WO2016011585A1 - 一种基于球管模型的储层孔隙结构分类方法 - Google Patents

一种基于球管模型的储层孔隙结构分类方法 Download PDF

Info

Publication number
WO2016011585A1
WO2016011585A1 PCT/CN2014/082643 CN2014082643W WO2016011585A1 WO 2016011585 A1 WO2016011585 A1 WO 2016011585A1 CN 2014082643 W CN2014082643 W CN 2014082643W WO 2016011585 A1 WO2016011585 A1 WO 2016011585A1
Authority
WO
WIPO (PCT)
Prior art keywords
mapping relationship
relaxation time
reservoir
transverse relaxation
pore structure
Prior art date
Application number
PCT/CN2014/082643
Other languages
English (en)
French (fr)
Inventor
杨顺伟
Original Assignee
杨顺伟
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杨顺伟 filed Critical 杨顺伟
Priority to PCT/CN2014/082643 priority Critical patent/WO2016011585A1/zh
Priority to CN201480002832.5A priority patent/CN104781648B/zh
Publication of WO2016011585A1 publication Critical patent/WO2016011585A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/18Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging
    • G01V3/32Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging operating with electron or nuclear magnetic resonance

Definitions

  • the invention relates to the field of oil and gas development and new drilling technology, and particularly relates to a classification method of reservoir pore structure based on a bulb model. Background technique
  • the classification of reservoir pore structure is the premise and foundation of oil and gas field geological evaluation and reservoir logging evaluation, and is also an important basis for oil and gas field development.
  • the traditional method of using capillary pressure curves to classify reservoir pore structures cannot meet the needs of reservoir research and evaluation.
  • the pore structure classification of capillary pressure curve is a morphological description classification method, which belongs to the qualitative description category and cannot meet the quantitative requirements of research on reservoir fine evaluation and capacity prediction.
  • the capillary pressure curve depends on the experiment.
  • Chamber rock sample analysis sample is not representative or sample density is not enough will lead to inaccurate classification results;
  • One of the objects of the present invention is to provide a method for classifying a reservoir pore structure based on a bulb model.
  • a method for classifying a reservoir pore structure based on a bulb model comprising:
  • a method for classifying reservoir pore structure based on a bulb model comprising:
  • a first mapping relationship between the transverse relaxation time T2 and the equivalent hole radius ratio Cd corresponding to different reservoir pore structures is established, wherein the equivalent hole radius ratio Cd is the tubular hole radius in the bulb model The ratio of Rc to the spherical hole radius Rs;
  • the first mapping relationship between the transverse relaxation time T2 and the equivalent hole radius ratio Cd corresponding to the pore structure of different reservoirs is established according to the bulb model; and the measured value of the transverse relaxation time T2 of the rock sample is obtained; Calculating an equivalent hole radius ratio Cd corresponding to the rock sample according to the measured value of the transverse relaxation time T2, and establishing a second mapping relationship between the measured value of the transverse relaxation time T2 and the equivalent hole radius ratio Cd corresponding to the rock sample.
  • FIG. 1 is a view showing a void structure of a bulb model according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a single bulb model provided by an embodiment of the present invention.
  • FIG. 3 is a flow chart of a method for classifying a pore structure of a reservoir based on a bulb model according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a group Cd of a bulb model provided by an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of Cd path classification of different wells according to an embodiment of the present invention. detailed description
  • the invention mainly solves the current classification method of reservoir pore structure, and can not carry out quantitative research, and has a single classification method and inaccurate technical problems.
  • the invention proposes a classification method of reservoir pore structure based on the bulb model, and uses the nuclear magnetic resonance rock physics analysis data or the nuclear magnetic resonance imaging logging data to classify the reservoir pore structure to meet the needs of reservoir fine evaluation and capacity prediction. Overcoming the inaccurate limitations of traditional capillary pressure curve morphology descriptions.
  • the pore structure of the reservoir can be classified, which changes the single research situation of the pore structure and is no longer dependent on
  • the capillary pressure curve was tested in the core, and the NMR data was used to improve the application of the NMR data from the structure of the pore structure itself.
  • the method of classification of pore structure has good effect and can meet the needs of reservoir evaluation.
  • a classification method of reservoir pore structure based on the bulb model proposed in the embodiment of the present invention is based on the bulb model, and firstly, the nuclear tube model needs to be established by using nuclear magnetic resonance data. All the pores inside the rock are divided into N groups according to the size of the space.
  • the transverse relaxation time of the i-th pores can be expressed as (Formula 1):
  • is the reciprocal of surface relaxation time, for diffusion
  • the transverse time T2 of the rock depends mainly on the second one.
  • P 2 is the transverse relaxation rate of the rock. In the same formation, p 2 can think constant
  • the transverse relaxation time of the i-th group of pores is mainly determined by the area to volume ratio of each group of voids.
  • the rock ⁇ ,. ' a r Re the rock ⁇ ,. ' a r Re.
  • the pore network is not composed of isolated pores, but consists of pores and throats (as shown in Figure 1).
  • the spherical tube model is used to approximate the structure of the ith group of voids (as shown in Figure 2), Rc
  • Rs is the radius of the spherical hole
  • Cd is the ratio of Rc to Rs.
  • the surface area of the bulb model is equal to the surface area corresponding to Rei.
  • the pores inside the rock are grouped, and the pores between the groups are arranged according to the size, that is, the large pores do not appear in the small pore group.
  • the constraint method between the pore groups needs to be considered.
  • the surface area constraint method that is, the surface area Se of the equivalent sphere within the group is equal to the surface area Sc+Ss of the tube model in the group.
  • the constraint equation is:
  • Cd reflects the matching of spherical and tubular holes in the tube model.
  • Each set of tube models can have independent Cd values.
  • the value range of Cd is between [0, 1], where 0 means no tubular hole, only spherical hole; 1 means no spherical hole, only tubular hole.
  • Step 301 Establish a first mapping relationship between a transverse relaxation time T2 and an equivalent hole radius ratio Cd corresponding to different reservoir pore structures according to the bulb model;
  • the equivalent hole radius ratio Cd is the tubular hole radius Rc and the spherical hole radius in the bulb model The ratio of Rs.
  • the equivalent hole radius ratio Cd reflects the matching manner of the spherical and tubular holes in the bulb model group, and the bulb model of each group of pores can have independent Cd values.
  • the value range of Cd is between [0, 1], where 0 means no tubular hole, only spherical hole; 1 means no spherical hole, only tubular hole.
  • 0 means no tubular hole, only spherical hole; 1 means no spherical hole, only tubular hole.
  • Step 301 can use an optimization method, for example: As shown in FIG.
  • Step 302 Obtain a measured value of a transverse relaxation time T2 of the rock sample
  • the pores in the rock sample are composed of a series of pores of different sizes.
  • the amplitude of the echo signal of a single pore has a single exponential decay law.
  • the received echo signal y(t) is a series of The superposition of the echo signals of a single pore, yit , two, where is the fraction of the pores of the i-th group in the total pores, and ⁇ 2 ⁇ is the transverse direction of the pores of the i-th group? Yu time, t is the measurement time, using the prior art to multi-index inversion of the test value of y ( t ), can solve the transverse relaxation time of each group of pores and the share of each group of pores in the total pores f t .
  • Step 303 Calculate an equivalent hole radius ratio Cd corresponding to the rock sample according to the measured value of the transverse relaxation time T2, and establish a ratio of the measured value of the transverse relaxation time T2 to the equivalent hole radius ratio Cd corresponding to the rock sample.
  • the relaxation time T2 of each group of voids and the equivalent hole radius ratio Cd are uniquely corresponding.
  • Step 304 Compare the similarity between the first mapping relationship and the second mapping relationship, and obtain a first mapping relationship that is most similar to the second mapping relationship in a first mapping relationship corresponding to different reservoir pore structures. ;
  • Comparing the similarity between the first mapping relationship and the second mapping relationship there are multiple methods, for example: comparing the similarity between the second mapping relationship in FIG. 5 and the first mapping relationship in FIG. 4, or The variance of a mapping relationship and a second mapping relationship.
  • Step 305 Classify a reservoir pore structure of the rock sample according to a reservoir pore structure corresponding to the first mapping relationship most similar to the second mapping relationship.
  • the classification of the reservoir pore structure corresponding to the first mapping relationship is known.
  • a first mapping relationship between a transverse relaxation time T2 and an equivalent hole radius ratio Cd corresponding to different reservoir pore structures is established according to a bulb model, wherein the equivalent hole radius ratio Cd The ratio of the tube hole radius Rc to the spherical hole radius Rs in the bulb model; obtaining the measured value of the transverse relaxation time T2 of the rock sample; calculating the equivalent hole corresponding to the rock sample according to the measured value of the transverse relaxation time T2 a radius ratio Cd, establishing a second mapping relationship between the measured value of the transverse relaxation time T2 and the equivalent hole radius ratio Cd corresponding to the rock sample; comparing the similarity between the first mapping relationship and the second mapping relationship, Obtaining, in a first mapping relationship corresponding to the different pore structure of the reservoir, a first mapping relationship that is most similar to the second mapping relationship; and a reservoir aperture corresponding to the first mapping relationship that is most similar to the second mapping relationship Structure, classification of reservoir pore structure of rock samples.
  • the method is free from the

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Geophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Fluid Mechanics (AREA)
  • Remote Sensing (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

一种基于球管模型的储层孔隙结构分类方法,基于球管模型,建立不同储层孔隙结构对应的横向弛豫时间T2与等效孔半径比值Cd的第一映射关系;获取岩石样品的横向弛豫时间T2的测量值;根据所属横向弛豫时间T2的测量值计算岩石样品对应的等效孔半径比值Cd,建立所述横向弛豫时间T2的测量值与岩石对应的等效孔半径比值Cd的第二映射关系;对比所述第一映射关系与所述第二映射关系的相似度,在不同储层孔隙结构对应的第一映射关系中,获取与所述第二映射关系最相似的第一映射关系;根据与所述第二映射关系最相似的第一映射关系对应的储层孔隙结构,对岩石样品的储层孔隙结构进行分类。该方法摆脱了毛细管压力曲线的依赖,分类方法从孔隙结构本身出发,使得储层孔隙结构分类更加精细,取得了很好的分类效果。

Description

一种基于球管模型的储层孔隙结构分类方法
技术领域
本发明涉及油气开发和钻井新技术领域, 特别涉及一种基于球管模型的储 层孔隙结构分类方法。 背景技术
储层孔隙结构分类是油气田地质评价和储层测井评价的前提和基础, 也是 油气田开发的重要依据。 然而随着复杂储层及低孔低渗储层在勘探开发中所占 比值的日益提升, 传统的利用毛管压力曲线进行储层孔隙结构分类的方法已经 不能满足储层研究和评价的需要, 其局限性有三点: 一是毛管压力曲线孔隙结 构分类是一种形态描述分类方法, 属于定性描述范畴, 不能满足储层精细评价 和产能预测等研究的定量化要求; 二是毛管压力曲线依赖于实验室岩石样品分 析, 样品不具有代表性或者样品密度不够都会导致分类结果的不准确; 三是复 杂储层的孔隙结构按照形态描述分类标准, 有时无法进行明确分类, 实际孔隙 结构的类型往往介于两类或者三类孔隙结构类型之间或者之外。 因此, 有必要 提出新的储层孔隙结构分类方法。
近年来, 针对以上问题许多学者提出了基于岩石物理相进行储层孔隙结构 分类的方法, 主要包括流动带指数法和储层品质指数法。 该方法的优点在于不 依赖于实验室毛管压力曲线的测试, 而且能够定量性的评价, 但是在原理上仍 然延续了毛管压力曲线选线分类的思想, 仍然存在以上所提到的的局限性。 发明内容
本发明的目的之一是提供一种基于球管模型的储层孔隙结构分类方法。 根据本发明的一个方面, 提供一种基于球管模型的储层孔隙结构分类方法, 包括:
一种基于球管模型的储层孔隙结构分类方法, 包括:
根据球管模型, 建立不同储层孔隙结构对应的横向弛豫时间 T2与等效孔半 径比值 Cd的第一映射关系, 其中, 所述等效孔半径比值 Cd为球管模型中管形 孔半径 Rc与球形孔半径 Rs的比值;
获取岩石样品的横向弛豫时间 T2的测量值;
根据所述横向弛豫时间 T2 的测量值计算岩石样品对应的等效孔半径比值 Cd, 建立所述横向弛豫时间 T2的测量值与岩石样品对应的等效孔半径比值 Cd 的第二映射关系; 对比所述第一映射关系与所述第二映射关系的相似度, 在不同储层孔隙结 构对应的第一映射关系中, 获取与所述第二映射关系最相似的第一映射关系; 根据与所述第二映射关系最相似的第一映射关系对应的储层孔隙结构, 对 岩石样品的储层孔隙结构进行分类。
本发明实施例中, 根据球管模型, 建立不同储层孔隙结构对应的横向弛豫 时间 T2与等效孔半径比值 Cd的第一映射关系; 获取岩石样品的横向弛豫时间 T2的测量值; 根据所述横向弛豫时间 T2的测量值计算岩石样品对应的等效孔 半径比值 Cd, 建立所述横向弛豫时间 T2的测量值与岩石样品对应的等效孔半 径比值 Cd的第二映射关系;对比所述第一映射关系与所述第二映射关系的相似 度, 在不同储层孔隙结构对应的第一映射关系中, 获取与所述第二映射关系最 相似的第一映射关系; 根据与所述第二映射关系最相似的第一映射关系对应的 储层孔隙结构, 对岩石样品的储层孔隙结构进行分类。 该方法摆脱了毛细管压 力曲线的依赖, 分类方法从孔隙结构本身出发, 使得储层孔隙结构分类更加精 细, 取得了很好的分类效果。 附图说明
图 1是本发明实施例提供的球管模型空隙结构图;
图 2是本发明实施例提供的单个球管模型的示意图;
图 3是本发明实施例提供的一种基于球管模型的储层孔隙结构分类方法流 程图;
图 4是本发明实施例提供的球管模型的分组 Cd的示意图;
图 5是本发明实施例提供的不同井的 Cd路径分类的示意图。 具体实施方式
本发明主要解决目前储层孔隙结构分类方法, 无法进行定量研究, 分类方 式单一、 不准确的技术问题。 本发明提出了一种基于球管模型的储层孔隙结构 分类方法, 利用核磁共振岩石物理分析数据或者核磁共振成像测井数据对储层 孔隙结构进行分类, 满足储层精细评价和产能预测的需要、 克服传统毛细管压 力曲线形态描述的不够精确的局限性。
釆用本发明成果后, 基于对核磁共振岩石物理分析数据或者核磁共振成像 测井数据分析, 即可对储层孔隙结构进行分类, 该方法改变了孔隙结构研究方 法单一的局面, 且不再依赖于岩心测试毛细管压力曲线, 利用核磁共振数据从 孔隙结构本身的结构情况入手, 深化了核磁共振数据的应用, 利用该方法进行 孔隙结构分类具有较好的效果, 能够满足储层精细评价的需要。 本发明实施例中提出的一种基于球管模型的储层孔隙结构分类方法是建立 在球管模型的基础上的, 首先需要利用核磁共振数据建立球管模型。 把岩石内 部的所有孔隙, 按照空间的大小, 分成 N组, 其中, 第 i组孔隙的横向弛豫时 间可以表达为 (公式一):
Γ-,, 7;。 12
(公式一)
其中, 为自由弛豫时间, Α 为表面弛豫时间倒数, 为扩散
2 y ). 12
弛豫时间倒数, 在实际应用场景中, 流体的自由弛豫时间 r2S很长, 公式一中等 号右边的第一项趋近于零, 在无梯度场实验, 或 GxTE很小 (即回波间隔很小) 时, 方程的第三项也趋近于零, 所以, 岩石的孔隙横向时间 T2主要取决于第二 其中, P2为岩石的横向弛豫率, 在同一地层中, p 2 可以认为恒定
Figure imgf000005_0001
值, 因此, 第 i组孔隙的横向弛豫时间, 主要受每组空隙的面积与体积^^比值
\y . 的影响。 利用等效球体模型, 可以将第 i组孔隙假象为一个等效的球体, 其半径 为 Re, 相应地, 一 ^ 贝 'J Re =3 2r2,.。 在实际应用场景中, 岩石的 τ,. ' 一 r Re.
3
孔隙网络并非由一个个孤立的孔隙组成,而是由孔隙和喉道组成(如图 1所示), 釆用球管模型对第 i组空隙的结构进行近似(如图 2所示), Rc为管形孔半径, Rs为球形孔半径, 等效孔半径比值 Cd为 Rc与 Rs的比值, U情 Cd为一特定值 时, 球管模型的表面积与 Rei对应的表面积相等。 对岩石内部的孔隙进行分组, 组与组之间的孔隙按照大小依此排列, 即大孔隙不会出现在小孔隙分组中。 为 此, 需要考虑孔隙分组之间的约束方法。 使用表面积约束方法, 也就是分组内 等效球体的表面积 Se与分组内的球管模型的表面积 Sc+Ss相等, 约束方程为:
'Se = SC + SS
= cdRs
Cd反映了球管模型内部球形孔和管形孔的匹配方式, 每一组球管模型都可 以有独立的 Cd值。 Cd的取值区间在 [0,1]之间, 其中, 0表示没有管形孔, 只有 球形孔; 1表示没有球形孔, 只有管形孔。
本发明实施例中, 基于以上介绍的球管模型, 说明本发明实施例的一种基 于球管模型的储层孔隙结构分类方法, 流程图如图 3所示。
步骤 301、 根据球管模型, 建立不同储层孔隙结构对应的横向弛豫时间 T2 与等效孔半径比值 Cd的第一映射关系;
其中, 所述等效孔半径比值 Cd为球管模型中管形孔半径 Rc与球形孔半径 Rs的比值。 等效孔半径比值 Cd反映了球管模型分组内部球形孔和管形孔的匹 配方式, 每一组孔隙的球管模型都可以有独立的 Cd值。 Cd的取值区间在 [0,1] 之间, 其中, 0表示没有管形孔, 只有球形孔; 1表示没有球形孔, 只有管形孔。 假设有 N组孔隙, 从第 1组到第 N组, 每组的 Cd可以在 [0,1]之间任意取值, 建立映射关系复杂。 步骤 301可以釆用一种优化方法, 例如: 如图 4所示, 横 向弛豫时间存在 128个分组, 将 128个分组划分为 3个组群, 组群的分界分别 位于第 1组 , 第 32组, 第 64组和第 128组。 然后, 在每个分界上, 让 Cd取 离散数值, 例如: 0.0、 0.25、 0.50、 0.75和 1.0。 相邻组群的分界用直线相连。 按照排列组合, 从第 1个分界线到第 4分界线之间, 共有 625种连接方法, 即 存在 625种第一映射关系。
步骤 302、 获取岩石样品的横向弛豫时间 T2的测量值;
其中, 岩石样品中的孔隙是由一系列大小不等的孔隙组成, 单个孔隙的回 波信号的幅度存在单指数衰减规律, 实际测量过程,接收到的回波信号一 y ( t ) 是一系列单个孔隙的回波信号的叠加, yit、二 , 其中, 为第 i组孔隙在 总孔隙中所占份额, Γ为第 i组孔隙的横向 ^?豫时间, t为测量时间, 利用现有 技术对 y ( t ) 的测试值进行多指数反演, 可求解出各组孔隙的横向弛豫时间以 及各组孔隙在总孔隙中所占份额 ft
步骤 303、 根据所述横向弛豫时间 T2的测量值计算岩石样品对应的等效孔 半径比值 Cd, 建立所述横向弛豫时间 T2的测量值与岩石样品对应的等效孔半 径比值 Cd的第二映射关系;
其中, 每组空隙的弛豫时间 T2与等效孔半径比值 Cd是唯一对应的。
步骤 304、对比所述第一映射关系与所述第二映射关系的相似度, 在不同储 层孔隙结构对应的第一映射关系中, 获取与所述第二映射关系最相似的第一映 射关系;
其中, 对比所述第一映射关系与所述第二映射关系的相似度, 存在多种方 法, 例如: 对比图 5中第二映射关系与图 4第一映射关系的相似性, 或者, 计 算第一映射关系与第二映射关系的方差。
步骤 305、根据与所述第二映射关系最相似的第一映射关系对应的储层孔隙 结构, 对岩石样品的储层孔隙结构进行分类。
其中, 通过步骤 304获取与第二映射关系最相似的第一映射关系之后, 即 可知与该第一映射关系对应的储层孔隙结构分类。
本发明实施例中, 根据球管模型, 建立不同储层孔隙结构对应的横向弛豫 时间 T2与等效孔半径比值 Cd的第一映射关系, 其中, 所述等效孔半径比值 Cd 为球管模型中管形孔半径 Rc与球形孔半径 Rs的比值; 获取岩石样品的横向弛 豫时间 T2的测量值; 根据所述横向弛豫时间 T2的测量值计算岩石样品对应的 等效孔半径比值 Cd, 建立所述横向弛豫时间 T2的测量值与岩石样品对应的等 效孔半径比值 Cd的第二映射关系;对比所述第一映射关系与所述第二映射关系 的相似度, 在不同储层孔隙结构对应的第一映射关系中, 获取与所述第二映射 关系最相似的第一映射关系; 根据与所述第二映射关系最相似的第一映射关系 对应的储层孔隙结构, 对岩石样品的储层孔隙结构进行分类。 该方法摆脱了毛 细管压力曲线的依赖, 分类方法从孔隙结构本身出发, 使得储层孔隙结构分类 更加精细, 取得了很好的分类效果。
上述实施例为本发明较佳的实施方式, 但本发明的实施方式并不受上述实 施例的限制, 其他的任何未背离本发明的精神实质与原理下所作的改变、 修饰、 替代、 组合、 简化, 均应为等效的置换方式, 都包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1、 一种基于球管模型的储层孔隙结构分类方法, 其特征在于, 包括: 根据球管模型, 建立不同储层孔隙结构对应的横向弛豫时间 T2与等效孔半 径比值 Cd的第一映射关系, 其中, 所述等效孔半径比值 Cd为球管模型中管形 孔半径 Rc与球形孔半径 Rs的比值;
获取岩石样品的横向弛豫时间 T2的测量值;
根据所述横向弛豫时间 T2 的测量值计算岩石样品对应的等效孔半径比值 Cd, 建立所述横向弛豫时间 T2的测量值与岩石样品对应的等效孔半径比值 Cd 的第二映射关系;
对比所述第一映射关系与所述第二映射关系的相似度, 在不同储层孔隙结 构对应的第一映射关系中, 获取与所述第二映射关系最相似的第一映射关系; 根据与所述第二映射关系最相似的第一映射关系对应的储层孔隙结构, 对 岩石样品的储层孔隙结构进行分类。
2、 根据权利要求 1所述的基于球管模型的储层孔隙结构分类方法, 其特征 在于, 所述对比所述第一映射关系与所述第二映射关系的相似度, 在不同储层 孔隙结构对应的第一映射关系中, 获取与所述第二映射关系最相似的第一映射 关系, 包括:
计算所述第一映射关系与所述第二映射关系的方差, 在不同储层孔隙结构 对应的第一映射关系中, 获取与所述第二映射关系方差最小的第一映射关系。
3、 根据权利要求 1所述的基于球管模型的储层孔隙结构分类方法, 其特征 在于, 所述根据球管模型, 建立不同储层孔隙结构对应的横向弛豫时间 T2与等 效孔半径比值 Cd的第一映射关系, 包括: π Re2 = π Rc2 + π Rs2
通过约束方程 „ ^Πτ> , i 第 i组等效孔半径比值 Cd,
Rc = CduRs 其中, Re为等效球体半径等于 3 2Γ·, 其中, 2为横向弛豫率, T2i为第 i组横 向弛豫时间, i为正整数; 建立第 i组横向弛豫时间与等效孔半径比值 Cd的第一映射关系。
4、 根据权利要求 1所述的基于球管模型的储层孔隙结构分类方法, 其特征 在于, 所述获取岩石样品的横向弛豫时间 T2的测量值, 包括:
根据核磁共振测井回波数据, 对回波数据进行反演运算获得各空隙的横向 弛豫时间 Τ, i为正整数。
5、 根据权利要求 1至 4中任意一项所述的基于球管模型的储层孔隙结构 类方法, 其特征在于, 所述方法, 还包括:
对不同储层孔隙结构对应的横向弛豫时间 T2与等效孔半径比值 Cd进行 组布点。
PCT/CN2014/082643 2014-07-21 2014-07-21 一种基于球管模型的储层孔隙结构分类方法 WO2016011585A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2014/082643 WO2016011585A1 (zh) 2014-07-21 2014-07-21 一种基于球管模型的储层孔隙结构分类方法
CN201480002832.5A CN104781648B (zh) 2014-07-21 2014-07-21 一种基于球管模型的储层孔隙结构分类方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/082643 WO2016011585A1 (zh) 2014-07-21 2014-07-21 一种基于球管模型的储层孔隙结构分类方法

Publications (1)

Publication Number Publication Date
WO2016011585A1 true WO2016011585A1 (zh) 2016-01-28

Family

ID=53621891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/082643 WO2016011585A1 (zh) 2014-07-21 2014-07-21 一种基于球管模型的储层孔隙结构分类方法

Country Status (2)

Country Link
CN (1) CN104781648B (zh)
WO (1) WO2016011585A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106053315A (zh) * 2016-06-06 2016-10-26 中国石油大学(华东) 一种生物碎屑灰岩储层孔隙结构分类方法
RU2812143C1 (ru) * 2020-07-15 2024-01-23 Чайна Ойлфилд Сервисез Лимитед Способ и устройство для измерения характеристик колонки породы для создания модели поровой системы

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106404632B (zh) * 2016-11-03 2019-02-26 中海石油(中国)有限公司 一种花岗岩储层的微观裂缝-孔隙结构分类图版构建方法
CN107703034B (zh) * 2017-07-28 2019-12-31 中国科学院力学研究所 一种细管网络中含细颗粒两相流测量实验装置和实验方法
CN109030311B (zh) * 2018-07-16 2021-01-15 西南石油大学 基于核磁共振t2谱敏感参数的孔隙结构分类与识别方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007002678A2 (en) * 2005-06-27 2007-01-04 Baker Hughes Incorporated Method and apparatus for reservoir fluid characterization in nuclear magnetic resonance logging
CN102042011A (zh) * 2010-10-13 2011-05-04 中国石油化工集团公司 利用常规测井资料构建伪核磁t2谱的方法
CN102141637A (zh) * 2010-01-28 2011-08-03 中国石油天然气股份有限公司 一种利用核磁共振测井资料连续定量评价储集层孔隙结构的方法
WO2013106313A1 (en) * 2012-01-10 2013-07-18 Chevron U.S.A. Inc. Integrated workflow or method for petrophysical rock typing in carbonates
CN103670384A (zh) * 2013-11-18 2014-03-26 中国石油天然气集团公司 一种储层分类方法及系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2839782B1 (fr) * 2002-05-15 2004-06-18 Inst Francais Du Petrole Methode d'evalution de la courbe de pression capillaire des roches d'un gisement souterrain a partir de mesures sur des debris de roche
CN103884633B (zh) * 2014-03-05 2016-05-11 中国石油天然气股份有限公司 一种确定岩石渗透率的方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007002678A2 (en) * 2005-06-27 2007-01-04 Baker Hughes Incorporated Method and apparatus for reservoir fluid characterization in nuclear magnetic resonance logging
CN102141637A (zh) * 2010-01-28 2011-08-03 中国石油天然气股份有限公司 一种利用核磁共振测井资料连续定量评价储集层孔隙结构的方法
CN102042011A (zh) * 2010-10-13 2011-05-04 中国石油化工集团公司 利用常规测井资料构建伪核磁t2谱的方法
WO2013106313A1 (en) * 2012-01-10 2013-07-18 Chevron U.S.A. Inc. Integrated workflow or method for petrophysical rock typing in carbonates
CN103670384A (zh) * 2013-11-18 2014-03-26 中国石油天然气集团公司 一种储层分类方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHOU, CANCAN ET AL.: "Evaluation of Pore Structure Using Sphere-cylinder Model", ACTA PETROLEI SINICA, vol. 27, no. 1, 31 January 2006 (2006-01-31), pages 92 - 96 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106053315A (zh) * 2016-06-06 2016-10-26 中国石油大学(华东) 一种生物碎屑灰岩储层孔隙结构分类方法
RU2812143C1 (ru) * 2020-07-15 2024-01-23 Чайна Ойлфилд Сервисез Лимитед Способ и устройство для измерения характеристик колонки породы для создания модели поровой системы

Also Published As

Publication number Publication date
CN104781648A (zh) 2015-07-15
CN104781648B (zh) 2016-10-19

Similar Documents

Publication Publication Date Title
CA2903451C (en) Determining continuous capillary pressure curves for subsurface earth formations using saturation and nmr log data
CN103353462B (zh) 一种基于核磁共振成像的岩石非均质性定量评价方法
CN104358565B (zh) 一种气藏含气饱和度的确定方法
CN110320139A (zh) 缝洞型储层裂缝孔隙度定量评价方法及系统
RU2432587C2 (ru) Способ анализа данных с общими и различающимися свойствами
WO2016011585A1 (zh) 一种基于球管模型的储层孔隙结构分类方法
CN105447762B (zh) 一种流体替换的低渗透油藏水淹信息的计算方法
CN111007230A (zh) 定量评价陆相湖盆低孔隙度致密油储层含油量的方法
CN103630939A (zh) 一种气层识别评价方法
CN108982320A (zh) 一种利用粒度参数进行复杂孔隙结构储层渗透率计算方法
CN107688037A (zh) 一种利用核磁测井t2分布确定井下岩石粒度曲线的方法
Ngo et al. A comparison of permeability prediction methods using core analysis data
CN109856688B (zh) 基于核磁测井双tw极化增强法的流体性质识别方法
CN106777649B (zh) 一种裂缝型储集层孔隙结构定量评价方法
CN106351652B (zh) 一种含烃储集层核磁共振测井t2谱形态校正方法
CN113640890B (zh) 基于核磁共振测井的储层气-水相对渗透率曲线构建方法、系统
Jiang et al. Evaluating producible hydrocarbons and reservoir quality in organic shale reservoirs using nuclear magnetic resonance (NMR) factor analysis
CN106522919B (zh) 三探头密度测井的围岩校正方法及装置
CN116201535B (zh) 油气藏目标井标志地层自动划分方法、装置及设备
CN108518220A (zh) 基于综合流体识别指数识别储层流体的方法与装置
WO2022204297A1 (en) The combined discrete gaussian analysis of micp and nmr t2 distributions of multi-modal carbonate rocks
CN111963162A (zh) 基于岩性与水性的双参数流体性质识别方法
Chitale et al. Application of a new borehole imager and technique to characterize secondary porosity and net-to-gross in vugular and fractured carbonate reservoirs in permian basin
CN107366539B (zh) 一种山前地区砂岩储层孔隙度预测方法
CN113109888B (zh) 一种基于多因素渗透率的火山岩高孔低渗储层储量计算方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14898215

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08/06/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14898215

Country of ref document: EP

Kind code of ref document: A1