WO2016010263A1 - 액체를 이용한 전극 적층 구조 에너지 전환 장치 - Google Patents

액체를 이용한 전극 적층 구조 에너지 전환 장치 Download PDF

Info

Publication number
WO2016010263A1
WO2016010263A1 PCT/KR2015/005838 KR2015005838W WO2016010263A1 WO 2016010263 A1 WO2016010263 A1 WO 2016010263A1 KR 2015005838 W KR2015005838 W KR 2015005838W WO 2016010263 A1 WO2016010263 A1 WO 2016010263A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
energy conversion
liquid
layer
conversion device
Prior art date
Application number
PCT/KR2015/005838
Other languages
English (en)
French (fr)
Inventor
권순형
Original Assignee
전자부품연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전자부품연구원 filed Critical 전자부품연구원
Priority to EP15821895.8A priority Critical patent/EP3171416A4/en
Publication of WO2016010263A1 publication Critical patent/WO2016010263A1/ko
Priority to US15/406,577 priority patent/US10291153B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/06Influence generators
    • H02N1/08Influence generators with conductive charge carrier, i.e. capacitor machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
    • H02N2/185Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators using fluid streams
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators

Definitions

  • the present invention relates to an energy conversion device, and more particularly to an apparatus for converting the mechanical energy according to the flow of the liquid into electrical energy.
  • Conventional fluid energy conversion devices form electrodes in a constant pattern on the walls of elongated channels, and form dielectric layers on top of the electrodes.
  • the conductive liquid and the non-conductive liquid in the form of droplets are injected into the channel, and the conductive liquid is polarized by applying a voltage from an external power source to the conductive liquid in the form of droplets.
  • a lubricating layer is required because it is difficult to reversible movement, in which a liquid liquid in the form of droplets moves in narrow narrow channels and returns to its original position when external force disappears. In some cases, channel blockage occurs easily and operation is impossible.
  • the energy conversion method and apparatus using a conventional fluid has a narrow and narrow channel structure, the two opposing electrodes must be patterned in a predetermined shape on the wall of the channel, the device configuration is complicated according to this structure, electrical energy The size of the module to produce a large size, the mass production or cost reduction was also limited.
  • Another problem is that it is harmful to the human body and the environment by using a liquid metal such as mercury or galinstan (galinstan), there is a limit that requires a separate power supply from the outside in order to polarize such a conductive liquid.
  • a liquid metal such as mercury or galinstan (galinstan)
  • the energy conversion method and apparatus using a conventional fluid is difficult to control because it requires the use of two different types of liquids that do not mix with the point of continuously implementing a reversible movement in the channel structure.
  • an object of the present invention is to provide an energy conversion method and apparatus using a liquid that generates electrical energy by changing a contact surface with a liquid in contact with an electrode.
  • Electrode laminated structure energy conversion device using a liquid for solving the technical problem is a substrate; A first electrode formed on the substrate; An energy conversion layer formed on the first electrode and covering the first electrode; And a second electrode formed on the first energy conversion layer, wherein the contact state with the liquid changes as the liquid moves or changes state.
  • the electrode stacked structure energy conversion device further includes a second energy conversion layer formed on the second electrode and covering the second electrode.
  • the first electrodes are arranged in a plurality in a predetermined direction at predetermined intervals on the substrate.
  • the second electrodes are arranged in plural along the direction shifting from the predetermined direction at predetermined intervals on the energy conversion layer.
  • the first energy conversion layer includes at least one layer of an inorganic material layer, an organic material layer, or a mixture layer of an organic material and an inorganic material.
  • the hydrophobic material layer is preferably laminated on the first energy conversion layer so that the shape of the ionic liquid or water can be restored.
  • an insulating layer is formed between the hydrophobic material layer and the second electrode.
  • the shape of the electrode structure according to the present invention it is possible to implement an electric energy generating device having excellent integration characteristics, and to miniaturize the device through the vertical electrode structure, and to generate various voltages according to the number of upper and lower electrodes. High efficiency energy conversion device can be realized.
  • FIG. 1 to 3 are cross-sectional views of an electrode stack structure energy conversion device using a liquid according to an embodiment of the present invention.
  • FIGS. 4 to 5 are views showing an electrode laminated structure energy conversion device using a liquid according to an embodiment of the present invention.
  • FIG. 6 is a view showing the integration of the electrode stacked structure energy conversion device using a liquid according to an embodiment of the present invention.
  • FIG. 7 is a diagram illustrating an electrode stack structure energy conversion device using a liquid according to an embodiment of the present invention.
  • FIG. 8 is a view showing an experimental example of an electrode laminated structure energy conversion device using a liquid according to an embodiment of the present invention.
  • FIG. 1 is a view showing an electrode laminated structure energy conversion device (hereinafter referred to as an energy conversion device) using a liquid according to an embodiment of the present invention.
  • the energy conversion device includes a substrate 110, a first electrode 120, an energy conversion layer 140, and a second electrode 130.
  • Substrate 110 is a basic configuration for forming a plurality of components on the top to implement the energy conversion device, in this embodiment the first electrode 120, the energy conversion layer 140, the second The electrode 130 and the like may be formed directly or indirectly on the substrate 110. Indirectly formed means that it is not directly formed on the substrate 110, but may be formed on top of other components already formed on the substrate 110.
  • the energy conversion layer 140, the second electrode 130, or the like may be directly formed on the substrate 110 or indirectly formed on the first electrode 120 formed on the substrate 110. It may be formed on the energy conversion layer 140 on the first electrode 120 formed on the substrate 110.
  • the substrate 110 may be formed on the rear surface of the substrate 110 using the front and rear surfaces of the substrate 110. That is, in the present exemplary embodiment, the components are formed on the upper surface of the substrate 110, but in some cases, the components may be formed on the front and rear surfaces based on the substrate 110.
  • the first electrode 120 is formed on the substrate 110 as described above. Forming on the substrate 110 may be formed to cover all of the substrate 110 over the entire surface of the substrate 110, it may be formed for a portion as shown in FIG.
  • it may be formed in one configuration and may be formed of two electrodes having a predetermined interval as shown in FIG. Furthermore, a plurality of electrodes may be patterned on the substrate 110 according to a predetermined interval or shape.
  • the energy conversion layer 140 may be formed to cover the first electrode 120 on the first electrode 120 formed on the substrate 110 as shown in FIG. 1.
  • the energy conversion layer 140 may be formed to cover the first electrode 120 in order to prevent electrical short of the first electrode 120.
  • the energy conversion layer 140 is formed by stacking an inorganic material layer and / or an organic material layer.
  • the energy conversion layer 140 may be formed by a deposition, spin coating, spraying process, or the like, and may form one or more separators through a patterning process.
  • the energy conversion layer 140 may be made of polymethylmethacrylate (PMMA), polyethylene (Polyethylene, PE), polystyrene (Polystyrene, PS), polyvinylpyrrolidone (PVP), poly4 vinylphenol (poly (4-vinylpenol, PVP)) or polyethersulfone (PES) poly (4-methoxyphenylacrylate) (Poly (4-methoxyphenylacrylate); PMPA), poly (phenylacrylate) (Poly (phenylacrylate); PPA), poly (2,2,2-trifluoroethyl methacrylate) (Poly (2,2,2-trifluoroethyl methacrylate); PTFMA), cyanoethylpullulan (CYEPL), polyvinyl chloride ( polyvinyl chloride; PVC), poly (parabanic acid) resin (PPA), poly (t-butylstyrene) (PTBS), polythienylenevinylene (
  • polytetrafluoroethylene ethylene-tetrafluoroethylene
  • FEP fluorinated ethylene propylene
  • the organic material layer may be a material having a dielectric constant (K) of 4 or less, and the inorganic material layer may have a material having a dielectric constant (K) of 5 or more.
  • the second electrode 130 is formed on the first energy conversion layer 140 in a direction perpendicular to the first electrode 120, and is in contact with the liquid as the liquid moves or changes state. The state changes.
  • the energy conversion device generates energy in accordance with the change of the contact state of the liquid with the second electrode 130 or the energy conversion layer 140 according to the movement or change of state of the liquid. That is, as the liquid flows on the first or second electrode 130, a change in capacitance may occur due to a change in contact state, and energy may be generated from the movement of electrons generated to compensate for the potential difference. .
  • the second electrode 130 may be formed to overlap the first electrode 120. 1 to 3 illustrate that the second electrode 130 is overlapped with each other on the first electrode 120, but only a part of the second electrode 130 may overlap as shown in FIG. 4 or 5.
  • the first electrode 120 and the second electrode 130 are not formed on the same plane or are spaced apart from each other in a horizontal direction, but are partially or entirely overlapped in the vertical direction. do.
  • the electrode is an inorganic electrode including at least one of ITO, IGO, chromium, aluminum, indium zinc oxide (IZO), indium gallium zinc oxide (IGZO), ZnO, ZnO 2, or TiO 2, or platinum, gold, silver, aluminum , Or a metal electrode containing at least one of iron or copper, or PEDOT (PEDOT, polyethylenedioxythiophene), carbon nanotube (CNT, Carbon nano tube), graphene (graphene), polyacetylene (polyacetylene), polythiophene (Polythiophene, PT), polypyrrole, polyparaphenylene (PPV), polyaniline, poly sulfur nitride, stainless steel, iron alloy containing 10% dltkd of chromium, SUS 304, SUS It may be an organic electrode including at least one of 316, SUS 316L, Co-Cr alloy, Ti alloy, Nitinol (Ni-Ti) or polyparaphenylenevinylene
  • the energy conversion device may further include a hydrophobic layer.
  • the liquid is changed in shape by changing the contact surface, contact angle or contact area with the second electrode 130 or the first electrode 120, so that the shape change can be restored to the original shape
  • the hydrophobic material layer 150 is stacked on the electrode.
  • the hydrophobic material layer 150 is a silane-based material, a fluoropolymer material, trichlorosilane, triethoxysilane, pentafluorophenylpropyltrichlorosilane ( Pentafluorophenylpropyltrichlorosilane), (benzyloxy) alkyltrimethoxysilane (BSM-22), (benzyloxy) alkyltrichlorosilane (BTS), hexamethyldisilazane (HMDS) At least one of octadecyltrichlorosilane (OTS), octadecyltrimethoxysilane (OTMS), divinyltetramethyldisiloxane-bis- (benzocyclobutene) (BCB) It can consist of either material or a mixture of these materials.
  • the energy conversion device according to the present embodiment may further include an insulating layer 160. That is, the second electrode 130 may be insulated through the insulating layer 160 and the electrical stability of the energy conversion device implemented according to the present embodiment may be improved.
  • the energy conversion device may further include a second energy conversion layer 170 formed on the second electrode 130 and covering the second electrode 130. .
  • the second energy conversion layer 170 may be further formed on the second electrode 130 together with the first energy conversion layer 140 formed on the first electrode 120.
  • the hydrophobic material layer 150 is further formed on the second energy conversion layer 170.
  • the hydrophobic material layer 150 may be formed. It is also possible to omit.
  • a plurality of first electrodes 120 may be arranged in a predetermined direction at predetermined intervals.
  • the energy conversion layer 140 may be stacked on the first electrode 120, and the second electrode 130 may be formed by overlapping the energy conversion layer 140 in a direction perpendicular to the first electrode 120. have.
  • a potential difference is generated between the first electrode 120 and the second electrode 130 formed on the first electrode 120 of the energy conversion device, thereby generating energy.
  • various voltages may be generated according to the number of formation of the electrodes.
  • a plurality of first electrodes 120 may be arranged in a predetermined direction at predetermined intervals.
  • the energy conversion layer 140 may be stacked on the first electrode 120, and the second electrode 130 may be formed by overlapping the energy conversion layer 140 in a direction perpendicular to the first electrode 120. have.
  • the second electrode 130 is formed in a direction shifted from the direction in which the first electrode 120 is arranged, unlike in FIG. 4.
  • each of the first electrode 120 and the second electrode 130 is formed of a plurality of electrodes
  • the first electrode 120 is formed of one electrode plate.
  • the two electrodes 130 may be arranged in a plurality in a predetermined direction at predetermined intervals.
  • the second electrode 130 may be formed of one electrode plate, and the first electrode 120 may be formed in a plurality in a predetermined direction on a substrate at predetermined intervals.
  • the substrate 110 in which the plurality of components are formed in the above-described embodiment may be made of a fabric material (nylon, cotton, polyester, etc.).
  • a fabric material nylon, cotton, polyester, etc.
  • the weft and the warp may function as the first electrode 120 and the second electrode 130, respectively.
  • the weft and warp are alternately positioned in the upper and lower portions in the fabric structure, the functions of the first electrode 120 and the second electrode 130 may be alternately performed in the above-described embodiment.
  • the energy conversion layer 140 may be formed by inserting a cloth in the weaving process of the weft and warp.
  • the energy conversion device is configured in such a manner that the second electrode 130 is formed on the first electrode 120 and the hydrophobic material layer 150 covers it. Liquid droplets flow on the energy conversion device, resulting in the generation of voltage as shown in FIG. 8.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Photovoltaic Devices (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

본 발명은 액체를 에너지 전환 장치에 관한 것으로, 본 발명에 따른 액체를 이용한 전극 적층구조 에너지 전환 장치는 기판; 상기 기판 상에 형성된 제1 전극; 상기 제1 전극 상에 형성되어, 상기 제1 전극을 덮는 에너지 전환층; 및 상기 제1 에너지 전환층상에 형성되고, 액체의 이동 또는 상태변화에 따라 액체와의 접촉상태가 변하는 제2 전극을 포함한다. 본 발명에 따른 전극구조 형태를 통해 집적화 특성이 우수한 전기에너지 발생장치의 구현이 가능하며, 수직전극 구조를 통해 디바이스의 소형화가 가능하며, 상부전극과 하부전극 개수에 따라 다양한 전압을 발생시킬 수 있으므로 고효율의 에너지 전환 장치를 구현할 수 있다.

Description

액체를 이용한 전극 적층 구조 에너지 전환 장치
본 발명은 액체를 에너지 전환 장치에 관한 것으로, 보다 상세하게는 액체의 흐름에 따른 기계적 에너지를 전기 에너지로 전환시키는 장치에 관한 것이다.
종래의 유체를 이용하여 기계적 에너지를 전기적 에너지로 변환하는 기술들은 유전물질과 접하고 있는 액체금속의 접촉면적을 시간의 흐름에 따라 변화시켜 유전물질 아래 위치하는 전극에 전기용량(capacitance)을 발생시키는 원리를 이용한다.
종래의 유체를 이용한 에너지 전환 방법 및 장치는 미국등록특허 7,898,096호에서 개시하고 있다.
종래의 유체를 이용한 에너지 전환 장치는 가늘고 긴 형상의 채널의 벽에 일정한 패턴으로 전극을 형성하고, 전극의 상부에는 유전물질층을 형성시킨다. 그리고 채널의 내부에는 작은 물방울 형태의 전도성 액체와 비전도성 액체를 주입하고, 이러한 물방울 형태의 전도성 액체에 외부전원으로부터 전압을 인가하여 전도성 액체를 분극시킨다.
이 상태에서 채널과 연결되어 있는 소정의 부분(미도시)에 물리적인 압력을 가하게 되면 분극된 물방울 형태의 전도성 액체는 채널을 따라 이동하게 되고, 이 과정에서 일정한 패턴으로 형성되어 있는 다수의 전극은 이동하는 다수의 전도성 액체 방울과 접촉하는 면적이 시간에 따라 계속적으로 변화하게 되어, 그 결과 전기용량이 변화하여 전기 에너지가 생성된다.
그러나, 종래의 유체를 이용한 에너지 전환 방법 및 장치는 실용화를 위해서는 다양한 문제점들을 가지고 있었다.
먼저, 좁고 가는 채널 내에서 방울형태의 액체금속이 이동하였다가 외부의 힘이 사라지면 다시 원래의 위치로 복귀하는, 가역가능한(reversible)움직임이 어려워 윤활층(lubricating layer)이 별도로 필요하다는 한계점이 있고, 채널 막힘현상이 쉽게 발생하여 동작이 불가능한 경우가 발생한다.
또한, 종래의 유체를 이용한 에너지 전환 방법 및 장치는 좁고 가는 채널 구조를 채용하고 있어, 대향하는 두 전극이 채널의 벽에 일정한 모양으로 패턴되어야 하며, 이러한 구조에 따라 장치구성이 복잡해지고, 전기에너지를 생산하는 모듈의 크기가 커지며, 대량생산이나 원가절감에도 한계가 많았다.
또 다른 문제점으로는 수은 또는 갈린스탄(galinstan)과 같은 액체금속을 사용하여 인체 및 환경에 유해하며, 이러한 전도성 액체를 분극시키기 위해서는 외부로부터 별도의 전원 인가가 필요한 한계점이 있다.
그리고, 종래의 유체를 이용한 에너지 전환 방법 및 장치는 채널구조에서 가역가능한(reversible)한 움직임을 계속적으로 구현해야 하는 점과 섞이지 않는 상이한 두 종류의 액체를 사용해야하기 때문에 제어의 어려움이 있다.
상기 기술적 과제를 해결하기 위하여 본 발명은 전극에 접촉하는 액체와의 접촉면을 변화시켜 전기 에너지를 생성하는 액체를 이용한 에너지 전환 방법 및 장치를 제공하는 것을 목적으로 한다.
또한 에너지 전환층을 이용하여 전극이 적층되는 구조로 구현하여 구조가 간단하며 고장이 적은 효율적인 에너지 전환 방법 및 장치를 제공하는 것을 목적으로 한다.
상기 기술적 과제를 해결하기 위한 액체를 이용한 전극 적층구조 에너지 전환 장치는 기판; 상기 기판 상에 형성된 제1 전극; 상기 제1 전극 상에 형성되어, 상기 제1 전극을 덮는 에너지 전환층; 및 상기 제1 에너지 전환층상에 형성되고, 액체의 이동 또는 상태변화에 따라 액체와의 접촉상태가 변하는 제2 전극을 포함한다.
상기 전극 적층구조 에너지 전환 장치는 상기 제2 전극 상에 형성되어, 상기 제2 전극을 덮는 제2 에너지 전환층을 더 포함한다.
상기 제1 전극은 상기 기판상에 소정의 간격을 두고 일정한 방향에 따라 복수로 나열되어 형성되는 것이 바람직하다.
상기 제 2 전극은 상기 에너지 전환층 상에 소정의 간격을 두고 상기 일정한 방향과 어긋나는 방향에 따라 복수로 나열되어 형성되는 것이 바람직하다.
상기 제1 에너지 전환층은 무기물층, 유기물층 또는 유기물과 무기물의 혼합물층 중 적어도 어느 하나의 층을 포함한다.
상기 제1 에너지 전환층 상에 상기 이온성 액체 또는 물의 형상이 복원될 수 있도록 소수성 물질층이 적층되는 것이 바람직하다.
상기 소수성 물질층과 상기 제2 전극 사이에는 절연층이 형성되는 것이 바람직하다.
본 발명에 따른 전극구조 형태를 통해 집적화 특성이 우수한 전기에너지 발생장치의 구현이 가능하며, 수직전극 구조를 통해 디바이스의 소형화가 가능하며, 상부전극과 하부전극 개수에 따라 다양한 전압을 발생시킬 수 있으므로 고효율의 에너지 전환 장치를 구현할 수 있다.
도 1 내지 도 3은 본 발명의 일 실시예에 따른 액체를 이용한 전극 적층 구조 에너지 전환 장치의 단면을 나타내는 도이다.
도 4 내지 도 5는 본 발명의 일 실시예에 따른 액체를 이용한 전극 적층 구조 에너지 전환 장치를 나타내는 도이다.
도 6은 본 발명의 일 실시예에 따른 액체를 이용한 전극 적층 구조 에너지 전환 장치의 집적 를 나타내는 도이다.
도 7은 본 발명의 일 실시예에 따른 액체를 이용한 전극 적층 구조 에너지 전환 장치를 나타내는 도이다.
도 8은 본 발명의 일 실시예에 따른 액체를 이용한 전극 적층 구조 에너지 전환 장치의 실험예를 나타내는 도이다.
이하의 내용은 단지 발명의 원리를 예시한다. 그러므로 당업자는 비록 본 명세서에 명확히 설명되거나 도시되지 않았지만 발명의 원리를 구현하고 발명의 개념과 범위에 포함된 다양한 장치를 발명할 수 있는 것이다. 또한, 본 명세서에 열거된 모든 조건부 용어 및 실시예들은 원칙적으로, 발명의 개념이 이해되도록 하기 위한 목적으로만 명백히 의도되고, 이와같이 특별히 열거된 실시예들 및 상태들에 제한적이지 않는 것으로 이해되어야 한다.
상술한 목적, 특징 및 장점은 첨부된 도면과 관련한 다음의 상세한 설명을 통하여 보다 분명해 질 것이며, 그에 따라 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다.
또한, 발명을 설명함에 있어서 발명과 관련된 공지 기술에 대한 구체적인 설명이 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에 그 상세한 설명을 생략하기로 한다. 이하에는 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 대해 상세하게 설명한다.
도 1은 본 발명의 일 실시예에 따른 액체를 이용한 전극 적층구조 에너지 전환 장치(이하, 에너지 전환 장치라 한다.)를 나타내는 도이다.
도 1을 참조하면, 본 실시예에 따른 에너지 전환 장치는 기판(110), 제1 전극(120), 에너지 전환층(140), 제2 전극(130)을 포함한다.
본 실시예에 따른 기판(110)은 에너지 전환 장치를 구현하기 위하여 상부에 복수의 구성들이 형성되기 위한 기본 구성으로서, 본 실시예에서는 제1 전극(120), 에너지 전환층(140), 제2 전극(130) 등이 기판(110) 상에 직접적 또는 간접적으로 형성될 수 있다. 간접적으로 형성된다는 것은 직접적으로 기판(110) 상에 형성되는 것은 아니나, 기판(110) 상에 이미 형성된 다른 구성의 상부에 형성될 수 있음을 의미한다.
즉 본 실시예에서 에너지 전환층(140), 제2 전극(130) 등은 기판(110) 상에 직접적으로 형성되거나, 간접적으로 기판(110)상에 형성된 제1 전극(120)상에 형성될 수 있으며, 또는 기판(110) 상에 형성된 제1 전극(120) 상의 에너지 전환층(140) 상에 형성되는 것도 가능하다.
또한, 기판(110)의 전면과 후면을 이용하여 기판(110) 후면에 형성되는 것도 가능하다. 즉, 본 실시예에서는 기판(110)의 상면에 구성들이 형성되는 것을 예시하고 있으나, 경우에 따라서는 기판(110)을 기준으로 전후면 각각에 형성되는 것도 가능하다.
본 실시예에서 제1 전극(120)은 상술한 바와 같이 기판(110) 상에 형성된다. 기판(110) 상에 형성된다는 것은 기판(110)의 전면에 걸쳐 기판(110)을 모두 덮도록 형성되는 것도 가능하며, 도 1과 같이 일부에 대해서 형성되는 것도 가능하다.
또한, 하나의 구성으로 형성되는 것도 가능하며 도 4와 같이 소정의 간격을 갖는 두개의 전극으로 형성되는 것도 가능하다. 나아가, 복수의 전극이 미리 결정된 간격이나 형상에 따라 기판(110) 상에 패터닝 되는 것도 가능하다.
본 실시예에서 에너지 전환층(140)은 도 1과 같이 기판(110)상에 형성된 제1 전극(120) 상에 제1 전극(120)을 덮는 형태로 형성될 수 있다. 에너지 전환층(140)은 제1 전극(120)의 전기적인 쇼트를 방지하기 위하여 제1 전극(120)을 덮는 형태로 형성되는 것이 바람직하다.
본 실시예에서 에너지 전환층(140)은 무기물층 및/또는 유기물층이 적층되어 구성된다. 바람직하게는, 이러한 에너지 전환층(140)의 형성은 증착, 스핀코팅, 스프레이 공정등으로 형성할 수 있으며 패터닝 공정을 통해 하나이상의 분리체를 형성할 수 있다.
또한 에너지 전환층(140)은 폴리메틸메타크릴레이트(PolyMethylMethAcrylate, PMMA), 폴리에틸렌(Polyethylene, PE), 폴리스티렌(Polystyrene, PS), 폴리비닐피롤리돈(Polyvinylpyrrolidone, PVP), 폴리4비닐페놀(poly(4-vinylpenol, PVP)) 또는 폴리이서술폰(polyethersulfone, PES) 폴리(4-메톡시페닐아크릴레이트) (Poly(4-methoxyphenylacrylate); PMPA), 폴리(페닐아크릴레이트) (Poly(phenylacrylate); PPA), 폴리(2,2,2-트리플로로에틸 메타아크릴레이트) (Poly(2,2,2-trifluoroethyl methacrylate); PTFMA), 사이아노에틸풀루란 (Cyanoethylpullulan; CYEPL), 폴리염화비닐 (polyvinyl chloride; PVC), 폴리(파라반사) 수지 (Poly (parabanic acid) resin; PPA), 폴리(t-부틸스티렌) (Poly(t-butylstyrene); PTBS), 폴리티에닐렌비닐렌 (Polythienylenevinylene; PTV), 폴리비닐아세테이트 (Polyvinylacetate; PVA), 폴리(비닐 알코올) (Poly(vinyl alcohol); PVA), 폴리(R메틸스티렌) (Poly(Rmethylstyrene); PAMS), 폴리(비닐 알코올)-코-폴리(비닐 아세테이트)-코-폴리(이타콘산) (Poly(vinyl alcohol)-co-poly(vinyl acetate)-co-poly(itaconic acid); PVAIA), 폴리올레핀 (Polyolefin), 폴리아크릴레이트 (Polyacrylate), 파릴렌-C (Parylene-C), 폴리이미드 (Polyimide), 옥타데실트리클로로실란 (Octadecyltrichlorosilane; OTS), 폴리(트리아릴아민) (Poly(triarylamine); PTTA), 폴리-3-헥실티오펜 (Poly-3-hexylthiophene; P3HT), 가교 결합된 폴리-4-비닐페놀 (cross-linked Poly-4-vinylphenol; cross-linked PVP), 폴리(퍼플로로알케닐비닐 에테르) (Poly(perfluoroalkenylvinyl ether)), 나일론-6 (Nylon-6), n-옥타데실포스포닉 산 (n-Octadecylphosphonic acid; ODPA), 폴리테트라플루오르에틸렌(Polytetrafluoroethylene, PTFE), 실리콘(silicone), 폴리우레탄(polyurethane), 라텍스(latex), 초산셀룰로오스(cellulose acetate), PHEMA(poly(hydroxy ethyl methacrylate)), 폴리락타이드(polylactide, PLA), PGA(폴리글리콜라이드, polyglycolide), 또는 PGLA (Polyglycolide-co-Lactide ) 중 적어도 어느 하나의 물질을 포함한 유기물층(230); 및 산화실리콘(SiO2), 산화티타늄(TiO2), 산화알루미늄(Al2O3),탄탈(Ta2O5), 오산화 탄탈럼(Tantalum Pentoxide), 산화아연(Zinc oxide, ZnO), , 산화탄탈륨(Tantalum pentoxide, Ta2O5), 산화이트륨(Yttrium oxide, Y2O3), 산화세륨(Cerium oxide, CeO2), 이산화타이타늄(titanium dioxide, TiO2), 티탄산바륨(Barium titanate, BaTiO3), 바륨 지르코네이트 티타네이트(Barium zirconate titanate, BZT), 이산화지르코늄(Zirconium dioxide, ZrO2), 산화란탄륨(Lanthanum oxide, La2O3), 하프늄실리케이트(Hafnon, HfSiO4), 란타늄 알루미네이트(Lanthanum Aluminate, LaAlO3), 질화규소(Silicon nitride, Si3N4), Perovskite 물질로는, 스트론튬 티타네이트(Strontium titanate, SrTiO3), 바륨 스트론튬 티타네이트(barium strontium titanate, BST), 티탄산 지르콘산 연(Lead zirconate titanate, PZT), 티탄산칼슘구리(Calcium copper titanate,CCTO), 산화하프늄(HfO2), 아파타이트(A10(MO4)6(X)2), 수산화인회석(Ca10(PO4)6(OH)2), 인산3칼슘(Ca3(PO42)), Na2O-CaO-SiO2, 또는 바이오글라스(CaO-SiO2-P2O5) 중 적어도 어느 하나의 물질을 포함한 무기물층을 포함할 수 있다.
나아가, 폴리테트라 플루오로에틸렌 (polytetrafluoroethylene), 에틸렌 테트라플로로에틸렌 (ethylene-tetrafluoroethylene), FEP(fluorinated ethylene propylene), 퍼플르오르알콕시-공중합체 (perfluoroalkoxy copolymer)를 이용하는 것도 가능하다.
또한, 바람직하게는, 유기물층은 유전상수(dielectric constant, K)가 4이하의 물질이 사용될 수 있고, 무기물층은 유전상수(dielectric constant, K)가 5이상의 물질이 사용될 수 있다.
본 실시예에서 제2 전극(130)은 상기 제1 에너지 전환층(140)상에 상기 제1 전극(120)과 수직하는 방향에서 겹쳐 형성되고, 액체의 이동 또는 상태변화에 따라 액체와의 접촉상태가 변한다.
이상의 본 실시예에 따른 에너지 전환 장치는 액체의 이동 또는 상태변화에 따른 제2 전극(130) 또는 에너지 전환층(140)과 액체의 접촉상태의 변화에 따라 에너지를 발생시킨다. 즉, 액체가 제1 또는 제2 전극(130) 상을 흐르면서 이에 따른 접촉상태의 변화로 정전용량의 변화가 생기고 이에 의해 발생하는 전위차를 보상하기 위하여 발생하는 전자의 이동으로부터 에너지를 발생시킬 수 있다.
따라서, 도 1 내지 3에서 나타나는 바와 같이 제2 전극(130)은 제1 전극(120)과 겹쳐져서 형성될 수 있다. 도 1 내지 3에서는 제2 전극(130)이 제1 전극(120) 상에 모두 겹쳐서 형성되는 것을 도시하고 있으나, 도 4 또는 5와 같이 일부분만 겹치는 것도 가능하다.
본 실시예에 따른 에너지 전환 장치는 제1 전극(120)과 제2 전극(130)이 동일 평면에 형성되거나 또는 수평한 방향으로 소정 간격이 떨어져 형성되지 않고, 수직 방향으로 일부 또는 전체가 겹쳐서 형성된다.
즉, 에너지 전환층(140)을 가운데 두고 상부에 제2 전극(130)과 하부에 제1 전극(120)이 위치하고 있는 구조여서 도 6과 같이 평면적 구조의 에너지 발생장치보다 집적화하기 용이한 구조를 가지고 있다.
이상의 설명에서 전극은 ITO, IGO, 크롬, 알루미늄, IZO(Indium Zinc Oxide), IGZO(Indium Gallium Zinc Oxide), ZnO, ZnO2 또는 TiO2 중 적어도 어느 하나를 포함하는 무기전극이거나 백금, 금, 은, 알루미늄, 철 또는 구리 중 적어도 어느 하나를 포함하는 금속전극이거나 페돗(PEDOT, polyethylenedioxythiophene), 탄소나노튜브(CNT, Carbon nano tube), 그래핀(graphene), 폴리아세틸렌(polyacetylene), 폴리티오펜(Polythiophene, PT), 폴리피롤(Polypyrrole), 폴리파라페닐렌(polyparaphenylene, PPV), 폴리아닐린(Polyaniline), 폴리설퍼니트리드(poly sulfur nitride), 스테인레스 스틸, 크롬을 10%dltkd 함유한 철합금, SUS 304, SUS 316, SUS 316L, Co-Cr 합금, Ti 합금, 니티놀(Ni-Ti) 또는 폴리파라페닐렌비닐렌(polyparaphenylenevinylene) 중 적어도 어느 하나를 포함하는 유기전극일 수 있다.
나아가, 본 실시예에 따른 에너지 전환 장치는 소수성 층을 더 포함할 수 있다. 본 실시예에서 액체는 제2 전극(130) 또는 제1 전극(120)과의 접촉면, 접촉각 또는 접촉면적 변화를 일으킴에 따라 형상이 변화하게 되는데, 이러한 형상 변화가 원래의 형태로 복원될 수 있도록 하기 위하여 본 실시예에서 소수성 물질층(150)은 전극 상에 적층된다.
본 실시예에 따르면, 소수성 물질층(150)은 실란(silane)계 물질, 플루오르중합체(fluoropolymer) 물질, 트리클로로실란(Trichlorosilane), 트리에톡시실란(Trimethoxysilane), 펜타플루오르페닐프로필트리클로로실란(Pentafluorophenylpropyltrichlorosilane), (벤질옥시)알킬트리메톡시실란 ((benzyloxy)alkyltrimethoxysilane; BSM-22), (벤질옥시)알킬트리클로로실란 ((benzyloxy)alkyltrichlorosilane; BTS), 헥사메틸디실라잔 (hexamethyldisilazane; HMDS), 옥타데실트리클로로실란 (octadecyltrichlorosilane; OTS), 옥타데실트리메톡시실란 (octadecyltrimethoxysilane; OTMS), 디비닐테트라메틸디실록산-비스-(벤조시클로부텐) (divinyltetramethyldisiloxane-bis(benzocyclobutene); BCB) 중 적어도 어느 하나의 물질 또는 이들 물질의 혼합물로 이루어질 수 있다.
또한, 도 2를 참조하면, 본 실시예에 따른 에너지 전환 장치는 절연층(160)을 더 포함할 수 있다. 즉 절연층(160)을 통해 제2 전극(130)을 절연시키고 본 실시예에 따르 구현되는 에너지 전환 장치의 전기적 안정성을 높일 수 있다.
다음 도 3을 참조하면, 본 실시예에 따른 에너지 전환 장치는 제2 전극(130) 상에 형성되어, 상기 제2 전극(130)을 덮는 제2 에너지 전환층(170)을 더 포함할 수 있다.
즉, 제1 전극(120) 상에 형성되는 제1 에너지 전환층(140)과 더불어 제2 전극(130) 상에는 제2 에너지 전환층(170)을 추가로 형성하는 것도 가능하다.
또한, 도 3에서는 제2 에너지 전환층(170) 상에 소수성 물질층(150)을 더욱 형성하는 것을 도시하고 있으나, 제2 에너지 전환층(170)이 소수성을 띄는 경우에 소수성 물질층(150)을 생략하는 것도 가능하다.
이하, 도 4 또는 도 5를 참조하여 상술한 실시예에 따른 에너지 전환 장치를 응용하여 보다 고용량의 에너지를 발생시키는 에너지 전환 장치의 구조에 대하여 설명한다.
도 4를 참조하면, 본 실시예에서 제1 전극(120)은 소정의 간격을 두고 일정한 방향에 따라 복수로 나열되어 형성될 수 있다.
또한, 제1 전극(120) 상에는 에너지 전환층(140)이 적층되며 에너지 전환층(140)을 사이에 두고 제1 전극(120)에 수직한 방향으로 겹쳐서 제2 전극(130)이 형성될 수 있다.
본 실시예에 따른 구조에서 에너지 전환 장치의 제1 전극(120)과 제1 전극(120) 상에 형성된 제2 전극(130) 간에는 전위차가 발생하게 되고 이를 통해 에너지를 발생시킬 수 있다. 본 실시예에서는 복수의 제1 및 제2 전극(130)이 동일한 방향으로 복수로 나열되어 형성되므로, 전극의 형성 개수에 따라 다양한 전압을 발생시킬 수 있다.
다음 도 5를 참조하면, 본 실시예에서 제1 전극(120)은 소정의 간격을 두고 일정한 방향에 따라 복수로 나열되어 형성될 수 있다.
또한, 제1 전극(120) 상에는 에너지 전환층(140)이 적층되며 에너지 전환층(140)을 사이에 두고 제1 전극(120)에 수직한 방향으로 겹쳐서 제2 전극(130)이 형성될 수 있다. 다만 본 실시예에서 제2 전극(130)은 상술한 도 4에서와 달리 제1 전극(120)의 나열 방향과 어긋나는 방향으로 형성된다.
즉, 도 5에서는 서로 직교하는 방향으로 나열되게 된다. 따라서 이러한 구조에서는 더욱 다양한 전극간 전위차가 생기고 이를 통해 전압을 발생 시킬 수 있다.
나아가, 도 4와 도 5는 제1 전극(120), 제2 전극(130) 각각이 복수의 전극으로 형성되는 것을 예시하고 있으나, 제1 전극(120)은 하나의 전극 판으로 형성되고, 제2 전극(130)은 소정의 간격을 두고 일정한 방향에 따라 복수로 나열되어 형성될 수 있다. 또는 제2 전극(130)이 하나의 전극 판으로 형성되고, 제1 전극(120)이 기판 상에서, 소정의 간격을 두고 일정한 방향에 따라 복수로 나열되어 형성되는 것도 가능하다.
또한, 상술한 실시예에서 복수의 구성들이 형성되는 기판(110)은 직물 소재 (나일론, 면, 폴리에스터 등)로 구성하는 것도 가능하다. 이때 도 5와 같은 구성을 직물 소재의 짜임 구조에 적용하여 씨실과 날실에 전극의 형성이 가능한 물질을 합성하여 서로 교차하는 방식을 통해 직물 소재의 기판(110)에 액체가 흐르는 것으로부터 에너지를 발생시키는 것도 가능하다.
이때 씨실과 날실의 경우 각각 제1 전극(120)과 제2 전극(130)으로 기능할 수 있다. 또한 직물구조에서 씨실과 날실은 교번하여 상하부에 위치하게 되므로, 상술한 실시예에서 제1 전극(120)과 제2 전극(130)의 기능을 번갈아 수행할 수 있다.
또한, 에너지 전환층(140)은 씨실과 날실의 직조과정에서 천을 끼워 넣는 방식으로 형성할 수도 있다.
이상의 상술한 본 발명에 따른 에너지 전환 장치를 통한 전압 발생결과는 도 7 및 도 8을 통해 설명한다.
도 7을 참조하면, 에너지 전환장치는 제1 전극(120) 상에 제2 전극(130)이 형성되고 소수성 물질층(150)이 이를 덮는 형태로 구성된다. 에너지 전환장치 상으로 액체 방울이 흐르게 되고 이에 따른 전압의 발생 결과는 도 8과 같다.
도 8은 에너지 전황층 소재로 PMMA, PVP를 이용한 결과로서, 즉 이상의 본 발명에 따른 전극구조 형태를 통해 집적화 특성이 우수한 전기에너지 발생장치의 구현이 가능하며, 수직전극 구조를 통해 디바이스의 소형화가 가능하며, 상부전극과 하부전극 개수에 따라 다양한 전압을 발생시킬 수 있으므로 고효율의 에너지 전환 장치를 구현할 수 있다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위 내에서 다양한 수정, 변경 및 치환이 가능할 것이다.
따라서, 본 발명에 개시된 실시예 및 첨부된 도면들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예 및 첨부된 도면에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구 범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (9)

  1. 기판;
    상기 기판 상에 형성된 제1 전극;
    상기 제1 전극 상에 형성되어, 상기 제1 전극을 덮는 에너지 전환층; 및
    상기 제1 에너지 전환층상에 형성되고, 액체의 이동 또는 상태변화에 따라 액체와의 접촉상태가 변하는 제2 전극을 포함하는 것을 특징으로 하는 액체를 이용한 전극 적층구조 에너지 전환 장치.
  2. 제 1 항에 있어서,
    상기 전극 적층구조 에너지 전환 장치는 상기 제2 전극 상에 형성되어, 상기 제2 전극을 덮는 제2 에너지 전환층을 더 포함하는 것을 특징으로 하는 액체를 이용한 전극 적층구조 에너지 전환 장치.
  3. 제 1 항에 있어서,
    상기 제1 전극은 상기 기판상에 소정의 간격을 두고 일정한 방향에 따라 복수로 나열되어 형성되는 것을 특징으로 하는 액체를 이용한 전극 적층구조 에너지 전환 장치.
  4. 제 3 항에 있어서,
    상기 제 2 전극은 상기 에너지 전환층 상에 소정의 간격을 두고 상기 일정한 방향과 어긋나는 방향에 따라 복수로 나열되어 형성되는 것을 특징으로 하는 액체를 이용한 전극 적층구조 에너지 전환 장치.
  5. 제 1 항에 있어서,
    상기 제1 에너지 전환층은 무기물층, 유기물층 또는 유기물과 무기물의 혼합물층 중 적어도 어느 하나의 층을 포함하는 것을 특징으로 하는 액체를 이용한 전극 적층구조 에너지 전환 장치.
  6. 제 2 항에 있어서,
    상기 제1 에너지 전환층 상에 상기 이온성 액체 또는 물의 형상이 복원될 수 있도록 소수성 물질층이 적층되는 것을 특징으로 하는 액체를 이용한 전극 적층구조 에너지 전환 장치.
  7. 제 6 항에 있어서,
    상기 소수성 물질층과 상기 제2 전극 사이에는 절연층이 형성되는 것을 특징으로 하는 액체를 이용한 전극 적층구조 에너지 전환 장치.
  8. 제 1 항에 있어서,
    상기 제1 전극은 하나의 전극 판으로 형성되며,
    상기 제2 전극은 상기 에너지 전환층 상에 소정의 간격을 두고 일정한 방향에 따라 복수로 나열되어 형성되는 것을 특징으로 하는 액체를 이용한 전극 적층구조 에너지 전환 장치.
  9. 제 1 항에 있어서,
    상기 제2 전극은 하나의 전극 판으로 형성되며,
    상기 제1 전극은 상기 기판 상에 소정의 간격을 두고 일정한 방향에 따라 복수로 나열되어 형성되는 것을 특징으로 하는 액체를 이용한 전극 적층구조 에너지 전환 장치.
PCT/KR2015/005838 2014-07-15 2015-06-10 액체를 이용한 전극 적층 구조 에너지 전환 장치 WO2016010263A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15821895.8A EP3171416A4 (en) 2014-07-15 2015-06-10 Electrode laminate structure energy conversion apparatus using liquid
US15/406,577 US10291153B2 (en) 2014-07-15 2017-01-13 Electrode stacked energy conversion device using liquid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140089202A KR101988876B1 (ko) 2014-07-15 2014-07-15 액체를 이용한 전극 적층 구조 에너지 전환 장치
KR10-2014-0089202 2014-07-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/406,577 Continuation US10291153B2 (en) 2014-07-15 2017-01-13 Electrode stacked energy conversion device using liquid

Publications (1)

Publication Number Publication Date
WO2016010263A1 true WO2016010263A1 (ko) 2016-01-21

Family

ID=55078711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/005838 WO2016010263A1 (ko) 2014-07-15 2015-06-10 액체를 이용한 전극 적층 구조 에너지 전환 장치

Country Status (4)

Country Link
US (1) US10291153B2 (ko)
EP (1) EP3171416A4 (ko)
KR (1) KR101988876B1 (ko)
WO (1) WO2016010263A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108418472A (zh) * 2018-05-11 2018-08-17 大连海事大学 一种利用液滴发电的装置及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102570652B1 (ko) * 2016-04-26 2023-08-23 한양대학교 산학협력단 역전기습윤 발전 모듈
EP4142139A1 (en) 2021-08-27 2023-03-01 Consejo Superior de Investigaciones Científicas (CSIC) Energy harvesting device and self-powered sensor using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010517755A (ja) * 2007-02-08 2010-05-27 コミツサリア タ レネルジー アトミーク 最適化された効率性で機械的な衝撃エネルギーを電気的エネルギーに転換するためのデバイス
US7898096B1 (en) * 2007-08-22 2011-03-01 Thomas Nikita Krupenkin Method and apparatus for energy harvesting using microfluidics
KR20110056867A (ko) * 2009-11-23 2011-05-31 삼성전자주식회사 튜브형 압전 에너지 발생 장치 및 그 제조방법
KR20140069565A (ko) * 2012-11-29 2014-06-10 전자부품연구원 액체를 이용한 에너지 전환 장치
KR101411337B1 (ko) * 2013-02-15 2014-06-25 전자부품연구원 적층구조를 가지는 액체를 이용한 에너지 전환 장치

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6011346A (en) * 1998-07-10 2000-01-04 Halliburton Energy Services, Inc. Apparatus and method for generating electricity from energy in a flowing stream of fluid
US6424079B1 (en) * 1998-08-28 2002-07-23 Ocean Power Technologies, Inc. Energy harvesting eel
AU6230800A (en) * 1999-07-20 2001-02-05 Sri International Improved electroactive polymers
JP2004532743A (ja) * 2000-10-25 2004-10-28 ワシントン ステート ユニバーシティ リサーチ ファウンデーション 圧電マイクロトランスデューサ、その使用法および製造法
US20050206275A1 (en) * 2002-01-18 2005-09-22 Radziemski Leon J Apparatus and method to generate electricity
KR100619710B1 (ko) * 2004-12-27 2006-09-08 엘지전자 주식회사 개선된 전극을 가지는 이-페이퍼 패널
US20070125176A1 (en) * 2005-12-02 2007-06-07 Honeywell International, Inc. Energy harvesting device and methods
US8003982B2 (en) * 2005-12-20 2011-08-23 Georgia Tech Research Corporation Stacked mechanical nanogenerator comprising piezoelectric semiconducting nanostructures and Schottky conductive contacts
US7859171B2 (en) * 2006-10-10 2010-12-28 Micallef Joseph A Piezoelectric ultracapacitor
CN101679078B (zh) * 2007-05-24 2013-04-03 数字化生物系统 基于电湿润的数字微流体
JP5616130B2 (ja) * 2009-06-08 2014-10-29 富士フイルム株式会社 圧電素子及びそれを備えた圧電アクチュエータ、液体吐出装置、発電装置
US8926065B2 (en) * 2009-08-14 2015-01-06 Advanced Liquid Logic, Inc. Droplet actuator devices and methods
KR20110062778A (ko) * 2009-12-04 2011-06-10 삼성전기주식회사 잉크젯 헤드
KR101358291B1 (ko) * 2012-10-31 2014-02-12 서울대학교산학협력단 액체의 접촉각 및 접촉면적의 변화를 이용한 에너지 전환 장치
KR102051518B1 (ko) * 2013-01-28 2019-12-03 삼성전자주식회사 자가 동력 터치 센서 겸용 에너지 수확 장치
SG11201509703YA (en) * 2013-06-21 2015-12-30 Agency Science Tech & Res Energy harvesting device and method of harvesting energy
US9444031B2 (en) * 2013-06-28 2016-09-13 Samsung Electronics Co., Ltd. Energy harvester using mass and mobile device including the energy harvester
KR20170032100A (ko) * 2015-09-14 2017-03-22 삼성전자주식회사 에너지 회수장치 및 이를 구비하는 전자기기
US10825614B2 (en) * 2015-12-17 2020-11-03 Samsung Electronics Co., Ltd. Energy harvesting device using electroactive polymer nanocomposites
CN108476005A (zh) * 2016-01-08 2018-08-31 千叶正毅 转换器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010517755A (ja) * 2007-02-08 2010-05-27 コミツサリア タ レネルジー アトミーク 最適化された効率性で機械的な衝撃エネルギーを電気的エネルギーに転換するためのデバイス
US7898096B1 (en) * 2007-08-22 2011-03-01 Thomas Nikita Krupenkin Method and apparatus for energy harvesting using microfluidics
KR20110056867A (ko) * 2009-11-23 2011-05-31 삼성전자주식회사 튜브형 압전 에너지 발생 장치 및 그 제조방법
KR20140069565A (ko) * 2012-11-29 2014-06-10 전자부품연구원 액체를 이용한 에너지 전환 장치
KR101411337B1 (ko) * 2013-02-15 2014-06-25 전자부품연구원 적층구조를 가지는 액체를 이용한 에너지 전환 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3171416A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108418472A (zh) * 2018-05-11 2018-08-17 大连海事大学 一种利用液滴发电的装置及方法
CN108418472B (zh) * 2018-05-11 2023-10-27 大连海事大学 一种利用液滴发电的装置及方法

Also Published As

Publication number Publication date
KR101988876B1 (ko) 2019-06-13
US20170149358A1 (en) 2017-05-25
US10291153B2 (en) 2019-05-14
EP3171416A4 (en) 2018-04-11
EP3171416A1 (en) 2017-05-24
KR20160008863A (ko) 2016-01-25

Similar Documents

Publication Publication Date Title
EP2838191B1 (en) Energy conversion device using change of contact area and contact angle of liquid
US10270370B2 (en) Energy conversion substrate using liquid
EP2930359B1 (en) Energy conversion device using liquid
US9954463B2 (en) Energy conversion device using change of contact surface with liquid
KR101411337B1 (ko) 적층구조를 가지는 액체를 이용한 에너지 전환 장치
US10050567B2 (en) Flexible energy conversion device using liquid
WO2016010263A1 (ko) 액체를 이용한 전극 적층 구조 에너지 전환 장치
KR101721662B1 (ko) 액체 방울 측정 장치
KR101468642B1 (ko) 액체를 이용한 회전형 에너지 전환 장치
KR101403017B1 (ko) 관통홀을 가지는 액체를 이용한 에너지 전환 장치
KR20170013669A (ko) 액체를 이용한 자가 발광 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15821895

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015821895

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015821895

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE