and motor
JP6243310B2 (en) Stator coil temperature sensor fixing structure
JP4909430B2 (en) Variable reluctance resolver and method for producing the same
WO2014167668A1 (en) Motor stator and method for manufacturing same
WO2012157362A1 (en) Current detecting apparatus
US9645175B2 (en) Electrical current transducer with grounding device
JP6149673B2 (en) Manufacturing method of bus ring for motor
JP2009218121A (en) Connector
JP2016099111A (en) Current sensor
JP2015090930A (en) Reactor
JP5086169B2 (en) Current sensor and method of manufacturing current sensor
JP5762856B2 (en) Current sensor
JP5282158B1 (en) Terminal temporary holding structure and resolver provided with terminal temporary holding structure
CN114175465B (en) Laminated iron core fixing structure
JP6790774B2 (en) Current sensor
JP2015061353A (en) Armature of rotary electric machine, manufacturing method of the same, and rotary electric machine
JP2014106065A (en) Current sensor and manufacturing method thereof
CN111466003A (en) Reactor with current sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15828096

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15828096

Country of ref document: EP

Kind code of ref document: A1