WO2016015349A1 - 确定容器中核酸是否来源于单个细胞的方法及其装置和用途 - Google Patents

确定容器中核酸是否来源于单个细胞的方法及其装置和用途 Download PDF

Info

Publication number
WO2016015349A1
WO2016015349A1 PCT/CN2014/083596 CN2014083596W WO2016015349A1 WO 2016015349 A1 WO2016015349 A1 WO 2016015349A1 CN 2014083596 W CN2014083596 W CN 2014083596W WO 2016015349 A1 WO2016015349 A1 WO 2016015349A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
nucleic acid
predetermined
threshold
single cell
Prior art date
Application number
PCT/CN2014/083596
Other languages
English (en)
French (fr)
Inventor
吴靓
李贵波
杨欢
吴逵
侯勇
徐讯
Original Assignee
深圳华大基因科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳华大基因科技有限公司 filed Critical 深圳华大基因科技有限公司
Priority to PCT/CN2014/083596 priority Critical patent/WO2016015349A1/zh
Priority to CN201480080645.9A priority patent/CN106536750A/zh
Publication of WO2016015349A1 publication Critical patent/WO2016015349A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids

Definitions

  • the present invention relates to the field of biotechnology, and in particular to a method for determining whether a nucleic acid in a container is derived from a single cell, and a device and use thereof, and more particularly, the present invention relates to a method for determining whether a nucleic acid in a container is derived from a single cell, and determining a container Whether the nucleic acid is derived from a single cell device, a method of obtaining a single cell nucleic acid, a method of constructing a single cell nucleic acid sequencing library, a system for constructing a single cell nucleic acid sequencing library, and a method of determining a sequence of a single cell nucleic acid.
  • Background technique
  • Fluidigm's C1 platform uses microfluidic chips and microvalves to automatically acquire 96 single cells and complete cell lysis, reverse transcription and PCR on the chip to obtain amplified cDNA with a reaction volume of Baina.
  • the upgrade greatly reduces the cost of reagent consumption, but the cost still costs 20 US dollars / cell.
  • the present invention aims to solve at least one of the technical problems existing in the prior art.
  • the invention proposes a method of determining whether a nucleic acid in a container is derived from a single cell.
  • the method comprises: (1) adding a fluorescent label to a container containing the nucleic acid, and performing real-time fluorescent quantitative PCR to obtain fluorescence change data of the container; and (2) based on the container Fluorescence change data determines whether the nucleic acid contained in the container is derived from a single cell. Since the results of real-time fluorescent quantitative PCR are positively correlated with the number of nucleic acids in the container, it is possible to effectively determine whether the nucleic acid in the container is derived from a single cell by analyzing the results of real-time fluorescent quantitative PCR.
  • a nucleic acid in a container is derived from a single cell. Further, it is possible to simultaneously analyze the source of nucleic acid in a plurality of containers, further reducing the volume of the nucleic acid suspension in the container, and thereby significantly reducing the cost of single-cell nucleic acid analysis.
  • more than 500 containers can be analyzed simultaneously, and thus more than 500 single cells can be analyzed simultaneously, and the volume of the treated object requires only 200 nanoliters, which significantly reduces single cell nucleic acid analysis such as single cell nucleic acid sequencing. Cost, for example, can be reduced to one tenth of the current cost.
  • the above method for determining whether a nucleic acid in a container is derived from a single cell may further have Column additional technical features:
  • the fluorescent label is SYBR Gr een I.
  • the efficiency of real-time fluorescent quantitative PCR can be further improved, and the efficiency of determining whether the nucleic acid in the container is derived from a single cell can be improved, thereby improving the efficiency of single-cell nucleic acid analysis.
  • the nucleic acid is cDNA.
  • the inventors of the present invention have found that the method of the present invention for determining whether or not a nucleic acid in a container is derived from a single cell can be effectively applied to the analysis of cDNA.
  • the nucleic acid is obtained by the steps of: providing a cell suspension comprising 2 to 5 cells per microliter; adding 50 nanoliters of the cell suspension to the container Adding a cell lysate to the container to lyse the cells in the container and releasing mRNA in the cell; and adding a reverse transcription reagent to the container for reverse transcription of the mRNA , obtain cDNA.
  • the method of the present invention for determining whether a nucleic acid in a container is derived from a single cell is capable of efficiently analyzing mRNA.
  • the inventors have found that when the cell suspension contains 2 to 5 cells/ ⁇ l, 50 The probability of having only one cell in a nanoliter volume of suspension is very large, reaching more than 90%. For example, when the cell content does not exceed 4 cells/ ⁇ l, the probability exceeds 98%. Thereby, the probability that the nucleic acid in the container is derived from a single cell can be further improved.
  • the container is at least one of the perforated plates, preferably the perforated plate is a 5124 well plate.
  • the perforated plate is a 5124 well plate.
  • step (2) further comprising, in step (2): (2-1) establishing an amplification curve based on fluorescence change data of the container, and determining a Ct value of the container based on the amplification curve And (2-2) comparing the alpha value of the container with a predetermined first alpha threshold, wherein the alpha value of the container is higher than the predetermined first alpha threshold is included in the container
  • the nucleic acid is derived from an indication of a single cell.
  • the predetermined first ct threshold is obtained by real-time fluorescence quantification of a control container
  • control container contains a known amount of nucleic acid, and preferably, the control container contains 10 pg of nucleic acid.
  • the predetermined first Ct threshold is determined by the following steps: (a) performing real-time fluorescent quantitative PCR on a plurality of the control containers to determine a Ct value of each of the control containers; (b) determining such a value as the predetermined first Ct threshold, wherein at least 1.75% of the Ct values of all of the plurality of control containers are less than the value.
  • the inventors have found that the first Ct threshold obtained by these steps can be effectively used to determine whether the nucleic acid in the container is derived from the efficiency of a single cell, and to improve the efficiency of single cell nucleic acid analysis.
  • the inventors have found that the first Ct threshold obtained by these steps can be effectively used to determine whether the nucleic acid in the container is derived from a single cell, and to improve the efficiency of single cell nucleic acid analysis.
  • a Ct value of the container is higher than the predetermined first ⁇ threshold but less than a predetermined second Ct threshold is a nucleic acid source contained in the container
  • the inventors have found that the second Ct threshold obtained by these steps in combination with the first Ct threshold can be effectively used to determine whether the nucleic acid in the container is derived from a single cell, and to improve the efficiency of single cell nucleic acid analysis.
  • the predetermined first Ct threshold is 12.78 and the predetermined second Ct threshold is 13.78.
  • the inventors have found that by using the range defined by the second Ct threshold and the first Ct threshold, it is possible to effectively determine whether the nucleic acid in the container is derived from a single cell by determining whether the Ct value falls within the range. The efficiency of single cell nucleic acid analysis.
  • the present invention further comprising: (3-1) determining a fluorescence change curve of the container based on fluorescence change data of the container; (3-2) performing a fluorescence curve of the container and a predetermined curve Comparing, in order to determine whether the real-time PCR is effective, wherein the predetermined curve is obtained by real-time fluorescent quantitative PCR on a container containing a known predetermined amount of nucleic acid, and the fluorescence curve of the container is The predetermined curve parallel indicates that the real-time fluorescent quantitative PCR is effective.
  • the present invention further comprising: (4-1) determining a melting curve of the container based on fluorescence change data of the container; and (4-2) excluding the unqualified container based on a melting curve of the container Wherein, only the primer dimer peak is present in the melting curve of the unqualified container, or the primer dimer peak is abnormal.
  • the invention proposes a device for determining whether a nucleic acid in a container is derived from a single cell.
  • the apparatus comprises: a real-time fluorescent quantitative PCR unit, wherein the real-time fluorescent quantitative PCR unit is configured to perform real-time fluorescent quantitative PCR after adding a fluorescent label in a container containing nucleic acid to obtain fluorescence of the container And a judging unit, wherein the judging unit is connected to the real-time fluorescence quantitative PCR unit, and is configured to determine whether the nucleic acid contained in the container is derived from a single cell based on fluorescence change data of the container.
  • the nucleic acid in the container is derived from a single cell. Since the results of real-time fluorescent quantitative PCR are positively correlated with the number of nucleic acids in the container, it is possible to effectively determine whether the nucleic acid in the container is derived from a single cell by analyzing the results of real-time fluorescent quantitative PCR. Thus, according to an embodiment of the present invention, it is possible to quickly determine in situ whether a nucleic acid in a container is derived from a single cell. Further, it is possible to simultaneously analyze the source of nucleic acid in a plurality of containers, further reducing the volume of the nucleic acid suspension in the container, and thereby significantly reducing the cost of single-cell nucleic acid analysis.
  • more than 500 containers can be analyzed simultaneously, and thus more than 500 single cells can be analyzed simultaneously, and the volume of the treated object requires only 200 nanoliters, which significantly reduces single cell nucleic acid analysis such as single cell nucleic acid sequencing. Cost, for example, can be reduced to one tenth of the current cost.
  • the means for determining whether the nucleic acid in the container is derived from a single cell may also have the following additional technical features:
  • the fluorescent label is SYBR GreenL, thereby further improving the efficiency of real-time fluorescent quantitative PCR, improving the efficiency of determining whether a nucleic acid in a container is derived from a single cell, and improving single-cell nucleic acid analysis. effectiveness.
  • the nucleic acid is cDNA.
  • the inventors of the present invention have found that the method of the present invention for determining whether or not a nucleic acid in a container is derived from a single cell can be effectively applied to the analysis of cDNA.
  • nucleic acid preparation unit further comprising a nucleic acid preparation unit, the nucleic acid preparation unit being connected to the real-time fluorescent quantitative PCR unit for preparing the nucleic acid by the following steps: providing a cell suspension, the cell suspension containing 2 ⁇ 5 cells/ ⁇ l; adding 50 nanoliters of the cell suspension to the container; adding a cell lysate to the container to lyse the cells in the container and releasing the mRNA in the cell; And adding a reverse transcription reagent to the container to reverse transcribe the mRNA to obtain cDNA.
  • the method of the present invention for determining whether a nucleic acid in a container is derived from a single cell is capable of efficiently analyzing mRNA.
  • the inventors have found that when the cell suspension contains 2 to 5 cells/ ⁇ l, 50 The probability of having only one cell in a nanoliter volume of suspension is very large, reaching more than 90%, for example, when the cell content does not exceed 4 cells/microliter, it is over 98%. Thereby, the probability that the nucleic acid in the container is derived from a single cell can be further improved.
  • the container is at least one of the perforated plates, preferably the perforated plate is a 5124 well plate.
  • the perforated plate is a 5124 well plate.
  • the determining unit further includes: a ct value determining module, configured to establish an amplification curve based on fluorescence change data of the container, and determine, based on the amplification curve, An alpha value of the container; and a first determining module, wherein the first determining module is configured with a predetermined first ct threshold, and the first determining module is connected to the alpha value determining module, and configured to: The alpha value is compared to a predetermined first alpha threshold, wherein the alpha value of the container being above the predetermined first alpha threshold is an indication that the nucleic acid contained in the container is derived from a single cell.
  • the predetermined first ct threshold is obtained by real-time fluorescence quantification of a control container
  • control container contains a known amount of nucleic acid, and preferably, the control container contains 10 pg of nucleic acid.
  • the predetermined first Ct threshold is determined by the following steps: (a) performing real-time fluorescent quantitative PCR on a plurality of the control containers to determine a Ct value of each of the control containers; (b) determining such a value as the predetermined first Ct threshold, wherein at least 1.75% of the Ct values of all of the plurality of control containers are less than the value.
  • the inventors have found that the first Ct threshold obtained by these steps can be effectively used to determine whether the nucleic acid in the container is derived from the efficiency of a single cell, and to improve the efficiency of single cell nucleic acid analysis.
  • the inventors have found that the first Ct threshold obtained by these steps can be effectively used to determine whether the nucleic acid in the container is derived from a single cell, and to improve the efficiency of single cell nucleic acid analysis.
  • the ct value of the container is higher than the predetermined first alpha threshold but less than a predetermined second ct threshold is an indication that the nucleic acid contained in the container is derived from a single cell
  • the inventors have found that the second Ct threshold obtained by these steps in combination with the first Ct threshold can be effectively used to determine whether the nucleic acid in the container is derived from a single cell, and to improve the efficiency of single cell nucleic acid analysis.
  • the predetermined first Ct threshold is 12.78 and the predetermined second Ct threshold is 13.78.
  • the inventors have found that by using the range defined by the second Ct threshold and the first Ct threshold, it is possible to effectively determine whether the nucleic acid in the container is derived from a single cell by determining whether the Ct value falls within the range. The efficiency of single cell nucleic acid analysis.
  • the determining unit further includes: a fluorescence change curve determining module, wherein the fluorescence change curve determining module is configured to determine a fluorescence change curve of the container based on fluorescence change data of the container; and second a judging module, wherein the second judging module is provided with a predetermined curve, and the second judging module is connected to the fluorescence change curve determining module, and is configured to compare the fluorescence change curve of the container with a predetermined curve to determine Whether the real-time fluorescent quantitative PCR is effective, wherein the predetermined curve is obtained by real-time fluorescent quantitative PCR on a container containing a known predetermined amount of nucleic acid, and the fluorescence curve of the container is parallel to the predetermined curve Real-time fluorescent quantitative PCR is effective.
  • the determining unit further includes: a melting curve determining module, wherein the melting curve determining module is configured to determine a melting curve of the container based on fluorescence change data of the container; and removing a module
  • the de-doping module is connected to the melting curve determining module, and is configured to exclude the unqualified container based on the melting curve of the container, wherein only the primer dimer peak is present in the melting curve of the unqualified container, or the primer is present The dimer peak is abnormal.
  • the invention provides a method of obtaining a single cell nucleic acid.
  • a method of obtaining a single cell nucleic acid comprising: providing a cell suspension comprising 2 to 5 cells/ ⁇ l; adding 50 nanoliters of the cell suspension to a container; adding cell lysis to the container a solution for lysing cells in said container and releasing mRNA in said cells; adding a reverse transcription reagent to said container for reverse transcription of said mRNA to obtain cDNA; and according to the foregoing
  • the result of real-time fluorescent quantitative PCR is positively correlated with the number of nucleic acids in the container, it is possible to effectively determine whether the nucleic acid in the container is derived from a single cell by analyzing the results of real-time fluorescent quantitative PCR. .
  • more than 500 containers can be analyzed simultaneously, and thus more than 500 single cells can be analyzed simultaneously, and the volume of the treated object requires only 200 nanoliters, which significantly reduces single cell nucleic acid analysis such as single cell nucleic acid sequencing. Cost, for example, can be reduced to one tenth of the current cost.
  • the container after determining whether the cDNA contained in the container is derived from a single cell, further comprising obtaining a real-time fluorescent quantitative PCR product using a capillary.
  • the invention provides a method of constructing a single cell nucleic acid sequencing library.
  • the method comprises: obtaining a single cell nucleic acid according to the method described above; and constructing a nucleic acid sequencing library for the single cell nucleic acid.
  • the source of the nucleic acid in the plurality of containers can be simultaneously reducing the volume of the nucleic acid suspension in the container, thereby significantly reducing the cost of the single cell nucleic acid analysis.
  • more than 500 containers can be analyzed simultaneously, and thus more than 500 single cells can be analyzed simultaneously, and the volume of the treated object requires only 200 nanoliters, which significantly reduces single cell nucleic acid analysis such as single cell nucleic acid sequencing. Cost, for example, can be reduced to one tenth of the current cost.
  • the nucleic acid sequencing library can be constructed based on at least one selected from the group consisting of HISEQ2000, SOLID, 454 and a single molecule sequencing platform.
  • the invention provides a system for constructing a single cell nucleic acid sequencing library.
  • the system comprises: the aforementioned device for determining whether a nucleic acid in a container is derived from a single cell; and a library construction device for constructing a nucleic acid sequencing library for the single cell nucleic acid .
  • the invention proposes a method of determining the sequence of a single cell nucleic acid.
  • the method comprises: constructing a single-cell nucleic acid sequencing library according to the method described above; and sequencing the single-cell nucleic acid sequencing library to obtain a sequencing result, determining the sequence of the single-cell nucleic acid .
  • the result of real-time fluorescent quantitative PCR is positively correlated with the number of nucleic acids in the container, it is possible to effectively determine whether the nucleic acid in the container is derived from a single cell by analyzing the results of real-time fluorescent quantitative PCR. .
  • the present invention it is possible to quickly determine in situ whether a nucleic acid in a container is derived from a single cell. Further, it is possible to simultaneously analyze the source of the nucleic acid in the plurality of containers, further reducing the volume of the nucleic acid suspension in the container, thereby significantly reducing the cost of the single cell nucleic acid analysis. According to an embodiment of the present invention, more than 500 containers can be analyzed simultaneously, and thus more than 500 single cells can be analyzed simultaneously, and the volume of the treated object requires only 200 nanoliters, which significantly reduces single cell nucleic acid analysis such as single cell nucleic acid sequencing. Cost, for example, can be reduced to one tenth of the current cost.
  • the method can perform the sequencing using at least one selected from the group consisting of HISEQ2000, SOLID, 454 and a single molecule sequencing platform.
  • Figure 1 is a flow chart showing a method of determining whether a nucleic acid in a container is derived from a single cell, in accordance with one embodiment of the present invention.
  • FIG. 2 shows a flow of a method of determining whether a nucleic acid in a container is derived from a single cell, in accordance with one embodiment of the present invention.
  • Figure 3 shows a schematic diagram of the construction of a device for determining whether a nucleic acid in a container is derived from a single cell, in accordance with one embodiment of the present invention.
  • FIG. 4 shows a schematic diagram of the structure of a system for constructing a single cell nucleic acid sequencing library in accordance with one embodiment of the present invention.
  • Figure 5 shows a fluorescence curve and a melting curve at different starting amounts in accordance with one embodiment of the present invention.
  • Figure 6 shows the Agilent 2100 test results for sample well products in accordance with one embodiment of the present invention.
  • FIGS 7 and 8 show graphs of library sequencing data quality test results in accordance with one embodiment of the present invention.
  • Figure 9 is a graph showing the comparison of the gene coverage of library sequencing data with the results of a conventional procedure, in accordance with one embodiment of the present invention.
  • Figure 10 is a graph showing coverage analysis at different base positions of the genome of library sequencing data, in accordance with one embodiment of the present invention. Detailed description of the invention
  • first and second are used for descriptive purposes only, and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated. Thus, features defining “first”, “second” may explicitly or implicitly include one or more of the features. Further, in the description of the present invention, “multiple” means two or more unless otherwise stated.
  • the invention proposes a method of determining whether a nucleic acid in a container is derived from a single cell.
  • the method includes:
  • a fluorescent label is added to a container containing the nucleic acid, and real-time fluorescent quantitative PCR is performed to obtain fluorescence change data of the container.
  • the nucleic acid contained in the container is derived from a single cell. Since the results of real-time fluorescent quantitative PCR are positively correlated with the number of nucleic acids in the container, it is possible to effectively determine whether the nucleic acid in the container is derived from a single cell by analyzing the results of real-time fluorescent quantitative PCR. Thus, according to an embodiment of the present invention, it is possible to quickly determine in situ whether a nucleic acid in a container is derived from a single cell.
  • the type of the fluorescent marker that can be applied to the present invention is not particularly limited as long as it can It is sufficient to non-specifically bind to the nucleic acid, and can perform real-time fluorescent quantitative PCR efficiently.
  • the fluorescent label used in the present invention is SYBR Gr een I. The inventors have found that the use of the fluorescent label enables efficient real-time PCR for a small amount of nucleic acid, such as a nucleic acid derived from a single cell. Thereby, the efficiency of real-time fluorescent quantitative PCR can be further improved, the efficiency of determining whether the nucleic acid in the container is derived from a single cell, and the efficiency of single-cell nucleic acid analysis can be improved.
  • the type of nucleic acid to which the nucleic acid source judgment can be performed according to the method of the embodiment of the present invention is not particularly limited. That is, it can be either DNA or RNA, as long as the real-time fluorescent quantitative PCR can be performed efficiently.
  • the nucleic acid is cDNA.
  • the inventors of the present invention have found that the method of the present invention for determining whether or not a nucleic acid in a container is derived from a single cell can be effectively applied to the analysis of cDNA. And since cDNA generally has the same nucleic acid sequence, such as a polyT sequence, fluorescence quantitative PCR can be carried out very conveniently, thereby improving the method of determining whether a nucleic acid is derived from a single cell.
  • the nucleic acid is obtained by the following steps:
  • the cell suspension is first prepared, and the cell suspension contains 2 to 5 cells/ ⁇ l, after which the prepared cell suspension is added to the container to be analyzed, according to a specific example of the present invention. , Add 50 nanoliters of cell suspension to the container.
  • the inventors of the present invention have surprisingly found that when cells are uniformly distributed in a liquid and divided into minute volumes, the number of cells contained in each minute volume conforms to the Poisson distribution.
  • the probability when the number is k.
  • the cell suspension to be dispensed is 50 nL, if the cell density is 1 to 5 cells/ ⁇ l, preferably 2 to 4 cells/ ⁇ l, the number of cells in more than 98% of the microwells There are no more than one.
  • the number of cells is not more than one, indicating the sum of the probabilities when the number of cells is 0 and 1. and then,
  • the cell suspension by using an isotonic solution obtained by mixing a Percoll stock solution with 10X PBS in a ratio of 9:1 by volume.
  • the Percoll stock solution is a hypotonic solution. If it is directly used to suspend cells, it will cause the cells to rupture directly. Therefore, an isotonic solution obtained in a ratio of 9:1 by volume with 10X PBS is required for suspending cells.
  • the inventors have surprisingly found that the specific gravity of the isotonic solution is appropriate to ensure that the cells are uniformly distributed during dispersion.
  • a method of arranging a cell suspension having a cell content of 1 to 5 cells/ ⁇ l using an isotonic solution is not particularly limited. According to a particular embodiment of the invention, a method of gradient dilution can be employed.
  • Step 1 According to the difference of the samples, the cells were digested with the trypsin-like cells and collagenase, and the digested cells were taken for 1 mL, and packed in a 1.5 mL EP tube.
  • Step 2 The previously obtained cells were centrifuged at 1000 rpm for 5 min and resuspended in IX PBS and repeated once.
  • Step 3 The step 2 cell solution was filtered using a 40/70 ⁇ cell strainer to remove cell clusters.
  • Step 4 Mix Percoll stock solution (PHARMACIA, Cat. No. 17-0891-01) with 10 X PBS at a volume ratio of 9:1 to form an isotonic solution of the cells. A certain amount of isotonic solution is taken up and the filtered cell solution obtained in step 3 is mixed into a new cell suspension at a volume ratio of 1:4.
  • Step 5 Adjust the cell density of the newly configured cell suspension in step 4 to 1 to 5 cells/ ⁇ l, preferably 2 to 4 cells/ ⁇ l, according to a gradient dilution (for example, 1 : 2 or 1 : 10).
  • a gradient dilution for example, 1 : 2 or 1 : 10
  • Methods for determining cell density are well known to those skilled in the art. For example, 5 to 10 microliters of cell suspension can be counted three times using a microscope to determine cell density.
  • the manner in which the suspension is dispensed is not particularly limited.
  • a commercially available micro-dispensing platform SmartChipTM Multi Sample Nano Dispenser (MS D), Wafergen Biosy stems
  • MS D Wafergen Biosy stems
  • a microchip Smartchip 200nL, Wafergen
  • a fluorescence quantitative PCR machine SmartChipTM Real-Time PCR Cycler, Wafergen Biosy stems
  • Auxiliary monitoring, with the appropriate cell density, combined with an optimized reaction volume, can process >500 single cells at a time.
  • the container is at least one of the perforated plates, and the perforated plate is a 5124 well plate.
  • the perforated plate is a 5124 well plate.
  • the cell lysate is added to the container to lyse the cells in the container and release the mRNA in the cells.
  • the cell lysate which can be used is not particularly limited as long as it is capable of lysing the cells while releasing the mRNA.
  • a 4 ⁇ lysate is exemplified, and the composition of the lysate which can be used is as follows:
  • reverse transcription can be directly performed in situ by the above operation.
  • the conditions for reverse transcription are: 42 ° C for 90 min, (50 ° C for 2 min, 42 ° C for 2 min) for 10 cycles, 70 ° C for 15 min, and 4 ° C for storage.
  • the method of the present invention for determining whether a nucleic acid in a container is derived from a single cell is capable of efficiently analyzing mRNA.
  • step S200 includes:
  • an amplification curve is established, and based on the amplification curve, the Ct value of the container is determined;
  • comparing the ct value of the container with a predetermined first alpha threshold, wherein the alpha value of the container is higher than the predetermined first alpha threshold is that the nucleic acid contained in the container is derived from a single Instructions for the cells.
  • the predetermined first Ct threshold is obtained by real-time fluorescence quantification of the control container
  • control container contains a known amount of nucleic acid, and preferably, the control container contains 10 pg of nucleic acid.
  • the predetermined first Ct threshold is determined by the following steps: (a) performing real-time fluorescent quantitative PCR on a plurality of the control containers to determine a Ct value of each of the control containers; (b) determining such a value as the predetermined first Ct threshold, wherein at least 1.75% of the Ct values of all of the plurality of control containers are less than the value.
  • the inventors have found that the first Ct threshold obtained by these steps can be effectively used to determine whether the nucleic acid in the container is derived from the efficiency of a single cell, and to improve the efficiency of single cell nucleic acid analysis.
  • the inventors have found that the first Ct threshold obtained by these steps can be effectively used to judge whether or not the nucleic acid in the container is derived from a single cell, and to improve the efficiency of single cell nucleic acid analysis.
  • the Ct value of the container is higher than the predetermined first Ct threshold but less than a predetermined second Ct threshold is an indication that the nucleic acid contained in the container is derived from a single cell
  • the predetermined second Ct threshold is determined by the following formula:
  • the inventors have found that the second Ct threshold obtained by these steps in combination with the first Ct threshold can be effectively used to determine whether the nucleic acid in the container is derived from a single cell, improving the efficiency of single cell nucleic acid analysis.
  • the predetermined first Ct threshold is 12.78 and the predetermined second Ct threshold is 13.78.
  • the inventors have found that by using the range defined by the second Ct threshold and the first Ct threshold, it is possible to effectively determine whether the nucleic acid in the container is derived from a single cell by determining whether the Ct value falls within the range. Up The efficiency of single cell nucleic acid analysis.
  • the method may further include:
  • a fluorescence curve of the container is determined based on fluorescence change data of the container.
  • the fluorescence profile of the container is compared to a predetermined curve to determine whether the real-time PCR is effective, wherein the predetermined curve is by real-time PCR for a container containing a known predetermined amount of nucleic acid. And obtained, and the fluorescence curve of the container parallel to the predetermined curve indicates that the real-time fluorescent quantitative PCR is effective.
  • the method may further include:
  • the defective container is excluded, wherein only the primer dimer peak is present in the melting curve of the defective container, or the primer dimer peak is abnormal.
  • the primer dimer peak is abnormal.
  • primer dimer peak abnormality means that the amount of the apparent primer dimer exceeds the expected ratio.
  • the invention proposes a device for determining whether a nucleic acid in a container is derived from a single cell.
  • this device it is possible to effectively analyze whether or not the nucleic acid in the container is derived from a single cell. Since the results of real-time fluorescent quantitative PCR are positively correlated with the number of nucleic acids in the container, it is possible to effectively determine whether the nucleic acid in the container is derived from a single cell by analyzing the results of real-time fluorescent quantitative PCR.
  • the apparatus 1000 includes: a real-time fluorescence quantitative PCR unit 100 and a determination unit 200. specifically:
  • the real-time fluorescent quantitative PCR unit 100 is configured to perform real-time fluorescent quantitative PCR after adding a fluorescent label to a container containing nucleic acid to obtain fluorescence change data of the container.
  • the fluorescent label is SYBR Gr ee nl.
  • the efficiency of real-time fluorescent quantitative PCR can be further improved, the efficiency of determining whether the nucleic acid in the container is derived from a single cell, and the efficiency of single-cell nucleic acid analysis can be improved.
  • the nucleic acid is cDNA. The inventors of the present invention have found that the method of the present invention for determining whether or not a nucleic acid in a container is derived from a single cell can be effectively applied to the analysis of cDNA.
  • the determining unit 200 is connected to the real-time fluorescent quantitative PCR unit 100, and is configured to determine whether the nucleic acid contained in the container is derived from a single cell based on fluorescence change data of the container. It should be noted that the specific selection of the determining unit 200 is not particularly limited, and a computer processing module may be designed to be connected to the real-time fluorescent quantitative PCR unit 100 to receive the fluorescence change data of the container from the real-time fluorescent quantitative PCR unit 100, and Based on the function of the computer processing module, the fluorescence change data of the container is processed and a determination is made to determine if the nucleic acid contained in the container is derived from a single cell.
  • the above computer processing module can also be disposed in the real-time fluorescent quantitative PCR unit 100, or when a real-time fluorescent quantitative PCR device is used as the real-time fluorescent quantitative PCR unit 100, the real-time quantitative PCR device
  • the included computing device can be directly or manually modified as the determining unit 200.
  • the judging unit 200 can also be manually, that is, directly by the method implementer as a judging body without using a machine or a device, and serving as a judging unit, based on the fluorescence change data of the container in the real-time fluorescence quantitative PCR unit 100, manually determining and determining Whether the nucleic acid contained in the container is derived from a single cell.
  • the nucleic acid preparation unit is connected to the real-time fluorescent quantitative PCR unit 100 for preparing the nucleic acid by the following steps: providing cell suspension a cell suspension containing 2 to 5 cells/ ⁇ l; adding 50 nanoliters of the cell suspension to a container; adding a cell lysate to the container to lyse the cells in the container, and The mRNA in the cell is released; and a reverse transcription reagent is added to the container to reverse transcribe the mRNA to obtain cDNA.
  • the method of the present invention for determining whether a nucleic acid in a container is derived from a single cell is capable of efficiently analyzing mRNA.
  • the inventors have found that when the cell suspension contains 2 to 5 cells/ ⁇ l, 50 The probability of having only one cell in a nanoliter volume of suspension is very large, reaching more than 90%, for example, when the cell content does not exceed 4 cells/microliter, it is over 98%. Thereby, the probability that the nucleic acid in the container is derived from a single cell can be further improved.
  • the container is at least one of the perforated plates, preferably the perforated plate is a 5124 well plate.
  • the perforated plate is a 5124 well plate.
  • the determining unit 200 further includes: a Ct value determining module (not shown), wherein the Ct value determining module is configured to establish an amplification curve based on fluorescence change data of the container, and Determining a Ct value of the container based on the amplification curve; and a first determining module (not shown), wherein the first determining module is configured with a predetermined first Ct threshold, the first determining module And the Ct value determining module is configured to compare a Ct value of the container with a predetermined first Ct threshold, wherein a Ct value of the container is higher than the predetermined first Ct threshold is the container
  • the nucleic acid contained in it is derived from the indication of a single cell. Thereby, it is possible to further improve the efficiency of determining whether or not the nucleic acid in the container is derived from a single cell, and to improve the efficiency of single cell nucleic acid analysis.
  • the predetermined first Ct threshold is obtained by real-time fluorescence quantification of the control container
  • control container contains a known amount of nucleic acid, and preferably, the control container contains 10 pg of nucleic acid.
  • the predetermined first Ct threshold is determined by the following steps: (a) performing real-time fluorescent quantitative PCR on a plurality of the control containers to determine a Ct value of each of the control containers; (b) determining such a value as the predetermined first Ct threshold, wherein at least 1.75% of the Ct values of all of the plurality of control containers Less than the stated value.
  • the inventors have found that the first alpha threshold obtained by these steps can be effectively used to determine whether the nucleic acid in the container is derived from a single cell, and to improve the efficiency of single cell nucleic acid analysis.
  • the inventors have found that the first Ct threshold obtained by these steps can be effectively used to determine whether the nucleic acid in the container is derived from a single cell, and to improve the efficiency of single cell nucleic acid analysis.
  • the ct value of the container is higher than the predetermined first alpha threshold but less than a predetermined second ct threshold is an indication that the nucleic acid contained in the container is derived from a single cell
  • the inventors have found that the second Ct threshold obtained by these steps in combination with the first Ct threshold can be effectively used to determine whether the nucleic acid in the container is derived from a single cell, improving the efficiency of single cell nucleic acid analysis.
  • the predetermined first Ct threshold is 12.78 and the predetermined second Ct threshold is 13.78.
  • the inventors have found that by using the range defined by the second Ct threshold and the first Ct threshold, it is possible to effectively determine whether the nucleic acid in the container is derived from a single cell by determining whether the Ct value falls within the range. The efficiency of single cell nucleic acid analysis.
  • the determining unit 200 further includes: a fluorescence change curve determining module (not shown), wherein the fluorescence change curve determining module is configured to determine the container based on fluorescence change data of the container a fluorescence curve; and a second determining module (not shown), wherein the second determining module is provided with a predetermined curve, and the second determining module is connected to the fluorescence curve determining module for The fluorescence change curve of the container is compared with a predetermined curve to determine whether the real-time fluorescent quantitative PCR is effective, wherein the predetermined curve is obtained by performing real-time fluorescent quantitative PCR on a container containing a known predetermined amount of nucleic acid, and The fluorescence profile of the container parallel to the predetermined curve indicates that the real-time PCR is effective.
  • the determining unit further includes: a melting curve determining module, wherein the melting curve determining module is configured to determine a melting curve of the container based on fluorescence change data of the container; and removing a module
  • the de-doping module is connected to the melting curve determining module, and is configured to exclude the unqualified container based on the melting curve of the container, wherein only the primer dimer peak is present in the melting curve of the unqualified container, or the primer is present The dimer peak is abnormal.
  • the invention provides a method of obtaining a single cell nucleic acid.
  • a method of obtaining a single cell nucleic acid comprising: providing a cell suspension comprising 2 to 5 cells/ ⁇ l; adding 50 nanoliters of the cell suspension to a container; adding cell lysis to the container a solution for lysing cells in said container and releasing mRNA in said cells; adding a reverse transcription reagent to said container for reverse transcription of said mRNA to obtain cDNA; and according to the foregoing
  • more than 500 containers can be analyzed simultaneously, and thus more than 500 single cells can be analyzed simultaneously, and the volume of the treated object requires only 200 nanoliters, which significantly reduces single cell nucleic acid analysis such as single cell nucleic acid sequencing. Cost, for example, can be reduced to one tenth of the current cost.
  • the container after determining whether the cDNA contained in the container is derived from a single cell, further comprising obtaining a real-time fluorescent quantitative PCR product using a capillary.
  • the invention provides a method of constructing a single cell nucleic acid sequencing library.
  • the method comprises: obtaining a single cell nucleic acid according to the method described above; and constructing a nucleic acid sequencing library for the single cell nucleic acid.
  • the method of constructing the nucleic acid library is not particularly limited, and the corresponding sequencing library construction strategy can be selected according to the sequencing platform to be used for subsequent sequencing.
  • the nucleic acid sequencing library can be constructed based on at least one selected from the group consisting of HISEQ2000, SOLID, 454 and a single molecule sequencing platform. Specifically, for example, when a nucleic acid sequencing library of interest is to be used in the HISEQ2000 sequencing platform, the nucleic acid sequencing library can be constructed according to the library construction protocol of the HISEQ2000 sequencer.
  • the invention provides a system for constructing a single cell nucleic acid sequencing library.
  • the system 10000 comprises: the apparatus 1000 for determining whether a nucleic acid in a container is derived from a single cell, as described above; and a library construction device 2000 for constructing the single cell nucleic acid Nucleic acid sequencing library.
  • the type of library construction apparatus 2000 is not particularly conspicuous, and a corresponding selection can be made according to a sequencing platform to be employed later.
  • library construction device 2000 is adapted to at least one selected from the group consisting of HISEQ2000, SOLID, 454 and a single molecule sequencing platform, ie capable of constructing at least one selected from the group consisting of HISEQ2000, SOLID, 454 and single molecule sequencing platforms.
  • a nucleic acid sequencing library is adapted to construct the nucleic acid sequencing library according to the library construction protocol of the HISEQ2000 sequencer.
  • the invention proposes a method of determining the sequence of a single cell nucleic acid.
  • the method comprises: constructing a single-cell nucleic acid sequencing library according to the method described above; and sequencing the single-cell nucleic acid sequencing library to obtain a sequencing result, determining the sequence of the single-cell nucleic acid .
  • the result of the real-time fluorescent quantitative PCR is positively correlated with the number of nucleic acids in the container, by analyzing the results of the real-time fluorescent quantitative PCR, it is possible to effectively determine whether the nucleic acid in the container is derived from a single cell.
  • the present invention it is possible to quickly determine in situ whether a nucleic acid in a container is derived from a single cell. Further, it is possible to simultaneously analyze the source of the nucleic acid in the plurality of containers, further reducing the volume of the nucleic acid suspension in the container, thereby significantly reducing the cost of the single cell nucleic acid analysis. According to an embodiment of the present invention, more than 500 containers can be analyzed simultaneously, and thus more than 500 single cells can be analyzed simultaneously, and the volume of the treated object requires only 200 nanoliters, which significantly reduces single cell nucleic acid analysis such as single cell nucleic acid sequencing. Cost, for example, can be reduced to one tenth of the current cost.
  • the method can perform the sequencing using at least one selected from the group consisting of HISEQ2000, SOLID, 454 and a single molecule sequencing platform.
  • This example uses a commercial micro-dispensing platform (SmartChipTM Multi Sample NanoDispenser (MS D), Wafergen Biosystems) for loading, using microchip (Smartchip 200nL, Wafergen) as a container, and a real-time PCR instrument (SmartChipTM Real-Time).
  • PCR Cycler Wafergen Biosystems assisted monitoring of single cell nucleic acid treatment of Hela S3 cells. details as follows:
  • the cells were digested with the trypsin-like cells and collagenase, and the digested cells were taken 1 mL, and packed with 1.5 mL EP tube.
  • step 1.1 Centrifuge the cells in step 1.1 at 100 rpm for 5 min and resuspend in 1 XPBS and repeat.
  • step 1.3 Filter the step 1.2 cell solution with a 40 or 70 ⁇ cell strainer to remove cell pellets.
  • solution 1 Mix Percoll stock solution (PHARMACIA, Cat. No. 17-0891-01) with 10 XPBS in a volume ratio of 9:1 to form an isotonic solution of cells, named solution 1.
  • a certain amount of solution 1 is taken up and mixed with the cell solution of step 1.3 at a volume ratio of 1:4 to form a new cell suspension.
  • step 1.5 Adjust the cell density of the newly configured cell suspension in step 1.4 to 2 ⁇ 4 L, and complete the cell sample preparation, which is called sample 1.
  • the cell count was performed after the initial counting of the cells, and the cells were subjected to a gradient dilution, and the cell density was determined by microscopically counting 5 to 10 ⁇ L of the cell suspension three times.
  • Control 1 The solution 1 and 1 XPBS were combined into a negative control solution at a volume ratio of 1:4, referred to as Control 1; total RNA at a concentration of 0.2 ng L was prepared as a positive control, referred to as Control 2.
  • Control 2 Single cell mRNA processing
  • lysate in the clean bench treated in step 2.2 prepare 750 ⁇ cell lysate with nuclease-free water, Oligo-dT Primer, dNTP, RNase inhibitor and Triton X-100, and divide the lysate according to actual needs. Installed in the corresponding position of the 384-well plate (for example, 36 holes, 20 ⁇ per well), sealed with a membrane, centrifuged at 2600 rcf, 12 ° C for 5 min, debubbed, and placed in the MS D platform. position.
  • sample 1 and control 2 prepared in 1.6, gently mix them upside down, and place them in a new 384-well plate in a clean bench.
  • Sample 1 is packed in 34 wells.
  • control 2 were separately dispensed in one well, 20 ⁇ per well.
  • the hole position corresponds to the 36 hole positions mentioned in step 2.3.
  • RT Mix reverse transcription mix
  • each hole is 20 ⁇ .
  • Seal with a membrane centrifuge at 2600 rcf, 12 °C for 5 min, place it in the designated position on the MSND platform, tear the membrane apart, and start the loading procedure (36sample* 144assay).
  • the liquid which may be present on the chip is sucked off with a filter paper and centrifuged at 2600 rcf, 12 ° C for 5 min, and transferred to a fluorescence quantitative PCR machine for PCR reaction and dissolution curve measurement.
  • the target single cell hole position is determined and recorded in comparison with the control 2 sample and combined with the cell density distribution.
  • the lng product was constructed using the Nextera XT sample Prep Kit or 5 ng product using the TruePrep Mini DNA Sample Prep Kit.
  • the library was tested by Agilent 2100 Bioanalyzer and Real-Time PCR Cycler (Wafergen Biosystems) to check whether the fragment distribution and concentration met the sequencing standard. After the quality control was passed, the library was quantified. After sequencing on the Hiseq 2000.
  • the sequenced data can be used for analysis of single-cell RNA expression, analysis of cellular heterogeneity, and analysis of RNA editing.
  • the data obtained in this embodiment has better quality. As shown in FIG. 7 and FIG. 8, the fluctuation of bases in different positions is relatively small and the data quality of more than 90% is greater than 30, which provides a good analysis for later information analysis. basis.
  • sequencing data analysis showed that the results were consistent with the data of the conventional process (ie, the process of manually picking a single cell and reacting in a PCR tube) in the coverage of the gene (as shown in Figure 9) and the bias of the data (eg Figure 10) is basically the same. It is explained that the reaction performed by the present embodiment is consistent with the conventional flow in the data distribution and does not introduce other factors affecting the reaction. Moreover, the information obtained in this embodiment covers 11 housekeeping genes, indicating that the information is relatively complete.
  • the cell density is 2 ⁇ 4/ ⁇
  • about 470-850 of the 5184 wells in the chip contain only a single cell, and the other wells are empty or 2 or more cells.
  • This example uses a combination of the SYBR dye method and a standard control comparison method to distinguish which wells are required cell-containing wells and to exclude wells that are distinctly multiple cells.
  • the three main parameters used to select the target well are the change in fluorescence within the pore, the CT value and the dissolution curve.
  • Smartchip cycling is a qPCR instrument that matches the chip in this process.
  • SYBR Green I binds specifically to double-stranded DNA and quantifies DNA content. In this process, SYBR Green I is used to label DNA, and Smartchip cycling detects fluorescence changes in the pores of the chip.
  • the fluorescence curve can be used to display the cDNA amplification status in the pores of the chip, that is, the qPCR reaction.
  • the control 2 sample was 0.2 ng ⁇ L, and distributed in 144 micropores in an amount of 50 nL per well, that is, the average RNA content in each well was 10 pg, which was equivalent to the RNA content in one cell.
  • the CT value can be used to characterize the initial amount of the template, that is, the smaller the CT value, the larger the starting amount, so the average CT value of hundreds of reactions in the control 2 sample can be
  • the dissolution curve is used to eliminate the unqualified sample with a relatively large primer dimer. If the product is a primer or a primer, the peak of the dissolution temperature in the dissolution curve appears. Before 80 ° C, as shown in Figure 5.
  • the ratio of single cells and multiple cells in the chip can be calculated.
  • the multicellular wells account for 1.75% of all cell suspension sample wells, ie The smallest 1.75% of the CT value is a multi-cell well. According to the strictness of the single cell requirement of the experiment, a certain proportion of CT can be removed, that is, the multi-cell pore position.
  • the CT value and the dissolution curve determine the target pore position, and then the sample in the target well is extracted into the EP tube with 6 ⁇ dd 3 ⁇ 40 in the glass capillary. After mixing, 1 of them is quantified by Qbuit or 2100, and the remaining labeled concentration can be used for later library preparation.
  • the 2100 test chart is shown in Figure 6. The fragment is mainly concentrated between 500bp and 2k, and there is a peak between 1.5-2k, which meets the requirements in the routine process to determine whether the sample is complete.
  • the cell supernatant means that the supernatant solution contains substantially no cells after centrifugation of the cell suspension, and some free RNA may be present. It can be seen from Fig. 5 that the fluorescence change curve of the control 1 (negative control) and the cell supernatant under 22 rounds of amplification is significantly different from the initial fluorescence curve of other RNA samples.
  • the fluorescence curve of the pores inside the cell suspension can be divided into two types, one similar to the cell supernatant, and one similar to the sample with RNA as shown in the target pore curve of Fig. 5.
  • the method and apparatus for determining whether a nucleic acid in a container is derived from a single cell can realize rapid determination of whether a nucleic acid in a container is derived from a single cell in situ, and further, can simultaneously analyze a nucleic acid source in a plurality of containers, further Reducing the volume of the nucleic acid suspension in the container can significantly reduce the cost of single cell nucleic acid analysis.

Abstract

提供了确定容器中核酸是否来源于单个细胞的方法及其装置和用途。其中,确定容器中核酸是否来源于单个细胞的方法包括:(1)在含有核酸的容器中添加荧光标记,并进行实时荧光定量PCR,以便获得所述容器的荧光变化数据;以及(2)基于所述容器的荧光变化数据,确定所述容器中所包含的核酸是否来源于单个细胞。

Description

确定容器中核酸是否来源于单个细胞的方法
及其装置和用途
优先权信息
无 技术领域
本发明涉及生物技术领域, 具体而言, 涉及确定容器中核酸是否来源于单个细胞的 方法及其装置和用途, 更具体的, 本发明涉及确定容器中核酸是否来源于单个细胞的方法、 确定容器中核酸是否来源于单个细胞的装置、 获取单细胞核酸的方法、 构建单细胞核酸测 序文库的方法、 构建单细胞核酸测序文库的系统以及确定单细胞核酸的序列的方法。 背景技术
生物功能或者疾病的研究需要数以千计的单细胞的信息的累积和分析。 然而, 目前大 量单细胞的测序成本非常高, 尤其是样品的前期处理成本一直无法有效降低。
为了降低样品处理费用, 减小样品反应体积成为目前采取的主要方法之一, 例如, 微 流控芯片技术。
Fluidigm的 C1平台就是利用微流控芯片和微阀控制自动获取 96个单细胞, 并在芯片 上完成细胞裂解, 反转录及 PCR的过程, 获得扩增好的 cDNA,其反应体积为百纳升级, 大 大的降低了试剂消耗成本, 但其成本仍要 20美金 /细胞。
因此, 单细胞的处理手段仍有待改进。 发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。
在本发明的第一方面, 本发明提出了一种确定容器中核酸是否来源于单个细胞的方法。 根据本发明的实施例, 该方法包括: (1 ) 在含有核酸的容器中添加荧光标记, 并进行实时 荧光定量 PCR, 以便获得所述容器的荧光变化数据; 以及 (2)基于所述容器的荧光变化数 据, 确定所述容器中所包含的核酸是否来源于单个细胞。 由于实时荧光定量 PCR的结果是 与容器中的核酸数目呈正相关的, 因此, 通过对实时荧光定量 PCR的结果进行分析, 能够 有效地确定容器中的核酸是否是来源于单个细胞。 由此, 根据本发明的实施例, 能够实现 快速地原位确定容器中的核酸是否来源于单个细胞。 进而, 可以实现同时分析多个容器中 的核酸来源, 进一步降低容器中核酸悬浮液的体积, 从而可以显著降低单细胞核酸分析的 成本。 根据本发明的实施例, 可以同时分析超过 500 个容器, 进而可以同时分析超过 500 个单细胞, 并且处理对象的体积只需要 200 纳升, 显著地降低了单细胞核酸分析例如单细 胞核酸测序的成本, 例如可以降低至目前成本的十分之一。
根据本发明的实施例, 上述确定容器中核酸是否来源于单个细胞的方法还可以具有下 列附加技术特征:
根据本发明的实施例,所述荧光标记为 SYBR GreenI。 由此可以进一步提高实时荧光定 量 PCR的效率, 提高确定容器中核酸是否来源于单个细胞的效率, 进而提高单细胞核酸分 析的效率。
根据本发明的实施例, 所述核酸为 cDNA。本发明的发明人发现, 本发明的确定容器中 核酸是否来源于单个细胞的方法能够有效地应用于对 cDNA的分析。
根据本发明具体的实施例, 所述核酸是通过下列步骤获得的: 提供细胞悬浮液, 所述 细胞悬浮液含有 2~5个细胞 /微升; 在容器中添加 50纳升所述细胞悬浮液; 在所述容器中添 加细胞裂解液, 以便裂解所述容器中的细胞, 并释放所述细胞中的 mRNA; 以及在所述容 器中添加反转录试剂, 以便对所述 mRNA进行反转录, 获得 cDNA。 由此, 本发明确定容 器中核酸是否来源于单个细胞的方法能够有效地对 mRNA进行分析, 另外, 发明人发现, 当细胞悬浮液的细胞含量为含有 2~5个细胞 /微升时, 50纳升体积的悬浮液中仅存在一个细 胞的概率非常大, 可以达到 90%以上, 例如当细胞含量不超过 4个细胞 /微升时, 该概率超 过 98%。 由此, 可以进一步提高容器中核酸来源于单细胞的概率。
根据本发明的实施例,所述容器为多孔板中的至少一个,优选所述多孔板为 5124孔板。 由此, 根据本发明的实施例, 可以实现同时对多孔板中的多个孔 (即将每个孔看作一个容 器) 进行分析, 由此, 显著地降低了分析成本, 提高了分析通量。
根据本发明的实施例, 在步骤 (2) 中进一步包括: (2-1 ) 基于所述容器的荧光变化数 据, 建立扩增曲线, 并且基于所述扩增曲线, 确定所述容器的 Ct值; 以及 (2-2)将所述容 器的 α值与预定的第一 α阈值进行比较, 其中, 所述容器的 α值高于所述预定的第一 α 阈值是所述容器中所包含的核酸来源于单个细胞的指示。 由此, 可以进一步提高确定容器 中核酸是否来源于单个细胞的效率, 提高单细胞核酸分析的效率。
根据本发明的实施例, 所述预定的第一 ct 阈值是通过对对照容器进行实时荧光定量
PCR而确定的, 其中, 所述对照容器含有已知量的核酸, 优选地, 所述对照容器含有 lOpg 核酸。 由此, 可以进一步提高确定容器中核酸是否来源于单个细胞的效率, 提高单细胞核 酸分析的效率。
根据本发明的实施例, 所述预定的第一 Ct阈值是通过下列步骤确定的: (a) 对多个所 述对照容器进行实时荧光定量 PCR, 以便确定各所述对照容器的 Ct值; 以及 (b) 确定这 样一个数值作为所述预定的第一 Ct阈值,其中,全部所述多个对照容器的 Ct值中至少 1.75% 小于所述数值。 发明人发现, 通过这些步骤获得的第一 Ct阈值能够有效地用于判断是否容 器中核酸是否来源于单个细胞的效率, 提高单细胞核酸分析的效率。
根据本发明的实施例, 所述预定的第一 Ct阈值是通过下列公式确定的: 预定的第一 Ct 阈值 = (平均 Ct值 -a)其中, 所述平均 Ct值是所述多个对照容器的 Ct值中至少一部分的平 均值, a是在 0.1 1之间的常数, 优选 a=0.5。 发明人发现, 通过这些步骤获得的第一 Ct阈 值能够有效地用于判断是否容器中核酸是否来源于单个细胞的效率, 提高单细胞核酸分析 的效率。 根据本发明的实施例, 在步骤 (2-2) 中, 所述容器的 Ct值高于所述预定的第一 α阈 值但小于预定的第二 Ct阈值是所述容器中所包含的核酸来源于单个细胞的指示, 其中, 所 述预定的第二 Ct阈值是通过下列公式确定的:预定的第二 Ct阈值 =预定的第一 Ct阈值 +2a, a是在 0.1~1之间的常数, 优选 a=0.5。 发明人发现, 通过这些步骤获得的第二 Ct阈值结合 第一 Ct阈值能够有效地用于判断是否容器中核酸是否来源于单个细胞的效率, 提高单细胞 核酸分析的效率。
根据本发明的实施例, 所述预定的第一 Ct 阈值为 12.78, 所述预定的第二 Ct 阈值为 13.78。 发明人发现, 利用由该第二 Ct阈值与第一 Ct阈值限定出的范围, 能够有效地通过 判断 Ct值是否落入该范围内, 来判断是否容器中核酸是否来源于单个细胞的效率, 提高了 单细胞核酸分析的效率。
根据本发明的实施例, 进一步包括: (3-1 )基于所述容器的荧光变化数据, 确定所述容 器的荧光变化曲线; (3-2)将所述容器的荧光变化曲线与预定曲线进行比较, 以便确定所述 实时荧光定量 PCR是否有效, 其中, 所述预定曲线是通过对含有已知预定量核酸的容器进 行实时荧光定量 PCR而获得的, 并且所述容器的荧光变化曲线与所述预定曲线平行表示所 述实时荧光定量 PCR是有效的。 根据本发明的实施例, 进一步包括: (4-1 ) 基于所述容器 的荧光变化数据, 确定所述容器的熔解曲线; 以及 (4-2) 基于所述容器的熔解曲线, 排除 不合格容器, 其中, 所述不合格容器的熔解曲线中仅有引物二聚体峰, 或者存在引物二聚 体峰异常。 由此, 根据本发明的实施例, 可以有效地排除容器内存在异常的容器, 从而可 以有效地改善后续分析核酸的结果。
在本发明的第二方面, 本发明提出了一种确定容器中核酸是否来源于单个细胞的装置。 根据本发明的实施例, 该装置包括: 实时荧光定量 PCR单元, 所述实时荧光定量 PCR单元 用于在含有核酸的容器中添加荧光标记后, 进行实时荧光定量 PCR, 以便获得所述容器的 荧光变化数据; 以及判断单元, 所述判断单元与所述实时荧光定量 PCR单元相连, 用于基 于所述容器的荧光变化数据, 确定所述容器中所包含的核酸是否来源于单个细胞。 利用该 装置, 能够有效地分析容器中核酸是否来源于单个细胞。 由于实时荧光定量 PCR的结果是 与容器中的核酸数目呈正相关的, 因此, 通过对实时荧光定量 PCR的结果进行分析, 能够 有效地确定容器中的核酸是否是来源于单个细胞。 由此, 根据本发明的实施例, 能够实现 快速地原位确定容器中的核酸是否来源于单个细胞。 进而, 可以实现同时分析多个容器中 的核酸来源, 进一步降低容器中核酸悬浮液的体积, 从而可以显著降低单细胞核酸分析的 成本。 根据本发明的实施例, 可以同时分析超过 500 个容器, 进而可以同时分析超过 500 个单细胞, 并且处理对象的体积只需要 200 纳升, 显著地降低了单细胞核酸分析例如单细 胞核酸测序的成本, 例如可以降低至目前成本的十分之一。
根据本发明的实施例, 确定容器中核酸是否来源于单个细胞的装置还可以具有下列附 加技术特征:
根据本发明的实施例,所述荧光标记为 SYBR GreenL 由此可以进一步提高实时荧光定 量 PCR的效率, 提高确定容器中核酸是否来源于单个细胞的效率, 提高单细胞核酸分析的 效率。
根据本发明的实施例, 所述核酸为 cDNA。本发明的发明人发现, 本发明的确定容器中 核酸是否来源于单个细胞的方法能够有效地应用于对 cDNA的分析。
根据本发明的实施例, 进一步包括核酸制备单元, 所述核酸制备单元与所述实时荧光 定量 PCR单元相连, 用于通过下列步骤制备获得所述核酸: 提供细胞悬浮液, 所述细胞悬 浮液含有 2~5个细胞 /微升; 在容器中添加 50纳升所述细胞悬浮液; 在所述容器中添加细胞 裂解液, 以便裂解所述容器中的细胞, 并释放所述细胞中的 mRNA; 以及在所述容器中添 加反转录试剂, 以便对所述 mRNA进行反转录, 获得 cDNA。 由此, 本发明确定容器中核 酸是否来源于单个细胞的方法能够有效地对 mRNA进行分析, 另外, 发明人发现, 当细胞 悬浮液的细胞含量为含有 2~5个细胞 /微升时, 50纳升体积的悬浮液中仅存在一个细胞的概 率非常大, 可以达到 90%以上, 例如当细胞含量不超过 4个细胞 /微升时, 超过 98%。 由此, 可以进一步提高容器中核酸来源于单细胞的概率。
根据本发明的实施例,所述容器为多孔板中的至少一个,优选所述多孔板为 5124孔板。 由此, 根据本发明的实施例, 可以实现同时对多孔板中的多个容器进行分析, 由此, 显著 地降低了分析成本, 提高了分析通量。
根据本发明的实施例, 所述判断单元进一步包括: ct值确定模块, 所述 α值确定模块 用于基于所述容器的荧光变化数据, 建立扩增曲线, 并且基于所述扩增曲线, 确定所述容 器的 α值; 以及第一判断模块, 所述第一判断模块中设置有预定的第一 ct阈值, 所述第一 判断模块与所述 α值确定模块相连, 用于将所述容器的 α值与预定的第一 α阈值进行比 较,其中,所述容器的 α值高于所述预定的第一 α阈值是所述容器中所包含的核酸来源于 单个细胞的指示。 由此, 可以进一步提高确定容器中核酸是否来源于单个细胞的效率, 提 高单细胞核酸分析的效率。
根据本发明的实施例, 所述预定的第一 ct 阈值是通过对对照容器进行实时荧光定量
PCR而确定的, 其中, 所述对照容器含有已知量的核酸, 优选地, 所述对照容器含有 lOpg 核酸。 由此, 可以进一步提高确定容器中核酸是否来源于单个细胞的效率, 提高单细胞核 酸分析的效率。
根据本发明的实施例, 所述预定的第一 Ct阈值是通过下列步骤确定的: (a) 对多个所 述对照容器进行实时荧光定量 PCR, 以便确定各所述对照容器的 Ct值; 以及 (b) 确定这 样一个数值作为所述预定的第一 Ct阈值,其中,全部所述多个对照容器的 Ct值中至少 1.75% 小于所述数值。 发明人发现, 通过这些步骤获得的第一 Ct阈值能够有效地用于判断是否容 器中核酸是否来源于单个细胞的效率, 提高单细胞核酸分析的效率。
根据本发明的实施例, 所述预定的第一 Ct阈值是通过下列公式确定的: 预定的第一 Ct 阈值 = (平均 Ct值 -a)其中, 所述平均 Ct值是所述多个对照容器的 Ct值中至少一部分的平 均值, a是在 0.1 1之间的常数, 优选 a=0.5。 发明人发现, 通过这些步骤获得的第一 Ct阈 值能够有效地用于判断是否容器中核酸是否来源于单个细胞的效率, 提高单细胞核酸分析 的效率。 根据本发明的实施例,所述容器的 ct值高于所述预定的第一 α阈值但小于预定的第二 ct阈值是所述容器中所包含的核酸来源于单个细胞的指示, 其中, 所述预定的第二 α阈值 是通过下列公式确定的: 预定的第二 Ct阈值 =预定的第一 Ct阈值 +2a, a是在 0.1 1之间的 常数, 优选 a=0.5。 发明人发现, 通过这些步骤获得的第二 Ct阈值结合第一 Ct阈值能够有 效地用于判断是否容器中核酸是否来源于单个细胞的效率, 提高单细胞核酸分析的效率。
根据本发明的实施例, 所述预定的第一 Ct 阈值为 12.78, 所述预定的第二 Ct 阈值为 13.78。 发明人发现, 利用由该第二 Ct阈值与第一 Ct阈值限定出的范围, 能够有效地通过 判断 Ct值是否落入该范围内, 来判断是否容器中核酸是否来源于单个细胞的效率, 提高了 单细胞核酸分析的效率。
根据本发明的实施例, 所述判断单元进一步包括: 荧光变化曲线确定模块, 所述荧光 变化曲线确定模块用于基于所述容器的荧光变化数据, 确定所述容器的荧光变化曲线; 以 及第二判断模块, 所述第二判断模块中设置有预定曲线, 所述第二判断模块与所述荧光变 化曲线确定模块相连, 用于将所述容器的荧光变化曲线与预定曲线进行比较, 以便确定所 述实时荧光定量 PCR是否有效, 其中, 所述预定曲线是通过对含有已知预定量核酸的容器 进行实时荧光定量 PCR而获得的, 并且所述容器的荧光变化曲线与所述预定曲线平行表示 所述实时荧光定量 PCR是有效的。 根据本发明的实施例, 所述判断单元进一步包括: 熔解 曲线确定模块, 所述熔解曲线确定模块用于基于所述容器的荧光变化数据, 确定所述容器 的熔解曲线; 以及去杂模块, 所述去杂模块与所述熔解曲线确定模块相连, 用于基于所述 容器的熔解曲线, 排除不合格容器, 其中, 所述不合格容器的熔解曲线中仅有引物二聚体 峰, 或者存在引物二聚体峰异常。
在本发明的第三方面, 本发明提出了一种获取单细胞核酸的方法。 根据本发明的实施 例, 包括: 提供细胞悬浮液, 所述细胞悬浮液含有 2~5个细胞 /微升; 在容器中添加 50纳升 所述细胞悬浮液; 在所述容器中添加细胞裂解液, 以便裂解所述容器中的细胞, 并释放所 述细胞中的 mRNA; 在所述容器中添加反转录试剂, 以便对所述 mRNA进行反转录, 获得 cDNA; 以及根据前面所述的方法, 确定所述容器中所包含的 cDNA是否来源于单个细胞。 正如前面所述, 由于实时荧光定量 PCR的结果是与容器中的核酸数目呈正相关的, 因此, 通过对实时荧光定量 PCR的结果进行分析, 能够有效地确定容器中的核酸是否是来源于单 个细胞。 由此, 根据本发明的实施例, 能够实现快速地原位确定容器中的核酸是否来源于 单个细胞。 进而, 可以实现同时分析多个容器中的核酸来源, 进一步降低容器中核酸悬浮 液的体积, 从而可以显著降低单细胞核酸分析的成本。 根据本发明的实施例, 可以同时分 析超过 500个容器, 进而可以同时分析超过 500个单细胞, 并且处理对象的体积只需要 200 纳升, 显著地降低了单细胞核酸分析例如单细胞核酸测序的成本, 例如可以降低至目前成 本的十分之一。
根据本发明的实施例, 在确定所述容器中所包含的 cDNA是否来源于单个细胞之后, 进一步包括, 利用毛细管获取实时荧光定量 PCR产物。
在本发明的第四方面, 本发明提出了一种构建单细胞核酸测序文库的方法。 根据本发 明的实施例, 该方法包括: 根据前面所述的方法获取单细胞核酸; 以及针对所述单细胞核 酸, 构建核酸测序文库。 正如前面所述, 由于实时荧光定量 PCR的结果是与容器中的核酸 数目呈正相关的, 因此, 通过对实时荧光定量 PCR的结果进行分析, 能够有效地确定容器 中的核酸是否是来源于单个细胞。 由此, 根据本发明的实施例, 能够实现快速地原位确定 容器中的核酸是否来源于单个细胞。 进而, 可以实现同时分析多个容器中的核酸来源, 进 一步降低容器中核酸悬浮液的体积, 从而可以显著降低单细胞核酸分析的成本。 根据本发 明的实施例, 可以同时分析超过 500个容器, 进而可以同时分析超过 500个单细胞, 并且 处理对象的体积只需要 200 纳升, 显著地降低了单细胞核酸分析例如单细胞核酸测序的成 本, 例如可以降低至目前成本的十分之一。
根据本发明的实施例, 可以基于选自 HISEQ2000、 SOLID, 454和单分子测序平台的至 少一种构建所述核酸测序文库。
在本发明的第五方面, 本发明提出了一种构建单细胞核酸测序文库的系统。 根据本发 明的实施例, 该系统包括: 前面所述的确定容器中核酸是否来源于单个细胞的装置; 以及 文库构建装置, 所述文库构建装置用于针对所述单细胞核酸, 构建核酸测序文库。
在本发明的第六方面, 本发明提出了一种确定单细胞核酸的序列的方法。 根据本发明 的实施例, 该方法包括: 根据前面所述的方法, 构建单细胞核酸测序文库; 以及 对所述单 细胞核酸测序文库进行测序, 以便获得测序结果, 确定所述单细胞核酸的序列。 正如前面 所述, 由于实时荧光定量 PCR的结果是与容器中的核酸数目呈正相关的, 因此, 通过对实 时荧光定量 PCR的结果进行分析, 能够有效地确定容器中的核酸是否是来源于单个细胞。 由此, 根据本发明的实施例, 能够实现快速地原位确定容器中的核酸是否来源于单个细胞。 进而, 可以实现同时分析多个容器中的核酸来源, 进一步降低容器中核酸悬浮液的体积, 从而可以显著降低单细胞核酸分析的成本。 根据本发明的实施例, 可以同时分析超过 500 个容器, 进而可以同时分析超过 500个单细胞, 并且处理对象的体积只需要 200纳升, 显 著地降低了单细胞核酸分析例如单细胞核酸测序的成本, 例如可以降低至目前成本的十分 之一。
根据本发明的实施例, 该方法可以利用选自 HISEQ2000、 SOLID, 454和单分子测序平 台的至少一种进行所述测序。
本发明的附加方面和优点将在下面的描述中部分给出, 部分将从下面的描述中变得明 显, 或通过本发明的实践了解到。 附图说明
本发明的上述和 /或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和 容易理解, 其中:
图 1 显示了根据本发明一个实施例的确定容器中核酸是否来源于单个细胞的方法的流 程示意图。
图 2 显示了根据本发明一个实施例的确定容器中核酸是否来源于单个细胞的方法的流 程示意图。
图 3 显示了根据本发明一个实施例的确定容器中核酸是否来源于单个细胞的装置的结 构程示意图。
图 4显示了根据本发明一个实施例的构建单细胞核酸测序文库的系统的结构程示意图。 图 5显示了根据本发明一个实施例, 不同起始量下的荧光曲线、 熔解曲线图。
图 6显示了根据本发明一个实施例, 样品孔产物的 Agilent 2100检测结果。
图 7和图 8显示了根据本发明一个实施例, 文库测序数据质量检测结果图。
图 9 显示了根据本发明一个实施例, 文库测序数据的基因覆盖情况与常规流程的检测 结果比较图。
图 10显示了根据本发明一个实施例, 文库测序数据的基因组不同碱基位置上的覆盖情 况分析图。 发明详细描述
下面详细描述本发明的实施例, 所述实施例的示例在附图中示出, 其中自始至终相同 或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。 下面通过参考附图描 述的实施例是示例性的, 仅用于解释本发明, 而不能理解为对本发明的限制。
需要说明的是, 术语 "第一"、 "第二"仅用于描述目的, 而不能理解为指示或暗示相 对重要性或者隐含指明所指示的技术特征的数量。 由此, 限定有 "第一"、 "第二" 的特征 可以明示或者隐含地包括一个或者更多个该特征。 进一步地, 在本发明的描述中, 除非另 有说明, "多个" 的含义是两个或两个以上。
确定容器中核酸是否来源于单个细胞的方法
在本发明的第一方面, 本发明提出了一种确定容器中核酸是否来源于单个细胞的方法。 参考图 1, 根据本发明的实施例, 该方法包括:
S100: 实时荧光定量 PCR
在该步骤中, 在含有核酸的容器中添加荧光标记, 并进行实时荧光定量 PCR, 以便获 得所述容器的荧光变化数据。
S200: 确定核酸是否来源于单细胞
基于所述容器的荧光变化数据, 确定所述容器中所包含的核酸是否来源于单个细胞。 由于实时荧光定量 PCR的结果是与容器中的核酸数目呈正相关的, 因此, 通过对实时荧光 定量 PCR的结果进行分析, 能够有效地确定容器中的核酸是否是来源于单个细胞。 由此, 根据本发明的实施例, 能够实现快速地原位确定容器中的核酸是否来源于单个细胞。 进而, 可以实现同时分析多个容器中的核酸来源, 进一步降低容器中核酸悬浮液的体积, 从而可 以显著降低单细胞核酸分析的成本。 根据本发明的实施例, 可以同时分析超过 500个容器, 进而可以同时分析超过 500个单细胞, 并且处理对象的体积只需要 200纳升, 显著地降低 了单细胞核酸分析例如单细胞核酸测序的成本, 例如可以降低至目前成本的十分之一。
根据本发明的实施例, 可以应用于本发明的荧光标记的类型并不受特别限制, 只要能 够与核酸发生非特异性结合, 并且能够有效地实施实时荧光定量 PCR即可。 根据本发明的 实施例, 在本发明中所采用的荧光标记为 SYBR GreenI。发明人发现, 利用该荧光标记能够 有效地针对微量的核酸, 例如来自于单细胞的核酸进行实时荧光定量 PCR。 由此可以进一 步提高实时荧光定量 PCR的效率, 提高确定容器中核酸是否来源于单个细胞的效率, 提高 单细胞核酸分析的效率。
根据本发明的实施例, 在本发明中, 可以应用根据本发明实施例的方法来进行核酸来 源判断的核酸类型并不受特别限制。 即可以是 DNA也可以是 RNA, 只要能够有效地进行 实时荧光定量 PCR即可。 根据本发明的实施例, 所述核酸为 cDNA。 本发明的发明人发现, 本发明的确定容器中核酸是否来源于单个细胞的方法能够有效地应用于对 cDNA的分析。 并且由于 cDNA通常具有相同的核酸序列, 例如 polyT序列, 因此能够非常方便地实施荧 光定量 PCR, 从而提高确定核酸是否来源于单个细胞的方法。
参考图 2, 根据本发明具体的实施例, 核酸是通过下列步骤获得的:
S110: 提供并分配细胞悬浮液
在该步骤中, 首先准备细胞悬浮液, 并且该细胞悬浮液含有 2~5个细胞 /微升, 之后, 将所准备的细胞悬浮液添加至有待进行分析的容器中, 根据本发明的具体实例, 在容器中 添加 50纳升细胞悬浮液。
本发明的发明人惊奇地发现, 当细胞在液体中均匀分布, 将其分成微小体积, 则每份 微小体积中含有的细胞的个数符合泊松分布。泊松分布的概率质量函数为: P(X=k) = e-V/k!, 其中 k代表细胞个数, λ代表每份小体积包含的细胞数目的期望, Ρ为微小体积中包含的细 胞个数为 k时的概率。 根据本发明的实施例, 当所分配的细胞悬浮液为 50nL时, 如果细胞 密度为 1~5个细胞 /微升,优选 2~4个细胞 /微升时, 98%以上的微孔中细胞数是不多于 1个。 需要说明的是, 当细胞密度为 4个 /微升时, 由于在细胞进行分离时, 每孔的细胞悬浮液的 体积是 50nL,所以平均每个孔含有细胞的个数为 4/ ( 1000nL/50nL) =4/20=0. 2个,即 λ =0.2。 细胞数是不多于 1个, 表示细胞数为 0和 1时的概率和。 进而,
该概率 =P(0)+P(l)=e- 2(0.2)0/0!+e-0.2(0.2)Vl= e"0'2+e"0'2(0.2)= 0.81873075307798
* 1.2=0.982476903693576 >98%。
另夕卜, 根据本发明的实施例, 配置细胞悬浮液优选采用将 Percoll原液与 10X PBS按照 体积比 9: 1的比例所得到的等渗溶液进行配置细胞悬浮液。 这是因为, Percoll原液是低渗 溶液, 如果直接用于悬浮细胞会导致细胞直接破裂, 因此需要与 10X PBS按照体积比 9: 1 的比例所得到的等渗溶液, 才可用于悬浮细胞。 并且, 发明人惊奇地发现该等渗溶液的比 重适当, 能够保证进行分散时细胞是均匀分布的。
根据本发明的实施例, 利用等渗溶液配置细胞含量为 1~5个细胞 /微升的细胞悬浮液的 方法并不受特别限制。 根据本发明的具体实施例, 可以采用梯度稀释的方法。
根据本发明的具体实施例, 可以采用下列步骤进行:
步骤 1 : 根据样品的差异, 分别用胰酶对贴壁型细胞, 胶原酶对组织进行细胞消化, 将 已消化的细胞取 lmL, 并用 1.5mL EP管装好。 步骤 2: 将前面所得到的细胞在 1000 rpm条件下离心 5min, 并用 1 X PBS重悬浮, 重 复一次。
步骤 3 : 用 40/70 μιη的细胞滤网对步骤 2细胞溶液进行过滤以去除细胞团。
步骤 4: 将 Percoll原液 (PHARMACIA, 货号 17-0891-01 ) 与 10 X PBS按体积比 9: 1 混合成细胞的等渗溶液。 吸取一定量的等渗溶液与步骤 3 所得到的经过过滤的细胞溶液按 体积比 1 :4混合成新的细胞悬浮液。
步骤 5 : 按照梯度稀释 (例如 1 : 2或者 1 : 10) 将步骤 4中新配置的细胞悬浮液的细 胞密度调节至 1~5个细胞 /微升, 优选 2~4个细胞 /微升。
确定细胞密度的方法是本领域技术人员公知的, 例如可以采用显微镜对 5~10微升细胞 悬浮液进行 3次计数来确定细胞密度。
根据本发明的实施例, 进行悬浮液分配的方式并不受特别限制。 根据本发明的实施例, 可以采用商用的微量分液平台 ( SmartChipTM Multi Sample NanoDispenser(MS D), Wafergen Biosy stems) 进行加样, 以微孔芯片 (Smartchip 200nL,Wafergen) 为容器, 荧光定量 PCR仪 ( SmartChip™ Real-Time PCR Cycler, Wafergen Biosy stems) 辅助监测, 选用合适的细胞密 度, 配合优化的反应体积, 可一次完成 >500个单细胞的处理。
根据本发明的实施例, 容器为多孔板中的至少一个, 所述多孔板为 5124孔板。 由此, 根据本发明的实施例, 可以实现同时对多孔板中的多个容器进行分析, 由于本发明的方法 所处理的细胞样品的体积可以非常小, 因此, 可以采用 5124孔板进行高通量处理。 由此, 显著地降低了分析成本, 提高了分析通量。
S120: 裂解细胞
在将细胞悬浮液分配至相应的容器中后, 在容器中添加细胞裂解液, 以便裂解容器中 的细胞, 并释放细胞中的 mRNA。
根据本发明的实施例, 可以采用的细胞裂解液并不受特别限制, 只要能够裂解细胞同 时释放 mRNA即可。 根据本发明的具体实例, 以 4μί裂解液为例, 可以采用的裂解液的组 成如下表所示:
Figure imgf000010_0001
S130: 反转录 在完成对细胞裂解, 并将细胞内所含有的 mRNA释放之后, 可以向容器中添加反转录 试剂, 以便对所述 mRNA进行反转录, 获得 cDNA。
根据本发明的实施例, 通过上述操作, 可以原位直接进行反转录。 根据本发明的实施 例, 进行反转录的条件为: 42 °C 90min, (50 °C 2min, 42 °C 2min) 10个循环, 70 °C 15 min, 4°C保存。 由此,本发明确定容器中核酸是否来源于单个细胞的方法能够有效地对 mRNA进 行分析。
根据本发明的实施例, 可以用于判断核酸是否来源于单个细胞的实时荧光定量 PCR的 结果并不受特别限制, 只要能够反应荧光的变化即可。 根据本发明的实施例, 步骤 S200包 括:
首先, 基于容器的荧光变化数据, 建立扩增曲线, 并且基于扩增曲线, 确定容器的 Ct 值;
接下来, 将所述容器的 ct值与预定的第一 α阈值进行比较, 其中, 所述容器的 α值 高于所述预定的第一 α阈值是所述容器中所包含的核酸来源于单个细胞的指示。 由此, 可 以进一步提高确定容器中核酸是否来源于单个细胞的效率, 提高单细胞核酸分析的效率。
根据本发明的实施例, 所述预定的第一 Ct 阈值是通过对对照容器进行实时荧光定量
PCR而确定的, 其中, 所述对照容器含有已知量的核酸, 优选地, 所述对照容器含有 lOpg 核酸。 由此, 可以进一步提高确定容器中核酸是否来源于单个细胞的效率, 提高单细胞核 酸分析的效率。
根据本发明的实施例, 所述预定的第一 Ct阈值是通过下列步骤确定的: (a) 对多个所 述对照容器进行实时荧光定量 PCR, 以便确定各所述对照容器的 Ct值; 以及 (b) 确定这 样一个数值作为所述预定的第一 Ct阈值,其中,全部所述多个对照容器的 Ct值中至少 1.75% 小于所述数值。 发明人发现, 通过这些步骤获得的第一 Ct阈值能够有效地用于判断是否容 器中核酸是否来源于单个细胞的效率, 提高单细胞核酸分析的效率。
根据本发明的实施例, 所述预定的第一 Ct阈值是通过下列公式确定的: 预定的第一 Ct 阈值 = (平均 Ct值 -a)其中, 所述平均 Ct值是所述多个对照容器的 Ct值中至少一部分的平 均值, a是在 0.1 1之间的常数, 优选 a=0.5。 发明人发现, 通过这些步骤获得的第一 Ct阈 值能够有效地用于判断是否容器中核酸是否来源于单个细胞的效率, 提高单细胞核酸分析 的效率。
根据本发明的实施例,所述容器的 Ct值高于所述预定的第一 Ct阈值但小于预定的第二 Ct阈值是所述容器中所包含的核酸来源于单个细胞的指示, 其中, 所述预定的第二 Ct阈值 是通过下列公式确定的: 预定的第二 Ct阈值 =预定的第一 Ct阈值 +2a, a是在 0.1 1之间的 常数, 优选 a=0.5。 发明人发现, 通过这些步骤获得的第二 Ct阈值结合第一 Ct阈值能够有 效地用于判断是否容器中核酸是否来源于单个细胞的效率, 提高单细胞核酸分析的效率。
根据本发明的实施例, 所述预定的第一 Ct 阈值为 12.78, 所述预定的第二 Ct 阈值为 13.78。 发明人发现, 利用由该第二 Ct阈值与第一 Ct阈值限定出的范围, 能够有效地通过 判断 Ct值是否落入该范围内, 来判断是否容器中核酸是否来源于单个细胞的效率, 提高了 单细胞核酸分析的效率。
根据本发明的实施例, 还可以通过荧光变化数据来排除异常的容器, 例如实时荧光定 量 PCR不合格的容器等。 具体地, 根据本发明的实施例, 可以进一步包括:
首先, 基于所述容器的荧光变化数据, 确定所述容器的荧光变化曲线。
接下来, 将所述容器的荧光变化曲线与预定曲线进行比较, 以便确定所述实时荧光定 量 PCR是否有效, 其中, 所述预定曲线是通过对含有已知预定量核酸的容器进行实时荧光 定量 PCR而获得的, 并且所述容器的荧光变化曲线与所述预定曲线平行表示所述实时荧光 定量 PCR是有效的。
根据本发明的另一些实施例, 还可以进一步包括:
首先, 基于所述容器的荧光变化数据, 确定所述容器的熔解曲线; 以及
接下来, 基于所述容器的熔解曲线, 排除不合格容器, 其中, 所述不合格容器的熔解 曲线中仅有引物二聚体峰, 或者存在引物二聚体峰异常。 由此, 根据本发明的实施例, 可 以有效地排除容器内存在异常的容器, 从而可以有效地改善后续分析核酸的结果。
需要说明的是, 这里所使用的表达方式 "引物二聚体峰异常"是指明显引物二聚体的 量超出应有的比例。 确定容器中核酸是否来源于单个细胞的装置
在本发明的第二方面, 本发明提出了一种确定容器中核酸是否来源于单个细胞的装置。 利用该装置, 能够有效地分析容器中核酸是否来源于单个细胞。 由于实时荧光定量 PCR的 结果是与容器中的核酸数目呈正相关的, 因此,通过对实时荧光定量 PCR的结果进行分析, 能够有效地确定容器中的核酸是否是来源于单个细胞。 由此, 根据本发明的实施例, 能够 实现快速地原位确定容器中的核酸是否来源于单个细胞。 进而, 可以实现同时分析多个容 器中的核酸来源, 进一步降低容器中核酸悬浮液的体积, 从而可以显著降低单细胞核酸分 析的成本。 根据本发明的实施例, 可以同时分析超过 500个容器, 进而可以同时分析超过 500个单细胞, 并且处理对象的体积只需要 200纳升, 显著地降低了单细胞核酸分析例如单 细胞核酸测序的成本, 例如可以降低至目前成本的十分之一。
根据本发明的实施例, 参照图 3, 该装置 1000包括: 实时荧光定量 PCR单元 100和判 断单元 200。 具体地:
实时荧光定量 PCR单元 100, 用于在含有核酸的容器中添加荧光标记后, 进行实时荧 光定量 PCR, 以便获得所述容器的荧光变化数据。 根据本发明的实施例, 所述荧光标记为 SYBR Greenl。 由此可以进一步提高实时荧光定量 PCR的效率, 提高确定容器中核酸是否 来源于单个细胞的效率, 提高单细胞核酸分析的效率。 根据本发明的实施例, 所述核酸为 cDNA。 本发明的发明人发现, 本发明的确定容器中核酸是否来源于单个细胞的方法能够有 效地应用于对 cDNA的分析。
判断单元 200, 与所述实时荧光定量 PCR单元 100相连, 用于基于所述容器的荧光变 化数据, 确定所述容器中所包含的核酸是否来源于单个细胞。 需要说明的是, 判断单元 200 的具体选择不受特别限制, 可以设计计算机处理模块, 与实时荧光定量 PCR单元 100相连,以便从实时荧光定量 PCR单元 100中接收所述容器的 荧光变化数据, 并基于计算机处理模块的功能, 对所述容器的荧光变化数据进行处理, 并 作出判断, 以便确定所述容器中所包含的核酸是否来源于单个细胞。 本领域技术人员可以 理解的是, 上述的计算机处理模块也可以设置于实时荧光定量 PCR单元 100内, 或者当采 用实时荧光定量 PCR仪作为实时荧光定量 PCR单元 100时, 该实时荧光定量 PCR仪所包 含的计算装置, 就可以直接或经人工改造后作为判断单元 200。 当然, 判断单元 200也可以 是人工, 即不借助机器、 装置, 而直接由方法实施者作为判断主体, 充当判断单元, 基于 实时荧光定量 PCR单元 100中所述容器的荧光变化数据, 人工判断确定所述容器中所包含 的核酸是否来源于单个细胞。
根据本发明的实施例, 进一步包括核酸制备单元 (图中未示出), 所述核酸制备单元与 所述实时荧光定量 PCR单元 100相连, 用于通过下列步骤制备获得所述核酸: 提供细胞悬 浮液, 所述细胞悬浮液含有 2~5个细胞 /微升; 在容器中添加 50纳升所述细胞悬浮液; 在所 述容器中添加细胞裂解液, 以便裂解所述容器中的细胞, 并释放所述细胞中的 mRNA; 以 及在所述容器中添加反转录试剂, 以便对所述 mRNA进行反转录, 获得 cDNA。 由此, 本 发明确定容器中核酸是否来源于单个细胞的方法能够有效地对 mRNA进行分析, 另外, 发 明人发现, 当细胞悬浮液的细胞含量为含有 2~5个细胞 /微升时, 50纳升体积的悬浮液中仅 存在一个细胞的概率非常大,可以达到 90%以上,例如当细胞含量不超过 4个细胞 /微升时, 超过 98%。 由此, 可以进一步提高容器中核酸来源于单细胞的概率。
根据本发明的实施例,所述容器为多孔板中的至少一个,优选所述多孔板为 5124孔板。 由此, 根据本发明的实施例, 可以实现同时对多孔板中的多个容器进行分析, 由此, 显著 地降低了分析成本, 提高了分析通量。
根据本发明的实施例, 所述判断单元 200进一步包括: Ct值确定模块 (图中未示出), 所述 Ct值确定模块用于基于所述容器的荧光变化数据, 建立扩增曲线, 并且基于所述扩增 曲线, 确定所述容器的 Ct值; 以及第一判断模块(图中未示出), 所述第一判断模块中设置 有预定的第一 Ct阈值, 所述第一判断模块与所述 Ct值确定模块相连, 用于将所述容器的 Ct值与预定的第一 Ct阈值进行比较, 其中, 所述容器的 Ct值高于所述预定的第一 Ct阈值 是所述容器中所包含的核酸来源于单个细胞的指示。 由此, 可以进一步提高确定容器中核 酸是否来源于单个细胞的效率, 提高单细胞核酸分析的效率。
根据本发明的实施例, 所述预定的第一 Ct 阈值是通过对对照容器进行实时荧光定量
PCR而确定的, 其中, 所述对照容器含有已知量的核酸, 优选地, 所述对照容器含有 lOpg 核酸。 由此, 可以进一步提高确定容器中核酸是否来源于单个细胞的效率, 提高单细胞核 酸分析的效率。
根据本发明的实施例, 所述预定的第一 Ct阈值是通过下列步骤确定的: (a) 对多个所 述对照容器进行实时荧光定量 PCR, 以便确定各所述对照容器的 Ct值; 以及 (b) 确定这 样一个数值作为所述预定的第一 Ct阈值,其中,全部所述多个对照容器的 Ct值中至少 1.75% 小于所述数值。 发明人发现, 通过这些步骤获得的第一 α阈值能够有效地用于判断是否容 器中核酸是否来源于单个细胞的效率, 提高单细胞核酸分析的效率。
根据本发明的实施例, 所述预定的第一 α阈值是通过下列公式确定的: 预定的第一 α 阈值 = (平均 α值 -a)其中, 所述平均 α值是所述多个对照容器的 α值中至少一部分的平 均值, a是在 0.1 1之间的常数, 优选 a=0.5。 发明人发现, 通过这些步骤获得的第一 Ct阈 值能够有效地用于判断是否容器中核酸是否来源于单个细胞的效率, 提高单细胞核酸分析 的效率。
根据本发明的实施例,所述容器的 ct值高于所述预定的第一 α阈值但小于预定的第二 ct阈值是所述容器中所包含的核酸来源于单个细胞的指示, 其中, 所述预定的第二 α阈值 是通过下列公式确定的: 预定的第二 Ct阈值 =预定的第一 Ct阈值 +2a, a是在 0.1 1之间的 常数, 优选 a=0.5。 发明人发现, 通过这些步骤获得的第二 Ct阈值结合第一 Ct阈值能够有 效地用于判断是否容器中核酸是否来源于单个细胞的效率, 提高单细胞核酸分析的效率。
根据本发明的实施例, 所述预定的第一 Ct 阈值为 12.78, 所述预定的第二 Ct 阈值为 13.78。 发明人发现, 利用由该第二 Ct阈值与第一 Ct阈值限定出的范围, 能够有效地通过 判断 Ct值是否落入该范围内, 来判断是否容器中核酸是否来源于单个细胞的效率, 提高了 单细胞核酸分析的效率。
根据本发明的实施例, 所述判断单元 200进一步包括: 荧光变化曲线确定模块 (图中 未示出), 所述荧光变化曲线确定模块用于基于所述容器的荧光变化数据, 确定所述容器的 荧光变化曲线; 以及第二判断模块 (图中未示出), 所述第二判断模块中设置有预定曲线, 所述第二判断模块与所述荧光变化曲线确定模块相连, 用于将所述容器的荧光变化曲线与 预定曲线进行比较, 以便确定所述实时荧光定量 PCR是否有效, 其中, 所述预定曲线是通 过对含有已知预定量核酸的容器进行实时荧光定量 PCR而获得的, 并且所述容器的荧光变 化曲线与所述预定曲线平行表示所述实时荧光定量 PCR是有效的。 根据本发明的实施例, 所述判断单元进一步包括: 熔解曲线确定模块, 所述熔解曲线确定模块用于基于所述容器 的荧光变化数据, 确定所述容器的熔解曲线; 以及去杂模块, 所述去杂模块与所述熔解曲 线确定模块相连, 用于基于所述容器的熔解曲线, 排除不合格容器, 其中, 所述不合格容 器的熔解曲线中仅有引物二聚体峰, 或者存在引物二聚体峰异常。 用途
在本发明的第三方面, 本发明提出了一种获取单细胞核酸的方法。 根据本发明的实施 例, 包括: 提供细胞悬浮液, 所述细胞悬浮液含有 2~5个细胞 /微升; 在容器中添加 50纳升 所述细胞悬浮液; 在所述容器中添加细胞裂解液, 以便裂解所述容器中的细胞, 并释放所 述细胞中的 mRNA; 在所述容器中添加反转录试剂, 以便对所述 mRNA进行反转录, 获得 cDNA; 以及根据前面所述的方法, 确定所述容器中所包含的 cDNA是否来源于单个细胞。 正如前面所述, 由于实时荧光定量 PCR的结果是与容器中的核酸数目呈正相关的, 因此, 通过对实时荧光定量 PCR的结果进行分析, 能够有效地确定容器中的核酸是否是来源于单 个细胞。 由此, 根据本发明的实施例, 能够实现快速地原位确定容器中的核酸是否来源于 单个细胞。 进而, 可以实现同时分析多个容器中的核酸来源, 进一步降低容器中核酸悬浮 液的体积, 从而可以显著降低单细胞核酸分析的成本。 根据本发明的实施例, 可以同时分 析超过 500个容器, 进而可以同时分析超过 500个单细胞, 并且处理对象的体积只需要 200 纳升, 显著地降低了单细胞核酸分析例如单细胞核酸测序的成本, 例如可以降低至目前成 本的十分之一。
根据本发明的实施例, 在确定所述容器中所包含的 cDNA是否来源于单个细胞之后, 进一步包括, 利用毛细管获取实时荧光定量 PCR产物。
在本发明的第四方面, 本发明提出了一种构建单细胞核酸测序文库的方法。 根据本发 明的实施例, 该方法包括: 根据前面所述的方法获取单细胞核酸; 以及针对所述单细胞核 酸, 构建核酸测序文库。 正如前面所述, 由于实时荧光定量 PCR的结果是与容器中的核酸 数目呈正相关的, 因此, 通过对实时荧光定量 PCR的结果进行分析, 能够有效地确定容器 中的核酸是否是来源于单个细胞。 由此, 根据本发明的实施例, 能够实现快速地原位确定 容器中的核酸是否来源于单个细胞。 进而, 可以实现同时分析多个容器中的核酸来源, 进 一步降低容器中核酸悬浮液的体积, 从而可以显著降低单细胞核酸分析的成本。 根据本发 明的实施例, 可以同时分析超过 500个容器, 进而可以同时分析超过 500个单细胞, 并且 处理对象的体积只需要 200 纳升, 显著地降低了单细胞核酸分析例如单细胞核酸测序的成 本, 例如可以降低至目前成本的十分之一。
根据本发明的实施例, 核酸文库的构建方法不受特别限制, 可以根据后续测序要采用 的测序平台选择相应的测序文库构建策略。 根据本发明的实施例, 可以基于选自 HISEQ2000, SOLID, 454和单分子测序平台的至少一种构建所述核酸测序文库。 具体地, 例如, 当目的核酸测序文库要用于 HISEQ2000测序平台时,则可以根据 HISEQ2000测序仪 的文库构建操作规程构建所述核酸测序文库。
在本发明的第五方面, 本发明提出了一种构建单细胞核酸测序文库的系统。 根据本发 明的实施例, 该系统 10000包括: 前面所述的确定容器中核酸是否来源于单个细胞的装置 1000; 以及文库构建装置 2000, 所述文库构建装置用于针对所述单细胞核酸, 构建核酸测 序文库。
根据本发明的实施例, 文库构建装置 2000的种类不受特别显著, 可以根据后续要采用 的测序平台作出相应选择。根据本发明的具体示例,文库构建装置 2000与选自 HISEQ2000、 SOLID, 454 和单分子测序平台的至少一种相适应, 即能够构建适于选自 HISEQ2000、 SOLID, 454和单分子测序平台的至少一种的核酸测序文库。 具体地, 例如, 当目的核酸测 序文库要用于 HISEQ2000测序平台时, 文库构建装置 2000适于按照 HISEQ2000测序仪的 文库构建操作规程构建所述核酸测序文库。
在本发明的第六方面, 本发明提出了一种确定单细胞核酸的序列的方法。 根据本发明 的实施例, 该方法包括: 根据前面所述的方法, 构建单细胞核酸测序文库; 以及对所述单 细胞核酸测序文库进行测序, 以便获得测序结果, 确定所述单细胞核酸的序列。 正如前面 所述, 由于实时荧光定量 PCR的结果是与容器中的核酸数目呈正相关的, 因此, 通过对实 时荧光定量 PCR的结果进行分析, 能够有效地确定容器中的核酸是否是来源于单个细胞。 由此, 根据本发明的实施例, 能够实现快速地原位确定容器中的核酸是否来源于单个细胞。 进而, 可以实现同时分析多个容器中的核酸来源, 进一步降低容器中核酸悬浮液的体积, 从而可以显著降低单细胞核酸分析的成本。 根据本发明的实施例, 可以同时分析超过 500 个容器, 进而可以同时分析超过 500个单细胞, 并且处理对象的体积只需要 200纳升, 显 著地降低了单细胞核酸分析例如单细胞核酸测序的成本, 例如可以降低至目前成本的十分 之一。
根据本发明的实施例, 该方法可以利用选自 HISEQ2000、 SOLID, 454和单分子测序平 台的至少一种进行所述测序。
下面将结合实施例对本发明的方案进行解释。 本领域技术人员将会理解, 下面的实施 例仅用于说明本发明, 而不应视为限定本发明的范围。 实施例中未注明具体技术或条件的, 按照本领域内的文献所描述的技术或条件(例如参考 J.萨姆布鲁克等著, 黄培堂等译的《分 子克隆实验指南》, 第三版, 科学出版社) 或者按照产品说明书进行。 所用试剂或仪器未注 明生产厂商者, 均为可以通过市购获得的常规产品, 例如可以采购自 Illumina公司。
实施例 1 :
本实施例利用商用的微量分液平台 ( SmartChipTM Multi Sample NanoDispenser(MS D), Wafergen Biosystems)进行加样, 以微孔芯片 (Smartchip 200nL, Wafergen)为容器, 荧光定 量 PCR仪( SmartChip™ Real-Time PCR Cycler, Wafergen Biosystems)辅助监测,对 Hela S3 细胞进行单细胞核酸处理。 具体如下:
1 样品准备
1.1 根据样品的差异, 分别用胰酶对贴壁型细胞, 胶原酶对组织进行细胞消化, 将已消 化的细胞取 lmL, 并用 1.5mL EP管装好。
1.2 将步骤 1.1中的细胞在 lOOOrpm 条件下离心 5min,并用 1 XPBS重悬浮,重复一次。 1.3 用 40或 70 μιη的细胞滤网对步骤 1.2细胞溶液进行过滤以去除细胞团。
1.4 将 Percoll原液 (PHARMACIA, 货号 17-0891-01 ) 与 10 XPBS按体积比 9: 1混合 成细胞的等渗溶液, 命名为溶液 1。 吸取一定量的溶液 1与经步骤 1.3的细胞溶液按体积比 1 :4混合成新的细胞悬浮液。
1.5将步骤 1.4中新配置的细胞悬浮液的细胞密度调节至 2~4个 L,完成细胞样品制备, 称为样品 1。 细胞计数的进行是在细胞初步计数后, 梯度稀释, 并用显微镜对 5~10μί细胞 悬浮液进行 3次计数确定细胞密度。
1.6 将溶液 1与 1 XPBS按体积比 1 :4配成阴性对照溶液, 称为对照 1 ; 准备好浓度为 0.2 ng L的总 RNA, 作为阳性对照, 称为对照 2。 2 单细胞 mRNA的处理过程
2.1 将微量加样平台 (MS D平台) 中的纯水和 0.2%的次氯酸钠置换成无核酸酶水和 用其配置的 0.2%的次氯酸钠, 并用 RNA Zap擦洗平台, 最大限度的减少环境中的 RNA酶 对实验造成的影响。
2.2 将要用到物品 (如 384孔板等)放入超净台中, 打开超净台风机, 用 DNA off擦拭 超净台桌面及器械, lOmin后关闭风机,开启紫外照射 30min,然后打开风机,并用 RNA Zap 擦拭台面及仪器。
2.3 在经步骤 2.2处理的超净台中准备裂解液,用无核酸酶水、 Oligo-dT Primer, dNTP、 RNA酶抑制剂和 Triton X -100等制备细胞裂解液 750μί,根据实际需求将裂解液分装到 384 孔板对应的位置(以 36个孔位为例, 每孔 20μί), 用膜封好, 在 2600rcf, 12°C条件下离心 5min, 去气泡, 并将其放入 MS D平台指定位置。
其中, 以 4μί裂解液为例, 其组成如下表所示:
Figure imgf000017_0001
2.4 将一张新的 200nL的芯片放置在 MS D平台指定位置, 选择并启动对应加样程序 (36sample* 144assay), 该程序会完成将裂解液每孔 50nL的量分装在芯片中 (即将 384孔板 中的裂解液以每孔 50nL的量分装到芯片中 5124个孔中),该过程耗时 15min。程序完成后, 用滤纸将芯片上可能存在的液体吸掉, 并封上膜, 在 2600rcf, 12°C的条件下离心 5min。
2.5 将 1.5中样品 1、 1.6中准备的对照 1和对照 2, 轻柔的颠倒混匀后在超净台中分装 在一个新的 384孔板中, 样品 1分装在 34个孔中, 对照 1和对照 2分别分装在 1个孔中, 每孔 20μί。 孔位与步骤 2.3提及的 36个孔位置对应。
2.6 将 2.5中准备的 384孔封好膜, 移到 MSND仪器中后将膜揭开。 将步骤 2.4准备的 芯片放置在 MSND芯片区, 揭开膜, 开启加样程序(36sample* 144assay), 将细胞悬液及对 照溶液分到芯片中 (每孔 50nL)。
2.7 分液完毕后, 用滤纸将芯片上可能存在的液体吸掉封上膜在 2600rcf, 12°C的条件 下离心 5min, 转移至可放置芯片的热循环仪中, 72°C反应 3min进行细胞裂解。裂解后将芯 片在 2600rcf, 12°C条件下离心 5min, 去膜后转移到 MSND平台。
2.8 在超净台中配置逆转录混合液 (RT Mix), 并分装在 384孔板中如 2.5中涉及的 36 个孔中, 每孔 20μί。在 2600rcf, 12°C条件下离心 5min, 并将其放入 MSND平台指定位置, 将膜撕开, 启动加样程序 (36sample* 144assay)。 2.9 分液完毕后, 用滤纸将芯片上可能存在的液体吸掉封上膜在 2600rcf, 12°C的条件 下离心 5min, 转移至可放置芯片的热循环仪中, 42°C 90min, (50 °C 2min, 42 °C 2min) 10 个循环, 70°C 15 min, 4°C保存。 反应后将芯片在 2600rcf, 12°C条件下离心 5min, 去膜后 转移到 MSND平台。
2.10 在超净台中配置 PCR反应液(内有 SYBR Green I, 其终浓度为 0.5 X ), 并分装在
384孔板中如 2.5中涉及的 36个孔中, 每孔 20μί。 用膜封好, 在 2600rcf, 12°C条件下离心 5min, 并将其放入 MSND平台指定位置, 将膜撕开, 启动加样程序 (36sample* 144assay)。
2.11 分液完毕后, 用滤纸将芯片上可能存在的液体吸掉封上膜在 2600rcf, 12°C的条件 下离心 5min, 转移至荧光定量 PCR仪中, 进行 PCR反应及溶解曲线测定。
3 目标样品的确定及提取
3.1、 根据 Smartchip cycling 仪器界面监测的芯片中 5184个孔中的荧光信号, CT值和 溶解曲线情况, 对比对照 2样品并结合细胞密度分布, 确定目标单细胞孔位, 并进行记录。
3.2、 用酒精灯加热, 将巴氏玻璃管吸嘴拉成直径小于 200μιη的毛细管。 利用该毛细管 的毛细作用将目标孔位的样品吸出, 并转移到装有 6μί TE/ddH20的 1.5mL EP管中, 混合 后, 写好标签。 反复三次用 ddH20清洗毛细管内外壁, 进行一个样品的提取。
3.3、 从步骤 3.2中的 6μί样品中取出 l μL用 Qubit® 2.0荧光定量仪 (Invitrogen) 或 Agilent 2100生物分析仪进行定量。
3.4、根据定量结果,取 lng产物用 Nextera XT sample Prep Kit或者 5ng产物用 TruePrep Mini DNA Sample Prep Kit进行文库构建。
3.5、将文库用 Agilent 2100 生物分析仪和荧光定量 PCR仪( SmartChip™ Real-Time PCR Cycler, Wafergen Biosystems) 进行质检, 检测其片段分布和浓度是否符合测序上机标准, 质控合格后, 定量后在 Hiseq 2000上进行测序。
测序后数据可用于单细胞 RNA表达量的分析, 细胞异质性的分析及 RNA editing等信 息的分析。 本实施例获得的数据具有较好的质量, 如图 7和图 8所示, 不同位置的碱基的 波动比较小且 90%以上的数据质量都大于 30, 对后期信息分析提供了很好的基础。 同时, 测序数据分析表明, 其结果与常规流程(即手动挑单个细胞, 在 PCR管中进行反应的过程) 的数据在基因的覆盖情况 (如图 9所示) 及数据的偏向性上 (如图 10所示) 都基本一致。 说明通过本实施例进行的反应在数据分布与常规流程一致且未引入其他影响反应的因素。 且本实施例获得信息覆盖了 11个管家基因, 说明信息比较完整。
当细胞密度为 2~4个 /μί时, 芯片中 5184个孔中约 470-850个孔中只包含单个细胞, 其他的孔中为空或 2个及以上细胞。 本实施例采用 SYBR染料法和标准品对照比较法结合 来区分哪些孔是需要的含有细胞的孔, 并且剔除明显为多个细胞的孔。 用于选取目标孔的 主要的三个参数为孔内荧光变化情况, CT值及溶解曲线。 Smartchip cycling是一台与本流 程中芯片相匹配的 qPCR仪。 SYBR Green I 能够特异性的与双链 DNA结合,定量指示 DNA 含量。在本流程采用 SYBR Green I标记 DNA, Smartchip cycling检测芯片孔中荧光变化情 况, 该荧光曲线可用于显示芯片孔内 cDNA扩增状况, 即 qPCR反应。 同时对照 2样品为 浓度 0.2ng^L, 以每孔 50nL的量分布在 144个微孔, 即每孔中平均 RNA含量为 10pg, 与 一个细胞中 RNA的含量相当。在 SYBR Green I标记的 PCR反应中, CT值可用于表征模板 的起始量, 也就是 CT值越小, 其起始量越大, 因此可以将对照 2样品中上百个反应的平均 CT值作为挑选只含有单个细胞的孔的参数之一, 同时将溶解曲线用于剔除引物二聚体比较 严重的不合格样品, 若产物为引物或引物较多, 则其溶解曲线中溶解温度的峰出现在 80°C 之前, 如图 5 所示。 除此之外根据细胞密度能够计算得到芯片中含有单细胞和多细胞的比 例, (比如细胞密度为 4个 /μί时, 理论上多细胞孔占所有细胞悬浮液样品孔的 1.75%, 即 其中 CT值最小的 1.75%为多细胞孔。 根据实验对单细胞要求的严格程度, 可以去除一定比 例 CT较高, 即多细胞的孔位。
根据孔内荧光变化情况, CT值及溶解曲线 3个参数确定好目标孔位, 再用玻璃毛细管 将目标孔中的样品提取出来至内有 6μί dd¾0的 EP管中。混合后取其中的 1 用 Qbuit或 2100定量, 剩余的标记好浓度即可以用于后期的文库制备等。 2100检测图如图 6所示, 其 片段主要集中在 500bp-2k之间, 且在 1.5-2k之间有个峰, 符合常规流程中判断该样品是否 完整的要求。
不同起始量下的荧光曲线、熔解曲线如图 5所示。不同起始量的 CT值的情况如表 1所 示。
表 1同浓度起始样品的 CT值分布
Figure imgf000019_0001
细胞上清液是指细胞悬浮液离心后上层溶液基本不包含细胞, 可能存在一些游离的 RNA。 由图 5可以看出对照 1 (阴性对照) 和细胞上清液在 22轮扩增下, 其荧光变化曲线 明显区别于其他 RNA样品起始的荧光变化曲线。而内为细胞悬浮液的孔其荧光变化曲线可 以分为两种, 一种和细胞上清液的类似, 一种与以 RNA为样品的相似, 如图 5目标孔曲线 所示。 按照表 1 结果, 我们将细胞悬浮液为样品的孔 CT值按从小到大的顺序排列, 选取 CT在 13.28 ±0.5范围内的挑选出来, 作为备选目标孔, 同时结合荧光曲线及溶解曲线, 剔 除荧光曲线变化与 RNA起始的荧光曲线不平行的及引物比较明显的孔, 剩余的孔被确认为 目标孔。 反应体系 溶液名称 加入体积
裂解液 50nL
细胞悬浮液 (2~4个 /μΐ) 50nL
反转录反应溶液 50nL
PCR反应溶液 50nL 工业实用性
本发明的确定容器中核酸是否来源于单个细胞的方法及其装置, 能够实现快速地原位 确定容器中的核酸是否来源于单个细胞, 进而, 可以实现同时分析多个容器中的核酸来源, 进一步降低容器中核酸悬浮液的体积, 从而可以显著降低单细胞核酸分析的成本。 尽管本发明的具体实施方式已经得到详细的描述, 本领域技术人员将会理解。 根据已 经公开的所有教导, 可以对那些细节进行各种修改和替换, 这些改变均在本发明的保护范 围之内。 本发明的全部范围由所附权利要求及其任何等同物给出。
在本说明书的描述中, 参考术语"一个实施例"、 "一些实施例"、 "示意性实施例"、 "示 例"、 "具体示例"、 或 "一些示例"等的描述意指结合该实施例或示例描述的具体特征、 结 构、 材料或者特点包含于本发明的至少一个实施例或示例中。 在本说明书中, 对上述术语 的示意性表述不一定指的是相同的实施例或示例。 而且, 描述的具体特征、 结构、 材料或 者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。

Claims

权利要求书
1、 一种确定容器中核酸是否来源于单个细胞的方法, 其特征在于, 包括:
( 1 )在含有核酸的容器中添加荧光标记, 并进行实时荧光定量 PCR, 以便获得所述容 器的荧光变化数据; 以及
(2)基于所述容器的荧光变化数据, 确定所述容器中所包含的核酸是否来源于单个细 胞。
2、 根据权利要求 1所述的方法, 其特征在于, 所述荧光标记为 SYBR GreenI。
3、 根据权利要求 1所述的方法, 其特征在于, 所述核酸为 cDNA。
4、 根据权利要求 3所述的方法, 其特征在于, 所述核酸是通过下列步骤获得的: 提供细胞悬浮液, 所述细胞悬浮液含有 2~5个细胞 /微升;
在容器中添加 50纳升所述细胞悬浮液;
在所述容器中添加细胞裂解液, 以便裂解所述容器中的细胞, 并释放所述细胞中的 mRNA; 以及
在所述容器中添加反转录试剂, 以便对所述 mRNA进行反转录, 获得 cDNA。
5、 根据权利要求 1所述的方法, 其特征在于, 所述容器为多孔板中的至少一个, 优选 所述多孔板为 5124孔板。
6、 根据权利要求 1所述的方法, 其特征在于, 在步骤 (2) 中进一步包括:
(2-1 ) 基于所述容器的荧光变化数据, 建立扩增曲线, 并且基于所述扩增曲线, 确定 所述容器的 Ct值;
(2-2)将所述容器的 α值与预定的第一 α阈值进行比较, 其中, 所述容器的 ct值高 于所述预定的第一 ct阈值是所述容器中所包含的核酸来源于单个细胞的指示。
7、根据权利要求 6所述的方法, 其特征在于, 所述预定的第一 Ct阈值是通过对对照容 器进行实时荧光定量 PCR而确定的, 其中, 所述对照容器含有已知量的核酸, 优选地, 所 述对照容器含有 10pg核酸。
8、根据权利要求 7所述的方法, 其特征在于, 所述预定的第一 Ct阈值是通过下列步骤 确定的:
(a)对多个所述对照容器进行实时荧光定量 PCR, 以便确定各所述对照容器的 Ct值; 以及
(b)确定这样一个数值作为所述预定的第一 Ct阈值, 其中, 全部所述多个对照容器的
Ct值中至少 1.75%小于所述数值。
9、根据权利要求 6所述的方法, 其特征在于, 所述预定的第一 Ct阈值是通过下列公式 确定的:
预定的第一 Ct阈值 = (平均 Ct值 -a)
其中,所述平均 Ct值是所述多个对照容器的 Ct值中至少一部分的平均值, a是在 0.1~1 之间的常数, 优选 a=0.5。
10、 根据权利要求 9所述的方法, 其特征在于, 在步骤(2-2) 中, 所述容器的 α值高 于所述预定的第一 ct阈值但小于预定的第二 α阈值是所述容器中所包含的核酸来源于单个 细胞的指示, 其中, 所述预定的第二 ct阈值是通过下列公式确定的:
预定的第二 Ct阈值 =预定的第一 Ct阈值 +2a, a是在 0.1 1之间的常数, 优选 a=0.5。
11、 根据权利要求 10所述的方法, 其特征在于, 所述预定的第一 Ct阈值为 12.78, 所 述预定的第二 Ct阈值为 13.78。
12、 根据权利要求 1所述的方法, 其特征在于, 进一步包括:
(3-1 ) 基于所述容器的荧光变化数据, 确定所述容器的荧光变化曲线;
(3-2) 将所述容器的荧光变化曲线与预定曲线进行比较, 以便确定所述实时荧光定量 PCR是否有效,
其中,
所述预定曲线是通过对含有已知预定量核酸的容器进行实时荧光定量 PCR而获得的, 并且所述容器的荧光变化曲线与所述预定曲线平行表示所述实时荧光定量 PCR是有效 的。
13、 根据权利要求 1所述的方法, 其特征在于, 进一步包括:
(4-1 ) 基于所述容器的荧光变化数据, 确定所述容器的熔解曲线; 以及
(4-2) 基于所述容器的熔解曲线, 排除不合格容器,
其中, 所述不合格容器的熔解曲线中仅有引物二聚体峰, 或者存在引物二聚体峰异常。
14、 一种确定容器中核酸是否来源于单个细胞的装置, 其特征在于, 包括:
实时荧光定量 PCR单元,所述实时荧光定量 PCR单元用于在含有核酸的容器中添加荧 光标记后, 进行实时荧光定量 PCR, 以便获得所述容器的荧光变化数据; 以及
判断单元, 所述判断单元与所述实时荧光定量 PCR单元相连, 用于基于所述容器的荧 光变化数据, 确定所述容器中所包含的核酸是否来源于单个细胞。
15、 根据权利要求 14所述的装置, 其特征在于, 所述荧光标记为 SYBR GreenI。
16、 根据权利要求 14所述的装置, 其特征在于, 所述核酸为 cDNA。
17、 根据权利要求 16所述的装置, 其特征在于, 进一步包括核酸制备单元, 所述核酸 制备单元与所述实时荧光定量 PCR单元相连, 用于通过下列步骤制备获得所述核酸:
提供细胞悬浮液, 所述细胞悬浮液含有 2~5个细胞 /微升;
在容器中添加 50纳升所述细胞悬浮液;
在所述容器中添加细胞裂解液, 以便裂解所述容器中的细胞, 并释放所述细胞中的 mRNA; 以及
在所述容器中添加反转录试剂, 以便对所述 mRNA进行反转录, 获得 cDNA。
18、 根据权利要求 14所述的装置, 其特征在于, 所述容器为多孔板中的至少一个, 优 选所述多孔板为 5124孔板。
19、 根据权利要求 14所述的装置, 其特征在于, 所述判断单元进一步包括:
Ct值确定模块,所述 Ct值确定模块用于基于所述容器的荧光变化数据,建立扩增曲线, 并且基于所述扩增曲线, 确定所述容器的 Ct值; 以及
第一判断模块, 所述第一判断模块中设置有预定的第一 α阈值, 所述第一判断模块与 所述 α值确定模块相连, 用于将所述容器的 α值与预定的第一 α阈值进行比较, 其中, 所述容器的 ct值高于所述预定的第一 α阈值是所述容器中所包含的核酸来源于单个细胞的 指示。
20、根据权利要求 19所述的装置, 其特征在于, 所述预定的第一 α阈值是通过对对照 容器进行实时荧光定量 PCR而确定的, 其中, 所述对照容器含有已知量的核酸, 优选地, 所述对照容器含有 10pg核酸。
21、根据权利要求 20所述的装置, 其特征在于, 所述预定的第一 Ct阈值是通过下列步 骤确定的:
(a)对多个所述对照容器进行实时荧光定量 PCR, 以便确定各所述对照容器的 Ct值; 以及
(b)确定这样一个数值作为所述预定的第一 Ct阈值, 其中, 全部所述多个对照容器的 Ct值中至少 1.75%小于所述数值。
22、根据权利要求 19所述的装置, 其特征在于, 所述预定的第一 Ct阈值是通过下列公 式确定的:
预定的第一 Ct阈值 = (平均 Ct值 -a)
其中,所述平均 Ct值是所述多个对照容器的 Ct值中至少一部分的平均值, a是在 0.1~1 之间的常数, 优选 a=0.5。
23、根据权利要求 22所述的装置, 其特征在于, 所述容器的 Ct值高于所述预定的第一
Ct阈值但小于预定的第二 Ct阈值是所述容器中所包含的核酸来源于单个细胞的指示,其中, 所述预定的第二 Ct阈值是通过下列公式确定的:
预定的第二 Ct阈值 =预定的第一 Ct阈值 +2a, a是在 0.1 1之间的常数, 优选 a=0.5。
24、 根据权利要求 23所述的装置, 其特征在于, 所述预定的第一 Ct阈值为 12.78, 所 述预定的第二 Ct阈值为 13.78。
25、 根据权利要求 14所述的装置, 其特征在于, 所述判断单元进一步包括: 荧光变化曲线确定模块, 所述荧光变化曲线确定模块用于基于所述容器的荧光变化数 据, 确定所述容器的荧光变化曲线; 以及
第二判断模块, 所述第二判断模块中设置有预定曲线, 所述第二判断模块与所述荧光 变化曲线确定模块相连, 用于将所述容器的荧光变化曲线与预定曲线进行比较, 以便确定 所述实时荧光定量 PCR是否有效,
其中,
所述预定曲线是通过对含有已知预定量核酸的容器进行实时荧光定量 PCR而获得的, 并且所述容器的荧光变化曲线与所述预定曲线平行表示所述实时荧光定量 PCR是有效 的。
26、 根据权利要求 14所述的装置, 其特征在于, 所述判断单元进一步包括: 熔解曲线确定模块, 所述熔解曲线确定模块用于基于所述容器的荧光变化数据, 确定 所述容器的熔解曲线; 以及
去杂模块, 所述去杂模块与所述熔解曲线确定模块相连, 用于基于所述容器的熔解曲 线, 排除不合格容器,
其中, 所述不合格容器的熔解曲线中仅有引物二聚体峰, 或者存在引物二聚体峰异常。
27、 一种获取单细胞核酸的方法, 其特征在于, 包括:
提供细胞悬浮液, 所述细胞悬浮液含有 2~5个细胞 /微升;
在容器中添加 50纳升所述细胞悬浮液;
在所述容器中添加细胞裂解液, 以便裂解所述容器中的细胞, 并释放所述细胞中的 mRNA;
在所述容器中添加反转录试剂, 以便对所述 mRNA进行反转录, 获得 cDNA; 以及 根据权利要求 1-13任一项所述的方法, 确定所述容器中所包含的 cDNA是否来源于单 个细胞,
任选地, 在确定所述容器中所包含的 cDNA是否来源于单个细胞之后, 进一步包括, 利用毛细管获取实时荧光定量 PCR产物。
28、 一种构建单细胞核酸测序文库的方法, 其特征在于, 包括:
根据权利要求 27所述的方法, 获取单细胞核酸; 以及
针对所述单细胞核酸, 构建核酸测序文库。
29、 根据权利要求 28所述的方法, 其特征在于, 基于选自 HISEQ2000、 SOLID, 454 和单分子测序平台的至少一种构建所述核酸测序文库。
30、 一种构建单细胞核酸测序文库的系统, 其特征在于, 包括:
权利要求 14-26所述的确定容器中核酸是否来源于单个细胞的装置; 以及
文库构建装置, 所述文库构建装置用于针对所述单细胞核酸, 构建核酸测序文库。
31、 根据权利要求 30 所述的系统, 其特征在于, 所述文库构建装置适于基于选自 HISEQ2000、 SOLID 454和单分子测序平台的至少一种构建所述核酸测序文库。
32、 一种确定单细胞核酸的序列的方法, 其特征在于, 包括: 根据权利要求 28所述的 方法, 构建单细胞核酸测序文库; 以及
对所述单细胞核酸测序文库进行测序, 以便获得测序结果, 确定所述单细胞核酸的序 列。
33、 根据权利要求 32所述的方法, 其特征在于, 利用选自 HISEQ2000、 SOLID, 454 和单分子测序平台的至少一种进行所述测序。
PCT/CN2014/083596 2014-08-01 2014-08-01 确定容器中核酸是否来源于单个细胞的方法及其装置和用途 WO2016015349A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2014/083596 WO2016015349A1 (zh) 2014-08-01 2014-08-01 确定容器中核酸是否来源于单个细胞的方法及其装置和用途
CN201480080645.9A CN106536750A (zh) 2014-08-01 2014-08-01 确定容器中核酸是否来源于单个细胞的方法及其装置和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/083596 WO2016015349A1 (zh) 2014-08-01 2014-08-01 确定容器中核酸是否来源于单个细胞的方法及其装置和用途

Publications (1)

Publication Number Publication Date
WO2016015349A1 true WO2016015349A1 (zh) 2016-02-04

Family

ID=55216701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/083596 WO2016015349A1 (zh) 2014-08-01 2014-08-01 确定容器中核酸是否来源于单个细胞的方法及其装置和用途

Country Status (2)

Country Link
CN (1) CN106536750A (zh)
WO (1) WO2016015349A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019061198A1 (zh) * 2017-09-28 2019-04-04 深圳华大生命科学研究院 一种扩增tcr全长序列的试剂盒及其应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113658642A (zh) * 2021-08-16 2021-11-16 杭州凯曼健康科技有限公司 基于荧光免疫层析法的荧光曲线的检测方法与装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101208421A (zh) * 2005-05-03 2008-06-25 牛津基因技术知识产权有限公司 用于分析单细胞的装置和方法
CN101495650A (zh) * 2005-06-20 2009-07-29 领先细胞医疗诊断有限公司 检测单个细胞中的核酸和鉴定异质大细胞群中罕见细胞的方法
CN101842159A (zh) * 2007-08-09 2010-09-22 赛路拉公司 关联的多参数单细胞测定及残余生物材料回收的方法和装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060286558A1 (en) * 2005-06-15 2006-12-21 Natalia Novoradovskaya Normalization of samples for amplification reactions
US20120064528A1 (en) * 2010-06-01 2012-03-15 The Macfarlane Burnet Institute For Medical Research And Public Health Ltd Methods and reagents for quantifying nucleic acid fragmentation and apoptosis (qlm-pcr, cell number qpcr and apoqpcr)

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101208421A (zh) * 2005-05-03 2008-06-25 牛津基因技术知识产权有限公司 用于分析单细胞的装置和方法
CN101495650A (zh) * 2005-06-20 2009-07-29 领先细胞医疗诊断有限公司 检测单个细胞中的核酸和鉴定异质大细胞群中罕见细胞的方法
CN101842159A (zh) * 2007-08-09 2010-09-22 赛路拉公司 关联的多参数单细胞测定及残余生物材料回收的方法和装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019061198A1 (zh) * 2017-09-28 2019-04-04 深圳华大生命科学研究院 一种扩增tcr全长序列的试剂盒及其应用

Also Published As

Publication number Publication date
CN106536750A (zh) 2017-03-22

Similar Documents

Publication Publication Date Title
US11781187B2 (en) Rare cell analysis using sample splitting and DNA tags
EP2024513B1 (en) Rare cell analysis using sample splitting and dna tags
WO2017084023A1 (zh) 一种高通量的单细胞转录组建库方法
ITTO20070307A1 (it) Metodo e dispositivo per la diagnosi prenatale non-invasiva
EP1469068B1 (en) Apparatus for separating and purifying nucleid acid and method for separating and purifying nucleid acid
EP2825675A1 (en) Measurement of nucleic acid variants using highly-multiplexed error-suppressed deep sequencing
WO2008111990A1 (en) Rare cell analysis using sample splitting and dna tags
CN108531360A (zh) 用于高通量分析的微流控细胞捕获和分析设备
WO2021147069A1 (zh) 基于液滴微流控的单细胞测序及应用
US20180067132A1 (en) Method for assisting detection of alzheimer's disease or mild cognitive impairment
WO2010045462A1 (en) System for identification of multiple nucleic acid targets in a single sample and use thereof
WO2016015349A1 (zh) 确定容器中核酸是否来源于单个细胞的方法及其装置和用途
WO2016059601A1 (en) Non-invasive methods for detection of genetic abnormalities in an unborn fetus, and primers, probes and kits for uses thereof
Antunes et al. Tissue-specific DNA methylation patterns in forensic samples detected by Pyrosequencing®
US20150159224A1 (en) Ultrasensitive detection and characterization of clustered kras mutations using peptide nucleic acid clamp pcr in drop-based microfluidics
WO2010098862A2 (en) Method of using an oligonucleotide microarray to detect cancer from serum nucleic acid
US20220033897A1 (en) High throughput analysis of fixed cells
CN115948574B (zh) 一种基于三代测序的个体识别体系、试剂盒及其应用
Borzi et al. Detection of microRNAs using chip-based QuantStudio 3D digital PCR
JP2009531037A (ja) 混合試料の特性決定法
JP2021153487A (ja) 血液検体からのmiRNAを含む血清検体の調製方法
Maho-Vaillant et al. Methods to Study the Transcriptome of Regulatory B Cells
CN105506165A (zh) 基于AllGlo探针的rs2844682检测分型试剂盒及其分型方法
WO2022251110A9 (en) Methods and systems for determining cell-cell interaction
US20160222443A1 (en) Quantification of Micro RNA

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14898420

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14898420

Country of ref document: EP

Kind code of ref document: A1