WO2016017323A1 - 太陽熱集熱装置 - Google Patents

太陽熱集熱装置 Download PDF

Info

Publication number
WO2016017323A1
WO2016017323A1 PCT/JP2015/068002 JP2015068002W WO2016017323A1 WO 2016017323 A1 WO2016017323 A1 WO 2016017323A1 JP 2015068002 W JP2015068002 W JP 2015068002W WO 2016017323 A1 WO2016017323 A1 WO 2016017323A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror group
solar tracking
biaxial
uniaxial
reflective mirror
Prior art date
Application number
PCT/JP2015/068002
Other languages
English (en)
French (fr)
Inventor
吉伸 加藤
清史 佐竹
Original Assignee
東洋エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋エンジニアリング株式会社 filed Critical 東洋エンジニアリング株式会社
Priority to US15/327,254 priority Critical patent/US10739038B2/en
Priority to AU2015297858A priority patent/AU2015297858A1/en
Priority to EP15827831.7A priority patent/EP3176519B1/en
Priority to ES15827831T priority patent/ES2746299T3/es
Priority to CN201580027375.XA priority patent/CN106461271A/zh
Publication of WO2016017323A1 publication Critical patent/WO2016017323A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • F24S20/25Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants using direct solar radiation in combination with concentrated radiation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S2020/10Solar modules layout; Modular arrangements
    • F24S2020/11Solar modules layout; Modular arrangements in the form of multiple rows and multiple columns, all solar modules being coplanar
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/87Reflectors layout
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/87Reflectors layout
    • F24S2023/872Assemblies of spaced reflective elements on common support, e.g. Fresnel reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/87Reflectors layout
    • F24S2023/876Reflectors formed by assemblies of adjacent reflective elements having different orientation or different features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the present invention relates to a solar heat collecting apparatus.
  • Non-Patent Document 1 Technologies that utilize sunlight and solar heat as renewable energy sources have been developed (Patent Documents 1 to 3, Non-Patent Document 1).
  • a technology using solar heat a trough solar power generation system, a Fresnel solar power generation system, a tower solar power generation system, a dish power generation system, and the like have been developed by a condensing method.
  • a solar tracking type reflection mirror equipped with a heliostat has been introduced in order to increase the heat collection efficiency of solar heat and the concentration factor of sunlight.
  • This heliostat is a device that drives a reflecting mirror (heat collecting mirror) in accordance with the movement of the sun.
  • the sun tracking type reflection mirror includes a single axis tracking type and a biaxial tracking type.
  • the uniaxial tracking type adjusts the positional relationship between the sun and the reflecting mirror in one axis. For example, the angle of the reflecting mirror is changed one-dimensionally along only the east-west axis or only the north-south axis according to the movement of the sun in the day.
  • the biaxial tracking type adjusts the positional relationship between the sun and the reflecting mirror in two axes.
  • the biaxial tracking type reflection mirror can finely control the angle in the biaxial direction. Therefore, in general, a reflection mirror having a smaller surface area than a uniaxial tracking type reflection mirror that performs only angle control in a uniaxial direction is used. At present, uniaxial tracking type reflection mirrors are used in trough solar power generation systems and Fresnel solar power generation systems. On the other hand, in a tower type solar power generation system and a dish type power generation system, a biaxial tracking type reflection mirror is used.
  • An object of the present invention is to provide a solar heat collecting apparatus having higher heat collecting efficiency by using a combination of a uniaxial solar tracking type reflection mirror group and a biaxial solar tracking type reflection mirror group.
  • a uniaxial solar tracking reflective mirror group including a plurality of uniaxial solar tracking reflective mirrors selected from a Fresnel reflective mirror and a trough reflective mirror;
  • a biaxial solar tracking reflective mirror group comprising a plurality of biaxial solar tracking reflective mirrors having a surface area of 5-20% of the surface area of one uniaxial solar tracking reflective mirror; Receives reflected light from the uniaxial solar tracking reflective mirror group and the biaxial solar tracking reflective mirror group, collects heat, and moves the heat from the first end to the second end of its own length direction Heat collecting means,
  • a solar heat collecting apparatus including:
  • the present invention is configured by combining a uniaxial tracking type reflecting mirror group and a biaxial tracking type reflecting mirror group.
  • the surface area of one biaxial tracking type reflecting mirror can be set in the range of 5 to 20% or in the range of 5 to 15% of the surface area of one uniaxial solar tracking type reflecting mirror.
  • a reflective mirror that uses a single-axis tracking type to collect light a reflective mirror that uses a biaxial tracking type to focus light more precisely and focuses the positional relationship between the sun and the reflective mirror.
  • the magnification is higher and can be adjusted. Therefore, the heat collection efficiency (heat collecting power per unit area of the reflection mirror) is high, and the ultimate temperature is also high.
  • the shape of the biaxial tracking type reflecting mirror is not particularly limited.
  • the shape may be a square, a rectangle, or a circle.
  • the shape and size (however, satisfying the numerical range of the surface area described above) can be adjusted according to the situation of the installation place of the solar heat collector.
  • the heat collecting means a heat collecting tube, a heat collecting device, or a combination thereof is used.
  • the heat collecting tube is one or a plurality of tubes.
  • a medium heat storage medium
  • the heat storage medium flows from the first end side in the length direction of the heat collecting tube to the second end side. Therefore, heat moves from the first end side to the second end side.
  • known liquids such as molten salt, hot oil, and water
  • gases such as air, nitrogen, and carbon dioxide
  • the heat collector includes a solid heat storage medium (such as porous ceramics). Similar to the heat collecting tube, heat moves from the first end side in the length direction to the second end side.
  • the solar heat collecting apparatus of the present invention is The uniaxial solar tracking reflective mirror group is arranged so that the long axis of each of the uniaxial solar tracking reflective mirrors faces the same direction,
  • the biaxial solar tracking type reflecting mirror group is divided into a first biaxial solar tracking type reflecting mirror group and a second biaxial solar tracking type reflecting mirror group,
  • the first biaxial solar tracking reflective mirror group and the second biaxial solar tracking reflective mirror group are arranged side by side in a direction orthogonal to the major axis direction of the plurality of uniaxial solar tracking reflective mirrors.
