WO2016011629A1 - 一种可控震源分区同时扫描激发方法 - Google Patents

一种可控震源分区同时扫描激发方法 Download PDF

Info

Publication number
WO2016011629A1
WO2016011629A1 PCT/CN2014/082860 CN2014082860W WO2016011629A1 WO 2016011629 A1 WO2016011629 A1 WO 2016011629A1 CN 2014082860 W CN2014082860 W CN 2014082860W WO 2016011629 A1 WO2016011629 A1 WO 2016011629A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
excitation
distance
shot
scanning
Prior art date
Application number
PCT/CN2014/082860
Other languages
English (en)
French (fr)
Inventor
杨顺伟
Original Assignee
杨顺伟
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杨顺伟 filed Critical 杨顺伟
Priority to PCT/CN2014/082860 priority Critical patent/WO2016011629A1/zh
Priority to CN201480002783.5A priority patent/CN104755959A/zh
Publication of WO2016011629A1 publication Critical patent/WO2016011629A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/02Generating seismic energy

Definitions

  • the present invention relates to the field of geophysical exploration technology, and is a vibrating source partitioning simultaneous scanning method in seismic data acquisition.
  • BACKGROUND OF THE INVENTION When a seismic source is used for seismic acquisition, the vibrator can complete a vibration, which takes several seconds to several tens of seconds, and one vibration is also a scan. The time used is called the scan time.
  • one shot is excited. It can be completed by a single source vibration once, or it can be superimposed by several source vibrations. No matter what parameters are used, it takes a certain time to complete the excitation of one shot. In order to improve the vibration efficiency, it is suitable for high precision and high.
  • various vibroseis efficient excitation methods have been proposed and applied, such as alternating scanning, sliding scanning, simultaneous scanning, simultaneous sliding scanning, etc.
  • alternating scan is to use two or more sets of sources, one After the group vibroseis A completes the shot fire, another set of source B is immediately excited. When B is excited, A can move to the next shot to prepare for the excitation; the sliding scan is performed on the basis of alternating scans. Improvement, when group A source vibration is not over, group B source can be excited, and the minimum time between A and B is called sliding time; simultaneous scanning is performed when the two groups are separated by a certain distance. Excitation, this distance is called the minimum simultaneous excitation distance. If the two sets of sources are smaller than this distance, simultaneous excitation cannot be performed.
  • the sliding scan is a sliding scan and a simultaneous scan.
  • the other two vibrators can continue to scan simultaneously.
  • the vibrator is simultaneously scanned, because the minimum distance is limited, the work area must be of a certain length. Otherwise, some of the shots cannot be simultaneously scanned. These shots cannot be simultaneously distributed in the middle of the work area. Because the other shots in the work area and the distance between these shots are smaller than the minimum distance required for simultaneous scanning, simultaneous scanning cannot be realized. From the point of view of distance, the closer to the edge of the work area, the greater the probability of simultaneous excitation.
  • simultaneous scanning can be implemented in two ways. The first is to divide the source into two groups. The distance between the group sources is greater than the minimum simultaneous excitation distance. The source between the two groups is paired to complete the simultaneous scanning. After the excitation is completed, the source moves forward at approximately the same rate. The two sources maintain the minimum simultaneous excitation distance. Both sets of sources enable simultaneous scanning. The second method is to distribute all the focal points in the work area. Each source is responsible for a certain area.
  • the principle of regional distribution is the principle that the obstacles are the decomposition line and uniform.
  • the advantage of the second method is that the total moving distance of the source is reduced. It is suitable for work areas where the terrain of the work area is complex and the source is difficult to move. It is also applicable when the length of the work area is less than the minimum and the excitation distance is 2 times.
  • the simultaneous excitation condition is not met, the source is excited by alternating or sliding scanning. Compared with mode 1, mode 2 reduces the number of sources that meet the requirement of simultaneously exciting the minimum distance because of the distribution of the source, and the proportion of scanning is also reduced.
  • SUMMARY OF THE INVENTION The present invention seeks to find a vibrator partition that can improve the construction efficiency of a vibrator. Scanning excitation method. The invention is implemented in the following steps:
  • the work area is divided into A area and B area, the A area is located at the two sides of the work area near the boundary, and the B area is located at the middle of the work area; the A area has two blocks, which are divided into A1 area and A2 area in order.
  • the respective length divisions of the A and B zones are determined according to the following formula:
  • step (1) Calculate the distance between every two shots in the Ready signal queue, the distance is greater than the maximum / J
  • the excitation distance is the shot point that satisfies the simultaneous excitation condition; if the shots of the simultaneous excitation condition are located in the A1 and A2 areas respectively, no excitation is performed, and other areas are excited; the step (1) performs simultaneous scanning excitation. The priority is the highest. When the shot point that satisfies the condition is not found in step (1), then step (2) is performed;
  • step (1) is performed after the completion of the step (2).
  • the probability that the middle shot point of the invention meets the simultaneous excitation condition is smaller than the shot point located at the edge of the work area, and the more the simultaneous excitation ratio is obtained when the shot is fired, the higher the efficiency is, so the simultaneous improvement is By exciting the ratio of shots, the excitation efficiency can be improved.
  • the invention can increase the proportion of simultaneous excitation by setting the designated area as the area that can only perform simultaneous scanning.
  • the method can be adopted, and can be applied when the length of the working area is insufficient.
  • Simultaneous scanning excitation can increase the proportion of simultaneous excitation. According to the range of the work area, the shooting efficiency can be increased by 10-20%.
  • FIG. 1 is a schematic view showing the division of a region of the present invention
  • Fig.1 Method 1 for dividing the length of the construction area
  • Figure 3 Method 2 for dividing the length of the construction area
  • the work area is divided into Area A and Area B. Area A is located near the boundary on both sides of the work area, and Area B is located in the middle of the work area. As shown in Figure 1, the work area is divided into three areas; The two blocks are divided into A1 area and A2 area in order; the respective length divisions of the A area and the B area are determined according to the following formula:
  • the distance between the pattern filling area of the B area and the boundary of the same direction is 1; the special case shown in Fig. 2 is suitable for the work area with complicated surface conditions and many obstacles, and the special case shown in Fig. 3 is suitable for the work area with better surface conditions.
  • Length of zone B LB Determined by the length of zone A as follows:
  • step (1) Calculate the distance between every two shots in the Ready signal queue. The distance is greater than the minimum simultaneous excitation distance. The shots satisfy the simultaneous scan excitation condition. If the shots of the simultaneous excitation conditions are located in the A1 and A2 areas, respectively. Excitation is not performed, and other areas are excited; step (1) performs simultaneous scan excitation with the highest priority. When no (1) shots satisfying the condition are found, step (2) is performed;
  • step (1) In the Ready signal queue, the shots located in the B area are scanned or alternately scanned. When there are multiple shots in the B area of the Reday signal queue, the distance between the shot points and the midpoint of the work area is calculated, and the distance is small. Priority is given to sliding scan or alternate scanning. In the field collection, steps (1) and (2) are cyclically excited, and step (1) is performed after the completion of the step (2).

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Numerical Control (AREA)

Abstract

一种可控震源分区同时扫描激发方法,采用以下步骤实现:1)将工区划分为A区、B区,A区位于工区两侧靠近边界的位置,B区位于工区的中部;所述的A区有两个区块,按顺序分为A1区、A2区;2)按炮点分区调整激发顺序;计算在Ready信号队列中每两个炮点之间的距离,距离大于最小同时激发距离的为满足同时扫描激发条件的炮点;如果同时扫描激发条件的炮点分别位于A1和A2区,不进行激发,其它区进行激发;在Ready信号队列中位于B区的炮点进行滑动扫描或者交替扫描,当Reday信号队列中位于B区的炮点有多个,要计算炮点距离工区中点的距离,距离小的优先执行滑动扫描或者交替扫描。使用上述方法进行激发可以有效地提高作业效率。

Description

种可控震源分区同时扫描激发方法 技术领域 本发明属于地球物理勘探技术领域, 是地震资料采集中一种可控震源分区 同时扫描激方法。 背景技术 使用可控震源地震进行地震采集时, 可控震源完成一次振动, 需要几秒-几 十秒时间, 一次振动也是一次扫描, 所用时间称为扫描时间, 根据施工要求, 一个炮点的激发可以由单台震源振动一次完成, 也可以由几台震源组合振动几 次叠加完成, 不管使用什么参数, 完成一个炮点的激发是需要耗费一定时间的, 为了提高振动效率, 适应高精度、 高密度地震勘探的发展, 各种可控震源高效 激发方式被提出和应用, 如交替扫描、 滑动扫描、 同时扫描、 同时滑动扫描等
可控震源高效采集的原理是通过压缩相邻两炮的距离间隔或者时间间隔来 达到单位时间内完成更多地炮点激发来实现效率的提高; 交替扫描是采用两组 或多组震源, 一组可控震源 A完成炮点激发后, 另一组震源 B立即进行激发, 在 B进行激发时, A可以进行搬家到下一个炮点做激发准备; 滑动扫描是在交替 扫描的基础上进行了改进, 在 A组震源震动还没结束时, B组震源就可以进行激 发, A与 B之间激发的最小时间称为滑动时间; 同时扫描是在两组震源相隔一定 的距离时, 可以同时进行激发, 这个距离称为最小同时激发距离, 如果两组震 源小于这个距离则不能进行同时激发; 同时滑动扫描是滑动扫描和同时扫描的 结合, 两组可控震源同时在两个炮点激发后, 在大于滑动扫描时间后, 另外两 组可控震源可以继续进行同时扫描。 在可控震源进行同时扫描时, 因为最小距离的限制, 要求工区要有一定的 长度, 要不然就会造成一部分炮点不能实现同时扫描, 这些不能实现同时扫描 的炮点分布于工区的中部, 因为工区的其它炮点和这些炮点的距离都小于同时 扫描要求最小距离, 所以不能实现同时扫描, 从距离上来看, 越靠近工区边缘 的部位, 满足同时激发的几率越大。 根据统计, 大部分工区的长度是有一定限 制的, 因此工区长度限制了同时扫描激发方式的应用。 对于同时扫描, 上文已指出: 要实现同时扫描, 两组震源必须大于最小同时激 发距离, 按照震源分布方式, 同时扫描可以有两种实现方式, 方式一是把震源 分为两组, 这两组震源相隔的距离大于最小同时激发距离, 两组之间的震源进 行配对, 完成同时扫描, 激发完毕后, 震源以大致相同的速率向前移动, 两组 震源保持最小同时激发距离, 这样能够保证两组震源能够实现同时扫描。 方式 二是把所有的震源分布于工区范围内, 每个震源负责一定的区域, 区域分配的 原则是以障碍物为分解线和均匀的原则, 方式二的优点在于减小了震源总移动 距离, 适用于工区地形复杂, 震源移动困难的工区, 另外在工区长度小于最小 同时激发距离的 2 倍时也适用, 在不满足同时激发条件时, 震源以交替或者滑 动扫描的方式进行激发。 方式二和方式一相比, 因为震源的分布方式, 满足同 时激发最小距离的要求的震源数量降低了, 同时扫描的比例也降低了。 发明内容 本发明旨在寻找一种能够提高可控震源施工效率的可控震源分区同时 扫描激发方法。 本发明采用以下歩骤实现:
1 ) 将工区划分为 A区、 B区, A区位于工区两侧靠近边界的位置, B区 位于工区的中部; 所述的 A区有两个区块, 按顺序分为 A1区、 A2区; 所述的 A区、 B区各自长度划分按照下式确定:
(L- l)/3^LA^(L-l)/2 式中: 工区长度为 L, 最小同时激发距离为 1;
A区的长度 LA: 当 LA=(L-l)/3时, A区每一个炮点都能和 B区的炮点进行同时扫描, 当 LA=(L-l)/2时 位于 A区和 B区满足同时激发条件的两个炮点以同方向移动 时, 能够完成所有炮点的激发;
B区长度 LB: 由 A区长度按下式确定: LB=(L-2LA)/2。
2) 按炮点分区调整激发顺序; 所述的调整激发顺序是:
( 1 ) 计算在 Ready信号队列中每两个炮点之间的距离, 距离大于最/ J 同时激发距离的为满足同时扫描激发条件的炮点; 如果同时扫描激发条件的炮点分别位于 A1和 A2区, 不进行激发, 其 它区进行激发; 歩骤 (1 )执行的是同时扫描激发, 优先级最高, 当歩骤(1 ) 没有找到 满足条件的炮点时, 则执行歩骤 (2);
(2)在 Ready信号队列中位于 B区的炮点进行滑动扫描或者交替扫描, 当 Reday信号队列中位于 B区的炮点有多个,要计算炮点距离工区中点的距 离, 距离小的优先执行滑动扫描或者交替扫描。 野外采集时, 歩骤 (1 ) 和 (2) 是循环激发, 歩骤 (2) 执行完毕后再 执行歩骤 (1 )。 本发明工区的中部炮点满足同时激发条件的几率要小于位于工区边缘 部位的炮点, 而进行炮点激发时, 越是获得更多的同时激发的比例, 则效率 越高, 因此提高了同时激发炮点的比例, 就能提高激发效率。 本发明通过设定指定的区域为只能进行同时扫描的区域来达到提高同 时激发的比例, 在震源数量较多并且散布于工区范围时, 可以采用此方式, 可以应用于当工区长度不足时来实现同时扫描激发, 能够提高同时激发所占 的比例, 根据工区的范围不同, 可以提高放炮效率 10-20%。
附图说明 图 1是本发明区域划分示意图; 图 1 施工区域长度划分方法 1 ; 图 3 施工区域长度划分方法 2 ;
具体实 式 本发明采用以下歩骤实现:
1 )将工区划分为 A区、 B区, A区位于工区两侧靠近边界的位置, B区 位于工区的中部, 如图 1所示, 工区共分为 3个区; 所述的 A区有两个区块, 按顺序分为 A1区、 A2区; 所述的 A区、 B区各自长度划分按照下式确定:
(L- l)/3^LA^(L-l)/2 式中: 工区长度为 L, 最小同时激发距离为 1;
A区的长度 LA: 当 LA=(L-l)/3时, A区每一个炮点都能和 B区的炮点同时扫描, 如图 2所示, A1区和 B区的图案填充区域最小距离为 1; 当 LA=(L-l)/2时, 位于 A区和 B区满足同时激发条件的两个炮点以同方向移动时, 能够完成所有炮 点的激发,如图 3所示, A1区和 B区的图案填充区域同方向边界处的距离为 1; 图 2所示的特例适合地表条件复杂, 障碍物较多的工区, 而图 3所示的 特例适合地表条件较好的工区。 B区长度 LB: 由 A区长度按下式确定:
Figure imgf000007_0001
2) 按炮点分区调整激发顺序, 保证位于 A区和 B区的满足同时激发条 件的炮点被优先激发; 所述的调整激发顺序是:
( 1 ) 计算在 Ready信号队列中每两个炮点之间的距离, 距离大于最小 同时激发距离的为满足同时扫描激发条件的炮点; 如果同时扫描激发条件的炮点分别位于 A1和 A2区, 不进行激发, 其 它区进行激发; 歩骤 (1 ) 执行的是同时扫描激发, 优先级最高, 当歩骤 (1 ) 没有找到 满足条件的炮点时, 则执行歩骤 (2);
(2)在 Ready信号队列中位于 B区的炮点进行滑动扫描或者交替扫描, 当 Reday信号队列中位于 B区的炮点有多个,要计算炮点距离工区中点的距 离, 距离小的优先执行滑动扫描或者交替扫描。 野外采集时, 歩骤 (1 ) 和 (2) 是循环激发, 歩骤 (2) 执行完毕后再 执行歩骤 (1 )。

Claims

权 利 要 求 书
1、 一种可控震源分区同时扫描激发方法, 其特征在于采用以下步骤 实现:
1 ) ^!夺工区划分为 A区、 B区, A区位于工区两侧靠近边界的位置, B 区位于工区的中部; 所述的 A区有两个区块, 按顺序分为 A1 区、 A2区; 所述的 A区、 B区各自长度划分按照下式确定:
(L- 1)/3<LA< (L-D/2 式中: 工区长度为 L, 最小同时激发距离为 1;
A区的长度为 LA: 当 LA=(L- 1) /3时, A区每一个炮点啫能和 B区的炮点进行同时扫 4笛, 当 LA=(L_l)/2时, 位于 A区和 B区满足同时激发条件的两个炮点以同方 向移动时, 能够完成所有炮点的激发;
B区长度 LB: 由 A区长度按下式确定:
LB= (L-2LA) /2
2 ) 按炮点分区调整激发顺序; 所述的调整激发顺序是:
( 1 )计算在 Ready信号队列中每两个炮点之间的距离, 距离大于最 小同时激发距离的为满足同时扫描激发条件的炮点; 如果同时扫描激发条件的炮点分别位于 A1和 A2区, 不进行激发, 其它区进行激发;
( 2 )在 Ready信号队列中位于 B区的炮点进行滑动扫描或者交替扫 描, 当 Reday信号队列中位于 B区的炮点有多个, 要计算炮点距离工区 中点的距离, 距离小的优先执行滑动扫描或者交替扫描 步骤 (1 ) 执行的是同时扫描激发, 优先级最高, 当步骤 (1 ) 没有 找到满足条件的炮点时, 则执行步骤 (2 ); 2016/011629 野外采集时, 步骤 (1) 和 (2) 是循环激发, 步骤 (2) 执行完毕后再执行 (1)。
PCT/CN2014/082860 2014-07-23 2014-07-23 一种可控震源分区同时扫描激发方法 WO2016011629A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2014/082860 WO2016011629A1 (zh) 2014-07-23 2014-07-23 一种可控震源分区同时扫描激发方法
CN201480002783.5A CN104755959A (zh) 2014-07-23 2014-07-23 一种可控震源分区同时扫描激发方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/082860 WO2016011629A1 (zh) 2014-07-23 2014-07-23 一种可控震源分区同时扫描激发方法

Publications (1)

Publication Number Publication Date
WO2016011629A1 true WO2016011629A1 (zh) 2016-01-28

Family

ID=53593840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/082860 WO2016011629A1 (zh) 2014-07-23 2014-07-23 一种可控震源分区同时扫描激发方法

Country Status (2)

Country Link
CN (1) CN104755959A (zh)
WO (1) WO2016011629A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107015270A (zh) * 2017-04-20 2017-08-04 中国石油天然气集团公司 扫描信号计算方法及装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105676270B (zh) * 2015-12-31 2019-03-15 中国石油天然气集团公司 脉冲激发系统的控制方法和装置
CN105785434A (zh) * 2016-03-23 2016-07-20 中国石油天然气集团公司 一种野外采集站定位方法及装置
CN108205155B (zh) * 2017-12-27 2019-11-08 中国石油天然气集团公司 一种可控震源交替独立同步激发方法、装置及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0319716B1 (de) * 1987-12-09 1993-05-12 PRAKLA-SEISMOS GmbH Verfahren zur Erfassung seismischer Daten
CN102645670A (zh) * 2011-02-22 2012-08-22 中国石油天然气集团公司 一种基于叠加响应分析的观测系统优化设计方法
US20120290214A1 (en) * 2011-05-13 2012-11-15 Saudi Arabian Oil Company Coupled time-distance dependent swept frequency source acquisition design and data de-noising
US20130170317A1 (en) * 2011-12-30 2013-07-04 Landmark Graphics Corporation Receiving Seismic Signals From Seismic Signal Sources
CN103605154A (zh) * 2013-11-06 2014-02-26 中国石油集团东方地球物理勘探有限责任公司 一种可控震源分频同时激发方法
CN104375165A (zh) * 2013-08-15 2015-02-25 中国石油天然气集团公司 一种可控震源分区同时扫描激发方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5079749A (en) * 1990-06-06 1992-01-07 Union Oil Company Of California Seismic raytracing method and apparatus
US5410517A (en) * 1994-05-13 1995-04-25 Exxon Production Research Company Method for cascading sweeps for a seismic vibrator
CN103675901B (zh) * 2012-09-04 2016-06-08 中国石油天然气集团公司 一种时频域可控震源近地表吸收补偿方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0319716B1 (de) * 1987-12-09 1993-05-12 PRAKLA-SEISMOS GmbH Verfahren zur Erfassung seismischer Daten
CN102645670A (zh) * 2011-02-22 2012-08-22 中国石油天然气集团公司 一种基于叠加响应分析的观测系统优化设计方法
US20120290214A1 (en) * 2011-05-13 2012-11-15 Saudi Arabian Oil Company Coupled time-distance dependent swept frequency source acquisition design and data de-noising
US20130170317A1 (en) * 2011-12-30 2013-07-04 Landmark Graphics Corporation Receiving Seismic Signals From Seismic Signal Sources
CN104375165A (zh) * 2013-08-15 2015-02-25 中国石油天然气集团公司 一种可控震源分区同时扫描激发方法
CN103605154A (zh) * 2013-11-06 2014-02-26 中国石油集团东方地球物理勘探有限责任公司 一种可控震源分频同时激发方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHENG, XINXUAN ET AL.: "The Application of 428XL DSSS Function", EQUIPMENT FOR GEOPHYSICAL PROSPECTING, vol. 2, no. 22, 30 April 2012 (2012-04-30), pages 136 - 140, ISSN: 1671-0657 *
HU , CHAOJUN ET AL.: "High-precision 3D Seismic Exploration of Extra-Shallow Target Layers in Complex Urban Areas and Its Effect''.", NATURAL GAS INDUSTRY, vol. A, no. 29, 30 September 2007 (2007-09-30), pages 40 - 42, ISSN: 1000-0976 *
WEI, TIE ET AL.: "Vibroseis High Efficient Acquisition Technology and Its Application in International Project", OIL FORUM, vol. 2, 30 April 2012 (2012-04-30), pages 7 - 10, ISSN: 1002-302X *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107015270A (zh) * 2017-04-20 2017-08-04 中国石油天然气集团公司 扫描信号计算方法及装置
CN107015270B (zh) * 2017-04-20 2019-06-11 中国石油天然气集团公司 扫描信号计算方法及装置

Also Published As

Publication number Publication date
CN104755959A (zh) 2015-07-01

Similar Documents

Publication Publication Date Title
WO2016011629A1 (zh) 一种可控震源分区同时扫描激发方法
CN104375165B (zh) 一种可控震源分区同时扫描激发方法
JP2020515001A5 (zh)
CN102262244B (zh) 大面积三维地震数据体快速处理方法
CN108205155B (zh) 一种可控震源交替独立同步激发方法、装置及系统
CN104422951B (zh) 一种可控震源动态滑动扫描激发方法
CN102629390A (zh) 海量机载LiDAR点云Delaunay三角网并行构建方法和装置
EP2581765A3 (en) Subsurface imaging system and method with multi-source survey component segregation and redetermination
CN106154296A (zh) 一种路径轨迹的调整方法及装置
Janik et al. Seismic structure of the lithosphere between the East European Craton and the Carpathians from the net of CELEBRATION 2000 profiles in SE Poland
EP2821814A3 (en) Variable depth multicomponent sensor streamer
US9291728B2 (en) Continuous seismic acquisition
CN103077088A (zh) 集群渲染环境中基于pkdt树的动态反馈负载均衡方法
EP3142008A3 (en) Systems and methods for allocation of environmentally regulated slack
EP2657724A3 (en) Methods and Apparatus for Generating Deghosted Seismic Data
JP2015112482A5 (zh)
CN108196265A (zh) 一种多路激光飞行时间并行采集系统及方法
CN107942389A (zh) 用于压制邻炮干扰的方法、系统和计算机可读介质
EP2835263A3 (en) Dot recording apparatus, dot recording method, and computer program therefor
CN104101330B (zh) 一种基于空间差分整形的距离选通超分辨率三维成像方法
CN106094020A (zh) 一种地震反演方法及装置
JP2018007497A5 (zh)
CN107656307A (zh) 全波形反演计算方法及系统
CN105242302B (zh) 提高黄土地区地震资料信噪比的多井组合激发方法
CN111948703B (zh) 混合震源激发的地震勘探方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14898212

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/05/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14898212

Country of ref document: EP

Kind code of ref document: A1