WO2016017101A1 - 情報処理装置、情報処理方法及びプログラム - Google Patents

情報処理装置、情報処理方法及びプログラム Download PDF

Info

Publication number
WO2016017101A1
WO2016017101A1 PCT/JP2015/003579 JP2015003579W WO2016017101A1 WO 2016017101 A1 WO2016017101 A1 WO 2016017101A1 JP 2015003579 W JP2015003579 W JP 2015003579W WO 2016017101 A1 WO2016017101 A1 WO 2016017101A1
Authority
WO
WIPO (PCT)
Prior art keywords
target object
contact
information processing
processing apparatus
contact determination
Prior art date
Application number
PCT/JP2015/003579
Other languages
English (en)
French (fr)
Inventor
辰吾 鶴見
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to CN201580040960.3A priority Critical patent/CN106662923B/zh
Priority to EP15826756.7A priority patent/EP3176675B1/en
Priority to JP2016537737A priority patent/JP6528774B2/ja
Priority to US15/318,832 priority patent/US10346992B2/en
Publication of WO2016017101A1 publication Critical patent/WO2016017101A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/246Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/0304Detection arrangements using opto-electronic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/017Gesture based interaction, e.g. based on a set of recognized hand gestures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • G06F3/0425Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means using a single imaging device like a video camera for tracking the absolute position of a single or a plurality of objects with respect to an imaged reference surface, e.g. video camera imaging a display or a projection screen, a table or a wall surface, on which a computer generated image is displayed or projected
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • G06F3/0425Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means using a single imaging device like a video camera for tracking the absolute position of a single or a plurality of objects with respect to an imaged reference surface, e.g. video camera imaging a display or a projection screen, a table or a wall surface, on which a computer generated image is displayed or projected
    • G06F3/0426Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means using a single imaging device like a video camera for tracking the absolute position of a single or a plurality of objects with respect to an imaged reference surface, e.g. video camera imaging a display or a projection screen, a table or a wall surface, on which a computer generated image is displayed or projected tracking fingers with respect to a virtual keyboard projected or printed on the surface
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • G09G3/002Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to project the image of a two-dimensional display, such as an array of light emitting or modulating elements or a CRT