  • the uniaxial solar tracking reflective mirror group may be arranged so as to be sandwiched from both sides by the first biaxial solar tracking reflective mirror group and the second biaxial solar tracking reflective mirror group.
  • the first biaxial solar tracking type mirror group and the second biaxial solar tracking type mirror group are Arranged side by side.
  • the uniaxial solar tracking type reflection mirror group is arranged so that the long axes of each of the plurality of uniaxial solar tracking type reflection mirrors face the same direction
  • the biaxial solar tracking type reflection mirror group may be arranged in the extension direction in the major axis direction of the plurality of uniaxial solar tracking type reflection mirrors and in the heat transfer direction.
  • the heat collecting means uses a heat collecting tube
  • the heat storage medium moves from the first end side (upstream side) to the second end side (downstream side) (that is, heat moves).
  • the temperature of the heat medium rises due to heat collection from the uniaxial solar tracking reflection mirror group on the upstream side of the heat transfer.
  • the light collecting degree can be increased.
  • the temperature of the heat medium further increases. Since heat is collected in two stages as described above, it is possible to achieve a higher temperature by increasing the heat collection efficiency and increasing the light collection degree.
  • the solar heat collecting apparatus of the present invention is The uniaxial solar tracking reflective mirror group is arranged so that the long axis of each of the uniaxial solar tracking reflective mirrors faces the same direction,
  • the biaxial solar tracking reflective mirror group is divided into a first biaxial solar tracking reflective mirror group, a second biaxial solar tracking reflective mirror group, and a third biaxial solar tracking reflective mirror group.
  • the first biaxial solar tracking reflective mirror group and the second biaxial solar tracking reflective mirror group are arranged side by side in a direction orthogonal to the major axis direction of the plurality of uniaxial solar tracking reflective mirrors.
  • the uniaxial solar tracking reflective mirror group is arranged so as to be sandwiched from both sides by the first biaxial solar tracking reflective mirror group and the second biaxial solar tracking reflective mirror group,
  • the third biaxial solar tracking reflective mirror group may be arranged in the extension direction in the major axis direction of the plurality of uniaxial solar tracking reflective mirrors and in the heat transfer direction.
  • the biaxial solar tracking reflective mirror group can be arranged so that three biaxial solar tracking reflective mirror groups are surrounded by three biaxial solar tracking reflective mirror groups. In this way, a higher temperature is realized by increasing the heat collection efficiency and increasing the light collection degree.
  • the solar heat collecting apparatus of the present invention uses a combination of a uniaxial solar tracking reflection mirror group and a biaxial solar tracking reflection mirror group.
  • a uniaxial solar tracking reflection mirror group uses a combination of a uniaxial solar tracking reflection mirror group and a biaxial solar tracking reflection mirror group.
  • the heat collection efficiency and the light collection degree are higher when the uniaxial tracking type and the biaxial tracking type are combined than with the uniaxial tracking type alone.
  • the reflection mirror can be mass-produced. Therefore, the manufacturing cost of the solar heat collector is reduced.
  • FIG. 1 is a perspective view of a power generation system using a solar heat collecting apparatus of the present invention. It is a top view (however, the number of mirrors is not the same as FIG. 1) which shows the arrangement
  • the solar thermal collector 1 includes a uniaxial solar tracking reflective mirror group 20 and biaxial solar tracking reflective mirror groups 30 and 40.
  • the uniaxial sun tracking type reflection mirror group 20 includes a combination of a required number of linear Fresnel type reflection mirrors 21.
  • the linear Fresnel type reflection mirrors 21 are arranged at equal intervals in the width direction so that the major axes thereof face the same direction (for example, the north-south direction).
  • the biaxial solar tracking reflective mirror group is divided into a first biaxial solar tracking reflective mirror group 30 and a second biaxial solar tracking reflective mirror group 40.
  • the reflection mirror group 30 and the reflection mirror group 40 are arranged side by side in a direction orthogonal to the major axis direction of the uniaxial sun tracking type reflection mirror 21.
  • the uniaxial sun tracking type reflection mirror group 20 is disposed so as to be sandwiched from both sides by the reflection mirror group 30 and the reflection mirror group 40.
  • the first biaxial solar tracking type reflection mirror group 30 and the second biaxial solar tracking type reflection mirror are provided.
  • the group 40 is arranged side by side in the east-west direction.
  • the first biaxial solar tracking type reflecting mirror group 30 includes a combination of a required number of reflecting mirrors 31.
  • the second biaxial sun tracking reflection mirror group 40 includes a combination of a required number of reflection mirrors 41.
  • the number of the first biaxial sun tracking type reflection mirror group 30 and the number of the second biaxial sun tracking type reflection mirror group 40 may be the same or different.
  • the number of the first biaxial solar tracking type reflecting mirror group 30 and the second biaxial solar tracking type reflecting mirror group 40 can be appropriately adjusted according to the target amount of heat collection and the situation of the installation location. .
  • the surface area of one reflection mirror 31 and the surface area of one reflection mirror 41 are about 10% of the surface area of one linear Fresnel type reflection mirror 21.
  • the reflecting mirror 31 having an area of about 2 ⁇ 2 m and the reflecting mirror 41 having the same area can be used.
  • the area of the reflection mirror that can be controlled biaxially is not limited to the area illustrated here. 1 and 2 show a square reflection mirror 31 and a reflection mirror 41. However, these reflecting mirrors may have other shapes.
  • FIG. 1 a combination of a plurality of heat collecting tubes 11 is used as the heat collecting means 10.
  • the heat collecting means 10 is installed immediately above the uniaxial sun tracking type reflection mirror group 20. However, the installation position can be changed as appropriate according to the situation of the installation location of the solar heat collecting apparatus 1.
  • the heat collecting means 10 is installed by being supported using a supporting means made of a metal column, frame, plate or the like.
  • the uniaxial sun tracking type reflection mirror group 20 reflects the sunlight received while uniaxial tracking according to the position of the sun and sends it to the heat collecting means 10.
  • the first biaxial solar tracking reflective mirror group 30 and the second biaxial solar tracking reflective mirror group 40 each reflect the sunlight received while biaxial tracking according to the position of the sun to collect heat.
  • the water in the heat collecting means 10 heat collecting pipe 11
  • the temperature of the water vapor can be determined according to the required conditions. In Japan, the temperature can be raised to 600 ° C. or higher by increasing the focusing factor.
  • the water vapor is supplied to a power generation apparatus 50 including a turbine and a generator via a water vapor supply pipe 72.
  • the turbine is rotated by the steam supplied to the power generation device 50.
  • Power is generated by transmitting the power generated by the rotation of the turbine to the generator.
  • the water vapor used for the rotation of the turbine is sent from the steam return line 73 to the condenser 60.
  • the sent steam is condensed and returned to water.
  • the generated water is supplied to the heat collecting means 10 via the water supply line 71. If it is a time zone in which sunlight can be used, power generation using solar heat is continued by repeating the above-described circulation operation.
  • FIG. 3 shows a mode in which the number of the reflection mirrors is reduced as the number of the biaxial sun tracking type reflection mirror groups is reduced.
  • the total number of reflecting mirrors of the biaxial solar tracking type reflecting mirror group shown in FIG. 3 may be increased until it becomes equal to the total number of reflecting mirrors of the biaxial solar tracking type reflecting mirror group of FIG. it can.
  • the uniaxial sun tracking type reflection mirror group 20 includes a combination of a required number of linear Fresnel type reflection mirrors 21.
  • the linear Fresnel type reflection mirrors 21 are arranged at equal intervals so that the major axes thereof face the same direction (for example, the north-south direction).
  • the biaxial solar tracking reflective mirror group includes a first biaxial solar tracking reflective mirror group 30, a second biaxial solar tracking reflective mirror group 40, and a third biaxial solar tracking reflective mirror group 130. And are arranged separately.
  • the reflection mirror group 30 and the reflection mirror group 40 are arranged side by side in a direction orthogonal to the major axis direction of the uniaxial sun tracking type reflection mirror 21.
  • the uniaxial sun tracking type reflection mirror group 20 is disposed so as to be sandwiched from both sides by the reflection mirror group 30 and the reflection mirror group 40.
  • the reflection mirror group 130 is arranged in the extension direction in the major axis direction of the plurality of uniaxial solar tracking reflection mirrors 21 and in the heat transfer direction.
  • the total number of reflection mirrors of the three groups of the biaxial solar tracking type reflection mirror group may be reduced until it becomes equal to the total number of reflection mirrors of the biaxial solar tracking type reflection mirror group of FIG. it can.
  • FIG. 5 shows an application example of the solar thermal collector of the present invention.
  • FIG. 5 includes two biaxial solar tracking type reflecting mirror groups 230 and 330 and two heat collecting means 10 and 110.
  • the first biaxial solar tracking reflective mirror group 230 is arranged on the upstream side of the thermal movement
  • the second biaxial solar tracking reflective mirror group 330 is the thermal movement. It is arranged on the downstream side.
  • the first heat collecting means 10 is disposed immediately above the first biaxial solar tracking reflection mirror group 230
  • the second heat collecting means is directly above the second biaxial solar tracking reflection mirror group 330.
  • Means 110 are arranged. During operation, the heat storage medium heated by the first heat collecting means 10 is further heated by the second heat collecting means 110.
  • the solar heat collector according to the embodiment of the present invention may be the following first to fourth solar heat collectors.
  • the first solar heat collecting apparatus includes a reflecting mirror group including a uniaxial solar tracking type reflecting mirror group and a biaxial solar tracking type reflecting mirror group, and a collector for collecting heat from the reflecting mirror group.
  • a solar heat collecting apparatus provided with a heating means, wherein the uniaxial solar tracking type reflection mirror group is a combination of a plurality of reflection mirrors selected from a Fresnel reflection mirror and a trough reflection mirror,
  • the group of two-axis solar tracking type reflecting mirrors is a combination of a plurality of two-wheeled solar tracking type reflecting mirrors having a surface area of 5 to 20% of the surface area of one uniaxial solar tracking type reflecting mirror.
  • the heat means is a heat collecting tube, a heat collector, or a combination thereof, and receives the reflected light from the reflecting mirror group and collects heat, and the second from the first end in the length direction. Towards the edge It is a solar heat collector that moves heat.
  • the uniaxial solar tracking type reflection mirror group is arranged such that a plurality of uniaxial solar tracking type reflection mirrors have respective major axes in the same direction
  • the biaxial solar tracking reflective mirror group includes a first biaxial solar tracking reflective mirror group and a second biaxial solar tracking reflective mirror group on both sides in a direction orthogonal to the major axis direction of the multiple uniaxial solar tracking reflective mirrors.
  • the said 1st solar thermal collector which is divided and arrange
  • the uniaxial solar tracking type reflection mirror group is arranged such that a plurality of uniaxial solar tracking type reflection mirrors have the same major axis in the same direction.
  • the first solar heat collecting apparatus wherein the biaxial solar tracking type reflecting mirror group is an extension direction in a major axis direction of a plurality of uniaxial solar tracking type reflecting mirrors and is arranged in a heat transfer direction It is.
  • the uniaxial solar tracking type reflection mirror group is arranged such that a plurality of uniaxial solar tracking type reflection mirrors have the same major axis in the same direction.
  • the biaxial solar tracking reflective mirror group includes a first biaxial solar tracking reflective mirror group and a second biaxial solar tracking reflective mirror group on both sides in a direction orthogonal to the major axis direction of the multiple uniaxial solar tracking reflective mirrors.
  • the third biaxial solar tracking type reflection mirror group is arranged in a group of axial sun tracking type reflection mirrors, and is an extension direction in the major axis direction of a plurality of uniaxial solar tracking type reflection mirrors. Is the first solar heat collecting apparatus.
  • the solar heat collecting apparatus of the present invention can be used for solar power generation. It can also be used as a hot water supply system and a heating system using steam, hot water, or hot air. Further, in the construction of the solar heat collecting apparatus of the present invention, it is possible to increase the ratio of local procurement of materials and equipment. Increasing the proportion of local procurement is important in promoting measures to promote the use of solar energy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Photovoltaic Devices (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

集熱効率の良い太陽熱集熱装置の提供。一軸太陽追尾型反射ミラー群(20)は、それぞれの長軸が同じ方向に向くように配置されている。一軸太陽追尾型反射ミラー(21)の長軸方向に対して直交する方向に第1の二軸太陽追尾型反射ミラー群(30)および第2の二軸太陽追尾型反射ミラー群(40)が並んで配置されている。また、一軸太陽追尾型反射ミラー群(20)は、第1の二軸太陽追尾型反射ミラー群(30)および第2の二軸太陽追尾型反射ミラー群(40)により、両側から挟まれるように、配置されている。各ミラー群は、太陽の位置に応じて一軸または二軸追尾しながら受けとった太陽熱を、集熱手段(10)に送る。

Description

太陽熱集熱装置
 本発明は、太陽熱集熱装置に関する。
 再生可能エネルギー源としての太陽光および太陽熱を利用する技術が開発されている(特許文献1~3、非特許文献1)。
 太陽熱を利用する技術には、集光方式によって、トラフ型太陽熱発電システム、フレネル型太陽熱発電システム、タワー型太陽熱発電システム、および、ディッシュ型発電システムなどが開発されている。
 さらには、太陽熱の集熱効率、および、太陽光の集光倍率を高めるためヘリオスタットを備えた太陽追尾型反射ミラーも導入されている。このヘリオスタットは、反射ミラー(集熱ミラー)を太陽の動きに合わせて駆動させる装置である。
 太陽追尾型反射ミラーには、一軸追尾型と二軸追尾型とがある。
 一軸追尾型は、一軸で太陽と反射ミラーとの位置関係を調節する。例えば、一日の太陽の動きに合わせて東西軸のみ、あるいは南北軸のみに沿って、反射ミラーの角度の一次元の変更を行う。
 二軸追尾型は、二軸で太陽と反射ミラーの位置関係を調節する。例えば、一日の太陽の動きに合わせて東西軸のみ、あるいは南北軸のみに沿って反射ミラーの角度を変えながら、反射ミラーを回転させることにより、または、東西軸および南北軸の二軸に沿って反射ミラーの角度を変えることにより、太陽の方向および高度を二次元にて追尾する。
 二軸追尾型反射ミラーは、細かな二軸方向での角度制御をすることができる。そのため、一般に、一軸方向での角度制御のみを実行する一軸追尾型反射ミラーよりも小さな表面積を有する反射ミラーが使用される。
 現在では、トラフ型太陽熱発電システムおよびフレネル型太陽熱発電システムでは、一軸追尾型反射ミラーが使用される。一方、タワー型太陽熱発電システムおよびディッシュ型発電システムでは、二軸追尾型反射ミラーが使用される。
特開2011-137620号公報 米国出願公開第2009/0056703号明細書 国際公開2012/042888号
NEDO再生可能エネルギー技術白書第2版「第5章 太陽熱発電・太陽熱利用」
 本発明の課題は、一軸太陽追尾型反射ミラー群と、二軸太陽追尾型反射ミラー群とを組み合わせて使用することにより、より高い集熱効率を有する太陽熱集熱装置を提供することにある。
 本発明は、課題の解決手段として、
 フレネル式反射ミラーおよびトラフ式反射ミラーから選ばれる、複数の一軸太陽追尾型反射ミラーを含む、一軸太陽追尾型反射ミラー群と、
 一軸太陽追尾型反射ミラー1枚の表面積の5~20%の表面積を有する、複数の二軸太陽追尾型反射ミラーを含む、二軸太陽追尾型反射ミラー群と、
 一軸太陽追尾型反射ミラー群、および、二軸太陽追尾型反射ミラー群から、反射光を受光して集熱し、自らの長さ方向の第1端部から第2端部に向かって熱を移動させる、集熱手段と、
を含む太陽熱集熱装置を提供する。
 本発明は、一軸追尾型反射ミラー群と二軸追尾型反射ミラー群とを組み合わせにより構成される。
 1枚の二軸追尾型反射ミラーの表面積は、1枚の一軸太陽追尾型反射ミラーの表面積の5~20%の範囲、あるいは、5~15%の範囲に設定することができる。
 一軸追尾型を用いて線集光する反射ミラーと比べると、二軸追尾型を用いて点集光する反射ミラーの方が、太陽と反射ミラーとの位置関係をより精密に、かつ、集光倍率をより高く、調節することができる。そのため、集熱効率(反射ミラーの単位面積当たりの集熱力)が高く、到達温度も高くなる。
 このため、反射ミラー群全体の集熱面積が同じであれば、一軸追尾型反射ミラー群単独よりも、一軸追尾型反射ミラー群と二軸追尾型反射ミラー群との組み合わせの方が、より高い「『単位面積当たりの集熱効率』および到達温度」を実現できる。
 二軸追尾型反射ミラーの形状は、特に制限されない。正方形、長方形、または円形などの形状であってもよい。例えば、太陽熱集熱装置の設置場所の状況に応じて、形状および大きさ(但し、上記した表面積の数値範囲を満たす)を調整することができる。
 集熱手段には、集熱管、集熱器、またはそれらの組み合わせが利用される。
 集熱管は、1本または複数本の管である。その管内に媒体(蓄熱媒体)を通すことができる。蓄熱媒体は、集熱管の長さ方向の第1端側から第2端側に流れる。そのため、第1端側から第2端側に熱が移動する。
 蓄熱媒体は、公知の液体(溶融塩、熱油、および水など)、および、気体(空気、窒素、および二酸化炭素など)などを使用することができる。
 集熱器は、固体の蓄熱媒体(多孔質セラミックスなど)を含む。集熱管と同様、その長さ方向の第1端側から第2端側に熱が移動する。
 本発明の太陽熱集熱装置は、
 一軸太陽追尾型反射ミラー群が、複数の一軸太陽追尾型反射ミラーそれぞれの長軸が同じ方向を向くように配置され、
 二軸太陽追尾型反射ミラー群が、第1の二軸太陽追尾型反射ミラー群と、第2の二軸太陽追尾型反射ミラー群とに分けて配置され、
 第1の二軸太陽追尾型反射ミラー群、および、第2の二軸太陽追尾型反射ミラー群が、複数の一軸太陽追尾型反射ミラーの長軸方向に対して直交する方向に並んで配置され、
 一軸太陽追尾型反射ミラー群は、第1の二軸太陽追尾型反射ミラー群、および、第2の二軸太陽追尾型反射ミラー群により、両側から挟まれるように配置されていてもよい。
 一軸太陽追尾型反射ミラー群の長軸方向が南北方向と一致すれば、第1の二軸太陽追尾型反射ミラー群および第2の二軸太陽追尾型反射ミラー群は、南北方向に対して東西方向に並んで配置される。
 一軸追尾型反射ミラー群および二軸追尾型反射ミラー群を上述したように配置することにより、集熱効率および集光度を高めることができる。
 本発明の太陽熱集熱装置は、一軸太陽追尾型反射ミラー群が、複数の一軸太陽追尾型反射ミラーそれぞれの長軸が同じ方向を向くように配置され、
 二軸太陽追尾型反射ミラー群が、複数の一軸太陽追尾型反射ミラーの長軸方向の延長方向、かつ、熱移動方向に配置されていてもよい。
 集熱手段は、例えば、集熱管を使用したとき、蓄熱媒体が第1端部側(上流側)から第2端部側(下流側)に移動する(即ち、熱が移動する)。
 このため、熱移動の上流側にある一軸太陽追尾型反射ミラー群からの集熱により、熱媒体の温度が上昇する。その後、熱移動の下流側にある二軸太陽追尾型反射ミラー群からの集熱することにより、集光度を高めることができる。これにより、さらに熱媒体の温度が上昇する。
 このように二段階で集熱されるため、集熱効率を高め、かつ、集光度を高めることにより、一層の高温化を実現することができる。
 本発明の太陽熱集熱装置は、
 一軸太陽追尾型反射ミラー群が、複数の一軸太陽追尾型反射ミラーそれぞれの長軸が同じ方向を向くように配置され、
 二軸太陽追尾型反射ミラー群が、第1の二軸太陽追尾型反射ミラー群と、第2の二軸太陽追尾型反射ミラー群と、第3の二軸太陽追尾型反射ミラー群とに分けて配置され、
 第1の二軸太陽追尾型反射ミラー群、および、第2の二軸太陽追尾型反射ミラー群が、複数の一軸太陽追尾型反射ミラーの長軸方向に対して直交する方向に並んで配置され、
 一軸太陽追尾型反射ミラー群は、第1の二軸太陽追尾型反射ミラー群、および、第2の二軸太陽追尾型反射ミラー群により、両側から挟まれるように配置され、さらに、
 第3の二軸太陽追尾型反射ミラー群は、複数の一軸太陽追尾型反射ミラーの長軸方向の延長方向、かつ、熱移動方向に配置されていてもよい。
 配置された一軸太陽追尾型反射ミラー群の三方を3つの二軸太陽追尾型反射ミラー群で囲むように、二軸太陽追尾型反射ミラー群を配置することができる。このようにして、集熱効率を高め、かつ、集光度を高めることにより、高温化が実現される。
 本発明の太陽熱集熱装置は、一軸太陽追尾型反射ミラー群と二軸太陽追尾型反射ミラー群との組み合わせを利用している。
 反射ミラー全体の表面積が同じであると、一軸追尾型のみよりも、一軸追尾型と二軸追尾型とを組み合わせた方が、集熱効率および集光度は高くなる。
 また、1枚の二軸追尾型反射ミラーの面積が小さいので、同反射ミラーは、量産化が可能である。そのため、太陽熱集熱装置の製造コストが引き下げられる。
本発明の太陽熱集熱装置を使用した発電システムの斜視図である。 図1の太陽熱集熱装置に含まれる反射ミラー群の配置状態を示す平面図(但し、図1とはミラーの枚数は同じではない)である。 図1とは別の実施形態に係る太陽熱集熱装置に含まれる反射ミラー群の配置状態を示す平面図である。 図1とはさらに別の実施形態に係る太陽熱集熱装置に含まれる反射ミラー群の配置状態を示す平面図である。 二軸太陽追尾型反射ミラー群のみを使用した太陽熱集熱装置に含まれる反射ミラー群の配置状態を示す平面図である。
 (1)図1および図2の太陽熱集熱装置
 太陽熱集熱装置1は、一軸太陽追尾型反射ミラー群20と二軸太陽追尾型反射ミラー群30および40とを備えている。
 一軸太陽追尾型反射ミラー群20は、所要枚数のリニアフレネル型の反射ミラー21の組み合わせを含む。
 リニアフレネル型の反射ミラー21は、それぞれの長軸が同じ方向(例えば、南北方向)を向くように、幅方向に等間隔をおいて配置されている。
 二軸太陽追尾型反射ミラー群は、第1の二軸太陽追尾型反射ミラー群30と、第2の二軸太陽追尾型反射ミラー群40とに分けて配置されている。反射ミラー群30および反射ミラー群40は、一軸太陽追尾型反射ミラー21の長軸方向と直交する方向に並んで配置される。この時、一軸太陽追尾型反射ミラー群20は、反射ミラー群30および反射ミラー群40により、両側から挟まれるように配置される。
 ここで、リニアフレネル型の反射ミラー21それぞれの長軸が南北方向に向くように配置されていれば、第1の二軸太陽追尾型反射ミラー群30および第2の二軸太陽追尾型反射ミラー群40は、東西方向に並んで配置される。
 第1の二軸太陽追尾型反射ミラー群30は、所要枚数の反射ミラー31の組み合わせを含む。
 第2の二軸太陽追尾型反射ミラー群40は、所要枚数の反射ミラー41の組み合わせを含む。
 第1の二軸太陽追尾型反射ミラー群30の枚数と、第2の二軸太陽追尾型反射ミラー群40の枚数とは、同数でもよいし、異なる数でもよい。
 第1の二軸太陽追尾型反射ミラー群30および第2の二軸太陽追尾型反射ミラー群40の枚数は、目的とする集熱量および設置場所の状況などに応じて、適宜調整することができる。
 1枚の反射ミラー31の表面積、および、1枚の反射ミラー41の表面積(太陽光に当たる表側面の面積)は、1枚のリニアフレネル型の反射ミラー21の表面積の約10%である。
 例えば、2×2m程度の面積を有する反射ミラー31、および、同程度の面積を有する反射ミラー41を使用することができる。二軸制御できる反射ミラーであれば、その面積は、この例示の面積に制限されない。
 図1および図2には、正方形の反射ミラー31および反射ミラー41が図示されている。しかし、これら反射ミラーは、他の形状を呈していてもよい。
 図1では、集熱手段10として、複数本の集熱管11の組み合わせを使用している。その他、公知の集熱器、あるいは、集熱管11で得た熱をさらに固体(コンクリート成形体など)中に蓄熱する方式を採用した集熱手段を用いてもよい。
 集熱手段10は、図1および図2では、一軸太陽追尾型反射ミラー群20の直上に設置されている。しかし、太陽熱集熱装置1の設置場所の状況に応じて、設置位置は、適宜変更することができる。
 集熱手段10は、金属製の柱、枠、あるいは板などからなる支持手段を用いて支持されることにより、設置されている。
 次に、本発明の実施形態に係る太陽熱集熱装置1の運転方法を図1に示す発電システムにより説明する。なお、ここでは、集熱管11に通す蓄熱媒体として水を使用した実施形態について説明する。
 送水ライン71から集熱手段10の集熱管11に送水が行われる。運転初期には、図示していない水源から給水が行われる。
 一軸太陽追尾型反射ミラー群20は、太陽の位置に応じて一軸追尾しながら受けとった太陽光を反射して集熱手段10に送る。
 第1の二軸太陽追尾型反射ミラー群30と第2の二軸太陽追尾型反射ミラー群40は、それぞれ、太陽の位置に応じて二軸追尾しながら受けとった太陽光を反射して集熱手段10に送る。
 集熱手段10(集熱管11)内の水は水蒸気となる。水蒸気の温度は必要な条件に応じて決定することができる。日本国内では、集光倍率を上げることにより、600℃以上にまで昇温させることができる。
 その後、水蒸気は、水蒸気供給管72を介して、タービンおよび発電機を備えた発電装置50に供給される。
 発電装置50に供給された水蒸気によりタービンが回転される。タービンの回転により発生した動力が発電機に伝達されることにより、発電が行われる。
 タービンの回転に使用された水蒸気は、蒸気返送ライン73から凝縮器60に送られる。送られた水蒸気は、凝縮処理されて水に戻される。その後、生成した水は、送水ライン71を介して、集熱手段10に供給される。
 太陽光が利用できる時間帯であれば、上記の循環運転を繰り返すことにより、太陽熱を利用した発電が継続される。
 (2)図3の太陽熱集熱装置
 図3の太陽熱集熱装置では、二軸太陽追尾型反射ミラー群130の配置位置が、図1の太陽熱集熱装置1と異なっている。
 二軸太陽追尾型反射ミラー群130は、複数の一軸太陽追尾型反射ミラー21の長軸方向の延長方向、かつ、熱移動方向に配置されている。
 ここで熱移動方向とは、集熱手段10(集熱管11)の蓄熱媒体(水)が移動する方向であり、図3の集熱手段10では、第1端部10aから第2端部10bへ向かう方向である。
 なお、図3では、二軸太陽追尾型反射ミラー群の数が少なくなる分、反射ミラーの枚数が減少した態様が示されている。しかし、例えば、図3に示す二軸太陽追尾型反射ミラー群の反射ミラーの合計枚数を、図2の二軸太陽追尾型反射ミラー群の反射ミラーの合計枚数と等しくなるまで、増加することもできる。
 集熱手段10内を第1端部(上流)10aから第2端部(下流)10b方向に蓄熱媒体である水が移動するとき、最初に上流側において、一軸太陽追尾型反射ミラー群20により反射された太陽光により、水が加熱される。
 その後、さらに下流側において二軸太陽追尾型反射ミラー群130により反射された太陽光により加熱される。
 図3に示す太陽熱集熱装置では、上記のようにして蓄熱媒体である水が2段階で加熱される。
 (3)図4の太陽熱集熱装置
 図4の太陽熱集熱装置では、図1および図2の太陽熱集熱装置における反射ミラー群が組み合わされている。
 一軸太陽追尾型反射ミラー群20は、所要枚数のリニアフレネル型の反射ミラー21の組み合わせを含む。
 リニアフレネル型の反射ミラー21は、それぞれの長軸が同じ方向(例えば、南北方向)を向くように、等間隔をおいて配置されている。
 二軸太陽追尾型反射ミラー群は、第1の二軸太陽追尾型反射ミラー群30と、第2の二軸太陽追尾型反射ミラー群40と、第3の二軸太陽追尾型反射ミラー群130とに分けて配置されている。
 反射ミラー群30および反射ミラー群40は、一軸太陽追尾型反射ミラー21の長軸方向と直交する方向に並んで配置される。この時、一軸太陽追尾型反射ミラー群20は、反射ミラー群30および反射ミラー群40により、両側から挟まれるように配置される。
 反射ミラー群130は、複数の一軸太陽追尾型反射ミラー21の長軸方向の延長方向、かつ、熱移動方向に配置されている。
 なお、図4では、二軸太陽追尾型反射ミラー群の数が多くなる分、反射ミラーの枚数が増加した態様が示されている。しかし、例えば、二軸太陽追尾型反射ミラー群の3つの群の反射ミラーの合計枚数を、図2の二軸太陽追尾型反射ミラー群の反射ミラーの合計枚数と等しくなるまで、減少することもできる。
 本発明の太陽熱集熱装置の設置場所の広さ、形、および日当たり状況などを考慮して、図2~図4に示された、二軸太陽追尾型反射ミラー群の配置の中から、最適な配置を選択することができる。
 またその際、一つの二軸太陽追尾型反射ミラー群を構成する反射ミラーの枚数も適宜増減させることができる。
 さらに本発明の太陽熱集熱装置は、既設の太陽熱集熱装置であって、一軸太陽追尾型反射ミラーのみを使用している装置の集熱効率の改善にも適用することができる。
 (5)図5の太陽熱集熱装置
 図5は、本発明の太陽熱集熱装置の応用例である。
 図5は、2つの二軸太陽追尾型反射ミラー群230および330と、2つの集熱手段10および110とを備えている。
 2つの二軸太陽追尾型反射ミラー群のうち、第1の二軸太陽追尾型反射ミラー群230が熱移動の上流側に配置され、第2の二軸太陽追尾型反射ミラー群330が熱移動の下流側に配置されている。
 第1の二軸太陽追尾型反射ミラー群230の直上には、第1の集熱手段10が配置され、第2の二軸太陽追尾型反射ミラー群330の直上には、第2の集熱手段110が配置されている。
 運転時、第1の集熱手段10により加熱された蓄熱媒体は、第2の集熱手段110によりさらに加熱される。
 また、本発明の実施形態に係る太陽熱集熱装置は、以下の第1~4の太陽熱集熱装置であってもよい。
 上記第1の太陽熱集熱装置は、一軸太陽追尾型の反射ミラー群と二軸太陽追尾型の反射ミラー群からなる反射ミラー群と、上記反射ミラー群から集光して熱を得るための集熱手段を備えた太陽熱集熱装置であって、上記一軸太陽追尾型の反射ミラー群が、フレネル式反射ミラーおよびトラフ式反射ミラーから選ばれる複数枚の反射ミラーの組み合わせからなるものであり、上記二軸太陽追尾型反射ミラー群が、上記一軸太陽追尾型の反射ミラー1枚の表面積の5~20% の表面積である二輪太陽追尾型反射ミラーの複数枚の組み合わせからなるものであり、上記集熱手段が、集熱管、集熱器またはそれらを組み合わせたもので、上記反射ミラー群からの反射光を受光して集熱するためのものであり、長さ方向の第1端部から第2端部に向かって熱を移動させるものである、太陽熱集熱装置である。
 上記第2の太陽熱集熱装置は、上記一軸太陽追尾型の反射ミラー群が、複数の一軸太陽追尾型の反射ミラーがそれぞれの長軸が同じ方向になるように配置されているものであり、上記二軸太陽追尾型反射ミラー群が、複数の一軸太陽追尾型の反射ミラーの長軸方向に対して直交する方向の両側において、第1の二軸太陽追尾型反射ミラー群と第2の二軸太陽追尾型反射ミラー群に分けて配置されているものである、上記第1の太陽熱集熱装置である。
 上記第3の太陽熱集熱装置は、上記一軸太陽追尾型の反射ミラー群が、複数の一軸太陽追尾型の反射ミラーがそれぞれの長軸が同じ方向になるように配置されているものであり、上記二軸太陽追尾型反射ミラー群が、複数の一軸太陽追尾型の反射ミラーの長軸方向の延長方向であり、熱移動方向に配置されているものである、上記第1の太陽熱集熱装置である。
 上記第4の太陽熱集熱装置は、上記一軸太陽追尾型の反射ミラー群が、複数の一軸太陽追尾型の反射ミラーがそれぞれの長軸が同じ方向になるように配置されているものであり、上記二軸太陽追尾型反射ミラー群が、複数の一軸太陽追尾型の反射ミラーの長軸方向に対して直交する方向の両側において、第1の二軸太陽追尾型反射ミラー群と第2の二軸太陽追尾型反射ミラー群に分けて配置されており、さらに複数の一軸太陽追尾型の反射ミラーの長軸方向の延長方向であり、熱移動方向において第3の二軸太陽追尾型反射ミラー群が配置されているものである、上記第1の太陽熱集熱装置である。
 本国際出願は、2014年7月29日に出願された日本国特許出願である特願2014-153498号に基づく優先権を主張するものであり、当該日本国特許出願である特願2014-153498号の全内容は、本国際出願に援用される。
 本発明の特定の実施の形態についての上記説明は、例示を目的として提示したものである。それらは、網羅的であったり、記載した形態そのままに本発明を制限したりすることを意図したものではない。数多くの変形や変更が、上記の記載内容に照らして可能であることは当業者に自明である。
 本発明の太陽熱集熱装置は、太陽熱発電に使用できる。また、温水の供給システムとして、および、蒸気、温水、または温風を利用した暖房システムとしても使用することができる。
 また本発明の太陽熱集熱装置の建設では、その資材および機材の現地調達の割合を増加することができる。この現地調達の割合を増加することは、太陽エネルギー利用普及の方策を進める上で重要である。
 1 太陽熱集熱装置
 10 集熱手段
 11 集熱管
 20 一軸太陽追尾型反射ミラー群
 21 一軸太陽追尾型反射ミラー
 30および40 二軸太陽追尾型反射ミラー群
 31および41 二軸太陽追尾型反射ミラー
 50 発電装置
 60 凝縮器

 

Claims (5)

  1.  フレネル式反射ミラーおよびトラフ式反射ミラーから選ばれる、複数の一軸太陽追尾型反射ミラーを含む、一軸太陽追尾型反射ミラー群と、
     前記一軸太陽追尾型反射ミラー1枚の表面積の5~20%の表面積を有する、複数の二軸太陽追尾型反射ミラーを含む、二軸太陽追尾型反射ミラー群と、
     前記一軸太陽追尾型反射ミラー群、および、前記二軸太陽追尾型反射ミラー群から、反射光を受光して集熱し、自らの長さ方向の第1端部から第2端部に向かって熱を移動させる、集熱手段と、
    を含む太陽熱集熱装置。
  2.  前記一軸太陽追尾型反射ミラー群が、前記複数の一軸太陽追尾型反射ミラーそれぞれの長軸が同じ方向を向くように配置され、
     前記二軸太陽追尾型反射ミラー群が、第1の二軸太陽追尾型反射ミラー群と、第2の二軸太陽追尾型反射ミラー群とに分けて配置され、
     前記第1の二軸太陽追尾型反射ミラー群、および、第2の二軸太陽追尾型反射ミラー群が、前記複数の一軸太陽追尾型反射ミラーの長軸方向に対して直交する方向に並んで配置され、
     前記一軸太陽追尾型反射ミラー群は、前記第1の二軸太陽追尾型反射ミラー群、および、第2の二軸太陽追尾型反射ミラー群により、両側から挟まれるように配置されている、請求項1記載の太陽熱集熱装置。
  3.  前記一軸太陽追尾型反射ミラー群が、前記複数の一軸太陽追尾型反射ミラーそれぞれの長軸が同じ方向を向くように配置され、
     前記二軸太陽追尾型反射ミラー群が、前記複数の一軸太陽追尾型反射ミラーの長軸方向の延長方向、かつ、熱移動方向に配置されている、請求項1記載の太陽熱集熱装置。
  4.  前記一軸太陽追尾型反射ミラー群が、前記複数の一軸太陽追尾型反射ミラーそれぞれの長軸が同じ方向を向くように配置され、
     前記二軸太陽追尾型反射ミラー群が、第1の二軸太陽追尾型反射ミラー群と、第2の二軸太陽追尾型反射ミラー群と、第3の二軸太陽追尾型反射ミラー群とに分けて配置され、
     前記第1の二軸太陽追尾型反射ミラー群、および、第2の二軸太陽追尾型反射ミラー群が、前記複数の一軸太陽追尾型反射ミラーの長軸方向に対して直交する方向に並んで配置され、
     前記一軸太陽追尾型反射ミラー群は、前記第1の二軸太陽追尾型反射ミラー群、および、第2の二軸太陽追尾型反射ミラー群により、両側から挟まれるように配置され、さらに、
     前記第3の二軸太陽追尾型反射ミラー群は、前記複数の一軸太陽追尾型反射ミラーの長軸方向の延長方向、かつ、熱移動方向に配置されている、請求項1記載の太陽熱集熱装置。
  5.  前記集熱手段が、集熱管、集熱器、またはそれらを組み合わせたものである、請求項1~4の何れかに記載の太陽熱集熱装置。

     
PCT/JP2015/068002 2014-07-29 2015-06-23 太陽熱集熱装置 WO2016017323A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/327,254 US10739038B2 (en) 2014-07-29 2015-06-23 Solar heat collecting device
AU2015297858A AU2015297858A1 (en) 2014-07-29 2015-06-23 Solar heat collecting device
EP15827831.7A EP3176519B1 (en) 2014-07-29 2015-06-23 Solar heat collecting device
ES15827831T ES2746299T3 (es) 2014-07-29 2015-06-23 Dispositivo colector de calor solar
CN201580027375.XA CN106461271A (zh) 2014-07-29 2015-06-23 太阳能集热装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-153498 2014-07-29
JP2014153498A JP2016031184A (ja) 2014-07-29 2014-07-29 太陽熱集熱装置

Publications (1)

Publication Number Publication Date
WO2016017323A1 true WO2016017323A1 (ja) 2016-02-04

Family

ID=55217228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068002 WO2016017323A1 (ja) 2014-07-29 2015-06-23 太陽熱集熱装置

Country Status (7)

Country Link
US (1) US10739038B2 (ja)
EP (1) EP3176519B1 (ja)
JP (1) JP2016031184A (ja)
CN (1) CN106461271A (ja)
AU (1) AU2015297858A1 (ja)
ES (1) ES2746299T3 (ja)
WO (1) WO2016017323A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016181709A1 (ja) * 2015-05-14 2016-11-17 東洋エンジニアリング株式会社 太陽熱集熱装置
CN108181933A (zh) * 2017-12-31 2018-06-19 内蒙古旭宸能源有限公司 槽式太阳能系统跟踪控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050126170A1 (en) * 2003-12-10 2005-06-16 The Boeing Company Solar power system and method for power generation
US20080029150A1 (en) * 2006-08-04 2008-02-07 Solucar, Investigacion y Desarrollo, (Solucar R & D), S.A. Solar concentrator plant
WO2011067773A1 (en) * 2009-12-06 2011-06-09 Heliofocus Ltd. Thermal generation systems
WO2013002054A1 (ja) * 2011-06-30 2013-01-03 バブコック日立株式会社 太陽熱ボイラおよびそれを用いた太陽熱発電プラント
WO2013033200A2 (en) * 2011-08-30 2013-03-07 Abengoa Solar Inc. Hybrid solar field
WO2014014027A1 (ja) * 2012-07-17 2014-01-23 バブコック日立株式会社 太陽熱発電システム
JP2014092086A (ja) * 2012-11-05 2014-05-19 Hitachi Ltd 太陽熱発電プラント及び太陽熱蓄熱放熱装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7610401A (nl) * 1976-09-20 1978-03-22 Philips Nv Zonnecollector voorzien van zonnevolgmiddelen.
US20090084374A1 (en) 2007-06-13 2009-04-02 Mills David R Solar energy receiver having optically inclined aperture
US20090056699A1 (en) 2007-08-27 2009-03-05 Mills David R Linear fresnel solar arrays and receievers therefor
US9022020B2 (en) 2007-08-27 2015-05-05 Areva Solar, Inc. Linear Fresnel solar arrays and drives therefor
DE102008008402A1 (de) * 2008-02-09 2009-08-13 Robert Bosch Gmbh Solarkraftwerk mit sensorgestützter Justagemöglichkeit
US9091459B2 (en) * 2009-02-28 2015-07-28 Richard Welle Segmented fresnel solar concentrator
JP2011137620A (ja) 2009-12-29 2011-07-14 Hideo Masubuchi 太陽光集光集熱装置
US9182146B2 (en) 2010-10-01 2015-11-10 Tokyo Institute Of Technology Cross linear type solar heat collecting apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050126170A1 (en) * 2003-12-10 2005-06-16 The Boeing Company Solar power system and method for power generation
US20080029150A1 (en) * 2006-08-04 2008-02-07 Solucar, Investigacion y Desarrollo, (Solucar R & D), S.A. Solar concentrator plant
WO2011067773A1 (en) * 2009-12-06 2011-06-09 Heliofocus Ltd. Thermal generation systems
WO2013002054A1 (ja) * 2011-06-30 2013-01-03 バブコック日立株式会社 太陽熱ボイラおよびそれを用いた太陽熱発電プラント
WO2013033200A2 (en) * 2011-08-30 2013-03-07 Abengoa Solar Inc. Hybrid solar field
WO2014014027A1 (ja) * 2012-07-17 2014-01-23 バブコック日立株式会社 太陽熱発電システム
JP2014092086A (ja) * 2012-11-05 2014-05-19 Hitachi Ltd 太陽熱発電プラント及び太陽熱蓄熱放熱装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016181709A1 (ja) * 2015-05-14 2016-11-17 東洋エンジニアリング株式会社 太陽熱集熱装置
US10480827B2 (en) 2015-05-14 2019-11-19 Toyo Engineering Corporation Solar heat collector
CN108181933A (zh) * 2017-12-31 2018-06-19 内蒙古旭宸能源有限公司 槽式太阳能系统跟踪控制方法

Also Published As

Publication number Publication date
EP3176519A1 (en) 2017-06-07
EP3176519A4 (en) 2018-03-07
EP3176519B1 (en) 2019-07-31
CN106461271A (zh) 2017-02-22
US20170159972A1 (en) 2017-06-08
US10739038B2 (en) 2020-08-11
ES2746299T3 (es) 2020-03-05
AU2015297858A1 (en) 2016-12-01
JP2016031184A (ja) 2016-03-07

Similar Documents

Publication Publication Date Title
Hussain et al. Advances in solar thermal harvesting technology based on surface solar absorption collectors: A review
KR101172578B1 (ko) 집광형 태양열 집열장치
US20130008487A1 (en) Interchangeable and fully adjustable solar thermal-photovoltaic concentrator systems
US20120240577A1 (en) Thermal generation systems
US20110162362A1 (en) Multiple heat engine power generation system
US11336224B2 (en) Solar receivers and methods for capturing solar energy
EP3911899B1 (en) Solar receiver
US9115914B2 (en) Collector and collector arrangement for generating heat from incident radiation
JP2010097973A (ja) 光エネルギー収集装置
WO2016017323A1 (ja) 太陽熱集熱装置
JP5075916B2 (ja) 太陽熱利用システム
CN107367077A (zh) 基于多次反射的槽式太阳能集热系统
WO2013168074A1 (en) Concentration solar thermodynamic plant
WO2013005479A1 (ja) 太陽集光システム及び太陽熱発電システム
Mukesh et al. Design and development of a concentrated solar water heating system
JP6553401B2 (ja) 太陽熱集熱装置
EP2636969A1 (en) Solar collector having a multi-tube receiver, thermosolar plants that use said collector and method for operating said plants
WO2012107104A1 (en) Solar collection system
JP2016017689A (ja) 太陽熱発電システム
González-Mora et al. Transitioning to Direct Steam Generation in a Mexican Integrated Solar Combined Cycle for Enhanced Efficiency
JP2016095114A (ja) 太陽熱集光装置及び太陽熱集光システム
CN104976081A (zh) 二次反射式太阳能集热发电系统
Leonardi et al. Concentrating Solar Energy Technologies
HTUN et al. Design and Analysis of Solar Thermal for Heat Water Generation
WO2011089187A2 (en) Solar collection system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15827831

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015827831

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015827831

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015297858

Country of ref document: AU

Date of ref document: 20150623

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15327254

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE