WO2016010016A1 - Derivatized cnf, method for producing same, and polyolefin resin composition - Google Patents

Derivatized cnf, method for producing same, and polyolefin resin composition Download PDF

Info

Publication number
WO2016010016A1
WO2016010016A1 PCT/JP2015/070099 JP2015070099W WO2016010016A1 WO 2016010016 A1 WO2016010016 A1 WO 2016010016A1 JP 2015070099 W JP2015070099 W JP 2015070099W WO 2016010016 A1 WO2016010016 A1 WO 2016010016A1
Authority
WO
WIPO (PCT)
Prior art keywords
cnf
derivatized
reaction
vinyl
water
Prior art date
Application number
PCT/JP2015/070099
Other languages
French (fr)
Japanese (ja)
Inventor
森 智夫
洋美 橋場
Original Assignee
中越パルプ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中越パルプ工業株式会社 filed Critical 中越パルプ工業株式会社
Priority to JP2016534435A priority Critical patent/JP6245779B2/en
Publication of WO2016010016A1 publication Critical patent/WO2016010016A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • C08B3/06Cellulose acetate, e.g. mono-acetate, di-acetate or tri-acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • C08B3/08Preparation of cellulose esters of organic acids of monobasic organic acids with three or more carbon atoms, e.g. propionate or butyrate
    • C08B3/10Preparation of cellulose esters of organic acids of monobasic organic acids with three or more carbon atoms, e.g. propionate or butyrate with five or more carbon-atoms, e.g. valerate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to derivatized CNF and a method for producing the same. From another point of view, the present invention relates to a polyolefin resin composition that is excellent in environmental characteristics by use of a biomass material, has a small decrease in impact strength, has a low specific gravity, a high rigidity, and an excellent molded appearance.
  • biomass materials have attracted attention from the viewpoint of environmental protection, and natural-derived organic fillers and composite materials with biopolymers have begun to be used as materials for automobiles, OA and electric / electronic fields.
  • natural-derived organic fillers and composite materials with biopolymers have begun to be used as materials for automobiles, OA and electric / electronic fields.
  • a method of adding an inorganic filler such as glass fiber to a resin composition has been studied.
  • these inorganic fillers need to be added in a large amount, there are problems that the specific gravity of the molded article is increased, and the residue that becomes dust at the time of incineration or disposal is increased, which imposes a burden on the environment.
  • CNF naturally-derived cellulose nanofibers
  • PP polypropylene
  • PE polyethylene
  • PS polystyrene
  • ACC method which is a physical preparation method of CNF
  • ACC method which is a physical preparation method of CNF
  • Patent Document 1 the underwater facing collision method
  • This method uses only water in addition to natural cellulose fibers, and is a nano-miniaturization method by cleaving only the interaction between fibers, so there is no structural change of the cellulose molecule and the degree of polymerization decreases with cleavage. It is possible to obtain a nano-miniaturized product with a minimum of.
  • CNF can be mechanically produced in an aqueous medium by treatment with a blender stirring, a grinder, a microfluidizer, a high-pressure homogenizer or the like described in Patent Document 6 and Patent Document 7.
  • Non-Patent Document 1 to Non-Patent Document 3 a method of laurylating or acetylating starch, pulp or wood flour using vinyl acetate in an aqueous solution is widely known.
  • Non-Patent Document 4 a method of hydrophobizing cellulose using chlorinated fatty acid is also known.
  • Patent Documents 2 and 3 provide fiber composite materials having excellent characteristics. A fiber composite material characterized by containing CNF modified with a substituent having a carboxyl group and an acyl group and a resin is described.
  • Patent Document 4 provides a method for producing a CNF dispersion that can be suitably used for complexing with a wide range of organic solvent-soluble polymer materials.
  • Patent Document 5 has an average degree of polymerization of 600 or more and 30000 or less, an aspect ratio of 20 to 10,000, an average diameter of 1 to 800 nm, an X-ray diffraction pattern having an I ⁇ type crystal peak, and a hydroxyl group.
  • Patent Document 8 jute is used as a natural organic filler in order to blend an aliphatic polyester and a natural organic filler into an aromatic polycarbonate resin to obtain a resin composition having excellent mechanical properties and flame retardancy.
  • Patent Document 9 (A) 99 to 60% by mass of a polycarbonate resin and (B) 1 to 40% by mass of cellulose fibers having an average fiber diameter of 5 to 50 ⁇ m and an average fiber length of 0.03 to 1.5 mm.
  • Patent Document 10 discloses a composition containing cellulose and a dispersant, the dispersant having a resin affinity segment A and a cellulose affinity segment B, and a block copolymer structure or a gradient copolymer. A composition manufacturing technique characterized by having a structure is described.
  • Patent Document 11 describes a technique for producing a hydrophilic nanofiber composite material, in which the hydroxyl group of a hydrophilic nanofiber having a hydroxyl group is solvated with a hydrophilic organic solvent and mixed with molten plastic.
  • Patent Document 12 describes a dispersion in which both CNF and resin are uniformly dispersed in a dispersion medium, and a resin composition in which CNF is uniformly contained in the resin.
  • JP 2005-270891 A JP2011-105799A JP2011-148914A JP2012-021081 JP 2013-44076 JP 2010-216021 WO2011118746 JP 2010-215791 A WO / 2013/133228 JP2014-162880 JP2013-170241A JP2013-166818A
  • Non-Patent Document 1 Although the acetylation method is widely known as described in Non-Patent Document 1 to Non-Patent Document 3, acetylation cannot sufficiently secure hydrophobicity for CNF, and polyolefin such as polypropylene having high hydrophobicity. There is a problem that it is necessary to impart stronger hydrophobicity in order to disperse uniformly in the resin.
  • Non-Patent Document 4 a method of hydrophobizing cellulose using chlorinated fatty acid is also known, but a non-aqueous reaction is required and there is a problem that a reaction containing water cannot be performed.
  • the fiber composite material of Patent Document 2 is a nanofiber obtained by oxidizing a hydroxyl group to a carboxyl group, and then dehydrated and then esterified using an acid anhydride, and a non-aqueous reaction is performed. Yes.
  • cellulose is modified under anhydrous conditions, and the degree of substitution is as high as 1.5 to 3.0. According to Non-Patent Document 4, the degree of substitution exceeds 0.55. Sufficient strength cannot be realized because the physical strength of nanofibers is reduced.
  • anhydrous conditions are essential.
  • Patent Document 4 manufactures CNF by changing the hydroxyl group of cellulose (glucose residue) to a carboxyl group, forms a highly hydrophobic amine and a carboxyl group salt, and imparts hydrophobicity to the nanofiber.
  • CNF obtained by a conventional defibrating method cannot be processed.
  • CNF of Patent Document 5 is acetylated with acetic anhydride at the same time as nanofiber pretreatment using an ionic liquid, and the resulting product is homogenized and nanonized, increasing the hydrophobicity and heat resistance of the nanofibers That's it.
  • the CNF obtained by the ACC method cannot be treated, and generally the derivatization reaction is performed in an anhydrous manner.
  • Patent Document 8 When CNF is handled in a water-containing state, the reactivity is significantly lowered. Moreover, since an expensive ionic liquid is used, it is difficult to use industrially at present. Although various attempts have been made for resin compositions as described above, satisfactory results have not been obtained in any case.
  • the resin composition obtained in Patent Document 8 has a large reduction in impact strength, an insufficient molded appearance, a large coloration, and insufficient thermal stability during molding.
  • the resin composition described in Patent Document 9 is said to have a low specific gravity, the specific gravity (g / cm 3) exceeds 1.20 in all examples, and the specific gravity is larger than that of water. It does not fully meet the problem of weight reduction.
  • CNF cannot be dispersed unless a maleic anhydride-modified resin is used in combination, and even if used together, there are many aggregates of 10 ⁇ m or more.
  • Cellulose is chemically modified, and unmodified cellulose cannot be used.
  • terpene resins are not used. Even at the strength level, the elastic modulus is improved, but the impact strength is remarkably lowered.
  • the present invention provides a derivatized CNF in which a hydroxyl group present on the CNF surface is esterified and a method for producing the same.
  • a derivatized CNF maintains the crystal structure and does not impair the mechanical properties, while canceling the high hydrophilicity that water-containing CNF had, such as polyethylene and polypropylene.
  • Compatibility with hydrophobic resins such as polyolefins is improved. Further, it can be completely dried, and the influence of moisture during kneading and transportation costs can be reduced.
  • the present invention is a resin that is excellent in environmental characteristics due to the use of biomass material, has a low decrease in impact strength, has a low specific gravity, high rigidity, and excellent molded appearance.
  • a composition is provided.
  • the composite resin is imparted with a higher reinforcing effect and transparency.
  • the polyolefin-CNF composite resin of the present invention is produced by using a surface-hydrophobized CNF instead of CNF as a reinforcing material, and compounding with polyolefin by high-speed stirring mixing and biaxial extrusion kneading.
  • the present invention is a method for hydrophobizing CNF using vinyl organic acid, and for example, surface modification of esterifying hydroxyl groups exposed on the surface of CNF using vinyl acetate, vinyl benzoate, vinyl laurate or the like. It is a technique. That is, in the method for producing derivatized CNF of the present invention, organic acid vinyl is added to a solution in which hydrous CNF is dispersed in a hydrophilic organic solvent, and a precipitate is generated in the reaction solution after completion of the reaction, and the precipitate is recovered and dried. It is characterized by that. Or you may extract and collect
  • a hydrophobic derivative By mixing water-containing CNF and an organic solvent, a hydrophobic derivative can be easily maintained while maintaining the nanostructure of CNF in the reaction solution. CNF can be dissolved uniformly.
  • water-containing CNF is added to an organic solvent having sufficient dispersibility with respect to CNF together with potassium carbonate, organic acid vinyl is added, and the reaction product after completion of the reaction is recovered. And drying.
  • the present invention relates to the following polyolefin resin composition. That is, (A) an average thickness of 10 to 200 nm, derivatized CNF obtained by derivatizing a polysaccharide with a high-pressure water stream and derivatized CNF 1 to 10% by mass, and (B) a polyolefin resin 99 to 90% by mass.
  • This is a polyolefin resin composition.
  • the derivatized CNF may be hydrophobically derivatized with an organic acid vinyl, and examples thereof include derivatized CNF which is hydrophobically derivatized with vinyl laurate.
  • the CNF is preferably obtained by colliding high pressure water of about 50 to 400 MPa with a polysaccharide in a water mixture of 0.5 to 10% by mass.
  • the polyolefin can be polypropylene, polyethylene, polybutadiene, polyisoprene, and this technology is not only applicable to polyolefins, but can also be applied to other general-purpose plastics that can be molded at 300 ° C. or lower. . In the case of 300 ° C. or higher, decomposition of cellulose occurs.
  • the method for producing a composite resin of the present invention is characterized in that a hydrophobic derivatized CNF swollen with an organic solvent is melt-kneaded after a pretreatment step of stirring at high speed with a polyolefin.
  • the high hydrophilicity of CNF can be canceled and hydrophobicity can be imparted.
  • the derivatized CNF of the present invention obtained by the method for producing the derivatized CNF of the present invention can be completely dried, has improved compatibility with a hydrophobic resin such as polyolefin, and has water content during kneading with plastic. Impact and transportation costs can be reduced.
  • examples of CNF include polysaccharide-derived CNF including natural plants such as wood fiber, bamboo fiber, sugarcane fiber, seed hair fiber, and leaf fiber. These CNFs may be used alone or in combination of two or more. May be used in combination.
  • the polysaccharide it is preferable to use pulp having an ⁇ -cellulose content of 60% to 99% by mass. If the purity is ⁇ -cellulose content 60% by mass or more, the fiber diameter and fiber length can be easily adjusted, and entanglement between fibers can be suppressed, and the ⁇ -cellulose content less than 60% by mass is used.
  • the thermal stability at the time of melting is high, the impact strength is not lowered, the coloration suppressing effect is good, and the effect of the present invention can be further improved.
  • 99% by mass or more it becomes difficult to defibrate the fibers to the nano level.
  • CNF in the present invention is obtained by fibrillating polysaccharides with a high-pressure water stream.
  • Degradation of polysaccharides by high-pressure water flow is carried out by colliding high-pressure water of about 50-400 MPa against polysaccharides in a water mixture of 0.5-10% by mass. This can be performed using, for example, the CNF manufacturing apparatus 1 shown in FIG.
  • the CNF manufacturing apparatus 1 includes a polysaccharide slurry supply path 3 that is a first liquid medium supply path arranged so as to be able to supply a polysaccharide slurry to one chamber 2 and a non-polysaccharide slurry that is, for example, water. And a second liquid medium supply path 4 that is circulated through the chamber 2.
  • an orifice injection unit 5 that performs orifice injection of the non-polysaccharide slurry in the second liquid medium supply path 4 in a direction intersecting the polysaccharide slurry supply direction from the polysaccharide slurry supply path 3.
  • the polysaccharide slurry supply path 3 is configured such that the polysaccharide slurry can be circulated through the one chamber 2.
  • the polysaccharide slurry supply path 3 and the second liquid medium supply path 4 have a mutual intersection 6 in one chamber 2.
  • the polysaccharide slurry supply path 3 is a polysaccharide slurry supply unit, and is configured by arranging a tank 7 and a pump 8 for storing the polysaccharide slurry in the circulation path 9, while the second liquid medium supply path 4 is a tank 10, a pump 11, a heat
  • the exchanger 12 and the plunger 13 are arranged in the liquid medium supply path 4 which is a circulation path.
  • the non-polysaccharide slurry is, for example, water, and is initially stored in the tank 10, and then the nano-sized polysaccharide stored in the tank 10 through the intersection 6 with the operation of the CNF manufacturing apparatus 1 is operated. Those in a state where they are contained at a concentration corresponding to the degree are also referred to generically.
  • the circulation path 9 of the polysaccharide slurry supply path 3 is arranged so as to penetrate the chamber 2, and the non-polysaccharide slurry can be injected through the orifice in a direction crossing the polysaccharide slurry supply path 3 so as to penetrate the circulation path 9.
  • the orifice injection port 14 of the orifice injection unit 5 connected to the plunger 13 of the second liquid medium supply path 4 opens inside the chamber 2.
  • a discharge port 15 of the chamber 2 is provided at a position facing the orifice injection port 14 of the chamber 2, and a circulation path of the second liquid medium supply path 4 is connected to the discharge port 15 of the chamber 2, so that the second liquid state A medium supply path 4 is configured.
  • the circulation path 9 of the polysaccharide slurry supply path 3 is formed using, for example, a vinyl hose, a rubber hose or the like, and the one-way valve 16 opened only in the direction of the chamber 2 on the entry side of the circulation path 9 into the chamber 2. Is attached. Furthermore, a one-way valve 17 that is opened only in the direction of discharge from the chamber 2 is attached to the exit side of the circulation path 9 from the chamber 2. In addition, an air suction valve 18 is attached to the circulation path 9 between the chamber 2 and the one-way valve 17, and the air suction valve 18 is opened only in the direction of sucking air from the outside into the circulation path 9.
  • CNF is manufactured as follows.
  • the non-polysaccharide slurry is circulated through the second liquid medium supply path 4 through the chamber 2.
  • the non-polysaccharide slurry in the tank 10 is circulated through the liquid medium supply path 4 by passing through the heat exchanger 12 and the plunger 13 using the pump 11.
  • the polysaccharide slurry is circulated through the polysaccharide slurry supply path 3 through the chamber 2.
  • the polysaccharide slurry in the tank 7 is circulated through the circulation path 9 formed using a vinyl hose, a rubber hose, or the like, using the pump 8.
  • the non-polysaccharide slurry circulating in the second liquid medium supply path 4 is orifice-injected with respect to the polysaccharide slurry circulating in the polysaccharide slurry supply path 3 and flowing in the chamber 2.
  • high-pressure water is supplied from the plunger 13 to the orifice injection port 14 connected to the plunger 13, and this is orifice-injected from the orifice injection port 14 toward the circulation path 9 at a high pressure of about 50 to 400 MPa.
  • the slurry is discharged toward the discharge port 15 of the chamber 2 while entraining the polysaccharide slurry circulating in the circulation path 9 and flows into the second liquid medium supply path 4.
  • the non-polysaccharide slurry is circulated again in the second liquid medium supply path 4.
  • the polysaccharide in the polysaccharide slurry supply path 3 and the polysaccharide in the non-polysaccharide slurry circulating in the second liquid medium supply path 4 are gradually defibrated.
  • CNF having a high degree of defibration according to the application can be obtained.
  • a dispersion liquid in which raw fibers are dispersed in a solvent is treated with a homogenizer equipped with a crushing type homovalve sheet described in JP 2012-36518 A.
  • a homogenization method As shown in FIG. 3, according to this homogenization treatment method, when the raw material fiber 101 pumped through the homogenizer at a high pressure passes through the small diameter orifice 102 which is a narrow gap, the wall surface of the small diameter orifice 102 (particularly the impact ring 103). And microfibrillation having a uniform fiber diameter is performed by being subjected to shear stress or cutting action.
  • the device shown in FIG. 4 is of a liquid circulation type, and has a tank (FIG. 4: 109), a plunger (FIG. 4: 110), two opposing nozzles (FIG. 4: 108a, 108b), and heat as necessary.
  • An exchanger (FIG. 4: 111) is provided, and fine particles dispersed in water are introduced into two nozzles and sprayed from the nozzles (FIG. 4: 108a, 108b) facing each other under high pressure to collide against each other in water.
  • this method only water is used in addition to natural cellulose fibers, and only the interaction between the fibers is cleaved. CNF can be obtained in a minimized state.
  • the CNF obtained as described above has a solid content concentration in an aqueous dispersion state of 20% or more, so that the familiarity with the dispersant is improved and it is difficult to produce an aggregate. Therefore, it can disperse
  • the solid content concentration is less than 20%, the compatibility with a dispersant having a hydrophobic property in a part of the structure is poor, and it is easy to generate aggregates between CNFs. It becomes a factor of deterioration of dispersibility.
  • a decrease in the resin temperature during kneading results in non-uniform shearing force during kneading, which is an undesirable obstacle to uniform dispersion during the kneading process.
  • the temperature rise of the kneading apparatus is hindered, a loss of heat energy is caused.
  • the method for producing a derivatized CNF of the present invention is characterized in that an organic acid vinyl is added to cellulose fiber, and for example, an organic acid vinyl such as vinyl acetate, vinyl benzoate and vinyl laurate is added to hydrous CNF.
  • an organic acid vinyl such as vinyl acetate, vinyl benzoate and vinyl laurate is added to hydrous CNF.
  • an organic acid vinyl such as vinyl acetate, vinyl benzoate and vinyl laurate is added to hydrous CNF.
  • CNF may be obtained by nano-miniaturization of a fibrous polysaccharide by physical treatment, and the ACC method can be applied as this physical treatment.
  • the CNF obtained by this ACC method is obtained by cleaving only the interaction between fibers and performing nano-miniaturization.
  • the chemical modification is not performed, the cellulose molecular structure is damaged and the degree of polymerization is reduced.
  • it was obtained only in a state suspended in water, and this was a factor that hindered utilization.
  • CNF obtained in a suspended state in water can be hydrophobized as it is, so that the industrial applicability of CNF obtained by the ACC method or the like is dramatically improved.
  • Pulp can be used as the fibrous polysaccharide, and as the pulp, woody plants such as hardwoods and conifers, chemical pulps made from herbaceous plants such as bamboo and bamboo, mechanical pulps and waste paper can be used.
  • Water-containing CNF is obtained, for example, by ACC treatment of bamboo BKP with the required number of passes, press dewatering, and has a water content of 90% or less, but is not limited to this, pulp obtained from woods and plants CNF prepared by mechanical processing such as a grinder or a homogenizer can also be used. Further, the water content may be 90% or less by a method such as centrifugation or dry concentration. However, if the water content exceeds 90%, the amount of water brought into the reaction system becomes excessive, and the production efficiency decreases, so that industrial production is difficult.
  • the water content is preferably 85% or less, more preferably 80% or less.
  • potassium carbonate such water-containing CNF is added to an organic solvent capable of being sufficiently dispersible, and then at least one of organic acid vinyls such as vinyl acetate and vinyl benzoate and vinyl laurate is added, The reaction is performed at 100 ° C. for 2 hours or longer, preferably at 80 ° C. for 2 hours. After the reaction is complete, the product is recovered and dried.
  • Potassium carbonate works as a reaction catalyst, but a buffering effect that keeps the inside of the reaction system alkaline is important. If there is a certain concentration or more, the effect can be sufficiently maintained.
  • the amount of potassium carbonate added is preferably about 5 to 30% in terms of the CNF ratio.
  • NMP N-methylpyrrolidone
  • DMAc dimethylacetamide
  • DMF dimethylformamide
  • DMSO dimethyl sulfoxide
  • ionic polar solvents and especially DMSO dissolves highly hydrophobic derivatized CNF in addition to high dispersibility of CNF. That is, laurylation of CNF proceeds in various hydrous nonionic polar solvents, but the reaction efficiency is highest when DMSO is used.
  • toluene can be used as a model of molten polypropylene (PP) or polyethylene (PE). By verifying whether CNF can be easily dispersed in toluene from a dry state, it can be predicted whether it can be in a good kneaded state with polypropylene (PP) or polyethylene (PE). .
  • the dried laurylated CNF can be redispersed in toluene. It can also swell and disperse in decahydronaphthalene (polyolefin resin solvent).
  • the number of primary hydroxyl groups protruding on the cellulose crystal surface is 0.5 per glucose unit, and it can be replaced by TEMPO oxidation treatment that selectively oxidizes only the primary hydroxyl group (C-6 position) on the CNF surface.
  • the degree is around 0.5.
  • the degree of substitution is 0.5 or more, there is a possibility that the molecular bond of cellulose is broken. From the analysis result of non-crystallinity in Non-Patent Document 4, reaction conditions such that the degree of substitution is 0.4 to 0.55 are preferable in order to achieve both sufficient crystallinity and hydrophobicity.
  • the content of derivatized CNF obtained by the above method is 1 to 10 Mass% is preferred. If it is less than 1% by mass, the effect of improving the mechanical properties such as the elastic modulus is not sufficiently exhibited, and if it exceeds 10% by mass, the impact strength and the like are greatly reduced and excessive costs are required.
  • thermoplastic resin of the present invention is the main component of the composite resin composition of the present invention, but the molded product obtained by molding the composition has a rigidity and resistance to resistance. Mechanical properties such as impact properties, molding processability, solvent resistance, heat resistance, and other characteristics need to be expressed well.
  • thermoplastic resin include vinyl chloride resin, styrene resin, (meth) acrylic resin, vinyl ether resin, etc.
  • the reinforcing effect by the derivatized CNF of the present invention is particularly remarkable. is there.
  • the polyolefin resin is preferably a polyolefin resin obtained by homopolymerization or copolymerization of one or more monomers selected from ⁇ -olefins having 2 to 6 carbon atoms in view of the above-described characteristics.
  • ⁇ -olefins having 2 to 6 carbon atoms in view of the above-described characteristics.
  • an ⁇ -olefin having 7 or more carbon atoms can also be used as a comonomer within a range that does not hinder the above-mentioned characteristic expression.
  • polyolefin resins include ethylene homopolymers, homopolymers of ⁇ -olefins having 2 to 6 carbon atoms such as propylene, butene-1, pentene-1, hexene-1, and 4-methylpentene-1, and ethylene.
  • copolymer examples include ⁇ -olefin copolymers having 3 to 6 carbon atoms, copolymers of two or more ⁇ -olefins having 2 to 6 carbon atoms, and ionomer resins.
  • the copolymer may be a random or block copolymer.
  • a mixture of various polyolefin resins such as polyethylene resin and polypropylene resin can be used.
  • polyolefin-based resins polypropylene-based resins mainly composed of propylene are excellent in rigidity, impact resistance, solvent resistance, and heat resistance, and therefore can be used particularly suitably for the composite resin composition of the present invention.
  • polypropylene resin examples include a block composed of a propylene homopolymer, a propylene-ethylene copolymer, a propylene-butene copolymer, and a copolymer of propylene and ethylene and / or the above ⁇ -olefin.
  • examples thereof include copolymers, random copolymers, and modified polypropylene having a polar functional group.
  • high-density polyethylene HDPE
  • low-density polyethylene LDPE
  • biopolyethylene examples thereof include polyethylene resin (PE) and polypropylene resin (PP).
  • component (B) a polymer alloy obtained by blending the above-described polyolefin resin with rubber as exemplified below may be used.
  • specific examples of such rubber include ethylene-propylene-nonconjugated diene copolymer rubber, ethylene-butene-1 copolymer rubber, ethylene-hexene copolymer rubber, ethylene-octene copolymer rubber, polybutadiene, and styrene-butadiene.
  • Block copolymer rubber styrene-butadiene copolymer rubber, partially hydrogenated styrene-butadiene-styrene block copolymer rubber, styrene-isoprene block copolymer rubber, partially hydrogenated styrene-isoprene block copolymer rubber, polyurethane rubber, styrene graft Ethylene-propylene-nonconjugated diene copolymer rubber, styrene-graft-ethylene-propylene copolymer rubber, styrene / acrylonitrile-graft-ethylene-propylene-nonconjugated diene copolymer rubber, styrene / acrylonitrile-graft- Styrene - propylene copolymer rubber and the like.
  • the rubber content in the polymer alloy is preferably 50% by mass or less from the viewpoint of adding new characteristics to the characteristics of the
  • Examples of the method for producing the polyolefin resin composition of the present invention include a method of melt-kneading each component by a conventionally known method. For example, after each component is dispersed and mixed by a high speed mixer represented by a tumble mixer, a Henschel mixer, a ribbon blender, or a super mixer, a method of melt kneading with an extruder, a Banbury mixer, a roll or the like is appropriately selected.
  • a high speed mixer represented by a tumble mixer, a Henschel mixer, a ribbon blender, or a super mixer
  • CNF which is a biomass material as a resin composition
  • CNF can suppress the cohesiveness of cellulose by using CNF having a specific average fiber diameter and average fiber length, and can suppress a decrease in impact strength. Furthermore, since CNF can improve rigidity while having a lower specific gravity than inorganic fibers such as glass fibers, it can be a resin composition having high rigidity and low specific gravity.
  • the CNF in the present invention has an average thickness of 10 to 200 nm, and is obtained by fibrillating polysaccharides with a high-pressure water stream.
  • the average thickness was measured by a field emission scanning electron microscope JSM-7001FTTLS manufactured by JEOL Ltd.
  • JSM-7001FTTLS manufactured by JEOL Ltd.
  • By defibration to an average thickness of 10 to 200 nm it is possible to obtain a resin composition having fluidity, little impact strength reduction, low specific gravity, high rigidity, and excellent molded appearance.
  • the average thickness is less than 10 nm, the dehydrating property is deteriorated, so that it is difficult to increase the solid concentration, which is not preferable.
  • the average thickness exceeds 200 nm, fibers having a fiber width of several tens of ⁇ m where defibration has not progressed are included, and fluidity is remarkably lowered and dispersibility is deteriorated.
  • the molding method using the polyolefin resin composition of the present invention is not particularly limited, and molding methods such as injection molding, injection compression molding, blow molding, vacuum molding, extrusion molding, and hollow molding can be applied. Since the molded article using the polyolefin resin composition of the present invention has the above-mentioned properties, for example, OA equipment, information / communication equipment, fiber material, film material, coating film, paint component, automobile component or building material field Etc. can be suitably used.
  • the impact strength is hardly lowered, and the rigidity can be increased to a low specific gravity (MPa), and the surface roughness can be increased.
  • MPa specific gravity
  • the polyolefin resin composition of the present invention generally satisfies the following performance in terms of the tensile elastic modulus (MPa) and tensile elongation (%) of the molded product obtained, and has a molded appearance. It has the feature of being excellent.
  • Example 5 Laurylated CNF was produced in the same manner as in Example 4. However, the amount of potassium carbonate was 20% relative to CNF, and the amount of water in the reaction system or the reaction temperature was changed. In addition to CNF (rCNF) similar to that in Example 4, CNF (fCNF) having a smaller fiber diameter was also used. The reaction time was 2 hours.
  • FIG. 11 shows the rate of weight increase in a DMSO solution having a water content of 6 to 10 vol% at a reaction temperature of 80 ° C.
  • fCNF is more reactive than rCNF, and the specific surface area is expected to affect the reactivity.
  • the rate of weight increase gradually decreased as the amount of water in the reaction system increased.
  • DS0.25 having the smallest WPG
  • the addition of water produced aggregates, so that the hydrophobization proceeded.
  • the hydrophobicity of CNF proceeds sufficiently.
  • the weight increase rate when the reaction temperature is set from 70 ° C. to 100 ° C. is shown in FIG. At 80 ° C. and 100 ° C., there is no significant difference in the weight increase rate, and the reactivity is equivalent. On the other hand, the weight increase rate decreased by about 35% at 70 ° C. compared to the case of 80 ° C. or higher.
  • the reaction temperature should just be 80 degreeC or more.
  • FIG. 12A A state in which laurylated CNF having an estimated substitution degree of about 0.5 is dispersed in toluene and decalin at a concentration of 1% is shown in FIG. 12A, and the results of SEM observation of each dispersion state are shown in FIGS. 12B and 12C. It was well dispersed in toluene. In addition, even the decalin dispersion is cloudy but is sufficiently well dispersed by visual observation. When the dispersion state of laurylated CNF in the dispersion is observed by SEM, although fiber aggregation tendency is somewhat observed in decalin, the fibers can be observed independently with either solvent, so that the degree of substitution is about 0.5.
  • CNF can be dispersed in toluene and decalin. Both toluene and decalin are known to dissolve polyolefin resins, and particularly hot decalin dissolves polypropylene, so that laurylated CNF can be uniformly dispersed in polypropylene.
  • Example 6 Laurylated CNF was synthesized in the same manner as in Example 4. However, fCNF was used, the water content in the system was 6% or 10%, and the reaction temperature was 80 ° C. Moreover, it reacted by changing the amount of potassium carbonate. The reaction time was 2 hours.
  • the weight increase rate is the maximum when the potassium carbonate addition ratio is 20% in terms of the CNF ratio, and the reactivity gradually decreases in the potassium carbonate concentration region beyond that.
  • the rate of increase in weight also decreases rapidly depending on the decrease in the concentration of potassium carbonate (FIG. 12).
  • Example 7 In the same manner as in Example 4, laurylated CNF was synthesized using DMSO, DMF, DMAc, and NMP as solvents. Also, laurylated CNF was synthesized using fCNF produced from kraft pulp derived from hardwood (LB), conifer (NB), and bamboo (BB). Potassium carbonate was 20% relative to CNF, the reaction temperature was 80 ° C., the water content was 6%, and the reaction time was 2 hours.
  • LB hardwood
  • NB conifer
  • BB bamboo
  • Table 2 summarizes the rate of increase in specific weight, assuming that the rate of increase in weight when LB-CNF was laurylated in DMSO was 100%.
  • aprotic polar solvents were used, the reactivity of DMF, DMAc, and NMP was about one-third that of DMSO.
  • Any solvent including DMSO is a nonionic polar solvent used for dissolving cellulose.
  • all solvents are amine solvents and have a carbonyl oxygen and nitrogen atom resonance structure, both of which are more hydrophobic than DMSO. There are differences such as high. Differences in reactivity can be attributed to such differences in properties.
  • Example 8 In the same manner as in Example 1, acetylated CNF was synthesized. However, the amount of water in the reaction system was 5%.
  • Example 9 In the same manner as in Example 4, laurylated CNF was synthesized. However, the amount of water in the reaction system was 5%.
  • Example 10 In the same manner as in Example 9, CNF derivatization with vinyl laurate was performed for 1.5 hours, and then vinyl acetate was continuously added and reacted for an additional 1.5 hours to obtain lauryl-acetylated CNF. .
  • Example 11 Various derivatized CNFs (acetylated CNF, laurylated CNF, lauryl-acetylated CNF) produced in Examples 8 to 10 and non-derivatized CNF were converted into dry powders after washing by Soxhlet extraction, and infrared absorption spectra were obtained. It was measured.
  • Lauryl-acetylated CNF shows almost the same spectrum as laurylated CNF.
  • an acetyl group is also given, and it is considered that both lauryl group and acetyl group are introduced into CNF.
  • CrI specific crystallinity
  • FIG. 14 shows X-ray diffraction spectra of various derivatized CNFs and CNFs before and after hydrolysis.
  • the spectrum of derivatized CNF is greatly changed from that of cellulose type I crystals, and it is difficult to obtain an accurate specific crystallinity (before hydrolysis).
  • X-ray diffraction analysis of derivatized CNF after hydrolysis was performed, all samples showed almost similar spectra, and all retained cellulose I-type crystals (after hydrolysis). Even if CNF is hydrolyzed, the degree of crystallinity does not change, and hydrolyzing treatment in a 0.5% NaOH methanol solution at 50 ° C. for 2 hours does not affect the cellulose crystal form.
  • Example 13 To 75 mg of CNF, 1.2 times mole of vinyl laurate was added as AGU and reacted at 70 ° C. for 1.5 to 6 hours.
  • FIG. 15 shows the change over time in the degree of substitution estimated from the change in weight at that time. The substitution reaction was almost completed from 1 hour to 1.5 hours after the start of the reaction, and then the degree of substitution gradually improved.
  • Example 14 The micronized nanocellulose retains a high specific surface area, and at the same time has extremely high hydrophilicity due to the influence of hydroxyl groups exposed on the surface, and thus is easily aggregated by hydrogen bonding. Therefore, the high hydrophilicity causes aggregation in a highly hydrophobic resin such as polyolefin, and the strength property cannot be sufficiently exhibited. Therefore, in order to solve the problem, the surface of the nanocellulose fiber is esterified to impart hydrophobicity and improve dispersibility in the polyolefin, thereby improving the reinforcing function for the polyolefin.
  • CNF was created by the underwater facing collision method.
  • nanofibers (CNFfine) with further miniaturization were also prepared.
  • CNF and CNFfine were laurylated according to [Example 1] to [Example 10] (LauCNF and LauCNFfine), and the degree of substitution of hydroxyl groups by laurylation was 0.45 ( ⁇ 0.01).
  • Water-containing CNF or acetone-derivatized CNF was premixed with medium density polyethylene (Lupolen 3621 MRM, PE) so that the cellulose part was 5% or 10%.
  • the premixing of the hydrous CNF here may be carried out by hand, or a fluid mixer, a high-speed stirring mixer, or the like may be used.
  • the acetone may be suspended together with PE and stirred well, and then the acetone may be distilled off, or may be premixed using a fluid mixer as in the case of the water-containing CNF. Good.
  • PE and derivatized CNF may be mixed uniformly, but once the derivatized CNF is dried, a strong aggregate is formed and redispersion becomes extremely difficult. As a result, derivatized CNF is agglomerated in a large amount even by twin-screw extrusion kneading, and the strength is adversely affected. Therefore, drying of the derivatized CNF must be avoided.
  • the mixture with the premixed PE had a screw system used for a twin-screw extruder (Toyo Seiki, Labo Plast Mill) having a diameter of ⁇ 25 mm and an effective length (screw length L to diameter D ratio) of 30.
  • a dumbbell test piece 1BA and a strip-shaped test piece were prepared using a small injection molding machine (Nissei Plastic Industries, NPX7-1F). The test piece was allowed to stand for 4 days or more at a temperature of 23 ° C. and a humidity of 50%, and then subjected to analysis of mechanical properties.
  • FIG. 15 shows the tensile strength of the composite resin of CNF or derivatized CNF and PE
  • FIG. 16 shows the bending strength.
  • Statistical comparison of composite resin (PE + 10% CNF) with 10% CNF blended with PE and composite resin (PE + 10% CNFfine) with 10% CNFfine by t-test results in maximum tensile stress, flexural modulus, maximum bending PE + 10% CNF was significantly higher in stress (p ⁇ 0.05), but no significant difference was observed in tensile modulus, tensile and bending maximum strain.
  • PE + 5% CNF a composite resin (PE + 5% CNF) containing 5% CNF in PE and PE + 10% CNF
  • PE + 10% CNF has a significantly higher strength in terms of maximum tensile stress, flexural modulus, and maximum bending stress.
  • PE + 5% CNF showed a significantly higher value only with tensile strain.
  • PE + 5% LauCNF is more than PE + 10% CNF composite resin.
  • the tensile modulus, maximum tensile stress, and maximum bending strain showed significantly high strength characteristics, and PE + 10% CNF exhibited significantly high elongation at the maximum tensile strain, bending modulus, and maximum bending modulus.
  • PE + 5% LauCNF showed significantly better properties in terms of tensile modulus, maximum tensile stress, flexural modulus, and maximum bending stress.
  • the reinforcement effect on PE by laurylating CNF is equal to or greater than the flexural modulus, tensile modulus, maximum tension and The bending stress is twice or more.
  • the maximum tensile strain is reduced by laurylation, giving strong and hard properties.
  • the strength of CNF as a raw material also affects the strength of LauCNF.
  • a composite resin sheet having a thickness of about 150 ⁇ m was prepared. Aggregates in the sheet were observed with an optical microscope (DSX500, OLYMPUS). Further, the light transmission spectrum was measured with a visible-infrared spectrophotometer (integrated sphere, UV-2600, Shimadzu Corporation).
  • the blending ratio of laurylated CNF is preferably less than 5%. Further, a blending ratio of 3% or less is desirable from the viewpoint of cost effectiveness.
  • the tensile and bending properties are shown for the reinforcing effect on PE (tensile: solid line, bending: broken line).
  • tensile modulus a reinforcing effect was observed when 0.5% of laurylated CNF was blended.
  • a reinforcing effect was observed in the flexural modulus from the time of blending 1.5%.
  • the tensile modulus did not fluctuate (decrease) greatly even when the tensile modulus took the maximum value and the blending rate was 10%. .
  • the laurylated CNF 7.5% blended polypropylene composite resin showed a value of 155% in terms of tensile modulus and 135% in terms of maximum tensile stress relative to polyethylene.
  • the maximum point strain was 75%.
  • the reinforcing effect of the flexural modulus increased depending on the blending concentration until 10% was blended.
  • the flexural modulus at this blending concentration was 155% of polyethylene and the maximum bending stress was 130%.

Abstract

[Problem] To provide: derivatized CNF that makes it possible to negate the high hydrophilicity of hydrated CNF and impart the same with hydrophobicity, thereby improving compatibility with hydrophobic resins such as polyolefins, and enabling redispersion in hydrophobic solvent even when completely dried, the derivatized CNF reducing the effects of moisture during kneading with plastics, reducing transportation costs, and the like; a method for producing the same; and a resin composition having exceptional environmental characteristics, little reduction of impact strength, high rigidity even with low specific gravity, and an exceptional molded appearance through the use of biomass material. [Solution] The present invention is a resin composition having exceptional environmental characteristics, little reduction of impact strength, high rigidity even with low specific gravity, and an exceptional molded appearance through the use of a biomass material comprising: 0.5-10 mass% of (A) derivatized CNF having an average thickness of 10-200 nm, obtained by a production method for dispersing hydrated CNF together with potassium carbonate in an aprotic polar solvent such as DMSO, adding at least one vinyl organic acid, e.g., one among vinyl acetate, vinyl benzoate, and vinyl laurate, then adding vinyl organic acid, reacting for two or more hours at 70-80°C, preferably for two hours at 80°C, and recovering and drying the reaction product after the end of the reaction; and 99.5-90 mass% of (B) a polyolefin resin. 

Description

誘導体化CNF、その製造方法、及びポリオレフィン樹脂組成物Derivatized CNF, process for producing the same, and polyolefin resin composition
 本発明は誘導体化CNF及びその製造方法に関する。
また別の観点から、本発明は、バイオマス材料の利用により環境特性に優れ、かつ衝撃強度の低下が少なく、低比重にして高剛性で成形外観に優れたポリオレフィン樹脂組成物に関する。 
The present invention relates to derivatized CNF and a method for producing the same.
From another point of view, the present invention relates to a polyolefin resin composition that is excellent in environmental characteristics by use of a biomass material, has a small decrease in impact strength, has a low specific gravity, a high rigidity, and an excellent molded appearance.
 近年、環境保護の観点からバイオマス材料が注目されており、自動車、OA・電気電子分野向け材料として天然由来の有機充填材やバイオポリマーとの複合材料が、使用され始めている。また、剛性等の機械的強度や耐熱性を向上させる目的で、樹脂組成にガラス繊維等の無機充填剤を配合する方法が検討されている。しかしこれらの無機充填剤は、大量に加える必要があるため、成形品の比重が増大し、さらに焼却又は廃棄時にゴミとなる残留物が増加して環境に負荷がかかる等の問題がある。 一方で、天然由来のセルロースナノファイバー(以下CNFと記す)は、環境への負荷が少なく、その特性からプラスチックの補強材としての用途が期待されている。
しかしながら、CNFは、その分子内に多数の水酸基を有しており、極めて親水性が高いことが知られている。それゆえ、疎水環境中あるいは乾燥状態では自己凝集を起こす。その結果、極めて疎水性が高く、一般的な熱可塑樹脂であるポリプロピレン(PP)、ポリエチレン(PE)、あるいは、ポリスチレン(PS)などとの間で、CNFと樹脂を混練することは容易ではなく、従来、CNFとポリプロピレン(PP)やポリエチレン(PE)を混練したコンポジットは、期待される機械強度特性を発揮できていない。そのため、疎水環境中でCNFが十分に分散できる手法が求められていた。
In recent years, biomass materials have attracted attention from the viewpoint of environmental protection, and natural-derived organic fillers and composite materials with biopolymers have begun to be used as materials for automobiles, OA and electric / electronic fields. In addition, for the purpose of improving mechanical strength such as rigidity and heat resistance, a method of adding an inorganic filler such as glass fiber to a resin composition has been studied. However, since these inorganic fillers need to be added in a large amount, there are problems that the specific gravity of the molded article is increased, and the residue that becomes dust at the time of incineration or disposal is increased, which imposes a burden on the environment. On the other hand, naturally-derived cellulose nanofibers (hereinafter referred to as CNF) have a low environmental impact, and are expected to be used as plastic reinforcements due to their characteristics.
However, CNF has a large number of hydroxyl groups in its molecule and is known to be extremely hydrophilic. Therefore, self-aggregation occurs in a hydrophobic environment or in a dry state. As a result, it is not easy to knead CNF and resin between polypropylene (PP), polyethylene (PE), polystyrene (PS), etc., which are extremely hydrophobic and are generally thermoplastic resins. Conventionally, composites in which CNF and polypropylene (PP) or polyethylene (PE) are kneaded have not exhibited the expected mechanical strength characteristics. Therefore, there has been a demand for a technique that can sufficiently disperse CNF in a hydrophobic environment.
 一般的にCNFに疎水性置換基を導入して疎水性を付与する場合、非水溶媒中で反応を行う。しかしながら、CNFの場合では高い比表面積上に存在する水酸基の影響で極めて親水性が高い。それゆえ、ナノファイバーから水を除去することは難しく、多段回の溶媒置換や過熱による脱水処理を行う、あるいは有機溶媒中でナノ化した後に置換反応を行う必要があるなど煩雑な操作を必要としていた。 Generally, when a hydrophobic substituent is introduced into CNF to impart hydrophobicity, the reaction is performed in a non-aqueous solvent. However, in the case of CNF, the hydrophilicity is extremely high due to the influence of a hydroxyl group present on a high specific surface area. Therefore, it is difficult to remove water from the nanofibers, which requires complicated operations such as solvent replacement in multiple stages and dehydration by overheating, or the need to carry out a substitution reaction after nanofiguring in an organic solvent. It was.
水媒体中で解繊処理を行うナノファイバーの調製は様々にあるが、例えばCNFの物理的調製方法である水中対向衝突法(以下ACC法と記す)では、特許文献1にも開示されているように、水中に分散させた微粒子を二つのノズルに導入し高圧下で対するノズルから噴射して水中で対向衝突させる。この手法は天然セルロース繊維の他に水しか使用せず、繊維間の相互作用のみを解裂させることによるナノ微細化方法であるため、セルロース分子の構造変化がなく、解裂に伴う重合度低下を最小限にした状態でナノ微細化品を得ることが可能である。これ以外に、特許文献6や特許文献7にも記載されているブレンダー撹拌、グラインダー、マイクロフルイダイザー、高圧ホモジナイザーなどの処理によって機械的に水媒体中でCNFを製造することが出来る。 There are various preparations of nanofibers to be fibrillated in an aqueous medium. For example, the underwater facing collision method (hereinafter referred to as ACC method), which is a physical preparation method of CNF, is also disclosed in Patent Document 1. In this way, the fine particles dispersed in water are introduced into two nozzles and sprayed from the corresponding nozzles under high pressure to collide against each other in water. This method uses only water in addition to natural cellulose fibers, and is a nano-miniaturization method by cleaving only the interaction between fibers, so there is no structural change of the cellulose molecule and the degree of polymerization decreases with cleavage. It is possible to obtain a nano-miniaturized product with a minimum of. In addition to this, CNF can be mechanically produced in an aqueous medium by treatment with a blender stirring, a grinder, a microfluidizer, a high-pressure homogenizer or the like described in Patent Document 6 and Patent Document 7.
 一般にCNF水懸濁液を乾燥させた場合、CNF間の相互作用で強固な凝集体を作り、水や疎水溶媒中に再分散し得ない形態になる。すなわち、アスペクト比の高い(=補強効果の高い)CNFは乾燥すると、再凝固し、再び分散しないという性質があり、ゲル状態、すなわち含水状態で取り扱う必要がある。 Generally, when the CNF aqueous suspension is dried, a strong aggregate is formed by the interaction between the CNFs and cannot be redispersed in water or a hydrophobic solvent. That is, CNF having a high aspect ratio (= high reinforcing effect) has the property of re-solidifying and not dispersing again when dried, and must be handled in a gel state, that is, in a water-containing state.
非特許文献1~非特許文献3にみられるように水溶液中で酢酸ビニルを用いて、デンプンやパルプや木粉をラウリル化する、若しくはアセチル化する方法が広く知られている。また非特許文献4にみられるように塩化脂肪酸を用いてセルロースを疎水化する手法も公知である。
特許文献2、特許文献3は優れた特性を有する繊維複合材料を提供する。カルボキシル基およびアシル基を有する置換基によって修飾されたCNFと、樹脂を含有することを特徴とする繊維複合材料が記載されている。
 特許文献4は広範な有機溶剤可溶な高分子材料との複合化にも好適に用いることができるCNF分散液の製造方法を提供する。カルボン酸塩型の基を有するCNFを水系溶媒に分散させてCNF水分散液を調製する工程と、基をカルボン酸塩型から、有機基を有するアミンのカルボン酸アミン塩型に置換する工程と、カルボン酸アミン塩型の基を有するCNFを、有機溶媒に分散させる工程を有することを特徴とするCNF分散液の製造方法が記載されている。
特許文献5は平均重合度が600以上30000以下であり、アスペクト比が20~10000であり、平均直径が1~800nmであり、X線回折パターンにおいて、Iβ型の結晶ピークを有し、水酸基が修飾基により化学修飾されていることを特徴とするCNFが記載されている。
樹脂組成物については、以下のごとく先行技術が知られている。
特許文献8には、芳香族ポリカーボネート樹脂に脂肪族ポリエステルと天然由来の有機充填材を配合して機械特性及び難燃性に優れた樹脂組成物とするために、天然由来の有機充填材としてジュート繊維やレーヨン繊維を用いて樹脂組成物と複合化した技術が記載されている。
特許文献9には、(A)ポリカーボネート樹脂99~60質量%及び(B)平均繊維径が5~50μmであり、平均繊維長が0.03~1.5mmであるセルロース繊維1~40質量%からなる樹脂混合物100質量部に対し、(C)テルペン系化合物を1~10質量部含むポリカーボネート樹脂組成物であり、バイオマス材料の利用により環境特性に優れ、かつ低比重にして高剛性で成形外観に優れ、さらに熱安定性が良好で、難燃性が付与された樹脂組成物が記載されている。
特許文献10には、セルロースと、分散剤とを含む組成物であって、該分散剤が樹脂親和性セグメントAとセルロース親和性セグメントBとを有し、ブロック共重合体構造又はグラジエント共重合体構造を有するものであることを特徴とする組成物製造技術が記載されている。
特許文献11には、水酸基を有する親水性ナノ繊維の前記水酸基を親水性有機溶媒で溶媒和させ、溶融したプラスチックと混合することを特徴とする親水性ナノ繊維複合材料の製造技術が記載されている。
特許文献12には、分散媒中で、CNFと樹脂との両方が均一に分散している分散液、並びに樹脂中でCNFが均一に含有する樹脂組成物を記載されている。
As seen in Non-Patent Document 1 to Non-Patent Document 3, a method of laurylating or acetylating starch, pulp or wood flour using vinyl acetate in an aqueous solution is widely known. In addition, as shown in Non-Patent Document 4, a method of hydrophobizing cellulose using chlorinated fatty acid is also known.
Patent Documents 2 and 3 provide fiber composite materials having excellent characteristics. A fiber composite material characterized by containing CNF modified with a substituent having a carboxyl group and an acyl group and a resin is described.
Patent Document 4 provides a method for producing a CNF dispersion that can be suitably used for complexing with a wide range of organic solvent-soluble polymer materials. A step of dispersing CNF having a carboxylate type group in an aqueous solvent to prepare a CNF aqueous dispersion, a step of substituting the group from a carboxylate type to a carboxylate amine salt type of an amine having an organic group, and And a method for producing a CNF dispersion characterized in that it comprises a step of dispersing CNF having a carboxylic acid amine salt type group in an organic solvent.
Patent Document 5 has an average degree of polymerization of 600 or more and 30000 or less, an aspect ratio of 20 to 10,000, an average diameter of 1 to 800 nm, an X-ray diffraction pattern having an Iβ type crystal peak, and a hydroxyl group. CNFs are described that are chemically modified with a modifying group.
Regarding resin compositions, the prior art is known as follows.
In Patent Document 8, jute is used as a natural organic filler in order to blend an aliphatic polyester and a natural organic filler into an aromatic polycarbonate resin to obtain a resin composition having excellent mechanical properties and flame retardancy. A technique in which a fiber or rayon fiber is combined with a resin composition is described.
In Patent Document 9, (A) 99 to 60% by mass of a polycarbonate resin and (B) 1 to 40% by mass of cellulose fibers having an average fiber diameter of 5 to 50 μm and an average fiber length of 0.03 to 1.5 mm. (C) A polycarbonate resin composition containing 1 to 10 parts by mass of a terpene compound with respect to 100 parts by mass of a resin mixture, and is excellent in environmental characteristics by using a biomass material, and has a low specific gravity and high rigidity and a molded appearance. In addition, a resin composition having excellent thermal stability and good flame resistance is described.
Patent Document 10 discloses a composition containing cellulose and a dispersant, the dispersant having a resin affinity segment A and a cellulose affinity segment B, and a block copolymer structure or a gradient copolymer. A composition manufacturing technique characterized by having a structure is described.
Patent Document 11 describes a technique for producing a hydrophilic nanofiber composite material, in which the hydroxyl group of a hydrophilic nanofiber having a hydroxyl group is solvated with a hydrophilic organic solvent and mixed with molten plastic. Yes.
Patent Document 12 describes a dispersion in which both CNF and resin are uniformly dispersed in a dispersion medium, and a resin composition in which CNF is uniformly contained in the resin.
特開2005-270891JP 2005-270891 A 特開2011-105799JP2011-105799A 特開2011-148914JP2011-148914A 特開2012-021081JP2012-021081 特開2013-44076JP 2013-44076 特開2010-216021JP 2010-216021 WO2011118746WO2011118746 特開2010-215791号公報JP 2010-215791 A WO/2013/133228WO / 2013/133228 特開2014-162880JP2014-162880 特開2013-170241JP2013-170241A 特開2013-166818JP2013-166818A
 非特許文献1~非特許文献3にあるようにアセチル化する方法は広く知られているものの、CNFに対してはアセチル化では疎水性が充分に確保できず、疎水性の高いポリプロピレンなどのポリオレフィン系樹脂中に均一に分散させるにはより強い疎水性を付与することが必要だという問題がある。
 非特許文献4にみられるように塩化脂肪酸を用いてセルロースを疎水化する手法も公知であるが非水系での反応が必要であり、水を含む反応を行うことはできないという問題がある。
Although the acetylation method is widely known as described in Non-Patent Document 1 to Non-Patent Document 3, acetylation cannot sufficiently secure hydrophobicity for CNF, and polyolefin such as polypropylene having high hydrophobicity. There is a problem that it is necessary to impart stronger hydrophobicity in order to disperse uniformly in the resin.
As seen in Non-Patent Document 4, a method of hydrophobizing cellulose using chlorinated fatty acid is also known, but a non-aqueous reaction is required and there is a problem that a reaction containing water cannot be performed.
 特許文献2の繊維複合材料は、水酸基をカルボキシル基に酸化することでナノファイバー化し、その後脱水してから、酸無水物を使いエステル化して用いるものであり、非水系での反応が行われている。特許文献3の繊維複合材料は、セルロースを無水条件で修飾しており、しかも置換度が1.5-3.0と非常に高く、非特許文献4によると置換度が0.55を超えるとナノファイバーの物理強度が低下することから十分な強度を実現できない。以上の特許文献2、特許文献3では酸無水物ないし酸塩化物を使っているので無水条件が必須となる。 特許文献4はセルロース(グルコース残基)の水酸基をカルボキシル基に変えてCNFを製造し、疎水性の高いアミン類とカルボキシル基の塩を形成し、ナノファイバーに疎水性を与えるというもので、機械的な解繊方法で得られたCNFを処理することができるものではない。特許文献5のCNFはイオン液体を使いナノファイバー化前処理を行う際に同時に無水酢酸でアセチル化し、得られた産物をホモジナイズしナノ化するというもので、ナノファイバーの疎水性と耐熱性が上がるというものである。ACC法で得られたCNFを処理することができるものではなく、一般に無水で誘導体化反応を行うものであり、CNFを含水状態で取り扱う場合、反応性が著しく低下する。また高額なイオン液体を使用するため、現状では工業的に利用することは難しい。
樹脂組成物については、上述のごとくさまざまに試みられているものの、いずれも満足のいく結果が得られていない。特許文献8で得られる樹脂組成物は、衝撃強度の低下が大きく、成形外観が不十分であり、また着色が大きく、成形時の熱安定性も十分ではない。特許文献9に記載の樹脂組成物は低比重であるとはするものの、その比重(g/cm3)は何れの実施例も1.20を超えるものであり、水よりも比重が大きく、構成材料の軽量化という課題に充分に応えるものではない。特許文献10に記載のオレフィン系樹脂との組合せについて、無水マレイン酸変性樹脂を併用しなければCNFを分散できないうえ、併用しても10μm以上の凝集物が多数存在する。また、セルロースは化学修飾を施されており、未修飾のセルロースを用いることができない。さらにテルペン系樹脂は利用されていない。強度レベルにおいても弾性率は向上するものの衝撃強度が著しく低下するものである。特許文献11に記載の技術では、低級脂肪族アルコールで溶媒和し溶媒置換する必要があり含水状態のナノ繊維を直接用いることが出来ない。さらにテルペン系樹脂は利用されていない。特許文献12に記載の技術では、マイクロレベルの凝集物が存在し、且つCNFはビーズミルで調製されており重合度を低下させるものである。また、マレイン酸変性樹脂を併用している。さらにテルペン系樹脂は利用されていない。
一般に、CNFによってポリオレフィン系樹脂を補強しようとした場合、親水性の高いCNFが疎水性の高いポリオレフィン樹脂中で凝集し充分な補強効果は得られなかった。さらに、その生じる凝集物により透明性が大きく低下するという問題が生じていた。 
 
The fiber composite material of Patent Document 2 is a nanofiber obtained by oxidizing a hydroxyl group to a carboxyl group, and then dehydrated and then esterified using an acid anhydride, and a non-aqueous reaction is performed. Yes. In the fiber composite material of Patent Document 3, cellulose is modified under anhydrous conditions, and the degree of substitution is as high as 1.5 to 3.0. According to Non-Patent Document 4, the degree of substitution exceeds 0.55. Sufficient strength cannot be realized because the physical strength of nanofibers is reduced. In the above Patent Documents 2 and 3, since acid anhydrides or acid chlorides are used, anhydrous conditions are essential. Patent Document 4 manufactures CNF by changing the hydroxyl group of cellulose (glucose residue) to a carboxyl group, forms a highly hydrophobic amine and a carboxyl group salt, and imparts hydrophobicity to the nanofiber. CNF obtained by a conventional defibrating method cannot be processed. CNF of Patent Document 5 is acetylated with acetic anhydride at the same time as nanofiber pretreatment using an ionic liquid, and the resulting product is homogenized and nanonized, increasing the hydrophobicity and heat resistance of the nanofibers That's it. The CNF obtained by the ACC method cannot be treated, and generally the derivatization reaction is performed in an anhydrous manner. When CNF is handled in a water-containing state, the reactivity is significantly lowered. Moreover, since an expensive ionic liquid is used, it is difficult to use industrially at present.
Although various attempts have been made for resin compositions as described above, satisfactory results have not been obtained in any case. The resin composition obtained in Patent Document 8 has a large reduction in impact strength, an insufficient molded appearance, a large coloration, and insufficient thermal stability during molding. Although the resin composition described in Patent Document 9 is said to have a low specific gravity, the specific gravity (g / cm 3) exceeds 1.20 in all examples, and the specific gravity is larger than that of water. It does not fully meet the problem of weight reduction. Regarding the combination with the olefin resin described in Patent Document 10, CNF cannot be dispersed unless a maleic anhydride-modified resin is used in combination, and even if used together, there are many aggregates of 10 μm or more. Cellulose is chemically modified, and unmodified cellulose cannot be used. Furthermore, terpene resins are not used. Even at the strength level, the elastic modulus is improved, but the impact strength is remarkably lowered. In the technique described in Patent Document 11, it is necessary to solvate with a lower aliphatic alcohol and replace the solvent, and the nanofiber in a water-containing state cannot be used directly. Furthermore, terpene resins are not used. In the technique described in Patent Document 12, micro-level aggregates are present, and CNF is prepared by a bead mill, which lowers the degree of polymerization. Moreover, the maleic acid modified resin is used together. Furthermore, terpene resins are not used.
In general, when trying to reinforce a polyolefin-based resin with CNF, highly hydrophilic CNF aggregates in a highly hydrophobic polyolefin resin, and a sufficient reinforcing effect cannot be obtained. Further, there is a problem that transparency is greatly lowered due to the resulting aggregate.
 本発明は、CNF表面に存在する水酸基がエステル化された誘導体化CNF及びその製造方法を提供する。上述の従来技術における問題に対し、かかる誘導体化CNFは、結晶構造が維持され、かつ、機械特性が損なわれない一方で、含水CNFが有していた高い親水性が打消され、ポリエチレンやポリプロピレン等のポリオレフィンをはじめとした疎水性樹脂への相溶性が向上する。また、完全に乾燥することが可能で、混練時の水分の影響や、輸送コストなどが削減できる。
さらに別の観点から、本発明は、以上の従来技術における問題に鑑み、バイオマス材料の利用により環境特性に優れ、かつ衝撃強度の低下が少なく、低比重にして高剛性で成形外観に優れた樹脂組成物を提供する。また前記複合樹脂には、より高い補強効果と透明性が付与される。 ここにおいて、本発明のポリオレフィン‐CNF複合樹脂は、CNFの代わりに表面疎水化CNFを補強材として用い、高速撹拌混合および二軸押出混練によって、ポリオレフィンと複合化して製造する。
本発明者らは、鋭意研究を重ねた結果、以下を見出した。すなわち、CNF表面に存在する水酸基による水素結合を阻害すれば、ポリオレフィン樹脂混練時の疎水性環境下での凝集を防ぎ、複合樹脂の機械強度特性を改善できる。あるいは、この水素結合を阻害すると同時に疎水性を付与すれば、ポリオレフィン等の疎水性樹脂への相溶性を増加させ、複合樹脂の機械特性をさらに改善できる。その結果、バイオマス材料として特定の平均繊維径及び平均繊維長を有し、疎水性が付与された誘導体化CNFをポリオレフィン樹脂へ特定量配合することにより、上記課題を解決できる。
The present invention provides a derivatized CNF in which a hydroxyl group present on the CNF surface is esterified and a method for producing the same. In contrast to the above-described problems in the prior art, such derivatized CNF maintains the crystal structure and does not impair the mechanical properties, while canceling the high hydrophilicity that water-containing CNF had, such as polyethylene and polypropylene. Compatibility with hydrophobic resins such as polyolefins is improved. Further, it can be completely dried, and the influence of moisture during kneading and transportation costs can be reduced.
From another point of view, in view of the above problems in the prior art, the present invention is a resin that is excellent in environmental characteristics due to the use of biomass material, has a low decrease in impact strength, has a low specific gravity, high rigidity, and excellent molded appearance. A composition is provided. The composite resin is imparted with a higher reinforcing effect and transparency. Here, the polyolefin-CNF composite resin of the present invention is produced by using a surface-hydrophobized CNF instead of CNF as a reinforcing material, and compounding with polyolefin by high-speed stirring mixing and biaxial extrusion kneading.
As a result of intensive studies, the present inventors have found the following. That is, if hydrogen bonding by hydroxyl groups present on the CNF surface is inhibited, aggregation in a hydrophobic environment during kneading of the polyolefin resin can be prevented, and the mechanical strength characteristics of the composite resin can be improved. Alternatively, if this hydrogen bond is inhibited and at the same time hydrophobicity is imparted, the compatibility with a hydrophobic resin such as polyolefin can be increased, and the mechanical properties of the composite resin can be further improved. As a result, the above-mentioned problems can be solved by blending a specific amount of derivatized CNF having a specific average fiber diameter and average fiber length and imparted hydrophobicity as a biomass material into the polyolefin resin.
 まず、本発明は有機酸ビニルを用いてCNFを疎水化せしめる方法であって、例えば酢酸ビニル、安息香酸ビニル、ラウリン酸ビニルなどを用いてCNF表面に露出した水酸基をエステル化する表面修飾化の手法である。
 すなわち本発明の誘導体化CNFの製造方法は、含水CNFを親水性有機溶媒に分散した溶液に有機酸ビニルを加え、反応終了後の反応液に沈殿を生じさせ、その沈殿を回収し、乾燥することを特徴とする。あるいは、トルエンなどの疎水性有機溶媒により抽出、回収してもよい。CNFのナノ構造を維持したまま脱水する場合、煩雑な操作を伴うが、含水CNFと有機溶媒を混合することにより、容易に、反応液中にCNFのナノ構造を維持したまま、疎水性の誘導体化CNFを均一に溶解することが可能となる。
 また本発明の誘導体化CNFの製造方法は、含水CNFを、炭酸カリウムと共にCNFに対し十分な分散性を有する有機溶媒中に添加し、有機酸ビニルを加え、反応終了後の反応生成物を回収し、乾燥することを特徴とする。
First, the present invention is a method for hydrophobizing CNF using vinyl organic acid, and for example, surface modification of esterifying hydroxyl groups exposed on the surface of CNF using vinyl acetate, vinyl benzoate, vinyl laurate or the like. It is a technique.
That is, in the method for producing derivatized CNF of the present invention, organic acid vinyl is added to a solution in which hydrous CNF is dispersed in a hydrophilic organic solvent, and a precipitate is generated in the reaction solution after completion of the reaction, and the precipitate is recovered and dried. It is characterized by that. Or you may extract and collect | recover with hydrophobic organic solvents, such as toluene. When dehydrating while maintaining the nanostructure of CNF, it involves a complicated operation. By mixing water-containing CNF and an organic solvent, a hydrophobic derivative can be easily maintained while maintaining the nanostructure of CNF in the reaction solution. CNF can be dissolved uniformly.
In the method for producing derivatized CNF of the present invention, water-containing CNF is added to an organic solvent having sufficient dispersibility with respect to CNF together with potassium carbonate, organic acid vinyl is added, and the reaction product after completion of the reaction is recovered. And drying.
さらに別の観点からは、本発明は、下記のポリオレフィン樹脂組成物に関する。 すなわち、(A)平均太さ10~200nmであり、多糖を高圧水流にて解繊してなるCNFを誘導体化した誘導体化CNF1~10質量%及び(B)ポリオレフィン樹脂99~90質量%からなることを特徴とするポリオレフィン樹脂組成物である。 ここにおいて、前記誘導体化CNFは有機酸ビニルを用いて疎水誘導体化されてなるのがよく、例えば、ラウリル酸ビニルを用いて疎水誘導体化されてなる誘導体化CNFがあげられる。また、(A)前記CNFは、0.5~10質量%の水混合液にした多糖に対し、50~400MPa程度の高圧水を衝突させることによって得られるものがよい。 さらに、前記ポリオレフィンはポリプロピレン、ポリエチレン、ポリブタジエン、ポリイソプレンとすることができるほか、この技術はポリオレフィンのみに適応するものではなく、300℃以下で成形加工可能なその他汎用プラスチックへの適応も可能である。300℃以上の場合、セルロースの分解が生じてしまう。
本発明の複合化樹脂の製造方法は有機溶媒で膨潤状態とした疎水誘導体化CNFを、ポリオレフィンと高速撹拌する前処理工程の後、溶融混練することを特徴とする。
 
From still another aspect, the present invention relates to the following polyolefin resin composition. That is, (A) an average thickness of 10 to 200 nm, derivatized CNF obtained by derivatizing a polysaccharide with a high-pressure water stream and derivatized CNF 1 to 10% by mass, and (B) a polyolefin resin 99 to 90% by mass. This is a polyolefin resin composition. Here, the derivatized CNF may be hydrophobically derivatized with an organic acid vinyl, and examples thereof include derivatized CNF which is hydrophobically derivatized with vinyl laurate. Further, (A) the CNF is preferably obtained by colliding high pressure water of about 50 to 400 MPa with a polysaccharide in a water mixture of 0.5 to 10% by mass. Furthermore, the polyolefin can be polypropylene, polyethylene, polybutadiene, polyisoprene, and this technology is not only applicable to polyolefins, but can also be applied to other general-purpose plastics that can be molded at 300 ° C. or lower. . In the case of 300 ° C. or higher, decomposition of cellulose occurs.
The method for producing a composite resin of the present invention is characterized in that a hydrophobic derivatized CNF swollen with an organic solvent is melt-kneaded after a pretreatment step of stirring at high speed with a polyolefin.
 本発明の誘導体化CNFの製造方法によればCNFの高い親水性を打消し、疎水性を付与することができる。本発明の誘導体化CNFの製造方法によって得られる本発明の誘導体化CNFは、完全に乾燥することが可能となり、ポリオレフィンなどの疎水性樹脂への相溶性が向上し、プラスチックとの混練時の水分の影響や、輸送コストなどを削減することができる。
According to the method for producing derivatized CNF of the present invention, the high hydrophilicity of CNF can be canceled and hydrophobicity can be imparted. The derivatized CNF of the present invention obtained by the method for producing the derivatized CNF of the present invention can be completely dried, has improved compatibility with a hydrophobic resin such as polyolefin, and has water content during kneading with plastic. Impact and transportation costs can be reduced.
CNFの製造(解繊処理)装置の一例の概念図である。It is a conceptual diagram of an example of the manufacturing (defibration process) apparatus of CNF. 図1におけるCNFの製造(解繊処理)装置の一部を拡大して示す概念図である。It is a conceptual diagram which expands and shows a part of CNF manufacturing (defibration process) apparatus in FIG. 他の例におけるCNFの製造(解繊処理)装置の概念図である。It is a key map of the manufacture (defibration processing) device of CNF in other examples. さらに他の例におけるCNFの製造(解繊処理)装置の概念図である。It is a conceptual diagram of the manufacture (defibration process) apparatus of CNF in another example. CNFのナノ化処理(解繊処理)後のSPM画像でありaはA解繊、bはC解繊を示し、スケールは縦・横 2.5μmとした。It is a SPM image after nano-processing (defibration processing) of CNF, a indicates A defibration, b indicates C defibration, and the scale is set to 2.5 μm in length and width. 各種誘導体化反応液のトルエン抽出結果を示す写真であり、左から、アセチル化、ベンジル化、2-エチルヘキシル化、ラウリル化CNF。It is a photograph which shows the toluene extraction result of various derivatization reaction liquids, and acetylation, benzylation, 2-ethylhexylation, laurylation CNF is shown from the left. ラウリル化反応溶液トルエン抽出液中のCNFのSEM観察像(5000倍)。SEM observation image (5000 times) of CNF in the laurylation reaction solution toluene extract. 各種エステル化CNF乾燥シートの撥水性を示す写真であり、左から、アセチル化、ベンジル化、2-エチルヘキシル化、ラウリル化CNF。It is a photograph showing the water repellency of various esterified CNF dry sheets. From the left, acetylated, benzylated, 2-ethylhexylated, laurylated CNF. 異なる解繊度、水分量によるラウリル化反応性の違いを示す図。The figure which shows the difference in the laurylation reactivity by a different defibration degree and a water content. 温度によるラウリル化反応性の違いを示す図。The figure which shows the difference in the laurylation reactivity by temperature. 非極性溶媒中でのラウリル化CNF分散状態を示し、A:トルエンおよびデカリン分散液の様子、B:トルエン分散液中の繊維のSEM観察図(×5,000)、C:デカリン分散液中の繊維のSEM観察図(×5,000)。Shows the state of laurylated CNF dispersion in a nonpolar solvent, A: appearance of toluene and decalin dispersion, B: SEM observation diagram of fibers in toluene dispersion (× 5,000), C: in decalin dispersion SEM observation figure (* 5,000) of a fiber. CNF1.5%を含む反応系内における炭酸カリウムとCNFの比率によるラウリル化反応性の違いを示し、●:反応系含水率6%、○:反応系含水率10%。The difference in laurylation reactivity depending on the ratio of potassium carbonate and CNF in the reaction system containing 1.5% of CNF is shown, ●: water content of reaction system 6%, ○: water content of reaction system 10%. アセチル化CNF、ラウリル化CNF、ラウリル‐アセチル化CNFの赤外吸収スペクトル。Infrared absorption spectra of acetylated CNF, laurylated CNF, lauryl-acetylated CNF. 加水分解前後のCNFおよび各種誘導体化CNFのX線結晶回折スペクトル。X-ray crystal diffraction spectra of CNF before and after hydrolysis and various derivatized CNFs. ラウリン酸エステル化反応における反応時間と重量増加率、置換率との関係。Relationship between reaction time, weight increase rate and substitution rate in laurate esterification reaction. PE-CNF及びLauCNF等複合樹脂の引張強度特性を示す図。The figure which shows the tensile strength characteristic of composite resin, such as PE-CNF and LauCNF. PE-CNF及びLauCNF等複合樹脂の曲げ強度特性を示す図。The figure which shows the bending strength characteristic of composite resin, such as PE-CNF and LauCNF. 5%CNF(左)又はラウリル化CNF(右)を混練した本発明のポリプロピレン複合樹脂シートの顕微鏡写真。The microscope picture of the polypropylene composite resin sheet of this invention which knead | mixed 5% CNF (left) or laurylated CNF (right). ポリプロピレンおよび本発明によって得られたラウリル化CNF配合ポリプロピレン複合樹脂フィルムの光透過性。Light transmittance of polypropylene and a laurylated CNF-containing polypropylene composite resin film obtained by the present invention. 本発明によって得られたラウリル化CNF又はCNFとPPの複合樹脂化がその機械強度特性に与える影響、丸印:弾性率、菱型:最大応力、三角形:最大点ひずみ、黒塗り(グラフ左):ラウリル化CNF配合、白抜き(グラフ右):CNF配合。Effects of laurylated CNF or composite resin of CNF and PP obtained by the present invention on mechanical strength properties, circles: elastic modulus, diamonds: maximum stress, triangles: maximum point strain, black (left graph) : Laurylated CNF blend, white (right graph) : CNF blend. 異なる配合率のラウリル化CNF複合ポリエチレン樹脂の引張・曲げ弾性率の変動、実線:引張弾性率、破線:曲げ弾性率、黒塗り:ラウリル化CNF配合品、白抜き:CNF配合品。Variations in tensile and bending elastic moduli of laurylated CNF composite polyethylene resins having different compounding ratios, solid line: tensile elastic modulus, broken line: bending elastic modulus, black coating: laurylated CNF compound, white: CNF compound.
 以下、本発明の誘導体化CNFの製造法について詳細に説明する。 Hereinafter, the production method of the derivatized CNF of the present invention will be described in detail.
まず、CNFの調製方法について説明する。本発明において、CNFとしては例えば、木材繊維、竹繊維、サトウキビ繊維、種子毛繊維、葉繊維等の天然の植物を含む多糖由来のCNFが挙げられ、これらCNFは一種を単独で又は二種以上を混合して用いてもよい。また多糖としてはα-セルロース含有率60%~99質量%のパルプを用いるのが好ましい。α-セルロース含有率60質量%以上の純度であれば繊維径及び繊維長さが調整しやすくなって繊維同士の絡み合いを抑えることができ、α-セルロース含有率60質量%未満のものを用いた場合に比べ、溶融時の熱安定性が高く、衝撃強度の低下を引き起こすことがないほか、着色抑制効果が良好であり、本発明の効果をより優れたものとすることができる。一方、99質量%以上のものを用いた場合、繊維をナノレベルに解繊することが困難になる。 First, a method for preparing CNF will be described. In the present invention, examples of CNF include polysaccharide-derived CNF including natural plants such as wood fiber, bamboo fiber, sugarcane fiber, seed hair fiber, and leaf fiber. These CNFs may be used alone or in combination of two or more. May be used in combination. As the polysaccharide, it is preferable to use pulp having an α-cellulose content of 60% to 99% by mass. If the purity is α-cellulose content 60% by mass or more, the fiber diameter and fiber length can be easily adjusted, and entanglement between fibers can be suppressed, and the α-cellulose content less than 60% by mass is used. Compared to the case, the thermal stability at the time of melting is high, the impact strength is not lowered, the coloration suppressing effect is good, and the effect of the present invention can be further improved. On the other hand, when 99% by mass or more is used, it becomes difficult to defibrate the fibers to the nano level.
 本発明におけるCNFは、多糖を高圧水流にて解繊してなる。 多糖の高圧水流による解繊は、0.5~10質量%の水混合液にした多糖に対し、50~400MPa程度の高圧水を衝突させて行う。これは例えば図1に示すCNFの製造装置1を用いて行うことができる。CNFの製造装置1は、一のチャンバー2に対して多糖スラリを供給可能に配置される第1の液状媒体供給経路であるところの多糖スラリ供給経路3と、例えば水である非多糖スラリを一のチャンバー2を介して循環させる第2の液状媒体供給経路4とよりなる。一のチャンバー2内には第2の液状媒体供給経路4の非多糖スラリを多糖スラリ供給経路3からの多糖スラリ供給方向と交差する方向にオリフィス噴射するオリフィス噴射部5を備える。多糖スラリ供給経路3は、多糖スラリを一のチャンバー2を介して循環可能にされる。 CNF in the present invention is obtained by fibrillating polysaccharides with a high-pressure water stream.解 Degradation of polysaccharides by high-pressure water flow is carried out by colliding high-pressure water of about 50-400 MPa against polysaccharides in a water mixture of 0.5-10% by mass. This can be performed using, for example, the CNF manufacturing apparatus 1 shown in FIG. The CNF manufacturing apparatus 1 includes a polysaccharide slurry supply path 3 that is a first liquid medium supply path arranged so as to be able to supply a polysaccharide slurry to one chamber 2 and a non-polysaccharide slurry that is, for example, water. And a second liquid medium supply path 4 that is circulated through the chamber 2. In one chamber 2, there is provided an orifice injection unit 5 that performs orifice injection of the non-polysaccharide slurry in the second liquid medium supply path 4 in a direction intersecting the polysaccharide slurry supply direction from the polysaccharide slurry supply path 3. The polysaccharide slurry supply path 3 is configured such that the polysaccharide slurry can be circulated through the one chamber 2.
 多糖スラリ供給経路3と第2の液状媒体供給経路4とは一のチャンバー2内に相互の交差部6を有する。
 多糖スラリ供給経路3は多糖スラリ供給部であり多糖スラリを貯留するタンク7、ポンプ8を循環路9に配置してなり、一方、第2の液状媒体供給経路4はタンク10、ポンプ11、熱交換器12、プランジャ13を循環路である液状媒体供給経路4に配置してなる。
The polysaccharide slurry supply path 3 and the second liquid medium supply path 4 have a mutual intersection 6 in one chamber 2.
The polysaccharide slurry supply path 3 is a polysaccharide slurry supply unit, and is configured by arranging a tank 7 and a pump 8 for storing the polysaccharide slurry in the circulation path 9, while the second liquid medium supply path 4 is a tank 10, a pump 11, a heat The exchanger 12 and the plunger 13 are arranged in the liquid medium supply path 4 which is a circulation path.
 なお非多糖スラリは、例えば水であり、当初タンク10に収納され、その後CNFの製造装置1の作動に伴い交差部6を通過してタンク10に収納されたナノ微細化された多糖を操業の度合いに応じた濃度で含むことになった状態のものをも、包括的に指称する。 The non-polysaccharide slurry is, for example, water, and is initially stored in the tank 10, and then the nano-sized polysaccharide stored in the tank 10 through the intersection 6 with the operation of the CNF manufacturing apparatus 1 is operated. Those in a state where they are contained at a concentration corresponding to the degree are also referred to generically.
 図2に示すようにチャンバー2を貫通する態様で多糖スラリ供給経路3の循環路9が配置され、これと交差する方向に非多糖スラリをオリフィス噴射して循環路9を貫通させることができるように第2の液状媒体供給経路4のプランジャ13に接続されるオリフィス噴射部5のオリフィス噴射口14がチャンバー2内側において開口する。チャンバー2のオリフィス噴射口14と対向する位置にチャンバー2の排出口15が設けられ、このチャンバー2の排出口15に第2の液状媒体供給経路4の循環路が接続されて、第2の液状媒体供給経路4が構成される。 As shown in FIG. 2, the circulation path 9 of the polysaccharide slurry supply path 3 is arranged so as to penetrate the chamber 2, and the non-polysaccharide slurry can be injected through the orifice in a direction crossing the polysaccharide slurry supply path 3 so as to penetrate the circulation path 9. In addition, the orifice injection port 14 of the orifice injection unit 5 connected to the plunger 13 of the second liquid medium supply path 4 opens inside the chamber 2. A discharge port 15 of the chamber 2 is provided at a position facing the orifice injection port 14 of the chamber 2, and a circulation path of the second liquid medium supply path 4 is connected to the discharge port 15 of the chamber 2, so that the second liquid state A medium supply path 4 is configured.
 一方、多糖スラリ供給経路3の循環路9は例えばビニルホース、ゴムホース等を用いて形成され、その循環路9のチャンバー2への入り側にはチャンバー2方向にのみ開弁される一方向弁16が取りつけられる。さらに循環路9のチャンバー2からの出側にはチャンバー2からの排出方向にのみ開弁される一方向弁17が取りつけられる。加えてチャンバー2と一方向弁17の間の循環路9にはエア吸入弁18が取りつけられ、このエア吸入弁18は外部から循環路9へエアを吸入する方向にのみ開弁される。 On the other hand, the circulation path 9 of the polysaccharide slurry supply path 3 is formed using, for example, a vinyl hose, a rubber hose or the like, and the one-way valve 16 opened only in the direction of the chamber 2 on the entry side of the circulation path 9 into the chamber 2. Is attached. Furthermore, a one-way valve 17 that is opened only in the direction of discharge from the chamber 2 is attached to the exit side of the circulation path 9 from the chamber 2. In addition, an air suction valve 18 is attached to the circulation path 9 between the chamber 2 and the one-way valve 17, and the air suction valve 18 is opened only in the direction of sucking air from the outside into the circulation path 9.
 以上のCNFの製造装置によれば、以下のようにしてCNFが製造される。
 非多糖スラリーをチャンバー2を介して第2の液状媒体供給経路4を循環させる。具体的にはポンプ11を用いてタンク10内の非多糖スラリを熱交換器12、プランジャ13を通過させて液状媒体供給経路4内を循環させる。一方、多糖スラリーをチャンバー2を介して多糖スラリ供給経路3内を循環させる。具体的にはポンプ8を用いてタンク7内の多糖スラリをビニルホース、ゴムホース等を用いて形成された循環路9内を循環させる。
According to the above CNF manufacturing apparatus, CNF is manufactured as follows.
The non-polysaccharide slurry is circulated through the second liquid medium supply path 4 through the chamber 2. Specifically, the non-polysaccharide slurry in the tank 10 is circulated through the liquid medium supply path 4 by passing through the heat exchanger 12 and the plunger 13 using the pump 11. On the other hand, the polysaccharide slurry is circulated through the polysaccharide slurry supply path 3 through the chamber 2. Specifically, the polysaccharide slurry in the tank 7 is circulated through the circulation path 9 formed using a vinyl hose, a rubber hose, or the like, using the pump 8.
 これにより、多糖スラリ供給経路3内を循環してチャンバー2内を流通する多糖スラリに対して第2の液状媒体供給経路4を循環する非多糖スラリがオリフィス噴射される。具体的にはプランジャ13に接続されるオリフィス噴射口14にプランジャ13から高圧水が供給され、これがオリフィス噴射口14から循環路9に向けて50~400MPa程度の高圧でオリフィス噴射される。 Thereby, the non-polysaccharide slurry circulating in the second liquid medium supply path 4 is orifice-injected with respect to the polysaccharide slurry circulating in the polysaccharide slurry supply path 3 and flowing in the chamber 2. Specifically, high-pressure water is supplied from the plunger 13 to the orifice injection port 14 connected to the plunger 13, and this is orifice-injected from the orifice injection port 14 toward the circulation path 9 at a high pressure of about 50 to 400 MPa.
 その結果、例えばビニルホース、ゴムホース等を用いて形成された循環路9に予め形成された貫通孔26a、bを通過して、循環路9と交差する方向に循環路9内側を通過した非多糖スラリが循環路9内を循環する多糖スラリを巻き込みながらチャンバー2の排出口15に向けて排出され、第2の液状媒体供給経路4に流入する。これによって、非多糖スラリが第2の液状媒体供給経路4内を再度循環する。
 以上のプロセスを反復する過程で多糖スラリ供給経路3内を循環してチャンバー2内を流通する多糖スラリ及び第2の液状媒体供給経路4を循環する非多糖スラリ中の多糖が徐々に解繊されて、用途に応じた解繊度合いの均一性の高いCNFが得られる。
As a result, the non-polysaccharide that has passed through the inside of the circulation path 9 in a direction crossing the circulation path 9 through the through holes 26a, b formed in advance in the circulation path 9 formed using, for example, a vinyl hose or a rubber hose The slurry is discharged toward the discharge port 15 of the chamber 2 while entraining the polysaccharide slurry circulating in the circulation path 9 and flows into the second liquid medium supply path 4. As a result, the non-polysaccharide slurry is circulated again in the second liquid medium supply path 4.
In the process of repeating the above process, the polysaccharide in the polysaccharide slurry supply path 3 and the polysaccharide in the non-polysaccharide slurry circulating in the second liquid medium supply path 4 are gradually defibrated. Thus, CNF having a high degree of defibration according to the application can be obtained.
 その他に多糖を高圧水流にて解繊してCNFを調製する手法としては特開2012-36518に記載された破砕型ホモバルブシートを備えたホモジナイザーで原料繊維を溶媒に分散させた分散液を処理するホモジナイズ処理法がある。図3に示されるようにこのホモジナイズ処理法によれば高圧でホモジナイザー内を圧送される原料繊維101が、狭い間隙である小径オリフィス102を通過する際に、小径オリフィス102の壁面(特にインパクトリング103の壁面)と衝突することにより、剪断応力又は切断作用を受けて分割され、均一な繊維径を有するミクロフィブリル化が行われる。 In addition, as a method for preparing CNF by defibrating polysaccharides with a high-pressure water stream, a dispersion liquid in which raw fibers are dispersed in a solvent is treated with a homogenizer equipped with a crushing type homovalve sheet described in JP 2012-36518 A. There is a homogenization method. As shown in FIG. 3, according to this homogenization treatment method, when the raw material fiber 101 pumped through the homogenizer at a high pressure passes through the small diameter orifice 102 which is a narrow gap, the wall surface of the small diameter orifice 102 (particularly the impact ring 103). And microfibrillation having a uniform fiber diameter is performed by being subjected to shear stress or cutting action.
 さらに多糖を高圧水流にて解繊してCNFとする手法としては、特開2005-270891に記載された水中対向衝突法がある。これは、水に懸濁した天然セルロース繊維をチャンバー(図4:107)内で相対する二つのノズル(図4:108a,108b)に導入し、これらのノズルから一点に向かって噴射、衝突させる手法である(図4)。この手法によれば、天然微結晶セルロース繊維(例えば、フナセル)の懸濁水を対向衝突させ、その表面をナノフィブリル化させて引き剥がし、キャリアーである水との親和性を向上させることによって、最終的には溶解に近い状態に至らせることが可能となる。図4に示される装置は液体循環型となっており、タンク(図4:109)、プランジャ(図4:110)、対向する二つのノズル(図4:108a,108b)、必要に応じて熱交換器(図4:111)を備え、水中に分散させた微粒子を二つのノズルに導入し高圧下で合い対するノズル(図4:108a,108b)から噴射して水中で対向衝突させる。この手法では天然セルロース繊維の他には水しか使用せず、繊維間の相互作用のみを解裂させることによってナノ微細化を行うためセルロース分子の構造変化がなく、解裂に伴う重合度低下を最小限にした状態でCNFを得ることが可能となる。 Furthermore, as a method for defibrating polysaccharides with a high-pressure water stream to obtain CNF, there is an underwater facing collision method described in JP-A-2005-270891. This is because natural cellulose fibers suspended in water are introduced into two nozzles (FIG. 4: 108a, 108b) facing each other in the chamber (FIG. 4: 107), and jetted and collided from these nozzles toward one point. This is a technique (FIG. 4). According to this technique, the suspension water of natural microcrystalline cellulose fibers (for example, funacell) is collided oppositely, the surface is nanofibrillated and peeled off, and the affinity with water as a carrier is improved. In particular, it becomes possible to reach a state close to dissolution. The device shown in FIG. 4 is of a liquid circulation type, and has a tank (FIG. 4: 109), a plunger (FIG. 4: 110), two opposing nozzles (FIG. 4: 108a, 108b), and heat as necessary. An exchanger (FIG. 4: 111) is provided, and fine particles dispersed in water are introduced into two nozzles and sprayed from the nozzles (FIG. 4: 108a, 108b) facing each other under high pressure to collide against each other in water. In this method, only water is used in addition to natural cellulose fibers, and only the interaction between the fibers is cleaved. CNF can be obtained in a minimized state.
 以上の様にして得るCNFは、水分散状態における固形分濃度が20%以上とすることによって分散剤との馴染みが改善し、凝集物を生成しにくい。そのためポリオレフィン樹脂に対して効率的に分散することができる。固形分濃度が20%未満である場合には、構造の一部に疎水性を有する分散剤との相溶性が悪く、CNF同士で凝集物を生成しやすいため、その凝集物がポリオレフィン中での分散性の悪化要因となる。さらに、混練時の樹脂温度の低下により混練時の不均一なせん断力を招く結果となり、そのため混練過程での均一分散の障害となっており好ましくない。さらには、混練装置の温度上昇を妨げるため熱エネルギーのロスを招くことになる。 The CNF obtained as described above has a solid content concentration in an aqueous dispersion state of 20% or more, so that the familiarity with the dispersant is improved and it is difficult to produce an aggregate. Therefore, it can disperse | distribute efficiently with respect to polyolefin resin. When the solid content concentration is less than 20%, the compatibility with a dispersant having a hydrophobic property in a part of the structure is poor, and it is easy to generate aggregates between CNFs. It becomes a factor of deterioration of dispersibility. Furthermore, a decrease in the resin temperature during kneading results in non-uniform shearing force during kneading, which is an undesirable obstacle to uniform dispersion during the kneading process. Furthermore, since the temperature rise of the kneading apparatus is hindered, a loss of heat energy is caused.
 本発明の誘導体化CNFの製造方法は、セルロースファイバーに有機酸ビニルを加えることを特徴とし、その態様としては例えば含水CNFに有機酸ビニル、例えば酢酸ビニル及び安息香酸ビニル及びラウリン酸ビニルのうちの少なくとも1以上を加える態様がある。
この様にCNFを疎水化するために、ビニルエステルを使用すると水を含んでいてもCNFをエステル化できる。
The method for producing a derivatized CNF of the present invention is characterized in that an organic acid vinyl is added to cellulose fiber, and for example, an organic acid vinyl such as vinyl acetate, vinyl benzoate and vinyl laurate is added to hydrous CNF. There exists an aspect which adds at least 1 or more.
Thus, in order to hydrophobize CNF, when vinyl ester is used, CNF can be esterified even if it contains water.
  CNFは繊維状多糖を物理的処理によってナノ微細化して得られるものでよく、この物理的処理としてACC法を適用することができる。
 このACC法によって得られるCNFは、繊維間の相互作用のみを解裂させてナノ微細化を行うことによって得られる結果、化学修飾が施されておらず、セルロース分子構造の損傷や重合度の低下が抑制されている一方、水に懸濁した状態でしか得られず、そのことが利用性を妨げる要因となっていた。しかし、本発明の誘導体化CNFの製造方法によれば、水に懸濁した状態で得られるCNFをそのまま疎水化することができるため、ACC法等によって得られるCNFの工業的利用性を飛躍的に向上させることができる。
 また繊維状多糖としてパルプを用いることができ、パルプとしては、広葉樹や針葉樹といった木本植物、竹や葦といった草本植物を原料とした化学パルプ、機械パルプ及び古紙を用いることができる。
CNF may be obtained by nano-miniaturization of a fibrous polysaccharide by physical treatment, and the ACC method can be applied as this physical treatment.
The CNF obtained by this ACC method is obtained by cleaving only the interaction between fibers and performing nano-miniaturization. As a result, the chemical modification is not performed, the cellulose molecular structure is damaged and the degree of polymerization is reduced. On the other hand, it was obtained only in a state suspended in water, and this was a factor that hindered utilization. However, according to the method for producing derivatized CNF of the present invention, CNF obtained in a suspended state in water can be hydrophobized as it is, so that the industrial applicability of CNF obtained by the ACC method or the like is dramatically improved. Can be improved.
Pulp can be used as the fibrous polysaccharide, and as the pulp, woody plants such as hardwoods and conifers, chemical pulps made from herbaceous plants such as bamboo and bamboo, mechanical pulps and waste paper can be used.
 含水CNFは例えば竹BKPを所要のパス数でACC処理し、プレス脱水して得られ、含水率が90%以下のものであるが、これに限らず木本類、草木類から得られたパルプを用い、グラインダー、ホモジナイザーなどの機械的な処理で調製したCNFを用いることもできる。また、遠心分離、乾燥濃縮などの方法で含水率を90%以下にしたものでもよい。しかしながら、含水率が90%を上回ると、反応系内に持ち込まれる水分量が過多になり生産効率が低下していくため、工業的生産が困難で。含水率は好ましくは85%以下、さらに好ましくは80%以下である。 Water-containing CNF is obtained, for example, by ACC treatment of bamboo BKP with the required number of passes, press dewatering, and has a water content of 90% or less, but is not limited to this, pulp obtained from woods and plants CNF prepared by mechanical processing such as a grinder or a homogenizer can also be used. Further, the water content may be 90% or less by a method such as centrifugation or dry concentration. However, if the water content exceeds 90%, the amount of water brought into the reaction system becomes excessive, and the production efficiency decreases, so that industrial production is difficult. The water content is preferably 85% or less, more preferably 80% or less.
 炭酸カリウムと共に、係る含水CNFを十分に分散性しうる有機溶媒中に添加し、次いで、有機酸ビニル、例えば酢酸ビニル及び安息香酸ビニル及びラウリン酸ビニルのうちの少なくとも1以上を加え、70℃~100℃で2時間以上、好ましくは80℃で2時間反応させる。反応終了後、生成物を回収し、乾燥する。
 炭酸カリウムは反応触媒として働くが、反応系内をアルカリ性に保つ緩衝効果が重要であり、一定以上の濃度があればその効果は十分に維持できる。しかし、誘導体化による置換率を向上させるという観点からは、炭酸カリウム添加量を、対CNF比で5~30%程度とするのがよい。対CNF比20%程度で行うと反応効率がよい。
 ラウリン酸ビニルによるエステル化の結果、トルエンやデカリンなどの疎水性溶媒に分散可能な疎水CNFを合成できる。また広葉樹、針葉樹、竹由来の漂白クラフトパルプから同条件で作成したCNFをラウリル化する場合、反応効率は竹が最も高い。
Along with potassium carbonate, such water-containing CNF is added to an organic solvent capable of being sufficiently dispersible, and then at least one of organic acid vinyls such as vinyl acetate and vinyl benzoate and vinyl laurate is added, The reaction is performed at 100 ° C. for 2 hours or longer, preferably at 80 ° C. for 2 hours. After the reaction is complete, the product is recovered and dried.
Potassium carbonate works as a reaction catalyst, but a buffering effect that keeps the inside of the reaction system alkaline is important. If there is a certain concentration or more, the effect can be sufficiently maintained. However, from the viewpoint of improving the substitution rate by derivatization, the amount of potassium carbonate added is preferably about 5 to 30% in terms of the CNF ratio. Reaction efficiency is good when carried out at a CNF ratio of about 20%.
As a result of esterification with vinyl laurate, hydrophobic CNF dispersible in a hydrophobic solvent such as toluene or decalin can be synthesized. In addition, when laurylating CNF produced under the same conditions from bleached kraft pulp derived from hardwoods, conifers, and bamboo, bamboo has the highest reaction efficiency.
 CNFを十分に分散性しうる有機溶媒中に添加することによってセルロースの表面修飾を均一かつ効率よく行うことができる。係る有機溶媒としてはN-メチルピロリドン(以下、NMPと記す)、ジメチルアセトアミド(以下、DMAcと記す)、ジメチルホルムアミド(以下、DMFと記す)、ジメチルスルホキシド(以下、DMSOと記す)などを含む非イオン性極性溶媒があり、特にDMSOはCNFの分散性が高いことに加え、疎水性の高い誘導体化CNFを溶解する。すなわち種々の含水非イオン性極性溶媒中にてCNFのラウリル化は進行するが、DMSOを用いた場合が最も反応効率が高い。 It is possible to uniformly and efficiently modify the surface of cellulose by adding CNF to an organic solvent capable of being sufficiently dispersible. Such organic solvents include N-methylpyrrolidone (hereinafter referred to as NMP), dimethylacetamide (hereinafter referred to as DMAc), dimethylformamide (hereinafter referred to as DMF), dimethyl sulfoxide (hereinafter referred to as DMSO) and the like. There are ionic polar solvents, and especially DMSO dissolves highly hydrophobic derivatized CNF in addition to high dispersibility of CNF. That is, laurylation of CNF proceeds in various hydrous nonionic polar solvents, but the reaction efficiency is highest when DMSO is used.
 このCNFの有機溶媒への分散性は、目視で確認することができ、例えばプレス脱水ナノファイバーをDMSO(90%程度)に分散させた場合は良好に分散する。 The dispersibility of this CNF in an organic solvent can be confirmed visually. For example, when press-dehydrated nanofibers are dispersed in DMSO (about 90%), they are dispersed well.
 反応容器内の水分量が6%以下になるようにCNFを撹拌可能な濃度でDMSOに分散し、炭酸カリウムをCNFの20wt%で添加し、反応系温度80℃以上で2時間反応することによって置換度が0.4~0.55である誘導体化CNFを得ることができる。すなわちエステル化反応は、反応温度を80℃以上にすれば良好な結果が得られる。また反応後は、水で凝集させ、濾過・乾燥することによって分散性の良好な誘導体化CNFを得ることができる。または、トルエンで抽出し、濃縮・乾燥させることもできる。
 CNFエステル化は、含水率10%程度でも十分に疎水性を付与できるが、反応系内の水分量が少ないほど反応効率が高い。
By dispersing CNF in DMSO at a stirable concentration so that the water content in the reaction vessel is 6% or less, adding potassium carbonate at 20 wt% of CNF, and reacting at a reaction system temperature of 80 ° C. or more for 2 hours. A derivatized CNF having a substitution degree of 0.4 to 0.55 can be obtained. In other words, good results can be obtained for the esterification reaction if the reaction temperature is 80 ° C. or higher. Further, after the reaction, derivatized CNF having good dispersibility can be obtained by aggregating with water, filtering and drying. Alternatively, it can be extracted with toluene, concentrated and dried.
CNF esterification can sufficiently impart hydrophobicity even with a water content of about 10%, but the reaction efficiency increases as the amount of water in the reaction system decreases.
 なお、溶融したポリプロピレン(PP)やポリエチレン(PE)のモデルとして、トルエンを用いることができる。CNFを乾燥状態からトルエンに容易に分散させることができるか否かを検証することによってポリプロピレン(PP)やポリエチレン(PE)と良好な混練状態とすることができるか否かを予測することができる。 In addition, toluene can be used as a model of molten polypropylene (PP) or polyethylene (PE). By verifying whether CNF can be easily dispersed in toluene from a dry state, it can be predicted whether it can be in a good kneaded state with polypropylene (PP) or polyethylene (PE). .
 さらに、乾燥ラウリル化CNFはトルエン中の再分散しうる。またデカハイドロナフタレン(ポリオレフィン系樹脂の溶剤)にも膨潤・分散しうる。 Furthermore, the dried laurylated CNF can be redispersed in toluene. It can also swell and disperse in decahydronaphthalene (polyolefin resin solvent).
 セルロースの結晶構造解析によると、セルロース結晶表面に突出している一級水酸基はグルコースユニット当たり0.5であり、CNF表面の一級水酸基(C-6位)のみを選択的に酸化するTEMPO酸化処理でも置換度が0.5付近である。0.5以上の置換度であった場合、セルロースの分子結合を破壊している可能性がある。
 また非特許文献4における非結晶度の解析結果から、充分な結晶度と疎水性を両立するには、置換度0.4~0.55となるような反応条件が好ましい。
According to the crystal structure analysis of cellulose, the number of primary hydroxyl groups protruding on the cellulose crystal surface is 0.5 per glucose unit, and it can be replaced by TEMPO oxidation treatment that selectively oxidizes only the primary hydroxyl group (C-6 position) on the CNF surface. The degree is around 0.5. When the degree of substitution is 0.5 or more, there is a possibility that the molecular bond of cellulose is broken.
From the analysis result of non-crystallinity in Non-Patent Document 4, reaction conditions such that the degree of substitution is 0.4 to 0.55 are preferable in order to achieve both sufficient crystallinity and hydrophobicity.
[(A)平均太さ10~200nmであり、多糖を高圧水流にて解繊してなるCNFを誘導体化した誘導体化CNF] 上述の方法で得られた誘導体化CNFの含有量は1~10質量%が好ましい。1質量%未満であると弾性率等の機械特性の向上効果が十分に発揮されず、10質量%を超えると衝撃強度等が大きく低下する上、過剰に費用がかかる。 [(A) Derivatized CNF having an average thickness of 10 to 200 nm and derivatized CNF obtained by defibrating a polysaccharide with a high-pressure water stream] The content of derivatized CNF obtained by the above method is 1 to 10 Mass% is preferred. If it is less than 1% by mass, the effect of improving the mechanical properties such as the elastic modulus is not sufficiently exhibited, and if it exceeds 10% by mass, the impact strength and the like are greatly reduced and excessive costs are required.
[(B)熱可塑性樹脂] 本発明の(B)熱可塑性樹脂は、本発明の複合樹脂組成物の主成分であるが、該組成物を成形することによって得られる成形品は、剛性や耐衝撃性などの機械物性、成形加工性、耐溶剤性、耐熱性などの特性について、良好に発現される必要がある。熱可塑性樹脂としては、ポリオレフィンのほか、塩化ビニル樹脂、スチレン樹脂、(メタ)アクリル樹脂、ビニルエーテル樹脂等があげられるが、ポリオレフィン系樹脂の場合、本発明の誘導体化CNFによる補強効果が特に顕著である。 [(B) Thermoplastic Resin] The (B) thermoplastic resin of the present invention is the main component of the composite resin composition of the present invention, but the molded product obtained by molding the composition has a rigidity and resistance to resistance. Mechanical properties such as impact properties, molding processability, solvent resistance, heat resistance, and other characteristics need to be expressed well. In addition to polyolefin, examples of the thermoplastic resin include vinyl chloride resin, styrene resin, (meth) acrylic resin, vinyl ether resin, etc. In the case of polyolefin resin, the reinforcing effect by the derivatized CNF of the present invention is particularly remarkable. is there.
 係るポリオレフィン系樹脂は、上記の特性発現の点で、炭素数2~6のα-オレフィンから選択される1種以上のモノマーを単独重合又は共重合して得られるポリオレフィン系樹脂が好ましい。 しかし、上記特性発現を妨げない範囲で、炭素数7以上のα-オレフィンをコモノマーとして使用することもできる。 The polyolefin resin is preferably a polyolefin resin obtained by homopolymerization or copolymerization of one or more monomers selected from α-olefins having 2 to 6 carbon atoms in view of the above-described characteristics. However, an α-olefin having 7 or more carbon atoms can also be used as a comonomer within a range that does not hinder the above-mentioned characteristic expression.
 ポリオレフィン系樹脂としては、エチレンの単独重合体、プロピレン、ブテン-1、ペンテン-1、ヘキセン-1、4-メチルペンテン-1等の炭素数2~6のα-オレフィンの単独重合体、エチレンと炭素数3~6のα-オレフィンの共重合体、2種以上の炭素数2~6のα-オレフィンの共重合体やアイオノマー樹脂等が挙げられる。 Examples of polyolefin resins include ethylene homopolymers, homopolymers of α-olefins having 2 to 6 carbon atoms such as propylene, butene-1, pentene-1, hexene-1, and 4-methylpentene-1, and ethylene. Examples of the copolymer include α-olefin copolymers having 3 to 6 carbon atoms, copolymers of two or more α-olefins having 2 to 6 carbon atoms, and ionomer resins.
 共重合体としては、ランダム又はブロックのいずれの共重合体であってもよい。
 また、ポリエチレン系樹脂、ポリプロピレン系樹脂等の種々のポリオレフィン系樹脂の混合物を用いることもできる。
 ポリオレフィン系樹脂のうち、プロピレンを主原料とするポリプロピレン系樹脂は、剛性や耐衝撃性、耐溶剤性、耐熱性に優れるため、本発明の複合樹脂組成物に特に好適に使用することができる。
The copolymer may be a random or block copolymer.
Also, a mixture of various polyolefin resins such as polyethylene resin and polypropylene resin can be used.
Among polyolefin-based resins, polypropylene-based resins mainly composed of propylene are excellent in rigidity, impact resistance, solvent resistance, and heat resistance, and therefore can be used particularly suitably for the composite resin composition of the present invention.
 ポリプロピレン系樹脂としては、具体的には、プロピレン単独重合体、プロピレン-エチレン共重合体、プロピレン-ブテン共重合体、プロピレンとエチレン及び/又は上記α―オレフィンとの共重合体から構成されるブロック共重合体やランダム共重合体、極性官能基を有する変性ポリプロピレンなどが挙げられる。 Specific examples of the polypropylene resin include a block composed of a propylene homopolymer, a propylene-ethylene copolymer, a propylene-butene copolymer, and a copolymer of propylene and ethylene and / or the above α-olefin. Examples thereof include copolymers, random copolymers, and modified polypropylene having a polar functional group.
 オレフィン系樹脂の中でも、樹脂組成物とした場合の補強効果を得ることができ且つ柔軟性を有し、安価であるという利点から、高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)、バイオポリエチレン等のポリエチレン系樹脂(PE)、ポリプロピレン系樹脂(PP)があげられる。 Among olefin-based resins, high-density polyethylene (HDPE), low-density polyethylene (LDPE), and biopolyethylene are advantageous because they can provide a reinforcing effect when used as a resin composition, have flexibility, and are inexpensive. Examples thereof include polyethylene resin (PE) and polypropylene resin (PP).
 更に、(B)成分として、上記のポリオレフィン系樹脂に、次に例示するようなゴムを配合してなるポリマーアロイを用いてもよい。
 このようなゴムとしては、具体例として、エチレン-プロピレン-非共役ジエン共重合ゴム、エチレン-ブテン-1共重合ゴム、エチレン-ヘキセン共重合ゴム、エチレン-オクテン共重合ゴム、ポリブタジエン、スチレン-ブタジエンブロック共重合ゴム、スチレン-ブタジエン共重合ゴム、部分水添スチレン-ブタジエン-スチレンブロック共重合ゴム、スチレン-イソプレンブロック共重合ゴム、部分水添スチレン-イソプレンブロック共重合ゴム、ポリウレタンゴム、スチレングラフト-エチレン-プロピレン-非共役ジエン共重合ゴム、スチレン-グラフト-エチレン-プロピレン共重合ゴム、スチレン/アクリロニトリル-グラフト-エチレン-プロピレン-非共役ジエン共重合ゴム、スチレン/アクリロニトリル-グラフト-エチレン-プロピレン共重合ゴムがなど挙げられる。
ポリマーアロイ中のゴムの含量は、ポリオレフィン系樹脂の特性に新たな特性を付加するという観点から、50質量%以下であることが好ましい。
Further, as the component (B), a polymer alloy obtained by blending the above-described polyolefin resin with rubber as exemplified below may be used.
Specific examples of such rubber include ethylene-propylene-nonconjugated diene copolymer rubber, ethylene-butene-1 copolymer rubber, ethylene-hexene copolymer rubber, ethylene-octene copolymer rubber, polybutadiene, and styrene-butadiene. Block copolymer rubber, styrene-butadiene copolymer rubber, partially hydrogenated styrene-butadiene-styrene block copolymer rubber, styrene-isoprene block copolymer rubber, partially hydrogenated styrene-isoprene block copolymer rubber, polyurethane rubber, styrene graft Ethylene-propylene-nonconjugated diene copolymer rubber, styrene-graft-ethylene-propylene copolymer rubber, styrene / acrylonitrile-graft-ethylene-propylene-nonconjugated diene copolymer rubber, styrene / acrylonitrile-graft- Styrene - propylene copolymer rubber and the like.
The rubber content in the polymer alloy is preferably 50% by mass or less from the viewpoint of adding new characteristics to the characteristics of the polyolefin resin.
[ポリオレフィン樹脂組成物] 本発明のポリオレフィン樹脂組成物の製造方法としては、従来から公知の方法で各成分を溶融混練する方法が挙げられる。
 例えば、各成分をタンブルミキサーやヘンシェルミキサー、リボンブレンダー、スーパーミキサーで代表される高速ミキサーで分散混合した後、押出機、バンバリーミキサー、ロール等で溶融混練する方法が適宜選択される。
[Polyolefin Resin Composition] Examples of the method for producing the polyolefin resin composition of the present invention include a method of melt-kneading each component by a conventionally known method.
For example, after each component is dispersed and mixed by a high speed mixer represented by a tumble mixer, a Henschel mixer, a ribbon blender, or a super mixer, a method of melt kneading with an extruder, a Banbury mixer, a roll or the like is appropriately selected.
 樹脂組成物としてバイオマス材料であるCNFは、特定の平均繊維径及び平均繊維長を有するCNFを用いることにより、セルロースの凝集性が抑制され、衝撃強度の低下を抑えることができる。さらにCNFは、ガラス繊維等の無機繊維に比べ低い比重でありながら剛性を向上させることができるので、剛性の高い低比重の樹脂組成物とすることができる。 CNF which is a biomass material as a resin composition can suppress the cohesiveness of cellulose by using CNF having a specific average fiber diameter and average fiber length, and can suppress a decrease in impact strength. Furthermore, since CNF can improve rigidity while having a lower specific gravity than inorganic fibers such as glass fibers, it can be a resin composition having high rigidity and low specific gravity.
本発明におけるCNFは、平均太さ10~200nmであり、多糖を高圧水流にて解繊してなる。
 平均太さは日本電子株式会社の電界放出形走査電子顕微鏡JSM-7001FTTLSによって測定した。
 平均太さ10~200nmのレベルまで解繊することで流動性があり衝撃強度の低下が少なく、低比重にして高剛性で成形外観に優れた樹脂組成物を得ることができる。
 平均太さ10nm未満では脱水性が悪化するため固形分濃度を上げることが難しくなり好ましくない。
 平均太さ200nmを超える場合には、解繊が進んでいない数10μmの繊維幅のものが含まれることになり流動性が著しく低下し、且つ分散性が悪化することとなり好ましくない。
The CNF in the present invention has an average thickness of 10 to 200 nm, and is obtained by fibrillating polysaccharides with a high-pressure water stream.
The average thickness was measured by a field emission scanning electron microscope JSM-7001FTTLS manufactured by JEOL Ltd.
By defibration to an average thickness of 10 to 200 nm, it is possible to obtain a resin composition having fluidity, little impact strength reduction, low specific gravity, high rigidity, and excellent molded appearance.
If the average thickness is less than 10 nm, the dehydrating property is deteriorated, so that it is difficult to increase the solid concentration, which is not preferable.
When the average thickness exceeds 200 nm, fibers having a fiber width of several tens of μm where defibration has not progressed are included, and fluidity is remarkably lowered and dispersibility is deteriorated.
本発明のポリオレフィン樹脂組成物を用いた成形方法には特に制限はなく、射出成形、射出圧縮成形、ブロー成形、真空成形、押出し成形、中空成形体等の成形法を適用することができる。
 本発明のポリオレフィン樹脂組成物を用いた成形品は、前記の性状を有することから、例えば、OA機器、情報・通信機器、繊維材料、フィルム材料、被覆膜、塗料成分、自動車部品又は建材分野等で好適に用いることができる。
The molding method using the polyolefin resin composition of the present invention is not particularly limited, and molding methods such as injection molding, injection compression molding, blow molding, vacuum molding, extrusion molding, and hollow molding can be applied.
Since the molded article using the polyolefin resin composition of the present invention has the above-mentioned properties, for example, OA equipment, information / communication equipment, fiber material, film material, coating film, paint component, automobile component or building material field Etc. can be suitably used.
 本発明は、ポリオレフィン樹脂にバイオマス材料としてCNFを配合することによって、衝撃強度の低下が少なく、かつ高剛性にして低比重、すなわち、比剛性(MPa)を大きくすることができ、さらに、表面荒れ等が低減されて成形外観に優れ、さらにCNFの分散性が向上した樹脂組成物である。 In the present invention, by blending CNF as a biomass material with a polyolefin resin, the impact strength is hardly lowered, and the rigidity can be increased to a low specific gravity (MPa), and the surface roughness can be increased. Is a resin composition that is excellent in molded appearance and further improved in CNF dispersibility.
 本発明のポリオレフィン樹脂組成物は、以下の実施例に記載する性能評価において、得られる成形品の引張弾性率(MPa)、引張伸び(%)が概ね以下の性能を満足し、かつ成形外観に優れているという特徴を有している。
 
In the performance evaluation described in the following examples, the polyolefin resin composition of the present invention generally satisfies the following performance in terms of the tensile elastic modulus (MPa) and tensile elongation (%) of the molded product obtained, and has a molded appearance. It has the feature of being excellent.
 以下、本発明を実施例によりさらに具体的に説明する。
Figure JPOXMLDOC01-appb-C000001
 デンプンのエステル化反応である化1の反応方法を参考に、一部改変した方法を用いて実施例1~実施例4としてCNFの表面修飾処理による誘導体化を行った。CNFは、ACCを用いて作成した、~300nmの繊維を含む粗CNF(rCNF)を用いた。
rCNF1.5%(w/v)および炭酸カリウム(対パルプ重量20%)を含む、94%DMSO/6%水(v/v)の混合溶液5mLを、良分散液になるまで室温で撹拌した。分散後70℃に加熱し、酢酸ビニル、ラウリン酸ビニル、安息香酸ビニル、2‐エチルヘキサン酸ビニルを無水グルコース単位(AGU)当たり1.2モル相当となるように添加・密栓し、2時間・70℃で反応した。
反応終了後、反応液を一部取り、倍量のトルエンと混合し反応産物の疎水性を簡便に評価した。また、残りの反応液に水を添加し反応を停止した後に、濾過、水洗浄を2回およびアセトンによる洗浄を3回行い、熱風乾燥器で水を除去した。得られた乾燥シートは水の撥水性を観察した。
Hereinafter, the present invention will be described more specifically with reference to examples.
Figure JPOXMLDOC01-appb-C000001
With reference to the reaction method of Chemical Formula 1, which is an esterification reaction of starch, derivatization by surface modification treatment of CNF was performed as Examples 1 to 4 using a partially modified method. CNF used was crude CNF (rCNF) made with ACC and containing ~ 300 nm fibers.
5 mL of a mixed solution of 94% DMSO / 6% water (v / v) containing 1.5% (w / v) rCNF and potassium carbonate (vs. pulp weight 20%) was stirred at room temperature until a good dispersion was obtained. . After dispersion, heat to 70 ° C, add vinyl acetate, vinyl laurate, vinyl benzoate, vinyl 2-ethylhexanoate so as to be equivalent to 1.2 mol per anhydroglucose unit (AGU), and seal for 2 hours. Reacted at 70 ° C.
After completion of the reaction, a part of the reaction solution was taken and mixed with double the amount of toluene, and the hydrophobicity of the reaction product was simply evaluated. Further, water was added to the remaining reaction solution to stop the reaction, followed by filtration and water washing twice and acetone washing three times, and water was removed with a hot air drier. The obtained dry sheet was observed for water repellency.
反応終了時の溶液にトルエンを加えた際の様子を図6に示した。非誘導体化CNF(ビニル誘導体化なし)、酢酸ビニル、安息香酸ビニルによる誘導体化CNFでは、トルエンへのCNFの移行は生じず、ラウリン酸ビニルによる誘導体化を行った場合のみ、トルエン層(上層)にCNFが移行しており、したがって、ラウリン酸化CNFはトルエン抽出により回収可能である。ラウリル化誘導体化反応液のトルエン抽出層を回収・乾固させSEM観察すると、300nm程度の繊維が大量に含まれていることが解り、原料として用いたrCNFよりも繊維幅が太くなる傾向が観察された(図7)。 The state when toluene is added to the solution at the end of the reaction is shown in FIG. Non-derivatized CNF (without vinyl derivatization), vinyl acetate, derivatized CNF with vinyl benzoate does not cause CNF migration to toluene, and only when derivatized with vinyl laurate is the toluene layer (upper layer) Therefore, laurylated CNF can be recovered by toluene extraction. When the toluene extraction layer of the laurylated derivatization reaction solution is collected and dried and observed by SEM, it is found that a large amount of fibers of about 300 nm are contained, and the fiber width tends to be thicker than rCNF used as a raw material. (FIG. 7).
誘導体化物を乾燥後重量測定した結果を表2に示した。重量増加率(WPG: weight percent gain)から推定置換度(DS)算出したところ、酢酸ビニルが最も高い誘導体化率を示し、次いで安息香酸ビニル、ラウリン酸ビニルの順であった。これは置換基の嵩高さ、あるいは、疎水性に起因した反応性の違いであると考えられ、2-エチルヘキサン酸ビニルが特に反応性が低いのは、立体障害によるものと考えられる。また、乾燥誘導体化CNFシートの撥水性の観察結果(図8)では、ラウリル化CNFが最も撥水性が高く、接触角が90°を超えている。したがって、ラウリル化がCNFに最も高い疎水性を付与できる。
 
Figure JPOXMLDOC01-appb-T000002
The results of weighing the derivatized product after drying are shown in Table 2. When the estimated substitution degree (DS) was calculated from the weight increase rate (WPG), vinyl acetate showed the highest derivatization rate, followed by vinyl benzoate and vinyl laurate. This is considered to be due to the difference in reactivity due to the bulkiness of the substituents or hydrophobicity. The reason why the reactivity of vinyl 2-ethylhexanoate is particularly low is considered to be due to steric hindrance. Further, in the observation result of water repellency of the dried derivatized CNF sheet (FIG. 8), laurylated CNF has the highest water repellency and the contact angle exceeds 90 °. Thus, laurylation can impart the highest hydrophobicity to CNF.

Figure JPOXMLDOC01-appb-T000002
[実施例5] 
実施例4と同様にしてラウリル化CNFを製造した。ただし、炭酸カリウム量は対CNF20%とし、反応系内の水分量あるいは反応温度を変化させた。また、実施例4と同様のCNF(rCNF)に加え、より繊維径の小さいCNF(fCNF)も用いた。反応時間は2時間とした。
[Example 5]
Laurylated CNF was produced in the same manner as in Example 4. However, the amount of potassium carbonate was 20% relative to CNF, and the amount of water in the reaction system or the reaction temperature was changed. In addition to CNF (rCNF) similar to that in Example 4, CNF (fCNF) having a smaller fiber diameter was also used. The reaction time was 2 hours.
反応温度80℃での水分量 6~10 vol%のDMSO溶液中での重量増加率を図11に示した。すべての水分濃度領域で、fCNFがrCNFより高い反応性を示し、比表面積が反応性に影響することが予想され、つまり本反応系ではファイバー表面の水酸基が主に誘導体化していることが推測される結果となった。一方で、反応系内の水分量の増加に伴い、重量増加率も徐々に低下することが明らかになった。しかし、最もWPGが小さいDS0.25の場合でも、水添加で凝集物が生じるため、疎水化は進行していた。水分量は低いほど反応性が高いが、一方で10%程度の含水率があってもCNFの疎水化は十分に進行する。 FIG. 11 shows the rate of weight increase in a DMSO solution having a water content of 6 to 10 vol% at a reaction temperature of 80 ° C. In all moisture concentration regions, fCNF is more reactive than rCNF, and the specific surface area is expected to affect the reactivity. In other words, it is assumed that the hydroxyl group on the fiber surface is mainly derivatized in this reaction system. It became the result. On the other hand, it became clear that the rate of weight increase gradually decreased as the amount of water in the reaction system increased. However, even in the case of DS0.25 having the smallest WPG, the addition of water produced aggregates, so that the hydrophobization proceeded. The lower the water content is, the higher the reactivity is. On the other hand, even if the water content is about 10%, the hydrophobicity of CNF proceeds sufficiently.
反応温度を70℃から100℃に設定した場合の重量増加率を図10に示した。80℃と100℃では重量増加率に有意な差はなく同等の反応性である。一方で70℃では80℃以上の場合に比べ、重量増加率が35%程度低下した。反応温度は80℃以上であればよい。 The weight increase rate when the reaction temperature is set from 70 ° C. to 100 ° C. is shown in FIG. At 80 ° C. and 100 ° C., there is no significant difference in the weight increase rate, and the reactivity is equivalent. On the other hand, the weight increase rate decreased by about 35% at 70 ° C. compared to the case of 80 ° C. or higher. The reaction temperature should just be 80 degreeC or more.
推定置換度が0.5程度のラウリル化CNFをトルエンおよびデカリンに1%濃度で分散させた様子を図12A、それぞれの分散状態をSEM観察した結果を図12B,Cに示した。トルエン中では良分散状態であった。また、デカリン分散液でも、白濁しているものの目視観察では十分に良好な分散状態である。分散液中のラウリル化CNFの分散状態をSEM観察すると、デカリン中ではやや繊維凝集傾向が見られるものの、どちらの溶媒でも繊維が独立して観察できることから、置換度が0.5程度のラウリル化CNFは、トルエン、デカリン中で分散可能である。トルエン、デカリン共にポリオレフィン系樹脂を溶解することが知られており、特に熱デカリンはポリプロピレンを溶解するので、ラウリル化CNFはポリプロピレン中に均一に分散しうる。 A state in which laurylated CNF having an estimated substitution degree of about 0.5 is dispersed in toluene and decalin at a concentration of 1% is shown in FIG. 12A, and the results of SEM observation of each dispersion state are shown in FIGS. 12B and 12C. It was well dispersed in toluene. In addition, even the decalin dispersion is cloudy but is sufficiently well dispersed by visual observation. When the dispersion state of laurylated CNF in the dispersion is observed by SEM, although fiber aggregation tendency is somewhat observed in decalin, the fibers can be observed independently with either solvent, so that the degree of substitution is about 0.5. CNF can be dispersed in toluene and decalin. Both toluene and decalin are known to dissolve polyolefin resins, and particularly hot decalin dissolves polypropylene, so that laurylated CNF can be uniformly dispersed in polypropylene.
[実施例6] 
実施例4と同様にしてラウリル化CNFを合成した。ただし、fCNFを用い、系内の水分量を6%あるいは10%とし、反応温度を80℃とした。また、炭酸カリウム量を変化させ反応を行った。反応時間は2時間とした。
[Example 6]
Laurylated CNF was synthesized in the same manner as in Example 4. However, fCNF was used, the water content in the system was 6% or 10%, and the reaction temperature was 80 ° C. Moreover, it reacted by changing the amount of potassium carbonate. The reaction time was 2 hours.
水分量6%、10%いずれの場合も、炭酸カリウム添加率が対CNF比で20%の時に重量増加率が最大で、それ以上の炭酸カリウム濃度領域では緩やかに反応性が低下する。また、逆に20%未満の濃度領域では、炭酸カリウムの濃度低下に依存して重量増加率も急速に低下する(図12)。 In both cases where the water content is 6% or 10%, the weight increase rate is the maximum when the potassium carbonate addition ratio is 20% in terms of the CNF ratio, and the reactivity gradually decreases in the potassium carbonate concentration region beyond that. On the other hand, in the concentration region of less than 20%, the rate of increase in weight also decreases rapidly depending on the decrease in the concentration of potassium carbonate (FIG. 12).
無水DMF中でセルロースナノクリスタル(CNC)をアセチル化した研究では(Cetin et. al. (2009) Acetylation of cellulose nanowhiskers with vinyl acetate under moderate conditions. Macromol Biosci 9:997-1003)、ビニル酢酸を約2倍AGUモル、炭酸カリウムを重量比でCNCの33%添加し、2時間の反応で置換度が0.35程度である。先行例が無水条件で、かつ、より多くの有機酸ビニルを使用しているにも関わらず、本発明では、先行例より高い置換度が得られていることから、炭酸カリウム添加条件について大幅に改善されている。 In the study of acetylation of cellulose nanocrystals (CNC) in anhydrous DMF (Cetin et. Al. (2009) Acetylation of celluloses with vinylacetate unundermoderate conditions. Double AGU moles and potassium carbonate 33% by weight are added and the degree of substitution is about 0.35 after 2 hours of reaction. In spite of the fact that the preceding example is anhydrous and more organic vinyl acid is used, the present invention provides a higher degree of substitution than the preceding example. It has been improved.
[実施例7] 
実施例4と同様にし、溶媒をDMSO、DMF、DMAc、NMPにしてラウリル化CNFを合成した。また、広葉樹(LB)、針葉樹(NB)、竹(BB)由来のクラフトパルプから製造したfCNFを用いてラウリル化CNFの合成も行った。炭酸カリウムは対CNF20%、反応温度80℃、水分量6%、反応時間2時間とした。
[Example 7]
In the same manner as in Example 4, laurylated CNF was synthesized using DMSO, DMF, DMAc, and NMP as solvents. Also, laurylated CNF was synthesized using fCNF produced from kraft pulp derived from hardwood (LB), conifer (NB), and bamboo (BB). Potassium carbonate was 20% relative to CNF, the reaction temperature was 80 ° C., the water content was 6%, and the reaction time was 2 hours.
LB-CNFをDMSO中でラウリル化した際の重量増加率を100%として、比重量増加率を表2にまとめた。種々の非プロトン性極性溶媒を使用した場合、DMF、DMAc、NMPすべての場合でDMSOの3分の1程度の反応性であった。DMSOを含めいずれの溶媒もセルロースの溶解に使用される非イオン性極性溶媒であるが、DMSO以外はいずれもアミン系溶媒でありカルボニル酸素と窒素原子の共鳴構造を持ち、いずれもDMSOより疎水性が高いなどの違いが存在する。反応性の違いは、このような特性の差に起因する可能性がある。
Figure JPOXMLDOC01-appb-T000003
Table 2 summarizes the rate of increase in specific weight, assuming that the rate of increase in weight when LB-CNF was laurylated in DMSO was 100%. When various aprotic polar solvents were used, the reactivity of DMF, DMAc, and NMP was about one-third that of DMSO. Any solvent including DMSO is a nonionic polar solvent used for dissolving cellulose. However, except DMSO, all solvents are amine solvents and have a carbonyl oxygen and nitrogen atom resonance structure, both of which are more hydrophobic than DMSO. There are differences such as high. Differences in reactivity can be attributed to such differences in properties.
Figure JPOXMLDOC01-appb-T000003
 一方で、針葉樹と竹由来の漂白クラフトパルプ(NBとBB)から調製したCNFに対するラウリル化反応性をLBの場合と比較した場合、NBでは若干反応性が低く、BBでは反応性が同等かやや高い。 On the other hand, when the laurylation reactivity to CNF prepared from bleached kraft pulp derived from conifers and bamboo (NB and BB) is compared with that of LB, the reactivity is slightly lower in NB, and the reactivity is similar in BB. high.
[実施例8] 
実施例1同様にして、アセチル化CNFを合成した。ただし反応系内の水分量は5%とした。
[Example 8]
In the same manner as in Example 1, acetylated CNF was synthesized. However, the amount of water in the reaction system was 5%.
[実施例9] 
 実施例4同様にして、ラウリル化CNFを合成した。ただし反応系内の水分量は5%とした。
[Example 9]
In the same manner as in Example 4, laurylated CNF was synthesized. However, the amount of water in the reaction system was 5%.
[実施例10] 
 実施例9と同様にして、ラウリン酸ビニルによるCNFの誘導体化を1.5時間行った後に、連続して酢酸ビニルを加え、さらに1.5時間反応させて、ラウリル-アセチル化CNFを得た。
[Example 10]
In the same manner as in Example 9, CNF derivatization with vinyl laurate was performed for 1.5 hours, and then vinyl acetate was continuously added and reacted for an additional 1.5 hours to obtain lauryl-acetylated CNF. .
[実施例11] 
 実施例8~10で製造した各種誘導体化CNF(アセチル化CNF、ラウリル化CNF、ラウリル-アセチル化CNF)および誘導体化していないCNFを、ソックスレー抽出による洗浄の後に乾燥粉末とし、赤外吸収スペクトルを測定した。
[Example 11]
Various derivatized CNFs (acetylated CNF, laurylated CNF, lauryl-acetylated CNF) produced in Examples 8 to 10 and non-derivatized CNF were converted into dry powders after washing by Soxhlet extraction, and infrared absorption spectra were obtained. It was measured.
 赤外吸光スペクトルを図13に示した。アセチル化CNF(AceCNF)では、典型的なセルロースの赤外吸収スペクトルに加え、1750cmー1付近のC=O伸縮由来の吸収が見られる。また、アセチル基由来の1380cmー1付近のメチル基、1240cmー1付近の-CO-の伸縮に由来する吸収が明確に観察され、アセチル置換されていることが確認できた。ラウリル化CNF(LauCNF)では、3000-2800cmー1の範囲に新たにアルカン伸縮由来のピークが二つ出現しており、また、1750cm-1付近にC=O伸縮由来のピークが確認できた。これらのことから、ラCNFがラウリル化されていることが示された。ラウリル‐アセチル化CNF(LauAceCNF)では、ほぼラウリル化CNFと同様のスペクトルを示している。しかし1240cm-1付近に吸収が見られることから、アセチル基も付与されており、ラウリル基、アセチル基が共にCNFに導入されていると考えられる。 The infrared absorption spectrum is shown in FIG. In acetylated CNF (AceCNF), in addition to the typical infrared absorption spectrum of cellulose, absorption derived from C═O stretching near 1750 cm −1 is observed. Further, the absorption derived from the stretching of the methyl group near 1380 cm -1 derived from the acetyl group and the —CO— stretching near 1240 cm -1 was clearly observed, and it was confirmed that the acetyl substitution was performed. In laurylated CNF (LauCNF), a new peak attributable to alkane stretch in the range of 3000-2800cm -1 it has been two occurrences, also, a peak derived from C = O stretch was confirmed around 1750 cm -1. From these, it was shown that La CNF is laurylated. Lauryl-acetylated CNF (LauAceCNF) shows almost the same spectrum as laurylated CNF. However, since absorption is observed in the vicinity of 1240 cm −1 , an acetyl group is also given, and it is considered that both lauryl group and acetyl group are introduced into CNF.
[実施例12] 
 各種誘導体化CNFあるいはCNFは、メタノールで数回洗浄して予め溶媒置換した。次いで、これを0.5%NaOHを含むメタノール中で50℃、2時間加水分解した。誘導体化CNF、CNFおよび加水分解後各種CNFは、乾燥・粉末とし粉末X線回折装置を用いて、X線回折試験を行った。X線回折図からSegal法より2θ=18.5°および22.5°の回折強度から比結晶化度(CrI)を算出した。
[Example 12]
Various derivatized CNFs or CNFs were washed with methanol several times and solvent-replaced in advance. Subsequently, this was hydrolyzed in methanol containing 0.5% NaOH at 50 ° C. for 2 hours. Derivatized CNF, CNF and various CNFs after hydrolysis were dried and powdered and subjected to an X-ray diffraction test using a powder X-ray diffractometer. From the X-ray diffraction diagram, the specific crystallinity (CrI) was calculated from the diffraction intensities of 2θ = 18.5 ° and 22.5 ° by the Segal method.
 加水分解前後の各種誘導体化CNFおよびCNFのX線回折スペクトルを図14に示した。誘導体化CNFは、セルロースI型結晶から大きくスペクトルが変化しており、正確な比結晶化度を求めることは難しい(加水分解前)。しかしながら、加水分解後誘導体化CNFのX線回折分析を行うと、すべてのサンプルがほぼ同様のスペクトルを示し、いずれもセルロースI型結晶を保持していた(加水分解後)。CNFを加水分解処理しても結晶化度は変化しておらず、0.5%NaOHメタノール溶液中で50℃、2時間の加水分解処理ではセルロース結晶形に影響を与えない。また、加水分解した各誘導体化CNFはCrI=63~66%とCNFと同等か、わずかに低下している程度であり、本手法によるCNFの表面疎水化はセルロース繊維表面への反応であり、結晶部分にはほとんど影響を与えていない(表3)。
Figure JPOXMLDOC01-appb-T000004
FIG. 14 shows X-ray diffraction spectra of various derivatized CNFs and CNFs before and after hydrolysis. The spectrum of derivatized CNF is greatly changed from that of cellulose type I crystals, and it is difficult to obtain an accurate specific crystallinity (before hydrolysis). However, when X-ray diffraction analysis of derivatized CNF after hydrolysis was performed, all samples showed almost similar spectra, and all retained cellulose I-type crystals (after hydrolysis). Even if CNF is hydrolyzed, the degree of crystallinity does not change, and hydrolyzing treatment in a 0.5% NaOH methanol solution at 50 ° C. for 2 hours does not affect the cellulose crystal form. In addition, each hydrolyzed derivatized CNF is equivalent to or slightly lower than CNF of CrI = 63 to 66%, and the surface hydrophobicization of CNF by this method is a reaction to the cellulose fiber surface, The crystal part is hardly affected (Table 3).
Figure JPOXMLDOC01-appb-T000004
[実施例13]
75mgのCNFに、AGUで1.2倍モルのラウリン酸ビニルを添加して、70℃で1.5時間から6時間反応を行った。その際の重量変化から推測した置換度の継時変化を図15に示す。反応開始後1時間から1.5時間までに置換反応は殆ど完了し、その後緩やかに置換度が向上した。
 
[Example 13]
To 75 mg of CNF, 1.2 times mole of vinyl laurate was added as AGU and reacted at 70 ° C. for 1.5 to 6 hours. FIG. 15 shows the change over time in the degree of substitution estimated from the change in weight at that time. The substitution reaction was almost completed from 1 hour to 1.5 hours after the start of the reaction, and then the degree of substitution gradually improved.
次に、誘導体化CNFとポリオレフィン系樹脂の組成物に関する発明について、実施例を具体的に説明する。 Next, an Example is concretely demonstrated about the invention regarding the composition of derivatized CNF and polyolefin resin.
[実施例14]
微細化されたナノセルロースは、高い比表面積を保持しており、同時に表面に露出した水酸基の影響で極めて高い親水性を有するので、水素結合により凝集しやすい。
従って、その高い親水性によってポリオレフィンなどの疎水性の高い樹脂中では凝集を生じてしまい、十分にその強度特性が発揮できていないという現状がある。よって、その問題点を解決するためにナノセルロース繊維の表面をエステル化して疎水性を付与し、ポリオレフィン中での分散性を向上させることで、ポリオレフィンに対する補強機能を向上させた。
[Example 14]
The micronized nanocellulose retains a high specific surface area, and at the same time has extremely high hydrophilicity due to the influence of hydroxyl groups exposed on the surface, and thus is easily aggregated by hydrogen bonding.
Therefore, the high hydrophilicity causes aggregation in a highly hydrophobic resin such as polyolefin, and the strength property cannot be sufficiently exhibited. Therefore, in order to solve the problem, the surface of the nanocellulose fiber is esterified to impart hydrophobicity and improve dispersibility in the polyolefin, thereby improving the reinforcing function for the polyolefin.
CNFは、水中対向衝突法により作成した。またより微細化を進行させたナノファイバー(CNFfine)も調製した。CNF及びCNFfineは、[実施例1]~[実施例10]にしたがいラウリル化し(LauCNFおよびLauCNFfine)、ラウリル化による水酸基の置換度は0.45(±0.01)とした。 CNF was created by the underwater facing collision method. In addition, nanofibers (CNFfine) with further miniaturization were also prepared. CNF and CNFfine were laurylated according to [Example 1] to [Example 10] (LauCNF and LauCNFfine), and the degree of substitution of hydroxyl groups by laurylation was 0.45 (± 0.01).
 含水CNFあるいは含アセトン誘導体化CNFは、中密度ポリエチレン(Lupolen性3621MRM、PE)にたいし、セルロース部が5%あるいは10%となるように前混合した。なお、ここにおける含水CNFの前混合は、手捏ね、あるいは、流動式混合器、高速攪拌混合機などを用いてもよい。含アセトン誘導体化CNFの前混合は、アセトンにPEと共に懸濁し、これを良く撹拌した後にアセトンを溜去させてもよいし、含水CNFと同様に流動式混合器を用いて前混合してもよい。 Water-containing CNF or acetone-derivatized CNF was premixed with medium density polyethylene (Lupolen 3621 MRM, PE) so that the cellulose part was 5% or 10%. The premixing of the hydrous CNF here may be carried out by hand, or a fluid mixer, a high-speed stirring mixer, or the like may be used. In the premixing of the acetone-containing CNF, the acetone may be suspended together with PE and stirred well, and then the acetone may be distilled off, or may be premixed using a fluid mixer as in the case of the water-containing CNF. Good.
 前混合は、PEと誘導体化CNFが均一に混合されれば良いが、一旦誘導体化CNFが乾燥してしまうと、強固な凝集体を形成し、再分散が極めて困難となる。その結果、二軸押出混練によっても誘導体化CNFの凝集物が多量に生じ、強度に悪影響を与えるため、誘導体化CNFの乾燥は避けなければならない。 In the premixing, PE and derivatized CNF may be mixed uniformly, but once the derivatized CNF is dried, a strong aggregate is formed and redispersion becomes extremely difficult. As a result, derivatized CNF is agglomerated in a large amount even by twin-screw extrusion kneading, and the strength is adversely affected. Therefore, drying of the derivatized CNF must be avoided.
 前混合したPEとの混合物は、二軸押出機(東洋精機、ラボプラストミル)に供した
スクリュー系はΦ25mm、有効長(スクリュー長さLと直径D比)を30とした。得られた複合樹脂ペレットは、小型射出成型機(日精樹脂工業、NPX7-1F)を用いて、ダンベル試験片1BAおよび短冊形試験片を作成した。試験片は、温度23度、湿度50%で4日間以上放置した後、機械特性の分析に供した。島津製作所製Ez-LXを用いて引張強度試験(10mm/min)はダンベル試験片1BAを用い、曲げ強度試験(2mm/min)は短冊形試験片を用いて測定した。
The mixture with the premixed PE had a screw system used for a twin-screw extruder (Toyo Seiki, Labo Plast Mill) having a diameter of Φ25 mm and an effective length (screw length L to diameter D ratio) of 30. From the obtained composite resin pellets, a dumbbell test piece 1BA and a strip-shaped test piece were prepared using a small injection molding machine (Nissei Plastic Industries, NPX7-1F). The test piece was allowed to stand for 4 days or more at a temperature of 23 ° C. and a humidity of 50%, and then subjected to analysis of mechanical properties. Using Ez-LX manufactured by Shimadzu Corporation, the tensile strength test (10 mm / min) was measured using a dumbbell test piece 1BA, and the bending strength test (2 mm / min) was measured using a strip-shaped test piece.
 CNFあるいは誘導体化CNFとPEの複合樹脂の引張強度を図15に、曲げ強度を図16に示した。PEにCNFを10%配合した複合樹脂(PE+10%CNF)とCNFfineを10%配合した複合樹脂(PE+10%CNFfine)をt検定により統計的に比較した結果、最大引張応力、曲げ弾性率、最大曲げ応力でPE+10%CNFの方が有意(p<0.05)に高強度であったが、引張弾性率、引張および曲げ最大ひずみでは有意差は観察されなかった。一方で、PEにCNFを5%配合した複合樹脂(PE+5%CNF)およびPE+10%CNFを比較した場合、最大引張応力、曲げ弾性率、最大曲げ応力において、有意にPE+10%CNFの方が高い強度を示し、引張ひずみのみでPE+5%CNFの方が有意に高い値を示した。 FIG. 15 shows the tensile strength of the composite resin of CNF or derivatized CNF and PE, and FIG. 16 shows the bending strength. Statistical comparison of composite resin (PE + 10% CNF) with 10% CNF blended with PE and composite resin (PE + 10% CNFfine) with 10% CNFfine by t-test results in maximum tensile stress, flexural modulus, maximum bending PE + 10% CNF was significantly higher in stress (p <0.05), but no significant difference was observed in tensile modulus, tensile and bending maximum strain. On the other hand, when a composite resin (PE + 5% CNF) containing 5% CNF in PE and PE + 10% CNF is compared, PE + 10% CNF has a significantly higher strength in terms of maximum tensile stress, flexural modulus, and maximum bending stress. PE + 5% CNF showed a significantly higher value only with tensile strain.
 PE+5%および10%CNFと、PEにLauCNFをCNF部が5%となるように配合した複合樹脂(PE-5%LauCNF)の強度を比較すると、PE+5%LauCNFがPE+10%CNF複合樹脂よりも、引張弾性率、最大引張応力、最大曲げひずみで有意に高い強度特性を示し、PE+10%CNFが最大引張ひずみ、曲げ弾性率、最大曲げ弾性率で有意に高い伸びを示した。PE+5%CNFと比較すると、引張弾性率、最大引張応力、曲げ弾性率、最大曲げ応力でPE+5%LauCNFの方が有意に良好な特性を示した。また、最大引張ひずみに関してのみPE+5%CNFの方が良好な値を示した。PE+10%CNFfineとPE+5%LauCNFfineの場合では、最大引張応力、最大曲げ応力でPE+5%LauCNFfineが高い強度を示し、有意差はない(p=0.07)ものの、引張弾性率はLauCNFfineの方が高い傾向が見られた。また、最大引張ひずみに関しては、PE+5%CNFfineの方が有意に良好な伸びを示した。また、PE+5%LauCNFとPE+5%LauCNFfineを比較すると、最大引張および曲げ応力のみ有意差が観察され、LauCNFの方が高強度であり、誘導体化しない場合と同様に微細化によって強度が低下する傾向が見られた。 Comparing the strength of PE + 5% and 10% CNF and the composite resin (PE-5% LauCNF) in which PE is mixed with LauCNF so that the CNF part is 5%, PE + 5% LauCNF is more than PE + 10% CNF composite resin. The tensile modulus, maximum tensile stress, and maximum bending strain showed significantly high strength characteristics, and PE + 10% CNF exhibited significantly high elongation at the maximum tensile strain, bending modulus, and maximum bending modulus. Compared with PE + 5% CNF, PE + 5% LauCNF showed significantly better properties in terms of tensile modulus, maximum tensile stress, flexural modulus, and maximum bending stress. Further, only with respect to the maximum tensile strain, PE + 5% CNF showed a better value. In the case of PE + 10% CNFfine and PE + 5% LauCNFfine, PE + 5% LauCNFfine shows high strength at the maximum tensile stress and maximum bending stress, and there is no significant difference (p = 0.07), but the tensile elastic modulus is higher in LauCNFfine. There was a trend. Regarding the maximum tensile strain, PE + 5% CNFfine showed significantly better elongation. In addition, when PE + 5% LauCNF is compared with PE + 5% LauCNFfine, only significant differences are observed in the maximum tensile and bending stresses. LauCNF has higher strength and tends to decrease in strength due to miniaturization as in the case of no derivatization. It was seen.
 このように、CNF配合時とLauCNFを5%配合した複合樹脂の強度を比較した結果、CNFをラウリル化することによるPEに対する補強効果は、曲げ弾性率で同等以上、引張弾性率、最大引張および曲げ応力で2倍以上である。一方で最大引張ひずみはラウリル化によって低下し、強く硬い特性が付与される。また、原料であるCNFの強度はLauCNFの強度にも影響を及ぼす。 Thus, as a result of comparing the strength of the composite resin containing 5% of LauCNF with that of CNF, the reinforcement effect on PE by laurylating CNF is equal to or greater than the flexural modulus, tensile modulus, maximum tension and The bending stress is twice or more. On the other hand, the maximum tensile strain is reduced by laurylation, giving strong and hard properties. In addition, the strength of CNF as a raw material also affects the strength of LauCNF.
[実施例15]
ポリオレフィン系樹脂との混練
○ポリオレフィン樹脂との混練前混合
 アセトンで膨潤したラウリル化CNFを、FMミキサ(FM10C/I、日本コークス工業株式会社)を用いてポリオレフィンと混合した。ポリプロピレン(PP)の場合、マレイン酸変性PP(TOYOBO Co.,LTD.)を5wt%混合したが、ポリエチレン(PE)の場合は混合しなかった。
[Example 15]
Kneading with polyolefin resin ○ Mixing before kneading with polyolefin resin Laurylated CNF swollen with acetone was mixed with polyolefin using FM mixer (FM10C / I, Nippon Coke Industries, Ltd.). In the case of polypropylene (PP), 5 wt% of maleic acid-modified PP (TOYOBO Co., LTD.) Was mixed, but in the case of polyethylene (PE), it was not mixed.
○混練
 前混合したPEないしPPとの混合物は、二軸押出機(東洋精機、ラボプラストミル)に供した。スクリュー系はΦ25mm、有効長(スクリュー長さLと直径D比)を30とした。得られた複合樹脂ペレットは、小型射出成型機(日精樹脂工業、NPX7-1F)を用いて、ダンベル試験片1BAおよび短冊形試験片を作成した。試験片は、温度23度、湿度50%で4日間以上放置した後、機械特性の分析に供した。
○ Kneading The mixture with PE or PP mixed before was subjected to a twin screw extruder (Toyo Seiki, Labo Plast Mill). The screw system had a diameter of 25 mm and an effective length (screw length L to diameter D ratio) of 30. From the obtained composite resin pellets, a dumbbell test piece 1BA and a strip-shaped test piece were prepared using a small injection molding machine (Nissei Plastic Industries, NPX7-1F). The test piece was allowed to stand for 4 days or more at a temperature of 23 ° C. and a humidity of 50%, and then subjected to analysis of mechanical properties.
厚さ150μm程度の複合樹脂シートを調製した。光学顕微鏡観察(DSX500,OLYMPUS)にて、シート中の凝集物を観察した。さらに、可視-赤外分光光度計(積分球有、UV-2600,島津製作所)で光透過スペクトルを測定した。 A composite resin sheet having a thickness of about 150 μm was prepared. Aggregates in the sheet were observed with an optical microscope (DSX500, OLYMPUS). Further, the light transmission spectrum was measured with a visible-infrared spectrophotometer (integrated sphere, UV-2600, Shimadzu Corporation).
○強度測定
島津製作所製Ex-LXを用いて強度試験を行った。引張強度試験(10mm/min)はダンベル試験片1BAを用い、3点曲げ強度試験(2mm/min)は短冊形試験片を用いて測定した。
○ Strength measurement A strength test was performed using Ex-LX manufactured by Shimadzu Corporation. The tensile strength test (10 mm / min) was measured using a dumbbell specimen 1BA, and the three-point bending strength test (2 mm / min) was measured using a strip-shaped specimen.
(結果)
 CNFおよびラウリル化CNFを用いて調製した複合樹脂(PP)シートの顕微鏡観察写真を図17に示した。CNF配合PP複合樹脂シートは、CNFが充分に分散しておらず500μm程度の凝集物が多数確認された。一方、ラウリル化CNF配合PP複合樹脂シートでは凝集物はほとんど観察されなかった。
(result)
The microscope observation photograph of the composite resin (PP) sheet prepared using CNF and laurylated CNF is shown in FIG. In the CNF-blended PP composite resin sheet, CNF was not sufficiently dispersed, and many aggregates of about 500 μm were confirmed. On the other hand, almost no aggregate was observed in the laurylated CNF-containing PP composite resin sheet.
○光透過性
ラウリル化CNF配合PP複合樹脂シートの光透過性を観察したところ、可視領域ではラウリル化CNF5%配合時ではポリプロピレンと同等の光透過性が得られ、10%配合であっても若干の光透過性の低下はあるものの、90%程度の光透過性を保持していた。なお、紫外領域では、ラウリル化CNFの配合率によって、光透過性が大きく低下していく傾向が観察された(図18)。
○ Light transmittance of the PP composite resin sheet containing light-transmitting laurylated CNF was observed, and in the visible region, light transmittance equivalent to that of polypropylene was obtained when blended with 5% laurylated CNF. However, the light transmission was maintained at about 90%. In the ultraviolet region, it was observed that the light transmittance tended to decrease greatly depending on the blending ratio of laurylated CNF (FIG. 18).
○ポリプロピレン(PP)に対する補強効果
ポリプロピレン複合樹脂の引張特性を行った結果を図19に示した。
まず、最大応力(◆と◇の比較)では、すべての配合率で、ラウリル化CNFは高い最大引張応力を示した。次に、弾性率(●と○の比較)では、ラウリル化品1.5%配合時にCNF品5%配合以上の弾性率を示した。また、ひずみ(▲と△の比較)では、配合により低下する傾向にあるものの、未修飾のCNFと比べるとひずみの低下率が小さかった。
○ Reinforcing effect on polypropylene (PP) The results of tensile properties of polypropylene composite resin are shown in FIG.
First, in the maximum stress (comparison between ◆ and ◇), laurylated CNF showed a high maximum tensile stress at all compounding ratios. Next, the elastic modulus (comparison between ● and ○) showed an elastic modulus of 5% or more of CNF product when 1.5% of laurylated product was blended. In addition, the strain (comparison between ▲ and △) tended to decrease due to blending, but the strain reduction rate was small compared to unmodified CNF.
ラウリル化CNFの配合率が0.5~1.5%の範囲で、配合率依存的に補強効果を示した。しかしながら、それ以上に配合しても引張弾性率に与える補強効果は観察されなかった。3%配合時点が最も高い補強効果を示し、複合樹脂の強度は、ポリプロピレンに対する相対割合で、引張弾性率で約150%、最大引張応力で約110%を示した。また1.5%配合時と、ほぼ同等の強度特性であった。0.5%配合であっても、弾性率、最大応力共にポリプロピレンより有意に高い値を示し(p値<0.05なので、5%の有意水準で有意差が認められる)、弾性率は約120%であった。 When the blending ratio of laurylated CNF was in the range of 0.5 to 1.5%, the reinforcing effect was shown depending on the blending ratio. However, no reinforcement effect on the tensile modulus was observed even when blended more than that. The 3% blending point showed the highest reinforcing effect, and the strength of the composite resin was about 150% in terms of tensile modulus and about 110% in terms of maximum tensile stress, relative to polypropylene. The strength characteristics were almost the same as when 1.5% was blended. Even when 0.5% is blended, both the modulus of elasticity and the maximum stress are significantly higher than those of polypropylene (the p value is <0.05, so a significant difference is recognized at a significance level of 5%), and the modulus of elasticity is about 120%.
5%以上に配合率を上昇させた場合、ポリプロピレンに対する補強効果は十分には維持したものの、補強効果が徐々に低下していく傾向が見られた。また、複合樹脂フィルムの透明性も5%より10%では低下した。これらのことから、ラウリル化CNFの配合率は5%より少なくすることが望ましい。さらに、費用対効果の面からも3%以下の配合率が望ましい。 When the blending ratio was increased to 5% or more, although the reinforcing effect for polypropylene was sufficiently maintained, the reinforcing effect tended to gradually decrease. Also, the transparency of the composite resin film was lowered from 5% to 10%. For these reasons, the blending ratio of laurylated CNF is preferably less than 5%. Further, a blending ratio of 3% or less is desirable from the viewpoint of cost effectiveness.
[実施例16]
○ポリエチレン(PE)に対する補強効果
ラウリル化CNFのPEに対する補強効果をCNFと比較すると、引張、曲げ弾性率共により低濃度で同等以上の補強効果を得ることが出来た(図20)。
[Example 16]
○ Reinforcing effect on polyethylene (PE) When the reinforcing effect of laurylated CNF on PE was compared with that of CNF, the same or better reinforcing effect could be obtained at a low concentration by both tensile and bending elastic moduli (Fig. 20).
PEに対する補強効果について、引張および曲げ特性を示す(引張:実線、曲げ:破線)。引張弾性率はラウリル化CNFの0.5%配合時から補強効果が観察された。また、曲げ弾性率では1.5%配合時から補強効果が観察された。ただし、ポリプロピレンの場合と異なり、ラウリル化CNFを7.5%添加した際に、引張弾性率が最大値を取り、配合率を10%としても、引張弾性率は大きく変動(低下)しなかった。ラウリル化CNF7.5%配合ポリプロピレン複合樹脂はポリエチレンに対し、引張弾性率で155%、最大引張応力で135%の値を示した。なお、最大点ひずみは75%であった。一方で、曲げ弾性率は10%配合時まで配合濃度依存的に補強効果が増加し、この配合濃度における曲げ弾性率はポリエチレンの155%、最大曲げ応力が130%であった。
 
The tensile and bending properties are shown for the reinforcing effect on PE (tensile: solid line, bending: broken line). As for the tensile modulus, a reinforcing effect was observed when 0.5% of laurylated CNF was blended. In addition, a reinforcing effect was observed in the flexural modulus from the time of blending 1.5%. However, unlike the case of polypropylene, when 7.5% of laurylated CNF was added, the tensile modulus did not fluctuate (decrease) greatly even when the tensile modulus took the maximum value and the blending rate was 10%. . The laurylated CNF 7.5% blended polypropylene composite resin showed a value of 155% in terms of tensile modulus and 135% in terms of maximum tensile stress relative to polyethylene. The maximum point strain was 75%. On the other hand, the reinforcing effect of the flexural modulus increased depending on the blending concentration until 10% was blended. The flexural modulus at this blending concentration was 155% of polyethylene and the maximum bending stress was 130%.

Claims (15)

  1. 含水状態のセルロースナノファイバー(以下CNFと記す)に有機酸ビニルを反応させ、終了後に生成物を回収する工程を含むことを特徴とする誘導体化CNFの製造方法。 A method for producing derivatized CNF, comprising a step of reacting an organic acid vinyl with water-containing cellulose nanofiber (hereinafter referred to as CNF) and recovering the product after completion.
  2. 前記含水状態のCNFが、多糖の0.5~10質量%水混合液を50~400MPaの高圧水にして、複数箇所から噴射し衝突させて解繊処理して得られる含水状態のCNFであることを特徴とする請求項1に記載の誘導体化CNFの製造方法。 The water-containing CNF is a water-containing CNF obtained by converting a 0.5 to 10 mass% polysaccharide water mixture into high-pressure water of 50 to 400 MPa and spraying and colliding from a plurality of locations. A process for producing a derivatized CNF according to claim 1.
  3. 前記反応が、10%以下の反応容器内の水分量、70℃以上の反応系温度の反応であることを特徴とする請求項1~請求項2のいずれか一に記載の誘導体化CNFの製造方法。 The production of derivatized CNF according to any one of claims 1 to 2, wherein the reaction is a reaction with a water content in a reaction vessel of 10% or less and a reaction system temperature of 70 ° C or more. Method.
  4. 前記反応が、1時間以上の反応時間の反応であることを特徴とする請求項1~請求項3のいずれか一に記載の誘導体化CNFの製造方法。 The method for producing derivatized CNF according to any one of claims 1 to 3, wherein the reaction is a reaction having a reaction time of 1 hour or more.
  5. 前記有機酸ビニルが酢酸ビニル、安息香酸ビニル、2-エチルヘキサン酸ビニル及びラウリン酸ビニルからなる群より選ばれることを特徴とする請求項1~請求項4のいずれか一に記載の誘導体化CNFの製造方法。 The derivatized CNF according to any one of claims 1 to 4, wherein the organic acid vinyl is selected from the group consisting of vinyl acetate, vinyl benzoate, vinyl 2-ethylhexanoate and vinyl laurate. Manufacturing method.
  6. 前記反応が、有機溶媒中に分散した前記含水状態のCNFを炭酸カリウム及び有機酸ビニルとの間で行わせる反応であることを特徴とする請求項1~請求項5のいずれか一に記載の誘導体化CNFの製造方法。 6. The reaction according to claim 1, wherein the reaction is a reaction in which the water-containing CNF dispersed in an organic solvent is performed between potassium carbonate and an organic acid vinyl. Method for producing derivatized CNF.
  7. 前記有機溶媒が非プロトン性極性溶媒であることを特徴とする請求項6に記載の誘導体化CNFの製造方法。 The method for producing derivatized CNF according to claim 6, wherein the organic solvent is an aprotic polar solvent.
  8. 前記有機溶媒がジメチルスルホキシド(以下DMSOと記す)、ジメチルホルムアミド(以下DMFと記す)、N,N‐ジメチルアセトアミド(以下DMAと記す)及びN‐メチルピロリドン(以下NMPと記す)からなる群より選ばれることを特徴とする請求項6~請求項7のいずれか一に記載の誘導体化CNFの製造方法。 The organic solvent is selected from the group consisting of dimethyl sulfoxide (hereinafter referred to as DMSO), dimethylformamide (hereinafter referred to as DMF), N, N-dimethylacetamide (hereinafter referred to as DMA) and N-methylpyrrolidone (hereinafter referred to as NMP). The method for producing derivatized CNF according to any one of claims 6 to 7, wherein:
  9. 前記炭酸カリウム添加量が、対CNF比で5~30質量%であることを特徴とするとする請求項6~請求項8のいずれか一に記載の誘導体化CNFの製造方法。 The method for producing derivatized CNF according to any one of claims 6 to 8, wherein the amount of potassium carbonate added is 5 to 30% by mass in terms of CNF.
  10. 前記誘導体化CNFが、0.25~0.55の置換度を有することを特徴とする請求項1~請求項9のいずれか一に記載の誘導体化CNFの製造方法。 The method for producing derivatized CNF according to any one of claims 1 to 9, wherein the derivatized CNF has a substitution degree of 0.25 to 0.55.
  11. (A)請求項1~請求項10のいずれか一に記載の製造方法で得られる前記誘導体化CNF0.5~10質量%及び(B)高分子化合物合成樹脂99.5~90質量%からなることを特徴とする高分子化合物合成樹脂組成物。 (A) 0.5 to 10% by mass of the derivatized CNF obtained by the production method according to any one of claims 1 to 10 and (B) 99.5 to 90% by mass of a polymer compound synthetic resin. A polymer compound synthetic resin composition characterized by that.
  12. 前記誘導体化CNFが、平均太さ10~200nmの誘導体化CNFであることを特徴とする請求項11に記載の高分子化合物合成樹脂組成物。 12. The polymer compound synthetic resin composition according to claim 11, wherein the derivatized CNF is derivatized CNF having an average thickness of 10 to 200 nm.
  13. 前記高分子化合物合成樹脂が熱可塑性樹脂であることを特徴とする請求項11~請求項12のいずれか一に記載の高分子化合物合成樹脂組成物。 The polymer compound synthetic resin composition according to any one of claims 11 to 12, wherein the polymer compound synthetic resin is a thermoplastic resin.
  14. 前記熱可塑性樹脂がポリオレフィン樹脂であることを特徴とする請求項13に記載の高分子化合物合成樹脂組成物。 The polymer compound synthetic resin composition according to claim 13, wherein the thermoplastic resin is a polyolefin resin.
  15. 有機溶媒で膨潤した請求項1~請求項10のいずれか一に記載の製造方法で得られる前記誘導体化CNFを前記熱可塑性樹脂と高速撹拌し、その後溶融混練する工程を含むことを特徴とする前記高分子化合物樹脂組成物の製造方法。
     
    The method includes a step of stirring the derivatized CNF obtained by the production method according to any one of claims 1 to 10 swollen with an organic solvent with the thermoplastic resin at a high speed, and then melt-kneading. A method for producing the polymer compound resin composition.
PCT/JP2015/070099 2014-07-14 2015-07-14 Derivatized cnf, method for producing same, and polyolefin resin composition WO2016010016A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016534435A JP6245779B2 (en) 2014-07-14 2015-07-14 Method for producing derivatized CNF and method for producing polymer compound resin composition

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014143851 2014-07-14
JP2014-143851 2014-07-14
JP2015-065805 2015-03-27
JP2015065805 2015-03-27
JP2015071418 2015-03-31
JP2015-071418 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016010016A1 true WO2016010016A1 (en) 2016-01-21

Family

ID=55078506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070099 WO2016010016A1 (en) 2014-07-14 2015-07-14 Derivatized cnf, method for producing same, and polyolefin resin composition

Country Status (2)

Country Link
JP (1) JP6245779B2 (en)
WO (1) WO2016010016A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017159823A1 (en) * 2016-03-16 2017-09-21 株式会社Kri Fine cellulose fiber and production method for same
JP2017179365A (en) * 2016-03-29 2017-10-05 トヨタ車体株式会社 Cellulose nanofiber powder and method for producing the same
JP2018065920A (en) * 2016-10-19 2018-04-26 中越パルプ工業株式会社 Cellulose nanofiber and method for producing cellulose nanofiber
JP2018104568A (en) * 2016-12-27 2018-07-05 王子ホールディングス株式会社 Sheet
WO2018194080A1 (en) * 2017-04-19 2018-10-25 中越パルプ工業株式会社 Surface-hydrophobicized cellulose nanofibers for oily thickener, oily thickener composition containing same, cosmetics and hydrophobicized cellulose nanofiber complex for oily thickener containing same, oily thickener composition containing same, and cosmetics containing same
JP2019502796A (en) * 2015-12-22 2019-01-31 エスエーピーピーアイ ネザーランズ サーヴィシーズ ビー.ヴイ Acylation of biopolymers containing anhydroglucose units
WO2019230970A1 (en) 2018-06-01 2019-12-05 旭化成株式会社 Highly heat-resistant resin composite including chemically modified, fine cellulose fibers
JP2020040229A (en) * 2018-09-06 2020-03-19 国立大学法人東京工業大学 Waterproof film, back sheet for disposable diaper, excretion disposal bag and method for producing waterproof film
JP2020063427A (en) * 2018-09-06 2020-04-23 花王株式会社 Flow resistance reducing agent
JP6704551B1 (en) * 2019-05-27 2020-06-03 中越パルプ工業株式会社 Melt mixture, method for producing melt mixture, composition, method for producing composition, and molded article
WO2020241644A1 (en) * 2019-05-27 2020-12-03 中越パルプ工業株式会社 Melt mixture, melt mixture production method, composition, composition production method, and molded article
JP2021046500A (en) * 2019-09-19 2021-03-25 旭化成株式会社 Manufacturing method of esterified cellulose fiber
WO2022244820A1 (en) * 2021-05-18 2022-11-24 中越パルプ工業株式会社 Hydrophobized cnf dispersion production method, and hydrophobized cnf oil-based component-containing body production method
JP7389660B2 (en) 2020-01-24 2023-11-30 株式会社Kri Cellulose fine fiber and its manufacturing method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008053820A1 (en) * 2006-10-30 2008-05-08 Japan Vam & Poval Co., Ltd. Method for esterifying cellulose resin, modified cellulose resin obtained by the esterification method, and method for producing the modified cellulose resin
JP2010221622A (en) * 2009-03-25 2010-10-07 Konica Minolta Holdings Inc Method for manufacturing fiber composite material
CN102898529A (en) * 2012-10-11 2013-01-30 华南理工大学 Method for quickly preparing ester derivatives of cellulose by transesterification
JP2013043984A (en) * 2011-08-26 2013-03-04 Olympus Corp Cellulose nanofiber, method of manufacturing the same, composite resin composition, and molded product
JP2013185096A (en) * 2012-03-08 2013-09-19 Konica Minolta Inc Cellulose nanofiber film
JP2014001361A (en) * 2012-05-25 2014-01-09 Olympus Corp Modified cellulose nanofiber, method for producing the same, resin composition and molded body
JP2014015512A (en) * 2012-07-06 2014-01-30 Japan Polyethylene Corp Cellulose fiber-containing resin composition
JP2014148629A (en) * 2013-02-01 2014-08-21 Kyoto Univ Modified nanocellulose, and resin composition containing modified nanocellulose

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005270891A (en) * 2004-03-26 2005-10-06 Tetsuo Kondo Wet crushing method of polysaccharide

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008053820A1 (en) * 2006-10-30 2008-05-08 Japan Vam & Poval Co., Ltd. Method for esterifying cellulose resin, modified cellulose resin obtained by the esterification method, and method for producing the modified cellulose resin
JP2010221622A (en) * 2009-03-25 2010-10-07 Konica Minolta Holdings Inc Method for manufacturing fiber composite material
JP2013043984A (en) * 2011-08-26 2013-03-04 Olympus Corp Cellulose nanofiber, method of manufacturing the same, composite resin composition, and molded product
JP2013185096A (en) * 2012-03-08 2013-09-19 Konica Minolta Inc Cellulose nanofiber film
JP2014001361A (en) * 2012-05-25 2014-01-09 Olympus Corp Modified cellulose nanofiber, method for producing the same, resin composition and molded body
JP2014015512A (en) * 2012-07-06 2014-01-30 Japan Polyethylene Corp Cellulose fiber-containing resin composition
CN102898529A (en) * 2012-10-11 2013-01-30 华南理工大学 Method for quickly preparing ester derivatives of cellulose by transesterification
JP2014148629A (en) * 2013-02-01 2014-08-21 Kyoto Univ Modified nanocellulose, and resin composition containing modified nanocellulose

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CAO XUEFEI ET AL.: "Rapid Synthesis of Cellulose Esters by Transesterification of Cellulose with Vinyl Esters under the Catalysis of NaOH or KOH in DMSO", JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, vol. 61, no. 10, 2013, pages 2489 - 2495, ISSN: 0021-8561 *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019502796A (en) * 2015-12-22 2019-01-31 エスエーピーピーアイ ネザーランズ サーヴィシーズ ビー.ヴイ Acylation of biopolymers containing anhydroglucose units
JP2020063550A (en) * 2016-03-16 2020-04-23 フタムラ化学株式会社 Cellulose microfiber and method for producing the same
US11015291B2 (en) 2016-03-16 2021-05-25 Futamura Kagaku Kabushiki Kaisha Fine cellulose fiber and production method for same
WO2017159823A1 (en) * 2016-03-16 2017-09-21 株式会社Kri Fine cellulose fiber and production method for same
JPWO2017159823A1 (en) * 2016-03-16 2019-01-10 株式会社Kri Cellulose fine fiber and method for producing the same
CN109312538A (en) * 2016-03-16 2019-02-05 株式会社Kri Cellulose microfibre and its manufacturing method
RU2703245C1 (en) * 2016-03-16 2019-10-15 Асахи Касеи Кабусики Кайся Fine cellulose fiber and method of its production
JP2017179365A (en) * 2016-03-29 2017-10-05 トヨタ車体株式会社 Cellulose nanofiber powder and method for producing the same
JP2018065920A (en) * 2016-10-19 2018-04-26 中越パルプ工業株式会社 Cellulose nanofiber and method for producing cellulose nanofiber
JP2018104568A (en) * 2016-12-27 2018-07-05 王子ホールディングス株式会社 Sheet
JPWO2018194080A1 (en) * 2017-04-19 2019-06-27 中越パルプ工業株式会社 Oil-based thickener, oil-based thickener composition containing it, and cosmetic containing it
CN110741060A (en) * 2017-04-19 2020-01-31 中越纸浆工业株式会社 Surface-hydrophobized cellulose nanofiber for oily thickener, oily thickener composition containing same, cosmetic containing same, hydrophobized cellulose nanofiber complex for oily thickener, oily thickener composition containing same, and cosmetic containing same
WO2018194080A1 (en) * 2017-04-19 2018-10-25 中越パルプ工業株式会社 Surface-hydrophobicized cellulose nanofibers for oily thickener, oily thickener composition containing same, cosmetics and hydrophobicized cellulose nanofiber complex for oily thickener containing same, oily thickener composition containing same, and cosmetics containing same
CN110741060B (en) * 2017-04-19 2022-11-15 中越纸浆工业株式会社 Hydrophobized CNF complex, oily thickener composition containing the same, and cosmetic containing the same
JP6688438B1 (en) * 2018-06-01 2020-04-28 旭化成株式会社 High heat resistant resin composite containing chemically modified cellulose fine fibers
WO2019230970A1 (en) 2018-06-01 2019-12-05 旭化成株式会社 Highly heat-resistant resin composite including chemically modified, fine cellulose fibers
JP2020063427A (en) * 2018-09-06 2020-04-23 花王株式会社 Flow resistance reducing agent
JP2020040229A (en) * 2018-09-06 2020-03-19 国立大学法人東京工業大学 Waterproof film, back sheet for disposable diaper, excretion disposal bag and method for producing waterproof film
JP7240663B2 (en) 2018-09-06 2023-03-16 国立大学法人東京工業大学 Waterproof film, backsheet for disposable diaper, waste disposal bag, and method for producing waterproof film
JP7372087B2 (en) 2018-09-06 2023-10-31 花王株式会社 Flow resistance reducer
JPWO2020241644A1 (en) * 2019-05-27 2021-09-13 中越パルプ工業株式会社 Melt mixture, method of manufacturing melt mixture, composition, method of manufacturing composition and molded article
JP7109813B2 (en) 2019-05-27 2022-08-01 中越パルプ工業株式会社 Molten mixture, method for producing molten mixture, composition, method for producing composition, and molded article
WO2020240935A1 (en) * 2019-05-27 2020-12-03 中越パルプ工業株式会社 Melt mixture, melt mixture production method, composition, composition production method, and molded article
WO2020241644A1 (en) * 2019-05-27 2020-12-03 中越パルプ工業株式会社 Melt mixture, melt mixture production method, composition, composition production method, and molded article
JP6704551B1 (en) * 2019-05-27 2020-06-03 中越パルプ工業株式会社 Melt mixture, method for producing melt mixture, composition, method for producing composition, and molded article
JP2021046500A (en) * 2019-09-19 2021-03-25 旭化成株式会社 Manufacturing method of esterified cellulose fiber
JP7417391B2 (en) 2019-09-19 2024-01-18 旭化成株式会社 Method for producing esterified cellulose fiber
JP7389660B2 (en) 2020-01-24 2023-11-30 株式会社Kri Cellulose fine fiber and its manufacturing method
WO2022244820A1 (en) * 2021-05-18 2022-11-24 中越パルプ工業株式会社 Hydrophobized cnf dispersion production method, and hydrophobized cnf oil-based component-containing body production method

Also Published As

Publication number Publication date
JPWO2016010016A1 (en) 2017-06-15
JP6245779B2 (en) 2017-12-13

Similar Documents

Publication Publication Date Title
JP6245779B2 (en) Method for producing derivatized CNF and method for producing polymer compound resin composition
JP6570103B2 (en) A composite resin composition and a method for producing the composite resin composition.
Igarashi et al. Manufacturing process centered on dry-pulp direct kneading method opens a door for commercialization of cellulose nanofiber reinforced composites
JP5496435B2 (en) Method for producing resin composition containing modified microfibrillated plant fiber, and resin composition thereof
JP5540176B2 (en) Microfibrillated plant fiber, production method thereof, molding material using the same, and production method of resin molding material
Somseemee et al. Reinforcement of surface-modified cellulose nanofibrils extracted from Napier grass stem in natural rubber composites
JP2009293167A (en) Method of producing nanofiber, nanofiber, mixed nanofiber, compositing method, composite material and molding
WO2010131602A1 (en) Method for producing cellulose fiber-containing resin material
WO2014054779A1 (en) Cellulose nanofiber and method for producing same, composite resin composition, and molded article
JP6591304B2 (en) Easily dispersible cellulose composition, method for producing easily dispersible cellulose composition, cellulose dispersed resin composition, and method for producing cellulose dispersed resin composition
JP2014015512A (en) Cellulose fiber-containing resin composition
WO2015152189A1 (en) Production method for readily dispersible cellulose composition, readily dispersible cellulose composition, cellulose dispersion resin composition, and production method for water-based dispersant for cellulose
WO2014142319A1 (en) Rubber composition, method for manufacturing same, vulcanized rubber, and tire
EP2511346A1 (en) Composite material
JP7385625B2 (en) Composite particles and resin compositions
Cobut et al. Cellulose nanocomposites by melt compounding of TEMPO-treated wood fibers in thermoplastic starch matrix
WO2019163873A1 (en) Fibrillation aid for hydrophobized cellulose-based fibers, manufacturing method for resin composition using same, and molded article
Duan et al. A simultaneous strategy for the preparation of acetylation modified cellulose nanofiber/polypropylene composites
JP7153152B1 (en) Resin composition and method for producing resin composition
WO2022168928A1 (en) Method for producing resin composition
JP6871079B2 (en) Method for producing defibrated cellulose fiber and method for producing resin composition
JP5966859B2 (en) Method for producing fine cellulose fiber dispersion
JP6534172B2 (en) Dry solid of cellulose nanofiber, method for producing the same, and redispersion of dry solid
JP2021187885A (en) Cellulose resin composition and method for producing the same
WO2019230719A1 (en) Master batch containing carboxymethylated cellulose nanofibers and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15821781

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2016534435

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15821781

Country of ref document: EP

Kind code of ref document: A1