Definitions

  • the present technology relates to an information processing apparatus capable of detecting contact, an information processing method, and a program.
  • a stereo camera, a 3D sensor, or the like is used for contact of the operating body with the target object.
  • the UI recognizes the target object and the operating body, and detects the position of the operating body and the planar shape of the target object based on the three-dimensional information acquired from a stereo camera, a 3D sensor, or the like.
  • the UI can determine that a contact has occurred when the distance between the target object and the operating tool is a certain value or less.
  • the above-described method requires detection means such as a stereo camera and a 3D sensor for contact detection, and there are problems such as an increase in device size, an increase in power consumption, and an increase in cost. Further, due to the characteristics of stereo cameras and 3D sensors, it is difficult to use under sunlight. Furthermore, even when the operating body approaches the target object and is not in contact with the target object, it is determined that the operation body is in contact, and an input unintended by the user may be made.
  • an object of the present technology is to provide an information processing apparatus, an information processing method, and a program capable of performing contact detection with high accuracy at low cost. Is to provide.
  • an information processing apparatus includes a contact determination unit.
  • the contact determination unit determines contact of the operating body with respect to the target object based on a change in a normal vector of a surface of the target object that is an operation target by the operating body.
  • the normal vector is a vector that faces in a direction perpendicular to the object surface.
  • the information processing apparatus further includes an object recognition processing unit that recognizes the operation body and the target object included in the captured image,
  • the contact determination unit may determine contact of the operating body with respect to the target object based on a change in a normal vector of a surface of the target object around the operating body.
  • the contact determination unit calculates a change in the normal vector in order to use only the normal vector of the region of the surface of the target object that is highly likely to be touched by the operating body for contact determination. For this reason, it is possible to reduce the amount of calculation for this and to prevent erroneous detection.
  • the contact determination unit may determine contact of the operating body with the target object according to an inclination of the normal vector in a direction of the operating body.
  • the contact determination unit can use the inclination of the normal vector in the direction of the operating body for contact determination.
  • the contact determination unit may determine contact of the operating body with respect to the target object according to a disturbance in the inclination of the normal vector.
  • the contact determination part can utilize the disturbance of the inclination of a normal vector for contact determination.
  • the information processing apparatus may further include an input control unit that controls an operation input based on a determination result by the contact determination unit.
  • the input control unit can accept an operation input according to the contact position and the number of contacts and supply it to the OS or the like when the contact determination unit determines that the operation object and the target object are in contact with each other.
  • the information processing apparatus further includes an object recognition processing unit that recognizes the operation body and the target object included in the captured image,
  • the input control unit may control the operation input based on the shape of the operation body recognized by the object recognition processing unit and a determination result by the contact determination unit.
  • the object recognition processing unit recognizes the shape of the operating body (for example, the shape of a finger during a pinch operation) and supplies it to the input control unit, whereby the input control unit receives an operation input corresponding to the shape of the operating body It can be.
  • the information processing apparatus further includes an image output unit that generates an operation target image to be superimposed on the target object,
  • the input control unit may control an operation input based on a contact position between the operation body and the target object in the operation target image.
  • the image output unit generates an operation target image that is displayed on a head mounted display, a projector, or the like and superimposed on the target object.
  • the input control unit calculates the positional relationship between the operation target image and the contact position based on the contact position in the operation target image and the superimposed position of the operation target image on the target object, and the contents of the operation target image superimposed on the contact position An operation input corresponding to (icon etc.) can be accepted.
  • the contact determination unit may determine that the operating body has contacted the target object when the slope of the normal vector exceeds a threshold value.
  • the information processing apparatus further includes an object recognition processing unit that recognizes the operation body and the target object included in the captured image,
  • the contact determination unit may determine the threshold value according to the type of the target object.
  • the contact determination unit can determine contact with an appropriate threshold according to the type of the target object. For example, the threshold value can be decreased if the target object is hard, and can be increased if the target object is soft.
  • the contact determination unit may determine the threshold value according to a position on the surface of the target object.
  • the target object is a palm or the like
  • the degree of depression differs depending on the position even if the object is pressed with the same pressing force. For this reason, according to the said structure, it is possible to determine a contact with an appropriate threshold value according to the position of the target object.
  • the contact determination unit may calculate the strength of contact of the operating body with respect to the target object according to the magnitude of the inclination of the normal vector. .
  • the degree of deformation of the target object due to the contact of the operating body with the target object increases according to the pressing force of the contact. For this reason, according to the above configuration, it is possible to calculate not only the contact of the operating body with the target object but also the pressing force of the operating body with respect to the target object.
  • the information processing apparatus further includes an object recognition processing unit that recognizes the operation body and the target object included in the captured image,
  • the contact determination unit determines contact of the operation body with the target object based on a color change in the captured image when the target object is a rigid body, and when the target object is not a rigid body, You may determine the contact of the said operating body with respect to the said target object based on the change of a normal vector.
  • the contact determination unit can determine the contact using the color change in the captured image. For example, since the blood color of the fingertip changes when the finger is pressed against the object, the contact determination unit can determine contact by using such a color change.
  • the contact determination unit may determine contact of the operating body with respect to the target object based on a change in the normal vector when a distance between the target object and the operating body is a predetermined value or less.
  • the contact determination unit determines the contact based on the color change in the image when the distance between the target object and the operation body is equal to or less than the predetermined value, the contact determination is performed only when the contact possibility is high. Is possible.
  • the distance between the elephant object and the operating body can be obtained by a depth sensor that measures the distance between the sensor and the object using an infrared projection pattern or the like.
  • the contact determination unit may detect the normal vector from a captured image captured by polarization imaging.
  • Polarization imaging is realized by a camera in which each pixel is provided with a polarization filter having a different polarization direction, and a normal vector can be detected from the captured image.
  • a program operates an information processing apparatus as a contact determination unit.
  • the contact determination unit determines contact of the operating body with respect to the target object based on a change in a normal vector of a surface of the target object that is an operation target by the operating body.
  • an information processing method includes: The contact of the operating body is determined.
  • FIG. 1 is a schematic diagram illustrating a functional configuration of the information processing apparatus 100 according to the first embodiment of the present technology.
  • the information processing apparatus 100 includes a voice input unit 101, a voice recognition processing unit 102, an image input unit 103, an object recognition processing unit 104, a contact determination unit 105, an input control unit 106, and an image output unit 107.
  • a voice input unit 101 a voice recognition processing unit 102
  • an image input unit 103 an object recognition processing unit 104
  • a contact determination unit 105 an input control unit 106
  • an image output unit 107 an image output unit 107.
  • the information processing apparatus 100 can be connected to the eyewear 10. Further, the information processing apparatus 100 may be mounted on the eyewear 10.
  • the eyewear 10 includes a display 11, a camera 12, and a microphone (not shown).
  • the display 11 can be a transmissive HMD (Head Mounted Display).
  • the camera 12 can be a camera capable of polarization imaging.
  • the camera 12 may be configured by attaching four types of polarizing films with the polarization direction shifted by 90 degrees to each pixel.
  • Object obtained by Fourier transform of received light intensity of each pixel with different polarization direction to extract non-polarized component intensity, polarization principal axis direction, polarization component intensity, and obtain azimuth angle from principal axis direction and zenith angle from intensity It is possible to obtain the normal direction (described later) of the surface.
  • the information processing apparatus 100 may include a normal camera in addition to the camera 12.
  • the voice input unit 101 is connected to the microphone of the eyewear 10 and receives the voice signal of the voice collected by the microphone.
  • the voice input unit 101 outputs the acquired voice signal to the voice recognition processing unit 102.
  • the voice recognition processing unit 102 performs voice recognition processing on the voice signal supplied from the voice input unit 101 to recognize the operation voice by the user. If the operation voice is recognized, the voice recognition processing unit 102 supplies the recognition result to the input control unit 106.
  • the image input unit 103 is connected to the camera 12, and an image (moving image) captured by the camera 12 is input.
  • the image captured by the camera 12 is an image captured by polarization imaging as described above.
  • the image input unit 103 supplies the acquired image (hereinafter, acquired image) to the object recognition processing unit 104.
  • the object recognition processing unit 104 collates the acquired image supplied from the image input unit 103 with the information stored in the object detection dictionary D to recognize the object.
  • the object recognition processing unit 104 can recognize an object such as an operation body or a target object described later.
  • the object recognition processing unit 104 supplies the acquired image and the object recognition result to the contact determination unit 105.
  • the object detection dictionary D may be stored in the information processing apparatus 100, or the object recognition processing unit 104 may acquire it from a network or the like.
  • the contact determination unit 105 performs contact determination on the acquired image supplied from the object recognition processing unit 104 using the object recognition result and the contact determination threshold T. Details of this processing will be described later.
  • the contact determination unit 105 supplies the determination result to the input control unit 106.
  • the contact determination threshold value T may be stored in the information processing apparatus 100, or the contact determination unit 105 may acquire it from a network or the like.
  • the input control unit 106 controls the operation input by the user based on the recognition result by the voice recognition processing unit 102 or the determination result by the contact determination unit 105. Specifically, the input control unit 106 accepts operation inputs such as touch, multi-touch, dragging, and pinching from the contact position, pressing force, pressing direction, movement of the operation body after contact, and the like with respect to the target object. The input control unit 106 supplies the received operation input to the OS or the like of the information processing apparatus 100.
  • the image output unit 107 generates an image (moving image) displayed on the display 11.
  • the image output unit 107 can generate an operation image including icons and operation buttons.
  • the display 11 is a transmissive HMD, and the user visually recognizes a field of view in which an image displayed on the display 11 and a real object are superimposed.
  • FIG. 2 schematically shows the user's field of view through the display 11.
  • the user's field of view includes the user's palm H, the user's finger Y, and the operation image G displayed on the display 11.
  • the operation image G includes an icon P.
  • FIG. 3 is a schematic diagram illustrating a state in which the operation image G is superimposed on the magazine Z.
  • the information processing apparatus 100 accepts the selection of the icon P.
  • the user can also indicate the icon P with something other than a finger such as a stylus.
  • the operation image G is projected, and an object (palm H, magazine Z, etc.) operated by the user is set as a target object, and an object (finger Y or stylus) that touches the target object and operates an icon P or the like Let it be the body. That is, the information processing apparatus 100 detects contact of the operating body with respect to the target object, and accepts an operation input according to the contact.
  • FIG. 4 shows a state where the camera 12 is provided independently of the eyewear 10.
  • the operation image G is displayed on the display 11 and superimposed on the magazine Z.
  • the camera 12 is provided at a position different from the eyewear 10 (for example, above the magazine Z) and is connected to the image input unit 103.
  • the information processing apparatus 100 may be connected to an image projection apparatus different from the eyewear 10.
  • the projector may be connected to a projector including a camera that can project an image on a desk or a wall surface and can capture an image of the projection surface.
  • the image output unit 107 is connected to the image projection mechanism of the projector, and projects an image on a target object (desk or wall).
  • the image input unit 103 is connected to a camera and acquires an image including a target object and a projection image.
  • the information processing apparatus 100 can display or project an image on a target object, and can be connected to a device including a camera that can capture the target object. is there.
  • the functional configuration of the information processing apparatus 100 as described above may be connected to or built in an image projection apparatus such as eyewear or a projector, or may be mounted on a PC or a smartphone other than the image projection apparatus. . A part or all of the functional configuration may be configured on a network.
  • FIG. 5 is a schematic diagram illustrating a hardware configuration of the information processing apparatus 100.
  • the configuration of the information processing apparatus 100 described above is a functional configuration realized by the cooperation of the hardware configuration illustrated in FIG. 5 and the program.
  • the information processing apparatus 100 includes a CPU 121, a memory 122, a storage 123, and an input / output IF 124 as hardware configurations. These are connected to each other by a bus 125.
  • a CPU (Central Processing Unit) 121 controls other configurations according to a program stored in the memory 122, performs data processing according to the program, and stores the processing result in the memory 122.
  • the CPU 121 can be a microprocessor.
  • the memory 122 stores programs executed by the CPU 121 and data.
  • the memory 122 can be a RAM (Random Access Memory).
  • the storage 123 stores programs and data.
  • the storage 123 is an HDD (Hard disk drive) or SSD (solid state drive), and can store the object detection dictionary D and the contact determination threshold T described above.
  • the input / output IF (interface) 124 receives an input to the information processing apparatus 100 and supplies the output of the information processing apparatus 100 to the display 11 or the like.
  • the input / output IF 124 includes input devices such as a mouse and a touch panel, output devices such as the display 11, and connection interfaces such as a network.
  • the information processing apparatus 100 can accept a user operation input based on the image acquired by the image input unit 103. In this case, the input is accepted without going through the input / output IF 124.
  • the image generated by the image output unit 107 is output to the display 11 via the input / output IF 124 and displayed.
  • the hardware configuration of the information processing apparatus 100 is not limited to that shown here, and any hardware configuration that can realize the functional configuration of the information processing apparatus 100 may be used.
  • FIG. 6 is a flowchart showing the operation of the information processing apparatus 100.
  • an image is captured by the camera 12, and the image input unit 103 acquires the image (acquired image).
  • the image input unit 103 supplies the acquired image to the object recognition processing unit 104.
  • the object recognition processing unit 104 recognizes the target object (St101).
  • the object recognition processing unit 104 recognizes the target object by collating the acquired image acquired from the image input unit 103 with the object detection dictionary D. Thereby, for example, if a palm or a magazine is included in the acquired image, it is recognized as a target object.
  • the image output unit 107 supplies the operation image G (see FIG. 2) to the display 11 for display (St103). If the target object is not recognized in the acquired image (St102: No), the target object recognition (St101) by the object recognition processing unit 104 is executed again.
  • the object recognition processing unit 104 recognizes the operating body (St104).
  • the object recognition processing unit 104 recognizes the operating tool by collating the acquired image with the object detection dictionary D. Thereby, for example, if a finger, a stylus, or the like is included in the acquired image, it is recognized as an operating tool.
  • the object recognition processing unit 104 may recognize a plurality of operating objects.
  • the contact determination unit 105 calculates the direction of the normal vector (hereinafter referred to as the normal direction) on the surface of the target object included in the acquired image (St106). .
  • the recognition of the target object (St101) by the object recognition processing unit 104 is executed again.
  • FIG. 7 and 8 are schematic diagrams showing a normal vector B on the surface of the target object.
  • FIG. 7 shows a state where the operating body (finger Y) is not in contact with the target object (palm H)
  • FIG. 7A is a plan view
  • FIG. 7B is a side view.
  • the contact determination unit 105 detects a normal vector B on the surface of the palm H.
  • the normal vector is a vector perpendicular to the surface of the object, and its magnitude is 1.
  • the camera 12 is a camera capable of polarization imaging, and the contact determination unit 105 can detect the normal vector B from the acquired image captured by the camera 12.
  • FIG. 8 shows a state where the operating body (finger Y) is in contact with the target object (palm H), FIG. 8 (a) is a plan view, and FIG. 8 (b) is a side view.
  • the finger Y contacts the palm H and presses the palm H
  • the surface of the palm H is depressed.
  • the normal vector B detected on the surface of the palm H is inclined in the direction of the finger Y.
  • the contact determination unit 105 detects contact based on the change in the normal vector B due to the contact of the operating body with the target object. Specifically, the contact determination unit 105 can determine that the finger Y is in contact with the palm H when the inclination of the direction of the normal vector B (hereinafter referred to as the normal direction) exceeds the contact determination threshold T. (St107: Yes). The contact determination unit 105 may compare the inclination of the normal vector B having the maximum inclination among the normal vectors B in which the change in the normal direction has occurred with the contact determination threshold T, and the normal vector in which the inclination has occurred. The average value of the slope of B may be compared with the contact determination threshold value T. Further, when the inclination in the normal direction is smaller than the contact determination threshold value T, the contact determination unit 105 can determine that the finger Y is not in contact with the palm H (St107: No).
  • the contact determination unit 105 may determine that the finger Y is in contact with the palm H only when the inclination of the normal direction to the direction of the finger Y exceeds the contact determination threshold T. This is because, even if the inclination in the normal direction is large, if the direction is not the direction of the finger Y, there is a possibility that the inclination in the normal direction may occur due to a reason different from the contact with the finger Y. That is, it is possible to improve detection accuracy by using only the normal direction inclination to the direction of the finger Y for contact determination.
  • the contact determination unit 105 may detect contact of the operating body with the target object according to disturbance in the normal direction.
  • FIG. 9 is a schematic diagram showing the back K of the hand that is the target object and the finger Y that is the operating body. As shown in the figure, when the target object is the back of the hand, when the operating body comes into contact, unlike the palm, the surface does not sink and wrinkles occur. The contact determination unit 105 can detect the occurrence of such wrinkles from disturbances in the normal direction. Specifically, the contact determination unit 105 can determine that the finger Y is in contact with the back K of the hand when the inclination of the normal direction in any direction exceeds the contact determination threshold T.
  • the contact determination unit 105 can use the recognition result obtained by the object recognition processing unit 104 to determine what normal vector change is used for the determination. For example, when the object recognition processing unit 104 detects an object that is depressed due to a pressure such as the palm H, the contact determination unit 105 can use the normal direction inclination to the direction of the operating body for the determination. it can. In addition, when the object recognition processing unit 104 detects an object that causes wrinkles by pressing, such as the back of the hand K, the contact determination unit 105 uses the normal direction inclination in any direction for determination. Can do.
  • the contact determination threshold value T may be a fixed value, or the contact determination unit 105 may determine the contact determination threshold value T using the recognition result of the target object by the object recognition processing unit 104. Specifically, the contact determination unit 105 can use a contact determination threshold T set according to the type of the target object. Moreover, the contact determination part 105 may adjust the contact determination threshold value T according to the kind of target object. For example, the contact determination unit 105 can set a large value as the contact determination threshold value T if the target object is an object that is greatly deformed by pressing of the operating body, and set a small value as the contact determination threshold value T if the object is not largely deformed. .
  • the contact determination unit 105 may adjust the contact determination threshold T according to the degree of depression due to the pressing of the operating body on the target object, that is, the degree of inclination in the normal direction.
  • the contact determination threshold value T may be adjusted according to the position. For example, even when the palm is pressed with a finger, the depression is large near the center of the palm, and the depression is small near the base of the finger. For this reason, when the contact determination unit 105 uses an appropriate value as the contact determination threshold value T, it is possible to determine the contact of the operating body with respect to the target object more accurately.
  • the contact determination unit 105 does not have to detect normal vectors on all surfaces of the target object, and only normals around the operating body recognized by the object recognition processing unit 104 among the surfaces of the target object. A vector may be detected and used for contact determination. As a result, the number of normal vectors for tracking changes in the normal direction can be limited, the amount of calculation can be reduced, and erroneous detection can be prevented.
  • the contact determination unit 105 determines that the operating body is not in contact with the target object (St107: No)
  • the target object recognition (St101) by the object recognition processing unit 104 is executed again.
  • the contact determination unit 105 supplies a contact position with respect to the acquired image to the input control unit 106 when determining contact with the target object by the operating body.
  • the input control unit 106 controls the operation input based on the position of the icon P displayed on the operation image G and the contact position supplied from the contact determination unit 105. For example, the input control unit 106 can select the icon P superimposed on the contact position.
  • the information processing apparatus 100 operates as described above. As described above, since it is possible to detect contact of the operating body with respect to the target object using an image captured by the camera 12 capable of polarization imaging, a sensor for detecting contact in addition to the camera 12 Is unnecessary. For this reason, size reduction and cost reduction of a contact detection system are realizable. Moreover, since infrared rays etc. are not used for contact detection, it can be used outdoors.
  • the information processing apparatus 100 detects a contact using a change in a normal vector generated by the contact of the operating body with the target object. For this reason, the information processing apparatus 100 does not detect as a contact when the operating body approaches or slightly touches the target object, and detects only when the operating body reliably contacts the target object. To do. For this reason, it is possible to detect the contact of the operating body with respect to the target object with high accuracy.
  • the operation body is a finger, but the operation body is not limited to a finger, and may be a stylus or the like. Further, the target object is not limited to the palm, and any object whose surface shape is changed by contact of the operating body may be used.
  • the object recognition processing unit 104 collates the acquired image with the object detection dictionary D and recognizes the object (target object and operation body), the present invention is not limited to this. For example, when an acquired image is uniform over a certain period of time and an object enters the acquired image (that is, the imaging range of the camera), the object may be recognized as an operating body.
  • FIG. 10 is a flowchart showing another operation of the information processing apparatus 100.
  • the eyewear 10 or other device connected to the information processing apparatus 100 may be provided with a depth sensor capable of acquiring depth information.
  • the depth information is distance information between the object and the depth sensor.
  • an image is captured by the camera 12, and the image input unit 103 acquires the image (acquired image).
  • the image input unit 103 supplies the acquired image to the object recognition processing unit 104.
  • the object recognition processing unit 104 recognizes the target object (St111).
  • the object recognition processing unit 104 can recognize the target object by collating the acquired image with the object detection dictionary D from the image input unit 103.
  • the image output unit 107 supplies the operation image G (see FIG. 2) to the display 11 for display (St113).
  • recognition of the target object by the object recognition processing unit 104 (St111) is executed again.
  • the object recognition processing unit 104 recognizes the operating body (St114).
  • the object recognition processing unit 104 can recognize the operating tool by collating the acquired image with the object detection dictionary D.
  • the object recognition processing unit 104 determines whether or not the target object is a rigid body (St116).
  • “Rigid body” means an object that is not deformed by contact with another object, such as a desk. Palms and magazines are judged not to be rigid.
  • the contact determination unit 105 calculates the normal direction of the target object surface from the acquired image as described above (St117). When the inclination in the normal direction exceeds the contact determination threshold T (St118: Yes), the contact determination unit 105 determines that the contact is in contact (St119), and when the inclination in the normal direction is smaller than the contact determination threshold T (St118: No), it is not determined as contact, and the object recognition processing unit 104 recognizes the target object again (St111).
  • the object recognition processing unit 104 determines that the target object is a rigid body (St116: Yes)
  • the normal direction does not change even when the operating body touches the target object, and thus the normal direction is used for contact detection. Cannot be used. For this reason, the contact determination unit 105 can determine contact without using the normal direction.
  • the contact determination unit 105 calculates the distance between the target object and the operating body (St120).
  • the distance between the target object and the operating body can be calculated using the depth information supplied from the depth sensor.
  • the contact determination unit 105 determines that the contact has occurred (St119).
  • the object recognition processing unit 104 recognizes the target object (St111) again.
  • the information processing apparatus 100 can also perform the above operations. Even if the target object is a rigid body and contact cannot be determined using the normal direction, contact can be determined. In the above description, when the target object is a rigid body, the contact determination unit 105 detects the contact of the operating body with respect to the target object using the depth information. However, even if the contact is detected by other methods. Good.
  • the color of the fingertip changes when the finger is pressed against the object.
  • the color of the fingertip seen through the nail is pink, but when the finger is pressed against the object, the tip of the finger changes to white.
  • the contact determination unit 105 can detect the contact of the finger with the target object by comparing such a blood color change of the fingertip with a predetermined pattern. Further, the contact determination unit 105 can detect a contact based on the color change in the same manner as the blood color of the fingertip, as long as the color changes when the operating body is pressed against the target object.
  • the eyewear 10 (or other device) connected to the information processing apparatus 100 is provided with a depth sensor capable of acquiring depth information.
  • FIG. 11 is a flowchart showing another operation of the information processing apparatus 100.
  • an image is captured by the camera 12, and the image input unit 103 acquires the image (acquired image).
  • the image input unit 103 supplies the acquired image to the object recognition processing unit 104.
  • the object recognition processing unit 104 recognizes the target object (St131).
  • the object recognition processing unit 104 can recognize the target object by collating the acquired image acquired from the image input unit 103 with the object detection dictionary D.
  • the image output unit 107 supplies the operation image G (see FIG. 2) to the display 11 for display (St133).
  • recognition of the target object by the object recognition processing unit 104 (St131) is executed again.
  • the object recognition processing unit 104 recognizes the operating body (St134).
  • the object recognition processing unit 104 can recognize the operating tool by collating the acquired image with the object detection dictionary D. Note that the object recognition processing unit 104 may recognize a plurality of operating objects.
  • the contact determination unit 105 calculates the distance between the operating tool and the target object using the depth information (St136).
  • the contact determination unit 105 can acquire depth information from the depth sensor as described above.
  • the object recognition processing unit 104 recognizes the target object (St131) again.
  • the contact determination unit 105 detects the normal vector on the surface of the target object and calculates the normal direction ( St138). If the distance between the operating tool and the target object is greater than the predetermined value (St137: No), the target object recognition (St131) by the object recognition processing unit 104 is executed again.
  • the contact determination unit 105 compares the inclination in the normal direction with the contact determination threshold T, and when the inclination in the normal direction exceeds the contact determination threshold T (St139: Yes), the operation body Is determined to have touched the target object (St140). When the inclination in the normal direction is smaller than the contact determination threshold T (St139: No), the recognition of the target object (St131) by the object recognition processing unit 104 is repeated.
  • the contact determination unit 105 supplies a contact position with respect to the acquired image to the input control unit 106 when determining contact with the target object by the operating body.
  • the input control unit 106 controls the operation input based on the position of the icon P displayed on the operation image G and the contact position supplied from the contact determination unit 105. For example, the input control unit 106 can select the icon P superimposed on the contact position.
  • the information processing apparatus 100 can also perform the above operations.
  • the information processing apparatus 100 can acquire the distance between the operating tool and the target object by using the depth information, and only when the distance between the operating tool and the target object is sufficiently small and the possibility of contact is high.
  • the contact can be determined using the change of the line vector.
  • the information processing apparatus 100 can determine not only the contact between the operating body and the target object but also the type of operation by the contact (dragging, pinching, etc.).
  • FIG. 12 is a flowchart illustrating the contact and operation determination operation of the information processing apparatus 100.
  • the contact determination step (St151) is the same flow as the contact determination operation shown in FIG. Further, the same step (St151) may be the same flow as the contact determination operation according to the type of the target object shown in FIG. 10, and is the same as the contact reaction operation combined with the use of the depth information shown in FIG. It may be a flow.
  • the contact determination unit 105 determines the strength of contact (pressing) of the operating body with respect to the target object when determined to be contact in the contact determination step (St152: Yes) (St153). When the inclination in the normal direction exceeds the contact determination threshold value T, the contact determination unit 105 can determine the contact strength from the magnitude of the inclination. When it is not determined to be contact in the contact determination step (St152: No), the contact determination step (St151) is repeated.
  • the contact determination unit 105 supplies the input control unit 106 with the contact position with respect to the acquired image and the magnitude of the pressing force with respect to the target object of the operating body.
  • the input control unit 106 determines whether or not the contact position between the operating tool and the target object has changed (St154). When the contact position has changed (St154: Yes), the input control unit 106 determines whether or not the number of operating bodies is two (St155). When the contact position has not changed (St155: No), the contact determination step (St151) is executed again.
  • the input control unit 106 determines that the operation by the operating body is a pinch. Further, when the number of operation objects is not two, the input control unit 106 determines that the operation by the operation object is a drag. Note that, when the number of operating bodies is two, the input control unit 106 may determine that the operation is a drag (multi-touch drag) by a plurality of operating bodies if the moving direction of the contact location is substantially parallel. . Further, when the operation by the operating body is a pinch, the input control unit 106 may determine that the operation is a pinch-in or a pinch-out according to the moving direction of the contact location.
  • FIG. 13 is a schematic diagram illustrating the shape of a finger as an operation body.
  • the object recognition processing unit 104 supplies information to the input control unit 106 when a specific shape (such as finger orientation) of the operating tool is registered in the object recognition dictionary D in advance.
  • the input control unit 106 can use the shape of the operating tool for determining the type of operation. For example, in the example illustrated in FIG.
  • the object recognition processing unit 104 can recognize that the shape of the finger is a pinch operation shape (a U shape with the thumb and forefinger), and the input control unit 106 has a finger shape of Only when the shape is a pinch operation, it is possible to determine that the operation is a pinch operation.
  • a pinch operation shape a U shape with the thumb and forefinger
  • the input control unit 106 controls the operation input according to the type of operation by the operating body. At this time, the input control unit 106 may change the degree of the effect of the drag (the moving speed of the cursor, the scrolling speed, etc.) according to the magnitude of the pressing force on the target object of the operating body.
  • FIG. 14 is an example of a music playback application UI based on the above-described operation of the information processing apparatus 100. As shown in the figure, the information processing apparatus 100 can select the playback volume and the music to be played, depending on the direction and intensity of pressing the target object by the operating tool.
  • FIG. 15 is a schematic diagram illustrating a functional configuration of an information processing device 200 according to the second embodiment of the present technology.
  • the information processing apparatus 200 includes a voice input unit 201, a voice recognition processing unit 202, an image input unit 203, a contact determination unit 204, an input control unit 205, and an image output unit 206.
  • the information processing apparatus 200 according to the present embodiment does not have an object recognition processing unit.
  • the information processing apparatus 200 can be connected to the eyewear 10. Since the configuration of the eyewear 10 is the same as that of the first embodiment, description thereof is omitted.
  • the audio input unit 201 is connected to the microphone of the eyewear 10 and receives an audio signal of the sound collected by the microphone.
  • the voice input unit 201 outputs the acquired voice signal to the voice recognition processing unit 202.
  • the voice recognition processing unit 202 performs voice recognition processing on the voice signal supplied from the voice input unit 201 and recognizes the operation voice by the user. If the operation voice is recognized, the voice recognition processing unit 202 supplies the voice recognition result to the input control unit 205.
  • the image input unit 203 is connected to the camera 12 and an image (moving image) captured by the camera 12 is input.
  • the image input unit 203 supplies the acquired image (hereinafter, acquired image) to the contact determination unit 204.
  • the contact determination unit 204 performs contact determination on the acquired image supplied from the image input unit 203 using the contact determination threshold T. Details of this processing will be described later.
  • the contact determination unit 204 supplies the determination result to the input control unit 205.
  • the contact determination threshold value T may be stored in the information processing apparatus 200, or the contact determination unit 204 may acquire it from a network or the like.
  • the input control unit 205 controls the operation input by the user based on the recognition result by the voice recognition processing unit 202 or the determination result by the contact determination unit 204. Specifically, the input control unit 205 accepts operation inputs such as touch, multi-touch, dragging, and pinching from the contact position, pressing force, pressing direction, movement of the operating body after contact, and the like with respect to the target object. The input control unit 205 supplies the received operation input to the OS or the like of the information processing apparatus 200.
  • the image output unit 206 generates an image (moving image) displayed on the display 11.
  • the image output unit 206 can generate an operation image including icons and operation buttons.
  • the user visually recognizes the field of view (see FIGS. 2 and 3) in which the image displayed on the display 11 and the real object are superimposed.
  • the information processing apparatus 200 is capable of displaying or projecting an image on a target object and connected to an apparatus including a camera capable of capturing the target object. Is possible.
  • the functional configuration of the information processing apparatus 200 as described above may be connected to or built in an image projection apparatus such as an eyewear or a projector, or may be mounted on a PC or smartphone other than the image projection apparatus. . A part or all of the functional configuration may be configured on a network.
  • the functional configuration of the information processing apparatus 200 described above can be realized by the hardware configuration shown in the first embodiment.
  • FIG. 16 is a flowchart showing the operation of the information processing apparatus 200.
  • an image is captured by the camera 12, and the image input unit 203 acquires an image (acquired image).
  • the image input unit 203 supplies the acquired image to the contact determination unit 204.
  • the image output unit 206 supplies the operation image G (see FIG. 2) to the display 11 for display (St201). Unlike the first embodiment, the target object recognition process is not executed, but the user can project the operation image G onto the target object by pointing the display 11 toward the target object (desktop, wall surface, or the like). Is possible.
  • the contact determination unit 204 detects a normal vector on the surface of the target object and calculates a normal direction (St202).
  • the target object detection process in the image is not performed, but the contact determination unit 204 may detect normal vectors of all objects included in the acquired image, and an area in which the normal direction is uniform.
  • a normal vector may be detected by regarding (planar region) as a target object.
  • the contact determination unit 204 compares the change in the normal direction with the contact determination threshold value T. When the inclination in the normal direction exceeds the place contact determination threshold value T (St203: Yes), the operating body contacts the target object. (St204). When the change in the normal direction is smaller than the contact determination threshold T (St203: No), the calculation of the normal direction (St202) is executed again.
  • the contact determination unit 204 supplies a contact position with respect to the acquired image to the input control unit 205 when determining contact with the target object by the operating tool.
  • the input control unit 205 controls the operation input based on the contact determination result supplied from the contact determination unit 204.
  • the information processing apparatus 200 operates as described above. As described above, since it is possible to detect contact of the operating body with respect to the target object using an image captured by the camera 12 capable of polarization imaging, a sensor for detecting contact in addition to the camera 12 Is unnecessary. For this reason, size reduction and cost reduction of a contact detection system are realizable. Moreover, since infrared rays etc. are not used for contact detection, it can be used outdoors.
  • the information processing apparatus 200 detects contact using a change in the normal direction caused by the contact of the operating body with the target object. For this reason, the information processing apparatus 100 does not detect as a contact when the operating body approaches or slightly touches the target object, and detects only when the operating body reliably contacts the target object. To do. For this reason, it is possible to detect the contact of the operating body with respect to the target object with high accuracy.
  • the information processing apparatus 200 operates as described above. Note that the information processing apparatus 200 may determine contact (see FIG. 11) using color change and depth information, as in the first embodiment. In addition, the information processing apparatus 200 may determine the type of operation by contact (see FIG. 12) after determining contact.
  • the operation body is a finger, but the operation body is not limited to a finger, and may be a stylus or the like. Further, the target object is not limited to the palm, and any object whose surface shape is changed by contact of the operating body may be used.
  • An information processing apparatus comprising: a contact determination unit that determines contact of the operating body with the target object based on a change in a normal vector of a surface of the target object that is an operation target by the operating body.
  • the said contact determination part determines the contact of the said operation body with respect to the said target object according to the inclination to the direction of the said operation body of the said normal vector. Information processing apparatus.
  • the information processing apparatus determines the contact of the said operating body with respect to the said target object according to disturbance of the inclination of the said normal vector.
  • An information processing apparatus further comprising: an input control unit that controls an operation input based on a determination result by the contact determination unit.
  • the contact determination unit further determines the threshold according to a position on the surface of the target object.
  • the contact determination unit calculates the strength of contact of the operating body with respect to the target object according to the magnitude of the inclination of the normal vector.
  • the information processing apparatus according to any one of (1) to (11) above, An object recognition processing unit for recognizing the operation body and the target object included in the captured image; The contact determination unit determines contact of the operation body with the target object based on a color change in the captured image when the target object is a rigid body, and when the target object is not a rigid body, An information processing apparatus that determines contact of the operating body with the target object based on a change in a normal vector.
  • the contact determination unit determines contact of the operating body with respect to the target object based on a change in the normal vector when a distance between the target object and the operating body is a predetermined value or less.
  • a program that causes an information processing apparatus to operate as a contact determination unit that determines contact of the operating body with the target object based on a change in a normal vector of a surface of the target object that is an operation target by the operating body.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computer Hardware Design (AREA)
  • User Interface Of Digital Computer (AREA)
  • Position Input By Displaying (AREA)

