WO2016013459A1 - Vacuum arc deposition device and vacuum arc deposition method - Google Patents

Vacuum arc deposition device and vacuum arc deposition method Download PDF

Info

Publication number
WO2016013459A1
WO2016013459A1 PCT/JP2015/070211 JP2015070211W WO2016013459A1 WO 2016013459 A1 WO2016013459 A1 WO 2016013459A1 JP 2015070211 W JP2015070211 W JP 2015070211W WO 2016013459 A1 WO2016013459 A1 WO 2016013459A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode
magnetic field
vacuum arc
deposition apparatus
generating means
Prior art date
Application number
PCT/JP2015/070211
Other languages
French (fr)
Japanese (ja)
Inventor
加藤 健治
高橋 正人
Original Assignee
日新電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新電機株式会社 filed Critical 日新電機株式会社
Publication of WO2016013459A1 publication Critical patent/WO2016013459A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/48Generating plasma using an arc
    • H05H1/50Generating plasma using an arc and using applied magnetic fields, e.g. for focusing or rotating the arc

Definitions

  • the present invention relates to a vacuum arc deposition apparatus and a vacuum arc deposition method.
  • FIG. 24 is a schematic view showing a conventional vacuum arc deposition apparatus.
  • the conventional vacuum arc deposition apparatus includes a vacuum chamber 31, a cathode 32 made of a sintered carbon material, power supplies 34 and 37, and a backing plate 36.
  • a base material 33 is disposed at a position facing the cathode 32.
  • the vacuum chamber 31 is provided with an exhaust system for evacuating the chamber.
  • a vacuum is evacuated to a predetermined degree of vacuum by the above-described exhaust system, and a negative voltage is applied to the cathode 32 by the power source 37, whereby an arc is formed between the vacuum chamber 31 serving also as the anode and the cathode 32.
  • a discharge causes a discharge.
  • an arc spot is formed at the discharge position of the cathode 32, the carbon material is evaporated, and plasma is generated in the vacuum chamber 31.
  • the evaporated carbon material is deposited on the surface of the base material 33 facing the cathode 32, whereby a thin film is formed on the base material 33.
  • a cathode 32 having a small-diameter columnar protrusion made of a carbon material protruding from a pedestal is used.
  • the thermal strain in the radial direction of the cathode 32 is suppressed from increasing, and the occurrence of cathode cracking is prevented (for example, Patent Document 1). .
  • an object of the present invention is to provide a vacuum arc vapor deposition apparatus and a vacuum arc vapor deposition method capable of appropriately controlling a film formation region on the surface of a base material to form a high-quality thin film.
  • the present inventor has conducted various experiments and studies for solving the above-described problems, and found that the film quality of the formed thin film is improved when the film is formed by generating a magnetic field in the vicinity of the cathode. .
  • a protrusion 40b is formed on the cathode 40, and a ring-shaped magnet 60 (magnetic field generating means) is disposed in the vicinity of the cathode 40 (back surface of the backing plate 7) to generate a magnetic field.
  • a static magnetic field was formed around the cathode 40, and the plasma 9 emitted from the cathode 40 was formed in a beam shape with strong directivity.
  • the discharge position for forming the arc spot moves in a spiral manner on the outer peripheral surface of the protrusion 40b from the tip of the protrusion 40b toward the base 40a.
  • the beam-shaped plasma 9 irradiates the base materials 11 and 12 while rotating in accordance with the movement of the discharge position, so that a uniform film formation region is formed on the surfaces of the base materials 11 and 12, and a high-quality thin film is formed. It was found that can be deposited.
  • the beam 60 is simply formed by disposing the magnet 60 near the cathode 40 to form a static magnetic field. Since the plasma 9 rotates in accordance with the arc spot moving in a spiral shape, it is difficult to precisely control the film formation region of the thin film formed on the surfaces of the base materials 11 and 12. I understood.
  • the beam-like plasma rotating under a static magnetic field as shown in FIG. 1 moves so as to fly from the A position to the B position and then to the C position, for example, as shown in FIG.
  • the irradiation time at each of the positions A to E is also different, that is, it is moving randomly along the rotation direction, so that it is difficult to precisely control the film forming region of the thin film.
  • the present inventor believes that if the above-described random movement of the beam-like plasma can be prevented, the thin film formation region on the substrate surface can be precisely controlled to form a better quality thin film.
  • various experiments and studies were conducted. As a result, it has been found that the movement of the beam-like plasma can be appropriately controlled by, for example, rotating the magnet to form a dynamic magnetic field around the cathode, instead of simply arranging the magnet near the cathode.
  • the beam-like plasma has the property that it is transported along the magnetic field generated from the magnet, when a dynamic magnetic field in which the direction of the magnetic field changes around the cathode by rotating the magnet, The transport direction of the beam-shaped plasma changes according to the change in the direction of the magnetic field, the plasma moves smoothly according to the rotation of the magnet, and the surface of the substrate is scanned uniformly as shown in FIG. As described above, the surface of the substrate can be irradiated with beam-shaped plasma. As a result, the film formation region of the thin film can be precisely controlled.
  • Such a dynamic magnetic field can be formed not only by rotating the magnet described above, but also by moving the magnet linearly in the vertical direction, etc., and moving the beam-shaped plasma in the vertical direction. It was found that uniform scanning is possible.
  • a permanent magnet, a coil or the like can be used as the magnetic field generating means in the above.
  • a vacuum arc deposition apparatus for generating a beam-like plasma by performing arc discharge on a cathode formed of a carbon material and evaporating the carbon material, and depositing the carbon material on a substrate surface to form a film,
  • a cathode provided with at least one protrusion protruding toward the substrate;
  • a magnetic field generating means disposed near the cathode and generating a magnetic field around the cathode;
  • Dynamic magnetic field forming means for moving the magnetic field generating means to form a dynamic magnetic field around the cathode,
  • the vacuum arc deposition apparatus is configured to form a film by causing the beam-shaped plasma to scan the surface of the base material by a dynamic magnetic field formed around the cathode.
  • the invention according to claim 2 2.
  • the invention according to claim 3 The vacuum arc deposition apparatus according to claim 2, wherein a rotation center of the magnetic field generating means by the rotation mechanism is coincident with a central axis of the projection of the cathode.
  • the invention according to claim 4 2.
  • the invention described in claim 5 5.
  • a vacuum arc vapor deposition apparatus according to item 1.
  • the surface of the substrate can be appropriately scanned with the beam-like plasma.
  • the negative electrode includes a pedestal portion and a protrusion attached to the pedestal portion, the film quality of the thin film can be improved without modifying existing facilities.
  • the invention described in claim 7 The projecting portion of the cathode has a cross-sectional shape perpendicular to the central axis, a circular shape, an elliptical shape, a polygonal shape, a polygonal shape with rounded corners, and a solid or annular columnar shape.
  • the vacuum arc vapor deposition apparatus according to any one of claims 1 to 6, wherein:
  • the protrusion is a concept including not only a solid columnar shape but also an annular columnar shape (tubular shape) such as a pipe.
  • the “columnar shape” is, for example, a cross section perpendicular to the central axis is circular, elliptical Shapes, polygonal shapes, and polygonal shapes with rounded corners.
  • the “annular shape” includes an annular shape, an elliptical shape, a polygonal shape, and a polygonal shape with rounded corners (R removal).
  • the cathode member can be, for example, an elliptical columnar shape, a polygonal columnar shape, or a polygonal columnar shape with rounded corners (R removal), a cylindrical shape, an elliptical cylindrical shape, or a polygonal cylindrical shape. Or it can also be set as the polygonal cylinder shape which added the roundness (R removal) to the corner
  • the invention according to claim 8 provides: The vacuum arc deposition apparatus according to any one of claims 1 to 7, wherein the cathode is made of glassy carbon.
  • the surface of the substrate is There is no damage or deterioration of the surface roughness of the thin film after film formation, and the significance of using glassy carbon as a cathode is extremely large.
  • the invention according to claim 9 is: 9.
  • the discharge mark formed on the outer peripheral surface of the protrusion of the cathode after the arc discharge is spiral, 9. This is a vacuum arc deposition apparatus.
  • the arc spot moves spirally on the outer peripheral surface (side surface) of the protrusion due to the magnetic field formed around the cathode. Therefore, the shape of the discharge mark becomes a spiral shape. Due to the spiral shape, the arc spot does not move except for the protrusions, and the significance of moving in a spiral shape is very significant.
  • the invention according to claim 10 is:
  • the magnetic field generating means is configured to generate a magnetic field having a magnetic field strength of 21 Gauss or more in the axial direction of the projection of the cathode and 10 Gauss or more in the radial direction of the projection. It is a vacuum arc vapor deposition apparatus of any one of Claim 9.
  • the magnetic field generating means from the viewpoint of appropriately generating a magnetic field capable of appropriately controlling the beam-shaped plasma, it is 21 Gauss or more along the axial direction Bz of the protruding portion of the cathode, and along the radial direction Br of the protruding portion. It is preferable to use magnetic field generating means for generating a magnetic field having a magnetic field strength of 10 Gauss or more.
  • the invention according to claim 11 A vacuum arc deposition method in which a beam-like plasma is generated by evaporating a carbon material by performing an arc discharge on a cathode, and a carbon material is deposited on the surface of a substrate to form a film,
  • a cathode using a cathode having at least one protrusion protruding toward the substrate, A magnetic field is generated around the cathode by the magnetic field generating means disposed in the vicinity of the cathode, and a dynamic magnetic field is formed around the cathode by moving the magnetic field generating means, and the beam-shaped plasma is converted into the base plasma.
  • a vacuum arc vapor deposition method characterized in that a thin film is formed on the surface of the base material by scanning the surface of the material.
  • the invention according to claim 12 is 12.
  • a vacuum arc vapor deposition apparatus and a vacuum arc vapor deposition method capable of appropriately controlling a film formation region on the surface of a substrate to form a high-quality thin film.
  • FIG. 4 is a diagram schematically showing the configuration of the vacuum arc deposition apparatus according to the present embodiment.
  • the vacuum arc deposition apparatus includes a vacuum chamber 1, a cathode 40, power supplies 14 and 18, and a backing plate 7, as in the conventional vacuum arc deposition apparatus.
  • the base materials 11 and 12 held on the holding base 10 so as to face the cathode 40 are accommodated in the vacuum chamber 1.
  • 1 a is an exhaust system for evacuating the vacuum chamber 1
  • 2 is an arc current field through
  • 13 is a trigger mechanism
  • 15 is a resistor
  • 16 is a rotating shaft of the holding table 10.
  • FIG. 5 is a view showing an arc evaporation source in the vacuum arc deposition apparatus according to the present embodiment, and a cathode 40 is disposed on the backing plate 7.
  • the cathode 40 is made of glassy carbon, and includes a disk-shaped pedestal portion 40a and a protrusion 40b protruding from the pedestal portion 40a toward the base materials 11 and 12, as shown in FIG.
  • glassy carbon has no grain boundaries, when such a cathode 40 is used, macroparticles are prevented from being generated during arc discharge, and the film quality of the thin film formed on the substrate surface is reduced. Can be prevented.
  • it replaces with the cathode 40 shown in FIG. 5 in which the base part 40a and the protrusion part 40b are formed with glassy carbon, and the base part of the carbon material (sintered graphite) of a sintered structure as shown in FIG. You may use the cathode 40 by which the projection part 40b which consists of glassy carbon was attached to 40a.
  • a rotating magnet 6 is disposed in the vicinity of the cathode 40, and the rotating dynamic magnetic field is in the vicinity of the cathode 40 by rotating the magnet 6.
  • the beam-shaped plasma 9 is smoothly transported in accordance with the rotation of the magnet 6.
  • the magnet 6 used as the magnetic field generating means is arranged on the back surface of the cathode 40, and the rotational center of the magnet 6 is set as the dynamic axis forming means to the central axis of the projection 40b of the cathode 40.
  • a rotation mechanism for rotating them in accordance with each other is provided.
  • FIG. 7 is a diagram schematically showing the rotation mechanism in the present embodiment, and shows a diagram in the AA cross section of FIG. 8 is a diagram for explaining the arrangement of the magnets in the rotating mechanism of FIG. 7, wherein (a) is an enlarged view of the rotating plate 4 in FIG. 7, and (b) is a rotating plate in the BB cross section of FIG. FIG.
  • this rotating mechanism is configured by a belt 5 being bridged between a pair of acrylic rotating plates 4 and 20.
  • a magnet 6 is attached to one rotating plate 4, and a motor (not shown) is connected to the rotating shaft 21 of the other rotating plate 20.
  • the rotating plate 20 is rotated by adjusting the rotational speed of the motor by a controller (not shown) and rotating the rotating shaft 21, and the rotating plate 4 is further rotated via the belt 5.
  • the magnet 6 rotates centering
  • FIG. 8B a total of four magnets 6 are arranged with the rotating plate 4 sandwiched from both sides.
  • a thin film is formed using the vacuum arc deposition apparatus according to the present embodiment as follows.
  • the vacuum arc vapor deposition apparatus shown in FIG. 4 is used as the vacuum arc vapor deposition apparatus.
  • the cathode 40 having the protrusion 40 b is attached to the backing plate 7, and the base materials 11 and 12 are held on the holding table 10 in the vacuum chamber 1 so as to face the cathode 40.
  • the gas in the vacuum chamber 1 is exhausted from the exhaust system 1 a using a vacuum pump (not shown), and a negative voltage is applied from the power source 18 to the cathode 40 via the arc current field through 2.
  • a bias voltage is applied from the power source 14 to the base materials 11 and 12 held on the holding table 10, and the rotating shaft 16 of the holding table 10 is rotated.
  • a dynamic magnetic field is formed in the vicinity of the cathode 40 by the rotating magnet 6, so that the beam-shaped plasma 9 generated from the arc spot of the cathode 40 is affected by the dynamic magnetic field due to the rotation of the magnet 6.
  • the magnet 6 Upon receipt, the magnet 6 is transported in the same direction as the rotation direction.
  • the surface of the base materials 11 and 12 arranged facing the cathode 40 is irradiated with a beam-like plasma 9 that rotates at a constant speed while drawing a constant circumferential orbit in the same direction as the rotation direction of the magnet 6. (See FIG. 3).
  • a beam-like plasma 9 that rotates at a constant speed while drawing a constant circumferential orbit in the same direction as the rotation direction of the magnet 6. (See FIG. 3).
  • the magnet 6 is disposed on the back surface of the cathode 40, but at a position where a dynamic magnetic field capable of forcibly rotating the beam-shaped plasma can be formed around the cathode 40.
  • the arrangement position of the magnet 6 is not particularly limited. Specifically, for example, the magnet 6 may be arranged at a position that rotates around the protrusion 40b of the cathode 40 as shown in FIG. 9A, or based on FIG. 9B. You may arrange
  • the dynamic magnetic field forming means is not limited to a rotation mechanism that rotates the magnet so that the rotation center of the magnet coincides with the central axis of the protrusion of the cathode, and for example, a ring-shaped magnet 6a as shown in FIG. May be rotated eccentrically with a rotation axis different from the central axis of the protrusion 40b, and as shown in FIG. 11, the rod-shaped magnet 6b is linearly moved in a predetermined direction (vertical direction in FIG. 11). It may be moved.
  • the magnetic field generating means generates a magnetic field having a magnetic field strength of 21 Gauss or more along the axial direction Bz of the cathode protrusion 40b and 10 Gauss or more along the radial direction Br of the protrusion 40b. It is preferable to use a simple magnet. As a result, a magnetic field having an appropriate magnetic field strength can be generated in the direction of the combined vector B of Bz and Br, and the beam-shaped plasma can be transported appropriately.
  • vacuum arc vapor deposition apparatus can be applied not only to the vacuum arc vapor deposition apparatus having the configuration shown in FIG. 4 described above but also to vacuum arc vapor deposition apparatuses having various other configurations.
  • a vacuum arc vapor deposition apparatus provided with a delivery mechanism 80 for delivering the protruding portion of the cathode 40 toward the substrate can also be preferably used.
  • the tip of the unconsumed portion of the cathode 40 is sent out to the same position as the tip portion before the consumption under the control of a control means (not shown), thereby maintaining stable arc discharge. Can last for hours.
  • the protrusions preferably have a cross-sectional shape perpendicular to the central axis, a circular shape, an elliptical shape, a polygonal shape, or a polygonal shape with rounded corners, and are solid or annular.
  • examples of the type of thin film formed include an amorphous carbon thin film, a diamond-like carbon thin film, a tetrahedral amorphous carbon film, an amorphous hard carbon thin film, and a hard carbon thin film.
  • examples of the base material used include metals, ceramics, resins, and semiconductors. More specifically, the metals include tungsten carbide, steel, aluminum, cobalt chromium alloy, and the like.
  • the ceramic include aluminum oxide, silicon nitride, cubic boron nitride, and silicon dioxide.
  • examples of the resin include polycarbonate, polyethylene terephthalate, and polyvinyl chloride.
  • examples of the semiconductor include silicon, gallium nitride, and zinc oxide.
  • the cathode protrusion is preferably made of glassy carbon.
  • the glassy carbon include glassy carbon, amorphous carbon, amorphous carbon, amorphous carbon, Mention may be made of amorphous carbon, non-graphitized carbon and vitreous carbon.
  • the protrusions may be pyrolytic carbon and pyrolytic carbon and may be laminated carbon produced by a thermal CVD method.
  • the movement of the arc spot is controlled so that spiral discharge traces are formed on the outer peripheral surface of the protrusion after discharge. Thereby, the arc spot does not move to other than the protrusions.
  • Test 1 (1) Examples 1 to 4 In this test, as Examples 1 to 4, using the vacuum arc deposition apparatus shown in FIG. 11, the magnet was rotated counterclockwise at a speed of 60 rpm by the rotating mechanism and moved at the magnetic field strength (Gauss) shown in Table 1. While forming a magnetic field, a carbon thin film was formed on the surface of a base material (350 mm ⁇ 350 mm ⁇ t3 mm made of SUS304) fixed to a holding table for 40 seconds. Other conditions were set as shown in Table 1 below.
  • a base material 350 mm ⁇ 350 mm ⁇ t3 mm made of SUS304
  • a Panasonic M61X6GD4L type was used as the motor for rotating the magnet 6, and a Panasonic MX6G5BA type was used for the gear head. Then, the number of rotations of the magnet was adjusted by a controller (US type manufactured by Panasonic) that also supplied power to the motor.
  • the magnetic field strength in the axial direction Bz and radial direction Br of the protrusions in Table 1 was measured using a Gauss meter (410-SCT type, manufactured by Lake Shoe) for the magnetic field at the tip of the protrusion of the cathode.
  • a pedestal 40a made of sintered graphite (IG510 made by Toyo Tanso Co., Ltd.) and a projection made of glassy carbon (GC20SS made by Tokai Fine Carbon Co., Ltd.) are used as the cathode.
  • the size of the pedestal portion 40a is ⁇ 64 mm ⁇ t20 mm, and the size of the protrusion 40b is ⁇ 3 mm ⁇ L20 mm.
  • Comparative Example 1 As Comparative Example 1, a carbon thin film was formed on the surface of a base material under a static magnetic field formed by a non-rotating ring-shaped magnet 60 using a vacuum arc deposition apparatus shown in FIG. The other conditions were set the same as in Example 1.
  • Table 2 shows the results of confirmation of the possibility of plasma scanning and the film formation state observation test. Further, a photograph of the substrate surface before film formation is shown in FIG. 17, a photograph after film formation in Comparative Example 1 is shown in FIG. 18, and photographs after film formation in Examples 1 to 4 are shown in FIGS.
  • the beam-shaped plasma was rotated in the clockwise direction in Comparative Example 1, and the rotation state was also random as shown in FIG. 2, whereas in Examples 1-4, the beam-shaped plasma was magnetized. Rotate the magnet in the counterclockwise direction, which is the same rotational direction as the, and rotate at a constant speed, and rotate the magnet counterclockwise to form a dynamic magnetic field, thereby rotating the beam-like plasma into the magnet. It was confirmed that scanning can be performed in accordance with the direction.
  • Example 5 and Comparative Example 2 In this test example, the vacuum arc deposition apparatus (Example 5) shown in FIG. 4 and the comparative example vacuum arc deposition apparatus (Comparative Example 2) shown in FIG. Carbon thin films were formed on the surfaces of the two base materials (base material 11 and base material 12). Other conditions were set as shown in Table 2 below.
  • Example 5 (2) Evaluation In Example 5 and Comparative Example 2, the film thickness of the thin film after film formation was measured to calculate the full width at half maximum and the maximum film thickness position.
  • a stylus type surface shape measuring device Dektak 150 manufactured by Veeco
  • the measurement range was set to 0 mm at the center of the cathode material, and the vertical direction ⁇ 110 mm (for example, Y +, Y-direction in FIG. 4), The measurement interval was set to 10 mm.
  • the maximum film thickness position where the normalized film thickness was 1 was calculated, and the vertical distance from the cathode center at the half value (0.5) was calculated as the full width at half maximum.
  • the calculation results are shown in Table 4 and FIG. In FIG. 23, the vertical axis represents the vertical distance from the center of the cathode, and the horizontal axis represents the normalized film thickness.
  • Example 5 From Table 4, in Example 5, it was confirmed that the maximum film thickness positions of the base material 11 and the base material 12 were the same, and the full width at half maximum was a similar value, which is further shown in FIG. As described above, the shapes (thickness distribution shapes) of the thin films formed on the base materials 11 and 12 are very similar.
  • Comparative Example 2 it was confirmed that the full width at half maximum and the maximum film thickness position were greatly different between the base material 11 and the base material 12. Moreover, as shown in FIG.23 (b), the film thickness distribution shape of each base material 11 and 12 differed greatly.

Abstract

Provided are: a vacuum arc deposition device that makes it possible to suitably control a film formation area on the surface of a substrate and form a thin film having good quality; and a vacuum arc deposition method. The vacuum arc deposition device performs arc discharge on a cathode formed from a carbon material, causes the carbon material to evaporate so that plasma is generated in a beam state, and forms a film by causing the carbon material to be deposited on a substrate surface. The vacuum arc deposition device is provided with: a cathode provided with at least one protrusion that protrudes toward a substrate; a magnetic field generation means that is arranged in the vicinity of the cathode and that generates a magnetic field around the cathode; and a dynamic magnetic field formation means that causes the magnetic field generation means to move and forms a dynamic magnetic field around the cathode. The vacuum arc deposition device is configured so as to form a film by using the dynamic magnetic field that is formed around the cathode to make the plasma in a beam state scan the substrate surface.

Description

真空アーク蒸着装置および真空アーク蒸着法Vacuum arc deposition apparatus and vacuum arc deposition method
  本発明は、真空アーク蒸着装置および真空アーク蒸着法に関する。 The present invention relates to a vacuum arc deposition apparatus and a vacuum arc deposition method.
  アーク放電を用いて基材表面に薄膜を形成する真空アーク蒸着法には、通常、真空アーク蒸着装置が用いられている。図24は、従来の真空アーク蒸着装置を示す概略図である。 A vacuum arc vapor deposition apparatus is usually used in a vacuum arc vapor deposition method in which a thin film is formed on the surface of a substrate by using arc discharge. FIG. 24 is a schematic view showing a conventional vacuum arc deposition apparatus.
  図24に示すように、従来の真空アーク蒸着装置は、真空チャンバー31と、焼結構造のカーボン材料からなる陰極32と、電源34、37と、バッキングプレート36を備えており、真空チャンバー31内の陰極32と対向した位置に基材33が配置されている。なお、真空チャンバー31にはチャンバー内を真空排気する排気系が設けられている。 As shown in FIG. 24, the conventional vacuum arc deposition apparatus includes a vacuum chamber 31, a cathode 32 made of a sintered carbon material, power supplies 34 and 37, and a backing plate 36. A base material 33 is disposed at a position facing the cathode 32. The vacuum chamber 31 is provided with an exhaust system for evacuating the chamber.
  この真空アーク蒸着装置では、上記した排気系によって所定の真空度まで真空排気され、電源37により陰極32に負の電圧を印加することにより、陽極を兼ねる真空チャンバー31と陰極32との間にアーク放電を生じさせる。これにより、陰極32の放電位置にアークスポットが形成されてカーボン材料が蒸発し、真空チャンバー31内にプラズマが発生する。そして、蒸発したカーボン材料が陰極32と対向した基材33の表面に蒸着することにより、基材33上に薄膜が成膜される。 In this vacuum arc deposition apparatus, a vacuum is evacuated to a predetermined degree of vacuum by the above-described exhaust system, and a negative voltage is applied to the cathode 32 by the power source 37, whereby an arc is formed between the vacuum chamber 31 serving also as the anode and the cathode 32. Causes a discharge. As a result, an arc spot is formed at the discharge position of the cathode 32, the carbon material is evaporated, and plasma is generated in the vacuum chamber 31. The evaporated carbon material is deposited on the surface of the base material 33 facing the cathode 32, whereby a thin film is formed on the base material 33.
  この真空アーク蒸着装置の陰極には、従来より、円盤状に成形されたカーボン材料が用いられていたが、このような円盤状の陰極の場合、アーク放電中に陰極の半径方向に大きな熱応力の歪み(熱歪み)が生じて割れることがあった。 Conventionally, a carbon material formed into a disk shape has been used for the cathode of this vacuum arc vapor deposition apparatus. In the case of such a disk-shaped cathode, a large thermal stress in the radial direction of the cathode is generated during arc discharge. The distortion (thermal distortion) of this occurred and sometimes cracked.
  このような熱歪みによる陰極割れを防止するために、近年では、図24に示すように、カーボン材料からなる小さな径の柱状の突起部を台座部から突出させた陰極32が用いられている。このように小さな径の柱状の突起部からプラズマを発生させることにより、陰極32の半径方向における熱歪みが大きくなることが抑制されて、陰極割れの発生が防止される(例えば、特許文献1)。 In order to prevent cathode cracking due to such thermal distortion, in recent years, as shown in FIG. 24, a cathode 32 having a small-diameter columnar protrusion made of a carbon material protruding from a pedestal is used. By generating plasma from columnar protrusions having such a small diameter, the thermal strain in the radial direction of the cathode 32 is suppressed from increasing, and the occurrence of cathode cracking is prevented (for example, Patent Document 1). .
国際公開第2013/015280号International Publication No. 2013/015280
  しかしながら、従来の真空アーク蒸着装置を用いた成膜方法においては、膜厚分布形状、半値全幅、最大膜厚位置などについて成膜領域を適切に制御することが難しく、さらなる改善が求められていた。 However, in the film forming method using the conventional vacuum arc vapor deposition apparatus, it is difficult to appropriately control the film forming region with respect to the film thickness distribution shape, the full width at half maximum, the maximum film thickness position, and further improvement has been demanded. .
  そこで、本発明は、基材の表面における成膜領域を適切に制御して、良質な薄膜を成膜することができる真空アーク蒸着装置および真空アーク蒸着法を提供することを課題とする。 Therefore, an object of the present invention is to provide a vacuum arc vapor deposition apparatus and a vacuum arc vapor deposition method capable of appropriately controlling a film formation region on the surface of a base material to form a high-quality thin film.
  本発明者は、上記した課題の解決について種々の実験と検討を行い、陰極の近傍に磁界を発生させて成膜を行った場合、成膜された薄膜の膜質が改善されることを見出した。 The present inventor has conducted various experiments and studies for solving the above-described problems, and found that the film quality of the formed thin film is improved when the film is formed by generating a magnetic field in the vicinity of the cathode. .
  即ち、図1に示すように、陰極40に突起部40bを形成すると共に、陰極40の近傍(バッキングプレート7の背面)にリング状の磁石60(磁界発生手段)を配置して磁界を発生させた場合、陰極40の周囲に静磁場が形成されて、陰極40から放射されたプラズマ9が強い指向性でビーム状に形成されることが分かった。 That is, as shown in FIG. 1, a protrusion 40b is formed on the cathode 40, and a ring-shaped magnet 60 (magnetic field generating means) is disposed in the vicinity of the cathode 40 (back surface of the backing plate 7) to generate a magnetic field. In this case, it was found that a static magnetic field was formed around the cathode 40, and the plasma 9 emitted from the cathode 40 was formed in a beam shape with strong directivity.
  そして、このとき、アーク放電中の陰極40では、アークスポットを形成する放電位置が突起部40bの先端から台座部40a側に向けて突起部40bの外周面をスパイラル状に移動するため、放射されたビーム状のプラズマ9がこの放電位置の移動に合わせて回転しながら基材11、12を照射することになり、基材11、12の表面において均質な成膜領域が形成されて良質の薄膜を成膜できることが分かった。 At this time, in the cathode 40 during arc discharge, the discharge position for forming the arc spot moves in a spiral manner on the outer peripheral surface of the protrusion 40b from the tip of the protrusion 40b toward the base 40a. The beam-shaped plasma 9 irradiates the base materials 11 and 12 while rotating in accordance with the movement of the discharge position, so that a uniform film formation region is formed on the surfaces of the base materials 11 and 12, and a high-quality thin film is formed. It was found that can be deposited.
  しかし、本発明者が図1に示す真空アーク蒸着装置におけるビーム状のプラズマ9の回転状況をさらに観察したところ、単に、陰極40近傍に磁石60を配置して静磁場を形成するのみでは、ビーム状のプラズマ9が、スパイラル状に移動するアークスポットに合わせて回転してしまうため、基材11、12の表面に成膜される薄膜の成膜領域を精密に制御することが困難であることが分かった。 However, when the present inventor further observed the rotation state of the beam-shaped plasma 9 in the vacuum arc deposition apparatus shown in FIG. 1, the beam 60 is simply formed by disposing the magnet 60 near the cathode 40 to form a static magnetic field. Since the plasma 9 rotates in accordance with the arc spot moving in a spiral shape, it is difficult to precisely control the film formation region of the thin film formed on the surfaces of the base materials 11 and 12. I understood.
  具体的には、図1に示すような静磁場の下で回転するビーム状のプラズマは、例えば、図2に示すように、A位置からB位置、次いでC位置というように飛ぶように移動して、それぞれの位置A~Eにおける照射時間も異なっている、即ち、回転方向に沿ってランダムに移動しているため、薄膜の成膜領域を精密に制御することが難しい。 Specifically, the beam-like plasma rotating under a static magnetic field as shown in FIG. 1 moves so as to fly from the A position to the B position and then to the C position, for example, as shown in FIG. Thus, the irradiation time at each of the positions A to E is also different, that is, it is moving randomly along the rotation direction, so that it is difficult to precisely control the film forming region of the thin film.
  本発明者は、上記のようなビーム状のプラズマのランダムな移動を防止することができれば、基材表面における薄膜の成膜領域を精密に制御して、より良質な薄膜を成膜できると考え、さらに、種々の実験と検討を行った。その結果、単に磁石を陰極近傍に配置するのではなく、例えば、磁石を回転させて陰極の周囲に動磁場を形成させることにより、ビーム状のプラズマの移動を適切に制御できることを見出した。 The present inventor believes that if the above-described random movement of the beam-like plasma can be prevented, the thin film formation region on the substrate surface can be precisely controlled to form a better quality thin film. In addition, various experiments and studies were conducted. As a result, it has been found that the movement of the beam-like plasma can be appropriately controlled by, for example, rotating the magnet to form a dynamic magnetic field around the cathode, instead of simply arranging the magnet near the cathode.
  即ち、ビーム状のプラズマは磁石から発生する磁界に沿って輸送されるという特性を有しているため、磁石を回転させることにより陰極の周囲に磁界の向きが変化する動磁場を形成した場合、磁界の向きの変化に応じてビーム状のプラズマの輸送方向が変化して、磁石の回転に合わせてスムーズにプラズマが移動し、図3に示すように基材の表面が均一にスキャン(走査)されるようにビーム状のプラズマを基材表面に照射することができる。この結果、薄膜の成膜領域を精密に制御できる。 That is, since the beam-like plasma has the property that it is transported along the magnetic field generated from the magnet, when a dynamic magnetic field in which the direction of the magnetic field changes around the cathode by rotating the magnet, The transport direction of the beam-shaped plasma changes according to the change in the direction of the magnetic field, the plasma moves smoothly according to the rotation of the magnet, and the surface of the substrate is scanned uniformly as shown in FIG. As described above, the surface of the substrate can be irradiated with beam-shaped plasma. As a result, the film formation region of the thin film can be precisely controlled.
  そして、このような動磁場は、上記した磁石を回転させるだけではなく、磁石を上下方向などに直線的に移動させた場合でも形成することができ、ビーム状のプラズマを上下方向に移動させることにより、均一にスキャンできることが分かった。 Such a dynamic magnetic field can be formed not only by rotating the magnet described above, but also by moving the magnet linearly in the vertical direction, etc., and moving the beam-shaped plasma in the vertical direction. It was found that uniform scanning is possible.
  なお、上記における磁界発生手段としては、永久磁石、コイル等を用いることができる。 It should be noted that a permanent magnet, a coil or the like can be used as the magnetic field generating means in the above.
  請求項1~請求項4に記載の発明は、上記の知見に基づく発明である。即ち、請求項1に記載の発明は、
  カーボン材料によって形成された陰極にアーク放電を行ってカーボン材料を蒸発させることによりビーム状のプラズマを発生させ、基材表面にカーボン材料を蒸着させて成膜する真空アーク蒸着装置であって、
  前記基材に向けて突出する少なくとも1つの突起部を備えた陰極と、
  前記陰極の近傍に配置されて、前記陰極の周囲に磁界を生じさせる磁界発生手段と、
  前記磁界発生手段を移動させて前記陰極の周囲に動磁場を形成する動磁場形成手段とを備えており、
  前記陰極の周囲に形成された動磁場により前記ビーム状のプラズマを前記基材表面に走査させて、成膜するように構成されていることを特徴とする真空アーク蒸着装置である。
The inventions according to claims 1 to 4 are based on the above findings. That is, the invention described in claim 1
A vacuum arc deposition apparatus for generating a beam-like plasma by performing arc discharge on a cathode formed of a carbon material and evaporating the carbon material, and depositing the carbon material on a substrate surface to form a film,
A cathode provided with at least one protrusion protruding toward the substrate;
A magnetic field generating means disposed near the cathode and generating a magnetic field around the cathode;
Dynamic magnetic field forming means for moving the magnetic field generating means to form a dynamic magnetic field around the cathode,
The vacuum arc deposition apparatus is configured to form a film by causing the beam-shaped plasma to scan the surface of the base material by a dynamic magnetic field formed around the cathode.
  また、請求項2に記載の発明は、
  前記動磁場形成手段が、前記磁界発生手段を前記陰極の周囲で回転させる回転機構により動磁場を形成する動磁場形成手段であることを特徴とする請求項1に記載の真空アーク蒸着装置である。
The invention according to claim 2
2. The vacuum arc deposition apparatus according to claim 1, wherein the dynamic magnetic field forming means is a dynamic magnetic field forming means for forming a dynamic magnetic field by a rotating mechanism that rotates the magnetic field generating means around the cathode. .
  また、請求項3に記載の発明は、
  前記回転機構による前記磁界発生手段の回転中心が、前記陰極の突起部の中心軸と一致していることを特徴とする請求項2に記載の真空アーク蒸着装置である。
The invention according to claim 3
The vacuum arc deposition apparatus according to claim 2, wherein a rotation center of the magnetic field generating means by the rotation mechanism is coincident with a central axis of the projection of the cathode.
  また、請求項4に記載の発明は、
  前記動磁場形成手段が、前記磁界発生手段を直線的に移動させる移動機構により動磁場を形成する動磁場形成手段であることを特徴とする請求項1に記載の真空アーク蒸着装置である。
The invention according to claim 4
2. The vacuum arc deposition apparatus according to claim 1, wherein the dynamic magnetic field forming means is a dynamic magnetic field forming means for forming a dynamic magnetic field by a moving mechanism that linearly moves the magnetic field generating means.
  請求項5に記載の発明は、
  前記磁界発生手段が、前記陰極の突起部の周囲、前記陰極と前記基材の間および前記陰極の背面の何れかに配置されていることを特徴とする請求項1ないし請求項4のいずれか1項に記載の真空アーク蒸着装置である。
The invention described in claim 5
5. The magnetic field generating means according to any one of claims 1 to 4, wherein the magnetic field generating means is disposed around the projection of the cathode, between the cathode and the base material, or on the back surface of the cathode. 2. A vacuum arc vapor deposition apparatus according to item 1.
  これらの位置に磁界発生手段を配置し、動磁場形成手段により陰極の周囲に適切な動磁場を形成することにより、基材表面にビーム状のプラズマを適切にスキャンさせることができる。 磁 界 By arranging the magnetic field generating means at these positions and forming an appropriate dynamic magnetic field around the cathode by the dynamic magnetic field forming means, the surface of the substrate can be appropriately scanned with the beam-like plasma.
  請求項6に記載の発明は、
  前記陰極が、台座部と、前記台座部に取り付けられた前記突起部とを備えていることを特徴とする請求項1ないし請求項5のいずれか1項に記載の真空アーク蒸着装置である。
The invention described in claim 6
The vacuum arc vapor deposition apparatus according to any one of claims 1 to 5, wherein the cathode includes a pedestal portion and the protruding portion attached to the pedestal portion.
  陰極が、台座部と、この台座部に取り付けられた突起部とを備えていることにより、現有の設備を改造することなく、薄膜の膜質の改善を図ることができる。 Since the negative electrode includes a pedestal portion and a protrusion attached to the pedestal portion, the film quality of the thin film can be improved without modifying existing facilities.
  請求項7に記載の発明は、
  前記陰極の前記突起部は、中心軸に垂直な断面の形状が、円形状、楕円形状、多角形状、角部に丸みを付けた多角形状であり、中実状又は環状の柱状をなしていることを特徴とする請求項1ないし請求項6のいずれか1項に記載の真空アーク蒸着装置である。
The invention described in claim 7
The projecting portion of the cathode has a cross-sectional shape perpendicular to the central axis, a circular shape, an elliptical shape, a polygonal shape, a polygonal shape with rounded corners, and a solid or annular columnar shape. The vacuum arc vapor deposition apparatus according to any one of claims 1 to 6, wherein:
  突起部は、中実の柱状だけでなく、パイプ等の環状の柱状(筒状)を含む概念であり、ここで、「柱状」とは、例えば、中心軸に垂直な断面が円形状、楕円形状、多角形状、角部に丸みを付けた多角形状をなす形状をいう。そして、「環状」には、円環状、楕円環状、多角環状、および角部に丸み(R取り)を付けた多角環状が含まれる。よって、陰極部材は、円柱状の他、例えば、楕円柱状、多角柱状、又は角部に丸み(R取り)を付けた多角柱状とすることもできるし、円筒状、楕円筒状、多角筒状、又は角部に丸み(R取り)を付けた多角筒状とすることもできる。 The protrusion is a concept including not only a solid columnar shape but also an annular columnar shape (tubular shape) such as a pipe. Here, the “columnar shape” is, for example, a cross section perpendicular to the central axis is circular, elliptical Shapes, polygonal shapes, and polygonal shapes with rounded corners. The “annular shape” includes an annular shape, an elliptical shape, a polygonal shape, and a polygonal shape with rounded corners (R removal). Therefore, the cathode member can be, for example, an elliptical columnar shape, a polygonal columnar shape, or a polygonal columnar shape with rounded corners (R removal), a cylindrical shape, an elliptical cylindrical shape, or a polygonal cylindrical shape. Or it can also be set as the polygonal cylinder shape which added the roundness (R removal) to the corner | angular part.
  請求項8に記載の発明は、
  前記陰極が、ガラス状炭素から構成されていることを特徴とする請求項1ないし請求項7のいずれか1項に記載の真空アーク蒸着装置である。
The invention according to claim 8 provides:
The vacuum arc deposition apparatus according to any one of claims 1 to 7, wherein the cathode is made of glassy carbon.
  焼結構造のカーボン材料を用いて真空アーク蒸着を行うと、粒径の大きな粒子(マクロパーティクル)が発生して、基材に蒸着することにより、基材表面を傷付けたり、成膜後の薄膜の表面粗度を悪化させたりする恐れがある。焼結構造のカーボン材料には必ず粒界が存在しており、アーク放電の際、この粒界に沿ってカーボン材料が割れることによってマクロパーティクルが発生する。これに対して、ガラス状炭素は、構造的にガラス状であり、粒界が存在しないため、このガラス状炭素から構成された陰極を用いて、真空アーク蒸着を行うことにより、基材表面を傷付けたり、成膜後の薄膜の表面粗度を悪化させたりすることが無くなり、ガラス状炭素を陰極として用いる意義は、極めて大きい。 When vacuum arc deposition is performed using a carbon material with a sintered structure, particles with a large particle size (macroparticles) are generated and deposited on the substrate, thereby scratching the substrate surface or forming a thin film after film formation There is a risk of deteriorating the surface roughness. Grain boundaries always exist in the sintered carbon material, and macroscopic particles are generated when the carbon material breaks along the grain boundaries during arc discharge. In contrast, glassy carbon is structurally glassy and has no grain boundaries. Therefore, by performing vacuum arc vapor deposition using a cathode composed of this glassy carbon, the surface of the substrate is There is no damage or deterioration of the surface roughness of the thin film after film formation, and the significance of using glassy carbon as a cathode is extremely large.
  請求項9に記載の発明は、
  前記アーク放電が行われた後に前記陰極の前記突起部の外周面に形成される放電痕の形状が、スパイラル状であることを特徴とする請求項1ないし請求項8のいずれか1項に記載の真空アーク蒸着装置である。
The invention according to claim 9 is:
9. The discharge mark formed on the outer peripheral surface of the protrusion of the cathode after the arc discharge is spiral, 9. This is a vacuum arc deposition apparatus.
  陰極周囲に形成された磁界によりアークスポットは、突起部の外周面(側面)をスパイラル状に移動する。従って、放電痕の形状がスパイラル状となる。スパイラル状となることによって、突起部以外にアークスポットが移動することが無く、スパイラル状に移動させることの意義は、極めて大きい。 The arc spot moves spirally on the outer peripheral surface (side surface) of the protrusion due to the magnetic field formed around the cathode. Therefore, the shape of the discharge mark becomes a spiral shape. Due to the spiral shape, the arc spot does not move except for the protrusions, and the significance of moving in a spiral shape is very significant.
  請求項10に記載の発明は、
  前記磁界発生手段が、前記陰極の突起部の軸方向に21Gauss以上、前記突起部の径方向に10Gauss以上の磁場強度の磁界を発生させるように構成されていることを特徴とする請求項1ないし請求項9のいずれか1項に記載の真空アーク蒸着装置である。
The invention according to claim 10 is:
The magnetic field generating means is configured to generate a magnetic field having a magnetic field strength of 21 Gauss or more in the axial direction of the projection of the cathode and 10 Gauss or more in the radial direction of the projection. It is a vacuum arc vapor deposition apparatus of any one of Claim 9.
  磁界発生手段としては、ビーム状のプラズマを適切に制御できる程度の磁界を適切に発生させるという観点から、陰極の突起部の軸方向Bzに沿って21Gauss以上、突起部の径方向Brに沿って10Gauss以上の磁場強度の磁界を発生させる磁場発生手段を用いることが好ましい。 As the magnetic field generating means, from the viewpoint of appropriately generating a magnetic field capable of appropriately controlling the beam-shaped plasma, it is 21 Gauss or more along the axial direction Bz of the protruding portion of the cathode, and along the radial direction Br of the protruding portion. It is preferable to use magnetic field generating means for generating a magnetic field having a magnetic field strength of 10 Gauss or more.
  次に、前記した請求項1および請求項2は方法の面から、以下のように捉えることができる。即ち、請求項11に記載の発明は、
  陰極にアーク放電を行ってカーボン材料を蒸発させることによりビーム状のプラズマを発生させて、基材の表面にカーボン材料を蒸着させて成膜する真空アーク蒸着法であって、
  前記陰極として、前記基材に向けて突出した少なくとも1つの突起部を有する陰極を用い、
  前記陰極の近傍に配置された磁界発生手段により前記陰極の周囲に磁界を生じさせると共に、前記磁界発生手段を移動させて前記陰極の周囲に動磁場を形成し、前記ビーム状のプラズマを前記基材表面に走査させることにより前記基材の表面に薄膜を成膜することを特徴とする真空アーク蒸着法である。
Next, the first and second aspects can be grasped as follows from the viewpoint of the method. That is, the invention according to claim 11
A vacuum arc deposition method in which a beam-like plasma is generated by evaporating a carbon material by performing an arc discharge on a cathode, and a carbon material is deposited on the surface of a substrate to form a film,
As the cathode, using a cathode having at least one protrusion protruding toward the substrate,
A magnetic field is generated around the cathode by the magnetic field generating means disposed in the vicinity of the cathode, and a dynamic magnetic field is formed around the cathode by moving the magnetic field generating means, and the beam-shaped plasma is converted into the base plasma. A vacuum arc vapor deposition method characterized in that a thin film is formed on the surface of the base material by scanning the surface of the material.
  また、請求項12に記載の発明は、
  前記磁界発生手段を前記陰極の周囲で回転させることにより動磁場を形成することを特徴とする請求項11に記載の真空アーク蒸着法である。
Further, the invention according to claim 12 is
12. The vacuum arc deposition method according to claim 11, wherein a dynamic magnetic field is formed by rotating the magnetic field generating means around the cathode.
  本発明によれば、基材の表面における成膜領域を適切に制御して、良質な薄膜を成膜することができる真空アーク蒸着装置および真空アーク蒸着法を提供することができる。 According to the present invention, it is possible to provide a vacuum arc vapor deposition apparatus and a vacuum arc vapor deposition method capable of appropriately controlling a film formation region on the surface of a substrate to form a high-quality thin film.
本発明に先立って検討した真空アーク蒸着装置の構成を示す概略図である。It is the schematic which shows the structure of the vacuum arc vapor deposition apparatus examined prior to this invention. 図1に示す真空アーク蒸着装置におけるビーム状プラズマの回転状況を示す図である。It is a figure which shows the rotation condition of the beam-like plasma in the vacuum arc vapor deposition apparatus shown in FIG. 本発明に係る真空アーク蒸着装置におけるビーム状プラズマの回転状況を示す図である。It is a figure which shows the rotation condition of the beam-shaped plasma in the vacuum arc vapor deposition apparatus which concerns on this invention. 本発明の一実施の形態に係る真空アーク蒸着装置の構成を模式的に示す図である。It is a figure which shows typically the structure of the vacuum arc vapor deposition apparatus which concerns on one embodiment of this invention. 本発明の一実施の形態に係る真空アーク蒸着装置におけるアーク式蒸発源を示す図である。It is a figure which shows the arc type evaporation source in the vacuum arc vapor deposition apparatus which concerns on one embodiment of this invention. 本発明の一実施の形態に係る真空アーク蒸着装置におけるアーク式蒸発源の変形例を示す図である。It is a figure which shows the modification of the arc type evaporation source in the vacuum arc vapor deposition apparatus which concerns on one embodiment of this invention. 本発明の一実施の形態における回転機構を模式的に示す図である。It is a figure which shows typically the rotation mechanism in one embodiment of this invention. 図7の回転機構における磁石の配置を説明する図である。It is a figure explaining arrangement | positioning of the magnet in the rotation mechanism of FIG. 本発明の他の実施の形態における回転磁石の配置の変形例を示す図である。It is a figure which shows the modification of arrangement | positioning of the rotating magnet in other embodiment of this invention. 動磁場形成手段の他の例を模式的に示す図である。It is a figure which shows typically the other example of a dynamic magnetic field formation means. 動磁場形成手段の他の例を模式的に示す図である。It is a figure which shows typically the other example of a dynamic magnetic field formation means. 本発明の実施の形態における磁界の向きを説明する図である。It is a figure explaining direction of a magnetic field in an embodiment of the invention. 本発明に係る真空アーク蒸着装置の他の構成の一例を示す概略図である。It is the schematic which shows an example of the other structure of the vacuum arc vapor deposition apparatus based on this invention. 本発明に係る真空アーク蒸着装置の他の構成の一例を示す概略図である。It is the schematic which shows an example of the other structure of the vacuum arc vapor deposition apparatus based on this invention. アーク放電が行われた後の突起部を示す写真である。It is a photograph which shows the projection part after arc discharge was performed. 比較例1における真空アーク蒸着装置の構成を示す概略図である。It is the schematic which shows the structure of the vacuum arc vapor deposition apparatus in the comparative example 1. 成膜前の基材表面の状況を示す図である。It is a figure which shows the condition of the base-material surface before film-forming. 比較例1における成膜後の基材表面の状況を示す図である。It is a figure which shows the condition of the base-material surface after the film-forming in the comparative example 1. FIG. 実施例1における成膜後の基材表面の状況を示す図である。It is a figure which shows the condition of the base-material surface after the film-forming in Example 1. FIG. 実施例2における成膜後の基材表面の状況を示す図である。It is a figure which shows the condition of the base-material surface after the film-forming in Example 2. FIG. 実施例3における成膜後の基材表面の状況を示す図である。It is a figure which shows the condition of the base-material surface after the film-forming in Example 3. FIG. 実施例4における成膜後の基材表面の状況を示す図である。It is a figure which shows the condition of the base-material surface after the film-forming in Example 4. FIG. 実施例5と比較例2の膜厚分布測定結果を示す図である。It is a figure which shows the film thickness distribution measurement result of Example 5 and Comparative Example 2. 従来の真空アーク蒸着装置の構成を示す概略図である。It is the schematic which shows the structure of the conventional vacuum arc vapor deposition apparatus.
  以下、本発明を実施の形態に基づき、図面を用いて説明する。 Hereinafter, the present invention will be described with reference to the drawings based on embodiments.
  図4は本実施の形態に係る真空アーク蒸着装置の構成を模式的に示す図である。 FIG. 4 is a diagram schematically showing the configuration of the vacuum arc deposition apparatus according to the present embodiment.
  図4に示すように、本実施の形態に係る真空アーク蒸着装置は、従来の真空アーク蒸着装置と同様に、真空チャンバー1と、陰極40と、電源14、18と、バッキングプレート7を備えており、陰極40に対向するように保持台10に保持された基材11、12が真空チャンバー1に収容されている。なお、図4中の1aは真空チャンバー1を真空排気する排気系、2はアーク電流フィールドスルー、13はトリガー機構、15は抵抗、16は保持台10の回転軸である。 As shown in FIG. 4, the vacuum arc deposition apparatus according to the present embodiment includes a vacuum chamber 1, a cathode 40, power supplies 14 and 18, and a backing plate 7, as in the conventional vacuum arc deposition apparatus. The base materials 11 and 12 held on the holding base 10 so as to face the cathode 40 are accommodated in the vacuum chamber 1. In FIG. 4, 1 a is an exhaust system for evacuating the vacuum chamber 1, 2 is an arc current field through, 13 is a trigger mechanism, 15 is a resistor, and 16 is a rotating shaft of the holding table 10.
  次に、図5は本実施の形態に係る真空アーク蒸着装置おけるアーク式蒸発源を示す図であり、バッキングプレート7の上に陰極40が配置されている。陰極40は、ガラス状炭素により形成されており、図5に示すように、円盤状の台座部40aと、台座部40aから基材11、12に向けて突出する突起部40bを備えている。 Next, FIG. 5 is a view showing an arc evaporation source in the vacuum arc deposition apparatus according to the present embodiment, and a cathode 40 is disposed on the backing plate 7. The cathode 40 is made of glassy carbon, and includes a disk-shaped pedestal portion 40a and a protrusion 40b protruding from the pedestal portion 40a toward the base materials 11 and 12, as shown in FIG.
  ガラス状炭素には粒界がないため、このような陰極40を用いた場合、アーク放電中にマクロパーティクルが発生することが防止されて、基材表面に成膜される薄膜における膜質の低下を防止することができる。なお、台座部40aと突起部40bがガラス状炭素により形成されている図5に示す陰極40に替えて、図6に示すような、焼結構造のカーボン材料(焼結体グラファイト)の台座部40aにガラス状炭素からなる突起部40bが取り付けられた陰極40を用いてもよい。 Since glassy carbon has no grain boundaries, when such a cathode 40 is used, macroparticles are prevented from being generated during arc discharge, and the film quality of the thin film formed on the substrate surface is reduced. Can be prevented. In addition, it replaces with the cathode 40 shown in FIG. 5 in which the base part 40a and the protrusion part 40b are formed with glassy carbon, and the base part of the carbon material (sintered graphite) of a sintered structure as shown in FIG. You may use the cathode 40 by which the projection part 40b which consists of glassy carbon was attached to 40a.
  本実施の形態に係る真空アーク蒸着装置は、図4に示すように、陰極40の近傍に回転する磁石6が配置されており、この磁石6が回転することにより陰極40の付近に回転動磁場を形成して、ビーム状のプラズマ9を磁石6の回転に合わせてスムーズに輸送させる点が従来の真空アーク蒸着装置と異なる。 In the vacuum arc vapor deposition apparatus according to the present embodiment, as shown in FIG. 4, a rotating magnet 6 is disposed in the vicinity of the cathode 40, and the rotating dynamic magnetic field is in the vicinity of the cathode 40 by rotating the magnet 6. Is different from the conventional vacuum arc deposition apparatus in that the beam-shaped plasma 9 is smoothly transported in accordance with the rotation of the magnet 6.
  即ち、本実施の形態においては、磁界発生手段として使用される磁石6が陰極40の背面に配置されており、動磁場形成手段として磁石6の回転中心を陰極40の突起部40bの中心軸に一致させて回転させる回転機構を備えている。 That is, in the present embodiment, the magnet 6 used as the magnetic field generating means is arranged on the back surface of the cathode 40, and the rotational center of the magnet 6 is set as the dynamic axis forming means to the central axis of the projection 40b of the cathode 40. A rotation mechanism for rotating them in accordance with each other is provided.
  図7は本実施の形態における回転機構を模式的に示す図であり、図4のA-A断面における図を示している。そして、図8は図7の回転機構における磁石の配置を説明する図であり、(a)は図7中の回転板4の拡大図、(b)は図7のB-B断面における回転板4の断面図である。 FIG. 7 is a diagram schematically showing the rotation mechanism in the present embodiment, and shows a diagram in the AA cross section of FIG. 8 is a diagram for explaining the arrangement of the magnets in the rotating mechanism of FIG. 7, wherein (a) is an enlarged view of the rotating plate 4 in FIG. 7, and (b) is a rotating plate in the BB cross section of FIG. FIG.
  図7に示すように、この回転機構は、一対のアクリル製の回転板4、20にベルト5を架け渡して構成されている。一方の回転板4には磁石6が取り付けられており、他方の回転板20の回転軸21にはモーター(図示省略)が接続されている。モーターの回転数をコントローラー(図示せず)により調整して回転軸21を回転させることにより回転板20が回転し、さらに、ベルト5を介して回転板4が回転する。そして、回転板4の回転に合わせて磁石6が、陰極の突起部の延長線を中心軸として回転する。なお、本実施の形態においては、図8(b)に示すように、計4個の磁石6が回転板4を両側から挟んで配置されている。 示 す As shown in FIG. 7, this rotating mechanism is configured by a belt 5 being bridged between a pair of acrylic rotating plates 4 and 20. A magnet 6 is attached to one rotating plate 4, and a motor (not shown) is connected to the rotating shaft 21 of the other rotating plate 20. The rotating plate 20 is rotated by adjusting the rotational speed of the motor by a controller (not shown) and rotating the rotating shaft 21, and the rotating plate 4 is further rotated via the belt 5. And the magnet 6 rotates centering | focusing on the extension line | wire of the protrusion part of a cathode according to rotation of the rotating plate 4. FIG. In the present embodiment, as shown in FIG. 8B, a total of four magnets 6 are arranged with the rotating plate 4 sandwiched from both sides.
  本実施の形態に係る真空アーク蒸着装置を用いた薄膜の成膜は以下のように行われる。なお、以下においては、真空アーク蒸着装置として、図4に示す真空アーク蒸着装置を用いている。 A thin film is formed using the vacuum arc deposition apparatus according to the present embodiment as follows. In the following, the vacuum arc vapor deposition apparatus shown in FIG. 4 is used as the vacuum arc vapor deposition apparatus.
  先ず、突起部40bを有する陰極40をバッキングプレート7に取り付けると共に、陰極40と対向するように真空チャンバー1内の保持台10に基材11、12を保持させる。 First, the cathode 40 having the protrusion 40 b is attached to the backing plate 7, and the base materials 11 and 12 are held on the holding table 10 in the vacuum chamber 1 so as to face the cathode 40.
  次に、真空ポンプ(図示省略)などを用いて排気系1aから真空チャンバー1内のガスを排気すると共に、アーク電流フィールドスルー2を介して電源18から陰極40に負の電圧を印加する。一方、保持台10に保持された基材11、12に電源14からバイアス電圧を印加すると共に、保持台10の回転軸16を回転させる。 Next, the gas in the vacuum chamber 1 is exhausted from the exhaust system 1 a using a vacuum pump (not shown), and a negative voltage is applied from the power source 18 to the cathode 40 via the arc current field through 2. On the other hand, a bias voltage is applied from the power source 14 to the base materials 11 and 12 held on the holding table 10, and the rotating shaft 16 of the holding table 10 is rotated.
  そして、上記したモーターを稼働させることにより、図7に示すように、回転板20を回転させ、その回転をベルト5を介して回転板4に伝えて回転させる。これにより、陰極40の背面に配置された磁石6を回転させることができ、陰極40の付近に動磁場を形成させることができる。 Then, by operating the motor described above, the rotating plate 20 is rotated as shown in FIG. 7, and the rotation is transmitted to the rotating plate 4 via the belt 5 and rotated. Thereby, the magnet 6 arrange | positioned at the back surface of the cathode 40 can be rotated, and a dynamic magnetic field can be formed in the vicinity of the cathode 40. FIG.
  この状態で、トリガー機構13によって放電を開始させると、陽極としての真空チャンバー1と陰極40の突起部40bとの間にアーク放電が生じる。 In this state, when discharge is started by the trigger mechanism 13, arc discharge is generated between the vacuum chamber 1 as the anode and the protrusion 40 b of the cathode 40.
  このとき、上記の通り、回転する磁石6によって陰極40の付近に動磁場が形成されているため、陰極40のアークスポットから発生したビーム状のプラズマ9が磁石6の回転による動磁場の影響を受けて、磁石6の回転方向と同じ方向に輸送される。 At this time, as described above, a dynamic magnetic field is formed in the vicinity of the cathode 40 by the rotating magnet 6, so that the beam-shaped plasma 9 generated from the arc spot of the cathode 40 is affected by the dynamic magnetic field due to the rotation of the magnet 6. Upon receipt, the magnet 6 is transported in the same direction as the rotation direction.
  これにより、陰極40に対向して配置された基材11、12の表面には、磁石6の回転方向と同じ方向に一定の円周軌道を描いて等速回転するビーム状のプラズマ9が照射される(図3参照)。この結果、基材の表面に成膜される薄膜の領域を適切に制御して、基材表面に均質な薄膜を成膜することができる。 Thereby, the surface of the base materials 11 and 12 arranged facing the cathode 40 is irradiated with a beam-like plasma 9 that rotates at a constant speed while drawing a constant circumferential orbit in the same direction as the rotation direction of the magnet 6. (See FIG. 3). As a result, it is possible to appropriately control the region of the thin film formed on the surface of the base material and form a uniform thin film on the base material surface.
  なお、本実施の形態においては、磁石6は陰極40の背面に配置させているが、ビーム状のプラズマを強制的に回転できるような動磁場を陰極40の周囲に形成することができる位置であれば、磁石6の配置位置は特に限定されない。具体的には、例えば、図9(a)のように陰極40の突起部40bの周囲を回転するような位置に磁石6を配置してもよく、また、図9(b)のように基材11と突起部40bとの間の空間において回転するような位置に磁石6を配置してもよい。 In the present embodiment, the magnet 6 is disposed on the back surface of the cathode 40, but at a position where a dynamic magnetic field capable of forcibly rotating the beam-shaped plasma can be formed around the cathode 40. If there is, the arrangement position of the magnet 6 is not particularly limited. Specifically, for example, the magnet 6 may be arranged at a position that rotates around the protrusion 40b of the cathode 40 as shown in FIG. 9A, or based on FIG. 9B. You may arrange | position the magnet 6 in the position which rotates in the space between the material 11 and the projection part 40b.
  なお、動磁場形成手段は、上記したような磁石の回転中心を陰極の突起部の中心軸と一致させて回転させる回転機構に限定されず、例えば、図10に示すようなリング状の磁石6aを突起部40bの中心軸とは異なる回転軸で偏心させて回転させてもよく、また、図11に示すように、棒状の磁石6bを所定の方向(図11では上下方向)に直線的に移動させてもよい。 The dynamic magnetic field forming means is not limited to a rotation mechanism that rotates the magnet so that the rotation center of the magnet coincides with the central axis of the protrusion of the cathode, and for example, a ring-shaped magnet 6a as shown in FIG. May be rotated eccentrically with a rotation axis different from the central axis of the protrusion 40b, and as shown in FIG. 11, the rod-shaped magnet 6b is linearly moved in a predetermined direction (vertical direction in FIG. 11). It may be moved.
  また、磁界発生手段は、図12に示すように、陰極の突起部40bの軸方向Bzに沿って21Gauss以上、突起部40bの径方向Brに沿って10Gauss以上の磁場強度の磁界を発生させるような磁石を用いることが好ましい。これにより、BzとBrの合成ベクトルBの方向に適切な磁場強度の磁界を生じさせてビーム状のプラズマを適切に輸送させることができる Further, as shown in FIG. 12, the magnetic field generating means generates a magnetic field having a magnetic field strength of 21 Gauss or more along the axial direction Bz of the cathode protrusion 40b and 10 Gauss or more along the radial direction Br of the protrusion 40b. It is preferable to use a simple magnet. As a result, a magnetic field having an appropriate magnetic field strength can be generated in the direction of the combined vector B of Bz and Br, and the beam-shaped plasma can be transported appropriately.
  なお、本実施の形態に係る真空アーク蒸着装置は、上記した図4に示した構成の真空アーク蒸着装置だけでなく、他の様々な構成の真空アーク蒸着装置に適用することができる。 Note that the vacuum arc vapor deposition apparatus according to the present embodiment can be applied not only to the vacuum arc vapor deposition apparatus having the configuration shown in FIG. 4 described above but also to vacuum arc vapor deposition apparatuses having various other configurations.
  例えば、図13に示すように、陰極40と対向するように1枚の基材11を回転させずに保持する保持台10aを用いた場合であっても、基材11の表面に成膜される薄膜の領域を適切に制御して、基材11表面に均質な薄膜を成膜することができる。 For example, as shown in FIG. 13, even when a holding table 10 a that holds one base material 11 without rotating it so as to face the cathode 40 is formed on the surface of the base material 11. It is possible to form a homogeneous thin film on the surface of the substrate 11 by appropriately controlling the region of the thin film.
  また、図14に示すように、陰極40の突起部を基材に向かって送り出す送り出し機構80を設けた真空アーク蒸着装置も好ましく用いることができる。この場合、アーク放電によって陰極40が消耗すると、制御手段(図示せず)の制御によって陰極40の未消耗部分の先端を消耗前の先端部と同じ位置まで送り出すことにより、安定したアーク放電を長時間持続させることができる。 Further, as shown in FIG. 14, a vacuum arc vapor deposition apparatus provided with a delivery mechanism 80 for delivering the protruding portion of the cathode 40 toward the substrate can also be preferably used. In this case, when the cathode 40 is consumed due to the arc discharge, the tip of the unconsumed portion of the cathode 40 is sent out to the same position as the tip portion before the consumption under the control of a control means (not shown), thereby maintaining stable arc discharge. Can last for hours.
  そして、突起部は、中心軸に垂直な断面の形状が、円形状、楕円形状、多角形状、角部に丸みを付けた多角形状であり、中実状又は環状をなしていることが好ましい。 The protrusions preferably have a cross-sectional shape perpendicular to the central axis, a circular shape, an elliptical shape, a polygonal shape, or a polygonal shape with rounded corners, and are solid or annular.
  また、本実施の形態において、成膜される薄膜の種類としては、アモルファスカーボン薄膜、ダイヤモンドライクカーボン薄膜、テトラヘドラルアモルファスカーボン膜、非晶質硬質炭素薄膜および硬質炭素薄膜などを挙げることができる。 In this embodiment, examples of the type of thin film formed include an amorphous carbon thin film, a diamond-like carbon thin film, a tetrahedral amorphous carbon film, an amorphous hard carbon thin film, and a hard carbon thin film. .
  また、本実施の形態において、使用される基材としては金属、セラミックス、樹脂、半導体などを挙げることができ、より具体的には、金属としてタングステンカーバイト、鋼、アルミニウムやコバルトクロム合金など、セラミックスとして酸化アルミニウム、窒化ケイ素、立方晶窒化ホウ素や二酸化ケイ素など、樹脂としてポリカーボネート、ポリエチレンテレフタレートやポリ塩化ビニルなど、半導体としてケイ素、窒化ガリウムや酸化亜鉛などを挙げることができる。 In the present embodiment, examples of the base material used include metals, ceramics, resins, and semiconductors. More specifically, the metals include tungsten carbide, steel, aluminum, cobalt chromium alloy, and the like. Examples of the ceramic include aluminum oxide, silicon nitride, cubic boron nitride, and silicon dioxide. Examples of the resin include polycarbonate, polyethylene terephthalate, and polyvinyl chloride. Examples of the semiconductor include silicon, gallium nitride, and zinc oxide.
  また、上記した通り、陰極の突起部はガラス状炭素から構成されていることが好ましいが、このガラス状炭素としては、グラッシーカーボン(glassy  carbon)、アモルファスカーボン、非晶質カーボン、非定形炭素、無定形炭素、非黒鉛化炭素およびガラス質炭素(vitreous  carbon)を挙げることができる。また、突起部は、ガラス状炭素以外に、熱分解性カーボン並びにパイロリティックカーボンであって熱CVD法により作製される積層状炭素であってもよい。 In addition, as described above, the cathode protrusion is preferably made of glassy carbon. Examples of the glassy carbon include glassy carbon, amorphous carbon, amorphous carbon, amorphous carbon, Mention may be made of amorphous carbon, non-graphitized carbon and vitreous carbon. In addition to glassy carbon, the protrusions may be pyrolytic carbon and pyrolytic carbon and may be laminated carbon produced by a thermal CVD method.
  そして、図15に示すように、放電後の突起部の外周面にスパイラル状の放電痕が形成されるようにアークスポットの動きが制御されていることが好ましい。これにより、アークスポットが突起部以外に移動することが無くなる。 As shown in FIG. 15, it is preferable that the movement of the arc spot is controlled so that spiral discharge traces are formed on the outer peripheral surface of the protrusion after discharge. Thereby, the arc spot does not move to other than the protrusions.
  以下、実施例により、本発明をさらに具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to examples.
1.試験1
(1)実施例1~4
  本試験では、実施例1~4として、図11に示す真空アーク蒸着装置を用いて、回転機構によって磁石を反時計方向に60rpmの速度で回転させて表1に示す磁場強度(Gauss)で動磁場を形成しながら、保持台に固定された基材(350mm×350mm×t3mmのSUS304製)の表面にカーボン薄膜を40秒間成膜した。また、その他の条件は下記の表1に示す通りに設定した。
1. Test 1
(1) Examples 1 to 4
In this test, as Examples 1 to 4, using the vacuum arc deposition apparatus shown in FIG. 11, the magnet was rotated counterclockwise at a speed of 60 rpm by the rotating mechanism and moved at the magnetic field strength (Gauss) shown in Table 1. While forming a magnetic field, a carbon thin film was formed on the surface of a base material (350 mm × 350 mm × t3 mm made of SUS304) fixed to a holding table for 40 seconds. Other conditions were set as shown in Table 1 below.
  なお、磁石6を回転させるモーターとしてはPanasonic社製M61X6GD4L型を使用し、ギヤヘッドにPanasonic社製MX6G5BA型を使用した。そして、磁石の回転数の調整は、モーターへの電力供給を兼ねたコントローラー(Panasonic社製US型)により行った。 Note that a Panasonic M61X6GD4L type was used as the motor for rotating the magnet 6, and a Panasonic MX6G5BA type was used for the gear head. Then, the number of rotations of the magnet was adjusted by a controller (US type manufactured by Panasonic) that also supplied power to the motor.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
  表1における突起部の軸方向Bzと径方向Brの磁場強度は、陰極の突起部の先端における磁界をガウスメーター(Lake  Shore社製410-SCT型)を用いて測定した。 The magnetic field strength in the axial direction Bz and radial direction Br of the protrusions in Table 1 was measured using a Gauss meter (410-SCT type, manufactured by Lake Shoe) for the magnetic field at the tip of the protrusion of the cathode.
  なお、本実施例においては、陰極として、図6に示すような、焼結体グラファイト(IG510  東洋炭素社製)からなる台座部40aと、ガラス状炭素(GC20SS  東海ファインカーボン社製)からなる突起部40bとを備えた陰極40を用いており、台座部40aの寸法はφ64mm×t20mmであり、突起部40bの寸法はφ3mm×L20mmである。 In this embodiment, as shown in FIG. 6, a pedestal 40a made of sintered graphite (IG510 made by Toyo Tanso Co., Ltd.) and a projection made of glassy carbon (GC20SS made by Tokai Fine Carbon Co., Ltd.) are used as the cathode. The size of the pedestal portion 40a is φ64 mm × t20 mm, and the size of the protrusion 40b is φ3 mm × L20 mm.
(2)比較例1
  比較例1として、図16に示す真空アーク蒸着装置を用いて、回転しないリング状磁石60により形成された静磁場の下で基材の表面にカーボン薄膜を成膜した。なお、その他の条件は実施例1と同じに設定した。
(2) Comparative Example 1
As Comparative Example 1, a carbon thin film was formed on the surface of a base material under a static magnetic field formed by a non-rotating ring-shaped magnet 60 using a vacuum arc deposition apparatus shown in FIG. The other conditions were set the same as in Example 1.
(3)評価
(a)プラズマスキャン可否確認
  実施例1~4および比較例において、アーク放電中の真空チャンバー1内の状況を、装置に取り付けられたのぞき窓から目視により観察し、成膜中(40秒間)のビーム状のプラズマの回転数と回転方向および回転状況を確認した。
(3) Evaluation (a) Confirmation of whether or not plasma scanning is possible In Examples 1 to 4 and the comparative example, the situation in the vacuum chamber 1 during arc discharge was visually observed from the observation window attached to the apparatus, and the film was being formed ( The number of rotations, the direction of rotation, and the state of rotation of the plasma in the form of a beam for 40 seconds were confirmed.
(b)成膜状況観察試験
  成膜後の基材表面を目視により観察し、基材表面の全体に亘って均質な薄膜が形成された場合を「可」、ビーム状のプラズマが長時間滞在することにより膜厚が不均一な部分が生じた場合を「不可」と評価した。
(B) Film formation state observation test The surface of the base material after film formation is visually observed. If a homogeneous thin film is formed over the entire surface of the base material, “Yes”, beam-like plasma stays for a long time. As a result, a case where a non-uniform film thickness occurred was evaluated as “impossible”.
  プラズマスキャン可否確認および成膜状況観察試験の結果を表2に示す。また、成膜前の基材表面の写真を図17、比較例1の製膜後の写真を図18、実施例1~4の成膜後の写真を図19~図22に示す。 Table 2 shows the results of confirmation of the possibility of plasma scanning and the film formation state observation test. Further, a photograph of the substrate surface before film formation is shown in FIG. 17, a photograph after film formation in Comparative Example 1 is shown in FIG. 18, and photographs after film formation in Examples 1 to 4 are shown in FIGS.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
  表2より、比較例1ではビーム状のプラズマが時計方向に回転し、回転状況も図2に示すようにランダムであったのに対して、実施例1~4ではビーム状のプラズマが、磁石と同じ回転方向である反時計方向に一定の円周軌道を描いて等速回転しており、反時計方向に磁石を回転させて動磁場を形成することにより、ビーム状のプラズマを磁石の回転方向に一致させてスキャンさせることができることが確認できた。 From Table 2, the beam-shaped plasma was rotated in the clockwise direction in Comparative Example 1, and the rotation state was also random as shown in FIG. 2, whereas in Examples 1-4, the beam-shaped plasma was magnetized. Rotate the magnet in the counterclockwise direction, which is the same rotational direction as the, and rotate at a constant speed, and rotate the magnet counterclockwise to form a dynamic magnetic field, thereby rotating the beam-like plasma into the magnet. It was confirmed that scanning can be performed in accordance with the direction.
  また、実施例1~4において、回転する磁石が、陰極の突起部に対して上方に位置する場合、ビーム状のプラズマは基材下方を照射しており、陰極の突起部に対して下方に位置する場合、ビーム状のプラズマは基材上方を照射していた。 In Examples 1 to 4, when the rotating magnet is positioned above the projection of the cathode, the beam-shaped plasma irradiates the lower part of the substrate, and the downward direction of the projection of the cathode When positioned, the beam-shaped plasma was radiating above the substrate.
  また、陰極の突起部の軸方向Bzに21Gauss以上、突起部の径方向Brに10Gauss以上の磁場強度の磁界を形成した実施例1~4では、ビーム状のプラズマの回転数が磁石の回転数(60rpm×40/60sec.=40回転)と同じであり、より適切にビーム状のプラズマを制御できることが確認できた。 In Examples 1 to 4 in which a magnetic field having a magnetic field strength of 21 Gauss or more in the axial direction Bz of the cathode protrusion and 10 Gauss or more in the radial direction Br of the protrusion is formed, the rotation speed of the beam-shaped plasma is the rotation speed of the magnet. It was the same as (60 rpm × 40/60 sec. = 40 rotations), and it was confirmed that the beam-shaped plasma could be controlled more appropriately.
  そして、表2および図17~図22より、ビーム状のプラズマの回転状況を適切に制御できた実施例1~4においては、陰極の突起部と対向した基材の中心から均一にカーボン材料が成膜されており、均質な薄膜が基材表面に成膜できることが確認できた。 From Table 2 and FIGS. 17 to 22, in Examples 1 to 4 in which the rotation state of the beam-like plasma can be appropriately controlled, the carbon material is uniformly distributed from the center of the base material facing the protruding portion of the cathode. It was confirmed that a homogeneous thin film could be formed on the substrate surface.
2.試験2
(1)実施例5および比較例2
  本試験例では、図4に示す真空アーク蒸着装置(実施例5)と、図1に示す比較例の真空アーク蒸着装置(比較例2)とを用いて、各真空アーク蒸着装置に配置された2枚の基材(基材11および基材12)のそれぞれの表面にカーボン薄膜を成膜した。また、その他の条件は下記の表2に示す通りに設定した。
2. Test 2
(1) Example 5 and Comparative Example 2
In this test example, the vacuum arc deposition apparatus (Example 5) shown in FIG. 4 and the comparative example vacuum arc deposition apparatus (Comparative Example 2) shown in FIG. Carbon thin films were formed on the surfaces of the two base materials (base material 11 and base material 12). Other conditions were set as shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(2)評価
  実施例5および比較例2において、成膜後の薄膜の膜厚を測定して半値全幅と最大膜厚位置を算出した。膜厚測定には、触針式の表面形状測定器Dektak150(Veeco社製)を使用し、測定範囲を陰極材料中心を0mmとして鉛直方向±110mm(例えば、図4のY+、Y-方向)、測定間隔を10mmに設定した。
(2) Evaluation In Example 5 and Comparative Example 2, the film thickness of the thin film after film formation was measured to calculate the full width at half maximum and the maximum film thickness position. For the film thickness measurement, a stylus type surface shape measuring device Dektak 150 (manufactured by Veeco) was used, the measurement range was set to 0 mm at the center of the cathode material, and the vertical direction ± 110 mm (for example, Y +, Y-direction in FIG. 4), The measurement interval was set to 10 mm.
  また、規格化された膜厚を1とした最大膜厚位置を算出し、その半分の値(0.5)のときの陰極中心からの鉛直方向距離を半値全幅として算出した。算出結果を表4および図23に示す。なお、図23において、縦軸は陰極中心からの鉛直方向の距離を示し、横軸は規格化膜厚を示している。 In addition, the maximum film thickness position where the normalized film thickness was 1 was calculated, and the vertical distance from the cathode center at the half value (0.5) was calculated as the full width at half maximum. The calculation results are shown in Table 4 and FIG. In FIG. 23, the vertical axis represents the vertical distance from the center of the cathode, and the horizontal axis represents the normalized film thickness.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
  表4より、実施例5においては、基材11と基材12の最大膜厚位置が同一であり、半値全幅が類似した値になっていることが確認され、さらに図23(a)に示すように、それぞれの基材11、12において成膜された薄膜の形状(膜厚分布形状)が非常に似通ったものとなっていた。 From Table 4, in Example 5, it was confirmed that the maximum film thickness positions of the base material 11 and the base material 12 were the same, and the full width at half maximum was a similar value, which is further shown in FIG. As described above, the shapes (thickness distribution shapes) of the thin films formed on the base materials 11 and 12 are very similar.
  一方、比較例2においては、基材11と基材12との間で半値全幅および最大膜厚位置が大きく異なっていることが確認された。また、図23(b)に示すように、それぞれの基材11、12の膜厚分布形状が大きく異なっていた。 On the other hand, in Comparative Example 2, it was confirmed that the full width at half maximum and the maximum film thickness position were greatly different between the base material 11 and the base material 12. Moreover, as shown in FIG.23 (b), the film thickness distribution shape of each base material 11 and 12 differed greatly.
  以上の結果から、実施例5のように、磁石を回転させて動磁場を形成してビーム状のプラズマを強制的に回転させることによって、複数の基材を同時に成膜する場合であっても、成膜領域(膜厚分布形状、半値全幅、最大膜厚位置)を適切に制御することができ、均質な薄膜を成膜できることが確認できた。 From the above results, even in the case where a plurality of base materials are formed simultaneously by rotating a magnet to form a dynamic magnetic field and forcibly rotating a beam-like plasma as in Example 5. It was confirmed that the film formation region (film thickness distribution shape, full width at half maximum, maximum film thickness position) could be appropriately controlled and a uniform thin film could be formed.
  以上、本発明を実施の形態に基づいて説明したが、本発明は上記の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、上記の実施の形態に対して種々の変更を加えることができる。 As mentioned above, although this invention was demonstrated based on embodiment, this invention is not limited to said embodiment. Various modifications can be made to the above-described embodiments within the same and equivalent scope as the present invention.
1、31                真空チャンバー
1a                    排気系
2                      アーク電流フィールドスルー
3                      回転板押さえ金具
4、20                回転板
5                      ベルト
6、6a、6b、60    磁石
7、36                バッキングプレート
9                      プラズマ
10、10a            保持台
11、12、33        基材
13                    トリガー機構
14、18、34、37  電源
15                    抵抗
16                    基材回転軸
21                    回転軸
32、40              陰極
40a                  台座部
40b                  突起部
80                    送り出し機構
DESCRIPTION OF SYMBOLS 1, 31 Vacuum chamber 1a Exhaust system 2 Arc current field through 3 Rotating plate pressing metal 4, 20 Rotating plate 5 Belts 6, 6a, 6b, 60 Magnet 7, 36 Backing plate 9 Plasma 10, 10a Holding table 11, 12, 33 Base material 13 Trigger mechanism 14, 18, 34, 37 Power source 15 Resistance 16 Base material rotating shaft 21 Rotating shaft 32, 40 Cathode 40 a Base 40 b Projecting portion 80 Delivery mechanism

Claims (12)

  1.   カーボン材料によって形成された陰極にアーク放電を行ってカーボン材料を蒸発させることによりビーム状のプラズマを発生させ、基材表面にカーボン材料を蒸着させて成膜する真空アーク蒸着装置であって、
      前記基材に向けて突出する少なくとも1つの突起部を備えた陰極と、
      前記陰極の近傍に配置されて、前記陰極の周囲に磁界を生じさせる磁界発生手段と、
      前記磁界発生手段を移動させて前記陰極の周囲に動磁場を形成する動磁場形成手段とを備えており、
      前記陰極の周囲に形成された動磁場により前記ビーム状のプラズマを前記基材表面に走査させて、成膜するように構成されていることを特徴とする真空アーク蒸着装置。
    A vacuum arc deposition apparatus for generating a beam-like plasma by performing arc discharge on a cathode formed of a carbon material and evaporating the carbon material, and depositing the carbon material on a substrate surface to form a film,
    A cathode provided with at least one protrusion protruding toward the substrate;
    A magnetic field generating means disposed near the cathode and generating a magnetic field around the cathode;
    Dynamic magnetic field forming means for moving the magnetic field generating means to form a dynamic magnetic field around the cathode,
    A vacuum arc deposition apparatus configured to form a film by causing the beam-shaped plasma to scan the surface of the base material by a dynamic magnetic field formed around the cathode.
  2.   前記動磁場形成手段が、前記磁界発生手段を前記陰極の周囲で回転させる回転機構により動磁場を形成する動磁場形成手段であることを特徴とする請求項1に記載の真空アーク蒸着装置。 The vacuum arc deposition apparatus according to claim 1, wherein the dynamic magnetic field forming means is a dynamic magnetic field forming means for forming a dynamic magnetic field by a rotating mechanism that rotates the magnetic field generating means around the cathode.
  3.   前記回転機構による前記磁界発生手段の回転中心が、前記陰極の突起部の中心軸と一致していることを特徴とする請求項2に記載の真空アーク蒸着装置。 3. The vacuum arc deposition apparatus according to claim 2, wherein the center of rotation of the magnetic field generating means by the rotating mechanism coincides with the center axis of the projection of the cathode.
  4.   前記動磁場形成手段が、前記磁界発生手段を直線的に移動させる移動機構により動磁場を形成する動磁場形成手段であることを特徴とする請求項1に記載の真空アーク蒸着装置。 The vacuum arc deposition apparatus according to claim 1, wherein the dynamic magnetic field forming means is a dynamic magnetic field forming means for forming a dynamic magnetic field by a moving mechanism that linearly moves the magnetic field generating means.
  5.   前記磁界発生手段が、前記陰極の突起部の周囲、前記陰極と前記基材の間および前記陰極の背面の何れかに配置されていることを特徴とする請求項1ないし請求項4のいずれか1項に記載の真空アーク蒸着装置。 5. The magnetic field generating means according to any one of claims 1 to 4, wherein the magnetic field generating means is disposed around the projection of the cathode, between the cathode and the base material, or on the back surface of the cathode. 2. A vacuum arc vapor deposition apparatus according to item 1.
  6.   前記陰極が、台座部と、前記台座部に取り付けられた前記突起部とを備えていることを特徴とする請求項1ないし請求項5のいずれか1項に記載の真空アーク蒸着装置。 The vacuum arc deposition apparatus according to any one of claims 1 to 5, wherein the cathode includes a pedestal portion and the protrusion attached to the pedestal portion.
  7.   前記陰極の前記突起部は、中心軸に垂直な断面の形状が、円形状、楕円形状、多角形状、角部に丸みを付けた多角形状であり、中実状又は環状の柱状をなしていることを特徴とする請求項1ないし請求項6のいずれか1項に記載の真空アーク蒸着装置。 The projecting portion of the cathode has a cross-sectional shape perpendicular to the central axis, a circular shape, an elliptical shape, a polygonal shape, a polygonal shape with rounded corners, and a solid or annular columnar shape. The vacuum arc vapor deposition apparatus according to any one of claims 1 to 6, wherein:
  8.   前記陰極が、ガラス状炭素から構成されていることを特徴とする請求項1ないし請求項7のいずれか1項に記載の真空アーク蒸着装置。 The vacuum arc deposition apparatus according to any one of claims 1 to 7, wherein the cathode is made of glassy carbon.
  9.   前記アーク放電が行われた後に前記陰極の前記突起部の外周面に形成される放電痕の形状が、スパイラル状であることを特徴とする請求項1ないし請求項8のいずれか1項に記載の真空アーク蒸着装置。 9. The discharge mark formed on the outer peripheral surface of the protrusion of the cathode after the arc discharge is spiral, 9. Vacuum arc deposition equipment.
  10.   前記磁界発生手段が、前記陰極の突起部の軸方向に21Gauss以上、前記突起部の径方向に10Gauss以上の磁場強度の磁界を発生させるように構成されていることを特徴とする請求項1ないし請求項9のいずれか1項に記載の真空アーク蒸着装置。 The magnetic field generating means is configured to generate a magnetic field having a magnetic field strength of 21 Gauss or more in the axial direction of the projection of the cathode and 10 Gauss or more in the radial direction of the projection. The vacuum arc vapor deposition apparatus of any one of Claim 9.
  11.   陰極にアーク放電を行ってカーボン材料を蒸発させることによりビーム状のプラズマを発生させて、基材の表面にカーボン材料を蒸着させて成膜する真空アーク蒸着法であって、
      前記陰極として、前記基材に向けて突出した少なくとも1つの突起部を有する陰極を用い、
      前記陰極の近傍に配置された磁界発生手段により前記陰極の周囲に磁界を生じさせると共に、前記磁界発生手段を移動させて前記陰極の周囲に動磁場を形成し、前記ビーム状のプラズマを前記基材表面に走査させることにより前記基材の表面に薄膜を成膜することを特徴とする真空アーク蒸着法。
    A vacuum arc deposition method in which a beam-like plasma is generated by evaporating a carbon material by performing an arc discharge on a cathode, and a carbon material is deposited on the surface of a substrate to form a film,
    As the cathode, using a cathode having at least one protrusion protruding toward the substrate,
    A magnetic field is generated around the cathode by the magnetic field generating means disposed in the vicinity of the cathode, and a dynamic magnetic field is formed around the cathode by moving the magnetic field generating means, and the beam-shaped plasma is converted into the base plasma. A vacuum arc vapor deposition method characterized in that a thin film is formed on the surface of the substrate by scanning the material surface.
  12.   前記磁界発生手段を前記陰極の周囲で回転させることにより動磁場を形成することを特徴とする請求項11に記載の真空アーク蒸着法。 12. The vacuum arc deposition method according to claim 11, wherein a dynamic magnetic field is formed by rotating the magnetic field generating means around the cathode.
PCT/JP2015/070211 2014-07-25 2015-07-14 Vacuum arc deposition device and vacuum arc deposition method WO2016013459A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014152284A JP2016030837A (en) 2014-07-25 2014-07-25 Vacuum arc vapor deposition device and vacuum arc vapor deposition method
JP2014-152284 2014-07-25

Publications (1)

Publication Number Publication Date
WO2016013459A1 true WO2016013459A1 (en) 2016-01-28

Family

ID=55162985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070211 WO2016013459A1 (en) 2014-07-25 2015-07-14 Vacuum arc deposition device and vacuum arc deposition method

Country Status (2)

Country Link
JP (1) JP2016030837A (en)
WO (1) WO2016013459A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7189030B2 (en) * 2019-01-10 2022-12-13 株式会社神戸製鋼所 Deposition equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04236770A (en) * 1991-01-17 1992-08-25 Kobe Steel Ltd Method for controlling arc spot in vacuum arc deposition and vaporization source
JP2014133912A (en) * 2013-01-09 2014-07-24 Nissin Electric Co Ltd Plasma device, and method for manufacturing carbon thin film using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013015280A1 (en) * 2011-07-26 2013-01-31 日新電機株式会社 Plasma device and method for producing carbon thin film using same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04236770A (en) * 1991-01-17 1992-08-25 Kobe Steel Ltd Method for controlling arc spot in vacuum arc deposition and vaporization source
JP2014133912A (en) * 2013-01-09 2014-07-24 Nissin Electric Co Ltd Plasma device, and method for manufacturing carbon thin film using the same

Also Published As

Publication number Publication date
JP2016030837A (en) 2016-03-07

Similar Documents

Publication Publication Date Title
TWI507555B (en) An arc-type evaporation source, and a method for manufacturing the same
JP2009144236A (en) Evaporation source for arc ion plating device and arc ion plating device
JP5166531B2 (en) Magnetic field generator and plasma processing apparatus
KR101471269B1 (en) Arc evaporation source having fast film-forming speed, film formation device and manufacturing method for coating film using the arc evaporation source
US20150371833A1 (en) Plasma device, carbon thin film manufacturing method and coating method using plasma device
WO2016013459A1 (en) Vacuum arc deposition device and vacuum arc deposition method
JP2011058073A (en) Thin film deposition method and thin film deposition apparatus
JP5648532B2 (en) Arc ion plating equipment
US8293081B2 (en) Physical vapor deposition device
JP5652348B2 (en) Arc ion plating equipment
JP5644676B2 (en) Arc ion plating apparatus and film forming method
JP7161658B2 (en) Vacuum arc deposition apparatus and vacuum arc deposition method
JP6074573B2 (en) Arc evaporation source
KR101629131B1 (en) Arc-type evaporation source
JPH1136063A (en) Arc type evaporating source
JP6533913B2 (en) Plasma surface treatment system
JP2013014803A (en) Magnet unit, magnetic field generator, and magnetron sputtering apparatus
JP5644675B2 (en) Arc ion plating apparatus and film forming method
JP6414404B2 (en) Cathode member and plasma apparatus using the same
JP2007113044A (en) Film deposition apparatus and film deposition method
JP5839422B2 (en) Arc type evaporation source having high film forming speed and method for producing coating film using this arc type evaporation source
JP2006077280A (en) Unbalanced magnetron sputtering system and method
JP2004156144A (en) Magnetron sputtering device
JP2016029202A (en) Vacuum arc vapor deposition method and vacuum arc vapor deposition apparatus
JP2015063721A (en) Vacuum arc vapor deposition method, vacuum arc vapor deposition device, and thin film and article manufactured by using vacuum arc vapor deposition method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15825137

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15825137

Country of ref document: EP

Kind code of ref document: A1