WO2016013521A1 - Polarizer and optical alignment device - Google Patents

Polarizer and optical alignment device Download PDF

Info

Publication number
WO2016013521A1
WO2016013521A1 PCT/JP2015/070582 JP2015070582W WO2016013521A1 WO 2016013521 A1 WO2016013521 A1 WO 2016013521A1 JP 2015070582 W JP2015070582 W JP 2015070582W WO 2016013521 A1 WO2016013521 A1 WO 2016013521A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizer
light
photo
wavelength
material layer
Prior art date
Application number
PCT/JP2015/070582
Other languages
French (fr)
Japanese (ja)
Inventor
登山 伸人
和雄 笹本
泰央 大川
友一 稲月
博文 齊藤
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to JP2016535919A priority Critical patent/JP6614147B2/en
Publication of WO2016013521A1 publication Critical patent/WO2016013521A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to a polarizer for polarizing light from a light source and an optical alignment apparatus.
  • a liquid crystal display device generally has a structure in which a counter substrate on which driving elements are formed and a color filter are arranged to face each other and the periphery is sealed, and a gap is filled with a liquid crystal material.
  • the liquid crystal material has refractive index anisotropy, and the pixel is switched on and off from the difference between the state where the liquid crystal material is aligned along the direction of the voltage applied to the liquid crystal material and the state where no voltage is applied. Can be displayed.
  • the substrate sandwiching the liquid crystal material is provided with an alignment film for aligning the liquid crystal material.
  • alignment films are also used as materials for retardation films used in liquid crystal display devices and retardation films for 3D display.
  • the alignment film for example, a film using a polymer material typified by polyimide is known, and the alignment film has an alignment regulating force by rubbing the polymer material with a cloth or the like. Become.
  • the alignment film to which the alignment regulating force is applied by such rubbing treatment has a problem that the cloth or the like remains as a foreign substance.
  • the alignment regulating force can be applied without performing the rubbing treatment with the cloth as described above.
  • it has attracted attention because there is no defect that remains as a foreign object.
  • a method of exposing through a polarizer is generally used.
  • the polarizer one having a plurality of fine wires arranged in parallel is used, and as a material constituting the fine wires, aluminum or titanium oxide is used (for example, Patent Document 1).
  • the extinction ratio (P-wave transmittance / S-wave transmittance) in the case of light having a short wavelength such as the ultraviolet region, that is, the above-described thin wire To the transmittance of the polarization component (S wave) parallel to the above (the S wave component in the outgoing light / the S wave component in the incident light, hereinafter sometimes referred to simply as the S wave transmittance).
  • the ratio of the transmittance of the polarized light component (P wave) perpendicular to the light beam (the P wave component in the outgoing light / the P wave component in the incident light, hereinafter simply referred to as P wave transmittance) is a specific wavelength.
  • a material using aluminum as a material constituting a thin wire has insufficient polarization characteristics such as an extinction ratio with respect to ultraviolet light having a wavelength of 300 nm or less, particularly ultraviolet light having a wavelength of 240 nm to 260 nm.
  • a material using titanium oxide as a material constituting a thin wire has insufficient polarization characteristics such as an extinction ratio with respect to ultraviolet light having a wavelength of 300 nm or more, particularly ultraviolet light having a wavelength of 355 nm to 375 nm. It was.
  • the present inventor made the fine wire of the polarizer from a material containing molybdenum silicide, and set the film thickness, pitch, and line width of the fine wire within a predetermined range, so that the wavelength is 240 nm or more and 400 nm. It has been found that an excellent extinction ratio and a high P-wave transmittance can be achieved for the following ultraviolet light, particularly for ultraviolet light having a wavelength of 240 nm to 260 nm and ultraviolet light having a wavelength of 355 nm to 375 nm. Yes.
  • the light from the light source is divergent light
  • the light from the light source is incident on the polarizer at various angles.
  • the light incident on the polarizer includes light having a large incident angle.
  • the alignment regulating force is applied to the photo-alignment film in a state where the directions of the polarization axes are varied, there is a possibility that a portion where a desired alignment characteristic cannot be obtained is generated in the photo-alignment film.
  • the present invention has been made in view of the above circumstances, and is a case where the incident angle of light incident on a polarizer is large while having a high extinction ratio with respect to short-wavelength light such as the ultraviolet region.
  • it is a main object to provide a polarizer capable of suppressing the rotation of the polarization axis of polarized light.
  • the present invention is a polarizer in which a plurality of fine wires are arranged in parallel on a transparent substrate, the fine wires have the effect of improving the extinction ratio of polarized light emitted from the polarizer, and from the polarizer
  • the polarizer is characterized in that the coefficient k satisfies 2.3 ⁇ n ⁇ 3.1 and satisfies the range of 1.5 ⁇ k ⁇ 2.3.
  • the present invention is the polarizer characterized in that the polarizing material layer includes molybdenum silicide or any of oxides, nitrides, and oxynitrides thereof.
  • the present invention is a photo-alignment apparatus that polarizes ultraviolet light and irradiates the photo-alignment film, comprising the above-described polarizer, and irradiates the photo-alignment film with light polarized by the polarizer.
  • This is a photo-alignment device.
  • the polarization axis of the polarized light is A polarizer capable of suppressing rotation can be provided.
  • the photo-alignment apparatus provided with the polarizer according to the present invention, even if the incident angle of light incident on the polarizer increases, the polarization axis of the polarized light is suppressed from rotating, It is possible to efficiently apply an alignment regulating force to a photo-alignment film having sensitivity to short-wavelength light such as a region.
  • Example 6 is a graph showing a simulation result of Example 1.
  • 10 is a graph showing a simulation result of Example 2.
  • 10 is a graph showing a simulation result of Example 3.
  • 10 is a graph showing a simulation result of Example 4.
  • 10 is a graph showing a simulation result of Example 5. It is a graph which shows the relationship of the extinction ratio with respect to the wavelength of the ultraviolet light of Example 6.
  • 10 is a graph showing the relationship of the extinction ratio with respect to the transmittance of Example 6.
  • FIG. 1A and 1B are explanatory views showing an example of a polarizer according to the present invention, in which FIG. 1A is a schematic plan view, and FIG. 1B is a cross-sectional view taken along line AA in FIG. Moreover, FIG. 2 is explanatory drawing which shows the other example of the polarizer based on this invention.
  • the polarizer 10 has a configuration in which a plurality of thin wires 2 are arranged in parallel on a transparent substrate 1.
  • the thin line 2 is a single-layer polarization having both an effect of improving the extinction ratio of the polarized light emitted from the polarizer 10 and an effect of suppressing the rotation of the polarization axis of the polarized light emitted from the polarizer 10. It has a material layer 3.
  • line 2 has shown the form comprised only from the single-layer polarizing material layer 3, However, In this invention, it illustrates in FIG. 2 (a), for example.
  • line 2 may have the form which has the oxide film 4 on the upper surface and side surface of the single-layer polarizing material layer 3.
  • FIG. 4 By having the oxide film 4, it can be set as the polarizer excellent in durability with respect to long-time ultraviolet irradiation and washing
  • the form which has this may be sufficient.
  • the transparent substrate 1 may be dug by the etching gas used. Therefore, as described above, when the thin wire 2 has the pedestal portion 5, the dry etching process can be made easier.
  • the thin wire 2 has the intermediate layer 6 on the polarizing material layer 3 and below the oxide film 4. There may be.
  • a hard mask layer may be provided on the polarizing material layer 3 in some cases. If the thin wire 2 has the hard mask layer as the intermediate layer 6, the step of removing the hard mask layer can be omitted, and the effects of shortening the manufacturing process and reducing the manufacturing cost can be obtained.
  • the transparent substrate 1 is not particularly limited as long as it can stably support the thin wires 2 and has excellent light transmission from a light source.
  • a light source for example, optically polished synthetic quartz glass Fluorite, calcium fluoride, etc. can be used.
  • synthetic quartz glass can be preferably used. This is because the quality is stable and the transmittance is high even when light having a short wavelength is used.
  • thickness of the transparent substrate 1 it can select suitably according to the use, size, etc. of the polarizer of this invention.
  • the thin wire 2 has both a function of improving the extinction ratio of the polarized light emitted from the polarizer 10 and a function of suppressing the rotation of the polarization axis of the polarized light emitted from the polarizer 10. It has a polarizing material layer 3 as a layer.
  • the refractive index n and the extinction coefficient k in the light with a wavelength of 254 nm of the polarizing material constituting the polarizing material layer 3 are 2.3 ⁇ n ⁇ 3.1 and 1.5 ⁇ k ⁇ 2.3. It is preferable to satisfy the above range. This is because even when the incident angle of light incident on the polarizer is large while having a high extinction ratio, it is possible to suppress the rotation of the polarization axis of the polarized light.
  • the extinction ratio is the transmittance of the polarization component (S wave) parallel to the thin wire 2 (S wave component in the outgoing light / S wave component in the incident light, hereinafter simply referred to as S wave transmittance).
  • a general measuring method in the field of polarizers can be used. For example, a transmission type ellipsometer capable of measuring the polarization characteristics of ultraviolet light such as VUV-VASE manufactured by Woollam is used. It can be measured by using it.
  • molybdenum silicide (MoSi) materials that is, molybdenum silicide (MoSi) or its oxide (MoSiO), nitride (MoSiN), and oxynitride are used.
  • MoSiON molybdenum silicide
  • the above material is used as a material constituting a mask pattern in the technical field of photomasks, and it is possible to form extremely fine fine lines.
  • the thickness of the polarizing material layer 3 is not particularly limited as long as desired polarization characteristics can be obtained.
  • the thickness is preferably 60 nm or more. It is preferably within the range of 140 nm to 180 nm. It is because it can be made excellent in the suppression of rotation of a polarization axis, and the extinction ratio, suppressing processing difficulty by being in the above-mentioned range.
  • the pitch of the polarizing material layer 3 is not particularly limited as long as desired polarization characteristics can be obtained. It can be within the following range, in particular, it is preferably in the range of 80 nm to 120 nm, particularly preferably in the range of 90 nm to 110 nm. This is because the pitch is excellent in extinction ratio and P-wave transmittance with respect to ultraviolet light having a wavelength of 240 nm or more and 400 nm or less.
  • the width of the polarizing material layer 3 is not particularly limited as long as desired polarization characteristics can be obtained, but is in the range of 25 nm to 40 nm. It is preferable. By being in the above range, it is possible to obtain a polarizer having an excellent extinction ratio while having a high P-wave transmittance for ultraviolet light having a wavelength of 240 nm or more and 400 nm or less, and further facilitating thin wire processing. Because you can. Normally, the P wave transmittance can be improved by narrowing the width.
  • FIG. 3 is a schematic process diagram showing an example of a method for producing a polarizer according to the present invention.
  • a polarizing material film 3 ⁇ / b> A for forming the polarizing material layer 3 on the transparent substrate 1 polarized light is formed.
  • a laminated substrate 10A is prepared in which hard mask layers 7A that act as etching masks when forming the material layer 3 are sequentially laminated.
  • the polarizing material film 3 ⁇ / b> A can be formed by a technique such as sputtering using the same material as that constituting the polarizing material layer 3.
  • the hard mask layer 7A can be formed by a technique such as sputtering using a material having different dry etching characteristics from the material constituting the polarizing material layer 3 described above. For example, when a molybdenum silicide material is used as the material constituting the polarizing material layer 3, a chromium material can be used as the material constituting the hard mask layer 7A.
  • a resin pattern 8 is formed on the hard mask layer 7A by a technique such as a photolithography method, an imprint method, or an electron beam drawing method, and then the resin pattern 8
  • the hard mask layer 7A exposed from the substrate is dry-etched to form the hard mask pattern 7, and then the resin pattern 8 is removed (FIG. 3C).
  • the hard mask pattern 7 can be formed by dry etching using a mixed gas of chlorine and oxygen.
  • the polarizing material film 3A is dry-etched to form the polarizing material layer 3, and then the hard mask pattern 7 is removed.
  • the polarizer 10 is obtained (FIG. 3E).
  • the polarizing material layer 3 can be formed by dry etching using a fluorine-based gas.
  • the polarizer is preferably used for generating linearly polarized light of short-wavelength light such as in the ultraviolet region, and in particular, for generating linearly polarized light of light in the wavelength range of 200 nm to 400 nm. preferable.
  • a material of the photo-alignment film a material that is aligned by light having a wavelength of about 260 nm, a material that is aligned by light of about 300 nm, and a material that is aligned by light of about 365 nm are known.
  • a lamp is used. This is because a polarizer including the molybdenum silicide material layer can be used for the alignment of these photo-alignment films.
  • the photo-alignment device of the present invention is a photo-alignment device that polarizes ultraviolet light and irradiates the photo-alignment film.
  • the photo-alignment device includes the polarizer according to the present invention, and the light polarized by the polarizer is applied to the photo-alignment film. Irradiation.
  • FIG. 4 is a diagram illustrating a configuration example of a photo-alignment apparatus according to the present invention.
  • the optical alignment apparatus 20 shown in FIG. 4 includes a polarizer unit 21 in which the polarizer of the present invention is housed and an ultraviolet light lamp 22, and the ultraviolet light irradiated from the ultraviolet light lamp 22 is housed in the polarizer unit 21.
  • Polarized light is applied by the polarizer, and the polarized light (polarized light 24) is applied to the photo-alignment film 25 formed on the work 26, thereby imparting alignment regulating force to the photo-alignment film 25. is there.
  • the polarizer 10 is arranged in the polarizer unit 21 so that the thin wire 2 side is on the ultraviolet lamp 22 side of the optical alignment device 20 with respect to the transparent substrate 1 of the polarizer 10.
  • the polarizer 10 may be disposed in the polarizer unit 21 so that the transparent substrate 1 side is on the ultraviolet lamp 22 side with respect to the thin wire 2.
  • the photo-alignment apparatus 20 is provided with a mechanism for moving the work 26 on which the photo-alignment film 25 is formed. By moving the work 26, the entire surface of the photo-alignment film 25 can be irradiated with the polarized light 24. . For example, in the example shown in FIG. 4, the work 26 moves in the right direction in the figure (the arrow direction in FIG. 4).
  • the work 26 is shown as a rectangular flat plate.
  • the form of the work 26 is not particularly limited as long as it can irradiate the polarized light 24.
  • the work 26 may be in the form of a film, or may be in the form of a strip (web) so that it can be wound.
  • the ultraviolet lamp 22 is capable of irradiating ultraviolet light having a wavelength of 240 nm or more and 400 nm or less, and the photo-alignment film 25 applies ultraviolet light having a wavelength of 240 nm or more and 400 nm or less. It is preferable that it has sensitivity to it. Since the photo-alignment device 20 includes the polarizer according to the present invention that has an excellent extinction ratio with respect to ultraviolet light in the above-mentioned wavelength range and has a high P-wave transmittance, it is suitable for ultraviolet light in the above-mentioned wavelength range. This is because the alignment regulating force can be efficiently applied to the photo-alignment film having sensitivity, and the productivity can be improved.
  • the photo-alignment device 20 applies ultraviolet light to the back side (the side opposite to the polarizer unit 21) or the side surface of the ultraviolet light lamp 22. It is preferable to have a reflecting mirror 23 that reflects.
  • a rod-shaped lamp is used as the ultraviolet lamp 22 to move the work 26 (see FIG. 4). It is preferable to configure the photo-alignment device 20 so that the polarized light 24 that is a long irradiation region is irradiated in a direction orthogonal to the arrow direction in FIG.
  • the polarizer unit 21 is also in a form suitable for irradiating the large-area photo-alignment film 25 with the polarized light 24, but it is difficult to produce a large-area polarizer. It is technically and economically preferable to arrange a plurality of polarizers in the polarizer unit 21.
  • the polarizer according to the present invention rotates the polarization axis of the polarized light. Therefore, it is possible to efficiently apply the alignment regulating force to the photo-alignment film.
  • FIG. 5 is a diagram showing another configuration example of the optical alignment apparatus according to the present invention.
  • the photo-alignment device 30 includes two ultraviolet light lamps 32, and the polarizer 10 of the present invention is accommodated between each ultraviolet light lamp 32 and the work 36.
  • a polarizer unit 31 is provided.
  • Each ultraviolet lamp 32 is provided with a reflecting mirror 33.
  • the irradiation amount of the polarized light 34 applied to the photo-alignment film 35 formed on the workpiece 36 is increased as compared with the case where one ultraviolet light lamp 32 is provided. Can be made. Therefore, the moving speed of the workpiece 36 can be increased as compared with the case where one ultraviolet light lamp 32 is provided, and as a result, productivity can be improved.
  • the plurality of ultraviolet light lamps may be arranged in a direction orthogonal to the moving direction of the work 36, and a plurality of ultraviolet light lamps may be provided in both the moving direction of the work 36 and the direction orthogonal thereto. It may be a configuration in which is arranged.
  • the direction orthogonal to the moving direction of the workpiece refers to a direction orthogonal to the moving direction of the workpiece when the surface of the workpiece irradiated with ultraviolet light is viewed in plan.
  • FIG. 5 shows a configuration in which one polarizer unit 31 is provided for one ultraviolet lamp 32, the present invention is not limited to this, and for example, a plurality of polarizer units 31 may be used.
  • the configuration may be such that one polarizer unit is provided for each ultraviolet lamp. In this case, it is sufficient that one polarizer unit has a size that can include irradiation regions of a plurality of ultraviolet lamps.
  • FIG. 6 is a diagram showing an example of the arrangement of polarizers in the optical alignment apparatus according to the present invention. 6 (a) to 6 (d), the arrangement forms of the polarizers are all shown in the form in which the plate-like polarizers 10 are arranged in a plane facing the film surface of the photo-alignment film. Yes.
  • the polarizer unit 21 when the band-shaped polarized light 24 is irradiated in a direction orthogonal to the moving direction of the workpiece 26, the polarizer unit 21 has the configuration shown in FIG.
  • the area of the polarizer 10 is small, or when the photo-alignment apparatus includes a plurality of ultraviolet lamps, as shown in FIG. 6B, it is orthogonal to the moving direction (arrow direction) of the workpiece.
  • a plurality of polarizers are arranged so that they are not aligned in a line along the workpiece movement direction (arrow direction). It is preferable that the positions of the adjacent polarizers are shifted and arranged in a direction (vertical direction in the drawing) orthogonal to the moving direction of the workpiece.
  • a plurality of boundary portions between a plurality of polarizers adjacent in the direction orthogonal to the moving direction of the photo-alignment film are not continuously connected to the moving direction of the photo-alignment film.
  • a polarizer is disposed. This is because polarized light usually does not occur at the boundary between the polarizers, and this prevents the boundary from adversely affecting the photo-alignment film.
  • the plurality of arranged polarizers all have the same shape and the same size, and the positions of the polarizers adjacent in the left-right direction are polarized.
  • the child is shifted in the vertical direction in steps of 1/2 the size of the child in the vertical direction.
  • the plurality of arranged polarizers all have the same shape and the same size, and the positions of the polarizers adjacent in the left-right direction are in the vertical direction.
  • the vertical shift is performed in steps smaller than 1 ⁇ 2 of the vertical size.
  • the boundary portion 41 between the polarizer 10a and the polarizer 10b adjacently arranged in the vertical direction extends in the horizontal direction by the polarizer 10c and the polarizer 10d arranged in the horizontal direction. It is blocked from going. That is, in the arrangement form shown in FIG. 6C, it is prevented that the boundary portion between the polarizers adjacently arranged in the vertical direction is continuously connected in the horizontal direction. Therefore, when the arrangement shown in FIG. 6C is adopted and the photo-alignment film is irradiated with polarized light, the adverse effect caused by the boundary between the polarizers continuously affects the photo-alignment film. Can be suppressed.
  • the individual polarizers are arranged so that the side surfaces thereof are in contact with each other.
  • the present invention is not limited to this form, and is adjacent to each other.
  • a form in which a boundary portion between the matching polarizers has a gap may be employed.
  • end portions of adjacent polarizers may be overlapped with each other so that no gap is generated at the boundary between the polarizers.
  • Example 1 As shown in FIG. 7, with respect to the case where light having a wavelength of 254 nm is incident on the polarizer 14 at an azimuth angle of 45 degrees and an incident angle of 60 degrees from the side on which the thin wire 2 is formed, “Numerical analysis of the diffractive optical element and A simulation model based on RCWA (Regorous Coupled Wave Analysis) described in “Applications” (supervised by Maruzen Publishing Co., Ltd., Kyoko Kosuge) is created, and the refractive index n and extinction coefficient k of the polarizing material constituting the polarizing material layer 3 are: The relationship of the rotation amount of the polarization axis of the polarized light emitted from the polarizer 14 was calculated.
  • RCWA Registered Coupled Wave Analysis
  • the thin wire 2 of the polarizer 14 has the oxide film 4 on the upper surface and side surfaces of the single-layer polarizing material layer 3, and the polarizing material layer 3.
  • the base plate 5 has a pedestal portion 5 formed by digging the transparent substrate 1.
  • the thickness T 1 of the polarizing material layer 3 is 150 nm
  • the thickness (the digging amount of the transparent substrate 1) T 2 of the pedestal portion 5 is 12 nm
  • the width W 1 of the fine wire 2 is 35.5 nm
  • the pitch P 1 of the fine wire 2 was 100 nm
  • the width W 2 of the oxide film 4 was 9 nm.
  • the refractive index of the oxide film 4 with respect to light with a wavelength of 254 nm is 1.541566, the extinction coefficient is 0.004877, and the refractive index with respect to light with a wavelength of 254 nm of the transparent substrate 1 (the pedestal 5 is the same) is 1.5054.
  • the extinction coefficient was 0.
  • the amount of rotation of the polarization axis indicates the amount of rotation (rotation angle) from this direction with reference to the direction of the polarization axis when the incident angle of incident light is 0 degrees.
  • the incident angle of light incident on the polarizer is increased by appropriately selecting the ranges of the refractive index n and the extinction coefficient k of the material constituting the polarizing material layer 3. Even in this case, it was confirmed that the rotation of the polarization axis of the polarized light can be suppressed.
  • Example 2 With respect to the case where light having a wavelength of 254 nm is incident on the polarizer 14 shown in FIG. 8 at an azimuth angle of 0 degrees and an incident angle of 0 degrees from the side on which the thin wire 2 is formed, “Numerical analysis of diffractive optical element and A simulation model based on RCWA (Regorous Coupled Wave Analysis) described in “Applications” (supervised by Maruzen Publishing Co., Ltd., Kyoko Kobuchi) was created, and the refractive index n and extinction of light of wavelength 254 nm of the material constituting the polarizing material layer 3 The relationship between the coefficient k and the extinction ratio was calculated.
  • RCWA Registered Coupled Wave Analysis
  • the values of the refractive index and extinction coefficient with respect to light with a wavelength of 254 nm of the oxide film 4 and the refractive index and extinction coefficient with respect to light with a wavelength of 254 nm of the transparent substrate 1 are as in Example 1. Same as above. The results are shown in Table 2 and FIG.
  • the extinction ratio can be increased by appropriately selecting the ranges of the refractive index n and the extinction coefficient k of the material constituting the polarizing material layer 3.
  • Example 1 From the results of Example 1 and Example 2 above, the polarized light having the polarizing material layer 3 by satisfying the specific ranges of the refractive index n and the extinction coefficient k of the material constituting the polarizing material layer 3.
  • the polarizer 14 has a high extinction ratio with respect to short-wavelength light such as the ultraviolet region, and the polarization axis of the polarized light rotates even when the incident angle of light incident on the polarizer increases. It was confirmed that this can be suppressed.
  • the refractive index n and the extinction coefficient k are 2.3 ⁇ n ⁇ 3.1 and 1.5 ⁇ k ⁇ 2.3.
  • the polarization of the polarized light emitted from the polarizer 14 The rotation amount of the shaft can be suppressed within ⁇ 3 degrees, and the extinction ratio can be 50 or more.
  • molybdenum silicide (MoSi) materials that is, molybdenum silicide (MoSi) or its oxide (MoSiO), nitride (MoSiN), acid
  • MoSiON molybdenum silicide
  • Example 3 Next, in the same manner as in Example 1 except that the thickness T 1 of the polarizing material layer 3 shown in FIG. 8 is 170 nm and the width W 1 of the thin wire 2 is 34.5 nm, the polarizer 14 has a wavelength of 254 nm.
  • a polarizing material constituting the polarizing material layer 3 by creating a simulation model based on RCWA (Regorous Coupled Wave Analysis) when light is incident at an azimuth angle of 45 degrees and an incident angle of 60 degrees from the side where the thin wire 2 is formed
  • RCWA Registered Coupled Wave Analysis
  • the reason why the width of the thin wire 2 is changed along with the change of the thickness of the polarizing material layer 3 is that if the width of the thin wire 2 is the same and the thickness of the polarizing material layer 3 is increased, the polarized light emitted from the polarizer 14 is increased. This is to avoid this because the transmittance decreases. That is, in Example 3 and Example 1 described above, the transmittance of the polarized light emitted from the polarizer 14 is set to a close value.
  • Example 4 In the same manner as in Example 2 except that the thickness T 1 of the polarizing material layer 3 shown in FIG. 8 is 170 nm and the width W 1 of the thin wire 2 is 34.5 nm, the polarizer 14 has a wavelength of 254 nm.
  • a simulation model based on RCWA (Regorous Coupled Wave Analysis) is created for the case where light is incident at an azimuth angle of 0 ° and an incident angle of 0 ° from the side where the thin wire 2 is formed, and the material constituting the polarizing material layer 3 is created.
  • the relationship between the refractive index n and extinction coefficient k in the light of wavelength 254 nm and the extinction ratio was calculated. The results are shown in Table 4 and FIG.
  • the refractive index n and the extinction coefficient k of the material constituting the polarizing material layer 3 satisfy a specific range, and thus polarized light having a thickness T 1 of 170 nm.
  • the polarizer 14 having the material layer 3 also has a high extinction ratio with respect to short-wavelength light such as in the ultraviolet region, and even if the incident angle of light incident on the polarizer is large, It was confirmed that rotation of the polarization axis of light can be suppressed.
  • the refractive index n and the extinction coefficient k are 2.3 ⁇ n ⁇ 3.1 and satisfy the range of 1.5 ⁇ k ⁇ 2.3
  • a polarizing material having a thickness T 1 of 170 nm Even in the polarizer 14 having the layer 3, even when light having a wavelength of 254 nm is incident on the polarizer 14 with a large azimuth angle of 45 degrees and an incident angle of 60 degrees, the polarized light emitted from the polarizer 14 The amount of rotation of the polarization axis can be suppressed within ⁇ 3 degrees, and the extinction ratio can be 50 or more.
  • the range of the refractive index n and the extinction coefficient k may be made wider. It was confirmed that it was possible.
  • the refractive index n and the extinction coefficient k are 2.3 ⁇ n ⁇ 3.5 and 1.3 ⁇ k ⁇ 2.
  • molybdenum silicide (MoSi) -based material that is, molybdenum silicide (MoSi) or its material Examples include oxide (MoSiO), nitride (MoSiN), and oxynitride (MoSiON).
  • Example 5 Regard the case where light having a wavelength of 254 nm is incident on the polarizer 14 from the side where the thin wire 2 is formed at an azimuth angle of 45 degrees and an incident angle of 0 degrees to 60 degrees, “Numerical analysis of diffractive optical element and its A simulation model based on RCWA (Regorous Coupled Wave Analysis) described in “Applications” (supervised by Kousiko Kosuge) was created, and the relationship between the incident angle of incident light and the rotation amount of the polarization axis was calculated.
  • RCWA Registered Coupled Wave Analysis
  • the refractive index n in the light with a wavelength of 254 nm of the polarizing material constituting the polarizing material layer 3 is 2.7 and the extinction coefficient k is 1.93.
  • the polarizer 14 under the above conditions can suppress the rotation amount of the polarization axis of the polarized light within ⁇ 1 degree with respect to the incident light with an incident angle of 0 to 60 degrees. It was done.
  • Example 6 Manufacture of polarizers
  • a synthetic quartz glass with a film thickness of 6.35 mm is prepared as a transparent substrate, and a nitride film with a film thickness of 170 nm is formed as a molybdenum silicide-based material film by a reactive sputtering method in a mixed gas atmosphere of argon and nitrogen using a mixed target of molybdenum and silicon.
  • a molybdenum silicide film was formed.
  • a chromium oxynitride film was formed as a hard mask at 15 nm on the molybdenum silicide film by a sputtering method.
  • a patterned resist having a line and space pattern with a pitch of 100 nm was formed on the hard mask.
  • a hard mask made of a chromium-based material is dry-etched using a mixed gas of chlorine and oxygen as an etching gas, followed by dry-etching the molybdenum silicide-based material film using SF 6 , and then the hard mask is peeled off.
  • a polarizer was obtained.
  • the widths, thicknesses, and pitches of the thin lines of the obtained polarizer were 28 nm, 170 nm, and 100 nm, respectively, as measured by a VEMTEC SEM measuring device LWM9000 and a VEECO AFM device DIMENSION-X3D.
  • the extinction coefficient k at a wavelength of 254 nm was 0.00. Further, when the refractive index and extinction coefficient of synthetic quartz were measured using a transmission ellipsometer (VUV-VASE manufactured by Woollam), the refractive index n at a wavelength of 254 nm was 1.50. In addition, the extinction coefficient k at a wavelength of 254 nm was 0.00.
  • FIGS. 14 and 15 are graph showing the average value (vertical axis) of the extinction ratio at 81 points with respect to the wavelength (nm) (horizontal axis) of the irradiated ultraviolet light
  • FIG. 15 is the polarization of 81 points in the ultraviolet light of each wavelength. It is a graph which shows the average value (vertical axis) of the extinction ratio of 81 points with respect to the average value (horizontal axis) of the P wave transmittance of the child.
  • the measurement at each location at 81 points in the plane was performed by measuring the inside of a circular region having a diameter of 5 mm.
  • 81 measurement points in the plane were arranged within a range of 10 mm ⁇ 120 mm so that the measurement regions at each measurement point did not overlap each other.
  • an extinction ratio usable as a polarizer can be obtained at each wavelength.
  • the average P wave transmittance was 65.6% and the average extinction ratio was 285, confirming that good results were obtained.
  • the wavelength of ultraviolet light was 313 nm and 365 nm, it was confirmed that the respective average extinction ratios were 235 and 76, and the extinction ratio could be 50 or more.
  • the refractive index n and the extinction coefficient k satisfy 2.3 ⁇ n ⁇ 3.1 and satisfy the range of 1.5 ⁇ k ⁇ 2.3. It was confirmed that the extinction ratio could be 50 or more not only at 254 nm but also at 313 nm and 365 nm. Further, in the case where the wavelength of the ultraviolet light is 254 nm, compared with Example 4 in which the polarizer 14 having the polarizing material layer 3 having a thickness T 1 of 170 nm was simulated, the substantially same extinction ratio was obtained. Was confirmed.
  • the amount of rotation of the polarization axis of the polarized light emitted from the polarizer is within ⁇ 3 degrees even when it is incident on the polarizer at an azimuth angle of 45 degrees and an incident angle of 60 degrees. It was confirmed that it was suppressed.

Abstract

The main purpose of the present invention is to provide a polarizer which is capable of suppressing rotation of the polarization axis of polarized light, while having a high extinction ratio with respect to light having a short wavelength such as one in the ultraviolet region even in cases where the incidence angle of light incident on the polarizer is large. The above-mentioned problem is solved by having a fine wire of a polarizer configured of a polarizing material layer that has a function of improving the extinction ratio of polarized light emitted from the polarizer and a function of suppressing rotation of the polarization axis of polarized light emitted from the polarizer at the same time.

Description

偏光子および光配向装置Polarizer and optical alignment device
 本発明は、光源からの光を偏光する偏光子および光配向装置に関するものである。 The present invention relates to a polarizer for polarizing light from a light source and an optical alignment apparatus.
 液晶表示装置は、一般に駆動素子が形成された対向基板とカラーフィルタとを対向配置して周囲を封止し、その間隙に液晶材料を充填した構造を有する。そして、液晶材料は屈折率異方性を有しており、液晶材料に印加された電圧の方向に沿うように整列される状態と、電圧が印加されない状態との違いから、オンオフを切り替えて画素を表示することができる。ここで液晶材料を挟持する基板には、液晶材料を配向させるために配向膜が設けられている。
 また、液晶表示装置に用いられる位相差フィルムや、3D表示用位相差フィルムの材料としても配向膜が用いられている。
 配向膜としては、例えば、ポリイミドに代表される高分子材料が用いたものが知られており、この高分子材料を布等により摩擦するラビング処理が施されることによって配向規制力を有するものとなる。
 しかしながら、このようなラビング処理により配向規制力が付与された配向膜では、布等が異物として残存するといった問題があった。
A liquid crystal display device generally has a structure in which a counter substrate on which driving elements are formed and a color filter are arranged to face each other and the periphery is sealed, and a gap is filled with a liquid crystal material. The liquid crystal material has refractive index anisotropy, and the pixel is switched on and off from the difference between the state where the liquid crystal material is aligned along the direction of the voltage applied to the liquid crystal material and the state where no voltage is applied. Can be displayed. Here, the substrate sandwiching the liquid crystal material is provided with an alignment film for aligning the liquid crystal material.
In addition, alignment films are also used as materials for retardation films used in liquid crystal display devices and retardation films for 3D display.
As the alignment film, for example, a film using a polymer material typified by polyimide is known, and the alignment film has an alignment regulating force by rubbing the polymer material with a cloth or the like. Become.
However, the alignment film to which the alignment regulating force is applied by such rubbing treatment has a problem that the cloth or the like remains as a foreign substance.
 これに対して直線偏光を照射することにより配向規制力を発現する配向膜、すなわち光配向膜では、上述のような布等によるラビング処理を施すことなく配向規制力を付与できるため、布等が異物として残存する不具合がないことから近年注目されている。
 このような光配向膜への配向規制力付与のための直線偏光の照射方法としては、偏光子を介して露光する方法が一般的に用いられる。偏光子としては、平行に配置された複数の細線を有するものが用いられ、細線を構成する材料としては、アルミや酸化チタンが用いられている(例えば、特許文献1)。
On the other hand, in the alignment film that expresses the alignment regulating force by irradiating linearly polarized light, that is, the photo-alignment film, the alignment regulating force can be applied without performing the rubbing treatment with the cloth as described above. In recent years, it has attracted attention because there is no defect that remains as a foreign object.
As an irradiation method of linearly polarized light for imparting alignment regulating force to such a photo-alignment film, a method of exposing through a polarizer is generally used. As the polarizer, one having a plurality of fine wires arranged in parallel is used, and as a material constituting the fine wires, aluminum or titanium oxide is used (for example, Patent Document 1).
特開2009-265290号公報JP 2009-265290 A
 しかしながら、上述のような材料から構成される細線を備えた偏光子では、紫外線領域のような短波長の光の場合には消光比(P波透過率/S波透過率)、すなわち、上記細線に対して平行な偏光成分(S波)の透過率(出射光中のS波成分/入射光中のS波成分、以下、単にS波透過率とする場合がある。)に対する、上記細線に対して垂直な偏光成分(P波)の透過率(出射光中のP波成分/入射光中のP波成分、以下、単にP波透過率とする場合がある。)の割合が特定の波長帯で低いといった問題があった。 However, in a polarizer having a thin wire made of the material as described above, the extinction ratio (P-wave transmittance / S-wave transmittance) in the case of light having a short wavelength such as the ultraviolet region, that is, the above-described thin wire. To the transmittance of the polarization component (S wave) parallel to the above (the S wave component in the outgoing light / the S wave component in the incident light, hereinafter sometimes referred to simply as the S wave transmittance). The ratio of the transmittance of the polarized light component (P wave) perpendicular to the light beam (the P wave component in the outgoing light / the P wave component in the incident light, hereinafter simply referred to as P wave transmittance) is a specific wavelength. There was a problem that the belt was low.
 例えば、細線を構成する材料としてアルミを用いたものは、波長が300nm以下の紫外光、特に、波長が240nm以上260nm以下の紫外光に対して、消光比等の偏光特性が不十分であり、また、細線を構成する材料として酸化チタンを用いたものは、波長が300nm以上の紫外光、特に、波長が355nm以上375nm以下の紫外光に対して、消光比等の偏光特性が不十分であった。 For example, a material using aluminum as a material constituting a thin wire has insufficient polarization characteristics such as an extinction ratio with respect to ultraviolet light having a wavelength of 300 nm or less, particularly ultraviolet light having a wavelength of 240 nm to 260 nm. In addition, a material using titanium oxide as a material constituting a thin wire has insufficient polarization characteristics such as an extinction ratio with respect to ultraviolet light having a wavelength of 300 nm or more, particularly ultraviolet light having a wavelength of 355 nm to 375 nm. It was.
 上記の問題に対し、本発明者は、偏光子の細線を、モリブデンシリサイドを含有する材料から構成し、細線の膜厚、ピッチ、線幅を所定の範囲とすることで、波長が240nm以上400nm以下の紫外光、特に、波長が240nm以上260nm以下の紫外光、および、波長が355nm以上375nm以下の紫外光に対しても、優れた消光比と高いP波透過率とを両立できることを見出している。 In order to solve the above problem, the present inventor made the fine wire of the polarizer from a material containing molybdenum silicide, and set the film thickness, pitch, and line width of the fine wire within a predetermined range, so that the wavelength is 240 nm or more and 400 nm. It has been found that an excellent extinction ratio and a high P-wave transmittance can be achieved for the following ultraviolet light, particularly for ultraviolet light having a wavelength of 240 nm to 260 nm and ultraviolet light having a wavelength of 355 nm to 375 nm. Yes.
 一方、光源からの光は発散光であることから、光源からの光は、様々な角度で偏光子に入射することになる。特に、長尺の棒状ランプを光源に用いる場合、偏光子に入射する光は、入射角が大きいものも含まれることになる。 On the other hand, since the light from the light source is divergent light, the light from the light source is incident on the polarizer at various angles. In particular, when a long rod-shaped lamp is used as a light source, the light incident on the polarizer includes light having a large incident angle.
 しかしながら、偏光子に入射する光の入射角が大きくなると、偏光子から出射する偏光光の方向が、所望の方向から回転してずれてしまうという問題、すなわち、入射光の角度の増大に伴って、偏光光の偏光軸の回転量が大きくなってしまうという問題が生じる。
 そして、偏光軸の方向にばらつきがある状態で、光配向膜への配向規制力付与を行うと、光配向膜に所望の配向特性が得られない部分を生じさせてしまうというおそれがある。
However, as the incident angle of light incident on the polarizer increases, the problem that the direction of the polarized light exiting from the polarizer rotates and deviates from the desired direction, that is, as the angle of incident light increases. This causes a problem that the amount of rotation of the polarization axis of the polarized light becomes large.
If the alignment regulating force is applied to the photo-alignment film in a state where the directions of the polarization axes are varied, there is a possibility that a portion where a desired alignment characteristic cannot be obtained is generated in the photo-alignment film.
 本発明は、上記実情に鑑みてなされたものであり、紫外線領域のような短波長の光に対して高い消光比を有しながら、偏光子に入射する光の入射角が大きくなる場合であっても、偏光光の偏光軸の回転を抑制することが可能な偏光子を提供することを主目的とする。 The present invention has been made in view of the above circumstances, and is a case where the incident angle of light incident on a polarizer is large while having a high extinction ratio with respect to short-wavelength light such as the ultraviolet region. However, it is a main object to provide a polarizer capable of suppressing the rotation of the polarization axis of polarized light.
 本発明は、透明基板の上に複数本の細線が並列に配置された偏光子であって、前記細線は、前記偏光子から出射する偏光光の消光比を向上させる作用と、前記偏光子から出射する偏光光の偏光軸が回転することを抑制する作用と、を併せ持つ単層の偏光材料層を有し、前記偏光材料層を構成する偏光材料の波長254nmの光における屈折率nと消衰係数kが、2.3≦n≦3.1であって1.5≦k≦2.3の範囲を満たすものであることを特徴とする偏光子である。 The present invention is a polarizer in which a plurality of fine wires are arranged in parallel on a transparent substrate, the fine wires have the effect of improving the extinction ratio of polarized light emitted from the polarizer, and from the polarizer A polarizing material layer having a single layer that has both the function of suppressing the rotation of the polarization axis of the emitted polarized light, and the refractive index n and extinction of light of a polarizing material constituting the polarizing material layer at a wavelength of 254 nm The polarizer is characterized in that the coefficient k satisfies 2.3 ≦ n ≦ 3.1 and satisfies the range of 1.5 ≦ k ≦ 2.3.
 また、本発明は、前記偏光材料層が、モリブデンシリサイド、またはその酸化物、窒化物、酸窒化物のいずれかを含むことを特徴とする偏光子である。 Further, the present invention is the polarizer characterized in that the polarizing material layer includes molybdenum silicide or any of oxides, nitrides, and oxynitrides thereof.
 また、本発明は、紫外光を偏光して光配向膜に照射する光配向装置であって、上述の偏光子を備え、前記偏光子により偏光した光を前記光配向膜に照射することを特徴とする光配向装置である。 Further, the present invention is a photo-alignment apparatus that polarizes ultraviolet light and irradiates the photo-alignment film, comprising the above-described polarizer, and irradiates the photo-alignment film with light polarized by the polarizer. This is a photo-alignment device.
 本発明によれば、紫外線領域のような短波長の光に対して高い消光比を有しつつ、偏光子に入射する光の入射角が大きくなる場合であっても、偏光光の偏光軸が回転することを抑制することが可能な偏光子を提供することができる。 According to the present invention, even when the incident angle of light incident on the polarizer is large while having a high extinction ratio with respect to short-wavelength light such as the ultraviolet region, the polarization axis of the polarized light is A polarizer capable of suppressing rotation can be provided.
 また、本発明に係る偏光子を備えた光配向装置においては、偏光子に入射する光の入射角が大きくなる場合が生じても、偏光光の偏光軸が回転することを抑制して、紫外線領域のような短波長の光に対して感度を有する光配向膜に配向規制力を付与することを効率良く行うことができる。 Further, in the photo-alignment apparatus provided with the polarizer according to the present invention, even if the incident angle of light incident on the polarizer increases, the polarization axis of the polarized light is suppressed from rotating, It is possible to efficiently apply an alignment regulating force to a photo-alignment film having sensitivity to short-wavelength light such as a region.
本発明に係る偏光子の一例を示す説明図であり、(a)は概略平面図であり、(b)は(a)のA-A線断面図である。It is explanatory drawing which shows an example of the polarizer which concerns on this invention, (a) is a schematic plan view, (b) is the sectional view on the AA line of (a). 本発明に係る偏光子の他の例を示す説明図である。It is explanatory drawing which shows the other example of the polarizer which concerns on this invention. 本発明に係る偏光子の製造方法の一例を示す概略工程図である。It is a schematic process drawing which shows an example of the manufacturing method of the polarizer which concerns on this invention. 本発明に係る光配向装置の構成例を示す図である。It is a figure which shows the structural example of the photo-alignment apparatus which concerns on this invention. 本発明に係る光配向装置の他の構成例を示す図である。It is a figure which shows the other structural example of the optical orientation apparatus which concerns on this invention. 本発明に係る光配向装置における偏光子の配置形態の例を示す図である。It is a figure which shows the example of the arrangement | positioning form of the polarizer in the photo-alignment apparatus which concerns on this invention. 実施例1のシミュレーションモデルを説明する図である。It is a figure explaining the simulation model of Example 1. FIG. シミュレーションに用いた偏光子の構成を説明する図である。It is a figure explaining the structure of the polarizer used for simulation. 実施例1のシミュレーション結果を示すグラフである。6 is a graph showing a simulation result of Example 1. 実施例2のシミュレーション結果を示すグラフである。10 is a graph showing a simulation result of Example 2. 実施例3のシミュレーション結果を示すグラフである。10 is a graph showing a simulation result of Example 3. 実施例4のシミュレーション結果を示すグラフである。10 is a graph showing a simulation result of Example 4. 実施例5のシミュレーション結果を示すグラフである。10 is a graph showing a simulation result of Example 5. 実施例6の紫外光の波長に対する消光比の関係を示すグラフである。It is a graph which shows the relationship of the extinction ratio with respect to the wavelength of the ultraviolet light of Example 6. 実施例6の透過率に対する消光比の関係を示すグラフである。10 is a graph showing the relationship of the extinction ratio with respect to the transmittance of Example 6.
<偏光子>
 図1は、本発明に係る偏光子の一例を示す説明図であり、(a)は概略平面図であり、(b)は(a)のA-A線断面図である。また、図2は、本発明に係る偏光子の他の例を示す説明図である。
<Polarizer>
1A and 1B are explanatory views showing an example of a polarizer according to the present invention, in which FIG. 1A is a schematic plan view, and FIG. 1B is a cross-sectional view taken along line AA in FIG. Moreover, FIG. 2 is explanatory drawing which shows the other example of the polarizer based on this invention.
 図1に例示するように、偏光子10は、透明基板1の上に、複数本の細線2が並列に配置された構成を有している。そして、細線2は、偏光子10から出射する偏光光の消光比を向上させる作用と、偏光子10から出射する偏光光の偏光軸が回転することを抑制する作用と、を併せ持つ単層の偏光材料層3を有している。 As illustrated in FIG. 1, the polarizer 10 has a configuration in which a plurality of thin wires 2 are arranged in parallel on a transparent substrate 1. The thin line 2 is a single-layer polarization having both an effect of improving the extinction ratio of the polarized light emitted from the polarizer 10 and an effect of suppressing the rotation of the polarization axis of the polarized light emitted from the polarizer 10. It has a material layer 3.
 なお、図1に例示する偏光子10においては、細線2が単層の偏光材料層3のみから構成されている形態を示しているが、本発明においては、例えば図2(a)に例示する偏光子11のように、細線2が、単層の偏光材料層3の上面および側面に、酸化膜4を有する形態であっても良い。酸化膜4を有することで、長時間の紫外線照射に対する耐久性や、酸性溶液に対する洗浄耐性に優れた偏光子とすることができる。 In addition, in the polarizer 10 illustrated in FIG. 1, the thin wire | line 2 has shown the form comprised only from the single-layer polarizing material layer 3, However, In this invention, it illustrates in FIG. 2 (a), for example. Like the polarizer 11, the thin wire | line 2 may have the form which has the oxide film 4 on the upper surface and side surface of the single-layer polarizing material layer 3. FIG. By having the oxide film 4, it can be set as the polarizer excellent in durability with respect to long-time ultraviolet irradiation and washing | cleaning tolerance with respect to an acidic solution.
 また、本発明においては、例えば図2(b)に例示する偏光子12のように、細線2が、偏光材料層3の底側に、透明基板1が掘り込まれて形成された台座部5を有する形態であっても良い。偏光材料層3を有する細線2をドライエッチングにより形成する際には、使用するエッチングガス等によって透明基板1も掘り込まれる場合がある。それゆえ、上記のように、細線2が台座部5を有する形態とすることで、ドライエッチング工程をより容易なものとすることができる。 Further, in the present invention, for example, as in the polarizer 12 illustrated in FIG. 2B, the pedestal portion 5 in which the thin wire 2 is formed by digging the transparent substrate 1 on the bottom side of the polarizing material layer 3. The form which has this may be sufficient. When the thin wire 2 having the polarizing material layer 3 is formed by dry etching, the transparent substrate 1 may be dug by the etching gas used. Therefore, as described above, when the thin wire 2 has the pedestal portion 5, the dry etching process can be made easier.
 また、本発明においては、例えば図2(c)に例示する偏光子13のように、細線2が、偏光材料層3の上であって酸化膜4の下に、中間層6を有する形態であっても良い。細線2をドライエッチングにより形成する際には、偏光材料層3の上にハードマスク層を設ける場合がある。細線2が、このハードマスク層を中間層6として有する形態であれば、ハードマスク層を除去する工程を省くことができ、製造工程の短縮や製造コストの低減といった効果を得られる。 Further, in the present invention, for example, as in the polarizer 13 illustrated in FIG. 2C, the thin wire 2 has the intermediate layer 6 on the polarizing material layer 3 and below the oxide film 4. There may be. When the fine wire 2 is formed by dry etching, a hard mask layer may be provided on the polarizing material layer 3 in some cases. If the thin wire 2 has the hard mask layer as the intermediate layer 6, the step of removing the hard mask layer can be omitted, and the effects of shortening the manufacturing process and reducing the manufacturing cost can be obtained.
 以下、本発明に係る偏光子10の各構成について説明する。 Hereinafter, each configuration of the polarizer 10 according to the present invention will be described.
(透明基板)
 透明基板1としては、細線2を安定的に支持することができ、光源からの光の透過性に優れたものであれば特に限定されるものではないが、例えば、光学研磨された合成石英ガラス、蛍石、フッ化カルシウムなどを用いることができる。
 本発明においては、なかでも合成石英ガラスを好ましく用いることができる。品質が安定しており、また、短波長の光を用いた場合であっても透過性が高いからである。
 透明基板1の厚みとしては、本発明の偏光子の用途やサイズ等に応じて適宜選択することができる。
(Transparent substrate)
The transparent substrate 1 is not particularly limited as long as it can stably support the thin wires 2 and has excellent light transmission from a light source. For example, optically polished synthetic quartz glass Fluorite, calcium fluoride, etc. can be used.
In the present invention, synthetic quartz glass can be preferably used. This is because the quality is stable and the transmittance is high even when light having a short wavelength is used.
As thickness of the transparent substrate 1, it can select suitably according to the use, size, etc. of the polarizer of this invention.
(偏光材料層)
 上記のように、細線2は、偏光子10から出射する偏光光の消光比を向上させる作用と、偏光子10から出射する偏光光の偏光軸が回転することを抑制する作用と、を併せ持つ単層の偏光材料層3を有している。
(Polarizing material layer)
As described above, the thin wire 2 has both a function of improving the extinction ratio of the polarized light emitted from the polarizer 10 and a function of suppressing the rotation of the polarization axis of the polarized light emitted from the polarizer 10. It has a polarizing material layer 3 as a layer.
 本発明において、偏光材料層3を構成する偏光材料の波長254nmの光における屈折率nと消衰係数kは、2.3≦n≦3.1であって1.5≦k≦2.3の範囲を満たすものであることが好ましい。高い消光比を有しつつ、偏光子に入射する光の入射角が大きくなる場合であっても、偏光光の偏光軸が回転することを抑制することができるからである。 In the present invention, the refractive index n and the extinction coefficient k in the light with a wavelength of 254 nm of the polarizing material constituting the polarizing material layer 3 are 2.3 ≦ n ≦ 3.1 and 1.5 ≦ k ≦ 2.3. It is preferable to satisfy the above range. This is because even when the incident angle of light incident on the polarizer is large while having a high extinction ratio, it is possible to suppress the rotation of the polarization axis of the polarized light.
 なお、消光比とは、細線2に対して平行な偏光成分(S波)の透過率(出射光中のS波成分/入射光中のS波成分、以下、単にS波透過率とする場合がある。)に対する、細線2に対して垂直な偏光成分(P波)の透過率(出射光中のP波成分/入射光中のP波成分、以下、単にP波透過率とする場合がある。)の割合(P波透過率/S波透過率)をいう。
 消光比の測定方法としては、偏光子の分野における一般的な測定方法を用いることができ、例えば、ウーラム社製VUV-VASEなどの紫外光の偏光特性を測定することが可能な透過型エリプソメータを用いることで測定することができる。
The extinction ratio is the transmittance of the polarization component (S wave) parallel to the thin wire 2 (S wave component in the outgoing light / S wave component in the incident light, hereinafter simply referred to as S wave transmittance). The transmittance of the polarization component (P wave) perpendicular to the thin wire 2 (P wave component in the outgoing light / P wave component in the incident light, hereinafter simply referred to as P wave transmittance). The ratio (P-wave transmittance / S-wave transmittance).
As a method for measuring the extinction ratio, a general measuring method in the field of polarizers can be used. For example, a transmission type ellipsometer capable of measuring the polarization characteristics of ultraviolet light such as VUV-VASE manufactured by Woollam is used. It can be measured by using it.
 上記の屈折率nと消衰係数kの範囲を満たす材料としては、モリブデンシリサイド(MoSi)系材料、すなわち、モリブデンシリサイド(MoSi)またはその酸化物(MoSiO)、窒化物(MoSiN)、酸窒化物(MoSiON)のいずれかを含むものを挙げることができる。
 上記の材料であれば、細線2を構成する偏光材料層3として成膜することができ、また、酸素や窒素等を含ませることによって、屈折率nや消衰係数kを所望の範囲に調整することもできるからである。また、上記材料は、フォトマスクの技術分野においてマスクパターンを構成する材料として用いられており、極めて微細な細線を形成することも可能だからである。
As materials satisfying the ranges of the refractive index n and the extinction coefficient k, molybdenum silicide (MoSi) materials, that is, molybdenum silicide (MoSi) or its oxide (MoSiO), nitride (MoSiN), and oxynitride are used. The thing containing either (MoSiON) can be mentioned.
If it is said material, it can form into a film as the polarizing material layer 3 which comprises the thin wire | line 2, and the refractive index n and the extinction coefficient k are adjusted to a desired range by including oxygen, nitrogen, etc. It is also possible to do. Further, the above material is used as a material constituting a mask pattern in the technical field of photomasks, and it is possible to form extremely fine fine lines.
 本発明において偏光材料層3の厚み(図1(b)に示すT)は、所望の偏光特性を得ることができるものであれば特に限定されないが、例えば、60nm以上であることが好ましく、特に140nm~180nmの範囲内であることが好ましい。上記範囲であることにより、加工困難性を抑制しつつ、偏光軸の回転抑制や消光比に優れたものとすることができるからである。 In the present invention, the thickness of the polarizing material layer 3 (T shown in FIG. 1B) is not particularly limited as long as desired polarization characteristics can be obtained. For example, the thickness is preferably 60 nm or more. It is preferably within the range of 140 nm to 180 nm. It is because it can be made excellent in the suppression of rotation of a polarization axis, and the extinction ratio, suppressing processing difficulty by being in the above-mentioned range.
 また、本発明において偏光材料層3のピッチ(図1(b)に示すP)は、所望の偏光特性を得ることができるものであれば特に限定されるものではないが、例えば、60nm以上140nm以下の範囲内とすることができ、なかでも80nm以上120nm以下の範囲内であることが好ましく、特に90nm以上110nm以下の範囲内であることが好ましい。上記ピッチであることにより、波長が240nm以上400nm以下の紫外光に対して、消光比およびP波透過率に優れたものとすることができるからである。 In the present invention, the pitch of the polarizing material layer 3 (P shown in FIG. 1B) is not particularly limited as long as desired polarization characteristics can be obtained. It can be within the following range, in particular, it is preferably in the range of 80 nm to 120 nm, particularly preferably in the range of 90 nm to 110 nm. This is because the pitch is excellent in extinction ratio and P-wave transmittance with respect to ultraviolet light having a wavelength of 240 nm or more and 400 nm or less.
 また、本発明において偏光材料層3の幅(図1(b)に示すW)としては、所望の偏光特性を得ることができるものであれば特に限定されないが、25nm以上40nm以下の範囲とすることが好ましい。上記範囲であることにより、波長が240nm以上400nm以下の紫外光に対して、高いP波透過率を有したまま消光比に優れた偏光子とすることができ、さらに細線加工を容易にすることができるからである。
 なお、通常、上記幅を狭くすることで、P波透過率を向上することができる。
In the present invention, the width of the polarizing material layer 3 (W shown in FIG. 1 (b)) is not particularly limited as long as desired polarization characteristics can be obtained, but is in the range of 25 nm to 40 nm. It is preferable. By being in the above range, it is possible to obtain a polarizer having an excellent extinction ratio while having a high P-wave transmittance for ultraviolet light having a wavelength of 240 nm or more and 400 nm or less, and further facilitating thin wire processing. Because you can.
Normally, the P wave transmittance can be improved by narrowing the width.
<偏光子の製造方法>
 次に、本発明に係る偏光子の製造方法について説明する。
<Method for producing polarizer>
Next, the manufacturing method of the polarizer which concerns on this invention is demonstrated.
 図3は、本発明に係る偏光子の製造方法の一例を示す概略工程図である。
 例えば、図1に例示した偏光子10を製造するには、まず、図3(a)に示すように、透明基板1の上に、偏光材料層3を形成するための偏光材料膜3A、偏光材料層3を形成する際のエッチングマスクとして作用するハードマスク層7Aが順次積層された積層基板10Aを準備する。
FIG. 3 is a schematic process diagram showing an example of a method for producing a polarizer according to the present invention.
For example, in order to manufacture the polarizer 10 illustrated in FIG. 1, first, as shown in FIG. 3A, a polarizing material film 3 </ b> A for forming the polarizing material layer 3 on the transparent substrate 1, polarized light is formed. A laminated substrate 10A is prepared in which hard mask layers 7A that act as etching masks when forming the material layer 3 are sequentially laminated.
 なお、偏光材料膜3Aは、偏光材料層3を構成する材料と同一のものを用いて、スパッタリング法等の手法により形成することができる。また、ハードマスク層7Aは、上記の偏光材料層3を構成する材料とはドライエッチング特性が異なる材料を用いて、スパッタリング法等の手法により形成することができる。
 例えば、偏光材料層3を構成する材料にモリブデンシリサイド系の材料を用いる場合には、ハードマスク層7Aを構成する材料としてクロム系の材料を用いることができる。
The polarizing material film 3 </ b> A can be formed by a technique such as sputtering using the same material as that constituting the polarizing material layer 3. Further, the hard mask layer 7A can be formed by a technique such as sputtering using a material having different dry etching characteristics from the material constituting the polarizing material layer 3 described above.
For example, when a molybdenum silicide material is used as the material constituting the polarizing material layer 3, a chromium material can be used as the material constituting the hard mask layer 7A.
 次に、図3(b)に示すように、フォトリソ法、インプリント法、または電子線描画法等の手法により、ハードマスク層7Aの上に樹脂パターン8を形成し、次いで、この樹脂パターン8から露出するハードマスク層7Aをドライエッチング加工して、ハードマスクパターン7を形成し、その後、樹脂パターン8を除去する(図3(c))。
 例えば、ハードマスク層7Aを構成する材料としてクロム系の材料を用いる場合には、塩素と酸素の混合ガスによるドライエッチングで、ハードマスクパターン7を形成することができる。
Next, as shown in FIG. 3B, a resin pattern 8 is formed on the hard mask layer 7A by a technique such as a photolithography method, an imprint method, or an electron beam drawing method, and then the resin pattern 8 The hard mask layer 7A exposed from the substrate is dry-etched to form the hard mask pattern 7, and then the resin pattern 8 is removed (FIG. 3C).
For example, when a chromium-based material is used as the material constituting the hard mask layer 7A, the hard mask pattern 7 can be formed by dry etching using a mixed gas of chlorine and oxygen.
 次に、図3(d)に示すように、ハードマスクパターン7をエッチングマスクに用いて、偏光材料膜3Aをドライエッチング加工して偏光材料層3を形成し、その後、ハードマスクパターン7を除去して、偏光子10を得る(図3(e))。
 例えば、偏光材料層3を構成する材料にモリブデンシリサイド系の材料を用いる場合には、フッ素系ガスによるドライエッチングで、偏光材料層3を形成することができる。
Next, as shown in FIG. 3D, using the hard mask pattern 7 as an etching mask, the polarizing material film 3A is dry-etched to form the polarizing material layer 3, and then the hard mask pattern 7 is removed. Thus, the polarizer 10 is obtained (FIG. 3E).
For example, when a molybdenum silicide material is used as the material constituting the polarizing material layer 3, the polarizing material layer 3 can be formed by dry etching using a fluorine-based gas.
<用途>
 上記偏光子の用途としては、紫外線領域のような短波長の光の直線偏光生成用に用いられることが好ましく、なかでも、波長200nm~400nmの範囲内の光の直線偏光生成用であることが好ましい。
 光配向膜の材料として、波長260nm程度の光で配向されるもの、300nm程度の光で配向されるもの、365nm程度の光で配向されるものが知られており、材料に応じた波長の光源ランプが使われている。これらの光配向膜の配向に上記モリブデンシリサイド系材料層を含む偏光子を用いることができるからである。
<Application>
The polarizer is preferably used for generating linearly polarized light of short-wavelength light such as in the ultraviolet region, and in particular, for generating linearly polarized light of light in the wavelength range of 200 nm to 400 nm. preferable.
As a material of the photo-alignment film, a material that is aligned by light having a wavelength of about 260 nm, a material that is aligned by light of about 300 nm, and a material that is aligned by light of about 365 nm are known. A lamp is used. This is because a polarizer including the molybdenum silicide material layer can be used for the alignment of these photo-alignment films.
<光配向装置>
 次に、本発明に係る光配向装置について説明する。
 本発明の光配向装置は、紫外光を偏光して光配向膜に照射する光配向装置であって、上記の本発明に係る偏光子を備え、この偏光子により偏光した光を光配向膜に照射するものである。
<Optical alignment device>
Next, the photo-alignment apparatus according to the present invention will be described.
The photo-alignment device of the present invention is a photo-alignment device that polarizes ultraviolet light and irradiates the photo-alignment film. The photo-alignment device includes the polarizer according to the present invention, and the light polarized by the polarizer is applied to the photo-alignment film. Irradiation.
 図4は、本発明に係る光配向装置の構成例を示す図である。
 図4に示す光配向装置20は、本発明の偏光子が収められた偏光子ユニット21と紫外光ランプ22を備えており、紫外光ランプ22から照射された紫外光を偏光子ユニット21に収められた偏光子により偏光し、この偏光された光(偏光光24)をワーク26の上に形成された光配向膜25に照射することで、光配向膜25に配向規制力を付与するものである。
FIG. 4 is a diagram illustrating a configuration example of a photo-alignment apparatus according to the present invention.
The optical alignment apparatus 20 shown in FIG. 4 includes a polarizer unit 21 in which the polarizer of the present invention is housed and an ultraviolet light lamp 22, and the ultraviolet light irradiated from the ultraviolet light lamp 22 is housed in the polarizer unit 21. Polarized light is applied by the polarizer, and the polarized light (polarized light 24) is applied to the photo-alignment film 25 formed on the work 26, thereby imparting alignment regulating force to the photo-alignment film 25. is there.
 ここで、本発明においては、偏光子10の透明基板1に対して細線2側が、光配向装置20の紫外光ランプ22側になるように、偏光子ユニット21内に偏光子10を配置しても良く、また、細線2に対して透明基板1側が紫外光ランプ22側になるように偏光子ユニット21内に偏光子10を配置しても良い。 Here, in the present invention, the polarizer 10 is arranged in the polarizer unit 21 so that the thin wire 2 side is on the ultraviolet lamp 22 side of the optical alignment device 20 with respect to the transparent substrate 1 of the polarizer 10. Alternatively, the polarizer 10 may be disposed in the polarizer unit 21 so that the transparent substrate 1 side is on the ultraviolet lamp 22 side with respect to the thin wire 2.
 光配向装置20には、光配向膜25を形成したワーク26を移動させる機構が備えられており、ワーク26を移動させることにより、光配向膜25の全面に偏光光24を照射することができる。例えば、図4に示す例において、ワーク26は図中右方向(図4における矢印方向)に移動する。 The photo-alignment apparatus 20 is provided with a mechanism for moving the work 26 on which the photo-alignment film 25 is formed. By moving the work 26, the entire surface of the photo-alignment film 25 can be irradiated with the polarized light 24. . For example, in the example shown in FIG. 4, the work 26 moves in the right direction in the figure (the arrow direction in FIG. 4).
 なお、図4に示す例においては、ワーク26を矩形状の平板として示しているが、本発明において、ワーク26の形態は、偏光光24を照射することができるものであれば特に限定されず、例えば、ワーク26はフィルム状の形態であっても良く、また、巻取り可能なように帯状(ウェブ状)の形態であっても良い。 In the example shown in FIG. 4, the work 26 is shown as a rectangular flat plate. However, in the present invention, the form of the work 26 is not particularly limited as long as it can irradiate the polarized light 24. For example, the work 26 may be in the form of a film, or may be in the form of a strip (web) so that it can be wound.
 本発明において、紫外光ランプ22は、波長が240nm以上400nm以下の紫外光を照射することができるものであることが好ましく、また、光配向膜25は、波長が240nm以上400nm以下の紫外光に対して感度を有するものであることが好ましい。
 光配向装置20は、上記の波長の範囲の紫外光に対して消光比に優れ、高いP波透過率を有する本発明に係る偏光子を備えているため、上記の波長の範囲の紫外光に感度を有する光配向膜に配向規制力を付与することを効率良く行うことができ、生産性を向上させることができるからである。
In the present invention, it is preferable that the ultraviolet lamp 22 is capable of irradiating ultraviolet light having a wavelength of 240 nm or more and 400 nm or less, and the photo-alignment film 25 applies ultraviolet light having a wavelength of 240 nm or more and 400 nm or less. It is preferable that it has sensitivity to it.
Since the photo-alignment device 20 includes the polarizer according to the present invention that has an excellent extinction ratio with respect to ultraviolet light in the above-mentioned wavelength range and has a high P-wave transmittance, it is suitable for ultraviolet light in the above-mentioned wavelength range. This is because the alignment regulating force can be efficiently applied to the photo-alignment film having sensitivity, and the productivity can be improved.
 また、紫外光ランプ22からの光を効率良く偏光子に照射するために、光配向装置20は、紫外光ランプ22の背面側(偏光子ユニット21とは反対側)や側面側に紫外光を反射する反射鏡23を有していることが好ましい。 Further, in order to efficiently irradiate the polarizer with the light from the ultraviolet light lamp 22, the photo-alignment device 20 applies ultraviolet light to the back side (the side opposite to the polarizer unit 21) or the side surface of the ultraviolet light lamp 22. It is preferable to have a reflecting mirror 23 that reflects.
 また、大面積の光配向膜25に対して効率良く配向規制力を付与するためには、図4に示すように、紫外光ランプ22に棒状のランプを用いて、ワーク26の移動方向(図4における矢印方向)に対して直交する方向に長い照射領域となる偏光光24が照射されるように、光配向装置20を構成することが好ましい。 Further, in order to efficiently apply an alignment regulating force to the large-area photo-alignment film 25, as shown in FIG. 4, a rod-shaped lamp is used as the ultraviolet lamp 22 to move the work 26 (see FIG. It is preferable to configure the photo-alignment device 20 so that the polarized light 24 that is a long irradiation region is irradiated in a direction orthogonal to the arrow direction in FIG.
 この場合、偏光子ユニット21も大面積の光配向膜25に対して偏光光24を照射することに適した形態となるが、大面積の偏光子を製造することには困難性があるため、偏光子ユニット21内に、複数個の偏光子を配置することが、技術的にも経済的にも好ましい。 In this case, the polarizer unit 21 is also in a form suitable for irradiating the large-area photo-alignment film 25 with the polarized light 24, but it is difficult to produce a large-area polarizer. It is technically and economically preferable to arrange a plurality of polarizers in the polarizer unit 21.
 なお、紫外光ランプ22に棒状のランプを用いることにより、偏光子に入射する光の入射角が大きくなる場合が生じたとしても、本発明に係る偏光子は偏光光の偏光軸が回転することを抑制することができるため、光配向膜に配向規制力を付与することを効率良く行うことができる。 In addition, even if the incident angle of the light which injects into a polarizer becomes large by using a rod-shaped lamp for the ultraviolet light lamp 22, the polarizer according to the present invention rotates the polarization axis of the polarized light. Therefore, it is possible to efficiently apply the alignment regulating force to the photo-alignment film.
 また、本発明に係る光配向装置は、複数個の紫外光ランプを備える構成であっても良い。
 図5は、本発明に係る光配向装置の他の構成例を示す図である。
 図5に示すように、光配向装置30は、2個の紫外光ランプ32を備えており、各紫外光ランプ32とワーク36の間には、それぞれ、本発明の偏光子10が収められた偏光子ユニット31が備えられている。また、各紫外光ランプ32には、それぞれ反射鏡33が備えられている。
Moreover, the structure provided with a some ultraviolet light lamp may be sufficient as the photo-alignment apparatus based on this invention.
FIG. 5 is a diagram showing another configuration example of the optical alignment apparatus according to the present invention.
As shown in FIG. 5, the photo-alignment device 30 includes two ultraviolet light lamps 32, and the polarizer 10 of the present invention is accommodated between each ultraviolet light lamp 32 and the work 36. A polarizer unit 31 is provided. Each ultraviolet lamp 32 is provided with a reflecting mirror 33.
 このように、紫外光ランプ32を複数個備えることにより、紫外光ランプ32を1個備える場合よりも、ワーク36の上に形成された光配向膜35に照射する偏光光34の照射量を増加させることができる。それゆえ、紫外光ランプ32を1個備える場合よりも、ワーク36の移動速度を大きくすることができ、その結果、生産性を向上させることができる。 Thus, by providing a plurality of ultraviolet light lamps 32, the irradiation amount of the polarized light 34 applied to the photo-alignment film 35 formed on the workpiece 36 is increased as compared with the case where one ultraviolet light lamp 32 is provided. Can be made. Therefore, the moving speed of the workpiece 36 can be increased as compared with the case where one ultraviolet light lamp 32 is provided, and as a result, productivity can be improved.
 なお、図5に示す例においては、ワーク36の移動方向(図5における矢印方向)に2個の紫外光ランプ32を並列配置した構成を示しているが、本発明はこれに限らず、例えば、ワーク36の移動方向に直交する方向に、複数個の紫外光ランプを配置した構成であっても良く、さらに、ワーク36の移動方向及びそれに直交する方向の両方向に、複数個の紫外光ランプを配置した構成であっても良い。
 なお、ワークの移動方向に直交する方向とは、ワークの紫外光が照射される面を平面視した際にワークの移動方向に直交する方向をいうものである。
In the example shown in FIG. 5, a configuration in which two ultraviolet lamps 32 are arranged in parallel in the moving direction of the workpiece 36 (the arrow direction in FIG. 5) is shown, but the present invention is not limited to this. The plurality of ultraviolet light lamps may be arranged in a direction orthogonal to the moving direction of the work 36, and a plurality of ultraviolet light lamps may be provided in both the moving direction of the work 36 and the direction orthogonal thereto. It may be a configuration in which is arranged.
The direction orthogonal to the moving direction of the workpiece refers to a direction orthogonal to the moving direction of the workpiece when the surface of the workpiece irradiated with ultraviolet light is viewed in plan.
 また、図5に示す例においては、1個の紫外光ランプ32に対して1個の偏光子ユニット31が配設された構成を示しているが、本発明はこれに限らず、例えば、複数個の紫外光ランプに対して、1個の偏光子ユニットが配設された構成であっても良い。この場合、1個の偏光子ユニットは、複数個の紫外光ランプの照射領域を包含できる大きさを有していれば良い。 5 shows a configuration in which one polarizer unit 31 is provided for one ultraviolet lamp 32, the present invention is not limited to this, and for example, a plurality of polarizer units 31 may be used. The configuration may be such that one polarizer unit is provided for each ultraviolet lamp. In this case, it is sufficient that one polarizer unit has a size that can include irradiation regions of a plurality of ultraviolet lamps.
 図6は、本発明に係る光配向装置における偏光子の配置形態の例を示す図である。なお、図6(a)~(d)に示す偏光子の配置形態は、いずれも、平板状の偏光子10が光配向膜の膜面に対向して平面的に配列された形態を示している。 FIG. 6 is a diagram showing an example of the arrangement of polarizers in the optical alignment apparatus according to the present invention. 6 (a) to 6 (d), the arrangement forms of the polarizers are all shown in the form in which the plate-like polarizers 10 are arranged in a plane facing the film surface of the photo-alignment film. Yes.
 例えば、図4に示す光配向装置20において、ワーク26の移動方向に対して直交する方向に帯状の偏光光24を照射する場合は、偏光子ユニット21内には、図6(a)に示すように、ワーク26の移動方向(矢印方向)に対して直交する方向に、偏光子10を複数個配置することが効率的である。偏光子10の数を少なく抑えることができるからである。 For example, in the optical alignment apparatus 20 shown in FIG. 4, when the band-shaped polarized light 24 is irradiated in a direction orthogonal to the moving direction of the workpiece 26, the polarizer unit 21 has the configuration shown in FIG. Thus, it is efficient to arrange a plurality of polarizers 10 in a direction orthogonal to the moving direction (arrow direction) of the workpiece 26. This is because the number of polarizers 10 can be reduced.
 一方、偏光子10の面積が小さい場合や、光配向装置が複数個の紫外光ランプを備える場合には、図6(b)に示すように、ワークの移動方向(矢印方向)に対して直交する方向に加えて、移動方向(矢印方向)に沿う方向にも、偏光子10を複数個配置することが好ましい。紫外光ランプからの光を無駄なく光配向膜に照射でき、生産性を向上させることができるからである。 On the other hand, when the area of the polarizer 10 is small, or when the photo-alignment apparatus includes a plurality of ultraviolet lamps, as shown in FIG. 6B, it is orthogonal to the moving direction (arrow direction) of the workpiece. In addition to the direction to perform, it is preferable to arrange a plurality of polarizers 10 in the direction along the moving direction (arrow direction). This is because the light from the ultraviolet lamp can be irradiated to the photo-alignment film without waste, and the productivity can be improved.
 ここで、本発明においては、図6(c)および図6(d)に示すように、複数個配置する偏光子が、ワークの移動方向(矢印方向)に沿って一列に揃わないように、隣り合う偏光子の位置を、ワークの移動方向に直交する方向(図中の上下方向)にシフトさせて配置することが好ましい。
 言い換えれば、本発明においては、光配向膜の移動方向に直交する方向において隣り合う複数個の偏光子間の境界部が、光配向膜の移動方向に連続的に繋がらないように、複数個の偏光子が配置されていることが、好ましい。
 偏光子間の境界部においては、通常、偏光光が生じないため、この境界部が光配向膜に与える弊害を抑制するためである。
Here, in the present invention, as shown in FIGS. 6 (c) and 6 (d), a plurality of polarizers are arranged so that they are not aligned in a line along the workpiece movement direction (arrow direction). It is preferable that the positions of the adjacent polarizers are shifted and arranged in a direction (vertical direction in the drawing) orthogonal to the moving direction of the workpiece.
In other words, in the present invention, a plurality of boundary portions between a plurality of polarizers adjacent in the direction orthogonal to the moving direction of the photo-alignment film are not continuously connected to the moving direction of the photo-alignment film. It is preferable that a polarizer is disposed.
This is because polarized light usually does not occur at the boundary between the polarizers, and this prevents the boundary from adversely affecting the photo-alignment film.
 ここで、図6(c)に示す配置形態は、配置される複数個の偏光子が、いずれも同じ形状、同じサイズを有し、左右方向において隣り合う偏光子の上下方向の位置が、偏光子の上下方向の大きさの1/2の大きさのステップで上下方向にシフトしている配置形態である。
 また、図6(d)に示す配置形態は、配置される複数個の偏光子が、いずれも同じ形状、同じサイズを有し、左右方向において隣り合う偏光子の上下方向の位置が、偏光子の上下方向の大きさの1/2よりも小さいステップで上下方向にシフトしている配置形態である。
Here, in the arrangement form shown in FIG. 6C, the plurality of arranged polarizers all have the same shape and the same size, and the positions of the polarizers adjacent in the left-right direction are polarized. In this arrangement, the child is shifted in the vertical direction in steps of 1/2 the size of the child in the vertical direction.
Further, in the arrangement form shown in FIG. 6D, the plurality of arranged polarizers all have the same shape and the same size, and the positions of the polarizers adjacent in the left-right direction are in the vertical direction. In this arrangement, the vertical shift is performed in steps smaller than ½ of the vertical size.
 上記について、より詳しく説明する。
 図6(c)に示す配置形態において、上下方向に隣接配置された偏光子10aと偏光子10bの境界部41は、左右方向に配置された偏光子10cと偏光子10dによって、左右方向に伸びていくことを阻まれている。
 すなわち、図6(c)に示す配置形態においては、上下方向に隣接配置された偏光子間の境界部が左右方向に連続的に繋がっていくことを、阻止している。
 それゆえ、図6(c)に示す配置形態を採用して、光配向膜に偏光光を照射する場合、上記偏光子間の境界部に起因する弊害が光配向膜に連続的に及ぶことを抑制することができる。
The above will be described in more detail.
In the arrangement shown in FIG. 6C, the boundary portion 41 between the polarizer 10a and the polarizer 10b adjacently arranged in the vertical direction extends in the horizontal direction by the polarizer 10c and the polarizer 10d arranged in the horizontal direction. It is blocked from going.
That is, in the arrangement form shown in FIG. 6C, it is prevented that the boundary portion between the polarizers adjacently arranged in the vertical direction is continuously connected in the horizontal direction.
Therefore, when the arrangement shown in FIG. 6C is adopted and the photo-alignment film is irradiated with polarized light, the adverse effect caused by the boundary between the polarizers continuously affects the photo-alignment film. Can be suppressed.
 同様に、図6(d)に示す配置形態においても、上下方向に隣接配置された偏光子間の境界部が左右方向に連続的に繋がっていくことが、阻止されている。
 それゆえ、図6(d)に示す配置形態を採用して、光配向膜に偏光光を照射する場合、上記偏光子間の境界部に起因する弊害が光配向膜に連続的に及ぶことを抑制することができる。
Similarly, also in the arrangement form shown in FIG. 6D, it is prevented that the boundary portion between the polarizers adjacently arranged in the vertical direction is continuously connected in the horizontal direction.
Therefore, when the arrangement shown in FIG. 6 (d) is adopted to irradiate the photo-alignment film with polarized light, the adverse effect caused by the boundary between the polarizers continuously affects the photo-alignment film. Can be suppressed.
 なお、図6(c)に示す配置形態においては、偏光子の上下方向の大きさの1/2の大きさのステップで上下方向にシフトしているため、左右方向(ワークの移動方向)に対して、偏光子2個毎に境界部41の上下方向の位置が揃うことになる。
 一方、図6(d)に示す配置形態においては、偏光子の上下方向の大きさの1/2よりも小さいステップで上下方向にシフトしているため、境界部42の上下方向の位置は、より揃い難くなる。
 それゆえ、図6(d)に示す配置形態においては、上記偏光子間の境界部に起因する弊害が光配向膜に連続的に及ぶことを、より抑制することができる。
In the arrangement shown in FIG. 6 (c), since it is shifted in the vertical direction in steps of 1/2 the size of the polarizer in the vertical direction, it is in the horizontal direction (workpiece movement direction). On the other hand, the vertical position of the boundary portion 41 is aligned for every two polarizers.
On the other hand, in the arrangement form shown in FIG. 6D, the vertical position of the boundary portion 42 is shifted in the vertical direction in steps smaller than ½ of the vertical size of the polarizer. It becomes harder to align.
Therefore, in the arrangement form shown in FIG. 6 (d), it is possible to further suppress the adverse effects caused by the boundary portion between the polarizers from being continuously applied to the photo-alignment film.
 なお、図6(a)~図6(d)に示す例においては、個々の偏光子は、その側面が互いに接するように配置されているが、本発明は、この形態に限定されず、隣り合う偏光子間の境界部が隙間を有している形態であっても良い。 In the example shown in FIGS. 6 (a) to 6 (d), the individual polarizers are arranged so that the side surfaces thereof are in contact with each other. However, the present invention is not limited to this form, and is adjacent to each other. A form in which a boundary portion between the matching polarizers has a gap may be employed.
 また、隣り合う偏光子の端部を互いに重ねることにより、偏光子間の境界部に隙間が生じない形態としても良い。 Further, the end portions of adjacent polarizers may be overlapped with each other so that no gap is generated at the boundary between the polarizers.
 以上、本発明に係る偏光子および光配向装置について、それぞれの実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一の構成を有し、同様な作用効果を奏するものは、いかなる場合であっても本発明の技術的範囲に包含される。 As mentioned above, although each embodiment was described about the polarizer and optical orientation device concerning the present invention, the present invention is not limited to the above-mentioned embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention and exhibits the same function and effect regardless of the case. Are included in the technical scope.
 以下に実施例を示して、本発明をさらに具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to examples.
[実施例1]
 図7に示すように、偏光子14に対し、波長254nmの光が、細線2が形成された側から方位角45度、入射角60度で入射する場合について、「回折光学素子の数値解析とその応用」(丸善出版、小舘香椎子監修)に記載のRCWA(Regorous Coupled Wave Analysis)に基づくシミュレーションモデルを作成し、偏光材料層3を構成する偏光材料の屈折率n及び消衰係数kと、偏光子14から出射する偏光光の偏光軸の回転量の関係を算出した。
[Example 1]
As shown in FIG. 7, with respect to the case where light having a wavelength of 254 nm is incident on the polarizer 14 at an azimuth angle of 45 degrees and an incident angle of 60 degrees from the side on which the thin wire 2 is formed, “Numerical analysis of the diffractive optical element and A simulation model based on RCWA (Regorous Coupled Wave Analysis) described in “Applications” (supervised by Maruzen Publishing Co., Ltd., Kyoko Kosuge) is created, and the refractive index n and extinction coefficient k of the polarizing material constituting the polarizing material layer 3 are: The relationship of the rotation amount of the polarization axis of the polarized light emitted from the polarizer 14 was calculated.
 なお、この実施例1のシミュレーションモデルにおいては、図8に示すように、偏光子14の細線2は、単層の偏光材料層3の上面および側面に酸化膜4を有し、偏光材料層3の底側に透明基板1が掘り込まれて形成された台座部5を有する構成とした。
 ここで、偏光材料層3の厚みT1は150nm、台座部5の厚み(透明基板1の掘り込み量)T2は12nm、細線2の幅W1は35.5nm、細線2のピッチP1は100nm、酸化膜4の幅W2は9nmとした。
 また、酸化膜4の波長254nmの光に対する屈折率は1.541566、消衰係数は0.004877とし、透明基板1(台座部5も同じ)の波長254nmの光に対する屈折率は1.5054、消衰係数は0とした。
In the simulation model of Example 1, as shown in FIG. 8, the thin wire 2 of the polarizer 14 has the oxide film 4 on the upper surface and side surfaces of the single-layer polarizing material layer 3, and the polarizing material layer 3. The base plate 5 has a pedestal portion 5 formed by digging the transparent substrate 1.
Here, the thickness T 1 of the polarizing material layer 3 is 150 nm, the thickness (the digging amount of the transparent substrate 1) T 2 of the pedestal portion 5 is 12 nm, the width W 1 of the fine wire 2 is 35.5 nm, and the pitch P 1 of the fine wire 2 Was 100 nm, and the width W 2 of the oxide film 4 was 9 nm.
The refractive index of the oxide film 4 with respect to light with a wavelength of 254 nm is 1.541566, the extinction coefficient is 0.004877, and the refractive index with respect to light with a wavelength of 254 nm of the transparent substrate 1 (the pedestal 5 is the same) is 1.5054. The extinction coefficient was 0.
 結果を表1及び図9に示す。なお、表1及び図9において、偏光軸の回転量は、入射光の入射角が0度の場合の偏光軸の方向を基準とし、この方向からの回転量(回転角度)を示している。 The results are shown in Table 1 and FIG. In Table 1 and FIG. 9, the amount of rotation of the polarization axis indicates the amount of rotation (rotation angle) from this direction with reference to the direction of the polarization axis when the incident angle of incident light is 0 degrees.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1及び図9に示すように、偏光材料層3を構成する材料の屈折率nと消衰係数kの範囲を適切に選ぶことで、偏光子に入射する光の入射角が大きくなる場合であっても、偏光光の偏光軸の回転を抑制することが可能であることが確認された。 As shown in Table 1 and FIG. 9, the incident angle of light incident on the polarizer is increased by appropriately selecting the ranges of the refractive index n and the extinction coefficient k of the material constituting the polarizing material layer 3. Even in this case, it was confirmed that the rotation of the polarization axis of the polarized light can be suppressed.
[実施例2]
 次に、図8に示す偏光子14に対し、波長254nmの光が、細線2が形成された側から方位角0度、入射角0度で入射する場合について、「回折光学素子の数値解析とその応用」(丸善出版、小舘香椎子監修)に記載のRCWA(Regorous Coupled Wave Analysis)に基づくシミュレーションモデルを作成し、偏光材料層3を構成する材料の波長254nmの光における屈折率n及び消衰係数kと、消光比の関係を算出した。
 ここで、図8に示す偏光子14の偏光材料層3の厚みT1、台座部5の厚みT2、細線2の幅W1、細線2のピッチP1、酸化膜4の幅W2、並びに、酸化膜4の波長254nmの光に対する屈折率及び消衰係数、透明基板1(台座部5も同じ)の波長254nmの光に対する屈折率及び消衰係数、の各値は、実施例1と同じとした。
 結果を表2及び図10に示す。
[Example 2]
Next, with respect to the case where light having a wavelength of 254 nm is incident on the polarizer 14 shown in FIG. 8 at an azimuth angle of 0 degrees and an incident angle of 0 degrees from the side on which the thin wire 2 is formed, “Numerical analysis of diffractive optical element and A simulation model based on RCWA (Regorous Coupled Wave Analysis) described in “Applications” (supervised by Maruzen Publishing Co., Ltd., Kyoko Kobuchi) was created, and the refractive index n and extinction of light of wavelength 254 nm of the material constituting the polarizing material layer 3 The relationship between the coefficient k and the extinction ratio was calculated.
Here, the thickness T 1 of the polarizing material layer 3 of the polarizer 14 shown in FIG. 8, the thickness T 2 of the pedestal portion 5, the width W 1 of the fine wire 2, the pitch P 1 of the fine wire 2, the width W 2 of the oxide film 4, In addition, the values of the refractive index and extinction coefficient with respect to light with a wavelength of 254 nm of the oxide film 4 and the refractive index and extinction coefficient with respect to light with a wavelength of 254 nm of the transparent substrate 1 (the pedestal 5 are the same) are as in Example 1. Same as above.
The results are shown in Table 2 and FIG.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2及び図10に示すように、偏光材料層3を構成する材料の屈折率nと消衰係数kの範囲を適切に選ぶことで、消光比を高くできることが確認された。 As shown in Table 2 and FIG. 10, it was confirmed that the extinction ratio can be increased by appropriately selecting the ranges of the refractive index n and the extinction coefficient k of the material constituting the polarizing material layer 3.
[実施例1および2の評価]
 上記の実施例1および実施例2の結果から、偏光材料層3を構成する材料の屈折率nと消衰係数kを、特定の範囲を満たすものとすることで、偏光材料層3を有する偏光子14において、紫外線領域のような短波長の光に対して高い消光比を有しつつ、偏光子に入射する光の入射角が大きくなる場合であっても、偏光光の偏光軸が回転することを抑制することができることが確認できた。
[Evaluation of Examples 1 and 2]
From the results of Example 1 and Example 2 above, the polarized light having the polarizing material layer 3 by satisfying the specific ranges of the refractive index n and the extinction coefficient k of the material constituting the polarizing material layer 3. The polarizer 14 has a high extinction ratio with respect to short-wavelength light such as the ultraviolet region, and the polarization axis of the polarized light rotates even when the incident angle of light incident on the polarizer increases. It was confirmed that this can be suppressed.
 例えば、厚みT1が150nmの偏光材料層3を有する偏光子14において、屈折率nと消衰係数kが、2.3≦n≦3.1であって1.5≦k≦2.3の範囲を満たすものであれば、波長254nmの光が、方位角45度、入射角60度という大きな角度で偏光子14に入射する場合であっても、偏光子14から出射する偏光光の偏光軸の回転量を±3度以内に抑制することができ、かつ、消光比を50以上とすることができる。 For example, in the polarizer 14 having the polarizing material layer 3 having a thickness T 1 of 150 nm, the refractive index n and the extinction coefficient k are 2.3 ≦ n ≦ 3.1 and 1.5 ≦ k ≦ 2.3. As long as it satisfies the above range, even if light having a wavelength of 254 nm is incident on the polarizer 14 with a large azimuth angle of 45 degrees and an incident angle of 60 degrees, the polarization of the polarized light emitted from the polarizer 14 The rotation amount of the shaft can be suppressed within ± 3 degrees, and the extinction ratio can be 50 or more.
 そして、上記の屈折率nと消衰係数kの範囲を満たす材料としては、モリブデンシリサイド(MoSi)系材料、すなわち、モリブデンシリサイド(MoSi)またはその酸化物(MoSiO)、窒化物(MoSiN)、酸窒化物(MoSiON)のいずれかを含むものを挙げることができる。 As materials satisfying the ranges of the refractive index n and the extinction coefficient k, molybdenum silicide (MoSi) materials, that is, molybdenum silicide (MoSi) or its oxide (MoSiO), nitride (MoSiN), acid The thing containing either nitride (MoSiON) can be mentioned.
[実施例3]
 次に、図8に示す偏光材料層3の厚みT1を170nmとし、細線2の幅W1を34.5nmとした以外は実施例1と同様にして、偏光子14に対し、波長254nmの光が、細線2が形成された側から方位角45度、入射角60度で入射する場合について、RCWA(Regorous Coupled Wave Analysis)に基づくシミュレーションモデルを作成し、偏光材料層3を構成する偏光材料の屈折率n及び消衰係数kと、偏光子14から出射する偏光光の偏光軸の回転量の関係を算出した。
 結果を表3及び図11に示す。
[Example 3]
Next, in the same manner as in Example 1 except that the thickness T 1 of the polarizing material layer 3 shown in FIG. 8 is 170 nm and the width W 1 of the thin wire 2 is 34.5 nm, the polarizer 14 has a wavelength of 254 nm. A polarizing material constituting the polarizing material layer 3 by creating a simulation model based on RCWA (Regorous Coupled Wave Analysis) when light is incident at an azimuth angle of 45 degrees and an incident angle of 60 degrees from the side where the thin wire 2 is formed The relationship between the refractive index n and extinction coefficient k of the light and the amount of rotation of the polarization axis of the polarized light emitted from the polarizer 14 was calculated.
The results are shown in Table 3 and FIG.
 なお、偏光材料層3の厚みの変更に伴って細線2の幅も変更した理由は、細線2の幅を同じにして偏光材料層3の厚みを厚くすると、偏光子14から出射する偏光光の透過率が低下してしまうため、これを回避するためである。すなわち、この実施例3と上記の実施例1において、偏光子14から出射する偏光光の透過率は近い値になるようにしている。 The reason why the width of the thin wire 2 is changed along with the change of the thickness of the polarizing material layer 3 is that if the width of the thin wire 2 is the same and the thickness of the polarizing material layer 3 is increased, the polarized light emitted from the polarizer 14 is increased. This is to avoid this because the transmittance decreases. That is, in Example 3 and Example 1 described above, the transmittance of the polarized light emitted from the polarizer 14 is set to a close value.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
[実施例4]
 次に、図8に示す偏光材料層3の厚みT1を170nmとし、細線2の幅W1を34.5nmとした以外は実施例2と同様にして、偏光子14に対し、波長254nmの光が、細線2が形成された側から方位角0度、入射角0度で入射する場合について、RCWA(Regorous Coupled Wave Analysis)に基づくシミュレーションモデルを作成し、偏光材料層3を構成する材料の波長254nmの光における屈折率n及び消衰係数kと、消光比の関係を算出した。
 結果を表4及び図12に示す。
[Example 4]
Next, in the same manner as in Example 2 except that the thickness T 1 of the polarizing material layer 3 shown in FIG. 8 is 170 nm and the width W 1 of the thin wire 2 is 34.5 nm, the polarizer 14 has a wavelength of 254 nm. A simulation model based on RCWA (Regorous Coupled Wave Analysis) is created for the case where light is incident at an azimuth angle of 0 ° and an incident angle of 0 ° from the side where the thin wire 2 is formed, and the material constituting the polarizing material layer 3 is created. The relationship between the refractive index n and extinction coefficient k in the light of wavelength 254 nm and the extinction ratio was calculated.
The results are shown in Table 4 and FIG.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
[実施例3および4の評価]
 上記の実施例3および実施例4の結果から、偏光材料層3を構成する材料の屈折率nと消衰係数kを、特定の範囲を満たすものとすることで、厚みT1が170nmの偏光材料層3を有する偏光子14においても、紫外線領域のような短波長の光に対して高い消光比を有しつつ、偏光子に入射する光の入射角が大きくなる場合であっても、偏光光の偏光軸が回転することを抑制することができることが確認できた。
[Evaluation of Examples 3 and 4]
From the results of Example 3 and Example 4 described above, the refractive index n and the extinction coefficient k of the material constituting the polarizing material layer 3 satisfy a specific range, and thus polarized light having a thickness T 1 of 170 nm. The polarizer 14 having the material layer 3 also has a high extinction ratio with respect to short-wavelength light such as in the ultraviolet region, and even if the incident angle of light incident on the polarizer is large, It was confirmed that rotation of the polarization axis of light can be suppressed.
 例えば、屈折率nと消衰係数kが、2.3≦n≦3.1であって1.5≦k≦2.3の範囲を満たすものであれば、厚みT1が170nmの偏光材料層3を有する偏光子14においても、波長254nmの光が、方位角45度、入射角60度という大きな角度で偏光子14に入射する場合であっても、偏光子14から出射する偏光光の偏光軸の回転量を±3度以内に抑制することができ、かつ、消光比を50以上とすることができる。 For example, if the refractive index n and the extinction coefficient k are 2.3 ≦ n ≦ 3.1 and satisfy the range of 1.5 ≦ k ≦ 2.3, a polarizing material having a thickness T 1 of 170 nm Even in the polarizer 14 having the layer 3, even when light having a wavelength of 254 nm is incident on the polarizer 14 with a large azimuth angle of 45 degrees and an incident angle of 60 degrees, the polarized light emitted from the polarizer 14 The amount of rotation of the polarization axis can be suppressed within ± 3 degrees, and the extinction ratio can be 50 or more.
 さらに、実施例3および実施例4の結果から、厚みT1が170nmの偏光材料層3を有する偏光子14においては、屈折率nと消衰係数kの範囲を、より広い範囲とすることもできることが確認された。
 例えば、厚みT1が170nmの偏光材料層3を有する偏光子14においては、屈折率nと消衰係数kが、2.3≦n≦3.5であって1.3≦k≦2.3の範囲を満たすものであれば、波長254nmの光が、方位角45度、入射角60度という大きな角度で偏光子14に入射する場合であっても、偏光子14から出射する偏光光の偏光軸の回転量を±3度以内に抑制することができ、かつ、消光比を50以上とすることができる。
Further, from the results of Example 3 and Example 4, in the polarizer 14 having the polarizing material layer 3 having a thickness T 1 of 170 nm, the range of the refractive index n and the extinction coefficient k may be made wider. It was confirmed that it was possible.
For example, in the polarizer 14 having the polarizing material layer 3 having a thickness T 1 of 170 nm, the refractive index n and the extinction coefficient k are 2.3 ≦ n ≦ 3.5 and 1.3 ≦ k ≦ 2. 3 is satisfied, even if light having a wavelength of 254 nm is incident on the polarizer 14 at an azimuth angle of 45 degrees and an incident angle of 60 degrees, the polarized light emitted from the polarizer 14 The amount of rotation of the polarization axis can be suppressed within ± 3 degrees, and the extinction ratio can be 50 or more.
 なお、上記の2.3≦n≦3.5であって1.3≦k≦2.3の範囲を満たす材料としても、モリブデンシリサイド(MoSi)系材料、すなわち、モリブデンシリサイド(MoSi)またはその酸化物(MoSiO)、窒化物(MoSiN)、酸窒化物(MoSiON)のいずれかを含むものを挙げることができる。 In addition, as a material satisfying the above 2.3 ≦ n ≦ 3.5 and 1.3 ≦ k ≦ 2.3, molybdenum silicide (MoSi) -based material, that is, molybdenum silicide (MoSi) or its material Examples include oxide (MoSiO), nitride (MoSiN), and oxynitride (MoSiON).
[実施例5]
 次に、偏光子14に対し、波長254nmの光が、細線2が形成された側から方位角45度、入射角0度~60度で入射する場合について、「回折光学素子の数値解析とその応用」(丸善出版、小舘香椎子監修)に記載のRCWA(Regorous Coupled Wave Analysis)に基づくシミュレーションモデルを作成し、入射光の入射角と、偏光軸の回転量の関係を算出した。
[Example 5]
Next, regarding the case where light having a wavelength of 254 nm is incident on the polarizer 14 from the side where the thin wire 2 is formed at an azimuth angle of 45 degrees and an incident angle of 0 degrees to 60 degrees, “Numerical analysis of diffractive optical element and its A simulation model based on RCWA (Regorous Coupled Wave Analysis) described in “Applications” (supervised by Kousiko Kosuge) was created, and the relationship between the incident angle of incident light and the rotation amount of the polarization axis was calculated.
 なお、この実施例5のシミュレーションモデルにおいては、偏光材料層3を構成する偏光材料の波長254nmの光における屈折率nは2.7、消衰係数kは1.93とし、実施例1に用いた偏光材料層3の厚みT1が、150nmの偏光子14と、実施例3に用いた偏光材料層3の厚みT1が、170nmの偏光子14の両方について、入射光の入射角と、偏光軸の回転量の関係を算出した。
 結果を表5及び図13に示す。
In the simulation model of Example 5, the refractive index n in the light with a wavelength of 254 nm of the polarizing material constituting the polarizing material layer 3 is 2.7 and the extinction coefficient k is 1.93. The incident angle of incident light for both the polarizer 14 having a thickness T 1 of 150 nm and the polarizer 14 having a thickness T 1 of 170 nm used in Example 3; The relationship of the amount of rotation of the polarization axis was calculated.
The results are shown in Table 5 and FIG.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5及び図13に示すように、上記条件の偏光子14は、入射角0度~60度の入射光に対して、偏光光の偏光軸の回転量を±1度以内に抑制できることが確認された。 As shown in Table 5 and FIG. 13, it is confirmed that the polarizer 14 under the above conditions can suppress the rotation amount of the polarization axis of the polarized light within ± 1 degree with respect to the incident light with an incident angle of 0 to 60 degrees. It was done.
[実施例6]
(偏光子の製造)
 透明基板として膜厚6.35mmの合成石英ガラスを準備し、モリブデンとシリコンとの混合ターゲットを用いアルゴン窒素の混合ガス雰囲気で反応性スパッタリング法により、モリブデンシリサイド系材料膜として、膜厚170nmの窒化したモリブデンシリサイド膜を形成した。
 さらにモリブデンシリサイド膜上に、ハードマスクとして酸化窒化クロム膜を15nmでスパッタリング法で形成した。
 次いで、ハードマスク上に、ピッチが100nmのラインアンドスペースパターンを有するパターン状レジストを形成した。その後、エッチングガスとして塩素と酸素の混合ガスを用いてクロム系材料のハードマスクをドライエッチングし、続いてSFを用いて、モリブデンシリサイド系材料膜をドライエッチングし、その後ハードマスクを剥離することにより、偏光子を得た。
 得られた偏光子の細線の幅、厚み、およびピッチをVistec社製SEM測定装置LWM9000とVEECO社製AFM装置DIMENSION-X3Dにより測定したところ、それぞれ、28nm、170nmおよび100nmであった。
[Example 6]
(Manufacture of polarizers)
A synthetic quartz glass with a film thickness of 6.35 mm is prepared as a transparent substrate, and a nitride film with a film thickness of 170 nm is formed as a molybdenum silicide-based material film by a reactive sputtering method in a mixed gas atmosphere of argon and nitrogen using a mixed target of molybdenum and silicon. A molybdenum silicide film was formed.
Further, a chromium oxynitride film was formed as a hard mask at 15 nm on the molybdenum silicide film by a sputtering method.
Next, a patterned resist having a line and space pattern with a pitch of 100 nm was formed on the hard mask. Thereafter, a hard mask made of a chromium-based material is dry-etched using a mixed gas of chlorine and oxygen as an etching gas, followed by dry-etching the molybdenum silicide-based material film using SF 6 , and then the hard mask is peeled off. Thus, a polarizer was obtained.
The widths, thicknesses, and pitches of the thin lines of the obtained polarizer were 28 nm, 170 nm, and 100 nm, respectively, as measured by a VEMTEC SEM measuring device LWM9000 and a VEECO AFM device DIMENSION-X3D.
(細線の構造評価)
 実施例6の偏光子の細線について透過型エリプソメータ(ウーラム社製VUV-VASE)により、モリブデンシリサイド系材料層の屈折率および消衰係数の屈折率および消衰係数を測定したところ、波長254nmにおける屈折率nは、2.43であり、波長254nmにおける消衰係数kは、1.80であった。
 また、酸化ケイ素膜の屈折率および消衰係数の屈折率および消衰係数を、透過型エリプソメータ(ウーラム社製VUV-VASE)を用いて測定したところ、波長254nmにおける屈折率nは、1.54であり、波長254nmにおける消衰係数kは、0.00であった。
 また、合成石英の屈折率および消衰係数の屈折率および消衰係数を、透過型エリプソメータ(ウーラム社製VUV-VASE)を用いて測定したところ、波長254nmにおける屈折率nは、1.50であり、波長254nmにおける消衰係数kは、0.00であった。
(Structural evaluation of thin wires)
When the refractive index and extinction coefficient of the molybdenum silicide-based material layer were measured for the fine wire of the polarizer of Example 6 with a transmission ellipsometer (VUV-VASE manufactured by Woollam), the refraction at a wavelength of 254 nm was measured. The rate n was 2.43, and the extinction coefficient k at a wavelength of 254 nm was 1.80.
Further, when the refractive index and extinction coefficient of the silicon oxide film were measured using a transmission ellipsometer (VUV-VASE manufactured by Woollam), the refractive index n at a wavelength of 254 nm was 1.54. The extinction coefficient k at a wavelength of 254 nm was 0.00.
Further, when the refractive index and extinction coefficient of synthetic quartz were measured using a transmission ellipsometer (VUV-VASE manufactured by Woollam), the refractive index n at a wavelength of 254 nm was 1.50. In addition, the extinction coefficient k at a wavelength of 254 nm was 0.00.
(P波透過率およびS波透過率の測定と消光比の算出)
 実施例6の偏光子について透過型エリプソメータ(ウーラム社製VUV-VASE)により、波長254nm、313nm、365nmの紫外光のP波透過率(出射光中のP波成分/入射光中のP波成分)およびS波透過率(出射光中のS波成分/入射光中のS波成分)を、面内9行×9列の81点で測定し、偏光子のP波透過率に対する消光比(P波透過率/S波透過率)を算出した。結果を、図14および図15に示す。なお、図14は照射した紫外光の波長(nm)(横軸)に対する81点の消光比の平均値(縦軸)を示すグラフであり、図15は各波長の紫外光における81点の偏光子のP波透過率の平均値(横軸)に対する81点の消光比の平均値(縦軸)を示すグラフである。
 なお、面内81点でのそれぞれの箇所での測定は、直径5mmの円形領域内を測定することにより行った。
 また、面内81点の測定箇所は、10mm×120mmの範囲内で、各測定箇所での測定領域同士が重なり合わないように配置した。
 図14および図15に示すように、各波長において、偏光子として利用可能な消光比を得ることができることを確認できた。特に照射する紫外光が254nmの短波長である場合において、平均P波透過率は65.6%であり平均消光比が285と、良好な結果を得られることを確認できた。さらに、紫外光の波長が313nmおよび365nmの場合でも、それぞれの平均消光比が235および76と、消光比を50以上とすることができることが確認できた。
 このように、屈折率nと消衰係数kが、2.3≦n≦3.1であって1.5≦k≦2.3の範囲を満たすものであることで、紫外光の波長が254nmのみならず、313nmおよび365nmの場合でも、消光比を50以上とすることができることが確認できた。
 また、紫外光の波長が254nmである場合について、厚みT1が170nmの偏光材料層3を有する偏光子14についてシミュレーションを行った実施例4と比較すると、概ね同様の消光比が得られたことが確認できた。
(Measurement of P wave transmittance and S wave transmittance and calculation of extinction ratio)
For the polarizer of Example 6, using a transmission ellipsometer (VUV-VASE manufactured by Woollam Co., Ltd.), the P-wave transmittance of ultraviolet light having a wavelength of 254 nm, 313 nm, and 365 nm (P-wave component in outgoing light / P-wave component in incident light) ) And S wave transmittance (S wave component in the emitted light / S wave component in the incident light) are measured at 81 points of 9 rows × 9 columns in the plane, and the extinction ratio (P wave transmittance of the polarizer) ( (P wave transmittance / S wave transmittance) was calculated. The results are shown in FIGS. 14 and 15. 14 is a graph showing the average value (vertical axis) of the extinction ratio at 81 points with respect to the wavelength (nm) (horizontal axis) of the irradiated ultraviolet light, and FIG. 15 is the polarization of 81 points in the ultraviolet light of each wavelength. It is a graph which shows the average value (vertical axis) of the extinction ratio of 81 points with respect to the average value (horizontal axis) of the P wave transmittance of the child.
In addition, the measurement at each location at 81 points in the plane was performed by measuring the inside of a circular region having a diameter of 5 mm.
Further, 81 measurement points in the plane were arranged within a range of 10 mm × 120 mm so that the measurement regions at each measurement point did not overlap each other.
As shown in FIGS. 14 and 15, it was confirmed that an extinction ratio usable as a polarizer can be obtained at each wavelength. In particular, in the case where the irradiated ultraviolet light has a short wavelength of 254 nm, the average P wave transmittance was 65.6% and the average extinction ratio was 285, confirming that good results were obtained. Furthermore, even when the wavelength of ultraviolet light was 313 nm and 365 nm, it was confirmed that the respective average extinction ratios were 235 and 76, and the extinction ratio could be 50 or more.
Thus, the refractive index n and the extinction coefficient k satisfy 2.3 ≦ n ≦ 3.1 and satisfy the range of 1.5 ≦ k ≦ 2.3. It was confirmed that the extinction ratio could be 50 or more not only at 254 nm but also at 313 nm and 365 nm.
Further, in the case where the wavelength of the ultraviolet light is 254 nm, compared with Example 4 in which the polarizer 14 having the polarizing material layer 3 having a thickness T 1 of 170 nm was simulated, the substantially same extinction ratio was obtained. Was confirmed.
(入射角度に対する偏光軸の回転量の測定)
 実施例6の偏光子について、透過型エリプソメータ(ウーラム社製VUV-VASE)により、波長254nmの紫外光における方位角45度、入射角(0度、30度、60度)に対する偏光子から出射する偏光光の偏光軸の回転量を測定した。測定は面内の中心点で測定した。
 その結果を下記表6に示す。
 表6に示すように、方位角45度、入射角60度という大きな角度で偏光子に入射する場合であっても、偏光子から出射する偏光光の偏光軸の回転量を±3度以内に抑制することが確認できた。
 本実施形態により、254nm付近の紫外線領域の波長の光において、消光比と回転軸の回転量の抑制を両立させることができた。回転軸の回転量が少ないため、入射角が付きやすい棒状の長尺ランプを光源に用いた場合においても良好な偏光性能を得ることができる。
(Measurement of rotation amount of polarization axis with respect to incident angle)
About the polarizer of Example 6, it is radiate | emitted from the polarizer with respect to the azimuth | direction angle of 45 degree | times in an ultraviolet light with a wavelength of 254 nm, and an incident angle (0 degree | times, 30 degree | times, 60 degree | times) with a transmission-type ellipsometer (Woolum VUV-VASE). The amount of rotation of the polarization axis of the polarized light was measured. The measurement was performed at the center point in the plane.
The results are shown in Table 6 below.
As shown in Table 6, the amount of rotation of the polarization axis of the polarized light emitted from the polarizer is within ± 3 degrees even when it is incident on the polarizer at an azimuth angle of 45 degrees and an incident angle of 60 degrees. It was confirmed that it was suppressed.
According to the present embodiment, it is possible to achieve both the extinction ratio and the suppression of the rotation amount of the rotation shaft in the light having a wavelength in the ultraviolet region near 254 nm. Since the amount of rotation of the rotating shaft is small, good polarization performance can be obtained even when a rod-like long lamp with an easy incident angle is used as the light source.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 1 透明基板
 2 細線
 3 偏光材料層
 3A 偏光材料膜
 4 酸化膜
 5 台座部
 6 中間層
 7 ハードマスクパターン
 7A ハードマスク層
 8 樹脂パターン
 10、11、12、13、14 偏光子
 10A 積層基板
 20、30 光配向装置
 21、31 偏光子ユニット
 22、32 紫外光ランプ
 23、33 反射鏡
 24、34 偏光光
 25、35 光配向膜
 26、36 ワーク
 41、42 境界部
DESCRIPTION OF SYMBOLS 1 Transparent substrate 2 Thin wire 3 Polarizing material layer 3A Polarizing material film 4 Oxide film 5 Pedestal part 6 Intermediate layer 7 Hard mask pattern 7A Hard mask layer 8 Resin pattern 10, 11, 12, 13, 14 Polarizer 10A Laminated substrate 20, 30 Optical alignment device 21, 31 Polarizer unit 22, 32 Ultraviolet lamp 23, 33 Reflector 24, 34 Polarized light 25, 35 Photo alignment film 26, 36 Work piece 41, 42 Border

Claims (3)

  1.  透明基板の上に複数本の細線が並列に配置された偏光子であって、
     前記細線は、
     前記偏光子から出射する偏光光の消光比を向上させる作用と、
     前記偏光子から出射する偏光光の偏光軸が回転することを抑制する作用と、
     を併せ持つ単層の偏光材料層を有し、
     前記偏光材料層を構成する偏光材料の波長254nmの光における屈折率nと消衰係数kが、2.3≦n≦3.1であって1.5≦k≦2.3の範囲を満たすものであることを特徴とする偏光子。
    A polarizer in which a plurality of thin wires are arranged in parallel on a transparent substrate,
    The fine line is
    An effect of improving the extinction ratio of polarized light emitted from the polarizer;
    The action of suppressing the rotation of the polarization axis of the polarized light emitted from the polarizer;
    Having a single layer of polarizing material layer,
    The refractive index n and the extinction coefficient k in the light having a wavelength of 254 nm of the polarizing material constituting the polarizing material layer satisfy the range of 2.3 ≦ n ≦ 3.1 and 1.5 ≦ k ≦ 2.3. A polarizer characterized by being a thing.
  2.  前記偏光材料層が、モリブデンシリサイド、またはその酸化物、窒化物、酸窒化物のいずれかを含むことを特徴とする請求項1に記載の偏光子。 2. The polarizer according to claim 1, wherein the polarizing material layer includes molybdenum silicide or any of oxides, nitrides, and oxynitrides thereof.
  3.  紫外光を偏光して光配向膜に照射する光配向装置であって、
     請求項1または請求項2に記載の偏光子を備え、
     前記偏光子により偏光した光を前記光配向膜に照射することを特徴とする光配向装置。
    A photo-alignment device that polarizes ultraviolet light and irradiates the photo-alignment film,
    The polarizer according to claim 1 or claim 2 is provided,
    A photo-alignment apparatus that irradiates the photo-alignment film with light polarized by the polarizer.
PCT/JP2015/070582 2014-07-23 2015-07-17 Polarizer and optical alignment device WO2016013521A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016535919A JP6614147B2 (en) 2014-07-23 2015-07-17 Polarizer and optical alignment device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014150049 2014-07-23
JP2014-150049 2014-07-23

Publications (1)

Publication Number Publication Date
WO2016013521A1 true WO2016013521A1 (en) 2016-01-28

Family

ID=55163046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070582 WO2016013521A1 (en) 2014-07-23 2015-07-17 Polarizer and optical alignment device

Country Status (3)

Country Link
JP (1) JP6614147B2 (en)
TW (1) TWI664455B (en)
WO (1) WO2016013521A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007114647A (en) * 2005-10-24 2007-05-10 Ushio Inc Polarized light irradiation device for photo-alignment
JP2008216957A (en) * 2007-02-06 2008-09-18 Sony Corp Polarizing element and liquid crystal projector
JP2010048999A (en) * 2008-08-21 2010-03-04 Asahi Kasei E-Materials Corp Wire grid polarizer and display using the same
WO2015072482A1 (en) * 2013-11-13 2015-05-21 大日本印刷株式会社 Polarizer, polarizer substrate, and optical alignment device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4778873B2 (en) * 2006-10-20 2011-09-21 株式会社 日立ディスプレイズ Liquid crystal display
US7799486B2 (en) * 2006-11-21 2010-09-21 Infineon Technologies Ag Lithography masks and methods of manufacture thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007114647A (en) * 2005-10-24 2007-05-10 Ushio Inc Polarized light irradiation device for photo-alignment
JP2008216957A (en) * 2007-02-06 2008-09-18 Sony Corp Polarizing element and liquid crystal projector
JP2010048999A (en) * 2008-08-21 2010-03-04 Asahi Kasei E-Materials Corp Wire grid polarizer and display using the same
WO2015072482A1 (en) * 2013-11-13 2015-05-21 大日本印刷株式会社 Polarizer, polarizer substrate, and optical alignment device

Also Published As

Publication number Publication date
JPWO2016013521A1 (en) 2017-04-27
TWI664455B (en) 2019-07-01
TW201606364A (en) 2016-02-16
JP6614147B2 (en) 2019-12-04

Similar Documents

Publication Publication Date Title
JP6539879B2 (en) Wire grid type light absorbing polarizing element, transmission type projector, and liquid crystal display device
US9988724B2 (en) Inorganic polarizing plate having trapezoid shaped metal layers and production method thereof
TWI570461B (en) Polarizer, substrate for polarizer, and photo alignment device
JP6620854B2 (en) Polarizer, polarizer manufacturing method, photo-alignment apparatus, and polarizer mounting method
JP2006106758A (en) Wire grid polarizer and manufacturing method therefor
TW201620692A (en) Optical body, display device and method for producing optical body
JP6428171B2 (en) Polarizer, polarizer substrate and optical alignment apparatus
JP6554768B2 (en) Polarizer, laminated substrate, and photo-alignment apparatus
JP2009210750A (en) Optical element and liquid crystal display device
WO2015072482A1 (en) Polarizer, polarizer substrate, and optical alignment device
JP6614147B2 (en) Polarizer and optical alignment device
US20160077377A1 (en) Wire grid polarizer, display device including the same and method for fabricating the same
JP6372205B2 (en) Polarizer, method for manufacturing polarizer, and optical alignment apparatus
JP2007219191A (en) Method for manufacturing substrate for liquid crystal display
JP2009186863A5 (en)
JP6409295B2 (en) Polarizer and optical alignment device
WO2015137362A1 (en) Grid polarizer and photo-alignment device
US20180335694A1 (en) Wire grid polarizer manufacturing methods using frequency doubling interference lithography
JP2021099442A (en) Polarizing element
JP5256945B2 (en) Light processing element
JP6884501B2 (en) Polarizer
JPH07307278A (en) Projection exposure device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15824702

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016535919

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15824702

Country of ref document: EP

Kind code of ref document: A1