Abstract

 低コストで高精度に接触検出を行うことが可能な情報処理装置、情報処理方法及びプログラムを提供する。 本技術に係る情報処理装置は、接触判定部を具備する。接触判定部は、操作体による操作対象である対象物体の表面の法線ベクトルの変化に基づいて、対象物体に対する操作体の接触を判定する。

Description

情報処理装置、情報処理方法及びプログラム
 本技術は、接触検出が可能な情報処理装置、情報処理方法及びプログラムに関する。
 近年、情報処理機器の利用形態の多様化に伴い、新たなUI(ユーザーインターフェース)が検討されている。例えば、ヘッドマウントディスプレイにアイコンを表示して対象物体(手のひらや机等)に投影し、操作体(指やスタイラス等)で投影されたアイコンにタッチすると、アイコンの選択が入力される技術が開発されている。
 対象物体に対する操作体の接触は、ステレオカメラや3Dセンサ等が用いられる。UIは、対象物体と操作体を認識し、ステレオカメラや3Dセンサ等から取得した三次元情報に基づいて操作体の位置と対象物体の平面形状を検出する。UIは対象物体と操作体の距離が一定値以下になると、接触と判定することができる。
特開2011-70491号公報
 しかしながら、上記のような手法では、接触検出のためにステレオカメラや3Dセンサ等の検出手段が必要であり、デバイスの大型化や電力消費の増加、コストの増加といった問題がある。また、ステレオカメラや3Dセンサの特性上、太陽光下では利用が困難である。さらに、操作体が対象物体に接近し、接触していない場合も接触と判定され、ユーザの意図しない入力がなされてしまうおそれがある。
 以上のような事情に鑑み、本技術の目的は、本技術の目的は、低コストで高精度に接触検出を行うことが可能な情報処理装置、情報処理方法及びプログラムを提供することにある。
を提供することにある。
 上記目的を達成するため、本技術の一形態に係る情報処理装置は、接触判定部を具備する。
 上記接触判定部は、操作体による操作対象である対象物体の表面の法線ベクトルの変化に基づいて、上記対象物体に対する上記操作体の接触を判定する。
 法線ベクトルは、物体表面に垂直な方向を向くベクトルである。対象物体に対して操作体が接触すると、対象物体の表面は操作体の接触によって変形し、法線ベクトルが変化する。このため、上記構成によれば、法線ベクトルの変化を検出することによって、対象物体に対する操作体の接触を判定することが可能である。
 上記情報処理装置は、撮像画像に含まれる上記操作体及び上記対象物体を認識する物体認識処理部をさらに具備し、
 上記接触判定部は、上記対象物体の、上記操作体の周囲における表面の法線ベクトルの変化に基づいて、上記対象物体に対する上記操作体の接触を判定してもよい。
 この構成によれば、接触判定部は、対象物体の表面のうち、操作体が接触する可能性が高い領域の法線ベクトルのみを接触の判定に利用するため、法線ベクトルの変化を算出するための演算量を低減すると共に誤検出を防止することが可能である。
 上記接触判定部は、上記法線ベクトルの、上記操作体の方向への傾きに応じて上記対象物体に対する上記操作体の接触を判定してもよい。
 対象物体が、操作体による押圧によって陥没を生じる物体(手のひら等)である場合には、操作体の接触によって法線ベクトルは操作体の方向へ傾く。このため、接触判定部は、法線ベクトルの操作体の方向への傾きを接触の判定に利用することが可能である。
 上記接触判定部は、上記法線ベクトルの傾きの乱れに応じて上記対象物体に対する上記操作体の接触を判定してもよい。
 対象物体が、操作体による押圧によって皺を生じる物体(手の甲等)である場合には、操作体の接触によって法線ベクトルが乱れ、種々の方向へ傾く。このため、接触判定部は、法線ベクトルの傾きの乱れを接触の判定に利用することが可能である。
 上記情報処理装置は、上記接触判定部による判定結果に基づいて、操作入力を制御する入力制御部をさらに具備していてもよい。
 入力制御部は、接触判定部によって操作体と対象物体の接触が判定されると、接触位置や接触の数に応じて操作入力として受け付け、OS等に供給するものとすることが可能である。
 上記情報処理装置は、撮像画像に含まれる上記操作体及び上記対象物体を認識する物体認識処理部をさらに具備し、
 上記入力制御部は、上記物体認識処理部によって認識された上記操作体の形状と、上記接触判定部による判定結果に基づいて、操作入力を制御してもよい。
 物体認識処理部が操作体の形状(例えばピンチ操作の際の指の形状)を認識し、入力制御部に供給することにより、入力制御部は、操作体の形状に応じた操作入力を受け付けるものとすることができる。
 上記情報処理装置は、上記対象物体に重畳される操作対象画像を生成する画像出力部をさらに具備し、
 上記入力制御部は、上記操作対象画像における上記操作体と上記対象物体の接触位置に基づいて操作入力を制御してもよい。
 画像出力部はヘッドマウントディスプレイやプロジェクタ等に表示され、対象物体に重畳される操作対象画像を生成する。入力制御部は、操作対象画像における接触位置と、対象物体に対する操作対象画像の重畳位置に基づいて、操作対象画像と接触位置の位置関係を算出し、接触位置に重畳された操作対象画像の内容(アイコン等)に応じた操作入力を受け付けるものとすることができる。
 上記接触判定部は、上記法線ベクトルの傾きが閾値を超えた場合に、上記対象物体に上記操作体が接触したと判定してもよい。
 この構成によれば、閾値によって、接触の検出精度を調整することが可能である。
 上記情報処理装置は、撮像画像に含まれる上記操作体及び上記対象物体を認識する物体認識処理部をさらに具備し、
 上記接触判定部は、上記対象物体の種類に応じて上記閾値を決定してもよい。
 この構成によれば、接触判定部は、対象物体の種類に応じて適切な閾値によって接触を判定することが可能である。例えば、対象物体が硬いものであれば閾値を小さくし、対象物体が柔らかいものであれば閾値を大きくすることができる。
 上記接触判定部は、上記対象物体の表面における位置に応じて上記閾値を決定してもよい。
 例えば、対象物体が手のひらの場合等には、同じ押圧力によって押圧しても位置によって陥没の度合いが異なる。このため、上記構成によれば、対象物体の位置に応じて適切な閾値によって接触を判定することが可能である。
 上記接触判定部は、上記法線ベクトルの傾きが上記閾値より大きい場合、上記法線ベクトルの傾きの大きさに応じて、上記対象物体に対する上記操作体の接触の強さを算出してもよい。
 対象物体に対する操作体の接触による対象物体の変形の程度は、その接触の押圧力に応じて大きくなる。このため、上記構成によれば、対象物体に対する操作体の接触のみならず、対象物体に対する操作体の押圧力を算出することが可能である。
 上記情報処理装置は、撮像画像に含まれる上記操作体及び上記対象物体を認識する物体認識処理部をさらに具備し、
 上記接触判定部は、上記対象物体が剛体である場合には上記撮像画像における色の変化に基づいて上記対象物体に対する上記操作体の接触を判定し、上記対象物体が剛体ではない場合には上記法線ベクトルの変化に基づいて上記対象物体に対する上記操作体の接触を判定してもよい。
 対象物体が剛体であり、操作体の接触によって変形を生じない物体である場合には、接触判定部は、撮像画像における色の変化を利用して接触を判定することが可能である。例えば、指先の血色は、指が物体に押圧されると変化するため、接触判定部はこのような色の変化を利用して接触を判定することができる。
 上記接触判定部は、上記対象物体と上記操作体の距離が所定値以下の場合に、上記法線ベクトルの変化に基づいて上記対象物体に対する上記操作体の接触を判定してもよい。
 接触判定部が対象物体と操作体の距離が所定値以下の場合に、画像における色の変化に基づいて接触を判定することにより、接触の可能性が高い場合にのみ、接触の判定を行うことが可能である。象物体と操作体の距離は、赤外線の投影パターン等を利用してセンサと物体の距離を測定するデプスセンサによって取得することが可能である。
 上記接触判定部は、偏光イメージングにより撮像された撮像画像から上記法線ベクトルを検出してもよい。
 偏光イメージングは、偏光方向が異なる偏光フィルタが各画素に設けられたカメラによって実現され、その撮像画像から法線ベクトルを検出することが可能である。
 上記目的を達成するため、本技術の一形態に係るプログラムは、接触判定部として情報処理装置を動作させる。
 上記接触判定部は、操作体による操作対象である対象物体の表面の法線ベクトルの変化に基づいて、上記対象物体に対する上記操作体の接触を判定する。
 上記目的を達成するため、本技術の一形態に係る情報処理方法は、接触判定部が、操作体による操作対象である対象物体の表面の法線ベクトルの変化に基づいて、上記対象物体に対する上記操作体の接触を判定する。
 以上のように、本技術によれば、低コストで高精度に接触検出を行うことが可能な情報処理装置、情報処理方法及びプログラムを提供することが可能である。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
本技術の第1の実施形態に係る情報処理装置の構成を示す模式図である。 対象物体に重畳された、同情報処理装置の画像出力部によって生成された操作用画像を示す模式図である。 対象物体に重畳された、同情報処理装置の画像出力部によって生成された操作用画像を示す模式図である。 対象物体に重畳された、同情報処理装置の画像出力部によって生成された操作用画像を示す模式図である。 同情報処理装置のハードウェア構成を示す模式図である。 同情報処理装置の動作を示すフローチャートである。 操作体が接触していない状態の対象物体における法線ベクトルを示す模式図である。 操作体が接触している状態の対象物体における法線ベクトルを示す模式図である。 操作体が接触している状態の対象物体における法線ベクトルを示す模式図である。 同情報処理装置の動作を示すフローチャートである。 同情報処理装置の動作を示すフローチャートである。 同情報処理装置の動作を示すフローチャートである。 操作体の形状を示す模式図である 操作体による操作入力の態様を示す模式図である。 本技術の第2の実施形態に係る情報処理装置の構成を示す模式図である。 同情報処理装置の動作を示すフローチャートである。
 [第1の実施形態]
 本技術の第1の実施形態に係る情報処理装置について説明する。
 (情報処理装置の構成)
 図1は、本技術の第1の実施形態に係る情報処理装置100の機能的構成を示す模式図である。同図に示すように、情報処理装置100は、音声入力部101、音声認識処理部102、画像入力部103、物体認識処理部104、接触判定部105、入力制御部106及び画像出力部107を備える。
 同図に示すように、情報処理装置100は、アイウェア10に接続されているものとすることができる。また、情報処理装置100は、アイウェア10に搭載されていてもよい。アイウェア10は、ディスプレイ11、カメラ12及び図示しないマイクロフォンを備える。ディスプレイ11は透過型のHMD(Head Mounted Display)とすることができる。
 カメラ12は、偏光イメージングが可能なカメラであるものとすることができる。具体的には、カメラ12は、各画素に偏光方向を90度ずらした4種の偏光フィルムが貼付されて構成されているものとすることができる。偏光方向が異なる各画素の受光強度をフーリエ変換することにより、無偏光成分強度、偏光主軸方向、偏光成分強度を取り出し、主軸方向から方位角を、強度から天頂角を求めることにより撮像された物体の表面の法線方向(後述)を得ることが可能となる。また、情報処理装置100は、カメラ12の他に、通常のカメラを備えていてもよい。
 音声入力部101はアイウェア10のマイクロフォンに接続され、マイクロフォンによって集音された音声の音声信号が入力される。音声入力部101は、取得した音声信号を音声認識処理部102に出力する。
 音声認識処理部102は、音声入力部101から供給された音声信号に対して音声認識処理を施し、ユーザによる操作音声を認識する。音声認識処理部102は、操作音声が認識されれば、認識結果を入力制御部106に供給する。
 画像入力部103はカメラ12に接続され、カメラ12によって撮像された画像(動画)が入力される。カメラ12によって撮像された画像は上記のように偏光イメージングにより撮像された画像である。画像入力部103は、取得した画像(以下、取得画像)を物体認識処理部104に供給する。
 物体認識処理部104は、画像入力部103から供給された取得画像と、物体検出辞書Dに格納されている情報を照合し、物体を認識する。物体認識処理部104は、後述する操作体や対象物体等の物体を認識するものとすることができる。物体認識処理部104は取得画像及び物体認識結果を接触判定部105に供給する。物体検出辞書Dは情報処理装置100に格納されていてもよく、物体認識処理部104がネットワーク等から取得してもよい。
 接触判定部105は、物体認識処理部104から供給された取得画像に対して、物体認識結果及び接触判定閾値Tを利用して、接触判定を行う。この処理の詳細については後述する。接触判定部105は、判定結果を入力制御部106に供給する。接触判定閾値Tは、情報処理装置100に格納されていてもよく、接触判定部105がネットワーク等から取得してもよい。
 入力制御部106は、音声認識処理部102による認識結果又は接触判定部105による判定結果に基づいて、ユーザによる操作入力を制御する。具体的には入力制御部106は、対象物体に対する操作体の接触位置や押圧力、押圧方向、接触後の操作体の移動等からタッチやマルチタッチ、ドラッグ、ピンチ等の操作入力として受け付ける。入力制御部106は、受け付けた操作入力を情報処理装置100のOS等に供給する。
 画像出力部107は、ディスプレイ11に表示される画像(動画)を生成する。画像出力部107は、アイコンや操作ボタンを含む操作用画像を生成するものとすることができる。上記のようにディスプレイ11は透過型のHMDであり、ユーザはディスプレイ11に表示された映像と現実の物体が重畳された視界を視認する。
 図2に、ディスプレイ11を介したユーザの視界を模式的に示す。ユーザの視界には、ユーザの手のひらHとユーザの指Y、ディスプレイ11に表示された操作用画像Gが含まれている。操作用画像GにはアイコンPが含まれている。ユーザが、指Yによって手のひらHのアイコンPが重畳されている箇所をタッチすると、情報処理装置100によってアイコンPの選択が受け付けられる。
 操作用画像Gが重畳されるのは手のひらに限られない。図3は、操作用画像Gが雑誌Zに重畳されている様子を示す模式図である。同図に示すように、ユーザが指Yによって雑誌Z上のアイコンPが重畳されている箇所をタッチすると、情報処理装置100によってアイコンPの選択が受け付けられる。また、ユーザは、スタイラス等の指以外のものによってアイコンPを指示することも可能である。以下、操作用画像Gが投影され、ユーザによって操作される物体(手のひらHや雑誌Z等)を対象物体とし、対象物体に接触し、アイコンP等を操作する物体(指Yやスタイラス)を操作体とする。即ち、情報処理装置100は、対象物体に対する操作体の接触を検出し、その接触に応じて操作入力を受け付ける。
 アイウェア10の構成は上記のものに限られない。図4は、カメラ12がアイウェア10とは独立して設けられている状態を示す。操作用画像Gはディスプレイ11に表示され、雑誌Zに重畳されている。カメラ12は、アイウェア10とは別の位置(例えば雑誌Zの上方)に設けられ、画像入力部103に接続されている。
 また、情報処理装置100はアイウェア10とは異なる画像投影装置に接続されていてもよい。例えば、机上や壁面に映像を投影することが可能であり、かつ投影面を撮像することが可能なカメラを備えるプロジェクタに接続されていてもよい。この場合、画像出力部107は、プロジェクタの画像投影機構に接続され、対象物体(机や壁)に映像を投影する。画像入力部103はカメラに接続され、対象物体及び投影画像を含む画像を取得する。この他にも情報処理装置100は、対象物体に映像を表示又は投影することが可能であって、対象物体を撮像することが可能なカメラを備える装置に接続されるものとすることが可能である。
 上述のような情報処理装置100の機能的構成はアイウェアやプロジェクタ等の画像投影装置に接続又は内蔵されていてもよく、画像投影装置とは別のPCやスマートフォン等に搭載されていてもよい。また機能的構成の一部又は全部は、ネットワーク上に構成されていてもよい。
 図5は、情報処理装置100のハードウェア構成を示す模式図である。上述した情報処理装置100の構成は、図5に示すハードウェア構成とプログラムの共働によって実現される機能的構成である。
 図5に示すように、情報処理装置100はハードウェア構成として、CPU121、メモリ122、ストレージ123及び入出力IF124を有する。これらはバス125によって互いに接続されている。
 CPU(Central Processing Unit)121は、メモリ122に格納されたプログラムに従って他の構成を制御すると共に、プログラムに従ってデータ処理を行い、処理結果をメモリ122に格納する。CPU121はマイクロプロセッサであるものとすることができる。
 メモリ122はCPU121によって実行されるプログラム及びデータを格納する。メモリ122はRAM(Random Access Memory)であるものとすることができる。
 ストレージ123は、プログラムやデータを格納する。ストレージ123はHDD(Hard disk drive)やSSD(solid state drive)であり、上述した物体検出辞書Dや接触判定閾値Tを記憶するものとすることができる。
 入出力IF(インターフェース)124は情報処理装置100に対する入力を受け付け、また情報処理装置100の出力をディスプレイ11等に供給する。入出力IF124は、マウスやタッチパネル等の入力機器やディスプレイ11等の出力機器、ネットワーク等の接続インターフェースを含む。上述のように情報処理装置100は、画像入力部103が取得した画像に基づいてユーザの操作入力を受け付けることが可能であり、この場合入出力IF124を介することなく、入力が受け付けられる。画像出力部107によって生成された画像は、入出力IF124を介してディスプレイ11に出力され、表示される。
 情報処理装置100のハードウェア構成はここに示すものに限られず、上記情報処理装置100の機能的構成を実現できるものであればよい。
 (情報処理装置の接触判定動作)
 情報処理装置100の動作について説明する。図6は情報処理装置100の動作を示すフローチャートである。上記のようにカメラ12によって画像が撮像され、画像入力部103はその画像(取得画像)を取得する。画像入力部103は取得画像を物体認識処理部104に供給する。
 物体認識処理部104は、対象物体を認識する(St101)。物体認識処理部104は、画像入力部103から取得した取得画像と物体検出辞書Dを照合することによって対象物体を認識する。これにより、例えば取得画像に手のひらや雑誌等が含まれていれば、対象物体として認識される。
 取得画像において対象物体が認識された場合(St102:Yes)、画像出力部107は、操作用画像G(図2参照)をディスプレイ11に供給し、表示させる(St103)。取得画像において対象物体が認識されない場合(St102:No)、物体認識処理部104による対象物体の認識(St101)が再び実行される。
 続いて、物体認識処理部104は、操作体を認識する(St104)。物体認識処理部104は、取得画像と物体検出辞書Dを照合することによって操作体を認識する。これにより、例えば取得画像に指やスタイラス等が含まれていれば、操作体として認識される。なお、物体認識処理部104は、複数の操作体を認識してもよい。
 取得画像において操作体が認識された場合(St105:Yes)、接触判定部105は、取得画像に含まれる対象物体の表面における法線ベクトルの方向(以下、法線方向)を算出する(St106)。取得画像において操作体が認識されない場合(St105:No)、物体認識処理部104による対象物体の認識(St101)が再び実行される。
 図7及び図8は、対象物体の表面における法線ベクトルBを示す模式図である。図7は、対象物体(手のひらH)に操作体(指Y)が接触していない状態を示し、図7(a)は平面図、図7(b)は側面図である。同図に示すように、接触判定部105は、手の平Hの表面において法線ベクトルBを検出する。法線ベクトルは、物体の面に垂直なベクトルであり、その大きさは1である。上記のように、カメラ12は偏光イメージングが可能なカメラであり、接触判定部105はカメラ12によって撮像された取得画像から、法線ベクトルBを検出することができる。
 図8は、対象物体(手のひらH)に操作体(指Y)が接触している状態を示し、図8(a)は平面図、図8(b)は側面図である。同図に示すように、指Yが手のひらHに接触し、手のひらHを押圧すると、手のひらHの表面は陥没する。これにより、手のひらHの表面において検出される法線ベクトルBは、指Yの方向に傾く。
 接触判定部105は、このような対象物体に対する操作体の接触による法線ベクトルBの変化に基づいて、接触を検出する。具体的には接触判定部105は、法線ベクトルBの方向(以下、法線方向)の傾きが接触判定閾値Tを超えると、指Yが手の平Hに接触していると判定することができる(St107:Yes)。接触判定部105は法線方向の変化が生じた法線ベクトルBのうち、その傾きが最大の法線ベクトルBの傾きと接触判定閾値Tを比較してもよく、傾きが生じた法線ベクトルBの傾きの平均値と接触判定閾値Tを比較してもよい。また、接触判定部105は、法線方向の傾きが接触判定閾値Tより小さいと、指Yが手の平Hに接触していないと判定することができる(St107:No)。
 ここで、接触判定部105は、指Yの方向への法線方向の傾きが接触判定閾値Tを超えた場合にのみ、指Yが手の平Hに接触していると判定してもよい。法線方向の傾きが大きくても、その方向が指Yの方向ではない場合、指Yの接触とは別の理由によって法線方向の傾きが生じているおそれがあるためである。即ち、指Yの方向への法線方向の傾きのみを接触の判定に利用することにより、検出精度を向上させることが可能である。
 また、接触判定部105は、法線方向の乱れに応じて対象物体への操作体の接触を検出してもよい。図9は、対象物体である手の甲Kと操作体である指Yを示す模式図である。同図に示すように、対象物体が手の甲である場合、操作体が接触すると、手の平とは異なり表面が陥没せず、皺が発生する。接触判定部105は、このような皺の発生を法線方向の乱れから検出することができる。具体的には接触判定部105は、いずれかの方向への法線方向の傾きが接触判定閾値Tを超えた場合に、指Yが手の甲Kに接触していると判定することができる。
 接触判定部105は、物体認識処理部104による認識結果を利用して、どのような法線ベクトルの変化を判定に利用するかを決定することができる。例えば接触判定部105は、物体認識処理部104によって手の平Hのような押圧によって陥没を生じる物体が検出された場合には、操作体の方向への法線方向の傾きを判定に利用することができる。また、接触判定部105は、物体認識処理部104によって手の甲Kのような押圧によって皺を生じる物体が検出された場合には、いずれかの方向への法線方向の傾きを判定に利用することができる。
 接触判定閾値Tは、一定値であってもよいが、接触判定部105が物体認識処理部104による対象物体の認識結果を利用して決定してもよい。具体的には接触判定部105は、対象物体の種類に応じて設定された接触判定閾値Tを利用することができる。また、接触判定部105は、対象物体の種類に応じて接触判定閾値Tを調整してもよい。例えば接触判定部105は、対象物体が操作体の押圧によって大きく変形する物体であれば大きい値を接触判定閾値Tとし、大きく変形しない物体であれば小さい値を接触判定閾値Tとすることができる。
 また、接触判定部105は、対象物体への操作体の押圧による陥没の程度、即ち法線方向の傾きの程度に応じて接触判定閾値Tを調整してもよく、対象物体に対する操作体の接触位置に応じて接触判定閾値Tを調整してもよい。例えば、手のひらを指で押圧した場合においても手のひらの中央付近は陥没が大きく、指の付け根付近は陥没が小さい。このため、接触判定部105が適切な値を接触判定閾値Tとして利用することにより、対象物体に対する操作体の接触をより精確に判定することが可能である。
 なお、接触判定部105は、対象物体の全ての表面における法線ベクトルを検出しなくてもよく、対象物体の表面のうち、物体認識処理部104によって認識された操作体の周囲においてのみ法線ベクトルを検出し、接触の判定に利用してもよい。これにより、法線方向の変化を追跡する法線ベクトルの数を限定し、演算量を低減すると共に誤検出を防止することができる。
 接触判定部105が、操作体が対象物体に接触していないと判定した場合(St107:No)、物体認識処理部104による対象物体の認識(St101)が再び実行される。
 接触判定部105は、操作体による対象物体への接触を判定した場合、取得画像に対する接触位置を入力制御部106に供給する。入力制御部106は、操作用画像Gに表示されたアイコンPの位置と、接触判定部105から供給された接触位置に基づいて、操作入力を制御する。入力制御部106は、例えば、接触位置に重畳されているアイコンPが選択されたものとすることができる。
 情報処理装置100は以上のような動作を行う。上記のように、偏光イメージングが可能なカメラ12によって撮像された画像を利用して対象物体に対する操作体の接触を検出することが可能であるため、カメラ12の他に接触を検出するためのセンサが不要である。このため、接触検出システムの小型化、低コスト化が実現可能である。また、接触の検出に赤外線等を利用しないため、屋外利用が可能である。
 さらに、情報処理装置100は、対象物体に対する操作体の接触によって生じる法線ベクトルの変化を利用して接触を検出する。このため、情報処理装置100は操作体が対象物体に接近し、あるいはわずかに接触している場合は接触として検出せず、操作体が対象物体に確実に接触している場合のみを接触として検出する。このため、対象物体に対する操作体の接触を高精度に検出することが可能である。
 なお、上記説明では、操作体が指である場合について説明したが、操作体は指に限られず、スタイラス等であってもよい。また、対象物体も手のひらに限られず、操作体の接触によって表面形状が変化するものであればよい。
 また、物体認識処理部104は、取得画像を物体検出辞書Dと照合し、物体(対象物体及び操作体)を認識するものとしたが、これに限られない。例えば、取得画像が一定時間にわたって一様であるときに、何らかの物体が取得画像(即ち、カメラの撮像範囲)中に進入した場合、当該物体が操作体であると認識してもよい。
 (対象物体の種類に応じた情報処理装置の接触判定動作)
 情報処理装置100の別の動作について説明する。図10は情報処理装置100の別の動作を示すフローチャートである。なお、情報処理装置100と接続されるアイウェア10(又は他の装置)には、デプス情報の取得か可能なデプスセンサが設けられているものとすることができる。デプス情報は、物体とデプスセンサの間の距離情報である。上記のようにカメラ12によって画像が撮像され、画像入力部103がその画像(取得画像)を取得する。画像入力部103は取得画像を物体認識処理部104に供給する。
 物体認識処理部104は、対象物体を認識する(St111)。物体認識処理部104は、画像入力部103から取得画像と物体検出辞書Dを照合することによって対象物体を認識することができる。
 取得画像において対象物体が認識された場合(St112:Yes)、画像出力部107は、操作用画像G(図2参照)をディスプレイ11に供給し、表示させる(St113)。取得画像において対象物体が認識されない場合(St112:No)、物体認識処理部104による対象物体の認識(St111)が再び実行される。
 続いて、物体認識処理部104は、操作体を認識する(St114)。物体認識処理部104は、取得画像と物体検出辞書Dを照合することによって操作体を認識することができる。
 続いて、物体認識処理部104は、対象物体が剛体であるか否かを判断する(St116)。「剛体」は、他の物体の接触によって変形が生じない物体を意味し、例えば机等である。手のひらや雑誌は剛体ではないと判断される。
 物体認識処理部104が、対象物体が剛体ではないと判断した場合(St116:No)、接触判定部105は上記のように取得画像から対象物体表面の法線方向を算出する(St117)。接触判定部105は、法線方向の傾きが接触判定閾値Tを超えた場合(St118:Yes)、接触と判定し(St119)、法線方向の傾きが接触判定閾値Tより小さい場合(St118:No)、接触と判定せず、物体認識処理部104による対象物体の認識(St111)が再び実行される。
 一方、物体認識処理部104が、対象物体が剛体であると判断した場合(St116:Yes)、対象物体への操作体の接触によっても法線方向は変化しないため、接触の検出に法線方向を利用することができない。このため、接触判定部105は、法線方向を利用せずに接触を判定するものとすることができる
 具体的には、接触判定部105は、対象物体と操作体の距離を算出する(St120)。対象物体と操作体の距離は、デプスセンサから供給されたデプス情報を利用して算出することが可能である。接触判定部105は、対象物体と操作体の距離が一定値以下となった場合(St121:Yes)、接触と判定する(St119)。対象物体と操作体の距離が一定値以下とならない場合(St121:No)、物体認識処理部104による対象物体の認識(St111)が再び実行される。
 情報処理装置100は以上のような動作を行うことも可能である。対象物体が剛体であり、法線方向を利用した接触の判定ができない場合であっても、接触の判定が可能である。なお、上記説明において接触判定部105は、対象物体が剛体である場合、デプス情報を利用して対象物体に対する操作体の接触を検出するものとしたが、他の方法によって接触を検出してもよい。
 例えば、指先の血色は、指が物体に押圧されると変化する。例えば指が物体に触れていない場合には、爪を介して見える指先の血色はピンク色であるが、指が物体に押圧されると、指の先端が白色に変化する。接触判定部105は、このような指先の血色の変化を、予め定められたパターンと比較することにより、指の対象物体への接触を検出することが可能である。また、接触判定部105は、操作体が対象物体に押圧されると色の変化を生じる物体であれば、指先の血色と同様にして色の変化に基づいて接触を検出することができる。
 (デプス情報の利用と組み合わせた情報処理装置の接触判定動作)
 情報処理装置100の別の動作について説明する。なお、情報処理装置100と接続されるアイウェア10(又は他の装置)には、デプス情報の取得が可能なデプスセンサが設けられている。
 図11は情報処理装置100の別の動作を示すフローチャートである。上記のようにカメラ12によって画像が撮像され、画像入力部103がその画像(取得画像)を取得する。画像入力部103は取得画像を物体認識処理部104に供給する。
 物体認識処理部104は、対象物体を認識する(St131)。物体認識処理部104は、画像入力部103から取得した取得画像と物体検出辞書Dを照合することによって対象物体を認識することができる。
 取得画像において対象物体が認識された場合(St132:Yes)、画像出力部107は、操作用画像G(図2参照)をディスプレイ11に供給し、表示させる(St133)。取得画像において対象物体が認識されない場合(St132:No)、物体認識処理部104による対象物体の認識(St131)が再び実行される。
 続いて、物体認識処理部104は、操作体を認識する(St134)。物体認識処理部104は、取得画像と物体検出辞書Dを照合することによって操作体を認識することができる。なお、物体認識処理部104は、複数の操作体を認識してもよい。
 取得画像において操作体が認識された場合(St135:Yes)、接触判定部105は、デプス情報を利用して操作体と対象物体の間の距離を算出する(St136)。接触判定部105は上記のように、デプスセンサからデプス情報を取得することができる。取得画像において操作体が認識されない場合(St135:No)、物体認識処理部104による対象物体の認識(St131)が再び実行される。
 接触判定部105は、操作体と対象物体の距離が予め設定された所定値以下となった場合(St137:Yes)、対象物体の表面における法線ベクトルを検出し、法線方向を算出する(St138)。操作体と対象物体の距離が所定値より大きい場合(St137:No)、物体認識処理部104による対象物体の認識(St131)が再び実行される。
 以下、接触判定部105は、上述のように、法線方向の傾きと接触判定閾値Tとを比較し、法線方向の傾きが接触判定閾値Tを超えた場合(St139:Yes)、操作体が対象物体に接触したと判定する(St140)。法線方向の傾きが接触判定閾値Tより小さい場合(St139:No)、物体認識処理部104による対象物体の認識(St131)が繰り返される。
 接触判定部105は、操作体による対象物体への接触を判定した場合、取得画像に対する接触位置を入力制御部106に供給する。入力制御部106は、操作用画像Gに表示されたアイコンPの位置と、接触判定部105から供給された接触位置に基づいて、操作入力を制御する。入力制御部106は、例えば、接触位置に重畳されているアイコンPが選択されたものとすることができる。
 情報処理装置100は以上のような動作を行うことも可能である。情報処理装置100はデプス情報を利用することにより、操作体と対象物体の距離を取得することができ、操作体と対象物体の距離が十分小さくなり、接触の可能性が高い場合にのみ、法線ベクトルの変化を利用して接触を判定することができる。
 (情報処理装置の接触及び操作の判定動作)
 情報処理装置100は、操作体と対象物体の接触のみならず、接触による操作の種別(ドラッグやピンチ等)を判定することも可能である。図12は、情報処理装置100の接触及び操作判定動作を示すフローチャートである。
 接触判定ステップ(St151)は、図6に示す接触判定動作と同一のフローである。また、同ステップ(St151)は、図10に示す対象物体の種類に応じた接触判定動作と同一のフローであってもよく、図11に示すデプス情報の利用と組み合わせた接触反動動作と同一のフローであってもよい。
 接触判定部105は、接触判定ステップで接触と判定された場合(St152:Yes)、対象物体に対する操作体の接触(押圧)の強さを判定する(St153)。接触判定部105は、法線方向の傾きが接触判定閾値Tを超えると、その傾きの大きさから接触の強さを求めることができる。接触判定ステップで接触と判定されない場合(St152:No)、接触判定ステップ(St151)が繰り返される。
 接触判定部105は、取得画像に対する接触位置、操作体の対象物体に対する押圧力の大きさを入力制御部106に供給する。入力制御部106は、操作体と対象物体の接触位置が変化したか否かを判定する(St154)。接触位置が変化している場合(St154:Yes)、入力制御部106は操作体の数が2つであるか否かを判定する(St155)。接触位置が変化していない場合(St155:No)、接触判定ステップ(St151)が再び実行される。
 入力制御部106は、操作体の数が2つである場合(St155:Yes)、操作体による操作がピンチであると判定する。また、入力制御部106は、操作体の数が2つでない場合、操作体による操作がドラッグであると判定する。なお、入力制御部106は、操作体の数が2つである場合、接触箇所の移動方向がほぼ平行であれば、複数の操作体によるドラッグ(マルチタッチドラッグ)であると判定してもよい。また、入力制御部106は、操作体による操作がピンチである場合、接触箇所の移動方向に応じて操作がピンチイン又はピンチアウトであると判定してもよい。
 この際、入力制御部106は、物体認識処理部104による物体認識結果を利用して、操作の種別を判定してもよい。図13は、操作体としての指の形状を示す模式図である。物体認識処理部104は、操作体の特定の形状(指の向き等)が予め物体認識辞書Dに登録されている場合には、その情報を入力制御部106に供給する。入力制御部106は、操作体の形状を操作の種別の判定に利用することができる。例えば図13に示す例では、物体認識処理部104は手指の形状がピンチ操作の形状(親指と人差し指によるU字形状)であると認識することができ、入力制御部106は、手指の形状がピンチ操作の形状である場合に限り、操作がピンチ操作であると判定するものとすることも可能である。
 入力制御部106は、操作体による操作の種別に応じて操作入力を制御する。この際、入力制御部106は、操作体の対象物体に対する押圧力の大きさに応じてドラッグによる効果の程度(カーソルの移動速度やスクロール速度等)を変更してもよい。
 図14は、情報処理装置100の上記動作による音楽再生アプリケーションのUIの例である。同図に示すように、情報処理装置100は、操作体による対象物体の押圧の方向や強度によって、再生音量や再生する楽曲の選択を行うこと可能とする。
 [第2の実施形態]
 本技術の第2の実施形態に係る情報処理装置について説明する。
 (情報処理装置の構成)
 図15は、本技術の第2の実施形態に係る情報処理装置200の機能的構成を示す模式図である。同図に示すように、情報処理装置200は、音声入力部201、音声認識処理部202、画像入力部203、接触判定部204、入力制御部205、画像出力部206を備える。本実施形態に係る情報処理装置200は、物体認識処理部を有しない。
 同図に示すように、情報処理装置200は、アイウェア10に接続されているものとすることができる。アイウェア10の構成は第1の実施形態と同様であるので説明を省略する。
 音声入力部201はアイウェア10のマイクロフォンに接続され、マイクロフォンによって集音された音声の音声信号が入力される。音声入力部201は、取得した音声信号を音声認識処理部202に出力する。
 音声認識処理部202は、音声入力部201から供給された音声信号に対して音声認識処理を施し、ユーザによる操作音声を認識する。音声認識処理部202は、操作音声が認識されれば、音声認識結果を入力制御部205に供給する。
 画像入力部203はカメラ12に接続され、カメラ12によって撮像された画像(動画)が入力される。画像入力部203は、取得した画像(以下、取得画像)を接触判定部204に供給する。
 接触判定部204は、画像入力部203から供給された取得画像に対して接触判定閾値Tを利用して接触判定を行う。この処理の詳細については後述する。接触判定部204は、判定結果を入力制御部205に供給する。接触判定閾値Tは、情報処理装置200に格納されていてもよく、接触判定部204がネットワーク等から取得してもよい。
 入力制御部205は、音声認識処理部202による認識結果又は接触判定部204による判定結果に基づいて、ユーザによる操作入力を制御する。具体的には入力制御部205は、対象物体に対する操作体の接触位置や押圧力、押圧方向、接触後の操作体の移動等からタッチやマルチタッチ、ドラッグ、ピンチ等の操作入力として受け付ける。入力制御部205は、受け付けた操作入力を情報処理装置200のOS等に供給する。
 画像出力部206は、ディスプレイ11に表示される画像(動画)を生成する。画像出力部206は、アイコンや操作ボタンを含む操作用画像を生成するものとすることができる。第1の実施形態と同様にユーザはディスプレイ11に表示された映像と現実の物体が重畳された視界(図2及び図3参照)を視認する。
 情報処理装置200はアイウェア10の他にも、対象物体に映像を表示又は投影することが可能であって、対象物体を撮像することが可能なカメラを備える装置に接続されるものとすることが可能である。
 上述のような情報処理装置200の機能的構成はアイウェアやプロジェクタ等の画像投影装置に接続又は内蔵されていてもよく、画像投影装置とは別のPCやスマートフォン等に搭載されていてもよい。また機能的構成の一部又は全部は、ネットワーク上に構成されていてもよい。
 上述した情報処理装置200の機能的構成は、第1の実施形態に示したハードウェア構成によって実現することが可能である。
 (情報処理装置の接触判定動作)
 情報処理装置200の動作について説明する。図16は情報処理装置200の動作を示すフローチャートである。上記のようにカメラ12によって画像が撮像され、画像入力部203が画像(取得画像)を取得する。画像入力部203は取得画像を接触判定部204に供給する。
 画像出力部206は、操作用画像G(図2参照)をディスプレイ11に供給し、表示させる(St201)。第1の実施形態とは異なり、対象物体の認識処理は実行されないが、ユーザがディスプレイ11を対象物体(机上や壁面等)に向けることにより、操作用画像Gを対象物体上に投影することが可能である。
 接触判定部204は、対象物体の表面における法線ベクトルを検出し、法線方向を算出する(St202)。なお、本実施形態においては画像における対象物体の検出処理はなされないが、接触判定部204は取得画像に含まれる全ての物体の法線ベクトルを検出してもよく、法線方向が均一な領域(平面の領域)を対象物体とみなして法線ベクトルを検出してもよい。
 接触判定部204は、法線方向の変化と接触判定閾値Tとを比較し、法線方向の傾きが、所接触判定閾値Tを超えた場合(St203:Yes)、操作体が対象物体に接触したと判定する(St204)。法線方向の変化が接触判定閾値Tより小さい場合(St203:No)、法線方向の算出(St202)が再び実行される。
 接触判定部204は、操作体による対象物体への接触を判定した場合、取得画像に対する接触位置を入力制御部205に供給する。入力制御部205は、接触判定部204から供給された接触判定結果に基づいて、操作入力を制御する。
 情報処理装置200は以上のような動作を行う。上記のように、偏光イメージングが可能なカメラ12によって撮像された画像を利用して対象物体に対する操作体の接触を検出することが可能であるため、カメラ12の他に接触を検出するためのセンサが不要である。このため、接触検出システムの小型化、低コスト化が実現可能である。また、接触の検出に赤外線等を利用しないため、屋外利用が可能である。
 さらに、情報処理装置200は、対象物体に対する操作体の接触によって生じる法線方向の変化を利用して接触を検出する。このため、情報処理装置100は操作体が対象物体に接近し、あるいはわずかに接触している場合は接触として検出せず、操作体が対象物体に確実に接触している場合のみを接触として検出する。このため、対象物体に対する操作体の接触を高精度に検出することが可能である。
 情報処理装置200は以上のような動作を行う。なお、情報処理装置200は、第1の実施形態と同様に、色の変化とデプス情報を利用して接触を判定(図11参照)してもよい。また、情報処理装置200は、接触の判定後、接触による操作の種別を判定(図12参照)してもよい。
 なお、上記説明では、操作体が指である場合について説明したが、操作体は指に限られず、スタイラス等であってもよい。また、対象物体も手のひらに限られず、操作体の接触によって表面形状が変化するものであればよい。
 なお、本技術は以下のような構成もとることができる。
 (1)
 操作体による操作対象である対象物体の表面の法線ベクトルの変化に基づいて、上記対象物体に対する上記操作体の接触を判定する接触判定部
 を具備する情報処理装置。
 (2)
 上記(1)に記載の情報処理装置であって、
 撮像画像に含まれる上記操作体及び上記対象物体を認識する物体認識処理部をさらに具備し、
 上記接触判定部は、上記対象物体の、上記操作体の周囲における表面の法線ベクトルの変化に基づいて、上記対象物体に対する上記操作体の接触を判定する
 情報処理装置。
 (3)
 上記(1)又は(2)に記載の情報処理装置であって、
 上記接触判定部は、上記法線ベクトルの、上記操作体の方向への傾きに応じて上記対象物体に対する上記操作体の接触を判定する
 情報処理装置。
 (4)
 上記(1)から(3)のいずれか一つに記載の情報処理装置であって、
 上記接触判定部は、上記法線ベクトルの傾きの乱れに応じて上記対象物体に対する上記操作体の接触を判定する
 情報処理装置。
 (5)
 上記(1)から(4)のいずれか一つに記載の情報処理装置であって、
 上記接触判定部による判定結果に基づいて、操作入力を制御する入力制御部
 をさらに具備する情報処理装置。
 (6)
 上記(1)から(5)のいずれか一つに記載の情報処理装置であって、
 撮像画像に含まれる上記操作体及び上記対象物体を認識する物体認識処理部をさらに具備し、
 上記入力制御部は、上記物体認識処理部によって認識された上記操作体の形状と、上記接触判定部による判定結果に基づいて、操作入力を制御する
 情報処理装置。
 (7)
 上記(1)から(6)のいずれか一つに記載の情報処理装置であって、
 上記対象物体に重畳される操作対象画像を生成する画像出力部をさらに具備し、
 上記入力制御部は、上記操作対象画像における上記操作体と上記対象物体の接触位置に基づいて操作入力を制御する
 情報処理装置。
 (8)
 上記(1)から(7)のいずれか一つに記載の情報処理装置であって、
 上記接触判定部は、上記法線ベクトルの傾きが閾値を超えた場合に、上記対象物体に上記操作体が接触したと判定する
 情報処理装置。
 (9)
 上記(1)から(8)のいずれか一つに記載の情報処理装置であって、
 撮像画像に含まれる上記操作体及び上記対象物体を認識する物体認識処理部をさらに具備し、
 上記接触判定部は、上記対象物体の種類に応じて上記閾値を決定する
 情報処理装置。
 (10)
 上記(1)から(9)のいずれか一つに記載の情報処理装置であって、
 上記接触判定部は、さらに、上記対象物体の表面における位置に応じて上記閾値を決定する
 情報処理装置。
 (11)
 上記(1)から(10)のいずれか一つに記載の情報処理装置であって、
 上記接触判定部は、上記法線ベクトルの傾きが上記閾値より大きい場合、上記法線ベクトルの傾きの大きさに応じて、上記対象物体に対する上記操作体の接触の強さを算出する
 情報処理装置。
 (12)
 上記(1)から(11)のいずれか一つに記載の情報処理装置であって、
 撮像画像に含まれる上記操作体及び上記対象物体を認識する物体認識処理部をさらに具備し、
 上記接触判定部は、上記対象物体が剛体である場合には上記撮像画像における色の変化に基づいて上記対象物体に対する上記操作体の接触を判定し、上記対象物体が剛体ではない場合には上記法線ベクトルの変化に基づいて上記対象物体に対する上記操作体の接触を判定する
 情報処理装置。
 (13)
 上記(1)から(12)のいずれか一つに記載の情報処理装置であって、
 上記接触判定部は、上記対象物体と上記操作体の距離が所定値以下の場合に、上記法線ベクトルの変化に基づいて上記対象物体に対する上記操作体の接触を判定する
 情報処理装置。
 (14)
 上記(1)から(13)のいずれか一つに記載の情報処理装置であって、
 上記接触判定部は、偏光イメージングにより撮像された撮像画像から上記法線ベクトルを検出する
 情報処理装置。
 (15)
 操作体による操作対象である対象物体の表面の法線ベクトルの変化に基づいて、上記対象物体に対する上記操作体の接触を判定する接触判定部
 として情報処理装置を動作させるプログラム。
 (16)
 接触判定部が、操作体による操作対象である対象物体の表面の法線ベクトルの変化に基づいて、上記対象物体に対する上記操作体の接触を判定する
 情報処理方法。
 100、200…情報処理装置
 101、201…音声入力部
 102、202…音声認識処理部
 103、203…画像入力部
 104…物体認識処理部
 105、204…接触判定部
 106、205…入力制御部
 107、206…画像出力部

Claims (16)

  1.  操作体による操作対象である対象物体の表面の法線ベクトルの変化に基づいて、前記対象物体に対する前記操作体の接触を判定する接触判定部
     を具備する情報処理装置。
  2.  請求項1に記載の情報処理装置であって、
     撮像画像に含まれる前記操作体及び前記対象物体を認識する物体認識処理部をさらに具備し、
     前記接触判定部は、前記対象物体の、前記操作体の周囲における表面の法線ベクトルの変化に基づいて、前記対象物体に対する前記操作体の接触を判定する
     情報処理装置。
  3.  請求項1に記載の情報処理装置であって、
     前記接触判定部は、前記法線ベクトルの、前記操作体の方向への傾きに応じて前記対象物体に対する前記操作体の接触を判定する
     情報処理装置。
  4.  請求項1に記載の情報処理装置であって、
     前記接触判定部は、前記法線ベクトルの傾きの乱れに応じて前記対象物体に対する前記操作体の接触を判定する
     情報処理装置。
  5.  請求項1に記載の情報処理装置であって、
     前記接触判定部による判定結果に基づいて、操作入力を制御する入力制御部
     をさらに具備する情報処理装置。
  6.  請求項5に記載の情報処理装置であって、
     撮像画像に含まれる前記操作体及び前記対象物体を認識する物体認識処理部をさらに具備し、
     前記入力制御部は、前記物体認識処理部によって認識された前記操作体の形状と、前記接触判定部による判定結果に基づいて、操作入力を制御する
     情報処理装置。
  7.  請求項5に記載の情報処理装置であって、
     前記対象物体に重畳される操作対象画像を生成する画像出力部をさらに具備し、
     前記入力制御部は、前記操作対象画像における前記操作体と前記対象物体の接触位置に基づいて操作入力を制御する
     情報処理装置。
  8.  請求項1に記載の情報処理装置であって、
     前記接触判定部は、前記法線ベクトルの傾きが閾値を超えた場合に、前記対象物体に前記操作体が接触したと判定する
     情報処理装置。
  9.  請求項8に記載の情報処理装置であって、
     撮像画像に含まれる前記操作体及び前記対象物体を認識する物体認識処理部をさらに具備し、
     前記接触判定部は、前記対象物体の種類に応じて前記閾値を決定する
     情報処理装置。
  10.  請求項9に記載の情報処理装置であって、
     前記接触判定部は、さらに、前記対象物体の表面における位置に応じて前記閾値を決定する
     情報処理装置。
  11.  請求項8に記載の情報処理装置であって、
     前記接触判定部は、前記法線ベクトルの傾きが前記閾値より大きい場合、前記法線ベクトルの傾きの大きさに応じて、前記対象物体に対する前記操作体の接触の強さを算出する
     情報処理装置。
  12.  請求項1に記載の情報処理装置であって、
     撮像画像に含まれる前記操作体及び前記対象物体を認識する物体認識処理部をさらに具備し、
     前記接触判定部は、前記対象物体が剛体である場合には前記撮像画像における色の変化に基づいて前記対象物体に対する前記操作体の接触を判定し、前記対象物体が剛体ではない場合には前記法線ベクトルの変化に基づいて前記対象物体に対する前記操作体の接触を判定する
     情報処理装置。
  13.  請求項1に記載の情報処理装置であって、
     前記接触判定部は、前記対象物体と前記操作体の距離が所定値以下の場合に、前記法線ベクトルの変化に基づいて前記対象物体に対する前記操作体の接触を判定する
     情報処理装置。
  14.  請求項1に記載の情報処理装置であって、
     前記接触判定部は、偏光イメージングにより撮像された撮像画像から前記法線ベクトルを検出する
     情報処理装置。
  15.  操作体による操作対象である対象物体の表面の法線ベクトルの変化に基づいて、前記対象物体に対する前記操作体の接触を判定する接触判定部
     として情報処理装置を動作させるプログラム。
  16.  接触判定部が、操作体による操作対象である対象物体の表面の法線ベクトルの変化に基づいて、前記対象物体に対する前記操作体の接触を判定する
     情報処理方法。
PCT/JP2015/003579 2014-07-30 2015-07-15 情報処理装置、情報処理方法及びプログラム WO2016017101A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580040960.3A CN106662923B (zh) 2014-07-30 2015-07-15 信息处理装置、信息处理方法和程序
EP15826756.7A EP3176675B1 (en) 2014-07-30 2015-07-15 Information processing device, information processing method and program
JP2016537737A JP6528774B2 (ja) 2014-07-30 2015-07-15 情報処理装置、情報処理方法及びプログラム
US15/318,832 US10346992B2 (en) 2014-07-30 2015-07-15 Information processing apparatus, information processing method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-155226 2014-07-30
JP2014155226 2014-07-30

Publications (1)

Publication Number Publication Date
WO2016017101A1 true WO2016017101A1 (ja) 2016-02-04

Family

ID=55217024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003579 WO2016017101A1 (ja) 2014-07-30 2015-07-15 情報処理装置、情報処理方法及びプログラム

Country Status (5)

Country Link
US (1) US10346992B2 (ja)
EP (1) EP3176675B1 (ja)
JP (1) JP6528774B2 (ja)
CN (1) CN106662923B (ja)
WO (1) WO2016017101A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018074055A1 (ja) * 2016-10-19 2018-04-26 ソニー株式会社 情報処理装置、情報処理方法及びプログラム
JP2020194517A (ja) * 2019-05-21 2020-12-03 雄史 高田 翻訳システムおよび翻訳システムセット

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10303865B2 (en) * 2016-08-31 2019-05-28 Redrock Biometrics, Inc. Blue/violet light touchless palm print identification
CN109960964A (zh) 2017-12-14 2019-07-02 红石生物特征科技有限公司 非接触式掌纹获取装置及其方法
DE102018220693B4 (de) 2018-11-30 2022-08-18 Audi Ag Steuerungssystem und Verfahren zum Steuern einer Funktion eines Fahrzeugs, sowie Fahrzeug mit einem solchen
US20240219997A1 (en) * 2023-01-03 2024-07-04 Meta Platforms Technologies, Llc Extended Reality User Interfaces for Hand-based Input
CN117093078B (zh) * 2023-10-16 2024-01-16 潍坊幻视软件科技有限公司 三维空间中使用手进行输入的系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000172163A (ja) * 1998-09-28 2000-06-23 Matsushita Electric Ind Co Ltd 手動作分節方法および装置
JP2005018385A (ja) * 2003-06-26 2005-01-20 Mitsubishi Electric Corp 作業情報提供装置
WO2010137192A1 (ja) * 2009-05-25 2010-12-02 国立大学法人電気通信大学 操作情報入力システム及び方法
JP2011029903A (ja) * 2009-07-24 2011-02-10 Artray Co Ltd 偏光子を付設したデジタルカメラシステム
JP2014067388A (ja) * 2012-09-06 2014-04-17 Toshiba Alpine Automotive Technology Corp アイコン操作装置
JP2014071504A (ja) * 2012-09-27 2014-04-21 Aisin Aw Co Ltd 電子機器、電子機器の制御方法及びコンピュータプログラム

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8228305B2 (en) * 1995-06-29 2012-07-24 Apple Inc. Method for providing human input to a computer
US6771294B1 (en) * 1999-12-29 2004-08-03 Petri Pulli User interface
EP4321975A3 (en) * 2008-06-19 2024-06-05 Massachusetts Institute of Technology Tactile sensor using elastomeric imaging
US9658765B2 (en) * 2008-07-31 2017-05-23 Northrop Grumman Systems Corporation Image magnification system for computer interface
US9569001B2 (en) * 2009-02-03 2017-02-14 Massachusetts Institute Of Technology Wearable gestural interface
JP2011070491A (ja) 2009-09-28 2011-04-07 Nec Personal Products Co Ltd 入力方法、情報処理装置、タッチパネル及びプログラム
JP5621422B2 (ja) * 2010-09-07 2014-11-12 ソニー株式会社 情報処理装置、プログラム及び制御方法
US9030425B2 (en) * 2011-04-19 2015-05-12 Sony Computer Entertainment Inc. Detection of interaction with virtual object from finger color change
US9069164B2 (en) * 2011-07-12 2015-06-30 Google Inc. Methods and systems for a virtual input device
US8228315B1 (en) * 2011-07-12 2012-07-24 Google Inc. Methods and systems for a virtual input device
JP5966535B2 (ja) * 2012-04-05 2016-08-10 ソニー株式会社 情報処理装置、プログラム及び情報処理方法
US20150109197A1 (en) * 2012-05-09 2015-04-23 Sony Corporation Information processing apparatus, information processing method, and program
US20150185857A1 (en) * 2012-06-08 2015-07-02 Kmt Global Inc User interface method and apparatus based on spatial location recognition
CN104583921A (zh) * 2012-08-27 2015-04-29 西铁城控股株式会社 信息输入装置
JP2014071505A (ja) * 2012-09-27 2014-04-21 Aisin Aw Co Ltd 電子機器、電子機器の制御方法及びコンピュータプログラム
JP5798103B2 (ja) * 2012-11-05 2015-10-21 株式会社Nttドコモ 端末装置、画面表示方法、プログラム
KR101370027B1 (ko) * 2012-11-29 2014-03-06 주식회사 매크론 안경형 디스플레이 디바이스용 마우스 장치 및 그 구동 방법
US10152136B2 (en) * 2013-10-16 2018-12-11 Leap Motion, Inc. Velocity field interaction for free space gesture interface and control
ES2911906T3 (es) * 2014-05-15 2022-05-23 Federal Express Corp Dispositivos ponibles para el procesamiento de mensajería y métodos de uso de los mismos
US9639167B2 (en) * 2014-05-30 2017-05-02 Eminent Electronic Technology Corp. Ltd. Control method of electronic apparatus having non-contact gesture sensitive region
JP6119679B2 (ja) * 2014-06-24 2017-04-26 株式会社デンソー 車両用入力装置
US9767613B1 (en) * 2015-01-23 2017-09-19 Leap Motion, Inc. Systems and method of interacting with a virtual object
JP6477130B2 (ja) * 2015-03-27 2019-03-06 セイコーエプソン株式会社 インタラクティブプロジェクター及びインタラクティブプロジェクションシステム
US11106273B2 (en) * 2015-10-30 2021-08-31 Ostendo Technologies, Inc. System and methods for on-body gestural interfaces and projection displays
US20170228138A1 (en) * 2016-02-08 2017-08-10 University Of Ontario Institute Of Technology System and method for spatial interaction for viewing and manipulating off-screen content
US10852936B2 (en) * 2016-09-23 2020-12-01 Apple Inc. Devices, methods, and graphical user interfaces for a unified annotation layer for annotating content displayed on a device
US11073980B2 (en) * 2016-09-29 2021-07-27 Microsoft Technology Licensing, Llc User interfaces for bi-manual control

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000172163A (ja) * 1998-09-28 2000-06-23 Matsushita Electric Ind Co Ltd 手動作分節方法および装置
JP2005018385A (ja) * 2003-06-26 2005-01-20 Mitsubishi Electric Corp 作業情報提供装置
WO2010137192A1 (ja) * 2009-05-25 2010-12-02 国立大学法人電気通信大学 操作情報入力システム及び方法
JP2011029903A (ja) * 2009-07-24 2011-02-10 Artray Co Ltd 偏光子を付設したデジタルカメラシステム
JP2014067388A (ja) * 2012-09-06 2014-04-17 Toshiba Alpine Automotive Technology Corp アイコン操作装置
JP2014071504A (ja) * 2012-09-27 2014-04-21 Aisin Aw Co Ltd 電子機器、電子機器の制御方法及びコンピュータプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3176675A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018074055A1 (ja) * 2016-10-19 2018-04-26 ソニー株式会社 情報処理装置、情報処理方法及びプログラム
JP2020194517A (ja) * 2019-05-21 2020-12-03 雄史 高田 翻訳システムおよび翻訳システムセット

Also Published As

Publication number Publication date
EP3176675A1 (en) 2017-06-07
EP3176675A4 (en) 2018-03-07
US10346992B2 (en) 2019-07-09
CN106662923A (zh) 2017-05-10
EP3176675B1 (en) 2021-08-25
JP6528774B2 (ja) 2019-06-12
CN106662923B (zh) 2021-02-09
US20170140547A1 (en) 2017-05-18
JPWO2016017101A1 (ja) 2017-06-15

Similar Documents

Publication Publication Date Title
JP6528774B2 (ja) 情報処理装置、情報処理方法及びプログラム
JP6195939B2 (ja) 複合的な知覚感知入力の対話
KR102230630B1 (ko) 빠른 제스처 재접속
US9933850B2 (en) Information processing apparatus and program
US8860678B2 (en) Computer system with touch screen and gesture processing method thereof
WO2011142317A1 (ja) ジェスチャー認識装置、方法、プログラム、および該プログラムを格納したコンピュータ可読媒体
US9916043B2 (en) Information processing apparatus for recognizing user operation based on an image
US10048728B2 (en) Information processing apparatus, method, and storage medium
US10156938B2 (en) Information processing apparatus, method for controlling the same, and storage medium
US20150193037A1 (en) Input Apparatus
US9880684B2 (en) Information processing apparatus, method for controlling information processing apparatus, and storage medium
US9389781B2 (en) Information processing apparatus, method for controlling same, and recording medium
KR20080104099A (ko) 입력 장치 및 그 입력 방법
US20130293460A1 (en) Computer vision based control of an icon on a display
US10656746B2 (en) Information processing device, information processing method, and program
US11755124B1 (en) System for improving user input recognition on touch surfaces
JP6686885B2 (ja) 情報処理装置、情報処理方法及びプログラム
US9013440B2 (en) Ink control on tablet devices
US9778822B2 (en) Touch input method and electronic apparatus thereof
US20160188108A1 (en) Clickable touchpad systems and methods
US9880668B2 (en) Method for identifying input information, apparatus for identifying input information and electronic device
JP2014219879A (ja) 情報処理装置、情報処理方法及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15826756

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15318832

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016537737

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015826756

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE