WO2016015174A1 - 一种红色无机发光二极管显示器件及其制作方法 - Google Patents

一种红色无机发光二极管显示器件及其制作方法 Download PDF

Info

Publication number
WO2016015174A1
WO2016015174A1 PCT/CN2014/000725 CN2014000725W WO2016015174A1 WO 2016015174 A1 WO2016015174 A1 WO 2016015174A1 CN 2014000725 W CN2014000725 W CN 2014000725W WO 2016015174 A1 WO2016015174 A1 WO 2016015174A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
light
type
pixel light
emitting device
Prior art date
Application number
PCT/CN2014/000725
Other languages
English (en)
French (fr)
Inventor
孙润光
刘宏宇
Original Assignee
孙润光
刘宏宇
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 孙润光, 刘宏宇 filed Critical 孙润光
Priority to PCT/CN2014/000725 priority Critical patent/WO2016015174A1/zh
Priority to CN201480001726.5A priority patent/CN105637641B/zh
Publication of WO2016015174A1 publication Critical patent/WO2016015174A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape

Definitions

  • the present invention relates to a red inorganic light emitting diode display device and a method of fabricating the same, and more particularly to an inorganic light emitting diode display device that actively drives a red display and a method of fabricating the same. Background technique
  • Microdisplays are a core component of projectors and near-eye display devices.
  • an inorganic light-emitting diode display technology is an active light-emitting technology, which is likely to replace the existing liquid crystal display device (LC0S) and digital light processing technology (DLP) technology, and may actually realize miniaturization of the projector.
  • LCD0S liquid crystal display device
  • DLP digital light processing technology
  • One of the main difficulties in the implementation of full-color display by inorganic light-emitting diode display technology is the realization of red display, because the red inorganic light-emitting diode device is fabricated on an opaque substrate such as gallium arsenide (GaAs), and the connection method using interconnect electrodes is used. The red light emitted by the pixel light emitting device cannot pass through the opaque substrate.
  • GaAs gallium arsenide
  • the main object of the present invention is to realize an actively driven red display inorganic light emitting diode display device and a method of fabricating the same.
  • the basic principle of the present invention is to peel off the opaque substrate of the pixel light-emitting device of the red display device by mechanical and chemical methods or laser methods, so that red light energy is emitted to form a red display video image.
  • the inorganic light emitting diode display device emits red visible light (the illuminating wavelength is between 570 nm and 670 nm), which comprises a plurality of home driving circuit ⁇ and a plurality of pixel illuminating devices, each of the pixel driving circuit devices and each of the pixel illuminating devices being connected together by interconnecting electrodes, which can be realized
  • Each pixel drive circuit device has independent control of each pixel light emitting device.
  • each layer of each pixel light-emitting device is: P-type electrode, P-type inorganic semiconductor layer, luminescent inorganic semiconductor layer, N-type inorganic semiconductor layer, etch barrier layer, and pixel light-emitting device material growth
  • the desired opaque substrate is etched or stripped during device fabrication, i.e., the pixel light emitting device structure does not include an opaque substrate.
  • the inorganic layer of the pixel light-emitting device is composed of two or more components of phosphorus (P), indium (In), gallium (Ga), aluminum (Al), and arsenic (As), such as : heavily doped P-type gallium arsenide (P+-GaAs), P-type indium gallium phosphide (P-AlGaInP), indium gallium phosphide/indium gallium phosphide (AlGalnP/GalnP) quantum well luminescent layer or intrinsic Indium gallium phosphide (I-AlGalnP) luminescent layer, N-type indium gallium arsenide (N-AlGaInP), indium gallium phosphide (GalnP) etch barrier, gallium phosphide (GaP) etch barrier.
  • P+-GaAs P-type indium gallium phosphide
  • P-AlGaInP P-
  • the flip-chip electrode material may be a gold-tin (AuSn) alloy, a silver-tin (AgSn) alloy, gold (Au) or indium (In), or an anisotropic conductive paste (ACF). ).
  • the opaque substrate that is etched or stripped during device fabrication is a gallium arsenide (GaAs) material.
  • GaAs gallium arsenide
  • a pixel drive circuit device includes a field effect transistor and a static memory.
  • the N-type electrode of the pixel light emitting device forms a mesh structure.
  • a material is filled between the charged interconnect electrodes and between the pixel drive circuit device and the pixel light emitting device during device fabrication.
  • a mechanically and chemically bonded opaque substrate is used to grow the opaque substrate in which the material of the device is grown.
  • the opaque substrate on which the pixel illuminator material is grown is stripped using a laser.
  • the pixel light-emitting device material in the high-efficiency red-light inorganic diode display device is fabricated on an opaque GaAs substrate for reasons of material lattice matching.
  • the invention realizes red light display by peeling off the opaque substrate, thereby realizing full color projection display.
  • FIG. 1 is a schematic view showing the structure of a device using an actively driven red inorganic light emitting diode matrix display device.
  • 2(1) to 2(5) show a specific manufacturing method of the actively driven red inorganic light emitting diode matrix display device shown in FIG. 1.
  • FIG. 3 is a schematic view showing the structure of an active-driven red inorganic light-emitting diode matrix display device, in which an interconnection electrode and a pixel driving circuit device and a pixel light-emitting device are added as compared with the structure shown in FIG. There is a supporting polymer.
  • 4(1) to 4(6) show a specific manufacturing method of the actively driven red inorganic light emitting diode matrix display device shown in FIG. 3.
  • FIG. 5 is a schematic structural diagram of an active-driven red inorganic light-emitting diode matrix display device, in which a pixel light-emitting device is transferred to a transparent substrate and then connected to a pixel driving circuit device through an interconnection electrode.
  • the pixel light emitting device includes: an etch barrier layer 1, an N-type inorganic semiconductor layer 2, a light-emitting inorganic semiconductor layer 3, a P-type inorganic semiconductor layer 4, a P-type electrode 5, and an N-type electrode 6.
  • the pixel driving circuit device includes a substrate 21, and a pixel driving device contact electrode 22. Also included: Interconnect electrode 23.
  • FIG. 2(1)-FIG. 2(5) show a specific manufacturing method of the actively driven red inorganic light-emitting diode matrix display device shown in FIG. 1, and the manufacturing steps are as follows:
  • an etch barrier layer 1 On the substrate 10 where the pixel light-emitting device is placed, an etch barrier layer 1, an N-type inorganic semiconductor layer 2, a light-emitting inorganic semiconductor layer 3, and a P-type inorganic semiconductor layer 4 are sequentially formed, and then deposited and etched (etch Or by stripping a photoresist or the like to form a P-type electrode 5 of the inorganic light emitting diode, as shown in Fig. 2 (1);
  • a driving circuit is formed by exposure, etching, etc., and a pixel driving circuit contact electrode 22 is formed by deposition and photolithography; and a method of alignment, heating, and pressurization is adopted.
  • the substrate 10 on which the pixel light-emitting device is located is peeled off from the pixel light-emitting device by mechanical grinding and chemical etching, as shown in FIG. 2 (5).
  • the pixel light-emitting device includes: an etch barrier layer 1, an N-type inorganic semiconductor layer 2, a light-emitting inorganic semiconductor layer 3, a P-type inorganic semiconductor layer 4, a P-type electrode 5, and an N-type electrode 6.
  • the pixel driving circuit device includes: a substrate 21, a pixel driving device contact electrode 22. Also included are: a interconnecting electrode 23, a polymer 24 between the interconnect electrodes and between the pixel drive circuit device and the pixel light emitting device.
  • a driving circuit is formed by exposure, etching, etc., and a pixel driving circuit contact electrode 22 is formed by deposition and photolithography; and a method of alignment, heating, and pressurization is adopted.
  • Interconnect electrode 23, P-type electrode 5 and N-type electrode of pixel light-emitting device 6 is connected to the pixel drive circuit contact electrode 22 correspondingly, see Figure 4 (4);
  • the substrate 10 on which the pixel light-emitting device is located is peeled off from the pixel light-emitting device by mechanical grinding and chemical etching, as shown in FIG. 4 (5).
  • FIG. 5 shows the structure of a actively driven red inorganic light emitting diode matrix display device ( schematic diagram in which a pixel light emitting device is transferred onto a transparent substrate and then connected to a pixel driving circuit device through an interconnecting electrode.
  • FIG. 5 is a view showing the configuration of an active-driven red inorganic light-emitting diode matrix display device.
  • the pixel light-emitting device includes: a transparent substrate 30, a bonding layer 7, a P-type inorganic semiconductor layer 4, a light-emitting inorganic semiconductor layer 3, an N-type semiconductor layer 2, an N-type electrode 6, and a P-type electrode 5.
  • the pixel driving circuit device includes: a substrate 21, a pixel driving device contact electrode 22. Also included: Interconnect electrode 23.
  • the pixel light emitting device is transferred onto the transparent substrate 30, and then connected to the pixel driving circuit device contact electrode 22 through the interconnect electrode 23, thereby achieving independent control of each pixel light emitting device by each pixel driving circuit, and the pixel
  • the light emitting device emits light to form a text or image video through the transparent substrate 30.
  • the pixel light emitting device comprises: a gallium phosphide (GaP) etch barrier layer 1, an N-type indium gallium arsenide (N-AlGalnP) layer 2, an indium gallium phosphide/indium gallium phosphide (AlGalnP/GalnP) Quantum well light-emitting layer 3, P-type indium gallium phosphide (P-AlGalnP) layer 4, P-type metal titanium and aluminum (Ti/Al) electrode 5, N-type metal nickel and gold (Ni/Au) electrode 6.
  • the pixel driving circuit device includes: a silicon substrate 21, a pixel driving device contact electrode 22. Also included is an interconnected metal indium electrode (In) 23.
  • a specific manufacturing step of an actively driven red inorganic light emitting diode matrix display device is as follows:
  • GaP gallium phosphide
  • GaAs gallium arsenide
  • N-AlGalnP N-type indium gallium arsenide
  • AlGalnP/GalnP quantum well luminescent layer 3
  • P-type indium gallium phosphide (P-AlGalnP) layer 4 and then formed by inorganic deposition by etching and etching or lift off
  • the P-type metal titanium and aluminum (Ti/Al) electrode 5 of the diode see Figure 2 (1);
  • FIG. 6 shows an inorganic diode red light display device 51 of the above embodiment, in combination with an inorganic diode green light display device 52 and an inorganic diode blue light display device 53, and a collimator lens 61 and a dichroic filter 62 are used. A full color display device is formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Led Device Packages (AREA)

Abstract

一种主动驱动红色显示的一种无机发光二极管显示器件及其制作方法,其中像素驱动电路通过互连电极(23)与像素发光器件相连,像素发光器件不包括不透明衬底(10),即制作步骤包括剥离像素发光器件材料生长所在的不透明衬底(10)。

Description

一种红色无机发光二极管显示器件及其制作方法
技术领域
[0001] 本发明涉及一种红色无机发光二极管显示器件及其制作方法,特别 是主动驱动红色显示的一种无机发光二极管显示器件及其制作方法。 背景技术
[0002】 微型显示器是投影仪和近眼显示器件的核心部件。 最近出现的一种 无机发光二极管显示技术属于主动发光技术, 很有可能取代现有的硅上液 晶显示装置(LC0S )和数字光处理技术(DLP)技术, 并可能真正地实现投 影仪的小型化和便携集成化。 无机发光二极管显示技术实现全彩色显示的 一个主要困难是实现红色显示, 这是因为红色无机发光二极管器件是制作 在砷化镓 (GaAs ) 等不透明衬底上的, 而采用互连电极的连接方法, 像素 发光器件所发出的红光不能透过不透明衬底。 发明内容
[0003] 本发明的主要目的是实现主动驱动的红色显示的无机发光二极管显 示器件及其制作方法。
[0004] 本发明的基本原理是: 采用机械和化学方法或者激光的方法剥离红 色显示器件的像素发光器件所在的不透明衬底, 使红色光能发射出来, 形 成红色显示视频图像。
[0005] 根据本发明的一个方面, 无机发光二极管显示装置发出红色可见光 (发光波长在 570nm到 670nm之间),其包括多个傢素驱动电路器仵和多个 像素发光器件, 每个像素驱动电路器件和每个像素发光器件通过互连电极 连接在一起, 可以实现每个像素驱动电路器件对每个像素发光器件的独立 控制。 从互连电极开始, 每个像素发光器件各层的顺序依次为: P型电极、 P型无机半导体层、 发光无机半导体层、 N型无机半导体层、 刻蚀阻挡层, 而且像素发光器件材料生长所需的不透明衬底在器件制作过程中被刻蚀或 剥离, 即像素发光器件结构不包括不透明衬底。
[0006] 根据本发明的一个方面, 像素发光器件无机层由磷 (P)、 铟 (In)、 镓 (Ga)、 铝 (Al )、 砷 (As ) 中的两种以上组分构成, 如: 重掺杂 P型砷 化镓 (P+ -GaAs )、 P 型磷化铟镓铝 (P-AlGaInP)、 磷化铟镓铝 /磷化铟镓 (AlGalnP/GalnP) 量子阱发光层或者本征型磷化铟镓铝 (I-AlGalnP) 发 光层、 N型磷化铟镓铝 (N-AlGaInP)、 磷化铟镓 (GalnP) 刻蚀阻挡层、 磷 化镓 (GaP) 刻蚀阻挡层。
[0007] 根据本发明的一个方面, 倒装电极材料可以是金锡 (AuSn) 合金、 银锡 (AgSn)合金、金( Au )或者铟( In ),还可以采用各向异性导电胶( ACF )。
【0008】 根据本发明的一个方面, 在器件制作过程中被刻蚀或剥离的不透明 衬底为砷化镓 (GaAs ) 材料。
[0009] 根据本发明的一个方面, 像素驱动电路器件包括场效应管和静态存 储器。
[0010】 根据本发明的一个方面, 像素发光器件的 N型电极形成网状结构。
[0011] 根据本专利的一个方面, 在器件制作过程中在充入互连电极之间以 及像素驱动电路器件和像素发光器件之间填充材料。 [0012] 报据本发明的一个万囬, 利用机械和化学结合的万法剥呙像索友光 器件材料生长所在的不透明衬底。
[0013] 根据本发明的一个方面, 利用激光的方法剥离像素发光器件材料生 长所在的不透明衬底。
[0014] 本发明的积极效果在于:
[0015] 由于材料晶格匹配方面的原因, 高效率的红光无机二极管显示装置 中的像素发光器件材料制作在不透明的 GaAs衬底上。本发明通过剥离不透 明衬底, 实现了红光显示, 进而实现全彩色投影显示。 附图说明
[0016] 图 1表示采用主动驱动的红色无机发光二极管矩阵显示装置的器件 结构示意图。
[0017] 图 2 (1) -图 2 (5)表示图 1所示的主动驱动的红色无机发光二极管矩 阵显示装置的具体制作方法。
[0018] 图 3表示主动驱动的红色无机发光二极管矩阵显示装置的结构示意 图, 其中, 与图 1所示的结构相比, 增加了互连电极之间及像素驱动电路 器件和像素发光器件之间存在起支撑作用的聚合物。
[0019] 图 4 (1) -图 4 (6)表示图 3所示的主动驱动的红色无机发光二极管矩 阵显示装置的具体制作方法。
[0020] 图 5表示一种主动驱动的红色无机发光二极管矩阵显示装置的结构 示意图, 其中, 像素发光器件转移到先透明衬底上, 再透过互连电极与像 素驱动电路器件相连。 具体实施方式
[0021] 下面结合附图描述本发明的具体实施方式。
[0022] 实施例一 '
[0023] 图 1表示一个采用有源矩阵驱动的无机发光二极管矩阵显示装置的 结构示意图。 其中, 像素发光器件包括: 刻蚀阻挡层 1、 N型无机半导体层 2、 发光无机半导体层 3、 P型无机半导体层 4、 P型电极 5、 N型电极 6。 像素驱动电路器件包括:所在衬底 21、像素驱动器件接触电极 22。还包括: 互连电极 23。
[0024] 实施例二
[0025] 图 2 (1) -图 2 (5)表示图 1所示的主动驱动的红色无机发光二极管矩 阵显示装置的具体制作方法, 制作步骤如下:
[0026] 1、 在像素发光器件所在衬底 10上依次制作刻蚀阻挡层 1、 N型无机 半导体层 2、 发光无机半导体层 3、 P型无机半导体层 4, 再通过沉积和刻 蚀 (etch) 或者剥离光刻胶(l ift off)等方法, 形成无机发光二极管的 P 型电极 5, 见图 2 (1) ;
[0027] 2、 利用涂胶、 曝光、 刻蚀方法形成不同像素发光器件的发光无机层 之间的物理隔离, 见图 2 (2) ;
[0028] 3、 通过光刻、 沉积、 剥离工艺形成 N型电极 6, 见图 2 (3) ;
[0029] 4、 在像素驱动电路衬底 21上采用曝光、 刻蚀等工艺制作驱动电路, 通过沉积、 光刻工艺形成像素驱动电路接触电极 22; 采用对位、 加热、 加 压的方法, 通过互连电极 23, 将像素发光器件的 P型电极 5以及 N型电极 6与像素驱动电路接触电极 22对应的连接在一起,见图 2 (4); [0030] 5、 利用机械研磨和化学刻蚀的方法将像素发光器件所在衬底 10从 像素发光器件剥离, 见图 2 (5)。
[0031] 实施例三
[0032] 图 3表示主动驱动的红色无机发光二极管矩阵显示装置的结构示意 图。 其中, 像素发光器件包括: 刻蚀阻挡层 1、 N型无机半导体层 2、 发光 无机半导体层 3、 P型无机半导体层 4、 P型电极 5、 N型电极 6。 像素驱动 电路器件包括: 所在衬底 21、 像素驱动器件接触电极 22。还包括: 互连电 极 23、互连电极之间及像素驱动电路器件和像素发光器件之间存在起支撑 作用的聚合物 24。
[0033] 实施例四
[0034] 图 4 (1) -图 4 (6)表示图 3所示的主动驱动的红色无机发光二极管矩 阵显示装置的具体制作方法, 制作步骤如下:
[0035] 1、 在像素发光器件所在衬底 10上依次制作刻蚀阻挡层 1、 N型无机 半导体层 2、 发光无机半导体层 3、 P型无机半导体层 4, 再通过沉积和刻 蚀 (etch ) 或者剥离光刻胶(l ift off)等方法, 形成无机发光二极管的 P 型电极 5, 见图 4 (1) ;
[0036] 2、 利用涂胶、 曝光、 刻蚀方法形成不同像素发光器件的发光无机层 之间的物理隔离, 见图 4 (2) ;
[0037] 3、 通过光刻、 沉积、 剥离工艺形成 N型电极 6, 见图 4 (3) ;
[0038] 4、 在像素驱动电路衬底 21上采用曝光、 刻蚀等工艺制作驱动电路, 通过沉积、 光刻工艺形成像素驱动电路接触电极 22; 采用对位、 加热、 加 压的方法, 通过互连电极 23, 将像素发光器件的 P型电极 5以及 N型电极 6与像素驱动电路接触电极 22对应的连接在一起,见图 4 (4);
[0039] 5、注入起支撑作用的聚合物 24,利用加热或者紫外照射的方法固化 聚合物 24, 见图 4 (4) ;
[0040] 6、 利用机械研磨和化学刻蚀的方法将像素发光器件所在衬底 10从 像素发光器件剥离, 见图 4 (5)。
[0041] 实施例五
[0042] 图 5表示一种主动驱动的红色无机发光二极管矩阵显示装置的结构 (示意图, 其中, 像素发光器件转移到透明衬底上, 再透过互连电极与像素 驱动电路器件相连。
[0043] 图 5表示主动驱动的红色无机发光二极管矩阵显示装置的结构示意 图。 其中, 像素发光器件包括: 透明衬底 30、 结合层 7、 P型无机半导体 层 4、 发光无机半导体层 3、 N型半导体层 2、 N型电极 6、 P型电极 5。 像 素驱动电路器件包括: 所在衬底 21、 像素驱动器件接触电极 22。 还包括: 互连电极 23。
[0044] 其中, 像素发光器件转移到透明衬底 30上, 再透过互连电极 23与 像素驱动电路器件接触电极 22相连,实现每个像素驱动电路对每个像素发 光器件的独立控制,像素发光器件发出光可以通过透明衬底 30形成文字或 者图像视频。
[0045】 实施例六
[0046] 图 1表示一个采用有源矩阵驱动的无机发光二极管矩阵显示装置的 结构示意图。 其中, 像素发光器件包括: 磷化镓 (GaP) 刻蚀阻挡层 1、 N 型磷化铟镓铝(N-AlGalnP)层 2、磷化铟镓铝 /磷化铟镓(AlGalnP/GalnP ) 量子阱发光层 3、P型磷化铟镓铝(P-AlGalnP)层 4、P型金属钛和铝(Ti/Al ) 电极 5、 N型金属镍和金 (Ni/Au) 电极 6。 像素驱动电路器件包括: 所在 硅衬底 21、像素驱动器件接触电极 22。还包括:互连作用的金属铟电极( In ) 23。
[0047] 实施例七
[0048] 一种主动驱动的红色无机发光二极管矩阵显示装置的具体制作步骤 如下:
[0049] 1、 在砷化镓(GaAs )衬底 10上依次制作磷化镓 (GaP) 刻蚀阻挡层 刻 1、 N 型磷化铟镓铝 (N-AlGalnP ) 2、 磷化铟镓铝 /磷化铟镓
(AlGalnP/GalnP) 量子阱发光层 3、 P型磷化铟镓铝 (P-AlGalnP) 层 4, 再通过沉积和刻蚀 (etch) 或者剥离光刻胶(lift off)等方法, 形成无机 发光二极管的 P型金属钛和铝 (Ti/Al ) 电极 5, 见图 2 (1) ;
[0050] 2、 利用涂胶、 曝光、 刻蚀方法形成不同像素发光器件的磷化铟镓铝 /磷化铟镓(AlGalnP/GalnP)量子阱发光层 3之间的物理隔离,见图 2 (2);
[0051] 3、通过光刻、沉积、剥离工艺形成 N型金属镍和金(Ni/Au)电极 6, 见图 2 (3) ;
[0052] 4、 在像素驱动电路硅衬底 21上采用曝光、 刻蚀等工艺制作驱动电 路, 通过沉积、光刻工艺形成像素驱动电路接触电极 22 ; 采用对位、加热、 加压的方法, 通过互连作用的金属铟电极 23, 将像素发光器件的 P型金属 钛和铝 (Ti/Al ) 电极 5以及 N型金属镍和金 (Ni/Au) 电极与像素驱动电 路接触电极 22对应的连接在一起,见图 2 (4);
[0053] 5、 利用机械研磨和化学刻蚀的方法将像素发光器件所在砷化镓 (GaAs ) 衬底 10从像素发光器件剥离, 见图 2 (5)。
[0054] 实施例八
[0055】 图 6表示采用上述实施例的无机二极管红光显示装置 51, 结合无机 二极管绿光显示装置 52和无机二极管蓝光显示装置 53, 再利用准直透镜 61和二向色滤光片 62, 组成全彩色的显示装置。
[0056] 以上针对本发明的优选实施方式进行了描述, 本领域技术人员应该 理解, 在不脱离本发明的精神和权利要求书的范围基础上可以进行各种变 化和修改。

Claims

WO 2016/015174 权 禾 lj 要 求 书 PCT/CN2014/000725
1.一柙尤机友光二敉営並不装置,犮出红笆口」见光(犮光汲长在 570nm 到 670nm之间), 即显示红色的视频图像,其包括多个像素驱动电路器件和 多个像素发光器件, 每个像素驱动电路器件和每个像素发光器件通过互连 电极连接在一起, 可以实现每个像素驱动电路器件对每个像素发光器件的 独立控制, 其特征在于, 从互连电极开始, 每个像素发光器件各层的顺序 依次为: P型电极、 P型无机半导体层、 发光无机半导体层、 N型无机半导 体层、 刻蚀阻挡层, 而且像素发光器件材料生长所需的不透明衬底在器件 制作过程中被刻蚀或剥离, 即像素发光器件结构不包括不透明衬底。
2.根据权利要求 1所述,其特征在于, 像素发光器件无机层由磷(P)、 铟 (In)、 镓 (Ga)、 铝 (Al )、 砷 (As ) 中的两种以上组分构成, 如: 重掺 杂 P型砷化镓 (P+ - GaAs )、 P型磷化铟镓铝 (P- AlGaInP)、 磷化铟镓铝 / 磷化铟镓 ( AlGalnP/GalnP ) 量子阱发光层或者本征型磷化铟镓铝
( I-AlGalnP) 发光层、 N型磷化铟镓铝 (N- AlGaInP)、 磷化铟镓 (GalnP) 刻蚀阻挡层、 磷化镓 (GaP) 刻蚀阻挡层。
3. 根据权利要求 1所述,其特征在于,互连电极材料包括金锡(AuSn) 合金、 银锡 (AgSn)合金、 金(Au) 或者铟 (In), 还可以采用各向异性导 电胶 (ACF)。
4.根据权利要求 1-3所述, 其特征在于, 在器件制作过程中被刻蚀或 剥离的不透明衬底为砷化镓 (GaAs ) 材料。
5.根据权利要求 1-4所述, 其特征在于, 像素驱动电路器件包括场效 应管和静态存储器。
6.根据权利要求 1-5所述, 其特征在于, 像素发光器件的 N型电极形 成网状结构。
7.报据权利妥求 1-6所还, 具特祉在 t, 连电敉 Z|B」及像索驱动电 路器件和像素发光器件之间存在填充材料。
8.根据权利要求 1-7所述, 其特征在于, 制作方法包括:
( 1 ) 像素驱动器件在一个衬底上制作, 每个像素驱动电路器件包括 场效应管和静态存储器;
(2) 像素发光器件处于砷化镓 (GaAs ) 衬底, 每个像素发光器件包 括 P型电极、 P型无机半导体层、 发光无机半导体层、 N型无机半导体层, 刻蚀阻挡层;
( 3 ) 通过互连电极将每个像素驱动电路器件和每个像素发光器件连 接在一起, 实现每个像素驱动电路器件对每个像素发光器件的独立控制;
(4) 利用机械和化学结合方法或者激光剥离像素发光器件所在的砷 化镓衬底。
9.根据权利要求 1-8所述, 其特征在于, 制作方法包括:
( 1 ) 像素驱动器件在硅衬底上制作, 每个像素驱动电路器件包括场 效应管和静态存储器;
(2)像素发光器件处于砷化镓(GaAs)衬底, 从 GaAS衬底开始依次 为: 磷化铟镓 (GalnP) 刻蚀阻挡层、 N型磷化铟镓铝 (N- AlGaInP)、 磷化 铟镓铝 /磷化铟镓 ( AlGalnP/GalnP ) 量子阱发光层、 P 型磷化铟镓铝
(P-AlGalnP). P型电极;
( 3 ) 利用感应耦合等离子体刻蚀 (ICP ) 刻蚀出 N 型磷化铟镓铝 (N-AlGalnP), 再制作 N型电极;
(4) 通过金锡 (AiiSn)合金电极将每个像素驱动电路器件和每个像素 发光器件连接在一起, 实现每个像素驱动电路器件对每个像素发光器件的 独立控制;
( 5 ) 互连电极之间以及每个像素驱动电路器件和每个像素发光器件 之间充入填充材料。
(6) 采用腐蚀液剥离像素光器件的 GaAs衬底。
10.根据权利要求 1-9所述, 其特征在于, 利用无机二极管红光显示 装置, 结合无机二极管绿光显示装置和无机二极管蓝光显示装置, 再利用 光学透镜和棱镜, 组成全彩色的显示装置。
PCT/CN2014/000725 2014-07-30 2014-07-30 一种红色无机发光二极管显示器件及其制作方法 WO2016015174A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2014/000725 WO2016015174A1 (zh) 2014-07-30 2014-07-30 一种红色无机发光二极管显示器件及其制作方法
CN201480001726.5A CN105637641B (zh) 2014-07-30 2014-07-30 一种红色无机发光二极管显示器件及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/000725 WO2016015174A1 (zh) 2014-07-30 2014-07-30 一种红色无机发光二极管显示器件及其制作方法

Publications (1)

Publication Number Publication Date
WO2016015174A1 true WO2016015174A1 (zh) 2016-02-04

Family

ID=55216547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/000725 WO2016015174A1 (zh) 2014-07-30 2014-07-30 一种红色无机发光二极管显示器件及其制作方法

Country Status (2)

Country Link
CN (1) CN105637641B (zh)
WO (1) WO2016015174A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3055948A1 (fr) * 2016-09-15 2018-03-16 Valeo Vision Procede de montage d'un composant electroluminescent matriciel sur un support
WO2019223567A1 (zh) * 2018-05-24 2019-11-28 京东方科技集团股份有限公司 显示基板、显示装置以及显示基板的制作方法
US10622342B2 (en) 2017-11-08 2020-04-14 Taiwan Semiconductor Manufacturing Company Ltd. Stacked LED structure and associated manufacturing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10874876B2 (en) * 2018-01-26 2020-12-29 International Business Machines Corporation Multiple light sources integrated in a neural probe for multi-wavelength activation
CN112447786B (zh) * 2020-11-23 2022-09-30 厦门天马微电子有限公司 发光二极管显示面板及其制作方法、发光二极管显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050287687A1 (en) * 2004-06-28 2005-12-29 Tien-Fu Liao Method of fabricating algainp light-emitting diode and structure thereof
US20060027820A1 (en) * 2004-07-07 2006-02-09 Densen Cao Monolitholic LED chip to emit multiple colors
US7067340B1 (en) * 2005-02-05 2006-06-27 Epistar Corporation Flip-chip light emitting diode and fabricating method thereof
CN101847646A (zh) * 2010-02-02 2010-09-29 孙润光 一种无机发光二极管显示装置
CN103811626A (zh) * 2012-11-12 2014-05-21 天津中环新光科技有限公司 带有高反射率金属反射层的红光发光二极管及制备方法
CN103855179A (zh) * 2012-12-03 2014-06-11 孙润光 一种无机发光二极管显示器件结构

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1482566A3 (en) * 2003-05-28 2004-12-08 Chang Hsiu Hen Light emitting diode electrode structure and full color light emitting diode formed by overlap cascaded die bonding

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050287687A1 (en) * 2004-06-28 2005-12-29 Tien-Fu Liao Method of fabricating algainp light-emitting diode and structure thereof
US20060027820A1 (en) * 2004-07-07 2006-02-09 Densen Cao Monolitholic LED chip to emit multiple colors
US7067340B1 (en) * 2005-02-05 2006-06-27 Epistar Corporation Flip-chip light emitting diode and fabricating method thereof
CN101847646A (zh) * 2010-02-02 2010-09-29 孙润光 一种无机发光二极管显示装置
CN103811626A (zh) * 2012-11-12 2014-05-21 天津中环新光科技有限公司 带有高反射率金属反射层的红光发光二极管及制备方法
CN103855179A (zh) * 2012-12-03 2014-06-11 孙润光 一种无机发光二极管显示器件结构

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3055948A1 (fr) * 2016-09-15 2018-03-16 Valeo Vision Procede de montage d'un composant electroluminescent matriciel sur un support
WO2018050339A1 (fr) * 2016-09-15 2018-03-22 Valeo Vision Procédé de montage d'un composant électroluminescent matriciel sur un support
EP3513118B1 (fr) * 2016-09-15 2023-05-24 Valeo Vision Procédé de montage d'un composant électroluminescent matriciel sur un support
US10622342B2 (en) 2017-11-08 2020-04-14 Taiwan Semiconductor Manufacturing Company Ltd. Stacked LED structure and associated manufacturing method
TWI713234B (zh) * 2017-11-08 2020-12-11 台灣積體電路製造股份有限公司 半導體結構和相關製造方法
WO2019223567A1 (zh) * 2018-05-24 2019-11-28 京东方科技集团股份有限公司 显示基板、显示装置以及显示基板的制作方法
US11575067B2 (en) 2018-05-24 2023-02-07 Boe Technology Group Co., Ltd. Display substrate, display apparatus, and manufacturing method for display substrate

Also Published As

Publication number Publication date
CN105637641B (zh) 2018-08-28
CN105637641A (zh) 2016-06-01

Similar Documents

Publication Publication Date Title
US11705479B2 (en) Display apparatus and method of manufacturing the same
US10367122B2 (en) Integrated colour LED micro-display
US11430374B2 (en) Display apparatus and method of manufacturing the same
WO2016015174A1 (zh) 一种红色无机发光二极管显示器件及其制作方法
TWI437733B (zh) 發光裝置製造方法及發光裝置
WO2020029657A1 (zh) 一种二极管装置、显示面板及柔性显示器
US8058663B2 (en) Micro-emitter array based full-color micro-display
TWI548121B (zh) 半導體發光裝置、發光二極體陣列及其製造方法
CN105742307A (zh) 一种彩色微显示器件及制备方法
US20220367771A1 (en) Display device using micro led, and manufacturing method therefor
US20230317768A1 (en) Micro led device and method of manufacturing the same
WO2024098972A1 (zh) Micro LED微显示芯片及其制造方法
TW201729657A (zh) 電子元件的轉移方法、電子模組及光電裝置
JP2022190184A (ja) ディスプレイパネル作製方法
JP2018148074A (ja) 発光素子及びその製造方法
CN109390368B (zh) 微显示器件及其制备方法、显示面板
TW201344956A (zh) 半導體發光裝置及其製造方法
JP6981444B2 (ja) 発光装置、発光装置の製造方法、およびプロジェクター
JP7206629B2 (ja) 発光装置およびプロジェクター
CN109037406A (zh) 一种红光led倒装芯片结构及制备方法
CN116207209A (zh) 显示面板及其制备方法、显示装置
Wang et al. P‐6.4: Failure Analysis of Al Corrosion Issue at Complementary Metal Oxide Semiconductor Backplane Solder Process for 1980PPI Micro Light Emitting Diode Display
KR20220147565A (ko) 마이크로 led 디스플레이 제조 시스템 및 방법
CN116110808A (zh) 一种Micro LED芯片及其制备方法和Micro LED显示器件及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14898648

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14898648

Country of ref document: EP

Kind code of ref document: A1