WO2016015277A1 - 优化通信网络的处理方法和设备 - Google Patents

优化通信网络的处理方法和设备 Download PDF

Info

Publication number
WO2016015277A1
WO2016015277A1 PCT/CN2014/083412 CN2014083412W WO2016015277A1 WO 2016015277 A1 WO2016015277 A1 WO 2016015277A1 CN 2014083412 W CN2014083412 W CN 2014083412W WO 2016015277 A1 WO2016015277 A1 WO 2016015277A1
Authority
WO
WIPO (PCT)
Prior art keywords
small station
value
weight
candidate
station
Prior art date
Application number
PCT/CN2014/083412
Other languages
English (en)
French (fr)
Inventor
易友文
庄宏成
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP14898779.5A priority Critical patent/EP3171665B1/en
Priority to ES14898779T priority patent/ES2775224T3/es
Priority to CN201480052968.7A priority patent/CN105580493B/zh
Priority to PCT/CN2014/083412 priority patent/WO2016015277A1/zh
Publication of WO2016015277A1 publication Critical patent/WO2016015277A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/09Management thereof
    • H04W28/0925Management thereof using policies
    • H04W28/0933Management thereof using policies based on load-splitting ratios
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/12Access point controller devices

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a processing method and device for optimizing a communication network. Background technique
  • the most effective network expansion method at present is to add a small cell base station based on the existing macro base station and increase the network capacity through spectrum multiplexing. Because the small station has low transmission power and small coverage area, it can effectively reduce neighboring area interference. Therefore, in network deployment, small stations are often placed in network hotspot areas or vulnerability areas to solve network capacity and coverage problems. Compared to the macro station, the base station of the Picocell and the base station of the femtocell are all small stations.
  • the communication network includes a macro station 10, a small station 20, and a network controller 30 (the network controller is a core of a wireless network, and is used to manage a base station in a wireless network, and may be a stand-alone device, or Integrated on a macro station and a terminal 40, the communication network is a heterogeneous network in which the small station 20 and the macro station 10 coexist, and the network controller 30 can optimize the network resources or configuration for the communication network.
  • the network controller 30 is a core of a wireless network, and is used to manage a base station in a wireless network, and may be a stand-alone device, or Integrated on a macro station and a terminal 40
  • the communication network is a heterogeneous network in which the small station 20 and the macro station 10 coexist
  • the network controller 30 can optimize the network resources or configuration for the communication network.
  • the coverage of the small station 20 is much smaller than that of the macro station 10, but the number of small stations 20 in the network is much larger than that of the macro station 10, and the terminal 40 used by the user can dynamically select to access the macro station 10 or the small station 20 to obtain Internet service. Since the number of terminals and the service requested by each terminal are changed, the macro station 10, the load of the small station 20, the hotspot location in the communication network, the location of the vulnerability, and the like in the communication network are also dynamically changed, so how to optimize the communication network Configuring to better adapt to dynamic changes in the communication network is a new challenge for heterogeneous communication networks consisting of macro stations and small stations.
  • the network controller 30 may cause the small station 20 to change the CSB (Cell Selection Bias) value to change the terminal 40 in the communication network.
  • the access situation thereby adjusting the load of the macro station 10 and the small station 20, optimizes the communication network.
  • the network controller first determines the ABS (Almost Blank Subframe) value of each macro station and the situation of the terminals connected to each macro station and the small station under the influence of the ABS value.
  • the CSB value used to optimize the communication network is determined for each small station; wherein the macro station and the small station have different priorities in the communication network, for example, the small station mainly solves the problem of the hot spot area or the vulnerability area, and the network hot spot area or The vulnerability area changes greatly with time. Therefore, the adjustment period of the CSB value needs to be shortened as much as possible to effectively solve the problem of the current hot spot area or the vulnerability area in the communication network.
  • Embodiments of the present invention provide a processing method and device for optimizing a communication network, which are used to optimize a communication network.
  • an embodiment of the present invention provides a small station, including:
  • a determining module configured to determine an optimized CSB value according to the capacity and coverage of the small station; an update module, configured to update a current CSB value of the small station to the optimized CSB value; and a sending module, configured to A terminal transmits an optimized CSB value for the small station.
  • a receiving module is further included;
  • the sending module is further configured to send the optimized CSB value to an adjacent small station
  • the receiving module is configured to receive a current CSB value of the neighboring small station
  • the determining module is further configured to: according to the optimized CSB value of the small station and the current of the adjacent small station
  • CSB value determining an actual condition of a terminal accessing the small station
  • the determining module is configured to perform the determining the optimized CSB value if the actual condition is different from an expected condition of the terminal accessing the small station corresponding to the optimized CSB value of the small station.
  • the receiving module is further configured to receive parameter information; the parameter information carries a weight of the capacity of the small station and a weight of the coverage of the small station.
  • the determining module is specifically packaged Includes:
  • An obtaining unit configured to acquire at least one candidate CSB value
  • a determining unit configured to determine, according to max ⁇ C + i ⁇ C, each candidate result corresponding to each candidate CSB value;
  • a selection unit configured to use, as the optimized CSB value of the small station, a candidate CSB value corresponding to the candidate result having the largest value among the each candidate result;
  • represents the weight of the coverage of the small station
  • 2s represents the weight of the capacity of the small station
  • KPI the key performance indicator of the small station with respect to coverage
  • ⁇ ⁇ is the The ⁇ of the capacity of the station
  • C 0V R - iU , d iR e , s xh(H )
  • Rf° -ile is the average of the respective association rates for the stations corresponding to 2 % of the terminals in the set, 2% terminals associated with any of a terminal station is not greater than the rate set E s in any of the other terminals than 2% of a terminal associated with the rate of the station
  • various different candidate values corresponding to the CSB said different set of E s the set is different in the 2% E s corresponding to the terminals e E s denotes the set of any one terminal
  • the set terminal R es represents E s in e is associated with the associated rate of the small station, which is the demand
  • the acquiring unit is specifically configured to
  • the first CSB value is used as the candidate CSB value; If it is determined that the load of the small station corresponding to the first CSB value is less than 1 according to the set E s corresponding to the first CSB value, the first CSB value is used as the candidate CSB value, and is preset. The first CSB value is increased to obtain a new first CSB value until the first CSB value reaches a preset threshold CSB value.
  • an embodiment of the present invention provides a network controller, including:
  • a determining module configured to determine each optimized ABS value for each macro station
  • a sending module configured to send each of the optimized ABS values to each macro station;
  • the determining module is further configured to determine a capacity and an overlay for the small station according to the current hotspot location and the vulnerability location in the communication network;
  • the sending module is further configured to send an ABS value optimization complete message to the small station; the optimization completion message of the ABS value carries the capacity and coverage of the small station.
  • the current hotspot location and the number of the vulnerability locations are respectively at least one, and the determining module specifically includes:
  • An acquiring unit configured to acquire respective first measurement distances between the small station and each of the hotspot locations, and respective second measurement distances between the small station and each of the vulnerability locations;
  • a first determining unit configured to determine, in each of the first measurement distances, a first measurement distance that is the smallest value as a first distance; and determine, in each of the second measurement distances, a second measurement distance that is the smallest value as a second Distance
  • a second determining unit configured to determine, according to the first distance and the second distance, a weight of the coverage and a weight of the capacity.
  • the second determining unit is specifically configured to be used
  • the weight of the secondary coverage and the weight of the initial coverage determine the weight of the coverage, and the weight of the capacity is determined according to the weights of the first distance and the second distance, the weight of the previous capacity, and the initial capacity.
  • the second determining unit is specifically used to According to the determination
  • the second determining unit is specifically configured to determine the weight of the coverage according to ⁇ ⁇ ⁇ ⁇ , ⁇ +(1- ⁇ ), and according to (Al)ft> Ls +1 ⁇ 2 ⁇ ⁇ ⁇ ⁇ + determine the weight of the capacity;
  • the weight of the coverage of the small station is the weight of the capacity of the small station, and co is the weight of the previous coverage of the small station, and is the weight of the previous capacity of the small station.
  • ( )-" A determines that ⁇ is the first distance, ⁇ is the second distance, and n is an influence coefficient.
  • the acquisition unit is also used for
  • the first determining unit is further configured to select the maximum y/the corresponding y in the corresponding set of the current group candidate chromosomes Candidate chromosomes as y parent chromosomes;
  • the first determining unit is further configured to determine, in the fitness set corresponding to the current group candidate chromosome, the largest corresponding candidate chromosome is an optimized chromosome;
  • the second determining unit is further configured to determine, according to the optimized chromosome, each optimized ABS value for each of the macro stations;
  • the total number of candidate ABS values included in one candidate chromosome is equal to the total number of the respective macro stations; Y and y are preset positive integers, and ⁇ is the coverage key performance indicator KPI of the communication network; C ⁇ is the capacity KPI of the communication network; when the ⁇ is obtained, C is adopted.
  • the values of v and C ap are determined by the candidate chromosome corresponding to /trn ⁇ ; the normalized weight value is preset.
  • the second determining unit is specifically configured to be used
  • the values of v and c ap are related to the real data of the communication network, and each candidate ABS value in the optimized chromosome is used as an optimized ABS value corresponding to each of the macro stations;
  • an embodiment of the present invention provides a processing method for optimizing a communication network, including: determining, by the small station, an optimized CSB value according to the capacity and coverage of the small station;
  • the station updates the current CSB value of the station to the optimized CSB value; the station transmits the optimized CSB value of the station to at least one terminal.
  • the processing method before the small station updates the current CSB value to the optimized CSB value, the processing method further includes:
  • the small station receives a current CSB value of the neighboring station
  • the method before the small station determines the optimized CSB value according to the capacity and coverage of the small station, the method further includes:
  • the small station receives parameter information; the parameter information carries a weight of the capacity of the small station and a weight of the coverage of the small station.
  • the small station determines the optimized CSB value of the small station according to the capacity and coverage of the small station, including:
  • the small station acquires at least one candidate CSB value
  • the CSB value is used as the optimized CSB value of the small station
  • the small station acquires at least one candidate CSB value, including:
  • the small station acquires, according to the first CSB value, a received power of each of the at least one terminal for the small station and a received power of each of the at least one terminal for the macro station;
  • the small station adds a first CSB value to a received power of each terminal of the at least one terminal for the small station, and obtains a first value corresponding to each terminal in the at least one terminal;
  • the small station determines that the load of the small station corresponding to the first CSB value is equal to 1 according to the set E s corresponding to the first CSB value, the first CSB value is used as the candidate CSB value;
  • the small station determines, according to the set E s corresponding to the first CSB value, that the load of the small station corresponding to the first CSB value is less than 1, the first CSB value is used as the candidate CSB value, and
  • the preset length increases the first CSB value, and obtains the new first CSB value until the first CSB value reaches a preset threshold CSB value.
  • an embodiment of the present invention provides a processing method for optimizing a communication network, including: determining, by a network controller, each optimized ABS value for each macro station;
  • the network controller sends corresponding each optimized ABS value to each macro station; the network controller determines capacity and coverage for the small station according to the current hotspot location and the vulnerability location in the communication network;
  • the network controller sends an ABS value optimization complete message to the small station; the optimization completion message of the ABS value carries the capacity and coverage of the small station.
  • the current hotspot location and the number of vulnerability locations are respectively at least one, and the network controller is configured according to the current hotspot location and the vulnerability location in the communication network. Describe the capacity and coverage of the small station, including:
  • the network controller acquires respective first measurement distances between the small station and each of the hotspot locations and respective second measurement distances between the small station and each of the vulnerability locations;
  • the network controller determines, in each of the first measurement distances, a first measurement distance having a smallest value as a first distance; and determining, in each of the second measurement distances, a second measurement distance having a smallest value, the network controller And determining, according to the first distance and the second distance, the weight of the coverage and the weight of the capacity.
  • the network controller determines a weight of the current coverage according to the first distance, and determines, according to the second distance, the The weight of the pre-capacity, including:
  • the network controller determines the weight of the coverage according to the first distance and the second distance, the weight of the previous coverage, and according to the first distance and the first The weight of the second distance and the previous capacity determines the weight of the capacity;
  • the network controller determines the weight of the coverage according to the first distance and the second distance, the weight of the previous coverage, and the weight of the initial coverage, and according to the The weights of the first distance and the second distance, the weight of the previous capacity, and the initial capacity determine the weight of the capacity.
  • the network controller determines the weight of the coverage according to the first distance and the second distance, the weight of the previous coverage, and according to the first The distance and the second distance, the weight of the previous capacity determine the weight of the capacity, including:
  • the network controller determines each optimized ABS value for each macro station, including:
  • the maximum y? ⁇ in the / ⁇ set corresponding to the current group candidate chromosome and the maximum ⁇ in the yiYm ⁇ set corresponding to the previous set of candidate chromosomes are greater than the preset fit threshold, and If the number of executions of the genetic algorithm operation for obtaining the current group of candidate chromosomes does not exceed a preset genetic threshold, then the maximum y corresponding y candidate chromosomes are selected as y in the corresponding set of the current group of candidate chromosomes.
  • the network controller combines the y parent chromosomes and (Y-y) child chromosomes to obtain a new current group candidate chromosome;
  • the network controller determines, in the fitness set corresponding to the current group candidate chromosome, that the largest/corresponding candidate chromosome is an optimized chromosome;
  • the total number of candidate ABS values included in one candidate chromosome is equal to the total number of the respective macro stations; Y and y are preset positive integers, and ⁇ is the coverage key performance indicator KPI of the communication network; C ⁇ is the capacity KPI of the communication network; C is used when the ' ⁇ ⁇ is obtained.
  • the values of v and C ap are determined by the / corresponding candidate chromosomes; the normalized weight values are preset.
  • the network controller determines, according to the optimized chromosome, each optimized ABS value for each of the macro stations, including:
  • the values of v and C ⁇ are related to the real data of the communication network, and the network controller uses each candidate ABS value in the optimized chromosome as the optimized ABS value corresponding to each of the macro stations;
  • a ⁇ represents an optimized ABS value of the macro station; ⁇ represents a candidate ABS value in the optimized chromosome determined by the real data; represents a candidate ABS value in the optimized chromosome determined by the prediction data; Smooth weights.
  • the CSB value adjustment of the small station is performed by the small station, and the small station can adjust the CSB value in time according to the dynamic change of the communication network, so as to effectively The communication network is optimized; compared with the prior art, the adjustment of the CSB value in this embodiment is no longer controlled by the network controller station, so the adjustment frequency of the CSB value of the small station does not need to be the same as the frequency of adjusting the ABS value.
  • the small station can adjust the CSB value at a small time interval, optimize the dynamically changing communication network in time, and does not cause huge signaling overhead; and combines the capacity and coverage of the small station when optimizing the communication network.
  • the problem of network hotspots and coverage vulnerabilities caused by dynamic changes of terminal load in the communication network can be effectively solved, which is beneficial to improving the performance of the communication network.
  • FIG. 1 is a schematic diagram of a communication network in the prior art
  • Embodiment 1 of a station according to the present invention is a structural diagram of Embodiment 1 of a station according to the present invention.
  • FIG. 3 is a structural diagram of a second embodiment of the small station of the present invention.
  • FIG. 4 is a structural diagram of a third embodiment of the small station of the present invention.
  • FIG. 5 is a structural diagram of Embodiment 4 of the small station of the present invention.
  • Embodiment 1 of a network controller according to the present invention.
  • Embodiment 7 is a structural diagram of Embodiment 2 of a network controller according to the present invention.
  • Embodiment 8 is a structural diagram of Embodiment 3 of a network controller according to the present invention.
  • Embodiment 9 is a flowchart of Embodiment 1 of a processing method for optimizing a communication network according to the present invention.
  • FIG. 10 is a flowchart of Embodiment 2 of a method for processing an optimized communication network according to the present invention
  • 11 is a flowchart of Embodiment 3 of a method for processing a communication network according to the present invention
  • FIG. 12 is a flowchart of Embodiment 4 of a method for processing an optimized communication network according to the present invention
  • FIG. 13 is a flowchart of Embodiment 5 of a method for processing an optimized communication network according to the present invention.
  • the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention.
  • the embodiments are a part of the embodiments of the invention, and not all of the embodiments. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • Embodiment 1 of the small station of the present invention is specifically the small station 20 in FIG. 1, and the small station includes:
  • a determining module 21 configured to determine an optimized CSB value according to the capacity and coverage of the small station; an updating module 22, configured to update a current CSB value of the small station to the optimized CSB value; and send module 23,
  • the optimized CSB value of the small station is sent to at least one terminal.
  • the adjustment of the CSB value of the small station is performed by the small station, and the small station can adjust the CSB value in time according to the dynamic change of the communication network, so as to effectively optimize the communication network; compared with the prior art
  • the adjustment of the CSB value is no longer controlled by the network controller station, so the adjustment frequency of the CSB value of the small station does not need to be the same as the frequency of adjusting the ABS value, and the small station can be at a small time interval. Adjusting the CSB value, and optimizing the dynamic change of the communication network, will not cause huge signaling overhead; and the capacity and coverage of the small station are combined when optimizing the communication network, which can effectively solve the dynamics of the terminal load in the communication network.
  • the problem of network hotspots and coverage vulnerabilities caused by changes is conducive to improving the performance of communication networks.
  • FIG. 3 is a structural diagram of Embodiment 2 of the small station of the present invention. As shown in FIG. 3, this embodiment is based on the small station shown in FIG. 2, and further includes a receiving module 24; the sending module 23 is also used to be adjacent to the small The station transmits the optimized CSB value;
  • the receiving module 24 is configured to receive a current CSB value of the neighboring station
  • the determining module 21 is further configured to determine an actual situation of the terminal accessing the small station according to the optimized CSB value of the small station and the current CSB value of the neighboring small station;
  • the determination module 21 is configured to perform the determining to optimize the CSB value. Further, the receiving module 24 is further configured to receive parameter information; the parameter information carries a weight of the capacity of the small station and a weight of the coverage of the small station.
  • the determining module 21 specifically includes:
  • An obtaining unit 211 configured to acquire at least one candidate CSB value
  • Determination unit 212 for use according to! ⁇ ⁇ + ;, determining each candidate result corresponding to each candidate CSB value;
  • the selecting unit 213 is configured to use, as the optimized CSB value of the small station, a candidate CSB value corresponding to the candidate result having the largest value among the each candidate result;
  • maxl is the candidate result
  • represents the weight of the coverage of the small station
  • ⁇ 3 ⁇ 4 represents the weight of the capacity of the small station
  • C is the KPI of the small station about the coverage (Key Performance)
  • C a s p ⁇ iR e , s xh(R e , HR - ile is the average of the respective association rates for the small stations corresponding to 2% of the terminals in the set, and any one of the z% terminals is small
  • the association rate of the station is not greater than the association rate of any one of the terminals in the set except the 2 % terminal; the different candidate CSB values correspond to different sets, and the different sets E s
  • the z% terminals corresponding to different es represent any one of the sets E s , and s represents the association rate of the terminal e in the set associated with the small station, which is the demand rate of the terminal e , R e is determined.
  • the acquiring unit 211 is specifically configured to apply to
  • Determining the first in the at least one terminal according to a first value corresponding to each terminal in the at least one terminal and a received power of each of the at least one terminal for the macro station The set E s corresponding to the CSB value ;
  • the first CSB value is used as the candidate CSB value
  • the first CSB value is used as the candidate CSB value, and is preset.
  • the first CSB value is increased to obtain a new first CSB value until the first CSB value reaches a preset threshold CSB value.
  • the adjustment of the CSB value of the small station is performed by the small station, and the small station can adjust the CSB value in time according to the dynamic change of the communication network, so as to effectively optimize the communication network; compared with the prior art
  • the adjustment of the CSB value is no longer controlled by the network controller station, so the adjustment frequency of the CSB value of the small station does not need to be the same as the frequency of adjusting the ABS value, and the small station can be at a small time interval. Adjusting the CSB value, and optimizing the dynamic change of the communication network, will not cause huge signaling overhead; and the capacity and coverage of the small station are combined when optimizing the communication network, which can effectively solve the dynamics of the terminal load in the communication network.
  • the problem of network hotspots and coverage vulnerabilities caused by changes is conducive to improving the performance of communication networks.
  • each module in the small station shown in FIG. 2 and FIG. 3 is specifically used to execute each step in the method embodiment shown in FIG. 9, FIG. 10 and FIG. 13 below, and the specific execution process and Advantageous effects can be referred to the description in the respective method embodiments described below.
  • the small station in this embodiment may be the small station 20 in FIG. 1, and the small station includes:
  • the processor 201 is configured to determine, according to the capacity and coverage of the small station, an optimized CSB value, and update a current CSB value of the small station to the optimized CSB value;
  • the transmitter 202 is configured to send the optimized CSB value of the small station to at least one terminal.
  • the adjustment of the CSB value of the small station is performed by the small station, and the small station can adjust the CSB value in time according to the dynamic change of the communication network, so as to effectively optimize the communication network; compared with the prior art
  • the adjustment of the CSB value is no longer controlled by the network controller station, so the adjustment frequency of the CSB value of the small station does not need to be the same as the frequency of adjusting the ABS value, and the small station can be at a small time interval. Adjusting the CSB value, and optimizing the dynamic change of the communication network, will not cause huge signaling overhead; and the capacity and coverage of the small station are combined when optimizing the communication network, which can effectively solve the dynamics of the terminal load in the communication network. Network hotspot caused by change And covering the issue of vulnerabilities, which will help improve the performance of the communication network.
  • FIG. 5 is a structural diagram of Embodiment 4 of the small station of the present invention. As shown in FIG. 5, this embodiment is based on the small station shown in FIG. 4, and further includes a receiver 203. The transmitter 202 is also used to be adjacent to the small station. The station transmits the optimized CSB value;
  • the receiver 203 is configured to receive a current CSB value of the neighboring station
  • the processor 201 is further configured to determine an actual situation of the terminal accessing the small station according to the optimized CSB value of the small station and the current CSB value of the neighboring small station;
  • the determining module is configured to perform the determining the optimized CSB value if the actual condition is different from an expected condition of the terminal accessing the small station corresponding to the optimized CSB value of the small station.
  • the receiver 203 is further configured to receive parameter information; the parameter information carries a weight of the capacity of the small station and a weight of the coverage of the small station.
  • the processor 201 is specifically configured to acquire at least one candidate CSB value; and determine, according to max ⁇ C + ⁇ C;, each candidate result corresponding to each candidate CSB value;
  • a candidate CSB value corresponding to the candidate result having the largest value is used as the optimized CSB value of the small station in each of the candidate results;
  • the processor 201 acquires at least one candidate CSB value, it is specifically according to the first a CSB value, a received power of each of the at least one terminal for the small station and a received power for each of the at least one terminal for a macro station;
  • the first CSB value is used as the candidate CSB value
  • the first CSB value is used as the candidate CSB value, and is preset.
  • the first CSB value is increased to obtain a new first CSB value until the first CSB value reaches a preset threshold CSB value.
  • the adjustment of the CSB value of the small station is performed by the small station, and the small station can adjust the CSB value in time according to the dynamic change of the communication network, so as to effectively optimize the communication network; compared with the prior art
  • the adjustment of the CSB value is no longer controlled by the network controller station, so the adjustment frequency of the CSB value of the small station does not need to be the same as the frequency of adjusting the ABS value, and the small station can be at a small time interval. Adjusting the CSB value, and optimizing the dynamic change of the communication network, will not cause huge signaling overhead; and the capacity and coverage of the small station are combined when optimizing the communication network, which can effectively solve the dynamics of the terminal load in the communication network.
  • the problem of network hotspots and coverage vulnerabilities caused by changes is conducive to improving the performance of communication networks.
  • each device in the small station shown in FIG. 4 and FIG. 5 is specifically used to execute each step in the method embodiment shown in FIG. 9, FIG. 10 and FIG. 13 below, and the specific execution process and Advantageous effects can be referred to the description in the respective method embodiments described below.
  • FIG. 6 is a structural diagram of Embodiment 1 of a network controller according to the present invention.
  • the network controller in this embodiment may be the network controller 30 in FIG. 1 or a macro station integrated with the network controller function.
  • the network controller in this embodiment includes:
  • a determining module 31 configured to determine each optimized ABS value for each macro station
  • a sending module 32 configured to send, to each macro station, a corresponding each of the optimized ABS values;
  • the determining module 31 is further configured to: according to a current hotspot location and a vulnerability bit in the communication network Set, determine the capacity and coverage for the station;
  • the sending module 32 is further configured to send an ABS value optimization complete message to the small station; the optimization completion message of the ABS value carries the capacity and coverage of the small station.
  • the network controller determines the capacity and coverage for each small station, so that each small station can combine capacity and coverage when optimizing the communication network in the sub-area. Effectively solve the problem of network hotspots and coverage vulnerabilities caused by dynamic changes of communication networks in communication networks.
  • FIG. 7 is a structural diagram of Embodiment 2 of a network controller according to the present invention. As shown in FIG. 7, this embodiment is based on the embodiment shown in FIG. 6, and further description is made.
  • the number of the current hotspot location and the number of the vulnerability locations is at least one, and the determining module 31 specifically includes:
  • the acquiring unit 311 is configured to acquire, according to each first measurement distance between the small station and each of the hotspot locations, and each second measurement distance between the small station and each of the vulnerability locations;
  • a first determining unit 312 configured to determine, in each of the first measurement distances, a first measurement distance that is the smallest value as a first distance; and determine, in each of the second measurement distances, a second second determination unit that has a smallest value 313. Determine, according to the first distance and the second distance, a weight of the weight and capacity of the coverage.
  • the second determining unit 313 is specifically used for
  • the small station does not belong to the planned network element, determining, according to the first distance and the second distance, the weight of the previous coverage, according to the first distance and the second distance, The weight of the previous capacity determines the weight of the capacity;
  • the small station belongs to the planned network element, determining the weight of the coverage according to the first distance and the second distance, the weight of the previous coverage, and the weight of the initial coverage, and according to the first distance and the first The weight of the second distance, the weight of the previous capacity, and the initial capacity determines the weight of the capacity.
  • the second determining unit 313 is specifically used to determine whether the small station does not belong to the network element to be deployed.
  • the weight of the coverage of the small station is the weight of the capacity of the small station, and co is the weight of the previous coverage of the small station, and is the weight of the previous capacity of the small station.
  • the first determining unit 312 is further configured to select a maximum of y in the set corresponding to the current group of candidate chromosomes, if the number of executions of the genetic algorithm operation for obtaining the current group of candidate chromosomes does not exceed a preset genetic threshold.
  • the first determining unit 312 is further configured to determine, in the set of fitness y? ⁇ corresponding to the current group of candidate chromosomes, the candidate chromosome corresponding to the largest ⁇ is an optimized chromosome ;
  • the second determining unit 313 is further configured to determine, according to the optimized chromosome, each optimized ABS value for each of the macro stations;
  • the total number of candidate ABS values included in one of the candidate chromosomes is related to each of the macro stations The total number is equal; Y and y are preset positive integers, and ⁇ ; is the coverage key performance indicator KPI of the communication network; C ⁇ is the capacity KPI of the communication network; when the /trn ⁇ is obtained, C.
  • the values of v and C ap are determined by the / corresponding candidate chromosomes; the normalized weight values are preset.
  • the second determining unit 313 is specifically configured to be used
  • the values of v and c ap are related to the real data of the communication network, and each candidate ABS value in the optimized chromosome is used as an optimized ABS value corresponding to each of the macro stations;
  • a ⁇ represents an optimized ABS value of the macro station; represents a candidate ABS value in the optimized chromosome determined by the real data; represents a candidate ABS value in the optimized chromosome determined by the prediction data; the weight of.
  • the network controller determines the optimized ABS value for each macro station by using the operation of the genetic algorithm, so that the communication network obtains the performance optimization on the global scope, and adjusts the ABS value of each macro station after using the optimized ABS value.
  • the weight of the current capacity and the weight of the current coverage are determined, so that each small station can combine the weight of the current capacity and the weight of the current coverage according to its own characteristics when optimizing the communication network in the sub-area, effective Solve the problem of network hotspots and coverage vulnerabilities caused by dynamic changes of communication networks in communication networks.
  • each module in the network controller shown in FIG. 6 and FIG. 7 is specifically used to execute each step in the method embodiment shown in FIG. 11 to FIG. 13 below, and the specific execution process is beneficial. The effect can be referred to the description in each of the following method embodiments.
  • FIG. 8 is a structural diagram of Embodiment 3 of a network controller according to the present invention.
  • the network controller in this embodiment may be the network controller 30 in FIG. 1 or a macro station integrated with the network controller function.
  • the network controller in this embodiment includes:
  • the processor 301 is configured to determine, for each macro station, each optimized ABS value
  • the transmitter 302 is configured to send each of the optimized ABS values to each macro station; the processor 301 is further configured to determine a capacity and an coverage for the small station according to the current hotspot location and the vulnerability location in the communication network; The transmitter 302 is further configured to send an ABS value optimization complete message to the small station; the optimization completion message of the ABS value carries the capacity and coverage of the small station.
  • the current hotspot location and the number of the vulnerability locations are respectively at least one, and the processor 301 is specifically configured to acquire each first measurement distance between the small station and each of the hotspot locations and the a respective second measurement distance between the station and each of said vulnerability locations;
  • the processor 301 determines the weight of the coverage according to the first distance and the second distance, the weight of the previous coverage, and according to the first The distance and the second distance, the weight of the previous capacity determine the weight of the capacity;
  • the processor 301 determines the weight of the coverage according to the first distance and the second distance, the weight of the previous coverage, and the weight of the initial coverage, and according to the The weights of the first distance and the second distance, the weight of the previous capacity, and the initial capacity determine the weight of the capacity.
  • the second determining unit is specifically configured to determine, according to the weight of the coverage, according to ⁇ 2 ⁇ ⁇ ⁇ ⁇ + determining the weight of the capacity;
  • is the weight of the coverage of the small station, the weight of the capacity of the small station, and co is the weight of the previous coverage of the small station, which is the weight of the previous capacity of the small station,
  • the processor 301 is also used to
  • the fitness fit of the current group of candidate chromosomes is obtained.
  • a set of said candidate chromosomes comprising Y candidate chromosomes, each of said / sets corresponding to a candidate chromosome;
  • the processor 301 is further configured to select a maximum of y/trn ⁇ in the corresponding set of the current group of candidate chromosomes. Corresponding y candidate chromosomes as y parent chromosomes;
  • the processor 301 is further configured to determine, in the fitness/trn ⁇ set corresponding to the current group candidate chromosome, that the maximum/corresponding candidate chromosome is an optimized chromosome;
  • the processor 301 is further configured to determine, according to the optimized chromosome, each optimized ABS value for each of the macro stations;
  • the total number of candidate ABS values included in one candidate chromosome is equal to the total number of the respective macro stations; Y and y are preset positive integers, and ⁇ is the coverage key performance indicator KPI of the communication network; C ap is the capacity KPI of the communication network; when the / is obtained, C is adopted.
  • the values of v and C ap are determined by the / corresponding candidate chromosomes; the normalized weight values are preset.
  • processor 301 is specifically used to
  • a ⁇ represents an optimized ABS value of the macro station; represents a candidate ABS value in the optimized chromosome determined by the real data; represents a candidate ABS value in the optimized chromosome determined by the prediction data; the weight of.
  • the network controller determines the optimized ABS value for each macro station by using the operation of the genetic algorithm, so that the communication network obtains the performance optimization on the global scope, and adjusts the ABS value of each macro station after using the optimized ABS value.
  • the weight of the current capacity and the weight of the current coverage are determined, so that each small station can combine the weight of the current capacity and the weight of the current coverage according to its own characteristics when optimizing the communication network in the sub-area, effective Solve the problem of network hotspots and coverage vulnerabilities caused by dynamic changes of communication networks in communication networks.
  • each device in the network controller shown in FIG. 8 is specifically used to execute each step in the method embodiment shown in FIG. 11 to FIG. 13 below.
  • the specific implementation process and beneficial effects can be referred to the following. The descriptions in the various method embodiments are described.
  • FIG. 9 is a flowchart of Embodiment 1 of a processing method for optimizing a communication network according to the present invention.
  • the execution body of this embodiment is a processing device for optimizing a communication network, and the processing device can be implemented by using software and/or hardware.
  • the processing device is integrated in a small station as shown in FIG.
  • the present embodiment can be applied to the communication network shown in FIG. 1. It can be understood that there are multiple small stations in the communication network, and each small station needs to adjust the CSB value in time according to the dynamic change of the communication network, and the implementation is performed. For example, in one of the small station perspectives, the description of this embodiment is performed, specifically:
  • the S10 station determines the optimized CSB value based on the capacity and coverage of the station.
  • the above optimized CSB value is used to optimize the communication network where the small station is located.
  • the small station since the small station combines the capacity and the coverage to determine the optimized CSB value, the problem of the network hotspot and the coverage vulnerability caused by the dynamic change of the terminal load in the communication network can be effectively solved.
  • the above S101 is an ABS value optimization sent by the network controller in the communication network to the small station.
  • the ABS value optimization completion message is further passed, and the control station starts to adjust the CSB value;
  • the small station starts executing.
  • the small station starts the timer of the small station after adjusting the CSB value for the previous time, and the timer duration of the timer reaches the preset duration. After that, S101 is executed; or
  • the load assumed where s represents the small station, the load assumed for the current time of the small station, t/ s is the set of all terminals including the current station accessing the station; u represents any terminal in t/ s , then ⁇ indicates The service demand of the terminal U, where s is the association rate between the terminal U and the small station; then the small station calculates the amount of change between the current statistical load of the small station and the load before the current time, if the change reaches the preset load Change the threshold, then start executing S101;
  • the network controller adjusts the ABS value of each macro station in the communication network, so that the communication network is optimized in the global scope, and simultaneously sends an optimization completion message of the ABS value to the small station, and controls the initial station to cooperate with the initial
  • the ABS value is adjusted at any time, and the CSB value is adjusted; while the small station adjusts the CSB value, the small station starts the timer, and then with the passage of time, the traffic demand and environmental factors of the terminal in the communication network are always changing dynamically.
  • the time period from the initial time to the current time t1 of the timer of the small station reaches the preset time length, even if the network controller determines that the ABS value does not need to be adjusted at this time, the small station needs to timely solve the communication after the dynamic change.
  • the problem in the network starts to adjust the CSB value; or when the network controller determines that the ABS value does not need to be adjusted, but after the small station adjusts the CSB value before the current time, the number of terminals in the communication network that are connected to the small station changes.
  • the terminal selects the access station according to the CSB value currently used by the station, and It can get better service through the small station, that is, the performance of the communication network is poor at this time. Therefore, when the small station detects that the load change amount reaches the preset load change threshold at the current time, it also starts to adjust the CSB value to optimize the communication network. .
  • the station updates the current CSB value of the small station to an optimized CSB value.
  • the small station sends the optimized CSB value of the small station to the at least one terminal.
  • the terminal in the communication network After the terminal in the communication network receives the optimized CSB value sent by the small station, the terminal can determine whether to access the small station according to the optimized CSB value.
  • the other small stations in the communication network also adjust their respective CSB values according to S101 ⁇ S103, that is, the small station 1 executes S103, and the small station 2 also performs S. 103, after the terminal receives the optimized CSB value sent by the small station 1 and the optimized CSB value sent by the small station 2, the terminal can select the optimized CSB value of the small station 1 and the optimized CSB value of the small station 2, Selecting a small station that can obtain a better communication service, or the terminal determines that access to other macro stations can obtain better service according to the optimized CSB value of the small station 1 and the optimized CSB value of the small station 2, and the terminal selects access.
  • each terminal in the communication network can reasonably access each small station or macro station, avoiding a large number of terminals from centrally accessing a small station or a macro station, and also avoiding the problem of coverage holes in the communication network, that is, each The small stations complete the performance optimization of the respective coverage areas in the communication network by their respective optimized CSB values.
  • the adjustment of the CSB value of the small station is performed by the small station, and the small station can adjust the CSB value in time according to the dynamic change of the communication network, so as to effectively optimize the communication network; compared with the prior art
  • the adjustment of the CSB value is no longer controlled by the network controller, so the adjustment frequency of the CSB value of the small station does not need to be the same as the adjustment frequency of the ABS value, and the small station can adjust the CSB at a small time interval.
  • the value and time-to-time optimization of the dynamically changing communication network will not cause huge signaling overhead; and the capacity and coverage of the small station are combined when optimizing the communication network, which can effectively solve the dynamic change of the terminal load in the communication network.
  • the problem of network hotspots and coverage vulnerabilities is conducive to improving the performance of communication networks.
  • FIG. 10 is a flowchart of Embodiment 2 of a processing method for optimizing a communication network according to the present invention. As shown in FIG. 10, this embodiment is further described on the basis of the embodiment shown in FIG. 9, as follows: The S20 station acquires at least one candidate CSB value.
  • the small station acquires the received power of each terminal of the at least one terminal for the small station and the received power of each of the at least one terminal for the macro station.
  • the initial value of the first CSB value may be set to OdB;
  • the at least one terminal is a terminal near the small station, and may also be a terminal that can perform data transmission with the small station, specifically including the connected terminal.
  • the terminal near the small station at the request of the small station, returns to the small station the received power of the signal receiving the small station and the received power of the signal of the receiving macro station; wherein the number of macro stations is at least one, correspondingly, the terminal
  • the receiving power of the signal of each macro station in the at least one macro station is received back to the station.
  • the small station adds a first CSB value to a receiving rate of each of the at least one terminal for the small station, and obtains a first value corresponding to each terminal in the at least one terminal.
  • the small station is configured according to the first value corresponding to each terminal in the at least one terminal and the at least one terminal. Determining, by each terminal, a set E s corresponding to the first CSB value in the at least one terminal for a receiving rate of the macro station ;
  • the small station receives the information reported by the five terminals, and takes the first terminal of the five terminals as an example, and the received power of the first terminal for the small station is And the received power of the first terminal for the macro station is , m represents a macro station, according to max ⁇ RSRP m ⁇ m , RSRP , s + CSB s ⁇ to determine whether the first terminal will access the station, wherein
  • CSS S is the first CSB value
  • +CSS P is the first value corresponding to the first terminal; in practice, there are usually multiple macro stations, but in this embodiment, for convenience of description, the above n ⁇ RSRP m , RSRP s + CSBJ are represented by a macro station; negligence ⁇ RSRP , m , RSRP +C3 ⁇ 4
  • the result is RSRP , which means that if the first station sets the first CSB value, the first terminal will not choose to access the station, if according to n RSRP , RSRP , s + CSB s
  • the result obtained is RSRP, s + CSB s , indicating that if the first station sets the first CSB value, the first terminal will select to access the small station, and then the first CSB value will be connected to the small station.
  • a terminal is saved in the set corresponding to the first CSB value, and the set corresponding to any one of the first CSB values in the embodiment
  • each terminal of the five terminals is determined, so that, at the first CSB value, each terminal that accesses the small station among the five terminals constitutes a set corresponding to the first CSB value. E s .
  • S4 Determine whether the load of the small station is equal to 1 according to the set E s corresponding to the first CSB value. If S5 is executed, S6 is executed.
  • the first terminal, the second terminal, and the fifth terminal are included in the set E s corresponding to the first CSB value in S3, and the current traffic is reported according to the first terminal, the second terminal, and the fifth terminal respectively.
  • the associated rate with each of the small stations (the association rate of the terminal and the small station can be expressed by the average value of the rate at which the terminal receives the downlink data of the small station for a period of time), and the load amount of the small station is calculated, and the associated rate is ABS impact by the current value of each macro network communication station; specific, referring to the "lod", calculated for a first station CSB value ⁇ ⁇ corresponding set ueU s, 5
  • the first CSB value is used as the candidate CSB value, and the first CSB value is increased by a preset length to obtain a new first CSB value, and the execution returns to Sl.
  • the initial OdB example after executing S1 ⁇ S4 S6 is performed, i.e., in accordance with the corresponding set of OdB E s, the station determines that OdB load corresponding to less than 1, as a candidate OdB CSB value and a preset The length of 5 dB is increased by 0 dB, and the new first CSB value is obtained as 5 dB, and the execution returns to Sl until the first CSB value reaches the preset threshold CSB value, and then S202 is executed.
  • the association rate of each terminal and the small station in the at least one terminal is affected by the current ABS value of each macro station in the communication network, for example, each terminal and small station in the set E s corresponding to the first CSB value.
  • the association rate is affected by the current ABS value of each macro station, thereby affecting whether the load corresponding to the first CSB value is less than 1, and finally affecting whether the first CSB value is a candidate CSB value.
  • max l is the candidate result, which is the weight of the coverage of the small station
  • is the weight of the capacity of the small station
  • the small station receives the parameter information; the parameter information carries the capacity of the small station.
  • the weight and the weight of the coverage of the small station, specifically, the parameter information may be specifically the triggering station to perform the ABS value optimization completion message of S201, or the parameter information may also be obtained by the small station before executing S201;
  • the KPI Key Performance Indicator
  • a candidate set corresponding to the determined value of the CSB by the aforementioned S201 is included in the first to fifth terminal, according to the association rate of each of the first to fifth terminal reported, choose the lowest rate set 2 associated % of the terminals, for example, 40, the association rate of the third terminal in the set E s is lower than the other first, second, and fifth terminals, and the association rate of the fourth terminal is lower than the third terminal, and the association is selected in the set.
  • the lowest rate of 40% of the terminals is the third terminal and the fourth terminal, and then the correlation rate between the third terminal and the small station and the average rate of the association between the fourth terminal and the first terminal are calculated; then, understandably, different
  • the candidate CSB values correspond to different sets E s , that is, the number of terminals in each terminal and set included in different sets E s are different, and thus the determined % is also different.
  • the network controller adjusts the ABS value of each macro station in the global category at time t1, then the network control The controller calculates the weight of the coverage of the small station and the weight of the capacity under the influence of each ABS value at time t1, and sends the calculated weight of the coverage of the small station and the weight of the capacity to the station with the optimization completion message of the ABS value. ;
  • the network controller decides not to adjust the ABS value, but the timer of the small station determines that the time duration from t1 to t2 reaches the preset duration, or the change in the load of the small station at t2 exceeds
  • the load change threshold is preset
  • the weight of the coverage of the small station used in S202 and the weight of the small station still use the weight of the coverage and the weight of the coverage received by the small station at time t1, that is,
  • the weight of the coverage of the small station and the weight of the small station in the embodiment are carried in an optimization completion message for triggering the small station to perform the ABS value of S201, or the weight of the coverage of the small station.
  • the weight of the capacity of the small station is received by the small station before executing S201.
  • the small station is a candidate corresponding to the candidate result with the largest value among the candidate results.
  • the CSB value is used as the optimized CSB value for the station.
  • S207 may be directly executed to complete optimization of the communication network; but considering that the set for determining the optimized CSB value is the small station that is predicted to access the station by calculation. a set of terminals, and in the calculation process, other small stations adjacent to the small station performing the present embodiment (referred to as adjacent small stations in this embodiment, and the number of adjacent small stations is at least one) are also targeted.
  • the respective CSB values are adjusted, that is, the CSB values of the individual stations in the communication network are constantly being adjusted.
  • the station changes the current CSB value of the station to the optimized CSB value and broadcasts to the surrounding terminals.
  • At least one adjacent small station After the optimized CSB value, at least one adjacent small station also broadcasts the current CSB value of the adjacent small station to each terminal, and the terminal selects the small station to be accessed according to the received CSB value of each small station, and then The terminal that is used to determine the optimized CSB value of the above-mentioned small station may actually select the access after receiving the optimized CSB value of the small station in this embodiment and the current CSB value of a neighboring small station.
  • An adjacent small station, or a terminal that does not belong to the above-mentioned set for determining an optimized CSB value after receiving the optimized CSB value of the small station of the embodiment and the current CSB value of a neighboring small station, the terminal Actually choose the access setting The CSB value of the small station, so the small station of this embodiment obtains the optimized CSB value, and exchanges the CSB value with the adjacent small station, that is, it needs to execute S204 ⁇ S206 at this time to obtain an optimized CSB that is more in line with the current situation of the communication network. The value makes it more reasonable for the terminal to select the small station to access.
  • the small station sends an optimized CSB value of the small station to the adjacent small station, and receives a current CSB value of the neighboring small station.
  • the optimization of the small station corresponds to the expected condition of the terminal accessing the station
  • the small station determines an actual condition of the terminal accessing the small station according to the optimized CSB value of the small station and the current CSB value of the adjacent small station.
  • the foregoing expected conditions specifically include determining the number of terminals included in each set in the set of optimized CSB values and the set for determining the optimized CSB value, and the actual condition includes selecting each terminal of the access station under the optimized CSB value. And selecting the number of terminals accessing the small station under the optimized CSB value; for example, the expected condition is specifically for the first to fifth total 5 terminals included in the set for determining the optimized CSB value, and the small station is surrounding Each terminal sends detection data and receives the received power fed back by each terminal. The small station calculates and determines the station based on the received power fed back by each terminal, its own optimized CSB value, and the current CSB value of the adjacent station. After the CSB value is set, the actual status of the terminal accessing the small station is the first, second, and fifth terminals, and the number of terminals is 3.
  • the small station determines whether the expected condition is the same as the actual condition. If not, the process returns to S201, and if yes, executes S207.
  • the above return execution S201 is to determine the optimized CSB value of the small station again, to obtain the new optimized CSB value of the small station, until each of the optimized CSB values of the small station is in accordance with the obtained order, and constitutes the receipt. Convergence series; For example, at time t2, the station obtains the optimized CSB value 1, but after executing S206, it returns to S201 to restart execution, and obtains the optimized CSB value 2 at time t3; and so on, obtains the optimized CSB value at time t9. At this time, the small station judges that the optimized CSB value 1 to the optimized CSB value 8 constitutes a convergence sequence, and at this time, regardless of the judgment result of S206, S207 is directly executed according to the optimized CSB value 8;
  • the number of times S201 is repeatedly executed reaches a preset threshold, for example, before the time t9, the event of "returning to S201 after executing S206" has occurred 10 times, 10 is After the preset threshold is obtained, after the optimized CSB value 8 is obtained at time t9, regardless of the judgment result of S206, S207 is directly executed according to the optimized CSB value 8.
  • the station updates the current CSB value of the station to an optimized CSB value.
  • the small station sends the optimized CSB value of the small station to the at least one terminal.
  • the terminal in the communication network After the terminal in the communication network receives the optimized CSB value sent by the small station, the terminal can determine whether to access the small station according to the optimized CSB value.
  • the adjustment of the CSB value of the small station is performed by the small station, and the small station can adjust the CSB value in time according to the dynamic change of the communication network, so as to effectively optimize the communication network; compared with the prior art
  • the adjustment of the CSB value is no longer controlled by the network controller station, so the adjustment frequency of the CSB value of the small station does not need to be the same as the frequency of adjusting the ABS value, and the small station can be at a small time interval. Adjusting the CSB value, and optimizing the dynamic change of the communication network, will not cause huge signaling overhead; and the capacity and coverage of the small station are combined when optimizing the communication network, which can effectively solve the dynamics of the terminal load in the communication network.
  • the problem of network hotspots and coverage vulnerabilities caused by changes is conducive to improving the performance of communication networks. Further, in the process of determining the CSB values used by the small stations to optimize the communication network, the adjacent two stations are also exchanged. The CSB value is optimized to adjust the optimized CSB value so that the adjusted new optimized CSB value is more in line with the current communication network.
  • FIG. 11 is a flowchart of Embodiment 3 of a method for processing an optimized communication network according to the present invention.
  • the execution body in this embodiment is a network controller, and each step in this embodiment may be implemented by software and/or hardware in the network controller.
  • the macro station in the communication network may be The functions of integrating the network controller are as follows:
  • the network controller determines, for each macro station, each optimized ABS value.
  • the above optimized ABS value is used to optimize the communication network. 5302.
  • the network controller sends corresponding optimized ABS values to each macro station.
  • the foregoing macro station may specifically be a macro station in the communication network.
  • the network controller determines each optimized ABS value for each macro station, and sends each optimized ABS value.
  • each macro station sends an ABS according to the optimized ABS value, so that the interference of each macro station to the terminal of the current communication network accessing the small station is in a reasonable state in the global category, and the terminal is not in the communication network.
  • the acquired network services have a serious impact, thereby optimizing the service performance of the communication network.
  • the network controller determines capacity and coverage for the small station according to the current hotspot location and the location of the vulnerability in the communication network.
  • each small station needs to be optimized to optimize the communication network; when the small stations are optimized to optimize the communication network, the network controller combines with the current communication network.
  • Hot spot location and vulnerability location determining the capacity and coverage for each small station to match the current communication network; for example, if some small stations are closer to the current hotspot location, the primary role of the small station is to share the load. Therefore, the weight of the capacity of the small station needs to be set larger, and some small stations are closer to the current vulnerability location, and the small station is used to solve the coverage problem, and the weight of the coverage of the small station needs to be set.
  • the network controller determines the capacity and coverage for the small station according to the current hotspot location and the vulnerability location in the communication network, and the determined small station determines the capacity and coverage at this time.
  • the network controller sends an ABS value optimization completion message to the small station.
  • the optimization completion message of the ABS value carries the capacity and coverage of the small station for the small station to determine an optimized CSB value for optimizing the communication network.
  • the execution of the foregoing S301 is triggered by a certain information, that is, the network controller acquires a trigger condition for triggering the adjustment of the ABS value, and the trigger is optional in this embodiment.
  • the condition is that the change value of the traffic volume ratio exceeds a preset proportional change threshold, where the traffic volume ratio is a ratio of the traffic volume assumed by the small station to all the traffic volume in the communication network;
  • the change in the traffic ratio can be determined by the following method:
  • the triggering condition is that the timer duration of the timer of the network controller reaches a preset duration, that is, the network controller determines an optimized ABS value for each macro station in order to optimize the communication network, and starts the network controller.
  • the timer when the timer counts from the time t1 to the time t5, determines that the time duration from the time t1 to the time t5 reaches the preset time length, then starts S301 at time t5.
  • the network controller determines the capacity and coverage for each small station, so that each small station can combine capacity and coverage when optimizing the communication network in the sub-area. Effectively solve the problem of network hotspots and coverage vulnerabilities caused by dynamic changes of communication networks in communication networks.
  • FIG. 12 is a flowchart of Embodiment 4 of a method for processing an optimized communication network according to the present invention. As shown in FIG. 12, the present embodiment is further described on the basis of the embodiment shown in FIG. 11, and specifically includes:
  • the network controller determines, for each macro station, each optimized ABS value.
  • the network controller sends, to each macro station, corresponding optimized ABS values.
  • each macro station in the communication network changes the current ABS value to the corresponding optimized ABS value.
  • the network controller acquires each first measurement distance between the small station and each hotspot location and each second measurement distance between the small station and each vulnerability location.
  • the network controller When there are multiple hotspot locations and multiple vulnerability locations in the communication network, the network controller first counts the small station and each hotspot when determining the weight of the current coverage and the weight of the current capacity for a small station. Each of the first measurement distances and each second measurement distance between the station and each of the vulnerability locations.
  • the network controller determines, in each of the first measurement distances, that the first measurement distance with the smallest value is the first distance, and determines that the second measurement distance with the smallest value is the second distance among the second measurement distances.
  • the network controller determines, according to the first distance and the second distance, a weight of the coverage and a weight of the capacity.
  • n the influence coefficient
  • n can be taken as the environmental attenuation coefficient, for example, referring to the channel attenuation model of the 3GPP standard, n is desirable The value is 3; it can also be obtained by measurement.
  • the network controller also considers the type of the initial deployment of each small station. For example, some small stations belong to the planned network element, and some small stations are not part of the planned deployment network.
  • the small station can adjust the weight of the coverage of the small station and the weight of the capacity according to the current communication network condition, so that the small station can effectively solve the hotspot or coverage problem in the current communication network;
  • the small station when initially setting up the small station, is planned to make the service focus of the small station biased to solve hotspot problems or coverage problems, so some configurations of the small station are also with the service side of the small station.
  • the focus is adapted so that when the weight of the capacity of the small station and the weight of the coverage are adjusted at the current time, it is necessary to take into account the characteristics of some of its initial configurations. Therefore, the above S405a can be replaced by each of the following steps. :
  • S405b determining whether the small station is a planned network element, if not, executing S405bl; if yes, executing S405b2;
  • the network controller determines the weight and capacity of the coverage according to the first distance and the second distance. Weights;
  • S405bl is the same as the above S405a, and can be understood as an implementation that executes S405a after executing S404, and then executes S406; a preferred implementation is that after executing S404, S405b is first performed to determine Executing S405bl or S405b2, after executing S405bl or S405b2, executing S406;
  • S405b, S405bl and S405b2 are one possible implementation, and are not shown in the figure.
  • the network controller sends an ABS value optimization completion message to the small station.
  • the network controller determines the weight of the coverage weight and the capacity for the small station in the communication network by executing S405a or performing S406b, S406M, and S406b2, and sending an ABS value optimization completion message to the small station
  • the ABS value optimization completion message is sent.
  • the weight of the small station capacity and the weight of the coverage are carried for the small station to determine an optimized CSB value for optimizing the communication network.
  • each of the macro stations can use the optimized ABS value for optimizing the communication network.
  • one set of the candidate chromosomes includes Y candidate chromosomes, each of the / sets corresponds to a candidate chromosome, and Y is a preset positive integer; c. v is the coverage of the communication network, C ⁇ is the capacity ⁇ of the communication network, and C is calculated when calculating a / ⁇ set corresponding to a set of candidate chromosomes.
  • the values of v and C ap are determined by the candidate chromosomes in the group, which are preset normalized weight values, and the range of values is [0, 1], as follows: Equation 1: R p , s , R p req )
  • Equation 2 E + ER PM , R; r q ) and the values of R PS , R; r q ) are determined according to);
  • t/ m represents the number of terminals accessing the macro station
  • indicates the association rate of the grid p and the macro station m in the communication network, indicating the association rate of the grid p associated with the small station, indicating the demand rate of the grid ⁇
  • the demand rate averaged by the five terminals in the grid ⁇ is averaged, and the above is determined according to ⁇ - ⁇ Eff N RB , p log 2 (l + RSSINR pm ),
  • Eff mi is the rate gain brought by the known MIMO (Multiple-Input Multiple-Output) system, and the resource obtained by the known raster p Block, «S/M ⁇ m is the received signal-to-noise ratio of the grid p for the macro station m, the determination of SS/M? ⁇ is determined according to formula 3, specific
  • R / NR ⁇ when R / NR ⁇ is substituted into Formula 4, it is substituted according to ABS and nonABS, for example, ⁇ .
  • Eff mi N RB gl (X + RSSINR but when Formula 4 is substituted into Formulas 1 and 2, it will be " ⁇ l -fi - Ejf mima N RB ⁇ p log 2 (1 + RSSINR ps ) + ⁇ ⁇ - Ejf mima N RB ⁇ p log 2 (1 + RSSINR ps ) "Substitute; a set of candidates can be randomly generated when the CI is initially executed The chromosome is used as the current group of candidate chromosomes.
  • a candidate ABS value is randomly generated for each macro station, and the candidate ABS values of the 10 macro stations constitute a candidate chromosome, and the initial time Usually, 100 candidate chromosomes are generated to form a current group of candidate chromosomes, and the corresponding set of the current group of candidate chromosomes is calculated according to the above formulas;
  • the network controller determines whether a change between a maximum fitness in the / ⁇ set corresponding to the current group candidate chromosome and a maximum /tm ⁇ in the /set corresponding to the previous set of candidate chromosomes is greater than a preset change threshold; if not, Execute C3, and if yes, execute C4;
  • the current group and the previous group are relative concepts. It can be understood that when a set of candidate chromosomes generated at the initial time is executed, when a C1 is executed at an initial time, a group of candidate chromosomes generated at the initial time is the current group of candidate chromosomes; If there are no other candidate chromosomes before the initial time, then C4 ⁇ C6 is directly executed for a group of candidate chromosomes generated at the initial time, and a new set of candidate chromosomes is obtained, then at the time t1 after the initial time, for the new group When the candidate chromosome performs C1, the new set of candidate chromosomes is the current set of candidate chromosomes, and a set of candidate chromosomes at time to be relative to the new set of candidate chromosomes is the previous set of candidate chromosomes.
  • y is the default positive integer, and ⁇ ; C5.
  • the network controller performs the operation of the genetic algorithm on the y parent chromosomes to obtain (Yy) sub-chromosomes;
  • the network controller combines the y parent chromosomes and the (Y-y) child chromosomes to obtain a new current group candidate chromosome, and returns to perform C1;
  • the network controller determines, in the fitness/tm ⁇ set corresponding to the current group candidate chromosome, the largest/corresponding candidate chromosome is an optimized chromosome.
  • the network controller determines, according to the optimized chromosome, each optimized ABS value for each of the macro stations;
  • each candidate ABS value in the optimized chromosome in C7 is taken as the optimized ABS value of each corresponding macro station;
  • the communication network is also dynamically changed during the optimization time.
  • the network controller can be based on the historical traffic volume and historical reality.
  • the data is predicted, for example, the current time is t1, and the time required for the optimization adjustment is usually ⁇ , and the network controller obtains the real data obtained before the time t1 (specifically, each parameter required in the formula 1 to formula 5, such as t/ m , U s , R pm , R p , s , the number of terminals accessing the macro station in the prediction + time communication network, the number of terminals accessing the small station, the association rate of each terminal with the small station, and the macro station related information such as the prediction data rate, and C ap is obtained for C.
  • a ⁇ represents the optimized ABS value of the macro station; represents a candidate ABS value in the optimized chromosome determined by the real data; represents a candidate ABS value in the optimized chromosome determined by the prediction data; is a preset smooth weight That is, in the process of executing S402, C1 ⁇ C7 is executed according to the real data, and for a macro station, C1-C7 is performed using the prediction data, and the macro station is determined, and C8 is finally executed to determine the optimized ABS for the macro station. Value, is based on + ⁇ - ) ⁇ OK.
  • the network controller determines the optimization for each macro station by using the operation of the genetic algorithm.
  • the ABS value optimizes the performance of the communication network on a global scale, and after adjusting the ABS value of each macro station using the optimized ABS value, the weight of the current capacity and the weight of the current coverage are determined for each small station, so that each According to its own characteristics, the small station can combine the weight of the current capacity and the weight of the current coverage when optimizing the communication network in the sub-area, effectively solving the problem of network hotspot and coverage vulnerability caused by the dynamic change of the communication network in the communication network.
  • FIG. 13 is a flowchart of Embodiment 5 of a method for processing an optimized communication network according to the present invention. As shown in FIG. 13, this embodiment is based on the foregoing embodiments of FIG. 9 to FIG. 12:
  • the S50 network controller obtains the trigger condition for triggering the adjustment of the ABS value.
  • the triggering condition is that the change value of the traffic ratio exceeds the preset proportional change threshold, or the trigger condition is that the timer duration of the network controller reaches a preset duration.
  • the network controller determines, for each macro station, each optimized ABS value.
  • the network controller sends each of the optimized ABS values to each macro station.
  • S504 The network controller determines the capacity and coverage for the small station according to the current hotspot location and the location of the vulnerability in the communication network.
  • the network controller sends an optimization completion message of the ABS value to the small station.
  • the small station determines whether to adjust the CSB value; if yes, execute S507; if not, stop.
  • the small station may use the optimized completion message of the received ABS value as a trigger condition for adjusting the CSB value; or even if the small station receives the optimization completion message of the ABS value, the small station will use the small station
  • the timer of the station reaches the preset duration as the trigger condition for adjusting the CSB value.
  • the small station determines whether the timer duration of the small station reaches the preset duration, and if so, executes S507; , or stop; or the small station is to change the load value of the small station to exceed the preset load change threshold as a trigger condition for adjusting the CSB value, then the small station determines whether the change value of the load of the small station is If the preset load change threshold is exceeded, if yes, execute S507; if no, stop.
  • the small station determines an optimized CSB value for the small station according to the weight of the capacity of the small station and the weight of the coverage. Specifically, as described in S201 ⁇ S203.
  • the station updates the current CSB value of the station to the optimized CSB value.
  • the small station sends the optimized CSB value of the small station to the at least one terminal, so that each terminal in the at least one terminal selects whether to access the small station.
  • the trigger condition for adjusting the CSB value is that the change value of the load of the small station exceeds a preset load change threshold, or whether the timer duration of the small station reaches the preset time.
  • S506 ⁇ S509 can be generated separately; after S508, before S509, the station can also execute the steps described in S204 ⁇ S207.
  • the adjustment frequency of the CSB value does not need to be the same as the frequency of adjusting the ABS value, so the small station can adjust the CSB value at a small time interval, and optimize the dynamically changing communication network in time, without causing a huge Signaling overhead; and combining the weight of the capacity and the weight of the coverage when optimizing the communication network, can effectively solve the problem of network hotspots and coverage vulnerabilities caused by dynamic changes of the terminal load in the communication network, and improve the performance of the communication network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种优化通信网络的处理方法和设备,该方法包括:小站根据所述小站的容量和覆盖,确定优化小区选择偏置CSB值;所述小站将所述小站的当前的CSB值更新为所述优化CSB值;所述小站向至少一个终端发送所述小站的优化CSB值;通过该方法和装置,CSB值的调整频率不需与调整ABS值的频率保持相同,则第一网元可以以较小的时间间隔调整CSB值,以及时的优化动态变化的通信网络,不会造成庞大的信令开销。

Description

优化通信网络的处理方法和设备
技术领域
本发明实施例涉及通信技术领域, 尤其涉及一种优化通信网络的处理方 法和设备。 背景技术
随着移动业务种类的不断丰富, 终端的需求速率不断增加, 通信网络需 要不断扩容才能满足日益增长的需求。 由于可用频谱有限, 目前最有效的网 络扩容手段是在现有宏站 (macro base station) 的基础上增加小站 (small cell base station) , 通过频谱复用来提升网络容量。 由于小站的发射功率低, 覆盖 面积小, 可有效地降低邻区干扰, 因此在网络部署中, 小站往往设置在网络 热点区域或者漏洞区域, 用于解决网络的容量和覆盖问题。相对于宏站而言, Picocell (超微蜂窝) 的基站和 femtocell (毫微微蜂窝) 的基站都是小站。
图 1为现有技术中通信网络的示意图。 如图 1所示, 通信网络中包括 宏站 10、 小站 20、 网络控制器 30 (该网络控制器为无线网络的核心, 用 于管理无线网络中的基站, 可为一个独立设备, 也可集成在一个宏站上) 及终端 40, 该通信网络为小站 20和宏站 10共存的异构网络, 而网络控制 器 30可以为该通信网络完成网络资源或配置的优化。 其中小站 20的覆盖 范围远小于宏站 10, 但网络中小站 20的数量要远大于宏站 10, 而用户使 用的终端 40可以动态地选择接入宏站 10或是小站 20, 以获取网络服务。 由于终端的数量及各个终端请求的业务是变化的, 从而通信网络中的宏站 10、 小站 20 的负载、 通信网络中的热点位置、 漏洞位置等也是动态变化 的, 因此如何优化通信网络的配置去更好地适配通信网络的动态变化是宏 站和小站构成的异构型通信网络的一个新的挑战。在 3 GPP ( 3rd Generation Partnership Project, 第三代合作伙伴计划)标准中, 网络控制器 30可以使 小站 20更改 CSB ( Cell Selection Bias , 小区选择偏置) 值, 以改变通信 网络中终端 40的接入情况, 从而调节宏站 10和小站 20的负载, 以优化 通信网络。 在现有技术中, 网络控制器先确定各个宏站的 ABS ( Almost Blank Subframe , 几乎空白子帧)值和在该 ABS值的影响下, 各个宏站和小站接 入的终端的情况, 进一歩为各个小站确定用于优化通信网络的 CSB 值; 其中宏站和小站在通信网络中服务的侧重点不同, 例如小站主要是解决热 点区域或者漏洞区域的问题, 而网络热点区域或者漏洞区域随时间变化较 大, 因此 CSB 值的调整周期需要尽可能的缩短, 以有效及时的解决通信 网络中当前的热点区域或者漏洞区域的问题; 但采用现有技术中的方案优 化通信网络时, 由于网络控制器是以相同的时间粒度, 在全网范围调整 ABS值和 CSB值, 因此网络控制器若为了适应通信网络的动态变化, 需 频繁的同时调整 ABS值和 CSB值, 导致较大的信令开销, 反而影响通信 网络的服务性能。 发明内容 本发明实施例提供一种优化通信网络的处理方法和设备, 用于优化通信 网络。
第一方面, 本发明实施例提供一种小站, 包括:
确定模块, 用于根据所述小站的容量和覆盖, 确定优化 CSB值; 更新模块, 用于将所述小站的当前的 CSB值更新为所述优化 CSB值; 发送模块, 用于向至少一个终端发送所述小站的优化 CSB值。
结合第一方面, 在第一实施方式中, 还包括接收模块;
所述发送模块还用于向相邻小站发送所述优化 CSB值;
所述接收模块用于接收所述相邻小站的当前 CSB值;
所述确定模块还用于根据所述小站的优化 CSB值和所述相邻小站的当前
CSB值, 确定接入所述小站的终端的实际状况;
若所述实际状况与所述小站的优化 CSB值对应的接入所述小站的终端的 预期状况不同, 所述确定模块用于执行所述确定优化 CSB值。
结合第一方面第一实施方式, 在第二实施方式中, 所述接收模块还用于 接收参数信息; 所述参数信息携带小站的容量的权重和所述小站的覆盖的权 重。
结合第一方面第二实施方式, 在第三实施方式中, 所述确定模块具体包 括:
获取单元, 用于获取至少一个候选 CSB值;
确定单元,用于根据 max ^C +i^C , 确定各所述候选 CSB值所对应 的各个候选结果;
选择单元, 用于在所述各个候选结果中将值为最大的候选结果所对应的 候选 CSB值作为所述小站的优化 CSB值;
其中, maxl为所述候选结果, ^表示所述小站的覆盖的权重, 《2s表示 所述小站的容量的权重; 为所述小站关于覆盖的关键性能指标 KPI; σαρ为 所述小站关于容量的 ΚΡΙ, C0V = R -iU , d iRe,s x h(H ) ; Rf°-ile 为集 合 中 2%个终端对应的针对小站的各个关联速率的平均值,所述 2%个终端中 任意一个终端与小站的关联速率不大于所述集合 Es中除所述2%个终端以外 的任意一个终端与小站的关联速率; 不同的候选 CSB值对应不同的所述集合 Es , 则不同的所述集合 Es中所述 2%个终端对应不同的所述 e表示所述 集合 Es中的任意一个终端, 则 Re s表示所述集合 Es中的终端 e关联到所述小站 的关联速率, 为终端 e的需求速率, ^„的值依照 ^, ) = 确
' [0, x < x0 定。 结合第一方面第三实施方式, 在第四实施方式中, 所述获取单元具体用 于
根据第一 CSB值, 获取所述至少一个终端中每一个终端针对所述小站的 接收功率和所述至少一个终端中每一个终端针对宏站的接收功率;
使第一 CSB值与所述至少一个终端中每一个终端针对小站的接收功率相 力口, 获得所述至少一个终端中各个终端对应的第一值;
根据所述至少一个终端中各个终端对应的第一值与所述至少一个终端中 每一个终端针对所述宏站的接收功率, 在所述至少一个终端中确定所述第一 CSB值对应的集合 Es ;
若根据所述第一 CSB值对应的集合 Es, 确定所述第一 CSB值对应的小 站的负载等于 1, 则将所述第一 CSB值作为所述候选 CSB值; 若根据所述第一 CSB值对应的集合 Es, 确定所述第一 CSB值对应的小 站的负载小于 1, 则将所述第一 CSB值作为所述候选 CSB值, 并以预设歩长 增大所述第一 CSB值, 获得新的所述第一 CSB值, 直至所述第一 CSB值达 到预设门限 CSB值。
第二方面, 本发明实施例提供一种网络控制器, 包括:
确定模块, 用于为各个宏站确定各个优化 ABS值;
发送模块, 用于向各个宏站发送对应的各个所述优化 ABS值; 所述确定模块还用于根据所述通信网络中当前的热点位置和漏洞位置, 为小站确定容量和覆盖;
所述发送模块还用于向小站发送 ABS值优化完成消息; 所述 ABS值的 优化完成消息携带所述小站的容量和覆盖。
结合第二方面, 在第一实施方式中, 所述当前的热点位置和漏洞位置的 数量分别为至少一个, 则所述确定模块具体包括:
获取单元, 用于获取所述小站与各个所述热点位置之间的各个第一测量 距离和所述小站与各个所述漏洞位置之间的各个第二测量距离;
第一确定单元, 用于在各个所述第一测量距离中确定数值最小的第一测 量距离为第一距离; 并在各个所述第二测量距离中确定数值最小的第二测量 距离为第二距离;
第二确定单元, 用于根据所述第一距离和第二距离, 确定所述覆盖的权 重和所述容量的权重。
结合第二方面第一实施方式中, 在第二实施方式中, 第二确定单元具体 用于
Figure imgf000005_0001
次覆盖的权重和初始覆盖的权重确定所述覆盖的权重, 并根据所述第一距离 和第二距离、 前次容量的权重和初始容量的权重确定所述容量的权重。
结合第二方面第二实施方式, 在第三实施方式中, 所述若所述小站不属 于规划部署的网元, 所述第二确定单元具体用于 根据 确定
Figure imgf000006_0001
所述容量的权重;
若所述小站属于规划部署的网元, 则所述第二确定单元具体用于根据 ω^α—^, ^ + (1-α) 确 定 所 述 覆 盖 的 权 重 , 并 根 据 (A-l)ft>ls +1 ω2^α ^ ~~ ^ + 确定所述容量的权重;
{\-λ)ωΐ5
其中, 为所述小站的覆盖的权值, 为所述小站的容量的权重, co 为所述小站的前次覆盖的权重, 为所述小站的前次容量的权重, 为 所述小站的初始覆盖的权重, 为所述小站的初始容量的权重, 根据
( )-"=A确定, ^为所述第一距离, ^为所述第二距离, n为影响系数。 结合第二方面或第二方面第三实施方式, 在第四实施方式中, 所述获取 单元还用于
根据 fitness = (p.Cov+(l_(^Cap, 获得当前组候选染色体对应的适应度/tm^ 集合; 一组所述候选染色体包括 Y个候选染色体, 所述 y?^ ^集合中的每 一个 对应一个候选染色体;
若所述当前组候选染色体对应的 ^集合中的最大 ^与前一组候 选染色体对应的 yiYm ^集合中的最大 ^之间的变化值大于预设 fit丽 化门限, 且用于获得所述当前组候选染色体的遗传算法操作的执行次数未 超过预设遗传门限, 则所述第一确定单元还用于在所述当前组候选染色体 对应的/ 集合中, 选取最大 y个/ 所对应的 y个候选染色体作为 y 个父染色体;
对所述 y个父染色体执行所述遗传算法的操作,获得(Y-y)个子染色体; 结合所述 y个父染色体和(Y-y)个子染色体, 获得新的当前组候选染色 体;
若所述当前组候选染色体对应的 /^ ^集合中的最大 y?^ ^与所述前一 组候选染色体对应的适应度/ 集合中的最大 ^之间的变化值不大于 预设 fitness变化门限, 或者所述遗传算法操作的执行次数达到预设遗传门 限, 则所述第一确定单元还用于确定所述当前组候选染色体对应的适应度 集合中, 最大 对应的候选染色体为优化染色体;
所述第二确定单元还用于根据所述优化染色体, 为各个所述宏站确定各 个优化 ABS值;
其中,一个所述候选染色体包括的候选 ABS值的总数与所述各个宏站的 总数相等; Y和 y均为预设的正整数, 且¥ ; 为所述通信网络的覆盖 关键性能指标 KPI; C ^为所述通信网络的容量 KPI; 在获得所述 ^时, 采用的 C。v和 Cap的值由所述/trn^对应的候选染色体确定; 为预设归一化 权重值。
结合第二方面第四实施方式, 在第五实施方式中, 所述第二确定单元 具体用于
若 c。v和 cap的值与所述通信网络的真实数据相关,则将所述优化染色体 中的各个候选 ABS值作为各个所述宏站对应的优化 ABS值;
若 C。v和 Cap的值与所述通信网络的预测数据相关, 则根据 β1αί, = ρ - β + ( - ρ) - β^ρ 为各个所述宏站确定对应的优化 ABS值; 所述预测数 据是根据所述真实数据确定的;
其中 A ^表示宏站的优化 ABS值; 表示以所述真实数据确定的优化 染色体中的一个候选 ABS值; 表示以所述预测数据确定的优化染色体 中的一个候选 ABS值; 为预设的平滑的权重。 第三方面, 本发明实施例提供一种优化通信网络的处理方法, 包括: 小站根据所述小站的容量和覆盖, 确定优化 CSB值;
所述小站将所述小站的当前的 CSB值更新为所述优化 CSB值; 所述小站向至少一个终端发送所述小站的优化 CSB值。
结合第三方面, 在第一实施方式中, 在所述小站将所述当前的 CSB值更 新为所述优化 CSB值之前, 所述处理方法还包括:
所述小站向相邻小站发送所述优化 CSB值;
所述小站接收所述相邻小站的当前 CSB值;
所述小站根据所述小站的优化 CSB值和所述相邻小站的当前 CSB值, 确定接入所述小站的终端的实际状况; 若所述实际状况与所述小站的优化 CSB值对应的接入所述小站的终端的 预期状况不同, 所述小站执行所述确定优化 CSB值。
结合第三方面第一实施方式, 在第二实施方式中, 所述小站根据所述小 站的容量和覆盖, 确定优化 CSB值之前, 所述方法还包括:
所述小站接收参数信息; 所述参数信息携带小站的容量的权重和所述小 站的覆盖的权重。
结合第三方面第二实施方式, 在第三实施方式中, 所述小站根据所述小 站的容量和覆盖, 确定小站的优化 CSB值, 包括:
所述小站获取至少一个候选 CSB值;
所述小站根据 max ^C + ^C;,确定各所述候选 CSB值所对应的各个 候选结果;
所述小站在所述各个候选结果中将值为最大的候选结果所对应的候选
CSB值作为所述小站的优化 CSB值;
其中, maxl为所述候选结果, 表示所述小站的覆盖的权重, 《2s表示 所述小站的容量的权重; 为所述小站关于覆盖的关键性能指标 κρι; σαρ为 所述小站关于容量的 ΚΡΙ, C0V = R -iU , Ca s p =H xhm ' R -ile 为集 合 中 2%个终端对应的针对小站的各个关联速率的平均值,所述 2%个终端中 任意一个终端与小站的关联速率不大于所述集合 Es中除所述2%个终端以外 的任意一个终端与小站的关联速率; 不同的候选 CSB值对应不同的所述集合 Es, 则不同的所述集合 Es中所述 2%个终端对应不同的所述 %-' ; e表示所述 集合 Es中的任意一个终端, 则 Re s表示所述集合 Es中的终端 e关联到所述小站 的关联速率, 为终端 e的需求速率, 确
Figure imgf000008_0001
定。 结合第三方面第三实施方式, 在第四实施方式中, 所述小站获取至少一 个候选 CSB值, 包括:
所述小站根据第一 CSB值, 获取所述至少一个终端中每一个终端针对所 述小站的接收功率和所述至少一个终端中每一个终端针对宏站的接收功率; 所述小站使第一 CSB值与所述至少一个终端中每一个终端针对小站的接 收功率相加, 获得所述至少一个终端中各个终端对应的第一值;
所述小站根据所述至少一个终端中各个终端对应的第一值与所述至少一 个终端中每一个终端针对所述宏站的接收功率, 在所述至少一个终端中确定 所述第一 CSB值对应的集合 Es ·'
若所述小站根据所述第一 CSB值对应的集合 Es, 确定所述第一 CSB值 对应的小站的负载等于 1, 则将所述第一 CSB值作为所述候选 CSB值; 若所述小站根据所述第一 CSB值对应的集合 Es, 确定所述第一 CSB值 对应的小站的负载小于 1, 则将所述第一 CSB值作为所述候选 CSB值, 并以 预设歩长增大所述第一 CSB值, 获得新的所述第一 CSB值, 直至所述第一 CSB值达到预设门限 CSB值。
第四方面, 本发明实施例提供一种优化通信网络的处理方法, 包括: 网络控制器为各个宏站确定各个优化 ABS值;
所述网络控制器向各个宏站发送对应的各个所述优化 ABS值; 所述网络控制器根据所述通信网络中当前的热点位置和漏洞位置, 为小 站确定容量和覆盖;
所述网络控制器向小站发送 ABS值优化完成消息; 所述 ABS值的优化 完成消息携带所述小站的容量和覆盖。
结合第四方面, 在第一实施方式中, 所述当前的热点位置和漏洞位置的 数量分别为至少一个, 则所述网络控制器根据所述通信网络中当前的热点位 置和漏洞位置, 为所述小站确定容量和覆盖, 包括:
所述网络控制器获取所述小站与各个所述热点位置之间的各个第一测量 距离和所述小站与各个所述漏洞位置之间的各个第二测量距离;
所述网络控制器在各个所述第一测量距离中确定数值最小的第一测量距 离为第一距离; 并在各个所述第二测量距离中确定数值最小的第二测量距离 所述网络控制器根据所述第一距离和第二距离, 确定所述覆盖的权重和 所述容量的权重。
结合第四方面第一实施方式中, 在第二实施方式中, 所述网络控制器根 据所述第一距离确定所述当前覆盖的权重, 并根据所述第二距离确定所述当 前容量的权重, 包括:
若所述小站不属于规划部署的网元, 所述网络控制器根据所述第一距离 和第二距离、 前次覆盖的权重确定所述覆盖的权重, 并根据所述第一距离和 第二距离、 前次容量的权重确定所述容量的权重;
若所述小站属于规划部署的网元, 则所述网络控制器根据所述第一距离 和第二距离、 前次覆盖的权重和初始覆盖的权重确定所述覆盖的权重, 并根 据所述第一距离和第二距离、 前次容量的权重和初始容量的权重确定所述容 量的权重。
结合第四方面第二实施方式, 在第三实施方式中, 所述网络控制器根据 所述第一距离和第二距离、 前次覆盖的权重确定所述覆盖的权重, 并根据所 述第一距离和第二距离、 前次容量的权重确定所述容量的权重, 包括:
所述网络控制器根据 ^ = λω^, 确定所述覆盖的权重, 并根据 ols = ^ ~~ ^确定所述容量的权重; 所述网络控制器根据所述第一距离和第二距离、 前次覆盖的权重和初始 覆盖的权重确定所述覆盖的权重, 并根据所述第一距离和第二距离、 前次容 量的权重和初始容量的权 括: 所述网络控制器根据 确定所述覆盖的权重, 并
Figure imgf000010_0001
根据 = α ^ ~~ ^ + ^确定所述容量的权重; 其中, 为所述小站的覆盖的权值, 为所述小站的容量的权重, co 为所述小站的前次覆盖的权重, 为所述小站的前次容量的权重, 为 所述小站的初始覆盖的权重, 为所述小站的初始容量的权重, 根据
( Γ" =Α确定, ^为所述第一距离, ^为所述第二距离, n为影响系数。 结合第四方面或第四方面第三实施方式, 在第四实施方式中, 所述网络 控制器为各个宏站确定各个优化 ABS值, 包括:
所述网络控制器根据 fit丽 = ^- Cov +(l- φγ:αρ,获得当前组候选染色体对应 的适应度/ 集合; 一组所述候选染色体包括 Υ 个候选染色体, 所述 集合中的每一个 y¾m ^对应一个候选染色体;
若所述当前组候选染色体对应的 /^ ^集合中的最大 y?^ ^与前一组候 选染色体对应的 yiYm ^集合中的最大 ^之间的变化值大于预设 fit丽 化门限, 且用于获得所述当前组候选染色体的遗传算法操作的执行次数未 超过预设遗传门限, 则在所述当前组候选染色体对应的/ 集合中, 选取 最大 y个 所对应的 y个候选染色体作为 y个父染色体;
所述网络控制器对所述 y 个父染色体执行所述遗传算法的操作, 获得 ( Y-y ) 个子染色体;
所述网络控制器结合所述 y个父染色体和(Y-y )个子染色体, 获得新的 当前组候选染色体;
若所述当前组候选染色体对应的 /^ ^集合中的最大 y?^ ^与所述前一 组候选染色体对应的适应度/ 集合中的最大 ^之间的变化值不大于 预设 fit丽变化门限, 或者所述遗传算法操作的执行次数达到预设遗传门 限, 则所述网络控制器确定所述当前组候选染色体对应的适应度 集合 中, 最大/ 对应的候选染色体为优化染色体;
所述网络控制器根据所述优化染色体, 为各个所述宏站确定各个优化 ABS值;
其中,一个所述候选染色体包括的候选 ABS值的总数与所述各个宏站的 总数相等; Y和 y均为预设的正整数, 且¥ ; 为所述通信网络的覆盖 关键性能指标 KPI; C ^为所述通信网络的容量 KPI; 在获得所述 '^ ^时, 采用的 C。v和 Cap的值由所述/ 对应的候选染色体确定; 为预设归一化 权重值。
结合第四方面第四实施方式, 在第五实施方式中, 所述网络控制器根 据所述优化染色体, 为各个所述宏站确定各个优化 ABS值, 包括:
若 C。v和 C ^的值与所述通信网络的真实数据相关, 则所述网络控制器 将所述优化染色体中的各个候选 ABS值作为各个所述宏站对应的优化 ABS 值;
若 C。v和 Cap的值与所述通信网络的预测数据相关, 则所述网络控制器 根据 A« = . :i + a- ).^, 为各个所述宏站确定对应的优化 ABS值; 所述预 测数据是根据所述真实数据确定的;
其中 A ^表示宏站的优化 ABS值; ^表示以所述真实数据确定的优化 染色体中的一个候选 ABS值; 表示以所述预测数据确定的优化染色体 中的一个候选 ABS值; 为预设的平滑的权重。 本发明实施例提供的优化通信网络的处理方法和设备中,小站的 CSB 值的调整是由小站执行的, 则小站可根据通信网络的动态变化, 及时调整 CSB 值, 以有效的对通信网络进行优化; 与现有技术相比, 本实施例中 CSB值的调整不再受网络控制器小站的控制, 因此小站的 CSB值的调整 频率不需与调整 ABS 值的频率保持相同, 则小站可以以较小的时间间隔 调整 CSB 值, 以及时的优化动态变化的通信网络, 也不会造成庞大的信 令开销; 且在优化通信网络时联合了小站的容量和覆盖, 可有效地解决通 信网络中终端负载的动态变化导致的网络热点和覆盖漏洞的问题, 利于提升 通信网络的性能。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见 地, 下面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员 来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的 附图。
图 1为现有技术中通信网络的示意图;
图 2为本发明小站实施例一的结构图;
图 3为本发明小站实施例二的结构图;
图 4为本发明小站实施例三的结构图;
图 5为本发明小站实施例四的结构图;
图 6为本发明网络控制器实施例一的结构图;
图 7为本发明网络控制器实施例二的结构图;
图 8为本发明网络控制器实施例三的结构图;
图 9为本发明优化通信网络的处理方法实施例一的流程图;
图 10为本发明优化通信网络的处理方法实施例二的流程图; 图 11为本发明优化通信网络的处理方法实施例三的流程图; 图 12为本发明优化通信网络的处理方法实施例四的流程图;
图 13为本发明优化通信网络的处理方法实施例五的流程图。 具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本 发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描 述, 显然,所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提 下所获得的所有其他实施例, 都属于本发明保护的范围。
图 2为本发明小站实施例一的结构图。 如图 2所示, 本实施例中的小站 具体为图 1中的小站 20, 该小站包括:
确定模块 21, 用于根据所述小站的容量和覆盖, 确定优化 CSB值; 更新模块 22,用于将所述小站的当前的 CSB值更新为所述优化 CSB值; 发送模块 23, 用于向至少一个终端发送所述小站的优化 CSB值。
本实施例中, 小站的 CSB 值的调整是由小站执行的, 则小站可根据 通信网络的动态变化, 及时调整 CSB值, 以有效的对通信网络进行优化; 与现有技术相比, 本实施例中 CSB 值的调整不再受网络控制器小站的控 制, 因此小站的 CSB值的调整频率不需与调整 ABS值的频率保持相同, 则小站可以以较小的时间间隔调整 CSB 值, 以及时的优化动态变化的通 信网络, 也不会造成庞大的信令开销; 且在优化通信网络时联合了小站的 容量和覆盖, 可有效地解决通信网络中终端负载的动态变化导致的网络热点 和覆盖漏洞的问题, 利于提升通信网络的性能。
图 3为本发明小站实施例二的结构图。 如图 3所示, 本实施例是在图 2 所示的小站的基础上, 做出进一歩的描述, 具体的, 还包括接收模块 24; 所述发送模块 23还用于向相邻小站发送所述优化 CSB值;
所述接收模块 24用于接收所述相邻小站的当前 CSB值;
所述确定模块 21还用于根据所述小站的优化 CSB值和所述相邻小站的 当前 CSB值, 确定接入所述小站的终端的实际状况;
若所述实际状况与所述小站的优化 CSB值对应的接入所述小站的终端的 预期状况不同, 所述确定模块 21用于执行所述确定优化 CSB值。 进一歩的, 所述接收模块 24还用于接收参数信息; 所述参数信息携带小 站的容量的权重和所述小站的覆盖的权重。
进一歩的, 所述确定模块 21具体包括:
获取单元 211, 用于获取至少一个候选 CSB值;
确定单元 212, 用于根据!^^^ ^^ + ;, 确定各所述候选 CSB值所 对应的各个候选结果;
选择单元 213, 用于在所述各个候选结果中将值为最大的候选结果所对 应的候选 CSB值作为所述小站的优化 CSB值;
其中, maxl为所述候选结果, ^表示所述小站的覆盖的权重, ί¾表示 所述小站的容量的权重; C 为所述小站关于覆盖的 KPI(Key Performance
Indicator , 关键性能指标); 为所述小站关于容量的 KPI , Co s v = R ,
Ca s p =∑iRe,s xh(Re,H R -ile 为集合 中2%个终端对应的针对小站的各个 关联速率的平均值, 所述 z%个终端中任意一个终端与小站的关联速率不大于 所述集合 中除所述2%个终端以外的任意一个终端与小站的关联速率; 不同 的候选 CSB值对应不同的所述集合 , 则不同的所述集合 Es中所述 z%个终端 对应不同的所述 e表示所述集合 Es中的任意一个终端, 则 s表示所述 集合 中的终端 e关联到所述小站的关联速率, 为终端 e的需求速率, Re 确定。
Figure imgf000014_0001
具体的, 所述获取单元 211具体用于
根据第一 CSB值, 获取所述至少一个终端中每一个终端针对所述小站的 接收功率和所述至少一个终端中每一个终端针对宏站的接收功率;
使第一 CSB值与所述至少一个终端中每一个终端针对小站的接收功率相 力口, 获得所述至少一个终端中各个终端对应的第一值;
根据所述至少一个终端中各个终端对应的第一值与所述至少一个终端中 每一个终端针对所述宏站的接收功率, 在所述至少一个终端中确定所述第一 CSB值对应的集合 Es ;
若根据所述第一 CSB值对应的集合 Es, 确定所述第一 CSB值对应的小 站的负载等于 1, 则将所述第一 CSB值作为所述候选 CSB值;
若根据所述第一 CSB值对应的集合 Es, 确定所述第一 CSB值对应的小 站的负载小于 1, 则将所述第一 CSB值作为所述候选 CSB值, 并以预设歩长 增大所述第一 CSB值, 获得新的所述第一 CSB值, 直至所述第一 CSB值达 到预设门限 CSB值。
本实施例中, 小站的 CSB 值的调整是由小站执行的, 则小站可根据 通信网络的动态变化, 及时调整 CSB值, 以有效的对通信网络进行优化; 与现有技术相比, 本实施例中 CSB 值的调整不再受网络控制器小站的控 制, 因此小站的 CSB值的调整频率不需与调整 ABS值的频率保持相同, 则小站可以以较小的时间间隔调整 CSB 值, 以及时的优化动态变化的通 信网络, 也不会造成庞大的信令开销; 且在优化通信网络时联合了小站的 容量和覆盖, 可有效地解决通信网络中终端负载的动态变化导致的网络热点 和覆盖漏洞的问题, 利于提升通信网络的性能。
需要说明的是, 图 2和图 3所示的小站中的各个模块具体用于执行下 述图 9、 图 10和图 13所示的方法实施例中的各个歩骤, 具体的执行过程 及有益效果可参考下述各个方法实施例中的描述。
图 4为本发明小站实施例三的结构图。 如图 4所示, 本实施例中的小站 可以为图 1中的小站 20, 该小站包括:
处理器 201, 用于根据所述小站的容量和覆盖, 确定优化 CSB值; 将所述小站的当前的 CSB值更新为所述优化 CSB值;
发送器 202, 用于向至少一个终端发送所述小站的优化 CSB值。
本实施例中, 小站的 CSB 值的调整是由小站执行的, 则小站可根据 通信网络的动态变化, 及时调整 CSB值, 以有效的对通信网络进行优化; 与现有技术相比, 本实施例中 CSB 值的调整不再受网络控制器小站的控 制, 因此小站的 CSB值的调整频率不需与调整 ABS值的频率保持相同, 则小站可以以较小的时间间隔调整 CSB 值, 以及时的优化动态变化的通 信网络, 也不会造成庞大的信令开销; 且在优化通信网络时联合了小站的 容量和覆盖, 可有效地解决通信网络中终端负载的动态变化导致的网络热点 和覆盖漏洞的问题, 利于提升通信网络的性能。
图 5为本发明小站实施例四的结构图。 如图 5所示, 本实施例是在图 4 所示的小站的基础上, 做出进一歩的描述, 具体的, 还包括接收器 203; 所述发送器 202还用于向相邻小站发送所述优化 CSB值;
所述接收器 203用于接收所述相邻小站的当前 CSB值;
所述处理器 201还用于根据所述小站的优化 CSB值和所述相邻小站的当 前 CSB值, 确定接入所述小站的终端的实际状况;
若所述实际状况与所述小站的优化 CSB值对应的接入所述小站的终端的 预期状况不同, 所述确定模块用于执行所述确定优化 CSB值。
进一歩的, 所述接收器 203还用于接收参数信息; 所述参数信息携带小 站的容量的权重和所述小站的覆盖的权重。
进一歩的, 所述处理器 201具体用于获取至少一个候选 CSB值; 根据 max ^C + ^C;, 确定各所述候选 CSB 值所对应的各个候选结 果;
在所述各个候选结果中将值为最大的候选结果所对应的候选 CSB值作为 所述小站的优化 CSB值;
其中, maxl为所述候选结果, ^表示所述小站的覆盖的权重, 《2s表示 所述小站的容量的权重; 为所述小站关于覆盖的关键性能指标 KPI; σαρ为 所述小站关于容量的 ΚΡΙ, C0 s V = R -iU , Ca s p = Re s xh(Re,H R -ile 为集 合 中 2%个终端对应的针对小站的各个关联速率的平均值,所述 2%个终端中 任意一个终端与小站的关联速率不大于所述集合 Es中除所述2%个终端以外 的任意一个终端与小站的关联速率; 不同的候选 CSB值对应不同的所述集合 Es , 则不同的所述集合 Es中所述 2%个终端对应不同的所述 e表示所述 集合 Es中的任意一个终端, 则 Re s表示所述集合 Es中的终端 e关联到所述小站 的关联速率, 为终端 e的需求速率, /^ 确
Figure imgf000016_0001
定。 进一歩的, 处理器 201在获取至少一个候选 CSB值时, 是具体根据第一 CSB值, 获取所述至少一个终端中每一个终端针对所述小站的接收功率和所 述至少一个终端中每一个终端针对宏站的接收功率;
使第一 CSB值与所述至少一个终端中每一个终端针对小站的接收功率相 力口, 获得所述至少一个终端中各个终端对应的第一值;
根据所述至少一个终端中各个终端对应的第一值与所述至少一个终端中 每一个终端针对所述宏站的接收功率, 在所述至少一个终端中确定所述第一 CSB值对应的集合 Es ;
若根据所述第一 CSB值对应的集合 Es, 确定所述第一 CSB值对应的小 站的负载等于 1, 则将所述第一 CSB值作为所述候选 CSB值;
若根据所述第一 CSB值对应的集合 Es, 确定所述第一 CSB值对应的小 站的负载小于 1, 则将所述第一 CSB值作为所述候选 CSB值, 并以预设歩长 增大所述第一 CSB值, 获得新的所述第一 CSB值, 直至所述第一 CSB值达 到预设门限 CSB值。
本实施例中, 小站的 CSB 值的调整是由小站执行的, 则小站可根据 通信网络的动态变化, 及时调整 CSB值, 以有效的对通信网络进行优化; 与现有技术相比, 本实施例中 CSB 值的调整不再受网络控制器小站的控 制, 因此小站的 CSB值的调整频率不需与调整 ABS值的频率保持相同, 则小站可以以较小的时间间隔调整 CSB 值, 以及时的优化动态变化的通 信网络, 也不会造成庞大的信令开销; 且在优化通信网络时联合了小站的 容量和覆盖, 可有效地解决通信网络中终端负载的动态变化导致的网络热点 和覆盖漏洞的问题, 利于提升通信网络的性能。
需要说明的是, 图 4和图 5所示的小站中的各个器件具体用于执行下 述图 9、 图 10和图 13所示的方法实施例中的各个歩骤, 具体的执行过程 及有益效果可参考下述各个方法实施例中的描述。
图 6为本发明网络控制器实施例一的结构图。 如图 6所示, 本实施例中 的网络控制器可以为图 1中的网络控制器 30, 也可以为集成了网络控制器功 能的宏站, 本实施例中的网络控制器包括:
确定模块 31, 用于为各个宏站确定各个优化 ABS值;
发送模块 32, 用于向各个宏站发送对应的各个所述优化 ABS值; 所述确定模块 31 还用于根据所述通信网络中当前的热点位置和漏洞位 置, 为小站确定容量和覆盖;
所述发送模块 32还用于向小站发送 ABS值优化完成消息; 所述 ABS值 的优化完成消息携带所述小站的容量和覆盖。
本实施例中网络控制器在使用优化 ABS值调整了各个宏站的 ABS值后, 为各个小站确定了容量和覆盖, 以使各个小站在分区域优化通信网络时可结 合容量和覆盖, 有效的解决通信网络中通信网络动态变化导致的网络热点和 覆盖漏洞的问题。
图 7为本发明网络控制器实施例二的结构图。 如图 7所示, 本实施例是 在图 6所示的实施例的基础上, 做出进一歩的描述, 具体的
上述当前的热点位置和漏洞位置的数量分别为至少一个, 则所述确定模 块 31具体包括:
获取单元 311, 用于获取所述小站与各个所述热点位置之间的各个第一 测量距离和所述小站与各个所述漏洞位置之间的各个第二测量距离;
第一确定单元 312, 用于在各个所述第一测量距离中确定数值最小的第 一测量距离为第一距离; 并在各个所述第二测量距离中确定数值最小的第二 第二确定单元 313, 用于根据所述第一距离和第二距离, 确定所述覆盖 的权重和容量的权重。
进一歩, 第二确定单元 313具体用于
若所述小站不属于规划部署的网元, 根据所述第一距离和第二距离、 前 次覆盖的权重确定所述覆盖的权重, 并根据所述第一距离和所述第二距离、 前次容量的权重确定所述容量的权重;
若所述小站属于规划部署的网元, 则根据所述第一距离和第二距离、 前 次覆盖的权重和初始覆盖的权重确定所述覆盖的权重, 并根据所述第一距离 和第二距离、 前次容量的权重和初始容量的权重确定所述容量的权重。
具体来说, 若所述小站不属于规划部署的网元, 所述第二确定单元 313 具体用于
根据^ ^确定所述覆盖的权重, 并根据 = ^ ^^确定 所述容量的权重;
若所述小站属于规划部署的网元, 则所述第二确定单元具体用于根据 ¾ 确 定 所 述 覆 盖 的 权 重 , 并 根 据
Figure imgf000019_0001
cols = a ^ ~~ ^ + (l-«)«2°s确定所述容量的权重;
(1 - λ)ω25 + λ
其中, 为所述小站的覆盖的权值, 为所述小站的容量的权重, co 为所述小站的前次覆盖的权重, 为所述小站的前次容量的权重, 为 所述小站的初始覆盖的权重, 为所述小站的初始容量的权重, 根据 (i)-" = A确定, ^为所述第一距离, ^为所述第二距离, n为影响系数。 进一歩, 所述获取单元 313还用于
根据 fit丽 = (p . Cm +(X_ (p)Cap, 获得当前组候选染色体对应的适应度 fit 集合; 一组所述候选染色体包括 Y个候选染色体, 所述/ 集合中的每 一个 对应一个候选染色体;
若所述当前组候选染色体对应的 /^ ^集合中的最大 y?^ ^与前一组候 选染色体对应的 yiYm ^集合中的最大 ^之间的变化值大于预设 fit丽 化门限, 且用于获得所述当前组候选染色体的遗传算法操作的执行次数未 超过预设遗传门限, 则所述第一确定单元 312还用于在所述当前组候选染 色体对应的 集合中, 选取最大 y个 ^所对应的 y个候选染色体作 为 y个父染色体;
对所述 y个父染色体执行所述遗传算法的操作,获得(Y-y)个子染色体; 结合所述 y个父染色体和(Y-y)个子染色体, 获得新的当前组候选染色 体;
若所述当前组候选染色体对应的 / 集合中的最大 / 与所述前一 组候选染色体对应的适应度/ 集合中的最大 ^之间的变化值不大于 预设 fit丽变化门限, 或者所述遗传算法操作的执行次数达到预设遗传门 限, 则所述第一确定单元 312还用于确定所述当前组候选染色体对应的适 应度 y?^ ^集合中, 最大 ^对应的候选染色体为优化染色体;
所述第二确定单元 313还用于根据所述优化染色体, 为各个所述宏站确 定各个优化 ABS值;
其中,一个所述候选染色体包括的候选 ABS值的总数与所述各个宏站的 总数相等; Y和 y均为预设的正整数, 且¥ ; 为所述通信网络的覆盖 关键性能指标 KPI; C ^为所述通信网络的容量 KPI; 在获得所述/trn^时, 采用的 C。v和 Cap的值由所述/ 对应的候选染色体确定; 为预设归一化 权重值。
进一歩, 所述第二确定单元 313具体用于
若 c。v和 cap的值与所述通信网络的真实数据相关,则将所述优化染色体 中的各个候选 ABS值作为各个所述宏站对应的优化 ABS值;
若 C。v和 Cap的值与所述通信网络的预测数据相关, 则根据 β, = Ρ · β + - Ρ · β^ 为各个所述宏站确定对应的优化 ABS值; 所述预测数 据是根据所述真实数据确定的;
其中 A ^表示宏站的优化 ABS值; 表示以所述真实数据确定的优化 染色体中的一个候选 ABS值; 表示以所述预测数据确定的优化染色体 中的一个候选 ABS值; 为预设的平滑的权重。 本实施例中网络控制器通过采用遗传算法的操作, 为各个宏站确定优化 ABS值,使通信网络在全局范围上得到性能的优化,且在使用优化 ABS值调 整了各个宏站的 ABS值后,为各个小站确定了当前容量的权重和当前覆盖的 权重, 以使各个小站根据自身的特点, 在分区域优化通信网络时可结合各自 的当前容量的权重和当前覆盖的权重, 有效的解决通信网络中通信网络动态 变化导致的网络热点和覆盖漏洞的问题。
需要说明的是, 图 6和图 7所示的网络控制器中的各个模块具体用于 执行下述图 1 1至图 13所示的方法实施例中的各个歩骤, 具体的执行过程 及有益效果可参考下述各个方法实施例中的描述。
图 8为本发明网络控制器实施例三的结构图。 如图 8所示, 本实施例中 的网络控制器可以为图 1中的网络控制器 30, 也可以为集成了网络控制器功 能的宏站, 本实施例中的网络控制器包括:
处理器 301, 用于为各个宏站确定各个优化 ABS值;
发送器 302, 用于向各个宏站发送对应的各个所述优化 ABS值; 所述处理器 301 还用于根据所述通信网络中当前的热点位置和漏洞位 置, 为小站确定容量和覆盖; 所述发送器 302还用于向小站发送 ABS值优化完成消息; 所述 ABS值 的优化完成消息携带所述小站的容量和覆盖。
进一歩的, 上述当前的热点位置和漏洞位置的数量分别为至少一个, 则 所述处理器 301具体用于获取所述小站与各个所述热点位置之间的各个第一 测量距离和所述小站与各个所述漏洞位置之间的各个第二测量距离;
在各个所述第一测量距离中确定数值最小的第一测量距离为第一距离; 并在各个所述第二测量距离中确定数值最小的第二测量距离为第二距离; 根据所述第一距离和第二距离,确定所述覆盖的权重和所述容量的权重。 进一歩, 若所述小站不属于规划部署的网元, 所述处理器 301根据所述 第一距离和第二距离、 前次覆盖的权重确定所述覆盖的权重, 并根据所述第 一距离和所述第二距离、 前次容量的权重确定所述容量的权重;
若所述小站属于规划部署的网元, 则所述处理器 301根据所述第一距离 和第二距离、 前次覆盖的权重和初始覆盖的权重确定所述覆盖的权重, 并根 据所述第一距离和第二距离、 前次容量的权重和初始容量的权重确定所述容 量的权重。
具体的, 若所述小站不属于规划部署的网元, 所述处理器 301具体用于 根据《ls ="^ ^确定所述覆盖的权重, 并根据 ^ ^^确定
(λ -ϊ)ωΐ5 +1 (1 -λ)ω25 + λ 所述容量的权重;
部署的网元, 则所述第二确定单元具体用于根据 确 定 所 述 覆 盖 的 权 重 , 并 根 据
Figure imgf000021_0001
ω2^ α ^ ~~ ^ + 确定所述容量的权重;
{\ -λ)ωΐ5 + λ
其中, ^为所述小站的覆盖的权值, 为所述小站的容量的权重, co 为所述小站的前次覆盖的权重, 为所述小站的前次容量的权重, 为 所述小站的初始覆盖的权重, 为所述小站的初始容量的权重, 根据 ( )-" = 确定, ^为所述第一距离, 为所述第二距离, n为影响系数。 进一歩, 所述处理器 301还用于
根据 fitness = φ - Οον + (1 - φ)Οαρ, 获得当前组候选染色体对应的适应度 fitness 集合; 一组所述候选染色体包括 Y个候选染色体, 所述/ 集合中的每 一个/ 对应一个候选染色体;
若所述当前组候选染色体对应的 / 集合中的最大 / ^与前一组候 选染色体对应的 /trn^集合中的最大 /trn^之间的变化值大于预设 fitness 化门限, 且用于获得所述当前组候选染色体的遗传算法操作的执行次数未 超过预设遗传门限, 则所述处理器 301 还用于在所述当前组候选染色体对 应的/ 集合中, 选取最大 y个/trn^所对应的 y个候选染色体作为 y个 父染色体;
对所述 y个父染色体执行所述遗传算法的操作,获得(Y-y)个子染色体; 结合所述 y个父染色体和(Y-y)个子染色体, 获得新的当前组候选染色 体;
若所述当前组候选染色体对应的 / 集合中的最大 / ^与所述前一 组候选染色体对应的适应度/ 集合中的最大 /trn^之间的变化值不大于 预设 fitness变化门限, 或者所述遗传算法操作的执行次数达到预设遗传门 限, 则所述处理器 301 还用于确定所述当前组候选染色体对应的适应度 /trn^集合中, 最大 / 对应的候选染色体为优化染色体;
所述处理器 301还用于根据所述优化染色体, 为各个所述宏站确定各个 优化 ABS值;
其中,一个所述候选染色体包括的候选 ABS值的总数与所述各个宏站的 总数相等; Y和 y均为预设的正整数, 且¥ ; 为所述通信网络的覆盖 关键性能指标 KPI; Cap为所述通信网络的容量 KPI; 在获得所述/ 时, 采用的 C。v和 Cap的值由所述/ 对应的候选染色体确定; 为预设归一化 权重值。
进一歩, 所述处理器 301具体用于
若 C。v和 Cap的值与所述通信网络的真实数据相关,则将所述优化染色体 中的各个候选 ABS值作为各个所述宏站对应的优化 ABS值;
若 C。v和 Cap的值与所述通信网络的预测数据相关, 则根据 β, = Ρ · β + - ρ) · β^ 为各个所述宏站确定对应的优化 ABS值; 所述预测数 据是根据所述真实数据确定的; 其中 A ^表示宏站的优化 ABS值; 表示以所述真实数据确定的优化 染色体中的一个候选 ABS值; 表示以所述预测数据确定的优化染色体 中的一个候选 ABS值; 为预设的平滑的权重。 本实施例中网络控制器通过采用遗传算法的操作, 为各个宏站确定优化 ABS值,使通信网络在全局范围上得到性能的优化,且在使用优化 ABS值调 整了各个宏站的 ABS值后,为各个小站确定了当前容量的权重和当前覆盖的 权重, 以使各个小站根据自身的特点, 在分区域优化通信网络时可结合各自 的当前容量的权重和当前覆盖的权重, 有效的解决通信网络中通信网络动态 变化导致的网络热点和覆盖漏洞的问题。
需要说明的是, 图 8所示的网络控制器中的各个器件具体用于执行下 述图 11至图 13所示的方法实施例中的各个歩骤, 具体的执行过程及有益 效果可参考下述各个方法实施例中的描述。
图 9为本发明优化通信网络的处理方法实施例一的流程图。如图 9所示, 本实施例的执行主体为优化通信网络的处理装置, 该处理装置可以采用软件 和 /或硬件的方式实现, 优选的, 该处理装置集成在如图 1所示的小站上, 则 本实施例可应用在图 1所示的通信网络中, 可以理解的, 通信网络中存在多 个小站, 各个小站均需要随通信网络的动态变化及时调整 CSB值, 而本实施 例以其中一个小站视角, 进行本实施例的描述, 具体的:
S10 小站根据小站的容量和覆盖, 确定优化 CSB值。
上述优化 CSB值用于优化小站所在的通信网络。
本实施例中, 由于小站联合了容量和覆盖确定优化 CSB值, 可有效地解 决通信网络中终端负载的动态变化导致的网络热点和覆盖漏洞的问题。
更具体的, 为了使小站及时调整 CSB值, 以有效的对通信网络进行优 化, 在实际应用中, 可选的, 上述 S101是在通信网络中的网络控制器向小站 发送的 ABS值优化完成消息后立即执行, 即网络控制器将对通信网络产生较 大影响的 ABS值调整结束后, 进一歩通过 ABS值优化完成消息, 控制小站 开始调整 CSB值; 或者
可选的, 当小站的计时器的计时时长达到预设时长时, 小站开始执行
S101 , 即为了使 CSB值的调整频率配合通信网络的动态变化, 小站在前一次 调整 CSB值之后, 启动该小站的计时器, 当计时器的计时时长达到预设时长 后, 便开始执行 S 101 ; 或者
可选的, 当小站的负载的变化值超过预设负载变化门限时, 小站开始执 行 S101 , 具体来说, 小站在当前时刻根据 to^s = i统计该小站在当前时
R
刻承担的负载, 其中 s表示小站, 为小站当前时刻承担的负载, t/s为包 括当前时刻接入小站的全部终端的集合; u表示 t/s中任意一个终端, 则 ^表 示终端 U的业务需求, s为终端 U与小站的关联速率; 然后小站计算该小站 当前时刻统计的负载 与当前时刻之前统计的负载之间的变化量, 若该变 化量达到预设负载变化门限, 则开始执行 S101 ;
举例来说,在初始时刻网络控制器调整了通信网络中各个宏站的 ABS值, 使通信网络在全局范畴上得到优化,且同时向小站发送 ABS值的优化完成消 息,控制小站配合初始时刻调整的 ABS值,调整 CSB值;在小站调整了 CSB 值的同时, 小站开启了计时器, 随后随着时间的推移, 通信网络中终端需求 的业务量、 环境因素一直在动态的变化, 则小站的计时器的由初始时刻计时 到当前的 tl时刻的计时时长达到预设时长, 即使网络控制器判断此时还不需 要调整 ABS值, 但小站为了及时解决动态变化后的通信网络中的问题, 开始 调整 CSB值; 或者在网络控制器判断不需要调整 ABS值时, 但小站在当前 时刻之前调整 CSB值之后,通信网络中由于接入小站的终端的数量发生变化, 或终端请求的业务量增多, 而终端依据小站当前使用的 CSB值选择接入小站 后, 并不能通过小站获得较好地服务, 即此时通信网络的性能较差, 因此当 小站在当前时刻检测到负载的变化量达到预设负载变化门限, 也开始调整 CSB值, 以优化通信网络。
5102、 小站将所述小站的当前的 CSB值更新为优化 CSB值。
5103、 小站向至少一个终端发送该小站的优化 CSB值。
通信网络中的终端接收到小站发送过的优化 CSB值后, 终端可以根据该 优化 CSB值确定是否接入小站。
举例来说, 上述小站为通信网络中的一个小站, 则通信网络中其他小 站也是按照 S 101~S103调整各自的 CSB值, 即小站 1执行 S 103 , 小站 2 也执行了 S 103 , 则终端接到小站 1发送的优化 CSB值和小站 2发送的优 化 CSB值后, 终端可根据小站 1的优化 CSB值和小站 2优化 CSB值, 选 择接入可获得较优通信服务的小站, 或者终端根据小站 1 的优化 CSB值 和小站 2优化 CSB值, 确定接入其他宏站可获得更好的服务, 则终端会 选择接入其他宏站, 这样通信网络中的各个终端合理的接入各个小站或宏 站, 避免大量终端集中接入某一个小站或宏站, 同时也避免通信网络中出 现覆盖漏洞的问题, 即各个小站通过各自的优化 CSB 值, 在通信网络中 完成各自覆盖的区域的性能优化。
本实施例中, 小站的 CSB 值的调整是由小站执行的, 则小站可根据 通信网络的动态变化, 及时调整 CSB值, 以有效的对通信网络进行优化; 与现有技术相比, 本实施例中 CSB 值的调整不再受网络控制器的控制, 因此小站的 CSB值的调整频率不需与 ABS值的调整频率保持相同, 则小 站可以以较小的时间间隔调整 CSB 值, 以及时地优化动态变化的通信网 络, 也不会造成庞大的信令开销; 且在优化通信网络时联合了小站的容量 和覆盖, 可有效地解决通信网络中终端负载的动态变化导致的网络热点和覆 盖漏洞的问题, 利于提升通信网络的性能。
图 10为本发明优化通信网络的处理方法实施例二的流程图。如图 10所 示, 本实施例是在图 9所示的实施例的基础上做出进一歩的描述, 具体如下: S20 小站获取至少一个候选 CSB值。
本歩骤 S201可选的具体的执行过程如下:
51、 小站获取至少一个终端中每一个终端针对该小站的接收功率和所述 至少一个终端中每一个终端针对宏站的接收功率。
若小站首次执行 S1 ,可以将作为第一 CSB值的初始值设置为 OdB ; 上述 至少一个终端为小站附近的终端, 也可以说是可以与小站进行数据传输的终 端, 具体包括已接入该小站的终端, 或者还可以包括未接入该小站, 但可与 该小站通信的终端。 小站附近的终端在小站的请求下, 向小站回复其接收该 小站的信号的接收功率和其接收宏站的信号的接收功率; 其中宏站的数量为 至少一个, 相应的, 终端向小站回复接收至少一个宏站中各个宏站的信号的 接收功率。
52、小站使第一 CSB值与所述至少一个终端中每一个终端针对小站的接 收速率相加, 获得所述至少一个终端中各个终端对应的第一值。
S3、 小站根据至少一个终端中各个终端对应的第一值与至少一个终端中 每一个终端针对宏站的接收速率, 在所述至少一个终端中确定第一 CSB值对 应的集合 Es ;
举例来说, 在 S1中小站接收到 5个终端上报的信息, 以 5个终端中的第 一终端作为示例, 该第一终端针对该小站的接收功率为
Figure imgf000026_0001
, 而第一 终端针对宏站的接收功率为
Figure imgf000026_0002
, m 表示一个宏站, 则根据 max{RSRPm→ m , RSRP , s + CSBs }判断该第一终端是否会接入该小站, 其中
CSSS为第一 CSB值,
Figure imgf000026_0003
+CSS P为第一终端对应的第一值; 实际应 用 中 通 常 有 多 个宏 站 , 但 本 实 施例 为 便于描 述 , 上述 n^RSRP m,RSRP s + CSBJ 中 以 一 个 宏 站 示 例 ; 若 根 据 „{RSRP , m,RSRP +C¾ 得到的结果为 RSRP ,则说明小站若设 置上述第一 CSB 值, 第一终端不会选择接入该小站, 若根据 n RSRP , RSRP , s + CSBs }得到的结果为 RSRP , s + CSBs, 说明小站 若设置上述第一 CSB值,第一终端会选择接入小站,则将在上述第一 CSB 值下, 会接入小站的第一终端保存至第一 CSB 值对应的集合中, 本实施 例中任意一个第一 CSB值对应的集合以 表示;
参考上述第一终端, 对上述 5个终端中的每一个终端进行判断, 从而 在第一 CSB值下, 5个终端中会接入该小站的各个终端构成了该第一 CSB 值对应的集合 Es
S4、 根据第一 CSB值对应的集合 Es, 判断小站的负载是否等于 1, 若 是执行 S5, 若否执行 S6。
举例来说, 在 S3中的第一 CSB值对应的集合 Es中包括第一终端、 第 二终端和第五终端, 则根据第一终端、 第二终端和第五终端各自上报的当 前业务量和各自与小站的关联速率(终端与小站的关联速率可以使用终端 在一段时间内接收该小站的下行数据的速率的平均值表示) , 计算该小站 的负载量, 而该关联速率受通信网络中各个宏站的当前 ABS 值影响; 具 体的, 可参照上述 " lod " , 计算小站针对第一 CSB值对应的集 ueUs Λ Μ,5
合 的负载。 S5、 将第一 CSB值作为候选 CSB值。
以初始的 OdB为例, 执行 S1~S4后执行了 S5, 即小站根据 OdB对应的 集合 Es,确定 OdB值对应的该小站的负载等于 1,则将 OdB作为一个候选 CSB 值; 随后便执行 S202。
S6、 将所述第一 CSB值作为所述候选 CSB值, 并以预设歩长增大所述 第一 CSB值, 获得新的所述第一 CSB值, 并返回执行 Sl。
以初始的 OdB为例,执行 S1~S4后执行了 S6,即根据 OdB对应的集合 Es, 确定 OdB对应的该小站的负载小于 1, 则将 OdB作为一个候选 CSB值, 并以 预设歩长 5dB增大 0dB, 获得新的第一 CSB值即为 5dB, 返回执行 Sl, 直至 第一 CSB值达到预设门限 CSB值, 随后便执行 S202。
由前述 S1~S6可知, 上述至少一个终端中每一个终端与小站的关联速率 受通信网络中各个宏站的当前 ABS值影响,例如第一 CSB值对应的集合 Es 中各个终端与小站的关联速率受各个宏站的当前 ABS 值影响, 从而影响 到第一 CSB值对应的负载是否小于 1, 最后则影响该第一 CSB值是否作 为候选 CSB值。
S202、小站根据 maxl = culsC v + olsC p, 确定各候选 CSB值所对应的各个候 选结果;
其中, max l为候选结果, 为小站的覆盖的权重, ^为小站的容量 的权重; 需要说明的是, 在执行 S202之前, 小站接收参数信息; 该参数信 息携带小站的容量的权重和所述小站的覆盖的权重, 具体来说, 上述参数信 息可具体为触发小站执行 S201的 ABS值优化完成消息, 或者该参数信息也 可以是小站在执行 S201 之前获得的; 为小站关于覆盖的 KPI ( Key Performance Indicator , 关键性能指标) ; 为小站关于容量的 ΚΡΙ ,
C0 s V = R -iU, c =∑[Re,s x Re,s, ; Rs z%Ue 为集合 Es中 终端对应的针 对小站的各个关联速率的平均值, 所述 2%个终端中任意一个终端与小站 的关联速率不大于所述集合 中除所述 ∑%个终端以外的任意一个终端与 小站的关联速率; 不同的候选 CSB 值对应不同的集合 Es, 则不同的所述 集合 Es中所述 2%个终端对应不同的所述 e表示所述集合 Es中的任 意一个终端, 则 s表示所述集合 Es中终端 e与小站的关联速率, R 为终 端 e的需求速率, 的值依照 = 确定。
' [0, χ < χ0
举例来说, 通过前述 S201中确定的某个候选 CSB值对应的集合 中 包括第一至第五终端, 则根据第一至第五终端各自上报的关联速率, 在集 合 中选择关联速率最低的 2%个终端, 例如 ζ为 40, 集合 Es中第三终端 的关联速率低于其他第一、 第二和第五终端, 第四终端的关联速率低于第 三终端, 则在集合 中选择关联速率最低的 40%个终端即为第三终端和第 四终端, 随后计算第三终端与小站的关联速率和第四终端与第一终端的关 联速率的平均值; 则可以理解的, 不同的候选 CSB值对应不同的集合 Es, 即不同的集合 Es中包含的各个终端和集合 中终端的数量均不同, 从而确 定的 % 也不同。 需要补充说明的是, 触发小站执行 S201 的触发条件为网络控制器发 送的 ABS值的优化完成消息时, 例如 tl时刻网络控制器在全局范畴上调 整了各个宏站的 ABS值,则网络控制器计算在 tl时刻的各个 ABS值的影 响下, 小站的覆盖的权重和容量的权重, 并将计算获得的小站的覆盖的权 重和容量的权重随 ABS值的优化完成消息发送给小站;
但在 tl时刻之后的 t2时刻, 网络控制器决定不调整 ABS值, 但小站 的计时器确定 tl时刻到 t2时刻的计时时长达到预设时长, 或者小站在 t2 时刻的负载的变化值超过预设负载变化门限, 开始执行 S201时, 则 S202中 使用的小站的覆盖的权重和小站的容量的权重仍然采用 tl 时刻小站接收 到的覆盖的权重和容量的权重, 也就是说, 本实施例中所述小站的覆盖的 权重和所述小站的容量的权重是携带在用于触发小站执行 S201的 ABS值的 优化完成消息中的, 或者所述小站的覆盖的权重和所述小站的容量的权重是 所述小站执行 S201之前接收的。
S203、 小站在所述各个候选结果中将值为最大的候选结果所对应的候选
CSB值作为该小站的优化 CSB值。
小站可选的,执行 S203之后可直接执行 S207, 以完成对通信网络的优化; 但考虑到用于确定优化 CSB值的集合 是小站通过计算预测的接入该小站的 终端的集合, 且在计算过程中, 与执行本实施例的小站相邻的其他小站 (本 实施例中称为相邻小站,且相邻小站的数量为至少一个)也在针对各自的 CSB 值进行调整, 也就是说, 通信网络中的各个小站的 CSB值也是不断在调整的, 小站将该小站的当前的 CSB值更改为优化 CSB值并向周围的终端广播了该优 化 CSB值后, 至少一个相邻小站也向各个终端广播了相邻小站的当前 CSB值, 则终端根据收到的各个小站的 CSB值进行选择需要接入的小站, 则可能的, 本来用于确定上述小站的优化 CSB值的集合 中的终端可能在接收到本实施 例中的小站的优化 CSB值和某个相邻小站的当前 CSB值后, 实际选择接入某 个相邻小站, 或者不属于上述用于确定优化 CSB值的集合 中的终端由于接 收到本实施例的小站的优化 CSB值和某个相邻小站的当前 CSB值后, 该终端 实际选择接入设置该优化 CSB值的小站, 因此本实施例的小站获得优化 CSB 值后, 与相邻小站交换 CSB值, 即此时还需执行 S204~S206, 以获得更加符合 通信网络的当前情况的优化 CSB值, 使得终端选择接入的小站更加合理。
5204、 小站向相邻小站发送该小站的优化 CSB值, 并接收所述相邻小站 的当前 CSB值;
小站的优化 CSB值对应于接入该小站的终端的预期状况;
5205、 小站根据该小站的优化 CSB值和所述相邻小站的当前 CSB值, 确定接入该小站的终端的实际状况。
上述预期状况具体包括用于确定优化 CSB值的集合中的各个终端和用于 确定优化 CSB 值的集合所包括的终端的数量, 而实际状况包括在优化 CSB 值下选择接入小站的各个终端和在优化 CSB 值下选择接入小站的终端的数 量; 举例来说, 预期状况具体为用于确定优化 CSB值的集合中包括的第一至 第五共 5个终端, 而小站向周围的各个终端发送检测数据, 并收到各个终端 反馈的接收功率,则小站根据各个终端此时反馈的接收功率、自身的优化 CSB 值和相邻小站的当前 CSB值, 计算确定若小站以优化 CSB值设置后, 接入 小站的终端的实际状况为第一、 第二和第五终端, 且终端的数量为 3。
5206、 小站判断所述预期状况与所述实际状况是否相同, 若否, 则返回 执行 S201 , 若是, 则执行 S207。
上述返回执行 S201即为再次确定小站的优化 CSB值, 以获得小站新的 优化 CSB值, 直至小站的每一个所述优化 CSB值依照获得的次序, 构成收 敛数列; 举例来说, 在 t2时刻小站获得优化 CSB值 1, 但执行 S206后返回 S201重新开始执行, 并在在 t3时刻获得优化 CSB值 2; 依次类推, 在 t9时 刻获得优化 CSB值 8, 此时小站判断获知优化 CSB值 1至优化 CSB值 8构 成收敛数列, 此时不论 S206的判断结果为何, 直接根据优化 CSB值 8执行 S207;
或者, 直至在一个实施例的执行过程中, 所述 S201被重复执行的次数达 到预设阈值, 例如在在 t9时刻之前, "执行 S206后返回 S201 "这一事件已 发生了 10次, 10为预设阈值, 则在 t9时刻得到优化 CSB值 8后, 不论 S206 的判断结果为何, 直接根据优化 CSB值 8执行 S207。
S207、 小站将该小站的当前的 CSB值更新为优化 CSB值。
S208、 小站向至少一个终端发送该小站的优化 CSB值。
通信网络中的终端接收到小站发送过的优化 CSB值后, 终端可以根据该 优化 CSB值确定是否接入小站。
本实施例中, 小站的 CSB 值的调整是由小站执行的, 则小站可根据 通信网络的动态变化, 及时调整 CSB值, 以有效的对通信网络进行优化; 与现有技术相比, 本实施例中 CSB 值的调整不再受网络控制器小站的控 制, 因此小站的 CSB值的调整频率不需与调整 ABS值的频率保持相同, 则小站可以以较小的时间间隔调整 CSB 值, 以及时的优化动态变化的通 信网络, 也不会造成庞大的信令开销; 且在优化通信网络时联合了小站的 容量和覆盖, 可有效地解决通信网络中终端负载的动态变化导致的网络热点 和覆盖漏洞的问题, 利于提升通信网络的性能, 进一歩的, 在各个小站在 确定用于优化通信网络的 CSB 值的过程中, 相邻的两个小站还通过交换 优化 CSB值以对该优化 CSB值进行调整,使调整后的新的优化 CSB值更 加符合当前的通信网络。
图 11为本发明优化通信网络的处理方法实施例三的流程图。 如图 11 所示, 本实施例中的执行主体为网络控制器, 本实施例中的各个歩骤可以通 过网络控制器中的软件和 /或硬件实施, 优选的, 通信网络中的宏站可以集成 该网络控制器的功能, 具体如下:
S301、 网络控制器为各个宏站确定各个优化 ABS值;
上述优化 ABS值用于优化通信网络。 5302、 网络控制器向各个宏站发送对应的各个优化 ABS值; 上述宏站具体可以为通信网络中的宏站; 网络控制器为各个宏站确定各 个优化 ABS值, 并将各个优化 ABS值发送至对应的宏站, 则各个宏站根据 优化 ABS值发送 ABS,在全局范畴上使各个宏站对当前的通信网络中接入小 站的终端的干扰处于合理状态, 不会对通信网络中终端获取的网络服务造成 严重影响, 从而优化了通信网络的服务性能。
5303、 网络控制器根据所述通信网络中当前的热点位置和漏洞位置, 为 小站确定容量和覆盖。
具体的, 在全局范畴上优化通信网络后, 还需各个小站分区域进一歩地 优化通信网络; 在使各个小站分区域进一歩地优化通信网络时, 网络控制器 结合当前通信网络中当前的热点位置和漏洞位置, 为各个小站确定与当前的 所述通信网络匹配的容量和覆盖; 例如一些小站与当前的热点位置较近, 则 该小站的主要作用是用于分担负载的, 因此需要将该小站的容量的权重设置 的较大, 而一些小站与当前的漏洞位置较近, 则该小站是用于解决覆盖的问 题, 需要将该小站的覆盖的权重设置的较大; 即处于不同位置的小站所起的 作用是不同的, 因此在使各个小站分区域优化通信网络时, 需为各个小站配 置不同的容量的权重和覆盖的权重, 使各个小站联合容量的权重和覆盖的权 重以对通信网络进行优化, 才可有效地消除通信网络动态变化导致的网络热 点和覆盖漏洞的问题,而且在 S303中网络控制器是根据所述通信网络中当前 的热点位置和漏洞位置, 为小站确定容量和覆盖, 则此时确定的小站确定容 量和覆盖是与当前时刻的通信网络相匹配的, 也就是说, 基于当前的热点位 置和漏洞位置确定的容量和覆盖, 可使小站确定的 CSB值有效的解决当前时 刻通信网络中的容量问题和覆盖问题。
5304、 网络控制器向小站发送 ABS值优化完成消息。
ABS值的优化完成消息携带小站的容量和覆盖, 以供所述小站确定用于 优化所述通信网络的优化 CSB值。
需要补充说明的是, 在实际应用中, 上述 S301的执行是由某个信息触发 的, 也就是说, 网络控制器获取到用于触发调整 ABS值的触发条件, 本实施 例中可选的触发条件为业务量比例的变化值超过预设比例变化门限, 所述业 务量比例是所述小站承担的业务量与所述通信网络中全部的业务量的比值; 可选的, 业务量比例的变化值可以采用下述方法确定:
网络控制器将通信网络在物理区域上划分为多个栅格, 并根据∑∑7 持 续统计小站承载的业务量, 其中 s表示通信网络中任意一个小站, p表示栅格, 表示栅格 p为小站 S覆盖的栅格; 7;表示小站 S覆盖的任意一个栅格 p的业 务量; 可以理解的, 一个栅格中有多个终端, 每个终端均有向小站请求业务 服务, 则小站为向终端提供业务服务需承担相应的业务量; 其中 7;是由覆盖 栅格 P的小站上报; 随后计算 与通信网络中全部的业务量相比, 得到业 务量比例 7,其中,全部的业务量中有宏站承担的业务量;最后根据 Δτ = |τ-τ。| 获得业务量比例的变化值 Δ , 当八7达到预设比例变化门限, 则执行 S301 , 其 中 r。为网络控制器前次优化通信网络时获得的业务量比例;
可选的,所述触发条件为网络控制器的计时器的计时时长达到预设时长, 即 tl 时刻网络控制器为了优化通信网络为各个宏站确定了优化 ABS值, 并 开启了网络控制器的计时器, 当该计时器由 tl 时刻计时至 t5时刻, 确定 tl 时刻至 t5时刻的计时时长达到预设时长, 则在 t5时刻开始执行 S301。
本实施例中网络控制器在使用优化 ABS值调整了各个宏站的 ABS值后, 为各个小站确定了容量和覆盖, 以使各个小站在分区域优化通信网络时可结 合容量和覆盖, 有效的解决通信网络中通信网络动态变化导致的网络热点和 覆盖漏洞的问题。
图 12为本发明优化通信网络的处理方法实施例四的流程图。 如图 12所 示,本实施例是在图 11所示的实施例的基础上做出进一歩的描述,具体包括:
5401、 网络控制器为各个宏站确定各个优化 ABS值;
5402、 网络控制器向各个宏站发送对应的各个优化 ABS值;
通过本歩骤, 通信网络中的各个宏站将当前 ABS 值更改为对应的优化 ABS值。
S403、 网络控制器获取小站与各个热点位置之间的各个第一测量距离和 小站与各个漏洞位置之间的各个第二测量距离。
通信网络中存在多个热点位置和多个漏洞位置, 则网络控制器在为一个 小站确定当前覆盖的权重和当前容量的权重时, 先统计该小站与各个热点位 置的各个第一测量距离和该小站与各个漏洞位置之间的各个第二测量距离。
S404、 网络控制器在各个第一测量距离中确定数值最小的第一测量距离 为第一距离, 并在各个第二测量距离中确定数值最小的第二测量距离为第二 距离;
S405a、 网络控制器根据第一距离和第二距离, 确定覆盖的权重和容量的 权重。
具体的, 所述网络控制器根据所述第一距离和第二距离、 前次覆盖的权 重确定所述覆盖的权重, 并根据所述第一距离和所述第二距离、 前次容量的 权重确定所述容量的权重,即根据所述网络控制器根据^ =— ^确定所
(λ -ϊ)ωΐ5 + 1 述覆盖的权重, 并根据《2s = ^ , ~~ ^确定所述容量的权重; 其中, ^为所述小站的覆盖的权值, ^为所述小站的容量的权重, 为所述小站的前次覆盖的权重, 为所述小站的前次容量的权重, 根据
( )-" = l确定, ^为所述第一距离, ^为所述第二距离, n为影响系数, n可取值为环境衰减系数, 例如参考 3GPP标准的信道衰减模型, n可取值 为 3; 也可通过测量获得。
但较优的, 网络控制器还考虑了各个小站在初始部署时的类型, 例如一 些小站是属于规划部署的网元, 而一些小站不属于规划部署的网元, 对于不 属于规划部署的小站, 则可根据当前通信网络的状况, 通过调节该小站的覆 盖的权值和容量的权值, 使小站可有效解决当前通信网络中热点或覆盖的问 题; 但对于属于规划部署的小站, 则在初始设置该小站时, 是有计划的使该 小站的服务侧重点偏于解决热点问题或覆盖问题, 因此对该小站的一些配置 也是与该小站的服务侧重点相适配的, 从而在当前时刻调整该小站的容量的 权值和覆盖的权值时, 是需要考虑到其初始的一些配置的特点, 因此, 上述 S405a可被下述各个歩骤替代:
S405b、 判断小站是否为规划部署的网元, 若否, 执行 S405bl ; 若是, 执行 S405b2;
S405bl、 网络控制器根据第一距离和第二距离确定覆盖的权重和容量的 权重;
上述 S405bl与上述 S405a相同,可以理解为,一种实现方式为执行 S404 之后便执行 S405a, 然后便执行 S406; —种较优的实现方式则为, 执行 S404 之后,先执行 S405b进行判断,以选择执行 S405bl或 S405b2,在执行 S405bl 或 S405b2之后, 便执行 S406;
S405b2、 网络控制器根据所述第一距离和第二距离、 前次覆盖的权重和 初始覆盖的权重确定所述覆盖的权重, 并根据所述第一距离和第二距离、 前 次容量的权重和初始容量的权重确定所述当前容量的权重。 具体的, 所述网络控制器根据 = α—^-— + (1 - a)of确定所述覆盖的
{A - \) +1 权重, 并根据《2s = « ^ , ~~ ^+d-w^ 定所述容量的权重, 其中 为所 述小站的初始覆盖的权重, 为所述小站的初始容量的权重, 《为预设的 平滑系数。
上述 S405b、 S405bl和 S405b2为一种可能的实现方式, 故图中未示 出。
另外, 上述 S403~S405a (或者 S405b、 S405bl、 S405b2)、 是针对通信网 络中的任意一个小站进行的, 可以理解的, 对通信网络中的每一个小站, 均 可以通过上述歩骤确定其覆盖的权重和当前容量的权重,随后便可执行 S406。
S406、 网络控制器向小站发送 ABS值优化完成消息。
当网络控制器通过执行 S405a或执行 S406b、 S406M和 S406b2, 为通信 网络中的小站确定覆盖的权重和容量的权重后, 向该小站发送 ABS值优化完 成消息, 则该 ABS值优化完成消息携带该小站容量的权重和覆盖的权重, 以 供所述小站确定用于优化所述通信网络的优化 CSB值。
需要补充的是,上述 S401中为各个宏站确定各个用于优化通信网络的优 化 ABS值可采用的方式较多, 本实施例以下述方式进行示例, 具体包括: Cl、 网络控制器根据/ ^ = C。v + (l - )Cai), 获得当前组候选染色体对 应的适应度 fitness集合;
其中, 一组所述候选染色体包括 Y个候选染色体, 所述/ 集合中 的每一个 / ^对应一个候选染色体, Y为预设的正整数; c。v为所述通信网络的覆盖 ΚΡΙ, C ^为所述通信网络的容量 ΚΡΙ, 在计 算一组候选染色体对应的 / ^集合时, C。v和 Cap的值由该组中的所述候选 染色体确定, 为预设归一化权重值, 取值范围为 [0,1], 具体如下: 公式 1: Rp,s,Rp req)
Figure imgf000035_0001
公式 2: =E + E RPM, R;r q )的值和 RPS, R;r q )的值均按照 ) 确定;
Figure imgf000035_0002
其中 m表示通信网络中任意一个宏站, t/m表示接入宏站的终端数量, ^表
/」、接入小站 s的终端的数量; 则^^表示通信网络中栅格 p与宏站 m的关联速 率, 表示栅格 p关联到小站的关联速率, 表示栅格 ρ的需求速率, 例如 栅格 ρ中 5个终端上报的需求速率求平均值, 便可得到 而上述 根据 υ-β Eff NRB,p log2(l + RSSINRp m )确定,
其中 表示任意一个候选染色体中任意一个候选 ABS值, Effmi 为已知的 MIMO (Multiple-Input Multiple-Output,多输入多输出)系统带来的速率增益, 为已知的栅格 p得到的资源块, «S/M^m为栅格 p针对宏站 m的接收信号 信干噪比, SS/M?^的确定是根据公式 3确定, 具体的
RSRP„„
公式 3: RSSINRnm = 其中 //为噪声的功率, / 为栅格 p针对宏站 m的接收功率, RSRPps为 格 p针对小站 s的接收功率, /m表示干扰小区集合; 的计算参照公式 4: ^ 腦 ABS P P { _ βη - EffmimoNRB,p log2 (1 + R^SSINRp s ) ABS 其中, RSS賺 p s为栅格 p接收小站信号时的信干噪比, RSRP,
nonABS
∑RSRPp m +∑RSRPp q +
公式 5: RSSINR
RSRP
ABS
∑RSRPP,q +v
q
需要说明的是, 在将 R /NR^代入公式 4时, 依照 ABS和 nonABS分 别代入, 例如 β . Effmi N RB gl(X + RSSINR 但将公式 4 代 入 公 式 1 和 2 时 , 是 将 " {l -fi - EjfmimaNRB^p log2 (1 + RSSINR p s ) + βη - EjfmimaNRB^p log2 (1 + RSSINR p s ) "代入; 初始执行 CI时,可以随机生成一组候选染色体作为所述当前组候选染色 体, 例如通信网络中有 10个宏站, 则为每一个宏站随机生成一个候选 ABS 值, 则 10个宏站各自的候选 ABS值构成一个候选染色体, 且初始时通常生 成 100个候选染色体, 构成当前组候选染色体, 并依据上述各个公式计算获 得当前组候选染色体对应的 / 集合;
C2、网络控制器判断当前组候选染色体对应的 / ^集合中的最大 fitness 与前一组候选染色体对应的 / 集合中的最大 /tm^之间的变化值是否大 于预设 变化门限; 若否, 执行 C3 , 若是, 执行 C4;
上述当前组与前一组为相对概念, 可以理解的, 初始时刻 to生成的一组 候选染色体,则在初始时刻执行 C1时,该初始时刻生成的一组候选染色体即 为当前组候选染色体; 由于在初始时刻之前不存在其他候选染色体, 则针对 初始时刻生成的一组候选染色体, 直接执行 C4~C6, 得到新的一组候选染色 体, 则在初始时刻之后的 tl时刻, 针对该新的一组候选染色体执行 C1时, 该新的一组候选染色体即为当前组候选染色体, 此时 to时刻的一组候选染色 体相对该新的一组候选染色体, 即为前一组候选染色体。
C3、判断用于获得当前组候选染色体的遗传算法操作的执行次数是否 超过预设遗传门限; 若否, 执行 C4, 若是, 执行 C7;
C4、在所述当前组候选染色体对应的 集合中,选取最大 y个 fit 所对应的 y个候选染色体作为 y个父染色体;
y为预设的正整数, 且¥ ; C5、 网络控制器对所述 y 个父染色体执行所述遗传算法的操作, 获得 (Y-y) 个子染色体;
C6、 网络控制器结合所述 y个父染色体和 (Y-y) 个子染色体, 获得新 的当前组候选染色体, 返回执行 C1 ;
C7、 网络控制器确定所述当前组候选染色体对应的适应度/tm^集合 中, 最大/ 对应的候选染色体为优化染色体。
C8、 网络控制器根据所述优化染色体, 为各个所述宏站确定各个优化 ABS值;
在 C2中的用于确定 C。v和 Cap的值时,均引入了通信网络中的真实数据, 例如 和^、 Rp,m、 等根据统计或终端上报的真实信息,也即是说 C。v和 ^的值是根据真实数据确定时, 则将 C7 中的优化染色体中的各个候选 ABS值, 作为对应的各个宏站的优化 ABS值;
但考虑到对通信网络中的优化需要一定的时间, 则在优化时间内通信网 络也是动态变化的, 则为了使优化 ABS值可有效优化通信网络, 网络控制器 可根据历史的业务量及历史真实数据进行预测, 例如当前时刻为 tl, 通常优 化调整所需要的时间为 Δ, 则网络控制器根据 tl时刻之前获得的真实数据 (具体包括公式 1〜公式 5中所需的各个参数, 如 t/m、 Us、 Rp m、 Rp,s , 预测 + 时刻通信网络中的接入宏站的终端的数量、接入小站的终端的数 量、各个终端与小站的关联速率、与宏站的关联速率等信息作为预测数据, 获得针对 + 时刻的 C。v和 Cap, 即针对 + 时刻的 C。v和 Cap的值与所述通 信网络的预测数据相关, 而该预测数据是根据真实数据确定的; 随后基于 与所述通信网络的预测数据相关的 C。v和 Cap, 通过 C2~C7确定了优化染色 体, 则在执行 C8时, 是根据 《= ? .^ + (1 - ^) . ^, 为各个所述宏站确定优 化 ABS值;
其中 A ^表示宏站的优化 ABS值; 表示以真实数据确定的优化染色 体中的一个候选 ABS值; 表示以预测数据确定的所述优化染色体中的 一个候选 ABS值; 为预设的平滑的权重, 即在执行 S402的过程中, 依 据真实数据执行 C1~C7, 为一个宏站确定了 的同时, 使用预测数据执行 C1-C7 , 为该宏站确定 , 最后执行 C8以为该宏站确定优化 ABS值时, 是根据
Figure imgf000038_0001
+α- )·^确定。
本实施例中网络控制器通过采用遗传算法的操作, 为各个宏站确定优化
ABS值,使通信网络在全局范围上得到性能的优化,且在使用优化 ABS值调 整了各个宏站的 ABS值后,为各个小站确定了当前容量的权重和当前覆盖的 权重, 以使各个小站根据自身的特点, 在分区域优化通信网络时可结合各自 的当前容量的权重和当前覆盖的权重, 有效的解决通信网络中通信网络动态 变化导致的网络热点和覆盖漏洞的问题。
图 13为本发明优化通信网络的处理方法实施例五的流程图。 如图 13所 示, 本实施例是在前述图 9〜图 12任一个实施例的基础上做出说明:
S50 网络控制器获取到用于触发调整 ABS值的触发条件。
具体如前述触发条件为业务量比例的变化值超过预设比例变化门限, 或 者触发条件为网络控制器的计时器的计时时长达到预设时长。
S502、 网络控制器为各个宏站确定各个优化 ABS值;
具体如 S401。
S503、 网络控制器向各个宏站发送对应的各个所述优化 ABS值。
5504、 网络控制器根据所述通信网络中当前的热点位置和漏洞位置, 为 小站确定容量和覆盖。
5505、 网络控制器向小站发送 ABS值的优化完成消息。
S504-S505的具体执行过程如 S403~S406所述。
S506、 小站判断是否调整 CSB值; 若是, 执行 S507; 若否, 则停止。 在执行 S506时, 小站可以将接收到的 ABS值的优化完成消息作为用于 调整 CSB值的触发条件; 或者即使小站接收到的 ABS值的优化完成消息, 但小站是将所述小站的计时器的计时时长达到预设时长作为用于调整 CSB值 的触发条件, 则此时小站是判断该小站的计时器的计时时长是否达到预设时 长, 若是, 执行 S507; 若否, 则停止; 或者小站是将所述小站的负载的变化 值超过预设负载变化门限作为用于调整 CSB值的触发条件, 则此时小站是判 断该小站的负载的变化值是否超过预设负载变化门限, 若是, 执行 S507; 若 否, 则停止。
S507、 小站根据所述小站的容量的权值和覆盖的权值, 为该小站确定优 化 CSB值。 具体如 S201~S203所述。
5508、 小站将该小站的当前的 CSB值更新为所述优化 CSB值。
5509、 小站向至少一个终端发送小站的优化 CSB值, 以供所述至少一个 终端中的各个终端选择是否接入小站。
需要说明的是, 本实施例中, 当用于调整 CSB值的触发条件为所述小站 的负载的变化值超过预设负载变化门限, 或者为小站的计时器的计时时长是 否达到预设时长, 则 S506~S509可单独发生; 进一歩的, 在 S508之后, S509 之前, 小站还可执行 S204~S207所述的各个歩骤。
本实施例中, CSB值的调整频率不需与调整 ABS值的频率保持相同, 则小站可以以较小的时间间隔调整 CSB 值, 以及时的优化动态变化的通 信网络, 不会造成庞大的信令开销; 且在优化通信网络时联合了容量的权 值和覆盖的权值, 可有效地解决通信网络中终端负载的动态变化导致的网络 热点和覆盖漏洞的问题, 利于提升通信网络的性能。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分歩骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读 取存储介质中, 该程序在执行时, 执行包括上述方法实施例的歩骤; 而前述 的存储介质包括: ROM、 RAM,磁碟或者光盘等各种可以存储程序代码的介 质。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权 利 要 求 书
1、 一种小站, 其特征在于, 包括:
确定模块, 用于根据所述小站的容量和覆盖, 确定优化小区选择偏置
CSB值;
更新模块, 用于将所述小站的当前的 CSB值更新为所述优化 CSB值; 发送模块, 用于向至少一个终端发送所述小站的优化 CSB值。
2、 根据权利要求 1所述的小站, 其特征在于, 还包括接收模块; 所述发送模块还用于向相邻小站发送所述优化 CSB值;
所述接收模块用于接收所述相邻小站的当前 CSB值;
所述确定模块还用于根据所述小站的优化 CSB值和所述相邻小站的当前
CSB值, 确定接入所述小站的终端的实际状况;
若所述实际状况与所述小站的优化 CSB值对应的接入所述小站的终端的 预期状况不同, 所述确定模块用于执行所述确定优化 CSB值。
3、 根据权利要求 2所述的小站, 其特征在于, 所述接收模块还用于接收 参数信息; 所述参数信息携带小站的容量的权重和所述小站的覆盖的权重。
4、 根据权利要求 3所述的小站, 其特征在于, 所述确定模块具体包括: 获取单元, 用于获取至少一个候选 CSB值;
确定单元,用于根据 max ^C +i^C , 确定各所述候选 CSB值所对应 的各个候选结果;
选择单元, 用于在所述各个候选结果中将值为最大的候选结果所对应的 候选 CSB值作为所述小站的优化 CSB值;
其中, maxl为所述候选结果, ^表示所述小站的覆盖的权重, 《2s表示 所述小站的容量的权重; 为所述小站关于覆盖的关键性能指标 KPI; 为 所述小站关于容量的 KPI, am = R†-ae , C p = Re s x h(m R -ile 为集 合 中 2%个终端对应的针对小站的各个关联速率的平均值,所述 2%个终端中 任意一个终端与小站的关联速率不大于所述集合 Es中除所述2%个终端以外 的任意一个终端与小站的关联速率; 不同的候选 CSB值对应不同的所述集合 Es, 则不同的所述集合 Es中所述 2%个终端对应不同的所述 e表示所述 集合 Es中的任意一个终端, 则 Re s表示所述集合 Es中的终端 e关联到所述小站 的关联速率, 为终端 e的需求速率, 确
Figure imgf000041_0001
定。
5、 根据权利要求 4所述的小站, 其特征在于, 所述获取单元具体用于 根据第一 CSB值, 获取所述至少一个终端中每一个终端针对所述小站的 接收功率和所述至少一个终端中每一个终端针对宏站的接收功率;
使第一 CSB值与所述至少一个终端中每一个终端针对小站的接收功率相 力口, 获得所述至少一个终端中各个终端对应的第一值;
根据所述至少一个终端中各个终端对应的第一值与所述至少一个终端中 每一个终端针对所述宏站的接收功率, 在所述至少一个终端中确定所述第一 CSB值对应的集合 Es ;
若根据所述第一 CSB值对应的集合 Es, 确定所述第一 CSB值对应的小 站的负载等于 1, 则将所述第一 CSB值作为所述候选 CSB值;
若根据所述第一 CSB值对应的集合 Es, 确定所述第一 CSB值对应的小 站的负载小于 1, 则将所述第一 CSB值作为所述候选 CSB值, 并以预设歩长 增大所述第一 CSB值, 获得新的所述第一 CSB值, 直至所述第一 CSB值达 到预设门限 CSB值。
6、 一种网络控制器, 其特征在于, 包括:
确定模块, 用于为各个宏站确定各个优化几乎空白子帧 ABS值; 发送模块, 用于向各个宏站发送对应的各个所述优化 ABS值; 所述确定模块还用于根据所述通信网络中当前的热点位置和漏洞位置, 为小站确定容量和覆盖;
所述发送模块还用于向小站发送 ABS值优化完成消息; 所述 ABS值的 优化完成消息携带所述小站的容量和覆盖。
7、 根据权利要求 6所述的网络控制器, 其特征在于, 所述当前的热点位 置和漏洞位置的数量分别为至少一个, 则所述确定模块具体包括:
获取单元, 用于获取所述小站与各个所述热点位置之间的各个第一测量 距离和所述小站与各个所述漏洞位置之间的各个第二测量距离; 第一确定单元, 用于在各个所述第一测量距离中确定数值最小的第一测 量距离为第一距离; 并在各个所述第二测量距离中确定数值最小的第二测量 距离为第二距离;
第二确定单元, 用于根据所述第一距离和第二距离, 确定所述覆盖的权 重和所述当前容量的权重。
8、 根据权利要求 7所述的网络控制器, 其特征在于, 第二确定单元具体 用于
若所述小站不属于规划部署的网元, 根据所述第一距离和和第二距离、 前次覆盖的权重确定所述覆盖的权重, 并根据所述第一距离和第二距离、 前 次容量的权重确定所述容量的权重;
若所述小站属于规划部署的网元, 则根据所述第一距离和第二距离、 前 次覆盖的权重和初始覆盖的权重确定所述覆盖的权重, 并根据所述第一距离 和第二距离、 前次容量的权重和初始容量的权重确定所述容量的权重。
9、 根据权利要求 8所述的网络控制器, 其特征在于, 所述若所述小站不 属于规划部署的网元, 所述第二确定单元具体用于
根据《ls="^ ^确定所述覆盖的权重, 并根据 ^ ^^确定
(λ-ϊ)ωΐ5 +1 (1-λ)ω25 +λ 所述容量的权重;
若所述小站属于规划部署的网元, 则所述第二确定单元具体用于根据 ω^α—^, ^ + (1-α) 确 定 所 述 覆 盖 的 权 重 , 并 根 据 (A-l)ft>ls +1 cols =a ^ ~~ ^ + 确定所述容量的权重;
{\-λ)ωΐ5
其中, 为所述小站的覆盖的权值, 为所述小站的容量的权重, co 为所述小站的前次覆盖的权重, 为所述小站的前次容量的权重, 为 所述小站的初始覆盖的权重, 为所述小站的初始容量的权重, 根据
( )-"=A确定, ^为所述第一距离, ^为所述第二距离, n为影响系数。
10、 根据权利要求 6或 9所述的网络控制器, 其特征在于, 所述获取 单元还用于
根据 fit (p.cov i_(p ap, 获得当前组候选染色体对应的适应度/tm^ 集合; 一组所述候选染色体包括 Y个候选染色体, 所述 y?^ ^集合中的每 一个 对应一个候选染色体;
若所述当前组候选染色体对应的 /^ ^集合中的最大 y?^ ^与前一组候 选染色体对应的 yiYm ^集合中的最大 ^之间的变化值大于预设 fit丽 化门限, 且用于获得所述当前组候选染色体的遗传算法操作的执行次数未 超过预设遗传门限, 则所述第一确定单元还用于在所述当前组候选染色体 对应的/ 集合中, 选取最大 y个/ 所对应的 y个候选染色体作为 y 个父染色体;
对所述 y个父染色体执行所述遗传算法的操作,获得(Y-y )个子染色体; 结合所述 y个父染色体和(Y-y )个子染色体, 获得新的当前组候选染色 体;
若所述当前组候选染色体对应的 /^ ^集合中的最大 y?^ ^与所述前一 组候选染色体对应的适应度/ 集合中的最大 ^之间的变化值不大于 预设 fit丽变化门限, 或者所述遗传算法操作的执行次数达到预设遗传门 限, 则所述第一确定单元还用于确定所述当前组候选染色体对应的适应度 集合中, 最大 对应的候选染色体为优化染色体;
所述第二确定单元还用于根据所述优化染色体, 为各个所述宏站确定各 个优化 ABS值;
其中,一个所述候选染色体包括的候选 ABS值的总数与所述各个宏站的 总数相等; Y和 y均为预设的正整数, 且¥ ; 为所述通信网络的覆盖 关键性能指标 KPI; C ^为所述通信网络的容量 KPI; 在获得所述/ 时, 采用的 C。v和 Cap的值由所述/ 对应的候选染色体确定; 为预设归一化 权重值。
1 1、 根据权利要求 10所述的网络控制器, 其特征在于, 所述第二确 定单元具体用于
若 C。v和 Cap的值与所述通信网络的真实数据相关,则将所述优化染色体 中的各个候选 ABS值作为各个所述宏站对应的优化 ABS值;
若 C。v和 Cap的值与所述通信网络的预测数据相关, 则根据 β, = Ρ · β + - Ρ · β^ 为各个所述宏站确定对应的优化 ABS值; 所述预测数 据是根据所述真实数据确定的;
其中 A ^表示宏站的优化 ABS值; ^表示以所述真实数据确定的优化 染色体中的一个候选 ABS值; 表示以所述预测数据确定的优化染色体 中的一个候选 ABS值; 为预设的平滑的权重。
12、 一种优化通信网络的处理方法, 其特征在于, 包括:
小站根据所述小站的容量和覆盖, 确定优化小区选择偏置 CSB值; 所述小站将所述小站的当前的 CSB值更新为所述优化 CSB值; 所述小站向至少一个终端发送所述小站的优化 CSB值。
13、 根据权利要求 12所述的处理方法, 其特征在于, 在所述小站将所述 当前的 CSB值更新为所述优化 CSB值之前, 所述处理方法还包括:
所述小站向相邻小站发送所述优化 CSB值;
所述小站接收所述相邻小站的当前 CSB值;
所述小站根据所述小站的优化 CSB值和所述相邻小站的当前 CSB值, 确定接入所述小站的终端的实际状况;
若所述实际状况与所述小站的优化 CSB值对应的接入所述小站的终端的 预期状况不同, 所述小站执行所述确定优化 CSB值。
14、 根据权利要求 13所述的处理方法, 其特征在于, 所述小站根据所述 小站的容量和覆盖, 确定优化 CSB值之前, 所述方法还包括:
所述小站接收参数信息; 所述参数信息携带小站的容量的权重和所述小 站的覆盖的权重。
15、 根据权利要求 14所述的处理方法, 其特征在于, 所述小站根据所述 小站的容量和覆盖, 确定小站的优化 CSB值, 包括:
所述小站获取至少一个候选 CSB值;
所述小站根据 max ^C +^C;,确定各所述候选 CSB值所对应的各个 候选结果;
所述小站在所述各个候选结果中将值为最大的候选结果所对应的候选
CSB值作为所述小站的优化 CSB值;
其中, maxl为所述候选结果, 表示所述小站的覆盖的权重, 《2s表示 所述小站的容量的权重; 为所述小站关于覆盖的关键性能指标 KPI; „为 所述小站关于容量的 KPI, C0 s V = R -ile , d iRe sxhm , R -Ue 为集 合 中 2%个终端对应的针对小站的各个关联速率的平均值,所述 2%个终端中 任意一个终端与小站的关联速率不大于所述集合 Es中除所述2%个终端以外 的任意一个终端与小站的关联速率; 不同的候选 CSB值对应不同的所述集合 Es, 则不同的所述集合 Es中所述 2%个终端对应不同的所述 e表示所述 集合 Es中的任意一个终端, 则 Re s表示所述集合 Es中的终端 e关联到所述小站 的关联速率, 为终端 e的需求速率, 确
Figure imgf000045_0001
定。
16、 根据权利要求 15所述的处理方法, 其特征在于, 所述小站获取至少 一个候选 CSB值, 包括:
所述小站根据第一 CSB值, 获取所述至少一个终端中每一个终端针对所 述小站的接收功率和所述至少一个终端中每一个终端针对宏站的接收功率; 所述小站使第一 CSB值与所述至少一个终端中每一个终端针对小站的接 收功率相加, 获得所述至少一个终端中各个终端对应的第一值;
所述小站根据所述至少一个终端中各个终端对应的第一值与所述至少一 个终端中每一个终端针对所述宏站的接收功率, 在所述至少一个终端中确定 所述第一 CSB值对应的集合 Es ·'
若所述小站根据所述第一 CSB值对应的集合 Es, 确定所述第一 CSB值 对应的小站的负载等于 1, 则将所述第一 CSB值作为所述候选 CSB值; 若所述小站根据所述第一 CSB值对应的集合 Es, 确定所述第一 CSB值 对应的小站的负载小于 1, 则将所述第一 CSB值作为所述候选 CSB值, 并以 预设歩长增大所述第一 CSB值, 获得新的所述第一 CSB值, 直至所述第一 CSB值达到预设门限 CSB值。
17、 一种优化通信网络的处理方法, 其特征在于, 包括:
网络控制器为各个宏站确定各个优化几乎空白子帧 ABS值;
所述网络控制器向各个宏站发送对应的各个所述优化 ABS值; 所述网络控制器根据所述通信网络中当前的热点位置和漏洞位置, 为小 站确定容量和覆盖;
所述网络控制器向小站发送 ABS值优化完成消息; 所述 ABS值的优化 完成消息携带所述小站的容量和覆盖。
18、 根据权利要求 17所述的处理方法, 其特征在于, 所述当前的热点位 置和漏洞位置的数量分别为至少一个, 则所述网络控制器根据所述通信网络 中当前的热点位置和漏洞位置, 为所述小站确定容量和覆盖, 包括:
所述网络控制器获取所述小站与各个所述热点位置之间的各个第一测量 距离和所述小站与各个所述漏洞位置之间的各个第二测量距离;
所述网络控制器在各个所述第一测量距离中确定数值最小的第一测量距 离为第一距离; 并在各个所述第二测量距离中确定数值最小的第二测量距离 所述网络控制器根据所述第一距离和第二距离, 确定所述覆盖的权重和 所述容量的权重。
19、 根据权利要求 18所述的处理方法, 其特征在于, 所述网络控制器根 据所述第一距离和第二距离, 确定所述覆盖的权重和所述容量的权重, 包括: 若所述小站不属于规划部署的网元, 所述网络控制器根据所述第一距离 和第二距离、 前次覆盖的权重确定所述覆盖的权重, 并根据所述第一距离和 所述第二距离、 前次容量的权重确定所述容量的权重;
若所述小站属于规划部署的网元, 则所述网络控制器根据所述第一距离 和第二距离、 前次覆盖的权重和初始覆盖的权重确定所述覆盖的权重, 并根 据所述第一距离和第二距离、 前次容量的权重和初始容量的权重确定所述容 量的权重。
20、 根据权利要求 19所述的处理方法, 其特征在于, 所述网络控制器根 据所述第一距离和第二距离、 前次覆盖的权重确定所述覆盖的权重, 并根据 所述第一距离和第二距离、 前次容量的权重确定所述容量的权重, 包括: 所述网络控制器根据^ = s, 确定所述覆盖的权重, 并根据
{λ - ϊ)ωΐ5 + 1 cols = ^ ~~ ^确定所述容量的权重;
(1 -λ)ω25 + λ
所述网络控制器根据所述第一距离和第二距离、 前次覆盖的权重和初始 覆盖的权重确定所述覆盖的权重, 并根据所述第一距离和第二距离、 前次容 量的权重和初始容量的权 括: 所述网络控制器根据 确定所述覆盖的权重, 并
Figure imgf000047_0001
根据 = α ^ ~~ ^ + d-w^确定所述容量的权重; 其中, 为所述小站的覆盖的权值, 为所述小站的容量的权重, co 为所述小站的前次覆盖的权重, 为所述小站的前次容量的权重, 为 所述小站的初始覆盖的权重, 为所述小站的初始容量的权重, 根据
( )-" = A确定, ^为所述第一距离, 为所述第二距离, n为影响系数。
21、 根据权利要求 17或 20所述的处理方法, 其特征在于, 所述网络 控制器为各个宏站确定各个优化 ABS值, 包括:
所述网络控制器根据 /^^ = C。v + (l - Ca;),获得当前组候选染色体对应 的适应度/^ ί ^集合; 一组所述候选染色体包括 Υ 个候选染色体, 所述 集合中的每一个 y¾m ^对应一个候选染色体;
若所述当前组候选染色体对应的 /^ ^集合中的最大 y?^ ^与前一组候 选染色体对应的 yiYm ^集合中的最大 ^之间的变化值大于预设 fit丽 化门限, 且用于获得所述当前组候选染色体的遗传算法操作的执行次数未 超过预设遗传门限, 则在所述当前组候选染色体对应的/ 集合中, 选取 最大 y个/ 所对应的 y个候选染色体作为 y个父染色体;
所述网络控制器对所述 y 个父染色体执行所述遗传算法的操作, 获得 ( Y-y ) 个子染色体;
所述网络控制器结合所述 y个父染色体和(Y-y )个子染色体, 获得新的 当前组候选染色体;
若所述当前组候选染色体对应的 /^ ^集合中的最大 y?^ ^与所述前一 组候选染色体对应的适应度/ 集合中的最大 ^之间的变化值不大于 预设 fit丽变化门限, 或者所述遗传算法操作的执行次数达到预设遗传门 限, 则所述网络控制器确定所述当前组候选染色体对应的适应度 集合 中, 最大/ 对应的候选染色体为优化染色体;
所述网络控制器根据所述优化染色体, 为各个所述宏站确定各个优化 ABS值;
其中,一个所述候选染色体包括的候选 ABS值的总数与所述各个宏站的 总数相等; Y和 y均为预设的正整数, 且¥ ; 为所述通信网络的覆盖 关键性能指标 KPI; C ^为所述通信网络的容量 KPI; 在获得所述 ^时, 采用的 C。v和 Cap的值由所述/ 对应的候选染色体确定; 为预设归一化 权重值。
22、 根据权利要求 21所述的处理方法, 其特征在于, 所述网络控制器 根据所述优化染色体, 为各个所述宏站确定各个优化 ABS值, 包括:
若 C。v和 Cap的值与所述通信网络的真实数据相关, 则所述网络控制器 将所述优化染色体中的各个候选 ABS值作为各个所述宏站对应的优化 ABS 值;
若 c。v和 cap的值与所述通信网络的预测数据相关, 则所述网络控制器 根据^^ ^ ^^^) . , 为各个所述宏站确定对应的优化 ABS值; 所述预 测数据是根据所述真实数据确定的;
其中 A ^表示宏站的优化 ABS值; ^表示以所述真实数据确定的优化 染色体中的一个候选 ABS值; 表示以所述预测数据确定的优化染色体 中的一个候选 ABS值; 为预设的平滑的权重。
PCT/CN2014/083412 2014-07-31 2014-07-31 优化通信网络的处理方法和设备 WO2016015277A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14898779.5A EP3171665B1 (en) 2014-07-31 2014-07-31 Processing method and device for optimizing communication network
ES14898779T ES2775224T3 (es) 2014-07-31 2014-07-31 Método y dispositivo de procesamiento para optimizar la red de comunicaciones
CN201480052968.7A CN105580493B (zh) 2014-07-31 2014-07-31 优化通信网络的处理方法和设备
PCT/CN2014/083412 WO2016015277A1 (zh) 2014-07-31 2014-07-31 优化通信网络的处理方法和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/083412 WO2016015277A1 (zh) 2014-07-31 2014-07-31 优化通信网络的处理方法和设备

Publications (1)

Publication Number Publication Date
WO2016015277A1 true WO2016015277A1 (zh) 2016-02-04

Family

ID=55216634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/083412 WO2016015277A1 (zh) 2014-07-31 2014-07-31 优化通信网络的处理方法和设备

Country Status (4)

Country Link
EP (1) EP3171665B1 (zh)
CN (1) CN105580493B (zh)
ES (1) ES2775224T3 (zh)
WO (1) WO2016015277A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102869052A (zh) * 2011-07-07 2013-01-09 上海贝尔股份有限公司 异构移动通信网络中的通信方法以及设备
US20130065599A1 (en) * 2011-08-11 2013-03-14 Verizon Patent And Licensing Inc. Interference management
CN103039112A (zh) * 2010-08-13 2013-04-10 日本电气株式会社 用于通信网络中的小区选择的方法和设备
CN103139890A (zh) * 2011-12-01 2013-06-05 株式会社Ntt都科摩 通信系统中调整小区覆盖范围的方法、基站及低功率节点
US20130260712A1 (en) * 2012-03-30 2013-10-03 Alcatel-Lucent Usa Inc. Method, apparatus and computer readable medium for associating user equipment with a cell
CN103918303A (zh) * 2013-09-18 2014-07-09 华为技术有限公司 时域干扰协调方法及网络设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2397469B (en) * 2003-01-20 2006-05-17 Motorola, Inc Method and apparatus for cell biasing in a cellular communication system
EP2760237A1 (en) * 2013-01-28 2014-07-30 Alcatel Lucent Network Node and Method to adjust user association in HetNets

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103039112A (zh) * 2010-08-13 2013-04-10 日本电气株式会社 用于通信网络中的小区选择的方法和设备
CN102869052A (zh) * 2011-07-07 2013-01-09 上海贝尔股份有限公司 异构移动通信网络中的通信方法以及设备
US20130065599A1 (en) * 2011-08-11 2013-03-14 Verizon Patent And Licensing Inc. Interference management
CN103139890A (zh) * 2011-12-01 2013-06-05 株式会社Ntt都科摩 通信系统中调整小区覆盖范围的方法、基站及低功率节点
US20130260712A1 (en) * 2012-03-30 2013-10-03 Alcatel-Lucent Usa Inc. Method, apparatus and computer readable medium for associating user equipment with a cell
CN103918303A (zh) * 2013-09-18 2014-07-09 华为技术有限公司 时域干扰协调方法及网络设备

Also Published As

Publication number Publication date
EP3171665B1 (en) 2019-12-18
EP3171665A4 (en) 2017-08-16
CN105580493B (zh) 2019-10-22
EP3171665A1 (en) 2017-05-24
CN105580493A (zh) 2016-05-11
ES2775224T3 (es) 2020-07-24

Similar Documents

Publication Publication Date Title
CN105359595B (zh) 在无线通信系统中用于控制上行链路功率的方法和装置
WO2019200613A1 (zh) 一种降低电磁辐射比吸收率的方法及设备
CN105103519B (zh) 用于减轻设备对设备的干扰的分布式调度的系统、方法和设备
TW200523784A (en) Radio resource management in wireless local area networks
TW439385B (en) Adaptive handoff hysteresis in wireless telecommunication networks
WO2017024967A1 (zh) 一种d2d通信资源复用选择的方法及基站、终端
KR20120005539A (ko) 사운딩 참조 신호의 전송 파워의 배치방법, 그의 네트워크측 장치 및 사용자 장비
TW201521370A (zh) 用於抑制干擾的方法和用戶設備
CN105451241B (zh) 异构网中基于干扰协调的最大最小公平性资源分配方法
CA2917658A1 (en) Uplink power control method and apparatus thereof
JP2014534653A (ja) スモール・セル・リソース利用度の向上を提供するための方法および装置
WO2013044804A1 (zh) 一种同频干扰协调方法和装置
US20210289445A1 (en) Systems and methods for fast uplink power control
WO2014187194A1 (zh) 异构网络中下行发射方法和控制设备、基站和异构系统
WO2010075739A1 (zh) 调整用户设备测量报告门限的方法、装置和系统
Mach et al. Cloud-aware power control for cloud-enabled small cells
US20150011167A1 (en) Method and device for determining transmission power
JP2015192252A (ja) 移動通信システム、通信制御装置、省電力制御方法およびプログラム
WO2017177683A1 (zh) 基于umts同构网的上行功率控制方法和装置
Chen et al. Joint ABS power and resource allocations for eICIC in heterogeneous networks
US9973971B2 (en) Methods, nodes and system for enabling redistribution of cell load
CN104469918B (zh) 一种自适应的家庭基站功率控制方法
WO2016015277A1 (zh) 优化通信网络的处理方法和设备
JP5758011B2 (ja) 分散送信電力制御システムにおける、対象送信機と対応する対象受信機、その通信方法、及びセルラ通信システムの方法
US9722725B2 (en) System and method for resource management in heterogeneous wireless networks

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480052968.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14898779

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014898779

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014898779

Country of ref document: EP