WO2016012280A1 - Sensor electrode for a capacitive proximity sensor - Google Patents
Sensor electrode for a capacitive proximity sensor Download PDFInfo
- Publication number
- WO2016012280A1 WO2016012280A1 PCT/EP2015/065879 EP2015065879W WO2016012280A1 WO 2016012280 A1 WO2016012280 A1 WO 2016012280A1 EP 2015065879 W EP2015065879 W EP 2015065879W WO 2016012280 A1 WO2016012280 A1 WO 2016012280A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- sensor
- conductor
- sensor electrode
- electrode conductor
- Prior art date
Links
- 239000004020 conductor Substances 0.000 claims abstract description 80
- 230000035945 sensitivity Effects 0.000 claims abstract description 33
- 229920003023 plastic Polymers 0.000 claims abstract description 22
- 239000004033 plastic Substances 0.000 claims abstract description 22
- 230000001419 dependent effect Effects 0.000 claims abstract description 11
- 239000000463 material Substances 0.000 claims abstract description 10
- 238000011156 evaluation Methods 0.000 claims description 11
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 claims description 6
- 230000007423 decrease Effects 0.000 claims description 5
- 230000003247 decreasing effect Effects 0.000 claims description 2
- 238000001514 detection method Methods 0.000 description 9
- 238000013459 approach Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000000875 corresponding effect Effects 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 230000005684 electric field Effects 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229920000767 polyaniline Polymers 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/14—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
- G01D5/24—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
- G01D5/2405—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by varying dielectric
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/94—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
- H03K17/945—Proximity switches
- H03K17/955—Proximity switches using a capacitive detector
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05F—DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
- E05F15/00—Power-operated mechanisms for wings
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05F—DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
- E05F15/00—Power-operated mechanisms for wings
- E05F15/70—Power-operated mechanisms for wings with automatic actuation
- E05F15/73—Power-operated mechanisms for wings with automatic actuation responsive to movement or presence of persons or objects
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
- E05Y2400/00—Electronic control; Electrical power; Power supply; Power or signal transmission; User interfaces
- E05Y2400/80—User interfaces
- E05Y2400/85—User input means
- E05Y2400/852—Sensors
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
- E05Y2400/00—Electronic control; Electrical power; Power supply; Power or signal transmission; User interfaces
- E05Y2400/80—User interfaces
- E05Y2400/85—User input means
- E05Y2400/856—Actuation thereof
- E05Y2400/858—Actuation thereof by body parts, e.g. by feet
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
- E05Y2900/00—Application of doors, windows, wings or fittings thereof
- E05Y2900/50—Application of doors, windows, wings or fittings thereof for vehicles
- E05Y2900/53—Type of wing
- E05Y2900/546—Tailboards, tailgates or sideboards opening upwards
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/94—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
- H03K17/96—Touch switches
- H03K2017/9602—Touch switches characterised by the type or shape of the sensing electrodes
Definitions
- the invention relates to a sensor electrode for a capacitive proximity sensor, in particular for use in a motor vehicle. It further relates to a capacitive proximity sensor with such a sensor electrode.
- Capacitive proximity sensors are often used in automotive technology for detecting obstacles in the travel path of movable motor vehicle parts, for example as anti-pinch protection in a motorized adjusting device for a side window, a tailgate or a convertible top. Capacitive sensors are further used in automotive technology for the detection of positioning commands, which gives a vehicle user contactless by means of a hand or foot movement.
- a capacitive proximity sensor is known, by means of which an opening command for the automatic opening of a tailgate is detected without contact.
- the proximity sensor in this case comprises two elongate sensor electrodes which are mounted one above the other in the vehicle transverse direction on the rear bumper of the motor vehicle. The vehicle user issues the opening command by kicking under the rear bumper with one foot.
- either flat conductors or round conductors are used as sensor electrodes for capacitive proximity sensors of the type described above.
- the upper sensor electrode is designed as a flat conductor and the lower sensor electrode as a round conductor.
- the actual electrode conductor of the respective sensor electrode is usually formed of metal, in particular copper.
- EP 2 159 917 A1 discloses a capacitive proximity sensor whose sensor electrodes are formed from electrically conductive plastic. Such plastic electrodes are characterized by low weight and rational manufacturability and are therefore of considerable advantage over conventional sensor electrodes with a metallic electrode conductor.
- plastic electrodes can be easily integrated into plastic parts made of plastics, such as bumpers, whereby the assembly costs for the associated sensor can be reduced and high reliability is achieved.
- a faulty mounting of the sensor electrodes and a faulty detachment of the sensor electrodes from the vehicle part can be virtually ruled out.
- plastic electrodes unlike corresponding metal electrodes, typically have a sensitivity that decreases markedly over the length of the sensor electrode. Comparable approaches of an object (in particular of a body part) to the sensor electrode are thus detected to different degrees by the capacitive sensor, depending on whether the object near the connection side or far from the connection side is approximated to the sensor electrode. In some applications of a capacitive sensor, this length-dependent loss of sensitivity of the sensor electrode may be desirable and - as described for example in EP 2 689 976 A1 and DE 10 201 1 1 12 274 A1 - be specifically exploited to determine the longitudinal position of the approach.
- the length-dependent loss of sensitivity of the sensor electrode is undesirable because it increases the risk of detection errors of the proximity sensor.
- plastic electrodes can often not be used.
- the invention has for its object to provide an easy and rational producible, but at the same time effective sensor electrode and an associated capacitive sensor.
- a sensor electrode for a capacitive proximity sensor this object is achieved according to the invention by the features of claim 1.
- a capacitive proximity sensor comprising at least one such sensor electrode, the object is achieved according to the invention by the features of claim 7.
- the sensor electrode has an elongated, planar electrode conductor of electrically conductive plastic material.
- the surface area of the conductor cross-section of the electrode conductor is varied in the longitudinal direction of the electrode conductor, so that the length-dependent loss of sensitivity of the sensor electrode caused by the specific (ohmic) resistance of the electrically conductive plastic is completely or partially compensated.
- the electrode conductor is contacted at a plurality of mutually spaced contact points with a metallic lead.
- the length-dependent sensitivity is characterized in this case, for example, by the signal strength of the sensor signal measured by means of the sensor electrode, which is caused by a specific object approaching a certain longitudinal position of the sensor electrode at a specific distance.
- this sensitivity is normalized by giving it in relation to the maximum signal strength that causes a comparable approach event (ie, the same object approaching the same distance) at any longitudinal position of the sensor electrode.
- the above-mentioned object may also be a body part.
- both aspects of the invention are based on the common idea that the advantageous use of electrically conductive plastic for the electrical the conductor of the sensor electrode without the previous limitations is possible if it is possible to compensate for the disadvantages associated with this material.
- the disadvantages of plastic electrodes are due to the comparatively high specific resistance of the plastic material.
- the measurable ohmic resistance of the sensor electrode is correlated with the specific resistance of the plastic material on the one hand over the length of the current path formed within the electrode conductor between a considered longitudinal position of the sensor electrode and the terminal side of the sensor electrode, and on the other hand via the conductor cross section of the electrode conductor.
- the measurable ohmic resistance of the sensor electrode is greater, the longer the current path and the smaller the conductor cross-section.
- the negative influence of the high specific resistance can be compensated on the one hand by deliberate shortening of the current paths within the electrode conductor, and on the other hand by influencing the conductor cross section.
- the sensitivity of the sensor electrode is also influenced by the size of its surface, so that the negative influence of the high specific resistance can also be varied by varying this surface.
- the electrode conductor is designed such that the surface area of its conductor cross-section increases with increasing distance to the nearest contact point.
- the contact point of the electrode conductor is the or each point at which the electrode conductor is contacted with a metallic lead. If the sensor electrode has only one contact point, this contact point is also always the nearest point of contact.
- the surface area of the conductor cross-section is preferably increased by increasing the width of the electrode conductor with increasing distance to the nearest contact point.
- the electrode conductor forms a continuous coherent surface.
- the electrode conductor can also be designed such that it holes or Has incisions.
- the electrode conductor can be formed in the context of the invention by a net-like conductor structure. In these cases, the surface area of the conductor cross-section is optionally increased by the fact that the holes or incisions are formed or arranged with increasing distance to the nearest contact point with decreasing size and / or density.
- the latter has, in an expedient embodiment, a contact point at both longitudinal ends.
- the electrode conductor is therefore contacted at both longitudinal ends.
- the two contact points are expediently contacted by means of two separate metallic leads.
- the separate supply lines can thereby be used not only for signal transmission to the sensor electrode, but also - in the context of a diagnostic function - for testing the electrical continuity of the current paths formed over the leads and the entire length of the sensor electrode. As a result, wire breaks or other contact errors can be detected.
- the electrode conductor is guided in parallel in an advantageous embodiment of the invention, a metallic lead over at least part of its length.
- this feed line is contacted with the electrode conductor at at least two spaced-apart contact points.
- the proximity sensor comprises an electronic control and evaluation unit and at least one associated sensor electrode of the type described above.
- the control and evaluation unit is formed in particular by a microcontroller with a control and evaluation program (firmware) implemented therein. Alternatively, however, it can also be formed by a non-programmable hardware circuit, in particular an ASIC.
- FIG. 1 is a rough schematic side view of a rear part of a motor vehicle, which is provided with a two elongated sensor electrodes having capacitive proximity sensor for contactless opening of a tailgate, and
- FIG. 1 shows a schematic representation of the proximity sensor according to FIG. 1 with one of the two sensor electrodes, an object guided along the sensor electrode along a specific distance to determine the length-dependent loss of sensitivity, and in a schematic diagram the profile of the length-dependent sensitivity against a longitudinal position along the sensor electrode .
- FIGS. 3-5 show the proximity sensor with different further embodiments of the sensor electrode and the respective associated course of the length-dependent sensitivity.
- Fig. 1 shows a rear 1 of a motor vehicle 2, which is provided with a movable vehicle door in the form of a tailgate 3.
- the tailgate 3 is pivotally articulated about an upper edge 4 of the stern 1.
- By pivoting the tailgate 3, the same along a (indicated in Fig. 1 by an arrow) Verstellwegs P reversibly between an open position 5 and a closed position 6 are moved.
- the tailgate 3 is shown in each case with dashed lines.
- the rear flap 3 is shown in an (arbitrarily selected) intermediate position 7 between the open position 5 and the closed position 6.
- the motor vehicle 2 is equipped with an adjusting device 10.
- the adjusting device 10 comprises an electric servo motor 1 1 and a (in Fig. 1 only indicated) actuating mechanism 12, via which the servomotor 1 1 mechanically with the tailgate 3 for their adjustment is coupled.
- the adjusting device 10 also comprises an electronic engine control unit 13.
- the motor vehicle 2 is further equipped with a capacitive proximity sensor 15.
- the proximity sensor 15 comprises an electronic control and evaluation unit 16 and two sensor electrodes 17 and 18.
- the two sensor electrodes 17 and 18 are arranged parallel and substantially one above the other on the (not visible from the outside) rear of a rear bumper 19 of the motor vehicle 2 and extend here horizontally in the vehicle transverse direction over a large part of the vehicle width.
- an electrical alternating voltage is applied to the sensor electrodes 17 and 18 by the control and evaluation unit 16, under the effect of which each of the two sensor electrodes 17, 18 in a space respectively upstream of the sensor electrodes 17, 18 (hereinafter referred to as detection space 20 or 21) generates an electric field.
- the sensor electrodes 17 and 18 are designed and aligned such that the detection space 20 of the upper sensor electrode 17 extends substantially horizontally from the bumper 19, while the detection space 21 of the lower sensor electrode 18 extends the bumper 19 flanked substantially at the bottom.
- the control and evaluation unit measures unit 16, for example, the current strength of the current flowing at a predetermined voltage to the sensor electrode displacement current.
- the vehicle user In order to signal a door opening request, the vehicle user conventionally performs a kick-like foot movement under the bumper 19. The temporal capacity change caused thereby is detected by the control and evaluation unit 16. If the course of the detected sensor signal and thus the measurable capacitance change correspond to stored triggering criteria, the control and evaluation unit 16 interprets the capacitance change as the opening command and outputs a corresponding opening signal O to the engine control unit 13, which then opens the tailgate by activating the servomotor 1 1 3 causes.
- FIG. 2 shows, roughly schematically, the proximity sensor 15 with the control and evaluation unit 16 as well as by way of example with one of the two sensor electrodes 17, 18.
- the sensor electrode 17,18 comprises a planar, along a longitudinal direction elongated electrode conductor 23.
- the electrode conductor 23 is made of electrically conductive plastic, such as polyaniline (PAni) and in the embodiment of FIG elongated rectangular strip with constant width.
- PAni polyaniline
- the sensor electrode 17,18 has a contact point 25 made of metal (in particular copper), via which a feed line 26 is electrically connected to the electrode conductor 23. Furthermore, in the embodiment according to FIG. 2, the sensor electrode 17, 18 has a further contact point 28 at the opposite longitudinal end 27, via which a further feed line 29, which is separate from the feed line 26, is electrically contacted with the electrode conductor 23.
- the electrode conductor 23 is preferably insulated from the environment by means of a layer of electrically insulating plastic in order to avoid a short circuit of the electrode conductor 23 with surrounding vehicle parts and to protect the electrode conductor 23 from damaging environmental influences (water, dirt, etc.) protect.
- the sensor electrodes 17, 18, and in particular their respective electrode conductors 23, are integrated in the bumpers 19, which are likewise made of plastic.
- the sensor electrode 17,18 (more precisely whose electrode conductor 23) is electrically connected to the control and evaluation unit 16.
- the sensor electrode 17, 18 Due to the comparatively high specific resistance of the plastic material used for the electrode conductor 23, the sensor electrode 17, 18 has a sensitivity which varies over its length. Characteristic of the sensitivity is the signal strength of the control signal, which causes the approach of a certain object 30 to a certain distance A to a certain longitudinal position x of the sensor electrode 17,18. In contrast to the diagram of FIG. 2, the distance A is measured perpendicular to the surface of the electrode conductor 23.
- (length-dependent, normalized) sensitivity denotes a measured variable for the determination of which the signal strength of the sensor signal, which is caused by the object 30 approximating the given longitudinal position x of the sensor electrode 17, 18 at the specific distance A, is applied to the maximum signal strength is normalized (ie divided by the maximum signal strength) which causes the same object 30 to approach the same distance A at any longitudinal position x of the sensor electrode 17, 18.
- the object 30 is particularly galvanic or at least This object 30 may in particular be a body part of the human body, in particular a foot or a hand.
- the object 30 can be displaced parallel to the longitudinal direction of the sensor electrode 17, 18, while maintaining the distance A; when continuously the sensor signal of the proximity sensor 15 is detected.
- the course of the sensitivity S shown in the diagram of FIG. 2 results here from the fact that the maximum of the detected curve of the sensor signal is set to the value one by the normalization described above.
- the standardization has the advantage that the values of the sensitivity S are largely independent of the object 30 used for their determination and the distance A at which this object 30 approaches the sensor electrode 17, 18.
- the normalized sensitivity S can theoretically assume values between one and zero or be given as a percentage between 100% and 0%.
- the typical course of this sensitivity S 'of conventional sensor electrodes is plotted in the diagram according to FIG. 2 for the purpose of comparison with a dashed line.
- the effect achieved by the second contact point 28 at the second longitudinal end 27 of the electrode conductor 23 is that the sensitivity S there is likewise raised at least approximately to the value 1.
- the sensitivity also decreases in the case of the sensor electrode 17, 18 according to FIG. 2 between the two contact points 25 and 28.
- the loss of sensitivity is considerably less pronounced here than in the case of a conventional sensor electrode contacted only on one side. The sensitivity loss caused by the comparatively high specific resistance of the electrode material is thus partially compensated.
- the sensor electrode 17, 18 comprises, in addition to the contact points 25 and 28, further contact points 31 and 32.
- the contact points 25, 28, 31 and 32 are distributed here over the length of the electrode conductor 23 at regular intervals.
- the second Supply line 29 not available. Instead, the supply line 26 is guided over the entire length of the sensor electrode 17,18 parallel to the electrode conductor 23 and contacted with all contact points 25,28,31 and 32. Unlike in the illustration according to FIG. 3, the supply line 26 is preferably mechanically connected to the electrode conductor 23 over the entire length of the sensor electrode 17, 18.
- the electrode conductor 23 similar to a conventional sensor electrode, only at the longitudinal end 24 in the (here single) contact point 25 with the (here single) lead 26 contacted.
- the electrode conductor 23 is designed in such a way that its width continuously increases with increasing distance from the longitudinal end 24.
- this trapezoidal shaping of the electrode conductor 23 it is achieved that the conductor cross section and the surface of the electrode conductor 23 relevant to the field generation also increase with increasing distance from the longitudinal end 24. As can be seen from the diagram of FIG. 4, this measure achieves an at least approximately constant course of the sensitivity S over the entire length of the sensor electrode 17, 18.
- the electrode conductor 23 respectively forms a completely filled, continuous contiguous surface. Deviating from this, the electrode conductor 23 is provided with holes 33 in the embodiment according to FIG. 5.
- the holes 33 are designed in that their size decreases - as the density of the holes 33 remains constant - with increasing distance to the contact point 25. Alternatively or additionally, the density of the holes 33 can be lowered with increasing distance to the contact point 25. As can be seen from the diagram for FIG. 5, a substantially constant course of the sensitivity S over the entire length of the sensor electrode 17, 18 is also achieved by this measure.
- the sensor electrodes 17 and 18 of the proximity sensor 15 may be the same, in particular after each of the embodiments shown in FIGS. 2 to 5, constructed. Alternatively, the sensor electrodes 17 and 18 may also be constructed differently. In particular, one of the two sensor electrodes 17 or 18 may also be designed in a conventional manner.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Power-Operated Mechanisms For Wings (AREA)
Abstract
The invention relates to a capacitive proximity sensor (15) and a sensor electrode (17, 18) for the same. The sensor electrode (17, 18) comprises an elongated, flat electrode conductor (23) made of electrically conductive plastic material. For the purpose of complete or partial compensation of the length-dependent sensitivity loss of the sensor electrode (17, 18), which is caused by the specific ohmic resistance of the electrically conductive plastic material, the surface area of the conductor cross-section of the electrode conductor (23) varies in the longitudinal direction of the electrode conductor (23) and/or the electrode conductor (12) contacts a metallic feed line (26, 29) at a plurality of spaced-apart contact points (25, 28, 31, 32).
Description
Beschreibung description
Sensorelektrode für einen kapazitiven Näherungssensor Sensor electrode for a capacitive proximity sensor
Die Erfindung bezieht sich auf eine Sensorelektrode für einen kapazitiven Näherungssensor, insbesondere zum Einsatz in einem Kraftfahrzeug. Sie bezieht sich des Weiteren auf einen kapazitiven Näherungssensor mit einer solchen Sensorelektrode. The invention relates to a sensor electrode for a capacitive proximity sensor, in particular for use in a motor vehicle. It further relates to a capacitive proximity sensor with such a sensor electrode.
Kapazitive Näherungssensoren werden in der Kraftfahrzeugtechnik häufig zur De- tektion von Hindernissen im Stellweg von bewegbaren Kraftfahrzeugteilen eingesetzt, beispielsweise als Einklemmschutz bei einer motorischen Stellvorrichtung für eine Seitenscheibe, einer Heckklappe oder einem Cabriolet-Verdeck. Kapazitive Sensoren werden in der Kraftfahrzeugtechnik des Weiteren zur Erkennung von Stellbefehlen eingesetzt, die ein Fahrzeugnutzer berührungslos mittels einer Hand- oder Fußbewegung gibt. Capacitive proximity sensors are often used in automotive technology for detecting obstacles in the travel path of movable motor vehicle parts, for example as anti-pinch protection in a motorized adjusting device for a side window, a tailgate or a convertible top. Capacitive sensors are further used in automotive technology for the detection of positioning commands, which gives a vehicle user contactless by means of a hand or foot movement.
So ist beispielsweise aus DE 10 2010 049 400 A1 ein kapazitiver Näherungssensor bekannt, mittels dessen berührungslos ein Öffnungsbefehl zur automatischen Öffnung einer Heckklappe erkannt wird. Der Näherungssensor umfasst hierbei zwei langgestreckte Sensorelektroden, die übereinander jeweils in Fahrzeugquerrichtung an dem hinteren Stoßfänger des Kraftfahrzeugs angebracht sind. Der Fahrzeugnutzer gibt den Öffnungsbefehl, indem er mit einem Fuß eine Kickbewegung unter den hinteren Stoßfänger vollführt. For example, from DE 10 2010 049 400 A1 a capacitive proximity sensor is known, by means of which an opening command for the automatic opening of a tailgate is detected without contact. The proximity sensor in this case comprises two elongate sensor electrodes which are mounted one above the other in the vehicle transverse direction on the rear bumper of the motor vehicle. The vehicle user issues the opening command by kicking under the rear bumper with one foot.
Herkömmlicherweise werden als Sensorelektroden für kapazitive Näherungssensoren der vorstehend beschriebenen Art entweder Flachleiter oder Rundleiter verwendet. So sind beispielsweise bei dem aus DE 10 2010 049 400 A1 bekannten Näherungssensor die obere Sensorelektrode als Flachleiter und die untere Sensorelektrode als Rundleiter ausgebildet. In beiden Fällen ist der eigentliche Elektrodenleiter der jeweiligen Sensorelektrode üblicherweise aus Metall, insbesondere Kupfer gebildet.
Aus EP 2 159 917 A1 ist andererseits ein kapazitiver Näherungssensor bekannt, dessen Sensorelektroden aus elektrisch leitfähigem Kunststoff gebildet sind. Solche Kunststoffelektroden zeichnen sich durch geringes Gewicht und rationelle Herstellbarkeit aus und sind daher von erheblichem Vorteil gegenüber herkömmlichen Sensorelektroden mit metallischem Elektrodenleiter. Zudem lassen sich Kunststoffelektroden fertigungstechnisch einfach in aus Kunststoffe bestehende Fahrzeugteile wie z.B. Stoßfänger integrieren, wodurch der Montageaufwand für den zugehörigen Sensor reduziert werden kann und eine hohe Ausfallsicherheit erreicht wird. Insbesondere können eine Fehlmontage der Sensorelektroden sowie eine fehlerhafte Ablösung der Sensorelektroden von dem Fahrzeugteil nahezu ausgeschlossen werden. Conventionally, either flat conductors or round conductors are used as sensor electrodes for capacitive proximity sensors of the type described above. For example, in the case of the proximity sensor known from DE 10 2010 049 400 A1, the upper sensor electrode is designed as a flat conductor and the lower sensor electrode as a round conductor. In both cases, the actual electrode conductor of the respective sensor electrode is usually formed of metal, in particular copper. On the other hand, EP 2 159 917 A1 discloses a capacitive proximity sensor whose sensor electrodes are formed from electrically conductive plastic. Such plastic electrodes are characterized by low weight and rational manufacturability and are therefore of considerable advantage over conventional sensor electrodes with a metallic electrode conductor. In addition, plastic electrodes can be easily integrated into plastic parts made of plastics, such as bumpers, whereby the assembly costs for the associated sensor can be reduced and high reliability is achieved. In particular, a faulty mounting of the sensor electrodes and a faulty detachment of the sensor electrodes from the vehicle part can be virtually ruled out.
Allerdings weisen Kunststoffelektroden, im Gegensatz zu entsprechenden Metallelektroden, typischerweise eine Sensitivität auf, die merklich über die Länge der Sensorelektrode abnimmt. Vergleichbare Annäherungen eines Gegenstandes (insbesondere eines Körperteils) an die Sensorelektrode werden von dem kapazitiven Sensor somit unterschiedlich stark detektiert, je nachdem ob der Gegenstand nahe der Anschlussseite oder fern der Anschlussseite an die Sensorelektrode angenähert wird. In einigen Anwendungsfällen eines kapazitiven Sensors kann dieser längenabhängige Sensitivitätsverlust der Sensorelektrode erwünscht sein und - wie beispielsweise in EP 2 689 976 A1 und DE 10 201 1 1 12 274 A1 beschrieben ist - gezielt zur Bestimmung der Längsposition der Annäherung ausgenutzt werden. However, plastic electrodes, unlike corresponding metal electrodes, typically have a sensitivity that decreases markedly over the length of the sensor electrode. Comparable approaches of an object (in particular of a body part) to the sensor electrode are thus detected to different degrees by the capacitive sensor, depending on whether the object near the connection side or far from the connection side is approximated to the sensor electrode. In some applications of a capacitive sensor, this length-dependent loss of sensitivity of the sensor electrode may be desirable and - as described for example in EP 2 689 976 A1 and DE 10 201 1 1 12 274 A1 - be specifically exploited to determine the longitudinal position of the approach.
In den meisten Anwendungsfällen ist der längenabhängige Sensitivitätsverlust der Sensorelektrode aber unerwünscht, da er das Risiko von Detektionsfehlern des Näherungssensors erhöht. In diesen Anwendungsfällen können Kunststoffelektro- den oft nicht eingesetzt werden. In most applications, however, the length-dependent loss of sensitivity of the sensor electrode is undesirable because it increases the risk of detection errors of the proximity sensor. In these applications, plastic electrodes can often not be used.
Der Erfindung liegt die Aufgabe zugrunde, eine leicht und rationell herstellbare, gleichzeitig aber effektive Sensorelektrode sowie einen zugehörigen kapazitiven Sensor anzugeben.
Bezüglich einer Sensorelektrode für einen kapazitiven Näherungssensor wird diese Aufgabe erfindungsgemäß gelöst durch die Merkmale des Anspruchs 1 . Bezüglich eines mindestens eine solche Sensorelektrode umfassenden kapazitiven Näherungssensors wird die Aufgabe erfindungsgemäß gelöst durch die Merkmale des Anspruchs 7. Vorteilhafte Ausgestaltungen und Weiterentwicklungen der Erfindung sind in den Unteransprüchen und der nachfolgenden Beschreibung dargelegt. The invention has for its object to provide an easy and rational producible, but at the same time effective sensor electrode and an associated capacitive sensor. With regard to a sensor electrode for a capacitive proximity sensor, this object is achieved according to the invention by the features of claim 1. With regard to a capacitive proximity sensor comprising at least one such sensor electrode, the object is achieved according to the invention by the features of claim 7. Advantageous embodiments and further developments of the invention are set forth in the subclaims and the description below.
Die Sensorelektrode weist einen langgestreckten, flächigen Elektrodenleiter aus elektrisch leitfähigem Kunststoffmaterial auf. Gemäß einem ersten Aspekt der Erfindung ist der Flächeninhalt des Leiterquerschnitts des Elektrodenleiters in Längsrichtung des Elektrodenleiters variiert, sodass der durch den spezifischen (ohmschen) Widerstand des elektrisch leitfähigen Kunststoffs bedingte längenabhängige Sensitivitätsverlust der Sensorelektrode vollständig oder teilweise kompensiert ist. Gemäß einem zweiten Aspekt der Erfindung ist zu demselben Zweck und mit derselben Wirkung der Elektrodenleiter an mehreren voneinander beab- standeten Kontaktpunkten mit einer metallischen Zuleitung kontaktiert. Die beiden Erfindungsaspekte können hierbei im Rahmen der Erfindung einzeln, aber auch in Kombination miteinander zur Anwendung kommen. The sensor electrode has an elongated, planar electrode conductor of electrically conductive plastic material. According to a first aspect of the invention, the surface area of the conductor cross-section of the electrode conductor is varied in the longitudinal direction of the electrode conductor, so that the length-dependent loss of sensitivity of the sensor electrode caused by the specific (ohmic) resistance of the electrically conductive plastic is completely or partially compensated. According to a second aspect of the invention, for the same purpose and with the same effect, the electrode conductor is contacted at a plurality of mutually spaced contact points with a metallic lead. The two aspects of the invention can be used individually within the scope of the invention, but also in combination with one another.
Die längenabhängige Sensitivität ist hierbei beispielsweise durch die mittels der Sensorelektrode gemessene Signalstärke des Sensorsignals charakterisiert, die durch einen an einer bestimmten Längsposition der Sensorelektrode in einem bestimmten Abstand angenäherten, bestimmten Gegenstand hervorgerufen wird. Zweckmäßigerweise wird diese Sensisitivität normiert, indem sie im Verhältnis zu der maximalen Signalstärke angegeben wird, die ein vergleichbares Annäherungsereignis (also die Annäherung desselben Gegenstands in demselben Abstand) an beliebiger Längsposition der Sensorelektrode hervorruft. Bei dem vorstehend erwähnten Gegenstand kann es sich hierbei wiederum auch um ein Körperteil handeln. The length-dependent sensitivity is characterized in this case, for example, by the signal strength of the sensor signal measured by means of the sensor electrode, which is caused by a specific object approaching a certain longitudinal position of the sensor electrode at a specific distance. Conveniently, this sensitivity is normalized by giving it in relation to the maximum signal strength that causes a comparable approach event (ie, the same object approaching the same distance) at any longitudinal position of the sensor electrode. Again, the above-mentioned object may also be a body part.
Beiden Aspekten der Erfindung liegt der gemeinsame Gedanke zugrunde, dass die vorteilhafte Verwendung von elektrisch leitfähigem Kunststoff für den Elektro-
denleiter der Sensorelektrode ohne die bisherigen Einschränkungen möglich wird, wenn es gelingt, die mit diesem Material verbundenen Nachteile auszugleichen. Erkanntermaßen sind die Nachteile von Kunststoffelektroden durch den vergleichsweise hohen spezifischen Widerstand des Kunststoffmaterials bedingt. Der messbare ohmsche Widerstand der Sensorelektrode ist aber mit dem spezifischen Widerstand des Kunststoffmaterials einerseits über die Länge des innerhalb des Elektrodenleiters gebildeten Strompfads zwischen einer betrachteten Längsposition des Sensorelektrode und der Anschlussseite des Sensorelektrode, und andererseits über den Leiterquerschnitt des Elektrodenleiters korreliert. Der messbare ohmsche Widerstand der Sensorelektrode ist dabei umso größer, je länger der Strompfad und je kleiner der Leiterquerschnitt ist. Hierauf wiederum beruht die Erkenntnis, dass der negative Einfluss des hohen spezifischen Widerstands einerseits durch gezielte Verkürzung der Strompfade innerhalb des Elektrodenleiters, und andererseits durch Beeinflussung des Leiterquerschnitts kompensiert werden kann. Des Weiteren wird die Sensitivität der Sensorelektrode auch durch die Größe ihrer Oberfläche beeinflusst, so dass der negative Einfluss des hohen spezifischen Widerstands erkanntermaßen auch durch Variation dieser Oberfläche variiert werden kann. Both aspects of the invention are based on the common idea that the advantageous use of electrically conductive plastic for the electrical the conductor of the sensor electrode without the previous limitations is possible if it is possible to compensate for the disadvantages associated with this material. As is known, the disadvantages of plastic electrodes are due to the comparatively high specific resistance of the plastic material. However, the measurable ohmic resistance of the sensor electrode is correlated with the specific resistance of the plastic material on the one hand over the length of the current path formed within the electrode conductor between a considered longitudinal position of the sensor electrode and the terminal side of the sensor electrode, and on the other hand via the conductor cross section of the electrode conductor. The measurable ohmic resistance of the sensor electrode is greater, the longer the current path and the smaller the conductor cross-section. This in turn is based on the knowledge that the negative influence of the high specific resistance can be compensated on the one hand by deliberate shortening of the current paths within the electrode conductor, and on the other hand by influencing the conductor cross section. Furthermore, the sensitivity of the sensor electrode is also influenced by the size of its surface, so that the negative influence of the high specific resistance can also be varied by varying this surface.
Vorzugsweise ist der Elektrodenleiter dabei derart gestaltet, dass der Flächeninhalt seines Leiterquerschnitts mit zunehmendem Abstand zu dem nächstliegenden Kontaktpunkt zunimmt. Als Kontaktpunkt des Elektrodenleiters wird der oder jeder Punkt bezeichnet, an dem der Elektrodenleiter mit einer metallischen Zuleitung kontaktiert ist. Sofern die Sensorelektrode lediglich einen Kontaktpunkt aufweist, ist dieser Kontaktpunkt auch stets der nächstliegende Kontaktpunkt. Preferably, the electrode conductor is designed such that the surface area of its conductor cross-section increases with increasing distance to the nearest contact point. The contact point of the electrode conductor is the or each point at which the electrode conductor is contacted with a metallic lead. If the sensor electrode has only one contact point, this contact point is also always the nearest point of contact.
Der Flächeninhalt des Leiterquerschnitts wird vorzugsweise dadurch gesteigert, dass die Breite des Elektrodenleiters mit zunehmendem Abstand zu dem nächstliegenden Kontaktpunkt erhöht wird. The surface area of the conductor cross-section is preferably increased by increasing the width of the electrode conductor with increasing distance to the nearest contact point.
Der Elektrodenleiter bildet in einer zweckmäßigen Ausgestaltung eine lückenlos zusammenhängende Fläche. In einer alternativen Ausgestaltung der Erfindung kann der Elektrodenleiter aber auch derart gestaltet sein, dass er Löcher oder
Einschnitte aufweist. Insbesondere kann der Elektrodenleiter im Rahmen der Erfindung durch eine netzartige Leiterstruktur gebildet sein. In diesen Fällen wird der Flächeninhalt des Leiterquerschnitts optional dadurch gesteigert, dass die Löcher oder Einschnitte mit zunehmendem Abstand zu dem nächstliegenden Kontaktpunkt mit abnehmender Größe und/oder Dichte ausgebildet bzw. angeordnet sind. In an expedient embodiment, the electrode conductor forms a continuous coherent surface. In an alternative embodiment of the invention, however, the electrode conductor can also be designed such that it holes or Has incisions. In particular, the electrode conductor can be formed in the context of the invention by a net-like conductor structure. In these cases, the surface area of the conductor cross-section is optionally increased by the fact that the holes or incisions are formed or arranged with increasing distance to the nearest contact point with decreasing size and / or density.
Zur Verkürzung der Strompfade innerhalb des Elektrodenleiters weist dieser in einer zweckmäßigen Ausführungsform an beiden Längsenden jeweils einen Kontaktpunkt auf. Der Elektrodenleiter ist also bei beiden Längsenden kontaktiert. Die beiden Kontaktpunkte sind hierbei zweckmäßigerweise mittels zweier separater metallischer Zuleitungen kontaktiert. Die separaten Zuleitungen können hierdurch nicht nur zur Signalübertragung auf die Sensorelektrode genutzt werden, sondern auch - im Rahmen einer Diagnosefunktion - zur Prüfung der elektrischen Durchgängigkeit des über die Zuleitungen und die gesamte Länge der Sensorelektrode gebildeten Strompfads. Hierdurch können Leitungsbrüche oder sonstige Kontaktfehler erkannt werden. In order to shorten the current paths within the electrode conductor, the latter has, in an expedient embodiment, a contact point at both longitudinal ends. The electrode conductor is therefore contacted at both longitudinal ends. The two contact points are expediently contacted by means of two separate metallic leads. The separate supply lines can thereby be used not only for signal transmission to the sensor electrode, but also - in the context of a diagnostic function - for testing the electrical continuity of the current paths formed over the leads and the entire length of the sensor electrode. As a result, wire breaks or other contact errors can be detected.
Zusätzlich oder alternativ ist dem Elektrodenleiter in vorteilhafter Ausführung der Erfindung eine metallische Zuleitung über zumindest einen Teil seiner Länge parallelgeführt. Diese Zuleitung ist hierbei an mindestens zwei voneinander beab- standeten Kontaktpunkten mit dem Elektrodenleiter kontaktiert. Additionally or alternatively, the electrode conductor is guided in parallel in an advantageous embodiment of the invention, a metallic lead over at least part of its length. In this case, this feed line is contacted with the electrode conductor at at least two spaced-apart contact points.
Der erfindungsgemäße Näherungssensor umfasst eine elektronische Steuer- und Auswerteinheit sowie mindestens eine damit verbundene Sensorelektrode der vorstehend beschriebenen Art. Die Steuer- und Auswerteeinheit ist insbesondere durch einen MikroController mit einem darin implementierten Steuer- und Auswerteprogramm (Firmware) gebildet. Sie kann alternativ aber auch durch einen nichtprogrammierbaren Hardware-Schaltkreis, insbesondere eine ASIC gebildet sein. The proximity sensor according to the invention comprises an electronic control and evaluation unit and at least one associated sensor electrode of the type described above. The control and evaluation unit is formed in particular by a microcontroller with a control and evaluation program (firmware) implemented therein. Alternatively, however, it can also be formed by a non-programmable hardware circuit, in particular an ASIC.
Nachfolgend werden Ausführungsbeispiele der Erfindung anhand einer Zeichnung näher erläutert. Darin zeigen:
Fig. 1 in einer grob schematischen Seitenansicht ein Heckteil eines Kraftfahrzeugs, das mit einem zwei langestreckte Sensorelektroden aufweisenden, kapazitiven Näherungssensor zum berührungslosen Öffnen einer Heckklappe versehen ist, und Embodiments of the invention will be explained in more detail with reference to a drawing. Show: 1 is a rough schematic side view of a rear part of a motor vehicle, which is provided with a two elongated sensor electrodes having capacitive proximity sensor for contactless opening of a tailgate, and
Fig. 2 in schematischer Darstellung den Näherungssensor gemäß Fig. 1 mit einer der beiden Sensorelektroden, ein zur Bestimmung der längenabhängigen Sensitivitätsverlusts in einem bestimmten Abstand an der Sensorelektrode entlanggeführter Gegenstand, sowie in einem schematischen Diagramm den Verlauf der längenabhängigen Sensitivität gegen eine Längsposition entlang der Sensorelektrode, 1 shows a schematic representation of the proximity sensor according to FIG. 1 with one of the two sensor electrodes, an object guided along the sensor electrode along a specific distance to determine the length-dependent loss of sensitivity, and in a schematic diagram the profile of the length-dependent sensitivity against a longitudinal position along the sensor electrode .
Fig. 3 - 5 in Darstellung gemäß Fig. 2 den Näherungssensor mit verschiedenen weiteren Ausführungsformen der Sensorelektrode und den jeweils zugehörigen Verlauf der längenabhängigen Sensitivität. FIGS. 3-5 show the proximity sensor with different further embodiments of the sensor electrode and the respective associated course of the length-dependent sensitivity.
Einander entsprechende Teile und Größen sind in allen Figuren stets mit gleichen Bezugszeichen versehen. Corresponding parts and sizes are always provided with the same reference numerals in all figures.
Fig. 1 zeigt ein Heck 1 eines Kraftfahrzeugs 2, das mit einer beweglichen Fahrzeugtür in Form einer Heckklappe 3 versehen ist. Die Heckklappe 3 ist schwenkbar um eine Oberkante 4 des Hecks 1 angelenkt. Durch Verschwenkung der Heckklappe 3 kann dieselbe entlang eines (in Fig. 1 durch einen Pfeil angedeuteten) Verstellwegs P reversibel zwischen einer Öffnungsstellung 5 und einer Schließstellung 6 bewegt werden. In der Öffnungsstellung 5 und der Schließstellung 6 ist die Heckklappe 3 jeweils mit gestrichelten Linien dargestellt. Mit durchgezogenen Linien ist die Hecklappe 3 in einer (willkürlich gewählten) Zwischenstellung 7 zwischen der Öffnungsstellung 5 und der Schließstellung 6 dargestellt. Fig. 1 shows a rear 1 of a motor vehicle 2, which is provided with a movable vehicle door in the form of a tailgate 3. The tailgate 3 is pivotally articulated about an upper edge 4 of the stern 1. By pivoting the tailgate 3, the same along a (indicated in Fig. 1 by an arrow) Verstellwegs P reversibly between an open position 5 and a closed position 6 are moved. In the open position 5 and the closed position 6, the tailgate 3 is shown in each case with dashed lines. With solid lines, the rear flap 3 is shown in an (arbitrarily selected) intermediate position 7 between the open position 5 and the closed position 6.
Zur automatischen Verstellung der Heckklappe 3 ist das Kraftfahrzeug 2 mit einer Stellvorrichtung 10 ausgestattet. Die Stellvorrichtung 10 umfasst einen elektrischen Stellmotor 1 1 sowie eine (in Fig. 1 nur angedeutete) Stellmechanik 12, über die der Stellmotor 1 1 mechanisch mit der Heckklappe 3 zu deren Verstellung ge-
koppelt ist. Zur Ansteuerung des Stellmotors 1 1 umfasst die Stellvorrichtung 10 zudem ein elektronisches Motorsteuergerät 13. For automatic adjustment of the tailgate 3, the motor vehicle 2 is equipped with an adjusting device 10. The adjusting device 10 comprises an electric servo motor 1 1 and a (in Fig. 1 only indicated) actuating mechanism 12, via which the servomotor 1 1 mechanically with the tailgate 3 for their adjustment is coupled. For controlling the servomotor 1 1, the adjusting device 10 also comprises an electronic engine control unit 13.
Zur berührungslosen Erkennung von Öffnungsbefehlen eines Kraftfahrzeugnutzers für die Heckklappe 3 ist das Kraftfahrzeug 2 des Weiteren mit einem kapazitiven Näherungssensor 15 ausgestattet. Der Näherungssensor 15 umfasst eine elektronische Steuer- und Auswerteeinheit 16 sowie zwei Sensorelektroden 17 und 18. For non-contact detection of opening commands of a motor vehicle user for the tailgate 3, the motor vehicle 2 is further equipped with a capacitive proximity sensor 15. The proximity sensor 15 comprises an electronic control and evaluation unit 16 and two sensor electrodes 17 and 18.
Die beiden Sensorelektroden 17 und 18 sind parallel und im Wesentlichen übereinander an der (von außen nicht sichtbaren) Rückseite eines hinteren Stoßfängers 19 des Kraftfahrzeugs 2 angeordnet und erstrecken sich hier jeweils horizontal in Fahrzeugquerrichtung über einen Großteil der Fahrzeugbreite. The two sensor electrodes 17 and 18 are arranged parallel and substantially one above the other on the (not visible from the outside) rear of a rear bumper 19 of the motor vehicle 2 and extend here horizontally in the vehicle transverse direction over a large part of the vehicle width.
Im Betrieb des Näherungssensors 15 wird an die Sensorelektroden 17 und 18 durch die Steuer- und Auswerteeinheit 16 eine elektrische Wechselspannung angelegt, unter deren Wirkung jede der beiden Sensorelektroden 17,18 in einem den Sensorelektroden 17,18 jeweils vorgelagerten Raumvolumen (nachfolgend als Erfassungsraum 20 bzw. 21 bezeichnet) ein elektrisches Feld erzeugt. Wie aus Fig. 1 erkennbar ist, sind die Sensorelektroden 17 und 18 derart gestaltet und ausgerichtet, dass sich der Erfassungsraum 20 der oberen Sensorelektrode 17 ausgehend von dem Stoßfänger 19 im Wesentlichen in horizontaler Richtung erstreckt, während der Erfassungsraum 21 der unteren Sensorelektrode 18 den Stoßfänger 19 im Wesentlichen unterseitig flankiert. During operation of the proximity sensor 15, an electrical alternating voltage is applied to the sensor electrodes 17 and 18 by the control and evaluation unit 16, under the effect of which each of the two sensor electrodes 17, 18 in a space respectively upstream of the sensor electrodes 17, 18 (hereinafter referred to as detection space 20 or 21) generates an electric field. As can be seen from FIG. 1, the sensor electrodes 17 and 18 are designed and aligned such that the detection space 20 of the upper sensor electrode 17 extends substantially horizontally from the bumper 19, while the detection space 21 of the lower sensor electrode 18 extends the bumper 19 flanked substantially at the bottom.
Wenn ein Körperteil, insbesondere ein Fuß eines Fahrzeugnutzers an den Stoßfänger 19 angenähert und hierbei in die Erfassungsräume 20 und 21 eingebracht wird, so beeinflusst dieses Körperteil aufgrund der elektrischen Leitfähigkeit des menschlichen Körpergewebes und der kapazitiven Kopplung des Körpergewebes mit dem Untergrund das von den Sensorelektroden 17,18 ausgehende elektrische Feld und somit die an den Sensorelektroden 17,18 messbare Kapazität. Als Maß (nachfolgend„Sensorsignal") für die Kapazität misst die Steuer- und Auswertein-
heit 16 beispielsweise die Stromstärke der bei vorgegebener elektrischer Spannung auf die Sensorelektrode fließenden Verschiebestroms. When a body part, in particular a foot of a vehicle user approaches the bumper 19 and is thereby introduced into the detection spaces 20 and 21, this body part influences the sensor electrodes 17 due to the electrical conductivity of the human body tissue and the capacitive coupling of the body tissue to the ground , 18 outgoing electric field and thus the measurable at the sensor electrodes 17,18 capacity. As a measure (hereinafter "sensor signal") for the capacity, the control and evaluation unit measures unit 16, for example, the current strength of the current flowing at a predetermined voltage to the sensor electrode displacement current.
Um einen Türöffnungswunsch zu signalisieren, vollführt der Fahrzeugnutzer konventionsgemäß eine trittartige Fußbewegung unter den Stoßfänger 19. Die hierdurch verursachte zeitliche Kapazitätsänderung wird von der Steuer- und Auswerteinheit 16 detektiert. Sofern der Verlauf des detektierten Sensorsignals und damit die messbare Kapazitätsänderung hinterlegten Auslösekriterien entsprechen, interpretiert die Steuer- und Auswerteinheit 16 die Kapazitätsänderung als Öffnungsbefehl und gibt ein entsprechendes Öffnungssignal O an das Motorsteuergerät 13 aus, das hierauf durch Ansteuerung des Stellmotors 1 1 die Öffnung der Heckklappe 3 veranlasst. In order to signal a door opening request, the vehicle user conventionally performs a kick-like foot movement under the bumper 19. The temporal capacity change caused thereby is detected by the control and evaluation unit 16. If the course of the detected sensor signal and thus the measurable capacitance change correspond to stored triggering criteria, the control and evaluation unit 16 interprets the capacitance change as the opening command and outputs a corresponding opening signal O to the engine control unit 13, which then opens the tailgate by activating the servomotor 1 1 3 causes.
Fig. 2 zeigt grob schematisch den Näherungssensor 15 mit der Steuer- und Auswerteeinheit 16 sowie beispielhaft mit einer der beiden Sensorelektroden 17,18. FIG. 2 shows, roughly schematically, the proximity sensor 15 with the control and evaluation unit 16 as well as by way of example with one of the two sensor electrodes 17, 18.
Wie aus dieser Darstellung ersichtlich, umfasst die Sensorelektrode 17,18 einen flächigen, entlang einer Längsrichtung langgestreckten Elektrodenleiter 23. Der Elektrodenleiter 23 ist aus elektrisch leitfähigem Kunststoff, beispielsweise aus Polyanilin (PAni) gebildet und hat in der Ausführung gemäß Fig. 2 die Form eines langestreckten Rechteckstreifens mit konstanter Breite. As can be seen from this illustration, the sensor electrode 17,18 comprises a planar, along a longitudinal direction elongated electrode conductor 23. The electrode conductor 23 is made of electrically conductive plastic, such as polyaniline (PAni) and in the embodiment of FIG elongated rectangular strip with constant width.
An einem Längsende 24 weist die Sensorelektrode 17,18 einen Kontaktpunkt 25 aus Metall (insbesondere Kupfer) auf, über den eine Zuleitung 26 elektrisch mit dem Elektrodenleiter 23 verbunden ist. Des Weiteren weist die Sensorelektrode 17,18 in der Ausführung gemäß Fig. 2 an dem entgegengesetzten Längsende 27 einen weiteren Kontaktpunkt 28 auf, über den eine weitere, von der Zuleitung 26 separate Zuleitung 29 mit der dem Elektrodenleiter 23 elektrisch kontaktiert ist. At one longitudinal end 24, the sensor electrode 17,18 has a contact point 25 made of metal (in particular copper), via which a feed line 26 is electrically connected to the electrode conductor 23. Furthermore, in the embodiment according to FIG. 2, the sensor electrode 17, 18 has a further contact point 28 at the opposite longitudinal end 27, via which a further feed line 29, which is separate from the feed line 26, is electrically contacted with the electrode conductor 23.
Vorzugsweise ist der Elektrodenleiter 23 mittels einer Schicht aus elektrisch isolierendem Kunststoff gegenüber der Umwelt isoliert, um einen Kurzschluss des Elektrodenleiters 23 mit umgebenden Fahrzeugteilen zu vermeiden und den Elektrodenleiter 23 vor schädigenden Umwelteinflüssen (Wasser, Schmutz etc.) zu
schützen. In einer zweckmäßigen Ausführungsform sind die Sensorelektroden 17,18, und insbesondere deren jeweiliger Elektrodenleiter 23 in den ebenfalls aus Kunststoff bestehenden Stoßfänger 19 integriert. The electrode conductor 23 is preferably insulated from the environment by means of a layer of electrically insulating plastic in order to avoid a short circuit of the electrode conductor 23 with surrounding vehicle parts and to protect the electrode conductor 23 from damaging environmental influences (water, dirt, etc.) protect. In an expedient embodiment, the sensor electrodes 17, 18, and in particular their respective electrode conductors 23, are integrated in the bumpers 19, which are likewise made of plastic.
Über die Zuleitungen 26 und 29, die als gewöhnliche isolierte Draht- oder Litzenleiter aus Kupfer gebildet sind, ist die Sensorelektrode 17,18 (genauergesagt deren Elektrodenleiter 23) elektrisch mit der Steuer- und Auswerteeinheit 16 verbunden. About the leads 26 and 29, which are formed as ordinary insulated wire or stranded copper conductors, the sensor electrode 17,18 (more precisely whose electrode conductor 23) is electrically connected to the control and evaluation unit 16.
Aufgrund des vergleichsweise hohen spezifischen Widerstands des für den Elektrodenleiter 23 herangezogenen Kunststoffmaterials weist die Sensorelektrode 17,18 eine über ihre Länge variierende Sensitivität auf. Charakteristisch für die Sensitivität ist dabei die Signalstärke des Steuersignals, der die Annäherung eines bestimmten Gegenstands 30 auf einen bestimmten Abstand A an eine bestimmte Längsposition x der Sensorelektrode 17,18 hervorruft. Anders als in dem Schema gemäß Fig. 2 dargestellt, wird der Abstand A hierbei senkrecht zu der Fläche des Elektrodenleiters 23 gemessen. Due to the comparatively high specific resistance of the plastic material used for the electrode conductor 23, the sensor electrode 17, 18 has a sensitivity which varies over its length. Characteristic of the sensitivity is the signal strength of the control signal, which causes the approach of a certain object 30 to a certain distance A to a certain longitudinal position x of the sensor electrode 17,18. In contrast to the diagram of FIG. 2, the distance A is measured perpendicular to the surface of the electrode conductor 23.
Im Folgenden wird als„(längenabhängige, normierte) Sensitivität" S eine Messgröße bezeichnet, zu deren Bestimmung die Signalstärke des Sensorsignals, die durch den an gegebener Längsposition x der Sensorelektrode 17,18 in dem bestimmten Abstand A angenäherten Gegenstand 30 hervorgerufen wird, auf die maximale Signalstärke normiert wird (also durch die maximale Signalstärke geteilt wird), die die Annäherung desselben Gegenstands 30 in demselben Abstand A an beliebiger Längsposition x der Sensorelektrode 17, 18 hervorruft. Wie in Fig. 2 angedeutet, ist der Gegenstand 30 insbesondere galvanisch oder zumindest kapazitiv mit Erde gekoppelt. Bei diesem Gegenstand 30 kann es sich dabei insbesondere um ein Körperteil des menschlichen Körpers, insbesondere einen Fuß oder eine Hand, handeln. In the following, "(length-dependent, normalized) sensitivity" S denotes a measured variable for the determination of which the signal strength of the sensor signal, which is caused by the object 30 approximating the given longitudinal position x of the sensor electrode 17, 18 at the specific distance A, is applied to the maximum signal strength is normalized (ie divided by the maximum signal strength) which causes the same object 30 to approach the same distance A at any longitudinal position x of the sensor electrode 17, 18. As indicated in Figure 2, the object 30 is particularly galvanic or at least This object 30 may in particular be a body part of the human body, in particular a foot or a hand.
Zur Bestimmung des Sensitivitätsverlaufs kann beispielsweise - wie in Fig. 2 schematisch angedeutet ist - der Gegenstand 30 unter Wahrung des Abstands A parallel zu der Längsrichtung der Sensorelektrode 17,18 verschoben werden, wo-
bei fortlaufend das Sensorsignal des Näherungssensors 15 erfasst wird. Der in dem Diagramm der Fig. 2 dargestellte Verlauf der Sensitivitat S ergibt sich hierbei dadurch, dass das Maximum der erfassten Kurve des Sensorsignals durch die vorstehend beschriebene Normierung auf den Wert Eins gesetzt wird. Die Normierung hat den Vorteil, dass die Werte der Sensitivitat S weitgehend unabhängig sind von dem zu ihrer Bestimmung herangezogenen Gegenstand 30 und dem Abstand A, in dem dieser Gegenstand 30 an die Sensorelektrode 17, 18 angenähert wird. Die normierte Sensitivität S kann theoretisch Werte zwischen Eins und Null annehmen oder als Prozentzahl zwischen 100% und 0% angegeben werden. To determine the course of the sensitivity, for example-as is indicated schematically in FIG. 2 -the object 30 can be displaced parallel to the longitudinal direction of the sensor electrode 17, 18, while maintaining the distance A; when continuously the sensor signal of the proximity sensor 15 is detected. The course of the sensitivity S shown in the diagram of FIG. 2 results here from the fact that the maximum of the detected curve of the sensor signal is set to the value one by the normalization described above. The standardization has the advantage that the values of the sensitivity S are largely independent of the object 30 used for their determination and the distance A at which this object 30 approaches the sensor electrode 17, 18. The normalized sensitivity S can theoretically assume values between one and zero or be given as a percentage between 100% and 0%.
Eine herkömmlichen Kunststoffelektrode mit einem streifenförmigen flächigen Elektrodenleiter konstanter Breite, der lediglich einem Längsende mit einer metallischen Zuleitung kontaktiert ist, weist eine längenabhängige, normierte Sensitivität S' auf, die an der diesem Längsende zugeordneten Kontaktstelle Ihr Maximum (und somit den Wert Eins) aufweist und mit zunehmenden Abstand zu dieser Kontaktstelle abfällt. Der typische Verlauf dieser Sensitivität S' herkömmlicher Sensorelektroden ist in dem Diagramm gemäß Fig. 2 zu Vergleichszwecken mit gestrichelter Linie eingetragen. A conventional plastic electrode with a strip-shaped planar electrode conductor of constant width, which is contacted only one longitudinal end with a metallic lead, has a length-dependent, normalized sensitivity S ', which has its maximum (and thus the value of one) at the contact point assigned to this longitudinal end and decreases with increasing distance to this contact point. The typical course of this sensitivity S 'of conventional sensor electrodes is plotted in the diagram according to FIG. 2 for the purpose of comparison with a dashed line.
Wie Fig. 2 zu entnehmen ist, wird durch den zweiten Kontaktpunkt 28 an dem zweiten Längsende 27 des Elektrodenleiters 23 der Effekt erzielt, dass dort die Sensitivität S ebenfalls zumindest näherungsweise auf den Wert 1 angehoben wird. Zwischen den beiden Kontaktpunkten 25 und 28 nimmt die Sensitivität zwar auch bei der Sensorelektrode 17,18 gemäß Fig. 2 ab. Jedoch ist der Sensitivitäts- verlust hier wesentlich schwächer ausgeprägt als im Falle einer herkömmlichen, lediglich einseitig kontaktierten Sensorelektrode. Der durch den vergleichsweise hohen spezifischen Widerstand des Elektrodenmaterials bedingte Sensitivitätsver- lust ist somit teilweise kompensiert. As can be seen from FIG. 2, the effect achieved by the second contact point 28 at the second longitudinal end 27 of the electrode conductor 23 is that the sensitivity S there is likewise raised at least approximately to the value 1. Although the sensitivity also decreases in the case of the sensor electrode 17, 18 according to FIG. 2 between the two contact points 25 and 28. However, the loss of sensitivity is considerably less pronounced here than in the case of a conventional sensor electrode contacted only on one side. The sensitivity loss caused by the comparatively high specific resistance of the electrode material is thus partially compensated.
In der Ausführung gemäß Fig. 3 umfasst die Sensorelektrode 17,18 zusätzlich zu den Kontaktpunkten 25 und 28 weitere Kontaktpunkte 31 und 32. Die Kontaktpunkte 25,28,31 und 32 sind hierbei in regelmäßigen Abständen über die Länge des Elektrodenleiters 23 verteilt. In der Ausführung gemäß Fig. 3 ist die zweite
Zuleitung 29 nicht vorhanden. Stattdessen ist die Zuleitung 26 über die gesamte Länge der Sensorelektrode 17,18 parallel zu dem Elektrodenleiter 23 geführt und mit allen Kontaktpunkten 25,28,31 und 32 kontaktiert. Anders als in der Darstellung gemäß Fig. 3 angedeutet, ist die Zuleitung 26 vorzugsweise über die gesamte Länge der Sensorelektrode 17,18 mit dem Elektrodenleiter 23 mechanisch verbunden. In the embodiment according to FIG. 3, the sensor electrode 17, 18 comprises, in addition to the contact points 25 and 28, further contact points 31 and 32. The contact points 25, 28, 31 and 32 are distributed here over the length of the electrode conductor 23 at regular intervals. In the embodiment of FIG. 3, the second Supply line 29 not available. Instead, the supply line 26 is guided over the entire length of the sensor electrode 17,18 parallel to the electrode conductor 23 and contacted with all contact points 25,28,31 and 32. Unlike in the illustration according to FIG. 3, the supply line 26 is preferably mechanically connected to the electrode conductor 23 over the entire length of the sensor electrode 17, 18.
Wie aus dem Diagramm der Fig. 3 hervorgeht, wird durch die (im Vergleich zu Fig. 2) erhöhte Anzahl der Kontaktstellen 25,28,31 und 32 der Verlauf der Sensitivität S noch stärker an einen konstanten Verlauf mit dem Wert S = 1 angeglichen als bei dem Ausführungsbeispiel gemäß Fig. 2. Der durch den hohen spezifischen Widerstand des Leitermaterials des Elektrodenleiters 23 verursachte Sensitivitäts- verlust wird somit in noch stärkerem Maße kompensiert. As can be seen from the diagram of FIG. 3, the increase in the number of contact points 25, 28, 31 and 32 (compared to FIG. 2) makes the course of the sensitivity S even more consistent with a constant progression with the value S = 1 as in the embodiment of FIG. 2. The caused by the high resistivity of the conductor material of the electrode conductor 23 sensitivity loss is thus compensated even more.
Bei dem Ausführungsbeispiel gemäß Fig. 4 ist der Elektrodenleiter 23, ähnlich wie bei einer herkömmlichen Sensorelektrode, nur an dem Längsende 24 in dem (hier einzigen) Kontaktpunkt 25 mit der (hier einzigen) Zuleitung 26 kontaktiert. Um den bei dieser Konfiguration der Sensorelektrode 17,18 zu erwartenden Sensitivitäts- verlust zu kompensieren, ist gemäß Fig. 4 der Elektrodenleiter 23 derart gestaltet, dass seine Breite mit zunehmendem Abstand zu dem Längsende 24 stetig zunimmt. Durch diese - trapezartige - Formgebung des Elektrodenleiters 23 wird erreicht, dass auch der Leiterquerschnitt und die für die Felderzeugung relevante Oberfläche des Elektrodenleiters 23 mit wachsendem Abstand zu dem Längsende 24 zunehmen. Wie aus dem Diagramm der Fig. 4 hervorgeht, wird durch diese Maßnahme ein zumindest näherungsweise konstanter Verlauf der Sensitivität S über die gesamte Länge der Sensorelektrode 17,18 erreicht. 4, the electrode conductor 23, similar to a conventional sensor electrode, only at the longitudinal end 24 in the (here single) contact point 25 with the (here single) lead 26 contacted. In order to compensate for the loss of sensitivity to be expected in this configuration of the sensor electrode 17, 18, according to FIG. 4, the electrode conductor 23 is designed in such a way that its width continuously increases with increasing distance from the longitudinal end 24. As a result of this trapezoidal shaping of the electrode conductor 23, it is achieved that the conductor cross section and the surface of the electrode conductor 23 relevant to the field generation also increase with increasing distance from the longitudinal end 24. As can be seen from the diagram of FIG. 4, this measure achieves an at least approximately constant course of the sensitivity S over the entire length of the sensor electrode 17, 18.
In den Ausführungsformen gemäß Fig. 2 bis 4 bildet der Elektrodenleiter 23 jeweils eine vollständig ausgefüllte, lückenlose zusammenhängende Fläche. Abweichend hiervon ist der Elektrodenleiter 23 bei dem Ausführungsbeispiel gemäß Fig. 5 mit Löchern 33 versehen. Der verbleibende Elektrodenleiter 23, der im dargestellten Beispiel wiederum über seine gesamte Länge eine konstante Breite aufweist, bildet somit eine gitterartige Leiterstruktur aus.
Um bei dem solchermaßen gestalteten Elektrodenleiter 23 den gleichen Effekt zu erzielen wie bei dem Ausführungsbeispiel gemäß Fig. 4, nämlich einen mit zunehmendem Abstand zu dem (wiederum einzigen) Kontaktpunkt 25 zunehmenden Flächeninhalt des Leiterquerschnitts und eine zunehmende wirksame Oberfläche, sind die Löcher 33 derart gestaltet, dass ihre Größe - bei gleichbleibender Dichte der Löcher 33 - mit zunehmendem Abstand zu dem Kontaktpunkt 25 abnimmt. Alternativ oder zusätzlich hierzu kann auch die Dichte der Löcher 33 mit zunehmendem Abstand zu dem Kontaktpunkt 25 erniedrigt werden. Wie dem Diagramm zu Fig. 5 zu entnehmen ist, wird auch durch diese Maßnahme ein im Wesentlichen konstanter Verlauf der Sensitivität S über die gesamte Länge der Sensorelektrode 17,18 erzielt. In the embodiments according to FIGS. 2 to 4, the electrode conductor 23 respectively forms a completely filled, continuous contiguous surface. Deviating from this, the electrode conductor 23 is provided with holes 33 in the embodiment according to FIG. 5. The remaining electrode conductor 23, which again has a constant width over its entire length in the illustrated example, thus forms a grid-like conductor structure. In order to achieve the same effect in the thus designed electrode conductor 23 as in the embodiment of FIG. 4, namely an increasing with increasing distance to the (again single) contact point 25 surface area of the conductor cross-section and an increasing effective surface, the holes 33 are designed in that their size decreases - as the density of the holes 33 remains constant - with increasing distance to the contact point 25. Alternatively or additionally, the density of the holes 33 can be lowered with increasing distance to the contact point 25. As can be seen from the diagram for FIG. 5, a substantially constant course of the sensitivity S over the entire length of the sensor electrode 17, 18 is also achieved by this measure.
Die Sensorelektroden 17 und 18 des Näherungssensors 15 können gleich, insbesondere nach jeder der in den Fig. 2 bis 5 dargestellten Ausführungsvarianten, aufgebaut sein. Alternativ können die Sensorelektroden 17 und 18 auch unterschiedlich aufgebaut sein. Insbesondere kann eine der beiden Sensorelektroden 17 oder 18 auch in herkömmlicher Weise gestaltet sein. The sensor electrodes 17 and 18 of the proximity sensor 15 may be the same, in particular after each of the embodiments shown in FIGS. 2 to 5, constructed. Alternatively, the sensor electrodes 17 and 18 may also be constructed differently. In particular, one of the two sensor electrodes 17 or 18 may also be designed in a conventional manner.
Die Erfindung wird an den vorstehend beschriebenen Ausführungsbeispielen besonders deutlich, ist gleichwohl aber nicht darauf beschränkt. Vielmehr können zahlreiche weitere Ausführungsformen der Erfindung aus den Ansprüchen und der vorstehenden Beschreibung abgeleitet werden. Insbesondere können die anhand der Fig. 2 bis 5 dargestellten Maßnahmen zur Kompensierung des durch den spezifischen Widerstand des Elektrodenmaterials verursachten Sensitivitätsverlusts beliebig miteinander kombiniert werden.
The invention will be particularly apparent in the embodiments described above, but is not limited thereto. Rather, numerous other embodiments of the invention may be inferred from the claims and the foregoing description. In particular, the measures for compensating the loss of sensitivity caused by the specific resistance of the electrode material can be combined as desired with reference to FIGS. 2 to 5.
Heck Rear
Kraftfahrzeug motor vehicle
Heckklappe tailgate
Oberkante top edge
Öffnungsstellung open position
Schließstellung closed position
Zwischenstellung intermediate position
Stellvorrichtung locking device
Stellmotor servomotor
Stellmechanik actuating mechanism
Motorsteuergerät Engine control unit
Näherungssensor Proximity sensor
Steuer- und Auswerteeinheit Sensorelektrode Control and evaluation unit Sensor electrode
Sensorelektrode sensor electrode
Stoßfänger bumper
Erfassungsraum detection space
Erfassungsraum detection space
Elektrodenleiter electrode conductor
Längskante longitudinal edge
Kontaktpunkt contact point
Zuleitung supply
Längsende longitudinal end
Kontaktpunkt contact point
Zuleitung supply
Gegenstand object
Kontaktpunkt contact point
Kontaktpunkt contact point
Loch hole
Verstell weg
O Öffnungssignal A Abstand x Längsposition S Sensitivität S' Sensitivität
Move away O Opening signal A Distance x longitudinal position S Sensitivity S 'Sensitivity
Claims
1 . Sensorelektrode (17,18) für einen kapazitiven Näherungssensor (15), mit einem langgestreckten, flächigen Elektrodenleiter (23) aus elektrisch leitfähigem Kunststoffmaterial, wobei zur vollständigen oder partiellen Kompensation des durch den spezifischen ohmschen Widerstand des elektrisch leitfähigen Kunststoffmaterials bedingten, längenabhängigen Sensitivitätsverlusts der Sensorelektrode (17,18) 1 . Sensor electrode (17,18) for a capacitive proximity sensor (15) having an elongated, planar electrode conductor (23) made of electrically conductive plastic material, wherein for complete or partial compensation of the caused by the specific ohmic resistance of the electrically conductive plastic material, length-dependent loss of sensitivity of the sensor electrode (17,18)
- der Flächeninhalt des Leiterquerschnitts des Elektrodenleiters (23) in the surface area of the conductor cross-section of the electrode conductor (23) in
Längsrichtung des Elektrodenleiters (23) variiert ist und/oder Is varied longitudinally of the electrode conductor (23) and / or
- der Elektrodenleiter (12) an mehreren voneinander beabstandeten Kontaktpunkten (25,28,31 ,32) mit einer metallischen Zuleitung (26,29) kontaktiert ist. - The electrode conductor (12) at a plurality of spaced contact points (25,28,31, 32) with a metallic lead (26,29) is contacted.
2. Sensorelektrode (17,18) nach Anspruch 1 , 2. Sensor electrode (17,18) according to claim 1,
wobei der Flächeninhalt des Leiterquerschnitts des Elektrodenleiters (23) mit zunehmendem Abstand zu dem nächstliegenden Kontaktpunkt (25,28,31 ,32) zunimmt. wherein the area of the conductor cross-section of the electrode conductor (23) increases with increasing distance to the nearest contact point (25,28,31, 32).
3. Sensorelektrode (17,18) nach Anspruch 2, 3. Sensor electrode (17,18) according to claim 2,
wobei die Breite des Elektrodenleiters (23) mit zunehmendem Abstand zu dem nächstliegenden Kontaktpunkt (25,28,31 ,32) zunimmt. wherein the width of the electrode conductor (23) increases with increasing distance to the nearest contact point (25,28,31, 32).
4. Sensorelektrode (17,18) nach Anspruch 2 oder 3, 4. Sensor electrode (17,18) according to claim 2 or 3,
wobei der Elektrodenleiter (23) Löcher (33) oder Einschnitte aufweist, und wobei die Größe und/oder Dichte der Löcher (33) bzw. Einschnitte mit zu-
nehmendem Abstand zu dem nächstliegenden Kontaktpunkt (25,28,31 ,32) abnimmt. wherein the electrode conductor (23) has holes (33) or cuts, and wherein the size and / or density of the holes (33) or cuts with decreasing distance to the nearest contact point (25,28,31, 32) decreases.
5. Sensorelektrode (17,18) nach einem der Ansprüche 1 bis 4, 5. sensor electrode (17,18) according to one of claims 1 to 4,
wobei der Elektrodenleiter (23) an beiden Längsenden (24,27) jeweils einen Kontaktpunkt (25,28) aufweist, und in diesen Kontaktpunkten (25,28) mittels zweier separater metallischer Zuleitungen (26,29) kontaktiert ist. wherein the electrode conductor (23) at both longitudinal ends (24,27) each having a contact point (25,28), and in these contact points (25,28) by means of two separate metallic leads (26,29) is contacted.
6. Sensorelektrode (17,18) nach einem der Ansprüche 1 bis 5, 6. sensor electrode (17,18) according to one of claims 1 to 5,
wobei dem Elektrodenleiter (23) eine metallische Zuleitung (26) über zumindest einen Teil seiner Länge parallelgeführt ist, und wobei diese Zuleitung (26) an mindestens zwei voneinander beabstandeten Kontaktpunkten (25,28,31 ,32) mit dem Elektrodenleiter (23) kontaktiert ist. wherein the metallic conductor (23) is parallel led over at least part of its length to a metallic lead (26), and wherein said lead (26) contacts the electrode lead (23) at at least two spaced contact points (25, 28, 31, 32) is.
7. Kapazitiver Näherungssensor (15) mit einer elektronischen Steuer- und 7. Capacitive proximity sensor (15) with an electronic control and
Auswerteeinheit (16) sowie mit mindestens einer damit verbundenen Sensorelektrode (17,18) nach einem der Ansprüche 1 bis 6.
Evaluation unit (16) and at least one associated sensor electrode (17,18) according to one of claims 1 to 6.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102014011037.0A DE102014011037A1 (en) | 2014-07-23 | 2014-07-23 | Sensor electrode for a capacitive proximity sensor |
DE102014011037.0 | 2014-07-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016012280A1 true WO2016012280A1 (en) | 2016-01-28 |
Family
ID=53682668
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2015/065879 WO2016012280A1 (en) | 2014-07-23 | 2015-07-10 | Sensor electrode for a capacitive proximity sensor |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102014011037A1 (en) |
WO (1) | WO2016012280A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6923460B2 (en) * | 2018-01-26 | 2021-08-18 | トヨタ自動車株式会社 | Vehicle undercarriage |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2381835A1 (en) * | 1977-02-28 | 1978-09-22 | Solvay | Electrolytic cell with perforated vertical electrodes for gas passage - the free hole area increasing uniformly from bottom to top |
US20050041375A1 (en) * | 2003-08-19 | 2005-02-24 | Schlegel Corporation | Capacitive sensor having flexible polymeric conductors |
DE102010049484A1 (en) * | 2010-10-27 | 2012-05-03 | Dirk Göger | Tactile proximity sensor for detecting convergence of objects at sensor and for detecting pressure profiles, comprises layers, where physical operating principle of proximity sensor is provided by change of capacity |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1204542B1 (en) * | 1999-07-29 | 2003-11-26 | AB Automotive Electronics Ltd. | Capacitive sensor |
EP2159917A1 (en) | 2008-09-02 | 2010-03-03 | Hella KG Hueck & Co. | Proximity sensor |
DE102010049400A1 (en) | 2010-10-26 | 2012-04-26 | Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Hallstadt | Sensor unit for contactless actuation of a vehicle door |
DE102011111208A1 (en) * | 2011-08-20 | 2013-02-21 | Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Hallstadt | Control device for non-contact actuation of actuator in vehicle e.g. motor vehicle, has sensor electrodes that are formed outside bumper of vehicle in horizontal direction, which are connected connected to rigid module carrier |
DE102011112274A1 (en) | 2011-09-05 | 2013-03-07 | Brose Fahrzeugteile Gmbh & Co. Kg, Hallstadt | control system |
DE102012014676A1 (en) | 2012-07-25 | 2014-01-30 | Brose Fahrzeugteile Gmbh & Co. Kg, Hallstadt | Method for controlling a closure element arrangement, in particular of a motor vehicle |
-
2014
- 2014-07-23 DE DE102014011037.0A patent/DE102014011037A1/en not_active Withdrawn
-
2015
- 2015-07-10 WO PCT/EP2015/065879 patent/WO2016012280A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2381835A1 (en) * | 1977-02-28 | 1978-09-22 | Solvay | Electrolytic cell with perforated vertical electrodes for gas passage - the free hole area increasing uniformly from bottom to top |
US20050041375A1 (en) * | 2003-08-19 | 2005-02-24 | Schlegel Corporation | Capacitive sensor having flexible polymeric conductors |
DE102010049484A1 (en) * | 2010-10-27 | 2012-05-03 | Dirk Göger | Tactile proximity sensor for detecting convergence of objects at sensor and for detecting pressure profiles, comprises layers, where physical operating principle of proximity sensor is provided by change of capacity |
Also Published As
Publication number | Publication date |
---|---|
DE102014011037A1 (en) | 2016-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102008035634B4 (en) | Safety edge for detection of obstacles and device for detecting obstacles | |
EP2630011B1 (en) | Capacitive sensor assembly for deciding on opening a door of a vehicle | |
DE102013001066B4 (en) | Capacitive proximity sensor | |
EP2097979B1 (en) | Arrangement for the detection of body parts by absorbing an electric near field | |
EP2371062B1 (en) | Capacitive proximity sensor having a shielding electrode and a diagnostic electrode | |
DE102010002559A1 (en) | Capacitive sensor arrangement for detection of e.g. door opening of motor car, has sensing electrode arrangements formed of elongated segments which are arranged in longitudinal direction to enable different capacitive detections | |
EP2828973B1 (en) | Capacitive sensor arrangement for switching a door opening in a motor vehicle and associated method | |
DE102016215335A1 (en) | SENSOR WITH CONDUCTIVE RUBBER AND VARIABLE RESISTANCE AND METHOD FOR DETECTING A TOUCH THROUGH AN OBJECT / HUMAN | |
DE4201019C2 (en) | Device for avoiding accidents when a panel movable by a drive approaches a closing edge | |
DE102012104915A1 (en) | Capacitive sensor arrangement for switching a door opening on a motor vehicle | |
EP2859658B1 (en) | Capacitive sensor arrangement for switching a door opening on a motor vehicle | |
DE102013014824A1 (en) | Capacitive sensor for a vehicle | |
DE102013100624A1 (en) | Impact sensor with triboelectric effect for a motor vehicle | |
DE102014018924B4 (en) | Device for the contactless actuation of an adjustable vehicle part | |
DE112014001394T5 (en) | Capacitive trim sensor and capacitive system | |
WO2016012280A1 (en) | Sensor electrode for a capacitive proximity sensor | |
DE102005016252B3 (en) | Device for detecting an obstacle in the opening region of a power-operated closing element, in particular a window pane of a motor vehicle | |
DE102017117646A1 (en) | Door handle assembly for a motor vehicle with capacitive and inductive sensor | |
WO2019016344A1 (en) | Sensor unit | |
DE102013112418A1 (en) | Capacitive sensor arrangement of a motor vehicle | |
DE102012010124A1 (en) | Protecting device for controlling wing element e.g. door, of motor car adjustable between closing position and open position, has capacitive sensing unit including capacitive sensor that is arranged in and/or on window pane of wing element | |
DE102011053897A1 (en) | Sensor arrangement for use in motor car to detect approximation of object, has target electrode extending axially outside sensing electrode in partial section of less sensitivity, and control circuit to adjust potential of target electrode | |
DE102017201462A1 (en) | Sensor unit for a anti-trap device | |
DE102008032850B4 (en) | Operating element with capacitive proximity sensor | |
DE102017201464A1 (en) | Sensor unit for a anti-trap device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15739222 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15739222 Country of ref document: EP Kind code of ref document: A1 |