WO2016013698A1 - 피드백 신호를 전송하는 방법 및 장치 - Google Patents

피드백 신호를 전송하는 방법 및 장치 Download PDF

Info

Publication number
WO2016013698A1
WO2016013698A1 PCT/KR2014/006746 KR2014006746W WO2016013698A1 WO 2016013698 A1 WO2016013698 A1 WO 2016013698A1 KR 2014006746 W KR2014006746 W KR 2014006746W WO 2016013698 A1 WO2016013698 A1 WO 2016013698A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
signal
resource allocation
transmitting
feedback signal
Prior art date
Application number
PCT/KR2014/006746
Other languages
English (en)
French (fr)
Inventor
변일무
고현수
박경민
조희정
최혜영
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to PCT/KR2014/006746 priority Critical patent/WO2016013698A1/ko
Priority to CN201480080723.5A priority patent/CN106537802B/zh
Priority to EP14898324.0A priority patent/EP3174216B1/en
Priority to US15/325,069 priority patent/US9923615B2/en
Publication of WO2016013698A1 publication Critical patent/WO2016013698A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/72Diversity systems specially adapted for direction-finding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5055Laser transmitters using external modulation using a pre-coder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection

Definitions

  • the present invention relates to a method and apparatus for transmitting a feedback signal, and more particularly, to a method and apparatus for transmitting a feedback signal of a terminal for receiving a plurality of beams having different directions.
  • the LTE system is spreading more quickly after the need to support high-quality services for high-quality services as well as voice services while ensuring the activity of terminal users.
  • the LTE system provides low transmission delay, high data rate, system capacity and coverage improvement.
  • the transceiver is equipped with a plurality of antennas to obtain additional spatial area for resource utilization to obtain diversity gain or transmit data in parallel through each antenna.
  • the so-called multi-antenna transmission and reception technology for increasing the capacity has been actively developed recently with great attention.
  • beamforming and precoding may be used as a method to increase the signal to noise ratio (SNR), and beamforming and precoding may use a feedback signal at a transmitter. In closed-loop systems, this feedback signal is used to maximize the signal-to-noise ratio.
  • SNR signal to noise ratio
  • the increase in the number of antennas can increase the average signal-to-interference plus noise ratio (SINR) of the cell edge terminal by reducing the probability of interference, but there is a problem in that the worst SINR is not improved in some cases.
  • SINR signal-to-interference plus noise ratio
  • the present invention proposes a method of reducing the probability of interference when generating beams using multiple antennas and generating a guidance beam for accurate channel prediction.
  • a method of transmitting a feedback signal includes receiving a plurality of reference signals having different directions and transmitting a feedback signal including a beam index indicating one of the plurality of reference signals to It may include a step.
  • a method of transmitting a reference signal includes generating a plurality of reference signals having different directions, receiving a feedback signal for a beam index indicating one of the plurality of reference signals; And adjusting the directions of the plurality of reference signals according to the received beam index.
  • a terminal for receiving a plurality of beams may generate a feedback signal for interference avoidance and interference prediction.
  • 1 is a block diagram illustrating a transmitter having multiple antennas.
  • FIG. 2 is a block diagram illustrating a receiver having multiple antennas.
  • FIG 3 is a diagram illustrating a main beam and a guide beam generated according to an embodiment of the present invention.
  • FIG. 4 is a control flowchart illustrating a method of generating a guide reference signal according to an embodiment of the present invention.
  • FIG. 5 illustrates a reference RB according to an embodiment of the present invention.
  • FIG. 6 illustrates a reference RB according to another embodiment of the present invention.
  • FIG. 7 is a diagram illustrating a resource in which a reference RB is disposed according to an embodiment of the present invention.
  • FIG. 8 is a view for explaining the movement of the preceding reference RB on the time axis according to another embodiment of the present invention.
  • FIG. 9 is a view for explaining the movement of the trailing reference RB on the time axis according to another embodiment of the present invention.
  • FIG. 10 is a diagram illustrating resources in which a reference RB is disposed according to another embodiment of the present invention.
  • FIG. 10 is a diagram illustrating resources in which a reference RB is disposed according to another embodiment of the present invention.
  • FIG. 11 is a diagram illustrating a resource in which a reference RB is disposed according to another embodiment of the present invention.
  • FIG. 13 illustrates a feedback signal according to another embodiment of the present invention.
  • FIG. 14 is a view for explaining interference occurrence prediction by the guide beam according to the present invention.
  • 15 is a block diagram of a wireless communication system according to an embodiment of the present invention.
  • 16 is a control flowchart for transmitting a feedback signal according to an embodiment of the present invention.
  • the wireless device may be fixed or mobile and may be called other terms such as a user equipment (UE), a mobile station (MS), a user terminal (UT), a subscriber station (SS), a mobile terminal (MT), and the like.
  • a base station generally refers to a fixed station for communicating with a wireless device, and may be referred to in other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, and the like.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • access point and the like.
  • LTE includes LTE and / or LTE-A.
  • the present specification describes a communication network, and the work performed in the communication network is performed in the process of controlling the network and transmitting data in a system (for example, a base station) that manages the communication network, or a terminal linked to the network. Work can be done in a system (for example, a base station) that manages the communication network, or a terminal linked to the network. Work can be done in a system (for example, a base station) that manages the communication network, or a terminal linked to the network. Work can be done in a system (for example, a base station) that manages the communication network, or a terminal linked to the network. Work can be done in a system (for example, a base station) that manages the communication network, or a terminal linked to the network. Work can be done in a system (for example, a base station) that manages the communication network, or a terminal linked to the network. Work can be done in a system (for example, a base station) that manages the communication network, or a terminal linked to
  • the multi-antenna system or MIMO system to which the following technology is applied is a system using multiple transmit antennas and at least one receive antenna.
  • the following techniques can be applied to various multiple input multiple output (MIMO) schemes.
  • MIMO schemes include spatial diversity for transmitting the same stream to multiple layers and spatial multiplexing for transmitting multiple streams to multiple layers.
  • spatial multiplexing when multiple streams are transmitted to one user, they are referred to as single user-MIMO (SU-MIMO) or spatial division multiple access (SDMA).
  • SU-MIMO single user-MIMO
  • SDMA spatial division multiple access
  • multiplexing when multiple streams are transmitted to multiple users, it is called MU-MIMO (Multi User-MIMO).
  • spatial diversity and spatial multiplexing can be divided into open-loop and closed-loop schemes according to whether feedback information reported from a user is used.
  • Channel estimation refers to a process of restoring a transmission signal by compensating for a distortion of a signal caused by a sudden environmental change due to fading.
  • a reference signal known to both the transmitter and the receiver is required.
  • the reference signal is a signal used for channel estimation or data demodulation, also called a pilot.
  • FIG. 1 illustrates a transmitter having multiple antennas according to an embodiment of the present invention.
  • the transmitter 100 includes channel encoders 110-1 and 110-2, mappers 120-1 and 120-2, a layer mapping unit 140, and a precoder ( 150) and a signal generator (Signal Generator, 160-1, ..., 160-Nt). Nt is the number of antenna ports.
  • the channel encoders 110-1 and 110-2 generate codewords by encoding input information bits according to a predetermined coding scheme.
  • the first channel encoder 110-1 generates the first codeword CW1
  • the second channel encoder 110-2 generates the second codeword CW2.
  • the mappers 120-1 and 120-2 modulate each codeword according to a modulation scheme and map them to modulation symbols having demodulation values.
  • the modulation scheme is not limited, and may be m-PK (m-Phase Shift Keying) or m-Quadrature Amplitude Modulation (m-QAM).
  • m-PSK may be BPSK, QPSK or 8-PSK.
  • m-QAM may be 16-QAM, 64-QAM or 256-QAM.
  • the first mapper 120-1 generates modulation symbols for the first codeword CW1
  • the second mapper 120-2 generates modulation symbols for the second codeword CW2.
  • the transmitter 100 includes two channel encoders 110-1 and 110-2 and two mappers 120-1 and 120-2 to process two codewords.
  • the number of channel encoders and the number of mappers included in 100) are not limited.
  • the transmitter 100 may include at least one channel encoder and at least one mapper for processing at least one codeword.
  • the layer mapping unit 140 maps modulation symbols of input codewords CW1 and CW2 to each layer according to the number of layers.
  • the layer may be referred to as an information path input to the precoder 150 and corresponds to a rank value.
  • the layer mapping unit 140 may determine the number of layers (ie, rank) and then map modulation symbols of each codeword to each layer.
  • the precoder 150 outputs an antenna specific symbol by processing the mapping symbol mapped to each layer by a MIMO method according to the plurality of antenna ports 170-1,..., 170 -Nt.
  • the signal generators 160-1, ..., 160-Nt convert antenna specific symbols into transmission signals, and the transmission signals are transmitted through each antenna port 190-1, ..., 190-Nt.
  • the signal generators 160-1, ..., 160-Nt may perform OFDM modulation to OFDM-modulate the input symbols to output OFDM symbols, and transmit signals through methods well known to those skilled in the art, such as SC-FDMA modulation. Can be generated.
  • the signal generators 160-1, ..., 160-Nt may perform inverse fast fourier transform (IFFT) on the input symbol during OFDM modulation, and further insert a cyclic prefix (CP) after performing the IFFT. can do.
  • IFFT inverse fast fourier transform
  • CP cyclic prefix
  • the transmitter 100 may support a hybrid automatic repeat request (HARQ). In retransmission for HARQ, the same layer mapping as the initial transmission may be performed, or layer mapping for retransmission may be performed. In addition, the transmitter 100 may support rank adaptation that changes rank according to channel conditions.
  • HARQ hybrid automatic repeat request
  • FIG. 2 is a block diagram illustrating a receiver having multiple antennas.
  • the receiver 200 includes an OFDM demodulator 210, a channel estimator 220, a MIMO postprocessor 230, a demapper 240, and a channel decoder 250.
  • the signal received from the receive antennas 290-1,..., 290 -Nr is subjected to fast Fourier transform (FFT) by the OFDM demodulator 210.
  • the channel estimator 220 estimates a channel using the reference signal.
  • the MIMO post processor 230 performs post processing corresponding to the MIMO processor 140.
  • the demapper 240 demaps the input symbol into encoded data
  • the channel decoder 250 decodes the encoded data to restore the original data.
  • Equation 1 Equation 1 may be summarized as Equation 2 below.
  • Equation 3 the distance between the base station and the terminal is x (meter)
  • the distance y (meter) at which the beam spreads horizontally at point x is expressed by Equation 3 below.
  • y When the number of antennas of the base station is 4 and the distance x between the terminal and the base station is 20 m and 500 m, y is 13.85 m and 346 m, respectively. Further, if the number of antennas of the base station is 16 and the distance x between the terminal and the base station is 20m and 500m, y becomes 2.7m and 67m, respectively.
  • Equation 4 P denotes a reception power and I denotes interference.
  • An increase in the number of antennas also leads to an increase in I together with P, so that the SINR may not be improved at the terminal.
  • the beamwidth decreases, and thus the probability that the beams overlap each other decreases, thereby reducing the probability of interference that may occur due to the beamwidth.
  • Increasing the number of antennas can increase the average SINR of the cell edge terminal by reducing the probability of interference, but does not improve to the SINR in this case if a bad situation occurs where beams overlap each other.
  • the present invention proposes a guide beam (guidance beam) technique for improving the accuracy of channel measurement and prediction of the terminal located inside the cell, and to increase the interference avoidance probability of the cell boundary terminal.
  • FIG 3 is a diagram illustrating a main beam and a guide beam generated according to an embodiment of the present invention.
  • the base station may generate a plurality of beams with different directions.
  • the base station may generate a main beam in a direction to be originally directed, and generate a guide beam to have a different direction from that of the main beam.
  • the directing angle of the guide beam may be shifted so as to be shifted vertically or horizontally to the main beam in the direction of the guide beam.
  • the number of guide beams may be one or more, and for example, two guide beams may be generated.
  • the two guide beams may have a direction twisted up and down with respect to the main beam by the same angle, or may have a direction twisted by the same angle from side to side with respect to the main beam.
  • the main beam and the guide beam For convenience of description, only a plurality of beams generated by the base station are named as the main beam and the guide beam, and the properties of the beams are not distinguished according to the division of the main beam and the guide beam.
  • FIG. 4 is a control flowchart illustrating a method of generating a guide reference signal according to an embodiment of the present invention.
  • the base station selects a specific resource block (hereinafter referred to as RB) as a reference resource block (hereinafter referred to as a reference RB), and places a reference signal (demodulation reference signal, hereinafter referred to as DM-RS) in the reference RB.
  • RB specific resource block
  • DM-RS demodulation reference signal
  • the resource block according to the present invention may mean any radio resource allocation unit used for transmission of reference signals for different beams, and the resource block may include a plurality of resource elements (REs).
  • Reference RB of the present invention means a resource block used for the transmission of the guide beam.
  • two or more DM-RSs disposed in the reference RB may be provided.
  • Two or more DM-RSs may be orthogonal or quasi-orthogonal to each other.
  • one DM-RS there may be one DM-RS, in which case one DM-RS is formed with a time difference and may have different directions.
  • Orthogonal DM-RS or quasi-orthogonal DM-RS in the reference RB may be arranged in various ways.
  • the same DM-RS sequence or different DM-RS sequences may be transmitted through different REs, or the same DM-RS sequence or different DM-RS sequences may be transmitted through one RE.
  • the plurality of DM-RSs can be transmitted through the same RE because the guide beams are directed in different directions for channel prediction and interference prediction.
  • the transmission signal vector according to the present invention May be expressed as Equation 5 below.
  • W is a precoding matrix, , Representing a symbol Where L can represent a rank It can be expressed as.
  • W i, j is The i-th row and j-th column of the component.
  • FIG. 5 illustrates a reference RB according to an embodiment of the present invention.
  • different DM-RSs are arranged in different REs.
  • Equation 6 describes a precoding matrix for the DM-RS of FIG.
  • Equation 6 represents the number of independent guide beams.
  • the directing point of the DM-RS (R 2 ) transmitted through the RE denoted by " 2 ", which is determined by the precoding matrix, is w [w 1,2 , w 2,2 , ..., w L, 2 ] T can be determined by the precoding matrix represented by.
  • symbols other than the DM-RS are allocated to the REs without the numeric display.
  • FIG. 6 illustrates a reference RB according to another embodiment of the present invention.
  • a plurality of DM-RSs may be disposed in the same RE.
  • a method of transmitting an orthogonal DM-RS sequence or a quasi-orthogonal DM-RS sequence using the same RE may be used when the number of symbols to be transmitted at the same time is actually smaller than the number of guide beams using the reference RB.
  • the precoding matrix When transmitting DM-RSs for a plurality of guide beams using one symbol as shown in FIG. 6, the precoding matrix may be expressed as shown in Equation 7 below.
  • the precoding matrix for the RE indicated by “1” includes elements for a plurality of DM-RSs (Rj).
  • the reference RB may be designed to improve the accuracy of channel estimation and prediction of the terminal inside the cell and to improve the accuracy of interference detection of the terminal outside the cell.
  • the following may be considered in the arrangement of the reference RB.
  • a resource block (hereinafter, RB) of a t-th slot of a radio frame is Rt and a set of RBs allocated to a specific terminal is R
  • Rt resource block
  • a reference RB may be placed in at least one of the most advanced RBs and at least one of the most recent RBs of Rt. This is to accurately grasp the channel change according to the movement direction of the terminal by using the reference RB. That is, by arranging the reference RBs at regular intervals in time, the mobility of the user can be accurately identified.
  • FIG. 7 is a diagram illustrating a resource in which a reference RB is arranged according to an embodiment of the present invention, and shows an example of a resource to which (1) is applied.
  • a resource allocated to one user equipment may be configured with a plurality of subbands and may be scheduled in units of subbands.
  • One subband may include a plurality of reference RBs (RRBs), and one reference RB includes a plurality of REs.
  • Reference signals "1" are arranged in four REs in the reference RB of FIG.
  • a reference RB is arranged in the RB leading in the time axis and the RB leading in the rear.
  • the base station may schedule in units of subbands including a plurality of RBs, in which case, the position of the reference RB in the subbands is cyclically moved along the frequency axis according to the physical cell ID (Physical Cell ID). cyclic shifting). That is, the location of the reference RB allocated to a specific terminal may vary according to the cell ID.
  • the physical cell ID Physical Cell ID
  • the reference RB may not cyclically move on the time axis.
  • the reference RB is moved on the frequency axis in order to minimize overlapping of the adjacent cell and the reference RB.
  • it is not arrange
  • 8 and 9 are diagrams illustrating resources in which a reference RB is disposed according to another embodiment of the present invention, and show examples of resources to which (1) and (2) are applied. 8 and 9 illustrate the arrangement of reference RBs in subbands for different cell IDs. If the subband consists of two slots, Figures 8 and 9 show that four RBs are arranged in one slot.
  • FIG. 8 is a view for explaining the movement of the preceding reference RB on the time axis
  • FIG. 9 is a view for explaining the movement of the backward reference RB on the time axis.
  • the subbands of FIGS. 8 and 9 are shown as resources for different cell IDs, respectively, and the reference RB is cyclically moved only on the frequency axis.
  • the reference RB is divided into a vertical reference RB for measuring mobility in the beam travel direction and a horizontal reference RB for measuring mobility in the horizontal direction in the beam travel direction, and the horizontal reference RB and
  • the number of arrangement of vertical reference RBs can be set differently.
  • the number of vertical reference RBs for measuring mobility in the beam propagation direction may be less than that of horizontal reference RBs for horizontal mobility.
  • Equation 8 the down tilting angle ⁇ of the beam to be changed is expressed by Equation 8.
  • Equation 9 the steering angle ⁇ of the beam to be changed when the terminal moves x meters horizontally with the beam traveling direction
  • the base station may adjust the number of horizontal reference RBs and vertical reference RBs by considering the diameter of the cell, the height of the base station, the maximum moving speed of the terminal to be supported, etc. by using Equations 8 and 9 below.
  • the terminal may provide information about its location or its moving speed to the base station.
  • FIG. 10 is a diagram illustrating a resource in which a reference RB is disposed according to another embodiment of the present invention, and shows an example of a resource to which (1) to (3) is applied.
  • the horizontal reference RB is denoted as HRRB
  • the vertical reference RB is denoted as VRRB.
  • the HRRB may measure the mobility of the terminal moving in the direction perpendicular to the beam traveling direction
  • the VRRB may measure the mobility of the terminal moving in the beam traveling direction.
  • an HRRB or a VRRB is disposed on the most advanced RB and the most recent RB on the time axis.
  • the base station performs scheduling in units of subbands in which several RBs are bound, and when one or more subbands are allocated to one UE, one or more reference RBs per subband are allocated. Can be placed.
  • one or more reference RBs may exist in a subband scheduled to a terminal existing in an adjacent cell.
  • FIG. 11 is a diagram illustrating a resource in which a reference RB is arranged according to another embodiment of the present invention, and shows an example of a resource to which (1), (2), and (4) are applied.
  • reference RBs are arranged in one subband to be scheduled, and reference RBs may be arranged in different positions according to cell IDs.
  • the number of reference RBs may be determined according to a coding rate. For example, if the number of bits of the information bit is k and the code rate is R, the length of the codeword is k / R. In this case, up to k / R -k bits can be transmitted in the reference RB. k / R? k corresponds to the number of bits of the parity bit.
  • the reference RB may transmit a signal using multi-layer beamforming even when one layer beamforming is optimal.
  • performance degradation may occur, so that information corresponding to the number of parity bits may be transmitted through the reference RB in order to minimize this.
  • the arrangement of the reference RBs can be designed according to various combinations taking into account at least one of (1) to (5).
  • the base station may set the precoding matrix such that the direction of the reference RB is different with respect to the direction of the main RB used for the transmission of the main beam (S420).
  • the direction point of the reference RB may have a direction twisted up and down substantially with respect to the main RS by the same angle, or may have a direction twisted by the same angle from the left and right with respect to the main RS.
  • the base station performs beamforming according to a transmission scheme determined by either spatial multiplexing or spatial diversity according to the configured precoding matrix (S430). That is, the base station may generate the guide beam by using a plurality of layered beams or may generate the guide beam by one layered beamforming. However, even when one layer beamforming is performed, N orthogonal DM-RSs may be maintained.
  • the number of multiplexed layers may be reduced.
  • the base station may perform spatial multi-layered beamforming for simultaneously transmitting a number of beams equal to or smaller than N set to the number of DM-RSs using the precoding matrix. That is, the base station can beamform N orthogonal DM-RSs in different directions by simultaneously transmitting a number of symbols smaller than N according to channel conditions.
  • the number of symbols multiplexed simultaneously with the number of orthogonal DM-RSs in the reference RB may be transmitted through a physical downlink control channel (PDCCH) or an extended physical downlink control channel (ePDCCH) of LTE. If such information is transmitted on the ePDCCH, a signal is transmitted on the ePDCCH of the RB other than the reference RB.
  • PDCH physical downlink control channel
  • ePDCCH extended physical downlink control channel
  • an orthogonal or quasi-orthogonal DM-RS sequence may be transmitted in the same RE as shown in FIG. 6. This resource arrangement reduces the resource waste of the RE.
  • the terminal receiving the precoded reference RB may configure a feedback signal based on channel information obtained from the reference RB.
  • the base station can maximize performance by adjusting various system parameters such as power level and transmission format using the information. If the channel condition is good, the data transmission rate can be increased, and if there is a channel degradation, the transmission rate can be reduced to support efficient transmission, and consequently, the average transmission rate can be increased.
  • the terminal may transmit the index of the beam of the best state among the layered beams of the reference RB to the base station.
  • the base station may provide information indicating in which direction the direction of the beam currently being transmitted is effective.
  • the UE may generate a precoding matrix index (PMI) obtained from reference RBs in a subband and an index of the most directional beam as feedback signals.
  • PMI precoding matrix index
  • the 12 illustrates a feedback signal according to the present embodiment. If the number of layered beams is K, the number of bits representing the beam index is.
  • the UE may generate, as feedback information, X bit information indicating a beam index and Y bit information indicating a PMI.
  • the terminal may generate feedback information using only information indicating a beam index without including the PMI.
  • the terminal may transmit only the beam index to the base station.
  • FIG. 14 is a view for explaining interference occurrence prediction by the guide beam according to the present invention.
  • the guide beam and the main beam may collide before the main beams collide with each other.
  • the base station may change the location of resources allocated to the cell through scheduling. That is, the base station can adjust the direction of the guide beam using the beam index information, through which it can expect the inter-cell interference avoidance effect.
  • the receiving end may also predict that interference has occurred when the SINR of one reference RB is much lower than the SINR of another reference RB.
  • 15 is a block diagram of a wireless communication system according to an embodiment of the present invention.
  • the base station 800 includes a processor 810, a memory 820, and an RF unit 830.
  • Processor 810 implements the proposed functions, processes, and / or methods. Layers of the air interface protocol may be implemented by the processor 810.
  • the memory 820 is connected to the processor 810 and stores various information for driving the processor 810.
  • the RF unit 830 is connected to the processor 810 to transmit and / or receive a radio signal.
  • the terminal 900 includes a processor 910, a memory 920, and an RF unit 930.
  • the RF unit 930 receives a plurality of reference signals having different directions, and transmits a feedback signal generated by the processor 910 to the base station 800.
  • the received reference signal may include a main reference signal having a first direction and a guide reference signal having a second direction directed up, down, left, or right of the first direction.
  • the processor 910 implements the proposed function, process and / or method, that is, generates a feedback signal including a beam index indicating any one of a plurality of reference signals.
  • the feedback signal may further include a precoding index corresponding to the reference signal indicated by the beam index.
  • the processor 910 controls the RF unit 930 to transmit the generated feedback signal to the base station 800.
  • Layers of the air interface protocol may be implemented by the processor 910.
  • the memory 920 is connected to the processor 910 and stores various information for driving the processor 910.
  • the RF unit 930 is connected to the processor 910 to transmit and / or receive a radio signal.
  • 16 is a control flowchart for transmitting a feedback signal according to an embodiment of the present invention.
  • the terminal receives a plurality of reference signals having different directions (S1610).
  • the reference signal may be disposed at different positions of the resource allocation unit in which the reference signal is transmitted according to the cell ID, and may be disposed in resource allocation units spaced at predetermined intervals on a time axis from among a plurality of resource allocation units allocated to the terminal.
  • the terminal may transmit a feedback signal including a beam index indicating one of the plurality of reference signals to a transmitter, that is, a base station providing a beam (S1620).
  • the terminal receiving the plurality of beams may generate beam index information indicating the beam as feedback information.
  • the processor may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
  • the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device.
  • the RF unit may include a baseband circuit for processing a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in memory and executed by a processor.
  • the memory may be internal or external to the processor and may be coupled to the processor by various well known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

무선 통신 시스템에서 방향성이 다른 복수의 참조 신호에 대한 피드백 신호를 생성 및 전송하는 방법 및 장치가 제공된다. 단말은 방향성이 다른 복수의 참조 신호를 수신하고, 상기 복수의 참조 신호 중 어느 하나를 지시하는 빔 인덱스를 포함하는 피드백 신호를 송신단으로 전송할 수 있다.

Description

피드백 신호를 전송하는 방법 및 장치
본 발명은 피드백 신호를 전송하는 방법 및 장치에 관한 것으로서, 보다 상세하게는 방향성이 다른 복수의 빔을 수신하는 단말의 피드백 신호 전송 방법 및 장치에 관한 것이다.
최근 차세대 무선 통신 시스템인 LTE(Long Term Evolution) 시스템의 상용화가 본격적으로 지원되고 있는 상황이다. 이러한 LTE 시스템은 단말 사용자의 활동성을 보장하면서 음성 서비스뿐만 아니라 사용자의 요구에 대한 대용량 서비스를 고품질로 지원하고자 하는 필요성이 인식된 후, 보다 빨리 확산되고 있는 추세이다. 상기 LTE 시스템은 낮은 전송 지연, 높은 전송율, 시스템 용량과 커버리지 개선을 제공한다.
이러한 고품질 서비스의 출현등으로 인해 무선통신 서비스에 대한 요구가 급속히 증대되고 있다. 이에 능동적으로 대처하기 위해서는 무엇보다도 통신 시스템의 용량이 증대되어야 하는데, 무선통신 환경에서 통신 용량을 늘리기 위한 방안으로는 가용 주파수 대역을 새롭게 찾아내는 방법과, 한정된 자원에 대한 효율성을 높이는 방법을 생각해 볼 수 있다.
이 중 한정된 자원에 대한 효율성을 높이는 방법으로 송수신기에 다수의 안테나를 장착하여 자원 활용을 위한 공간적인 영역을 추가로 확보함으로써 다이버시티 이득을 취하거나, 각각의 안테나를 통해 데이터를 병렬로 전송함으로써 전송 용량을 높이는 이른바 다중 안테나 송수신 기술이 최근 큰 주목을 받으며 활발하게 개발되고 있다.
다중 안테나 시스템(multiple-input multiple-output system)에서는 신호대 잡음비(Signal to Noise Ratio; SNR)를 높이기 위한 방법으로 빔 포밍 및 프리코딩이 사용될 수 있고, 빔 포밍 및 프리코딩은 송신단에서 피드백 신호를 이용할 수 있는 폐-루프 시스템에서 해당 피드백 신호를 통해 신호대 잡음비를 최대화하기 위해 사용된다.
한편, 안테나 수의 증가는 간섭 발생 확률을 감소시킴으로써 셀 경계 단말의 평균 SINR(Signal to Interference plus Noise Ratio)은 증가시킬 수 있지만, 경우에 따라 최악의 SINR은 향상시키지 못하는 문제점이 있다.
본 발명은 다중 안테나를 이용한 빔포밍 시 간섭이 발생할 확률을 감소시키고 정밀한 채널 예측을 위한 가이던스 빔(guidance beam)을 생성하는 방법을 제안한다.
본 발명의 일 실시예에 따른 피드백 신호를 전송하는 방법은 방향성이 다른 복수의 참조 신호를 수신하는 단계와, 상기 복수의 참조 신호 중 어느 하나를 지시하는 빔 인덱스를 포함하는 피드백 신호를 으로 전송하는 단계를 포함할 수 있다.
본 발명의 다른 실시예에 따른 참조 신호를 전송하는 방법은 방향성이 다른 복수의 참조 신호를 생성하는 단계와, 상기 복수의 참조 신호 중 어느 하나를 지시하는 빔 인덱스에 대한 피드백 신호를 수신하는 단계와, 상기 수신된 빔 인덱스에 따라 상기 복수의 참조 신호의 방향을 조절하는 단계를 포함할 수 있다.
본 발명에 따르면 다중 안테나를 이용한 빔포밍 시 정밀한 채널 예측 및 간섭 제어가 가능하다.
또한, 본 발명에 따르면 복수의 빔을 수신하는 단말에서 간섭 회피 및 간섭 예측을 위한 피드백 신호를 생성할 수 있다.
도 1은 다중 안테나를 가지는 송신기를 나타내는 블록도이다.
도 2는 다중 안테나를 가지는 수신기를 보여주는 블록도이다.
도 3은 본 발명의 일 실시예에 따라 생성되는 메인 빔과 가이드 빔을 도시한 도면이다.
도 4는 본 발명의 일 실시예에 따라 가이드 참조 신호를 생성하는 방법을 설명하기 위한 제어 흐름도이다.
도 5는 본 발명의 일 실시예에 따른 참조 RB를 도시한 도면이다.
도 6은 본 발명의 다른 실시예에 따른 참조 RB를 도시한 도면이다.
도 7은 본 발명의 일 실시예에 따라 참조 RB를 배치한 자원을 도시한 도면이다.
도 8은 본 발명의 다른 실시예에 따라 시간축으로 앞선 참조 RB의 이동을 설명하기 위한 도면이다.
도 9는 본 발명의 다른 실시예에 따라 시간축으로 뒷선 참조 RB의 이동을 설명하기 위한 도면이다.
도 10은 본 발명의 또 다른 실시예에 따라 참조 RB를 배치한 자원을 도시한 도면이다.
도 11은 본 발명의 또 다른 실시예에 따라 참조 RB를 배치한 자원을 도시한 도면이다.
도 12는 본 발명의 일 실시예에 따른 피드백 신호를 도시한 도면이다.
도 13은 본 발명의 다른 실시예에 따른 피드백 신호를 도시한 도면이다.
도 14는 본 발명에 따른 가이드 빔에 의한 간섭 발생 예측을 설명하기 위한 도면이다.
도 15는 본 발명의 일 실시예에 따른 무선 통신 시스템의 블록도이다.
도 16은 본 발명의 일 실시예에 따른 피드백 신호 전송에 대한 제어 흐름도이다.
무선기기는 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(mobile station), UT(user terminal), SS(subscriber station), MT(mobile terminal) 등 다른 용어로 불릴 수 있다. 기지국은 일반적으로 무선기기와 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
이하에서는 3GPP(3rd Generation Partnership Project) 3GPP LTE(long term evolution) 또는 3GPP LTE-A(LTE-Advanced)를 기반으로 본 발명이 적용되는 것을 기술한다. 이는 예시에 불과하고, 본 발명은 다양한 무선 통신 시스템에 적용될 수 있다. 이하에서, LTE라 함은 LTE 및/또는 LTE-A를 포함한다.
본 명세서는 통신 네트워크를 대상으로 설명하며, 통신 네트워크에서 이루어지는 작업은 해당 통신 네트워크를 관할하는 시스템(예를 들어 기지국)에서 네트워크를 제어하고 데이터를 송신하는 과정에서 이루어지거나, 해당 네트워크에 링크된 단말에서 작업이 이루어질 수 있다.
이하의 기술이 적용되는 다중 안테나 시스템 또는 MIMO 시스템은 다중 전송 안테나와 적어도 하나의 수신 안테나를 이용하는 시스템이다. 이하의 기술은 다양한 MIMO (multiple input multiple output) 방식에 적용될 수 있다. MIMO 방식은 동일한 스트림을 다중 계층으로 전송하는 공간 다이버시티(spatial diversity)와 다중 스트림을 다중 계층으로 전송하는 공간 다중화(spatial multiplexing)가 있다. 공간 다중화에서 다중 스트림이 하나의 사용자에게 전송될 때 SU-MIMO(Single User-MIMO) 또는 SDMA(spatial division multiple access)라고 한다. 공간 다중화에서 다중 스트림이 다수의 사용자에게 전송될 때 MU-MIMO(Multi User-MIMO)라고 한다. 또한, 공간 다이버시티 및 공간 다중화는 각각 사용자로부터의 보고되는 귀환(feedback) 정보의 이용 여부에 따라 개루프(open-loop) 방식과 폐루프(closed-loop) 방식으로 나눌 수 있다.
수신기는 송신기로부터 전송된 데이터를 복원하기 위하여 채널을 추정할 필요가 있다. 채널 추정은 페이딩(fading)으로 인한 급격한 환경변화에 의하여 생기는 신호의 왜곡을 보상하여 전송 신호를 복원하는 과정을 말한다. 일반적으로 채널 추정을 위하여는 송신기와 수신기가 모두 알고 있는 참조 신호(reference signal)가 필요하다. 참조 신호는 채널 추정 또는 데이터 복조를 위해 사용되는 신호로, 파일럿(pilot)이라고도 한다
도 1은 본 발명의 일 실시예에 따른 다중 안테나를 갖는 송신기를 나타낸다.
도 1을 참조하면, 송신기(100)는 채널 인코더들(110-1, 110-2), 맵퍼들(120-1, 120-2) 및 계층 맵핑부(Layer Mapping Unit, 140), 프리코더(150) 및 신호 생성기(Signal Generator, 160-1, ..., 160-Nt)를 포함한다. Nt는 안테나 포트(port)의 수이다.
채널 인코더(110-1, 110-2)는 입력되는 정보 비트들을 정해진 코딩 방식에 따라 인코딩하여 코드워드(codword)를 생성한다. 제1 채널 인코더(110-1)는 제1 코드워드(CW1)를 생성하고, 제2 채널 인코더(110-2)는 제2 코드워드(CW2)를 생성한다.
맵퍼(120-1, 120-2)는 각 코드워드를 변조 방식(modulation scheme)에 따라 변조하여 복조값을 갖는 변조심벌들로 맵핑한다. 변조 방식에는 제한이 없으며, m-PSK(m-Phase Shift Keying) 또는 m-QAM(m-Quadrature Amplitude Modulation)일 수 있다. 예를 들어, m-PSK는 BPSK, QPSK 또는 8-PSK 일 수 있다. m-QAM은 16-QAM, 64-QAM 또는 256-QAM 일 수 있다. 제1 맵퍼(120-1)는 제1 코드워드(CW1)에 대한 변조 심벌들을 생성하고, 제2 맵퍼(120-2)는 제2 코드워드(CW2)에 대한 변조 심벌들을 생성한다.
여기서는, 2개의 코드워드를 처리하기 위해 송신기(100)가 2개의 채널 인코더들(110-1, 110-2)과 2개의 맵퍼들(120-1, 120-2)를 포함하고 있으나, 송신기(100)에 포함되는 채널 인코더들의 수와 맵퍼의 수는 제한이 아니다. 송신기(100)는 적어도 하나의 코드워드를 처리하기 위한 적어도 하나의 채널 인코더와 적어도 하나의 맵퍼를 포함할 수 있다.
계층 맵핑부(140)는 입력되는 코드워드들(CW1, CW2)들의 변조 심벌들을 계층의 갯수에 따라 각 계층으로 맵핑한다. 계층(layer)은 프리코더(150)로 입력되는 정보 경로(information path)라 할 수 있으며, 랭크(rank)의 값에 대응한다. 계층 맵핑부(140)는 계층의 갯수(즉, 랭크)를 결정한 후, 각 계층으로 각 코드워드의 변조 심벌들을 맵핑할 수 있다.
프리코더(150)는 각 계층으로 맵핑된 맵핑 심벌을 복수의 안테나 포트(170-1,..,170-Nt)에 따른 MIMO 방식으로 처리하여 안테나 특정 심벌(antenna specific symbol)을 출력한다.
신호 발생기(160-1,...,160-Nt)는 안테나 특정 심벌을 전송 신호로 변환하고, 전송 신호는 각 안테나 포트(190-1,...,190-Nt)을 통해 전송된다. 신호 발생기(160-1,...,160-Nt)는 입력 심벌을 OFDM 변조하여 OFDM 심벌을 출력하는 OFDM 변조를 수행할 수도 있고, SC-FDMA 변조 등 기타 당업자에게 잘 알려진 방식을 통해 전송 신호를 생성할 수 있다. 신호 발생기(160-1,...,160-Nt)는 OFDM 변조 시, 입력 심벌에 대해 IFFT(Inverse fast Fourier transform)을 수행할 수 있으며, IFFT를 수행한 후 CP(Cyclic prefix)를 더 삽입할 수 있다.
송신기(100)는 HARQ(Hyrid Automatic Repeat Request)을 지원할 수 있다. HARQ을 위한 재전송시 초기 전송과 동일한 계층 맵핑을 수행할 수도 있고, 재전송을 위한 계층 맵핑을 수행할 수도 있다. 또한, 송신기(100)는 채널 상황에 따라 랭크를 바꾸는 랭크 적응(rank adaptation)을 지원할 수 있다.
도 2는 다중 안테나를 가지는 수신기를 보여주는 블록도이다.
도 2를 참조하면, 수신기(200)는 OFDM 복조기(210), 채널 추정기(220), MIMO 후처리기(230), 디맵퍼(240) 및 채널 디코더(250)를 포함한다. 수신 안테나(290-1,…,290-Nr)로부터 수신된 신호는 OFDM 복조기(210)에 의해 FFT(fast Fourier transform)가 수행된다. 채널 추정기(220)는 참조신호를 이용하여 채널을 추정한다. MIMO 후처리기(230)는 MIMO 처리기(140)에 대응하는 후처리를 수행한다. 디맵퍼(240)는 입력 심벌을 부호화된 데이터로 디맵핑하고, 채널 디코더(250)는 부호화된 데이터를 디코딩하여 원래 데이터를 복원한다.
한편, 거대(Massive) MIMO 시스템은 5G와 같은 차세대 통신 시스템의 핵심 기술로 주목 받고 있으나, 안테나 수가 늘어남에 따라 빔폭이 감소하는 단점이 있다. 일렬로 배열된 등방성(isotropic) 안테나 수가 NT, 안테나간 간격이 d, 전파의 파장이 λ 일 때 반치 빔폭(half power beam width, HPBW)은 수학식 1과 같다. 반치 빔폭이란 최대 전력이 반 이상으로 감소하는 빔의 방사 각도를 의미한다.
수학식 1
수학식 1을 통해 안테나 수에 따라 HPBW가 선형적으로 감소하는 것을 알 수 있다. 만약 안테나 간 간격이 d= λ/2이면 수학식 1은 아래 수학식 2와 같이 정리될 수 있다.
수학식 2
Figure PCTKR2014006746-appb-M000002
만약, 기지국과 단말 간의 거리가 x(meter)이면, x 지점에서 빔이 수평으로 퍼지는 거리 y (meter)는 수학식 3과 같다.
수학식 3
Figure PCTKR2014006746-appb-M000003
기지국의 안테나 개수가 4개이고 단말과 기지국간의 거리 x가 20m와 500m인 경우, 수학식 3을 통해 연산하면 y는 각각 13.85m와 346m이다. 또한, 만약 기지국의 안테나 개수가 16개이고 단말과 기지국간의 거리 x가 20m와 500m일 때, y는 각각 2.7m와 67m이 된다.
y가 작을 수록 빔폭은 좁은 것을 의미하고, 빔폭이 좁을수록 빔의 방향 변화에 따른 오차 정도가 증가하기 때문에 안테나 수가 많아질수록 그리고 단말과 기지국간의 거리가 가까울수록 보다 정확한 빔포밍이 필요하다.
따라서, 안테나 수가 많아질수록 그리고 단말과 기지국간의 거리가 가까울수록 정확한 빔포밍을 가능하게 하는 프리 코딩 매트릭스(precoding matrix) 세트를 설계하는 것이 중요하다.
한편, 안테나 수의 증가는 지향점에서 수신 SNR의 증가를 가져오지만, 이는 인접 셀에 미치는 간섭 역시 증가시킬 수 있다. 간섭의 증가로 인하여 셀 경계 지역의 단말은 안테나 수 증가에 따른 SNR 이득을 느끼지 못할 수도 있다. 특정 단말이 수신하는 신호의 SINR는 수학식 4와 같다.
수학식 4
Figure PCTKR2014006746-appb-M000004
수학식 4에서 P는 수신 전력을, I는 간섭을 나타낸다. 안테나 수의 증가는 P와 함께 I의 증가도 유도하므로 단말에서 SINR의 향상은 이루어지지 않을 수 있다.
한편, 안테나 수가 증하면 빔폭이 감소하기 때문에 빔들이 서로 겹칠 확률은 감소하고, 이로 인하여 빔폭에 의하여 발생할 수 있는 간섭 확률은 줄어 든다. 안테나 수의 증가는 간섭 발생 확률을 감소시킴으로써 셀 경계 단말의 평균 SINR은 증가시킬 수 있지만, 빔이 서로 겹치는 나쁜 상황이 발생한다면 이 경우의 SINR까지 향상시키지 못한다.
이를 통해 안테나 수가 많은 거대 MIMO 시스템에서 빔의 충돌을 방지하여 간섭 발생 확률을 감소시키고, 충돌시 채널 추정을 위한 참조 신호의 배치가 필요하다는 것을 알 수 있다.
이하, 본 발명에서는 셀 안쪽에 위치한 단말의 채널 측정 및 예측의 정확도를 향상시키고, 셀 경계단말의 간섭 회피 확률을 증가시키기 위한 가이드 참조 신호(guidance beam) 기법을 제안한다.
도 3은 본 발명의 일 실시예에 따라 생성되는 메인 빔과 가이드 빔을 도시한 도면이다.
도시된 바와 같이, 기지국은 방향성이 다른 복수의 빔을 생성할 수 있다. 기지국은 원래 지향하고자 하는 방향으로 메인 빔(Main Beam)을 생성하고, 메인 빔과 상이한 방향성을 갖도록 가이드 빔(Guidance Beam)을 생성할 수 있다. 가이드 빔의 방향의 메인 빔의 상하 또는 좌우로 틀어지도록 가이드빔의 지향각이 틀어질 수 있다.
가이드 빔의 개수는 한 개 이상이 가능하고, 일 예로 2개의 가이드 빔이 생성될 수 있다. 두 개의 가이드 빔은 메인 빔에 대하여 상하로 동일한 각도만큼 틀어진 방향성을 가지거나 메인 빔에 대하여 좌우로 동일한 각도만큼 틀어진 방향성을 가질 수 있다.
설명의 편의를 위하여 기지국에서 생성되는 복수의 빔을 메인 빔과 가이드 빔으로 명명하였을 뿐, 메인 빔과 가이드 빔의 구분에 따라 빔의 성질이 구분되는 것은 아니다.
도 4는 본 발명의 일 실시예에 따라 가이드 참조 신호를 생성하는 방법을 설명하기 위한 제어 흐름도이다.
우선, 기지국은 특정 자원 블록(resource block, 이하 RB)을 참조 RB(Reference resource block, 이하, 참조 RB)로 선정하고, 참조 RB 내에 참조 신호(demodulation reference signal, 이하, DM-RS)를 배치하고 참조 신호의 송신 전력 크기를 설정한다(S410).
본 발명에 따른 자원 블록이란 서로 다른 빔에 대한 참조 신호의 전송에 사용되는 임의의 무선 자원 할당 단위를 의미할 수 있고, 자원 블록은 복수의 자원 요소(resource element, 이하 RE)로 구성될 수 있다. 본 발명의 참조 RB는 가이드 빔의 전송을 위하여 사용되는 자원 블록을 의미한다.
본 발명의 일 예에 따라 참조 RB 내에 배치되는 DM-RS는 2개 이상일 수 있다. 두 개 이상의 DM-RS는 서로 직교성(orthogonal) 또는 준직교성(quasi-orthogonal)을 가질 수 있다.
본 발명의 다른 실시예에 따르면, DM-RS는 1개 일 수도 있고, 이 경우 하나의 DM-RS는 시간 차를 두고 형성되며 서로 다른 지향점을 가질 수 있다.
참조 RB에서 직교 DM-RS(orthogonal DM-RS) 또는 준직교(quasi-orthogonal DM-RS)는 다양한 방식으로 배치될 수 있다. 동일한 DM-RS 시퀀스(sequence) 또는 서로 다른 DM-RS 시퀀스를 서로 다른 RE를 통해 송신할 수도 있고, 동일한 DM-RS 시퀀스 또는 서로 다른 DM-RS 시퀀스를 하나의 RE를 통해 송신할 수도 있다.
동일한 RE를 통해 복수의 DM-RS를 전송할 수 있는 것은 가이드 빔이 채널 예측 및 간섭 예측을 위하여 서로 다른 방향으로 지향되어 송신되기 때문이다.
송신 안테나의 개수를 NT, 수신 안테나의 개수를 NR이라고 할 때, 본 발명에 따른 송신 신호 벡터
Figure PCTKR2014006746-appb-I000001
는 하기 수학식 5과 같이 표현될 수 있다.
수학식 5
Figure PCTKR2014006746-appb-M000005
수학식 5에서 W는 프리 코딩 매트릭스로서,
Figure PCTKR2014006746-appb-I000002
이고, 심볼을 나타내는
Figure PCTKR2014006746-appb-I000003
, 랭크(Rank)를 나타낼 수 있는 L은
Figure PCTKR2014006746-appb-I000004
로 표현될 수 있다. Wi,j
Figure PCTKR2014006746-appb-I000005
의 i번째 행과, j번째 열의 구성 요소를 의미한다.
도 5는 본 발명의 일 실시예에 따른 참조 RB를 도시한 도면으로, 본 실시예에 따른 경우, 서로 다른 DM-RS는 서로 다른 RE에 배치된다.
하기 수학식 6은 도 5의 DM-RS에 대한 프리 코딩 매트릭스를 설명하고 있다.
수학식 6
Figure PCTKR2014006746-appb-M000006
도 5에 도시된 봐와 같이, 두 개의 다른 DM-RS는 동일한 시간축에 대하여 인접한 주파수 축에 위치하는 서로 다른 RE에 배치되어 있으며, 수학식 6에서 K는 독립적인 가이드 빔의 개수를 나타낸다.
도 5에서 "1"로 표시되어 있는 RE를 통해 송신되는 DM-RS(R1)의 지향점은 w=[w1,1,w2,1,...,wL,1]T로 표현되는 프리코딩 매트릭스에 의하여 결정될 수 있고, "2"로 표시되어 있는 RE를 통해 송신되는 DM-RS(R2)의 지향점은 w=[w1,2,w2,2,...,wL,2]T로 표현되는 프리코딩 매트릭스에 의하여 결정될 수 있다.
도 5에서 숫자 표시가 없는 RE에는 DM-RS 이외의 심볼이 할당되어 있다.
도 6은 본 발명의 다른 실시예에 따른 참조 RB를 도시한 도면으로, 본 실시예에 따른 경우, 복수의 DM-RS는 동일한 RE에 배치될 수 있다.
직교 DM-RS 시퀀스 또는 준직교 DM-RS 시퀀스를 동일한 RE를 이용하여 송신하는 방식은, 참조 RB를 사용하는 가이드 빔의 개수보다 실제로 동시에 보내고자 하는 심볼의 수가 적은 경우에 사용될 수 있다.
도 6과 같이 하나의 심볼을 이용하여 복수의 가이드 빔에 대한 DM-RS를 송신하는 경우, 프리코딩 매트릭스는 수학식 7과 같이 표현될 수 있다.
수학식 7
Figure PCTKR2014006746-appb-M000007
수학식 7와 같이, "1"로 표시되어 있는 RE에 대한 프리코딩 매트릭스에는 복수의 DM-RS(Rj)에 대한 요소가 포함되어 있다.
한편, 본 발명에 따르면, 셀 안쪽 단말의 채널 추정 및 예측의 정확도를 향상시키고, 셀 바깥쪽 단말의 간섭 감지의 정확도를 향상시킬 수 있도록 참조 RB를 설계할 수 있다. 참조 RB의 배치에는 다음과 같은 것이 고려될 수 있다.
(1) 무선 프레임(radio frame)의 t번째 슬롯(slot)의 자원 블록(이하, RB)이 Rt이고 특정 단말에 할당된 RB의 집합을 R 이라고 하면 Rt∈ R와 같은 관계가 성립된다. Rt 중 시간적으로 가장 앞선 RB들 중 하나 이상의 RB와 가장 뒷선 RB들 중 하나 이상의 RB에 참조 RB를 배치할 수 있다. 이는 참조 RB를 활용해 단말의 이동 방향에 따른 채널 변화의 파악을 정확하게 하기 위해서이다. 즉, 시간적으로 일정한 간격을 두고 참조 RB를 배치함으로써 사용자의 이동성을 정확하게 파악할 수 있다.
도 7은 본 발명의 일 실시예에 따라 참조 RB를 배치한 자원을 도시한 도면으로 상기 (1)이 적용된 자원에 대한 대한 일 예를 나타내고 있다.
도 7에 도시된 바와 같이, 하나의 단말(User Equipment)에 할당된 자원은 복수의 서브 밴드로 구성될 수 있고, 서브 밴드 단위로 스케줄링 될 수 있다. 하나의 서브 밴드는 복수의 참조 RB(RRB: Reference RB)로 구성될 수 있고, 하나의 참조 RB는 복수의 RE로 구성되어 있다. 도 7의 참조 RB 내 4개의 RE에 참조 신호(“1”)가 배치되어 있다.
UE에 할당되된 자원 중에서 시간축으로 가장 앞서는 RB와 가장 뒷서는 RB에참조 RB가 배치되어 있다.
(2) 기지국은 여러 개의 RB를 포함하는 서브 밴드(subband) 단위로 스케줄링할 수 있고, 이 경우, 서브 밴드 내 참조 RB의 위치를 물리적 셀 ID(Physical Cell ID)에 따라 주파수축으로 순환 이동(cyclic shifting) 시킬 수 있다. 즉 셀 ID에 따라 특정 단말에 할당되는 참조 RB의 위치가 달라질 수 있다.
단, 참조 RB는 시간축으로는 순환 이동하지 않을 수 있다. 주파수축으로 참조 RB를 이동시키는 것은 인접 셀과 참조 RB가 겹치는 것을 최소화하기 위해서이다. 또한, 시간축으로 이동시키지 하지 않는 것은 가장 앞선 RB와 가장 뒷선 RB에 참조 RB를 배치하기 위함이다.
도 8과 도 9는 본 발명의 다른 실시예에 따라 참조 RB를 배치한 자원을 도시한 도면으로, (1) 및 (2)가 적용된 자원에 대한 일 예를 나타내고 있다. 도 8 및 도 9는 서로 다른 셀 ID에 대한 서브 밴드 내 참조 RB의 배치를 나타내고 있다. 서브 밴드가 두 개의 슬롯으로 구성된다면, 도 8 및 도 9는 하나의 슬롯에 4개의 RB가 배치되는 것을 나타내고 있다.
도 8은 시간축으로 앞선 참조 RB의 이동을 설명하는 도면이고, 도 9는 시간축으로 뒷선 참조 RB의 이동을 설명하기 위한 도면이다. 도 8 및 도 9의 서브 밴드는 각각 서로 다른 셀 ID에 대한 자원으로 도시한 것으로, 참조 RB는 주파수축으로만 순환 이동한다.
(3) 본 발명의 또 다른 실시예에 따르면, 참조 RB를 빔 진행 방향의 이동성을 측정하기 위한 수직 참조 RB와 빔 진행 방향의 수평 방향의 이동성 측정을 위한 수평 참조 RB로 나누고, 수평 참조 RB 및 수직 참조 RB의 배치 개수를 서로 다르게 설정할 수 있다. 일반적으로 기지국은 높은 곳에 설치되므로 빔 진행 방향의 이동성을 측정하기 위한 수직 참조 RB의 개수를 수평 방향의 이동성을 위한 수평 참조 RB 보다 적게 배치할 수 있다.
예를 들어, 기지국이 높이 h (meter)에 설치되고, 기지국과 단말 간의 거리가 d (meter)이고, 단말이 수평으로 이동한 거리를 x (meter)라고 가정하자. 단말이 빔의 송신 방향으로 일치하게 x (meter)를 이동한 경우, 변경해야 할 빔의 다운 틸팅(down tilting)각도 θ는 수학식 8과 같다.
수학식 8
Figure PCTKR2014006746-appb-M000008
한편, 단말이 빔의 진행 방향과 수평으로 x 미터를 이동하는 경우 변경해야 할 빔의 조향(steering) 각도 θ 는 수학식 9과 같다.
수학식 9
Figure PCTKR2014006746-appb-M000009
기지국은 수학식 8과 수학식 9를 활용하여 셀의 직경, 기지국의 높이 및 지원해야 할 단말의 최대 이동 속도 등을 고려하여 수평 참조 RB과 수직 참조 RB의 개수를 조정할 수 있다. 단말은 자신의 위치 또는 자신의 이동 속도 등에 대한 정보를 기지국으로 제공할 수도 있다.
도 10은 본 발명의 또 다른 실시예에 따라 참조 RB를 배치한 자원을 도시한 도면으로, (1) 내지 (3)이 적용된 자원에 대한 일 예를 나타내고 있다. 도 10에서 수평 참조 RB는 HRRB, 수직 참조 RB는 VRRB로 표시되어 있다. HRRB는 빔 진행 방향과 직교 방향으로의 이동하는 단말의 이동성을 측정할 수 있고, VRRB는 빔 진행 방향으로 이동하는 단말의 이동성을 측정할 수 있다.
도 10의 참조 RB 역시 시간축으로 가장 앞선 RB와 가장 뒷선 RB에 HRRB 또는 VRRB가 배치된다.
(4) 본 발명의 또 다른 실시예에 따르면, 기지국은 여러 개의 RB가 묶인 서브 밴드 단위로 스케줄링을 수행하고, 하나 이상의 서브 밴드가 하나의 단말에 할당 되었을 때, 서브 밴드 당 하나 이상의 참조 RB를 배치할 수 있다. 스케줄링의 최소 단위에 참조 RB를 배치함으로써, 인접한 셀에 존재하는 단말로 스케줄링 된 서브 밴드에 하나 이상의 참조 RB가 존재할 수 있다.
도 11은 본 발명의 또 다른 실시예에 따라 참조 RB를 배치한 자원을 도시한 도면으로, (1), (2) 및 (4)가 적용된 자원에 대한 일 예를 나타내고 있다.
도 11에는 스케줄링 되는 하나의 서브 밴드마다 참조 RB가 배치되어 있고, 참조 RB는 셀 ID에 따라 서로 다른 위치에 배치될 수 있다.
(5) 한편, 본 발명의 또 다른 실시예에 따르면 참조 RB의 개수는 코딩율(coding rate) 따라 결정될 수 있다. 예를 들어, 정보 비트의 비트수가 k이고, 부호율이 R 이면 코드워드의 길이는 k/R이 된다. 이 경우 최대 k/R -k 개의 비트를 참조 RB에서 송신할 수 있다. k/R ?k는 패러티 비트의 비트수에 대응한다.
참조 RB는 하나의 레이어 빔포밍(1 Layer beamforming)이 최적인 경우에도, 멀티 레이어 빔포밍(multi-layer beamforming)을 이용하여 신호를 송신할 수 있다. 신호가 여러 개의 레이어 빔포밍으로 송신되는 경우 성능의 열화가 발생할 수 있으므로, 이를 최소화 하기 위하여 패러티 비트수에 대응하는 정보를 참조 RB를 통해 송신할 수 있다.
본 발명에 따르면 (1) 내지 (5)의 적어도 하나를 고려한 다양한 조합에 따라 참조 RB의 배치가 설계될 수 있다.
다시, 도 4로 돌아가서, 기지국은 메인 빔의 전송을 위하여 사용되는 메인 RB의 지향점에 대하여 참조 RB의 지향점이 틀어지도록 프리 코딩 매트릭스 설정할 수 있다(S420). 참조 RB의 지향점은 상술한 바와 같이 메인 RS에 대하여 상하로 실질적으로 동일한 각도만큼 틀어진 방향성을 가지거나 메인 RS에 대하여 좌우로 실질적으로 동일한 각도만큼 틀어진 방향성을 가질 수 있다.
기지국은 설정된 프리 코딩 매트릭스에 따라 공간 다중화(Spatial multiplexing) 또는 공간 다이버시티 중 어느 하나로 결정된 송신 방식에 따라 빔포밍을 수행한다(S430). 즉, 기지국은 복수의 레이어드 된 빔(Multi layer beamforming)으로 가이드 빔을 생성할 수도 있고, 하나의 레이어 빔(1 Layered beamforming)으로 가이드 빔을 생성할 수도 있다. 다만, 한 레이어 빔 포밍이 수행되는 경우에도 직교 DM-RS는 N개로 유지될 수 있다.
채널 예측 및 간섭 예측을 위하여 참조 RB에 대한 공간 다중화 빔포밍이 수행되는 경우, 단말의 수신 신호의 크기가 나빠 전송률 향상이 필요하면 다중화되는 레이어의 수가 감소될 수도 있다.
또한, 기지국은 프리 코딩 매트릭스를 이용하여 DM-RS의 개수로 설정된 N개 보다 같거나 작은 수의 빔을 동시에 송신하는 공간 다중화 빔포밍(multi-layered beamforming)을 수행할 수 있다. 즉, 기지국은 채널 상황에 따라 N 보다 작은 수의 심볼을 동시에 송신함으로써 N 개의 직교 DM-RS를 서로 다른 방향으로 빔포밍할 수 있다.
이를 위해서 참조 RB 내 직교 DM-RS 개수뿐만 아니라, 동시에 다중화 되는되는 심볼의 개수에 대한 정보도 단말에게 제공되어야 한다.
참조 RB 내 직교 DM-RS 개수와 동시에 다중화 되는되는 심볼의 개수는 LTE의 PDCCH(Physical Downlink Control Channel)나 ePDCCH(extended Physical Downlink Control Channel)를 통해 전송될 수 있다. 만약, 이러한 정보가 ePDCCH을 통해 송신되는 경우 참조 RB가 아닌 다른 RB의 ePDCCH에를 통해 신호가 송신된다.
만약, N이 1보다 크고 참조 RB가 단일 레이어 빔으로 송신되는 경우, 도 6과 같이 직교 또는 준직교 DM-RS 시퀀스를 동일한 RE에서 송신할 수 있다. 이러한 자원 배치를 통해 RE의 자원 낭비를 줄일 수 있다.
한편, 프리 코딩된 참조 RB를 수신한 단말은 참조 RB로부터 획득한 채널 정보를 바탕으로 피드백 신호를 구성할 수 있다.
단말이 기지국으로 여러 가지 정보를 제공하면, 기지국은 정보를 이용하여 파워 레벨, 송신 포맷 등 여러 시스템 파라미터를 조절함으로써 성능을 극대화시킬 수 있다. 채널 상태가 좋은 경우에는 데이터 송신율을 높이고 채널의 열화가 있는 경우에는 송신율을 낮춤으로써 효율적인 송신을 지원하고, 결과적으로 평균 송신율을 증가시킬 수 있다.
이러한 측면에서, 단말은 참조 RB의 다중화된 빔(layered beam) 중 가장 상태가 양호한 빔의 인덱스를 기지국으로 송신할 수 있다. 즉, 현재 송신되고 있는 빔의 방향을 어느 방향으로 조정하는 것이 효과적인지 알려주는 정보를 기지국에 제공할 수 있다.
예를 들어, 단말은 서브 밴드 내 참조 RB들로부터 얻은 프리 코딩 매트릭스인덱스(precoding matrix index, 이하 PMI)와 가장 방향성이 좋은 빔의 인덱스를 피드백 신호로 생성할 수 있다.
도 12는 본 실시예에 따른 피드백 신호를 도시한 도면이다. 만약, 다중화된 빔(layered beam)의 개수가 K이면, 빔 인덱스를 나타내는 비트수는 가 된다. 단말은 빔 인덱스를 나타내는 X 비트 정보(Beam indicator)와 PMI를 나타내는 Y비트 정보를 피드백 정보로 생성할 수 있다.
도 13은 본 발명의 다른 실시예에 따른 피드백 신호를 도시한 도면이다. 도시된 바와 같이 단말은 PMI를 포함하지 않고 빔 인덱스를 나타내는 정보만으로 피드백 정보를 생성할 수 있다. 단말은 PMI를 전송해야 하는 주기가 아닌 경우 빔 인덱스 만을 기지국으로 전송할 수 있다.
도 14는 본 발명에 따른 가이드 빔에 의한 간섭 발생 예측을 설명하기 위한 도면이다.
도 14와 같이 두 개의 기재국에서 서로 방향성이 다른 복수의 빔이 생성된다면, 메인 빔끼리 충돌하기 전에 가이드 빔과 메인 빔이 충돌할 수 있다.
도 12 및 13과 같은 피드백 정보가 단말로부터 기지국으로 송신되면, 기지국은 스케줄링을 통해 셀에 할당하는 자원의 위치를 변경할 수 있다. 즉, 기지국은 빔 인덱스 정보를 이용하여 가이드 빔의 지향점을 조정할 수 있고, 이를 통해 셀 간 간섭 회피 효과를 기대할 수 있다. 방향성이 서로 다른 복수의 빔을 생성하고 생성된 빔의 지향점을 조절함으로써, 거대 MIMO 시스템에서 셀 간 간섭을 최소화 하고, 빔 컨트롤의 정확도를 높일 수 있다. 수신단 역시 특정 참조 RB의 SINR이 다른 다른 참조 RB의 SINR보다 많이 낮은 경우 간섭이 발생한 것으로 예측할 수 있다.
도 15는 본 발명의 일 실시예에 따른 무선 통신 시스템의 블록도이다.
기지국(800)은 프로세서(810; processor), 메모리(820; memory) 및 RF부(830; radio frequency unit)을 포함한다.
프로세서(810)는 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(810)에 의해 구현될 수 있다. 메모리(820)는 프로세서(810)와 연결되어, 프로세서(810)를 구동하기 위한 다양한 정보를 저장한다. RF부(830)는 프로세서(810)와 연결되어, 무선 신호를 전송 및/또는 수신한다.
단말(900)은 프로세서(910), 메모리(920) 및 RF부(930)을 포함한다.
RF부(930)는 방향성이 다른 복수의 참조 신호를 수신하고, 프로세서(910)에서 생성된 피드백 신호를 기지국(800)으로 전송한다. 수신되는 참조 신호는 제1 방향성을 갖는 메인 참조 신호와 제1 방향성의 상하 또는 좌우로 지향되는 제2 방향성을 갖는 가이드 참조 신호를 포함할 수 있다.
프로세서(910)는 제안된 기능, 과정 및/또는 방법을 구현하며, 즉 복수의 참조 신호 중 어느 하나를 지시하는 빔 인덱스를 포함하는 피드백 신호를 생성한다.
피드백 신호는 빔 인덱스가 지시하는 참조 신호에 대응하는 프리 코딩 인덱스를 더 포함할 수 있다.
또한, 프로세서(910)는 생성된 피드백 신호가 기지국(800)으로 전송되도록 RF부(930)를 제어한다.
무선 인터페이스 프로토콜의 계층들은 프로세서(910)에 의해 구현될 수 있다. 메모리(920)는 프로세서(910)와 연결되어, 프로세서(910)를 구동하기 위한 다양한 정보를 저장한다. RF부(930)는 프로세서(910)와 연결되어, 무선 신호를 전송 및/또는 수신한다.
도 16은 본 발명의 일 실시예에 따른 피드백 신호 전송에 대한 제어 흐름도이다.
우선, 단말은 방향성이 다른 복수의 참조 신호를 수신한다(S1610).
참조 신호는 셀 ID에 따라서 참조 신호가 전송되는 자원 할당 단위의 상이한 위치에 배치될 수 있으며, 단말에 할당된 복수의 자원 할당 단위 중 시간축으로 소정 간격으로 이격된 자원 할당 단위에 배치될 수 있다.
단말은 복수의 참조 신호 중 어느 하나를 지시하는 빔 인덱스를 포함하는 피드백 신호를 송신단, 즉 빔을 제공하는 기지국으로 전송할 수 있다(S1620).
이와 같이, 본 발명에 따르면 다중 안테나를 이용한 빔포밍 시 정밀한 채널 예측 및 간섭 제어가 가능하다. 이를 위하여 복수의 빔을 수신한 단말은 빔을 지시하는 빔 인덱스 정보를 피드백 정보로 생성할 수 있다.
프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.
상술한 예시적인 시스템에서, 방법들은 일련의 단계 또는 블록으로서 순서도를 기초로 설명되고 있으나, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당해 기술 분야에서 통상의 지식을 가진 자라면 순서도에 나타난 단계들이 배타적이지 않고, 다른 단계가 포함되거나, 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.

Claims (13)

  1. 피드백 신호를 전송하는 방법에 있어서,
    방향성이 다른 복수의 참조 신호를 수신하는 단계와;
    상기 복수의 참조 신호 중 어느 하나를 지시하는 빔 인덱스를 포함하는 피드백 신호를 으로 전송하는 단계를 포함하는 것을 특징으로 하는 방법.
  2. 제1항에 있어서,
    상기 피드백 신호는 상기 빔 인덱스가 지시하는 참조 신호에 대응하는 프리 코딩 인덱스(pre-coding matrix index)를 더 포함하는 것을 특징으로 하는 방법.
  3. 제1항에 있어서,
    상기 참조 신호는 제1 방향성을 갖는 메인 참조 신호와 상기 제1 방향성의 상하 또는 좌우로 지향되는 제2 방향성을 갖는 가이드 참조 신호를 포함하는 것을 특징으로 하는 방법.
  4. 제1항에 있어서,
    상기 참조 신호는 셀 ID에 따라서 상기 참조 신호가 전송되는 자원 할당 단위의 상이한 위치에 배치되는 것을 특징으로 하는 방법.
  5. 제1항에 있어서,
    상기 참조 신호는 소정 단말에 할당된 복수의 자원 할당 단위 중 시간축으로 소정 간격으로 이격된 자원 할당 단위에 배치되는 것을 특징으로 하는 방법.
  6. 무선 통신 시스템에서 피드백 신호를 전송하는 장치에 있어서,
    무선 신호를 송신 및 수신하는 RF(radio frequency)부와;
    상기 RF부와 연결되는 프로세서를 포함하고,
    상기 RF부는 방향성이 다른 복수의 참조 신호를 수신하고,
    상기 프로세서는 상기 복수의 참조 신호 중 어느 하나를 지시하는 빔 인덱스를 포함하는 피드백 신호를 생성하고,
    상기 피드백 신호를 송신단으로 전송하도록 상기 RF부에게 지시하는 것을 특징으로 하는 장치.
  7. 제6항에 있어서,
    상기 피드백 신호는 상기 빔 인덱스가 지시하는 참조 신호에 대응하는 프리 코딩 인덱스(pre-coding matrix index)를 더 포함하는 것을 특징으로 하는 장치.
  8. 제6항에 있어서,
    상기 참조 신호는 셀 ID에 따라서 상기 참조 신호가 전송되는 자원 할당 단위의 상이한 위치에 배치되는 것을 특징으로 하는 장치.
  9. 제6항에 있어서,
    상기 참조 신호는 소정 단말에 할당된 복수의 자원 할당 단위 중 시간축으로 소정 간격으로 이격된 자원 할당 단위에 배치되는 것을 특징으로 하는 장치.
  10. 참조 신호를 전송하는 방법에 있어서,
    방향성이 다른 복수의 참조 신호를 생성하는 단계와;
    상기 복수의 참조 신호 중 어느 하나를 지시하는 빔 인덱스에 대한 피드백 신호를 수신하는 단계와;
    상기 수신된 빔 인덱스에 따라 상기 복수의 참조 신호의 방향을 조절하는 단계를 포함하는 것을 특징으로 하는 방법.
  11. 제10항에 있어서,
    상기 참조 신호를 생성하는 단계는 제1 방향성을 갖는 메인 참조 신호와 상기 제1 방향성의 상하 또는 좌우로 지향되는 제2 방향성을 갖는 가이드 참조 신호를 생성하는 것을 특징으로 하는 방법.
  12. 제10항에 있어서,
    상기 참조 신호를 생성하는 단계는 소정 단말에 할당되는 소정의 자원 할당 단위에 복수의 참조 신호 중 적어도 하나를 배치하는 단계를 포함하고,
    상기 참조 신호는 셀 ID에 따라서 상기 자원 할당 단위의 상이한 위치에 배치되는 것을 특징으로 하는 방법.
  13. 제10항에 있어서,
    상기 참조 신호를 생성하는 단계는 소정 단말에 할당된 복수의 자원 할당 단위 중 시간축으로 소정 간격으로 이격된 자원 할당 단위에 참조 신호를 배치하는 것을 특징으로 하는 방법.
PCT/KR2014/006746 2014-07-24 2014-07-24 피드백 신호를 전송하는 방법 및 장치 WO2016013698A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/KR2014/006746 WO2016013698A1 (ko) 2014-07-24 2014-07-24 피드백 신호를 전송하는 방법 및 장치
CN201480080723.5A CN106537802B (zh) 2014-07-24 2014-07-24 用于发送反馈信号的方法和设备
EP14898324.0A EP3174216B1 (en) 2014-07-24 2014-07-24 Method and apparatus for transmitting feedback signals
US15/325,069 US9923615B2 (en) 2014-07-24 2014-07-24 Method and apparatus for transmitting feedback signals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2014/006746 WO2016013698A1 (ko) 2014-07-24 2014-07-24 피드백 신호를 전송하는 방법 및 장치

Publications (1)

Publication Number Publication Date
WO2016013698A1 true WO2016013698A1 (ko) 2016-01-28

Family

ID=55163218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/006746 WO2016013698A1 (ko) 2014-07-24 2014-07-24 피드백 신호를 전송하는 방법 및 장치

Country Status (4)

Country Link
US (1) US9923615B2 (ko)
EP (1) EP3174216B1 (ko)
CN (1) CN106537802B (ko)
WO (1) WO2016013698A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017162287A1 (en) * 2016-03-24 2017-09-28 Telefonaktiebolaget Lm Ericsson (Publ) Configuration and reporting of mobility measurements
US10165456B2 (en) 2014-12-17 2018-12-25 Telefonaktiebolaget Lm Ericsson (Publ) Methods for transmitting mobility signals and related network nodes and wireless devices
CN109792642A (zh) * 2016-09-30 2019-05-21 瑞典爱立信有限公司 移动性参考信号的传输的控制
US11374728B2 (en) 2016-03-31 2022-06-28 Telefonaktiebolaget Lm Ericsson (Publ) Application of timing advance command in wireless communication device in enhanced coverage mode
US11864166B2 (en) 2016-03-31 2024-01-02 Telefonaktiebolaget Lm Ericsson (Publ) Uplink transmission timing control

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105703817A (zh) * 2016-04-07 2016-06-22 成都华日通讯技术有限公司 基于空域陷波的无线电监测站与移动通信基站共址系统
US10644732B2 (en) 2017-09-05 2020-05-05 Qualcomm Incorporated Systems and methods for signaling incorporating interference avoidance or beam nulling constraints for millimeter wave communication systems
AU2017444387A1 (en) * 2017-12-27 2020-08-13 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Information feedback method and device, computer storage medium
CN110061768B (zh) * 2018-01-19 2021-01-29 成都华为技术有限公司 一种波束配置方法和装置
CN110474740B (zh) * 2018-05-11 2022-05-03 中兴通讯股份有限公司 信号传输方法、装置、设备及存储介质
US10790885B1 (en) * 2019-02-22 2020-09-29 Sprint Spectrum L.P. Control of MIMO configuration based on retransmission rate
JP2022025914A (ja) * 2020-07-30 2022-02-10 株式会社ジャパンディスプレイ フェーズドアレイアンテナの駆動方法及び反射板の駆動方法
CN114189884B (zh) * 2020-09-15 2024-04-12 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
EP4209035A4 (en) * 2020-12-24 2024-03-20 Zte Corp SYSTEMS AND METHODS FOR REFERENCE SIGNAL INFORMATION NOTIFICATION

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100303034A1 (en) * 2009-05-27 2010-12-02 Runhua Chen Dual-Layer Beam Forming in Cellular Networks
US20110065448A1 (en) * 2008-05-09 2011-03-17 Nortel Networks Limited System and Method for Supporting Antenna Beamforming in a Cellular Network
WO2013100565A1 (en) * 2011-12-27 2013-07-04 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving csi-rs in massive mimo system operating in fdd mode
US20130343303A1 (en) * 2012-06-22 2013-12-26 Samsung Electronics Co., Ltd. Communication method and apparatus using beamforming in a wireless communication system
US20140044044A1 (en) * 2012-08-13 2014-02-13 Samsung Electronics Co., Ltd. Method and apparatus to support channel refinement and multi-stream transmission in millimeter wave systems

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3949955A (en) * 1963-04-04 1976-04-13 The United States Of America As Represented By The Secretary Of The Navy Monopulse receiver circuit for an anti-radar missile tracking system
FI98172C (fi) * 1995-05-24 1997-04-25 Nokia Telecommunications Oy Menetelmä pilottisignaalin lähettämiseksi ja solukkoradiojärjestelmä
JP3538184B2 (ja) * 2002-02-14 2004-06-14 株式会社エヌ・ティ・ティ・ドコモ Cdma通信システムにおける基地局のアンテナ装置およびアンテナ装置の使用方法
KR100996023B1 (ko) * 2005-10-31 2010-11-22 삼성전자주식회사 다중 안테나 통신 시스템에서 데이터 송수신 장치 및 방법
WO2008103317A2 (en) * 2007-02-16 2008-08-28 Interdigital Technology Corporation Precoded pilot transmission for multi-user and single user mimo communications
US8818259B2 (en) * 2008-09-05 2014-08-26 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement in a radio base station working in a pre-coding mode for repeater selection
CN101772086B (zh) * 2009-01-04 2014-02-05 夏普株式会社 实现中继节点透明传输与非透明传输共存的方法
SG177399A1 (en) * 2009-07-06 2012-02-28 Linde Ag Solution based precursors
CN102006592A (zh) * 2009-08-31 2011-04-06 中兴通讯股份有限公司 一种引导智能天线的方法和系统
US9253784B2 (en) * 2010-01-11 2016-02-02 Samsung Electronics Co., Ltd. Method and system for enabling resource block bundling in LTE-A systems
KR20110122046A (ko) * 2010-05-03 2011-11-09 주식회사 팬택 무선통신 시스템에서 하향링크 제어정보의 전송장치 및 방법
US8369280B2 (en) * 2011-07-01 2013-02-05 Ofinno Techologies, LLC Control channels in multicarrier OFDM transmission
US9854446B2 (en) * 2011-07-07 2017-12-26 Lg Electronics Inc. Method and apparatus for transmitting a signal in a wireless communication system
WO2013024852A1 (ja) * 2011-08-15 2013-02-21 株式会社エヌ・ティ・ティ・ドコモ 無線基地局、ユーザ端末、無線通信システム及び無線通信方法
KR101847400B1 (ko) * 2011-09-01 2018-04-10 삼성전자주식회사 무선 통신 시스템에서 최적의 빔을 선택하기 위한 장치 및 방법
US9326176B2 (en) * 2012-06-11 2016-04-26 Samsung Electronics Co., Ltd. Channel state information transmission/reception method and apparatus for use in wireless communication system
CN104521155B (zh) * 2012-07-31 2018-11-30 三星电子株式会社 在无线通信系统中使用波束成形的通信方法和设备
JP6337096B2 (ja) * 2013-05-01 2018-06-06 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて分割ビームフォーミングのために端末がフィードバック情報を送信する方法及びそのための装置
CN104253674B (zh) * 2013-06-27 2017-12-29 华为技术有限公司 反馈csi的方法、调度ue的方法、ue及基站
JP6393764B2 (ja) * 2014-02-13 2018-09-19 エルジー エレクトロニクス インコーポレイティド 機械タイプ通信を支援する無線接続システムにおけるサウンディング参照信号送信方法及び装置
US10080146B2 (en) * 2014-03-12 2018-09-18 Telefonaktiebolaget Lm Ericsson (Publ) Antenna beam control
JP6121931B2 (ja) * 2014-03-20 2017-04-26 株式会社Nttドコモ 移動通信システム、基地局、およびユーザ装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110065448A1 (en) * 2008-05-09 2011-03-17 Nortel Networks Limited System and Method for Supporting Antenna Beamforming in a Cellular Network
US20100303034A1 (en) * 2009-05-27 2010-12-02 Runhua Chen Dual-Layer Beam Forming in Cellular Networks
WO2013100565A1 (en) * 2011-12-27 2013-07-04 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving csi-rs in massive mimo system operating in fdd mode
US20130343303A1 (en) * 2012-06-22 2013-12-26 Samsung Electronics Co., Ltd. Communication method and apparatus using beamforming in a wireless communication system
US20140044044A1 (en) * 2012-08-13 2014-02-13 Samsung Electronics Co., Ltd. Method and apparatus to support channel refinement and multi-stream transmission in millimeter wave systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3174216A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10165456B2 (en) 2014-12-17 2018-12-25 Telefonaktiebolaget Lm Ericsson (Publ) Methods for transmitting mobility signals and related network nodes and wireless devices
WO2017162287A1 (en) * 2016-03-24 2017-09-28 Telefonaktiebolaget Lm Ericsson (Publ) Configuration and reporting of mobility measurements
KR20180121560A (ko) * 2016-03-24 2018-11-07 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) 이동성 측정들의 구성 및 보고
CN108886414A (zh) * 2016-03-24 2018-11-23 瑞典爱立信有限公司 移动性测量的配置和报告
US10284315B2 (en) 2016-03-24 2019-05-07 Telefonaktiebolaget Lm Ericsson (Publ) Configuration and reporting of mobility measurements
KR102074834B1 (ko) 2016-03-24 2020-02-07 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) 이동성 측정들의 구성 및 보고
CN108886414B (zh) * 2016-03-24 2021-05-14 瑞典爱立信有限公司 配置和报告移动性测量的方法、设备和存储介质
US11374728B2 (en) 2016-03-31 2022-06-28 Telefonaktiebolaget Lm Ericsson (Publ) Application of timing advance command in wireless communication device in enhanced coverage mode
US11864166B2 (en) 2016-03-31 2024-01-02 Telefonaktiebolaget Lm Ericsson (Publ) Uplink transmission timing control
CN109792642A (zh) * 2016-09-30 2019-05-21 瑞典爱立信有限公司 移动性参考信号的传输的控制
CN109792642B (zh) * 2016-09-30 2021-07-09 瑞典爱立信有限公司 用于移动性参考信号的传输的控制的方法和装置
US11902842B2 (en) 2016-09-30 2024-02-13 Telefonaktiebolaget Lm Ericsson (Publ) Control of transmission of mobility reference signals

Also Published As

Publication number Publication date
EP3174216A4 (en) 2018-03-21
US20170163318A1 (en) 2017-06-08
CN106537802B (zh) 2020-09-08
EP3174216B1 (en) 2019-12-25
US9923615B2 (en) 2018-03-20
CN106537802A (zh) 2017-03-22
EP3174216A1 (en) 2017-05-31

Similar Documents

Publication Publication Date Title
WO2016013698A1 (ko) 피드백 신호를 전송하는 방법 및 장치
WO2016126063A1 (ko) 무선 통신 시스템에서 채널 상태 보고 방법 및 이를 위한 장치
WO2016089122A1 (ko) 무선 통신 시스템에서 하이브리드 빔포밍을 기반으로 제어 채널을 전송하는 방법 및 장치
WO2016163819A1 (ko) 채널 상태 보고를 위한 방법 및 이를 위한 장치
WO2010087644A2 (ko) 무선 통신 시스템에서 참조신호 전송 장치 및 방법
WO2018128340A1 (ko) 무선 통신 시스템에서 채널 상태 보고를 위한 방법 및 이를 위한 장치
WO2016099079A1 (ko) 무선 통신 시스템에서 참조 신호 수신 방법 및 이를 위한 장치
WO2016072712A2 (ko) 채널과 관련된 피드백을 위한 방법 및 이를 위한 장치
WO2011052911A2 (ko) 하향링크 기준신호 송수신 방법 및, 이를 이용한 기지국 및 사용자기기
WO2010087681A2 (en) System and method for multi-user and multi-cell mimo transmissions
WO2010151092A2 (ko) 상향링크 mimo 전송에서 참조신호를 전송하는 방법 및 장치
WO2012005476A2 (ko) 송신장치 및 그 통신방법, 수신장치, 그 통신방법
WO2013015636A2 (en) Apparatus and method for beamforming in wireless communication system
WO2017078338A1 (ko) 무선 통신 시스템에서 채널 상태 보고 방법 및 이를 위한 장치
WO2010024589A2 (en) Method and apparatus for beamforming in ofdm wireless systems
WO2017043834A1 (ko) 채널 상태 보고 방법 및 이를 위한 장치
WO2016018101A1 (ko) 채널 추정을 수행하기 위한 방법 및 이를 위한 장치
WO2016186378A1 (ko) 다중 안테나 무선 통신 시스템에서의 참조신호 정보 피드백 방법 및 이를 위한 장치
WO2012002747A2 (en) Systems and methods for 8-tx codebook and feedback signaling in 3gpp wireless networks
WO2016017982A1 (ko) 채널 추정을 수행하기 위한 방법 및 이를 위한 장치
WO2010011078A2 (en) Method of transmitting data in multiple antenna system
WO2011031079A2 (ko) MU-MIMO 방식을 지원하는 무선 통신 시스템에서 CoMP 동작에서의 참조신호 송수신 방법 및 이를 이용하는 단말 장치와 기지국 장치
WO2016048089A1 (ko) 채널 추정을 수행하기 위한 방법 및 이를 위한 장치
WO2017171306A1 (ko) 무선 통신 시스템에서 채널 상태 보고를 위한 방법 및 이를 위한 장치
WO2016068553A2 (ko) 채널 상태 보고를 위한 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14898324

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15325069

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014898324

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014898324

Country of ref document: EP