WO2016009977A1 - Vertical shaft pump - Google Patents

Vertical shaft pump Download PDF

Info

Publication number
WO2016009977A1
WO2016009977A1 PCT/JP2015/069985 JP2015069985W WO2016009977A1 WO 2016009977 A1 WO2016009977 A1 WO 2016009977A1 JP 2015069985 W JP2015069985 W JP 2015069985W WO 2016009977 A1 WO2016009977 A1 WO 2016009977A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
rotating shaft
pump
impeller
sleeve
Prior art date
Application number
PCT/JP2015/069985
Other languages
French (fr)
Japanese (ja)
Inventor
裕輔 渡邊
正治 石井
和彦 杉山
雄二 中塩
内田 義弘
Original Assignee
株式会社荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社荏原製作所 filed Critical 株式会社荏原製作所
Priority to SG11201610976PA priority Critical patent/SG11201610976PA/en
Priority to CN201580038340.6A priority patent/CN106662109B/en
Publication of WO2016009977A1 publication Critical patent/WO2016009977A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D11/00Other rotary non-positive-displacement pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling

Definitions

  • the present invention relates to a vertical pump that pumps liquids such as river water and drainage, and more particularly to a vertical pump that can improve the durability and maintenance of a bearing that supports a rotating shaft and can easily replace the bearing.
  • FIG. 1 is a schematic diagram showing a conventional vertical shaft pump.
  • a vertical shaft pump has a pump base 514, and the pump base 514 is installed on a pump installation floor 500 at the upper part of a water tank.
  • a guide casing 506 that houses the impeller 504 is suspended from the pump installation floor 500 via the suspension pipe 502.
  • the impeller 504 is fixed to a rotating shaft 509, and the rotating shaft 509 is rotatably supported by an outer bearing 510 and an underwater bearing 508.
  • the method 2) it is possible to appropriately measure or detect the wear state of the underwater bearing 508, and it is also possible to replace the underwater bearing 508. For this reason, in order to confirm the wear of the submerged bearing 508 of the vertical shaft pump, the method 2) has been conventionally performed.
  • the above method 2) is expensive and requires a long time for inspection and maintenance.
  • a vertical shaft pump is lifted using an overhead crane, a mechanical engineer, an operator, a crane operator, and the like who are inspectors are required, and considerable work costs are required for lifting.
  • lifting and reassembling a heavy pump can be a dangerous operation.
  • the lifting and inspection work requires inspection and maintenance after the lifting, and then undergoes the steps of re-installation, centering, and trial operation, which requires a considerable number of days.
  • Patent Document 3 there has been proposed a vertical shaft pump having a structure in which a rotating shaft is supported by two of an underwater bearing disposed below an impeller and an outer bearing above a pump installation floor. According to this structure, since the underwater bearing is located below the impeller (suction side), the wear state of the underwater bearing can be visually inspected from the suction port, and the underwater bearing can be easily replaced. Can do.
  • the present invention has been made in view of such problems of the prior art. Even in a large-capacity pump, the submersible bearing can be easily replaced with the pump installed without pulling up the pump.
  • An object of the present invention is to provide a vertical shaft pump with improved reliability of the underwater bearing.
  • a vertical shaft pump includes an impeller, a rotating shaft that extends through the impeller and to which the impeller is fixed, an outer bearing that supports the rotating shaft, and an impeller A bearing unit that is provided below and supports the rotating shaft that passes through the impeller, and the rotating shaft passes through the impeller from the outer bearing without a bearing other than the outer bearing.
  • the bearing unit includes a first bearing that supports the sliding portion of the rotating shaft on a bearing inner peripheral surface, and a second bearing that supports the sliding portion of the rotating shaft on a bearing outer peripheral surface.
  • the bearing unit is removably attached to the lower side of the impeller.
  • the first bearing and the second bearing are configured to be detachable below the impeller. Is done.
  • the vertical pump according to the fourth aspect of the present invention in the vertical pump according to any one of the first to third aspects, it has a protective cover provided below the bearing unit, and the protective cover includes the bearing There is a small side-facing hole to guide the water flow to the unit.
  • the first bearing and the second bearing are made of the same material,
  • the material is composed of a resin or a resin composite material.
  • the vertical shaft pump extends from the outer bearing through the impeller without any bearing other than the outer bearing, and the bearing receives the rotating shaft below the impeller.
  • the bearing unit includes a first bearing that supports the sliding portion of the rotating shaft on the bearing inner peripheral surface, and a second bearing that supports the sliding portion of the rotating shaft on the outer peripheral surface of the bearing.
  • FIG. 1 It is a schematic diagram which shows the conventional vertical shaft pump. It is a schematic diagram which shows the vertical shaft pump in one Embodiment of this invention. It is a longitudinal cross-sectional schematic diagram explaining the principle of a bearing unit. It is sectional drawing in the XX 'cross section shown in FIG. It is a figure which shows operation
  • upper means the upper side (discharge side) in the state where the vertical shaft pump is installed
  • lower means the lower side (suction side) in the state where the vertical axis pump is installed.
  • FIG. 2 is a schematic diagram showing a vertical shaft pump according to an embodiment of the present invention.
  • the vertical pump is connected to a guide casing 1 having a suction bell mouth 1a and a discharge bowl 1b, a suspension pipe 3 for suspending the guide casing 1 in a water tank 5, and an upper end of the suspension pipe 3
  • the discharge curved pipe 4, the impeller 10 accommodated in the guide casing 1, and the rotating shaft 6 to which the impeller 10 is fixed are provided.
  • the suspension pipe 3 extends downward through an insertion hole 24 formed in the pump installation floor 22 above the water tank 5 and is fixed to the pump installation floor 22 via a pump base 23 provided at the upper end of the suspension pipe 3.
  • the rotating shaft (vertical shaft) 6 extends in the vertical direction through the discharge bent tube 4 and the suspension tube 3, and the lower end thereof is located in the guide casing 1.
  • a pump casing 2 is constituted by the guide casing 1 and the suspension pipe 3.
  • the upper floor F that is an area above the pump installation floor 22 is an area that can be inspected at all times, and the water tank section U that is an area below the pump installation floor 22 is an area that is submerged.
  • the suction bell mouth 1a has an opening on the lower side (suction side), and the upper end of the suction bell mouth 1a is fixed to the lower end of the discharge bowl 1b.
  • the impeller 10 is fixed to the lower part of the rotating shaft 6, and the impeller 10 and the rotating shaft 6 rotate integrally.
  • the impeller 10 has a plurality of blades, and a plurality of guide vanes 14 are disposed above (the discharge side) the impeller 10. These guide vanes 14 are fixed to the inner peripheral surface of the guide casing 1 and the outer peripheral surface of the bowl bush 13.
  • the rotating shaft 6 is rotatably supported by the underwater bearing unit 12 and the outer bearing 11.
  • the underwater bearing unit 12 is located below (the suction side) of the impeller 10 and supports the lower end of the rotating shaft 6.
  • the underwater bearing unit 12 is supported by a support member 15 fixed to the inner peripheral surface of the suction bell mouth 1a.
  • the underwater bearing is not arranged between the outer bearing 11 and the underwater bearing unit 12 including the inside of the bowl bush 13.
  • the outer bearing 11 is provided on the upper part (outside) of the discharge curved pipe 4 and supports the upper part (one end) of the rotating shaft 6.
  • the rotating shaft 6 extends through the impeller 10 from the outer bearing 11 without any bearing other than the outer bearing 11.
  • the underwater bearing unit 12 is disposed on the radially outer side of the rotating shaft 6 (around the rotating shaft 6), and is an inscribed bearing (first bearing) that supports the sliding portion of the rotating shaft 6 on the bearing inner peripheral surface. And a circumscribed bearing (second bearing) that is disposed on the radially inner side of the rotating shaft 6 and supports the sliding portion of the rotating shaft 6 on the outer peripheral surface of the bearing.
  • the first bearing and the second bearing provided in the underwater bearing unit 12 are so-called slide bearings that support the rotating shaft while slidingly contacting the rotating shaft 6 during steady operation of the pump.
  • the outer bearing 11 is configured not only to receive a radial load but also to receive a thrust load.
  • the outer bearing 11 may be a single bearing capable of receiving both a radial load and a thrust load, or a combination of a radial bearing capable of receiving a radial load and a thrust bearing capable of receiving a thrust load. There may be.
  • the rotating shaft 6 protrudes upward from the discharge curved pipe 4.
  • the upper end of the rotary shaft 6 is connected to the drive shaft 42 of the speed reducer 41 via a universal shaft joint 45.
  • the speed reducer 41 is connected to a drive source 43.
  • a diesel engine, a gas turbine, a motor, or the like can be used. Note that the speed reducer 41 may not be used.
  • the submersible bearing 508 is housed in the bowl bush, it is difficult to replace the submersible bearing 508 with the vertical pump installed.
  • the underwater bearing unit 12 is disposed below the impeller 10, if water inside the water tank 5 is removed and an operator enters the lower part of the vertical shaft pump, The amount of wear and damage of the bearing unit 12 can be easily determined, and the underwater bearing unit 12 can be easily replaced.
  • the submersible bearing unit 12 can be inspected and replaced without lifting the vertical shaft pump, the cost required for lifting the vertical shaft pump can be reduced, and the downtime during inspection and replacement can be greatly increased. Can be shortened. Therefore, the economical efficiency and reliability of the pump station can be improved. Moreover, since the position of the underwater bearing unit 12 is lower than the conventional position and is located below the impeller 10, the underwater bearing unit 12 can be surely submerged during the operation of the pump. Therefore, the water film formed between the underwater bearing unit 12 and the rotating shaft 6 can suppress wear of the underwater bearing unit 12 and improve the durability of the underwater bearing unit 12.
  • FIG. 3 is a schematic longitudinal sectional view illustrating the principle of the bearing unit.
  • This bearing unit has a sleeve 31 on the outer periphery of the rotary shaft 30.
  • the material of the sleeve 31 is practically made of cemented carbide or stainless steel.
  • a hollow cylindrical first slide bearing 44 is provided on the outer peripheral side of the sleeve 31. That is, the sleeve 31 contacts and slides inside the first slide bearing 44.
  • the material of the first plain bearing 44 is practically made of a resin material, ceramics, sintered metal, or surface-modified metal.
  • the outer peripheral surface (first sliding portion 46) of the sleeve 31 faces the inner peripheral surface (slip surface) of the first slide bearing 44 through a very narrow first clearance 47, and the first slide bearing. It is configured to slide with respect to 44 sliding surfaces.
  • the outer peripheral portion of the first plain bearing 44 is fixed to the inner peripheral surface of the substantially cylindrical bearing case 32.
  • the material of the bearing case 32 is practically made of metal or resin.
  • a hollow cylindrical second sliding bearing 39 is provided on the outer peripheral surface of the bearing case 32.
  • the material of the second plain bearing 39 is practically made of a resin material, ceramics, sintered metal, or surface-modified metal.
  • a substantially cylindrical sleeve case 38 is fixed to the rotating shaft 30 by fixing means 33a such as a fixing pin or a bolt, and the sleeve case 38 rotates with the rotating shaft 30 as the rotating shaft 30 rotates. It is configured.
  • a sleeve 37 is provided on the inner peripheral surface of the sleeve case 38, and the inner peripheral surface (second sliding portion 36) of the sleeve 37 is the second narrower than the outer peripheral surface (sliding surface) of the second slide bearing 39.
  • the sleeves 31 and 37 are generally installed on the outer periphery of a shaft member or the like, but in the present application, in order to make the configuration of the bearing unit easy to understand, for the sake of convenience, the sleeves 31 and 37 bear the main bearing material.
  • First and second sliding bearings are used, and the opposed sliding members are referred to as sleeves.
  • the above is the configuration of the bearing unit.
  • the bearing unit is fixed to a support member 35 or the like connected to a casing such as a pump via a flange portion 32a of the bearing case 32 by fixing means 33b such as a bolt.
  • the sleeve 31 is held on the outer periphery of the rotating body (rotating shaft 30), and the non-rotating slide bearing corresponding to the outer peripheral side of the sleeve 31 is used as the first slide bearing 44.
  • a sleeve 37 is provided on the inner circumference of the rotating body (sleeve case 38), and a non-rotating slide bearing corresponding to the inner circumference side of the sleeve 37 is used as a second slide bearing 39.
  • a slide bearing may be held on the outer periphery of the rotating body (rotating shaft 30), and a sleeve may be provided on the corresponding non-rotating body. Further, the first slide bearing holds the sleeve on the outer periphery of the rotating body, and the second slide bearing holds the slide bearing on the outer periphery of the rotating body in a state where the corresponding slide bearing is on the non-rotating side. It is possible that the corresponding sleeve is on the non-rotating side and vice versa.
  • the sleeve case 38 is supplied with water containing slurry or the like in the first clearance 47 and the second clearance.
  • a water supply port 40 for passing water through the clearance 48 is provided.
  • the water that has flowed into the water supply port 40 passes through the first clearance 47 and the second clearance 48 as flow paths.
  • a flow path for allowing water to pass through the first clearance 47 and the second clearance 48 is formed, and the first clearance 47 and the second clearance 48 also function as a flow path. Water quickly flows into the first clearance 47 and the second clearance 48 without staying, and the functions of the first slide bearing 44 and the second slide bearing 39 can be exhibited quickly.
  • first slide bearing 44 and the second slide bearing 39 support the sleeve 31 and the sleeve 37 under dry conditions at the time of start-up, and the sleeve 31 and the sleeve 37 through a very thin liquid film under drainage conditions.
  • the dry condition refers to a condition in which the atmosphere of the first slide bearing 44 and the second slide bearing 39 in operation is in the air without liquid lubrication, and the dry operation is performed under the conditions. That means.
  • the diameter clearance dimension (the first clearance 47)
  • the inner diameter of the first slide bearing 44—the outer diameter of the sleeve 31) and the diameter clearance dimension of the second clearance 48 (the inner diameter of the sleeve 37—the outer diameter of the second slide bearing 39) are the same as those of the first slide bearing 44. It is preferable that the inner diameter is 1/1000 or more and 1/100 or less and the outer diameter of the second slide bearing 39 is 1/1000 or more and 1/100 or less.
  • the first clearance 47 and the second clearance 48 When the dimensions of the first clearance 47 and the second clearance 48 are larger than these ranges, the steady swinging of the rotating shaft 30 becomes large, and the swinging causes the first sliding bearing 44 and the second sliding. The load applied to the bearing 39 is also increased, and stable operation may be difficult. Further, when the dimensions of the first clearance 47 and the second clearance 48 are smaller than these ranges, the first clearance 47 and the second clearance 48 are blocked by foreign matter, or the first slide bearing 44 and the second clearance 48 are closed. In some cases, the second slide bearing 39 may be seized due to friction with foreign matter.
  • the diameter clearance dimension of the first clearance 47 and the diameter clearance dimension of the second clearance 48 are preferably the same, but the first sliding bearing 44, the second sliding bearing 39, the sleeve 37, or the sleeve 31 is made of resin. If these members have elasticity, such as being formed of, the function of the present invention is exhibited even if there is a difference in dimensions.
  • the ratio of the diameter clearance dimension of the second clearance 48 to the diameter clearance dimension of the first clearance 47 is preferably 0.5 or more and 2.0 or less, more preferably 0.7 or more and 1.3. It is as follows.
  • the cushioning is performed.
  • the first slide bearing 44 and the second slide bearing 39 can simultaneously contact the sleeve 31 and the sleeve 37 at the same time, even if the dimensions are not in the above-mentioned range due to the deformation of the material, and the function of the present invention is exhibited.
  • FIG. 4 is a cross-sectional view taken along the line XX ′ shown in FIG. As shown in the figure, the centers of the outer peripheral surface of the sleeve 31, the inner peripheral surface of the first slide bearing 44, the outer peripheral surface of the second slide bearing 39, and the inner peripheral surface of the sleeve 37 substantially coincide with the central axis O. Is configured to do. In FIG. 4, the dimensions of the first clearance 47 and the second clearance 48 are shown enlarged for the sake of convenience.
  • FIG. 5 is a diagram illustrating the operation of the bearing unit during the dry operation.
  • the sleeve 31 fixed to the rotating shaft 30 and the sleeve 37 fixed to the sleeve case 38 also rotate.
  • a bearing reaction force FAN is generated on the rotary shaft 30.
  • a frictional force FAF is generated in a direction opposite to the rotation direction of the rotating shaft 30, and this frictional force FAF causes a whirling vibration in the direction opposite to the rotating direction in the rotating shaft 30. Stabilization power.
  • FIG. 6 is a diagram illustrating the operation of the bearing unit during the drainage operation.
  • the first clearance 47 and the second clearance 48 are filled with water, and this water constitutes a liquid film 49 and a liquid film 50, respectively, whereby the bearing unit functions as a fluid lubrication bearing unit.
  • the liquid film 49 the circumferential direction of the pressure nonuniformity due to the rotation of the rotating shaft 30 occurs, as a result, the radial fluid forces F AR and the circumferential fluid force F AT occurs in the rotation shaft 30.
  • the circumferential fluid force F AT becomes destabilizing force that generates vibrations during drainage operation.
  • the circumferential fluid force F AT is the frictional force F AF generated by the drying operation is a reverse force.
  • the inner surface of the bearing has been formed into a multi-arc shape instead of a perfect circle shape.
  • the inner surface shape of the bearing approaches a perfect circle shape due to wear, and the vibration suppressing effect may be lost.
  • the bearing unit is a sliding bearing that always slides on the sliding surface and supports the rotating shaft in both the normal operation during the dry operation and the drain operation, and the contact of the first sliding bearing, Since the frictional force acting on the contact point of the second sliding bearing cancels out, vibration of the rotating shaft due to the destabilizing force can be suppressed, and stable rotation of the rotating shaft can be maintained.
  • FIG. 7 is a diagram showing the vibration speed when the bearing unit shown in FIG. 3 is provided in the vertical shaft pump and the dry operation without lubrication or cooling with water is performed in the atmosphere in the atmosphere.
  • the 10 has a sleeve 29 on the outer periphery of the rotary shaft 25.
  • the conventional bearing device shown in FIG. A hollow cylindrical slide bearing 28 is provided on the outer peripheral side of the sleeve 29.
  • the outer peripheral surface of the sleeve 29 is configured to face the inner peripheral surface (slip surface) of the slide bearing 28 through a very narrow clearance and slide relative to the slide bearing 28.
  • the diameter and the number of rotations of the rotating shaft 25 and the material of the sleeve 29 and the plain bearing 28 shown in FIG. 10 are the same conditions as the bearing unit shown in FIG.
  • the vertical pump (this embodiment) having the bearing unit shown in FIG. 3 is more constant from the start to the start than the vertical pump having the conventional bearing device. It can be seen that the system is operated at a lower vibration speed than the conventional structure.
  • FIG. 8 is a diagram showing the bearing temperature when the bearing unit shown in FIG. 3 is provided in the vertical shaft pump and the dry operation is performed. For comparison, the bearing temperature when the vertical shaft pump (conventional structure) including the conventional bearing device shown in FIG.
  • the vertical pump (this embodiment) having the bearing unit shown in FIG. 3 is more constant from the start to the stop than the vertical pump having the conventional bearing device. It can be seen that a lower bearing temperature is maintained compared to the conventional structure.
  • FIG. 9 is a diagram showing the vibration speed when the vertical axis pump is provided with the bearing unit shown in FIG. 3 and the drainage operation is performed. During the drainage operation, the bearing unit is submerged in water. For comparison, the vibration speed when the vertical shaft pump (conventional structure) including the conventional bearing device shown in FIG. Note that the results shown in FIG. 9 are obtained by measuring the vibration at the time when the operation condition of the vertical shaft pump is operated under a condition where vibration is likely to occur.
  • the vertical pump (this embodiment) provided with the bearing unit shown in FIG. 3 is more constant from the start to the stop than the vertical pump provided with the conventional bearing device. It can be seen that the system is operated at a lower vibration speed than the conventional structure.
  • the first slide bearing 44 and the second slide bearing 39 are rotated by the rotating body (sleeve) due to the swing of the shaft of the rotary shaft 30 during the dry operation. 31 and the sleeve 37) collide with each other because the frictional forces act in opposite directions to cancel each other at the time of the collision, thereby suppressing the divergence of the swing of the rotating shaft 30 and preventing the vibration due to destabilization. be able to. In addition, it is possible to reduce friction caused by this vibration and suppress an increase in bearing temperature.
  • the bearing unit shown in FIG. 3 has the first slide bearing 44 and the second slide bearing 39, the frictional force of the bearing slide surface during the dry operation is dispersed to suppress heat generation due to the friction of the bearing slide surface. can do.
  • a bearing material having a higher friction coefficient than that of the conventional structure that is, a bearing material having higher wear resistance can be used, and stable operation can be performed for a long period of time.
  • the bearing unit shown in FIG. 3 holds the first slide bearing 44 on the inner peripheral surface of the bearing case 32 and the second slide bearing 39 on the outer peripheral surface thereof. A compact structure can be obtained.
  • the portions (the sleeve 31 and the sleeve 37) located in the water of the rotary shaft 30 are supported by the first slide bearing 44, the second slide bearing 39, and the like.
  • a rolling bearing such as a ball bearing or a roller bearing is not suitable for an underwater bearing of a rotating machine that performs drainage operation, and the effect of this embodiment can be achieved by a sliding bearing.
  • FIG. 11 shows the bearing unit attached to the support member 15 fixed to the inner peripheral surface of the suction bell mouth 1a of the vertical shaft pump in FIG.
  • the rotating shaft 6 has a cylindrical structure with a hollow end.
  • the bearing unit includes a first slide bearing 52 and a second slide bearing 57.
  • a sleeve 51 (corresponding to an example of a sliding portion of the rotating shaft) corresponding to the first slide bearing 52 disposed on the radially outer side of the rotating shaft 6 (around the rotating shaft 6) is a rotating shaft below the impeller.
  • a sleeve 55 (corresponding to an example of a sliding portion of the rotating shaft) corresponding to the second sliding bearing 57 is provided inside the hollow cylindrical structure at the end of the rotating shaft 6 with a cushioning material 56 interposed therebetween.
  • the sleeve 55 and the buffer material 56 corresponding to the second sliding bearing 57 are fixed to the rotating shaft 6 by the pressing plate 58.
  • the first plain bearing 52 is held by a substantially cylindrical first bearing case 54 via a buffer material 53.
  • the first bearing case 54 is fixed to the support member 15.
  • the first bearing case 54 has a substantially disc-shaped collar portion 54a.
  • a flange portion 54a is removably attached to the lower surface of the support member 15 with a bolt 61a so that the first bearing case 54 can be removed vertically downward (suction side) of the pump.
  • the second sliding bearing 57 is disposed immediately below the first sliding bearing 52, and is fixed to the first bearing case 54 by a substantially cylindrical or cylindrical second bearing case 60.
  • the second bearing case 60 has a substantially disc-shaped collar portion 60a, and is detachably attached to the lower surface of the first bearing case 54 of the collar portion 60a by a bolt 61b.
  • the second bearing case 60 is divided from the first bearing case 54,
  • the bearing inspection / maintenance can be improved by removing only the bearing case 60 of the second bearing.
  • the first bearing case 54 When the bearing is replaced, the first bearing case 54 is removed, so that the first slide bearing 52 and the second slide bearing 57 can be removed as a unit at the same time. Can be improved.
  • the diameter of the rotary shaft 6 is relatively small, the size of the device is also relatively small. Therefore, the first bearing case 54 and the second bearing case 60 are not divided parts and are shown in FIG. As described above, it may be an integrated bearing case 62 that holds the first slide bearing 52 and the second slide bearing 57.
  • the integral bearing case 62 has a substantially disc-shaped collar portion 62a, and the collar portion 62a can be fitted to and detached from the lower surface of the support member 15 with a bolt 61c so that the collar portion 62a can be removed vertically below the pump (suction side). Attached to.
  • the second bearing case 60 shown in FIG. 11 and the integrated bearing case 62 shown in FIG. 12 are preferably provided with a plurality of water supply / drain ports (holes) 59.
  • the water supply / drain port 59 By providing the water supply / drain port 59, the water flow of the pump can be reliably guided to the surfaces of the first slide bearing 52 and the second slide bearing 57, and the friction of the bearing surface due to the internal water on the bearing surface can be reduced. The life can be improved and vibration can be suppressed.
  • FIG. 13 is a view showing another embodiment of the bearing unit provided in the vertical shaft pump according to the present invention.
  • the structure of the bearing unit, the outer diameter D 2 of the rotary shaft 6 is applied to the outer diameter D 1 greater than a large vertical shaft pump of the rotary shaft 6 shown in FIG. 11.
  • the second slide bearing 57 is installed on the inner surface of the hollow cylindrical structure of the rotary shaft 6 on the substantially horizontal XX plane at the installation position of the first slide bearing 52.
  • the first slide bearing 52 and the second slide bearing 57 are arranged on the same horizontal plane without being separated in the vertical direction (axial direction), so that the bearing contact at the position facing the same horizontal plane is achieved. Therefore, the bearing sliding stability can be improved without being affected by the bending of the shaft caused by the rotation of the long rotating shaft 6.
  • first slide bearing 52 and the second slide bearing 57 are arranged on the same horizontal plane, it becomes possible to shorten the vertical (axial) length of the bearing unit, and the bearing unit is configured compactly. can do. Since the bearing unit becomes compact, there are fewer parts that obstruct the flow of the handling liquid, and it is possible to reduce adverse effects on pump performance such as a decrease in pump efficiency and an increase in deadline shaft power.
  • FIG. 14 is a view showing a protective cover provided in the vertical shaft pump of the present invention.
  • the protective cover 63 has a substantially spherical shape at the tip, and is attached to the second bearing case 60 by a fixing member 64 so as to be detachable. Further, the protective cover 63 is provided with a water supply / drain port (small hole) 63a for supplying / draining the liquid handled by the pump in the horizontal direction (to face the side).
  • the water supply / drainage port 63a in the protective cover 63 in the horizontal direction (perpendicular to the axial direction of the rotary shaft 6), it is possible to use a drainage pump for rivers or sewers in which slurry is contained in the handling liquid. It is possible to prevent the slurry from entering the bearing portion and suppress the wear of the bearing.
  • the main water supply / drain port 63a drains the water in the bearing portion to the water absorption tank side when the pump is stopped, it is effective in preventing slurry accumulation inside the pump bearing.
  • the protective cover 63 is detachably attached to the second bearing case 60 by the fixing member 64, the protective cover 63 is removed by removing the protective cover 63 during the inspection of the bearing or during the removal / attachment operation. The influence on these operations can be eliminated.
  • the protective cover 63 is detachably attached to the second bearing case 60, but may be detachably attached to the first bearing case 54 or the support member 15.
  • the sleeve 51 is provided on the outer surface of the rotary shaft 6, and the first sliding bearing 52 corresponding to the sleeve 51 is held by the first bearing case 54 outside the sleeve 51.
  • the load of the sliding portion increases.
  • the outer diameter D 3 of the sliding portion of the second plain bearing 57 in the embodiment shown in FIG. 13 is extremely smaller than the outer diameter D 2 of the rotating shaft 6, from the center to the outer periphery of the sleeve 51.
  • the distance from the center to the outer periphery of the second slide bearing 57 are significantly different from each other, so that the second slide bearing 57 cannot receive the surface pressure from the sleeve 55. For this reason, the bearing reaction force of the second sliding bearing 57 is insufficient, and a difference occurs in the frictional forces in the opposite directions applied to the first sliding bearing 52 and the second sliding bearing 57.
  • the bearing unit shown in FIGS. 15 and 16 has a sliding portion that does not directly depend on the diameter of the rotating shaft 6 while ensuring the maintenance such as the ease of replacement and inspection shown in the above description.
  • the present invention provides a bearing unit structure capable of ensuring an optimum peripheral speed, an optimum surface pressure, and an optimum bearing reaction force.
  • FIG. 15 shows a bearing unit according to another embodiment of the present invention attached to a support member 15 fixed to the inner peripheral surface of the suction bell mouth 1a of the vertical shaft pump in FIG.
  • a first bearing case 71 is fixed to the end of the rotating shaft 6 by a fixing member (bolt or the like) 70.
  • the first bearing case 71 has a hollow cylindrical portion 71a, and a sleeve 55 (corresponding to an example of a sliding portion of the rotating shaft) is provided on the inner peripheral surface of the first bearing case 71 via a buffer material 56.
  • the sleeve 55 and the buffer material 56 are fixed to the first bearing case 71 by a pressing plate 58.
  • a first plain bearing 52 is provided on the outer peripheral surface of the cylindrical portion 71 a of the first bearing case 71. Since the first bearing case 71 is fixed to the rotating shaft 6, it rotates together with the rotating shaft 6.
  • a second bearing case 65 is fixed to the support member 15 by a fixing member (bolt or the like) 69.
  • the second bearing case 65 includes a columnar portion 65 a inserted into a hollow portion (inside the cylinder) of the hollow cylindrical portion 71 a of the first bearing case 71, and a hollow cylindrical shape of the first bearing case 71. And a cylindrical portion 65b surrounding the outer periphery of the portion 71a.
  • a second sliding bearing 57 is provided on the outer peripheral surface of the columnar portion 65a corresponding to the sleeve 55 provided on the inner peripheral surface of the hollow cylindrical portion 71a of the first bearing case 71 via a buffer material 56. Is provided.
  • a sleeve 51 (through a buffer material 53 is provided corresponding to the first sliding bearing 52 provided in the first bearing case 71. Corresponding to an example of the sliding portion of the rotating shaft).
  • the sleeve 51 and the buffer material 53 are fixed to the second bearing case 65 by a pressing plate 66.
  • the outer diameter D 2 ′ of the sliding portion of the first sliding bearing 52 is smaller than the outer diameter D 2 of the rotating shaft 6, and when the rotating shaft 6 rotates, the peripheral speed of the sliding portion is that of the sliding member. It is set so that proper use can be continued. Further, the outer diameter D 3 of the sliding portion of the second sliding bearing 57 is smaller than the outer diameter D 2 ′ of the sliding portion of the first sliding bearing 52, but the second sliding bearing 57 is removed from the sleeve 55. It is the size of the range where the surface pressure can be properly received.
  • the size of the first bearing case 71 and the second bearing case 65 can be made compact without depending much on the diameter of the rotating shaft 6.
  • the first sliding bearing 52 and the second sliding bearing 57 can be inspected and replaced by removing only the second bearing case 65, so that workability is improved.
  • the first bearing case 71 having sliding portions on the inner peripheral surface and the outer peripheral surface is fixed to the end of the rotating shaft 6, and the inner peripheral surface and the outer peripheral surface of the first bearing case 71 are fixed.
  • a second bearing case 65 having a sliding portion corresponding to the sliding portion is fixed to a non-rotating fixed body such as the support member 15.
  • FIG. 16 shows a bearing unit structure according to another embodiment of the present invention attached to a support member 15 fixed to the inner peripheral surface of the suction bell mouth 1a of the vertical shaft pump in FIG.
  • a first bearing case 72 is fixed to the end of the rotating shaft 6 by a fixing member (bolt or the like) 77.
  • the first bearing case 72 has a columnar portion 72a and a hollow cylindrical portion 72b surrounding the columnar portion 72a.
  • a second slide bearing 57 (corresponding to an example of a sliding portion of the rotating shaft) is provided on the outer periphery of the columnar portion 72a, and a sleeve 51 (rotation) is provided on the inner surface of the cylindrical portion 72b via a buffer material 53.
  • the sleeve 51 and the buffer material 53 are fixed to the first bearing case 72 by a pressing plate 79. Since the first bearing case 72 is fixed to the rotating shaft 6, it rotates together with the rotating shaft 6.
  • a second bearing case 73 is fixed to the support member 15 by a fixing member (bolt or the like) 74.
  • the second bearing case 73 has a cylindrical portion 73a inserted between the columnar portion 72a and the cylindrical portion 72b of the first bearing case 72.
  • a sleeve 55 corresponding to the second sliding bearing 57 is provided on the inner peripheral surface of the cylindrical portion 73 a of the second bearing case 73 via a cushioning material 56.
  • the sleeve 55 and the buffer material 56 are fixed to the second bearing case 73 by a pressing plate 80.
  • a first plain bearing 52 corresponding to the sleeve 51 is provided on the outer peripheral surface of the cylindrical portion 73 a of the second bearing case 73.
  • the outer diameter D 2 ′ of the sliding portion of the first sliding bearing 52 is smaller than the outer diameter D 2 of the rotating shaft 6, and when the rotating shaft 6 rotates, the peripheral speed of the sliding portion is that of the sliding member. It is set so that proper use can be continued. Further, the outer diameter D 3 of the sliding portion of the second sliding bearing 57 is smaller than the outer diameter D 2 ′ of the sliding portion of the first sliding bearing 52, but the second sliding bearing 57 has the sleeve 55. It is the size of the range where the surface pressure can be properly received.
  • first slide bearing 52 and the second slide bearing 57 of this bearing unit As materials for the first slide bearing 52 and the second slide bearing 57 of this bearing unit, ceramics, resin, rubber, or the like can be used. In the standby standby pump that performs air operation and drainage operation, it can be used in an anhydrous state rather than a brittle material such as ceramics in order to prevent damage to the bearing due to a sudden change in operating state (including a sudden change in bearing temperature). A resin or a resin composite material is used. When such a resin bearing is used, since the resin bearing is inferior in wear resistance and has a large friction coefficient compared to a ceramic bearing, there arises a problem that the amount of heat generated by the bearing during air operation increases. However, by using the combination unit of the first slide bearing 52 and the second slide bearing 57 of the present invention, it is possible to suppress the amount of wear and heat generation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Provided is a vertical shaft pump that, even for a high-capacity pump, allows easy replacement of submerged bearings, without lifting the pump, when the pump is in place, and improves the reliability of submerged bearings. This vertical shaft pump is provided with a guide casing (1), a suspended pipe (3) that suspends the guide casing (1) inside a water tank (5), a discharge curved pipe (4) that is connected to the top end of the suspended pipe (3), a impeller (10) that is accommodated inside the guide casing (1), and a rotating shaft (6) to which the impeller (10) is fixed. The rotating shaft (6) is rotatably supported by a submerged bearing unit (12) and an exterior bearing (11). The submerged bearing unit (12) is positioned below the impeller (10), and supports the bottom end of the rotating shaft (6). The rotating shaft (6) extends from the exterior bearing (11) through the impeller (10) without passing through bearings other than the exterior bearing (11). The submerged bearing unit (12) has an inner contact bearing that supports a sliding part of the rotating shaft (6) on the bearing inner circumferential surface, and has an outer contact bearing that supports the sliding part of the rotating shaft (6) on the bearing outer circumferential surface.

Description

立軸ポンプVertical shaft pump
 本発明は、河川水や排水などの液体を汲み上げる立軸ポンプに関し、特に回転軸を支える軸受の耐久性、維持管理性を向上させ、軸受を容易に交換することができる立軸ポンプに関するものである。 The present invention relates to a vertical pump that pumps liquids such as river water and drainage, and more particularly to a vertical pump that can improve the durability and maintenance of a bearing that supports a rotating shaft and can easily replace the bearing.
 図1は、従来の立軸ポンプを示す模式図である。図1に示すように、一般に、立軸ポンプは、ポンプベース514を有し、ポンプベース514は水槽上部のポンプ据付床500に設置される。羽根車504を収容するガイドケーシング506が吊下管502を介してポンプ据付床500から吊り下げられる。羽根車504は回転軸509に固定されており、回転軸509は外軸受510および水中軸受508により回転自在に支持される。 FIG. 1 is a schematic diagram showing a conventional vertical shaft pump. As shown in FIG. 1, generally, a vertical shaft pump has a pump base 514, and the pump base 514 is installed on a pump installation floor 500 at the upper part of a water tank. A guide casing 506 that houses the impeller 504 is suspended from the pump installation floor 500 via the suspension pipe 502. The impeller 504 is fixed to a rotating shaft 509, and the rotating shaft 509 is rotatably supported by an outer bearing 510 and an underwater bearing 508.
 このような立軸ポンプは、羽根車504および水中軸受508が水中に浸漬された状態で運転されるので、使用時間の経過とともにこれらの部材に徐々に摩耗や腐食が起こる。このため、立軸ポンプの点検作業を定期的に行って軸受部(外軸受510および水中軸受508)および羽根車504の摩耗状況、並びにガイドケーシング506の腐食状況を確認し、必要に応じてこれらの部材の補修または交換を行うことが必要となる。これらの部材の中で水中軸受508の損傷や摩耗は、ポンプの異常振動の原因となり、最終的にポンプ故障(運転不能)の原因となる。このため、水中軸受508の点検は重要な点検項目の1つである。 Since such a vertical shaft pump is operated in a state where the impeller 504 and the underwater bearing 508 are immersed in water, the members gradually wear and corrode as the usage time elapses. For this reason, the vertical shaft pump is regularly inspected to check the wear state of the bearing portion (the outer bearing 510 and the underwater bearing 508) and the impeller 504, and the corrosion state of the guide casing 506. It is necessary to repair or replace the member. Among these members, damage and wear of the underwater bearing 508 cause abnormal vibration of the pump, and eventually cause a failure of the pump (impossible operation). For this reason, the inspection of the underwater bearing 508 is one of important inspection items.
 立軸ポンプの点検・整備方法としては、1)ポンプを据え付けたまま行う方法と、2)ポンプを引き上げて行う方法とが知られている。1)の点検方法は、ポンプを引き上げずに点検を行うことができるため、費用が安く、かつ点検・整備にかかる期間も短くできる。しかしながら、例えば、立軸ポンプの水中軸受508が水中に没しているときは、上記1)の方法では、水中軸受508の摩耗状態を適切に測定または検知することは難しく、水中軸受508を交換することもできない。また、水槽内の水を排水してドライにした状態でも、水中軸受508は羽根車504の上方(吐出側)に位置しているため、やはり水中軸受508の点検や整備および交換はできない。すなわち、水槽内の水を抜き、軸受部を大気中に露出させても軸受の設置位置の問題により、満足な点検整備ができない。 立 As vertical shaft pump inspection and maintenance methods, 1) a method in which the pump is installed and 2) a method in which the pump is pulled up are known. In the inspection method 1), the inspection can be performed without raising the pump, so the cost is low and the period for inspection and maintenance can be shortened. However, for example, when the underwater bearing 508 of the vertical shaft pump is submerged in the water, it is difficult to appropriately measure or detect the wear state of the underwater bearing 508 by the method 1) above, and the underwater bearing 508 is replaced. I can't do that either. Even when the water in the water tank is drained and dried, the underwater bearing 508 is located above (the discharge side) of the impeller 504, so that the underwater bearing 508 cannot be inspected, maintained, or replaced. That is, even if the water in the water tank is drained and the bearing portion is exposed to the atmosphere, satisfactory inspection and maintenance cannot be performed due to the problem of the installation position of the bearing.
 そこで、地上部で測定できる外軸受510やポンプベース514などの振動を測定し、間接的に水中軸受508の状態を推測する方法が提案されている(特許文献1,2参照)。しかしながら、この方法では、振動源となる水中軸受508付近で測定を行うわけではないため、振動源から測定点までの種々の減衰効果により、水中軸受の摩耗等による異常振動を計測することが難しく、適切に損傷や摩耗状況を判断することができない。 Therefore, a method has been proposed in which vibrations of the outer bearing 510 and the pump base 514 that can be measured on the ground are measured to indirectly estimate the state of the underwater bearing 508 (see Patent Documents 1 and 2). However, in this method, since measurement is not performed near the underwater bearing 508 serving as a vibration source, it is difficult to measure abnormal vibration due to wear of the underwater bearing due to various damping effects from the vibration source to the measurement point. Can not properly judge damage and wear situation.
 これに対して、上記2)の方法によれば、水中軸受508の摩耗状態を適切に測定または検知することが可能であり、また水中軸受508の交換も可能である。このため、従来、立軸ポンプの水中軸受508の摩耗を確認するために、上記2)の方法を行っていた。 On the other hand, according to the method 2), it is possible to appropriately measure or detect the wear state of the underwater bearing 508, and it is also possible to replace the underwater bearing 508. For this reason, in order to confirm the wear of the submerged bearing 508 of the vertical shaft pump, the method 2) has been conventionally performed.
 しかしながら、上記2)の方法は、費用がかかり、点検・整備にかかる時間も長くなってしまう。例えば、天井クレーンを用いて立軸ポンプを引き上げる場合には、点検員となる機械技術者、作業員、およびクレーンオペレータなどが必要となり、引き上げのために相当の作業費用を要する。また、重量物であるポンプの引き上げ、再組立作業は危険作業といえる。 However, the above method 2) is expensive and requires a long time for inspection and maintenance. For example, when a vertical shaft pump is lifted using an overhead crane, a mechanical engineer, an operator, a crane operator, and the like who are inspectors are required, and considerable work costs are required for lifting. Also, lifting and reassembling a heavy pump can be a dangerous operation.
 また、引き上げおよび点検作業は、引き上げ後に点検整備を行い、その後、再設置、芯出し、試運転という工程を経なければならず、かなりの日数を要する。さらに、機場によっては、点検・整備時でも、常に必要量の排水をできる状態にしておく必要がある一方で、点検期間中は、点検を行っているポンプを運転することができないため、仮設ポンプを設置するなどして、排水能力を確保する必要がある。 Also, the lifting and inspection work requires inspection and maintenance after the lifting, and then undergoes the steps of re-installation, centering, and trial operation, which requires a considerable number of days. In addition, depending on the machine, it is necessary to keep the required amount of water drained even during inspection and maintenance, while the pump being inspected cannot be operated during the inspection period. It is necessary to secure drainage capacity by installing
 そこで、特許文献3に示すように、羽根車の下方に配置された水中軸受と、ポンプ据付床の上方の外軸受の2つで回転軸を支持する構造を有する立軸ポンプが提案されている。この構造によれば、水中軸受は羽根車の下方(吸い込み側)に位置しているので、吸込口から水中軸受の摩耗状態を目視により検査することができ、しかも水中軸受を容易に交換することができる。 Therefore, as shown in Patent Document 3, there has been proposed a vertical shaft pump having a structure in which a rotating shaft is supported by two of an underwater bearing disposed below an impeller and an outer bearing above a pump installation floor. According to this structure, since the underwater bearing is located below the impeller (suction side), the wear state of the underwater bearing can be visually inspected from the suction port, and the underwater bearing can be easily replaced. Can do.
 しかしながら、ポンプに大水量化かつ高揚程化されることが求められている(大容量化)近年において、大容量化に対応すると、下部のみに設けられた水中軸受に加わる負荷(荷重)が大きくなり、軸受自体が大型化し重量も重くなる。この場合、羽根車下方からの作業性が悪化するという問題がある。また、ポンプの大容量化に伴い、回転軸の軸径が太くなり、軸受接触面の周速が速くなるので、軸受摩耗が促進されるという課題も生じる。 However, pumps are required to have a large amount of water and a high head (increase in capacity). In recent years, in response to an increase in capacity, a load (load) applied to an underwater bearing provided only in the lower part is large. Thus, the bearing itself becomes large and heavy. In this case, there is a problem that workability from below the impeller deteriorates. Further, as the capacity of the pump is increased, the shaft diameter of the rotating shaft is increased and the peripheral speed of the bearing contact surface is increased.
 また、特許文献4では、上記課題に対する技術として、ポンプの外軸受と羽根車下方に設置した水中軸受の間に、さらに水中軸受(中間軸受)を設け、この中間軸受を分割構造とすることで、ポンプの内部に作業員が入り軸受の交換ができるようにしている。しかしながら、ポンプ内部は狭所であり、且つ高所での作業となってしまうことから、作業性・安全性の課題が残る。 Moreover, in patent document 4, as a technique with respect to the said subject, further providing an underwater bearing (intermediate bearing) between the outer bearing of a pump and the underwater bearing installed under the impeller, and this intermediate bearing is made into a split structure. An operator can enter the pump and replace the bearing. However, since the inside of the pump is narrow and works at a high place, problems of workability and safety remain.
特許第3567140号公報Japanese Patent No. 3567140 特開2004-218578号公報JP 2004-218578 A 特許第4456579号公報Japanese Patent No. 4456579 特開2012-137074号公報JP 2012-137074 A
 本発明は、このような従来技術の問題点に鑑みてなされたもので、大容量のポンプにおいても、ポンプを引き上げることなくポンプを据え付けた状態で水中軸受を容易に交換することができ、また、水中軸受の信頼性を向上させた立軸ポンプを提供することを目的とする。 The present invention has been made in view of such problems of the prior art. Even in a large-capacity pump, the submersible bearing can be easily replaced with the pump installed without pulling up the pump. An object of the present invention is to provide a vertical shaft pump with improved reliability of the underwater bearing.
 本発明の第1形態に係る立軸ポンプは、羽根車と、前記羽根車を貫通して延び、前記羽根車が固定される回転軸と、前記回転軸を支持する外軸受と、前記羽根車の下方に設けられ、前記羽根車を貫通する前記回転軸を支持する軸受ユニットと、を備え、前記回転軸は、前記外軸受以外の軸受を介さずに前記外軸受から前記羽根車を貫通して延び、前記軸受ユニットは、前記回転軸の摺動部を軸受内周面で支持する第1の軸受と、前記回転軸の摺動部を軸受外周面で支持する第2の軸受を有する。 A vertical shaft pump according to a first aspect of the present invention includes an impeller, a rotating shaft that extends through the impeller and to which the impeller is fixed, an outer bearing that supports the rotating shaft, and an impeller A bearing unit that is provided below and supports the rotating shaft that passes through the impeller, and the rotating shaft passes through the impeller from the outer bearing without a bearing other than the outer bearing. The bearing unit includes a first bearing that supports the sliding portion of the rotating shaft on a bearing inner peripheral surface, and a second bearing that supports the sliding portion of the rotating shaft on a bearing outer peripheral surface.
 本発明の第2形態に係る立軸ポンプによれば、第1形態の立軸ポンプにおいて、前記軸受ユニットは、前記羽根車の下方に嵌脱可能に取り付けられる。 According to the vertical pump according to the second embodiment of the present invention, in the vertical pump according to the first embodiment, the bearing unit is removably attached to the lower side of the impeller.
 本発明の第3形態に係る立軸ポンプによれば、第1形態又は第2形態の立軸ポンプにおいて、前記第1の軸受及び前記第2の軸受は、前記羽根車の下方に嵌脱可能に構成される。 According to the vertical pump according to the third aspect of the present invention, in the vertical pump according to the first or second aspect, the first bearing and the second bearing are configured to be detachable below the impeller. Is done.
 本発明の第4形態に係る立軸ポンプによれば、第1形態ないし第3形態のいずれかの立軸ポンプにおいて、前記軸受ユニットの下方に設けられる保護カバーを有し、前記保護カバーは、前記軸受ユニットへ水流を導くための、側方に向く小孔を有する。 According to the vertical pump according to the fourth aspect of the present invention, in the vertical pump according to any one of the first to third aspects, it has a protective cover provided below the bearing unit, and the protective cover includes the bearing There is a small side-facing hole to guide the water flow to the unit.
 本発明の第5形態に係る立軸ポンプによれば、第1形態ないし第4形態のいずれかの立軸ポンプにおいて、前記第1の軸受と前記第2の軸受は、同一の材料で構成され、前記材料は、樹脂または樹脂複合材で構成される。 According to the vertical pump according to the fifth aspect of the present invention, in any of the vertical pumps according to the first to fourth aspects, the first bearing and the second bearing are made of the same material, The material is composed of a resin or a resin composite material.
 本発明によれば、立軸ポンプが、外軸受以外の軸受を介さずに外軸受から羽根車を貫通して延び、羽根車が固定される回転軸と、回転軸を羽根車の下方で受ける軸受ユニットを備え、軸受ユニットは、回転軸の摺動部を軸受内周面で支持する第1の軸受と、回転軸の摺動部を軸受外周面で支持する第2の軸受を有するので、大型のポンプにおいても水中軸受の安定性が向上してポンプの安定的な運転が可能となり、また水中軸受の小型化が可能となり、そして点検作業や交換作業などのメインテナンスについてもポンプ引き上げることなく、据え付けたままの状態で作業性・信頼性の高い作業を容易に行うことができる。 According to the present invention, the vertical shaft pump extends from the outer bearing through the impeller without any bearing other than the outer bearing, and the bearing receives the rotating shaft below the impeller. The bearing unit includes a first bearing that supports the sliding portion of the rotating shaft on the bearing inner peripheral surface, and a second bearing that supports the sliding portion of the rotating shaft on the outer peripheral surface of the bearing. The stability of submersible bearings is also improved in this type of pump, enabling stable operation of the pump, enabling downsizing of submersible bearings, and maintenance such as inspection work and replacement work without lifting the pump. It is possible to easily perform work with high workability and reliability in an as-is state.
従来の立軸ポンプを示す模式図である。It is a schematic diagram which shows the conventional vertical shaft pump. 本発明の一実施形態における立軸ポンプを示す模式図である。It is a schematic diagram which shows the vertical shaft pump in one Embodiment of this invention. 軸受ユニットの原理を説明する縦断面模式図である。It is a longitudinal cross-sectional schematic diagram explaining the principle of a bearing unit. 図3に示すXX´断面における断面図である。It is sectional drawing in the XX 'cross section shown in FIG. ドライ運転時における軸受ユニットの動作を示す図である。It is a figure which shows operation | movement of the bearing unit at the time of dry operation. 排水運転時における軸受ユニットの動作を示す図である。It is a figure which shows operation | movement of the bearing unit at the time of drainage operation. 軸受ユニットを備えた立軸ポンプをドライ運転したときの振動速度を、従来の軸受装置の場合と比較した図である。It is the figure which compared the vibration speed when the vertical shaft pump provided with the bearing unit performed dry operation with the case of the conventional bearing apparatus. 軸受ユニットを備えた立軸ポンプをドライ運転したときの軸受温度を、従来の軸受装置の場合と比較した図である。It is the figure which compared the bearing temperature when the vertical shaft pump provided with the bearing unit performed dry operation with the case of the conventional bearing apparatus. 軸受ユニットを備えた立軸ポンプを排水運転したときの振動速度を、従来の軸受装置の場合と比較した図である。It is the figure compared with the case of the conventional bearing apparatus about the vibration speed when carrying out drainage operation of the vertical shaft pump provided with the bearing unit. 従来の軸受装置を示す縦断面模式図である。It is a longitudinal cross-sectional schematic diagram which shows the conventional bearing apparatus. 本発明の一実施形態における水中軸受ユニットの構造断面図である。It is a structure sectional view of the underwater bearing unit in one embodiment of the present invention. 他の実施形態における水中軸受ユニットの構造断面図である。It is structure sectional drawing of the underwater bearing unit in other embodiment. 他の実施形態における水中軸受ユニットの構造断面図である。It is structure sectional drawing of the underwater bearing unit in other embodiment. 中間軸受ユニットカバーの断面図である。It is sectional drawing of an intermediate bearing unit cover. 他の実施形態における水中軸受ユニットの構造断面図である。It is structure sectional drawing of the underwater bearing unit in other embodiment. 他の実施形態における水中軸受ユニットの構造断面図である。It is structure sectional drawing of the underwater bearing unit in other embodiment.
 以下、本発明に係る立軸ポンプの実施形態について図2から図16を参照して詳細に説明する。なお、図2から図16において、同一または相当する構成要素には、同一の符号を付して重複した説明を省略する。なお、以下の説明において、「上方」とは立軸ポンプが設置された状態における上方(吐出側)をいい、「下方」とは縦軸ポンプが設置された状態における下方(吸込側)をいう。 Hereinafter, embodiments of the vertical shaft pump according to the present invention will be described in detail with reference to FIGS. 2 to 16. 2 to 16, the same or corresponding components are denoted by the same reference numerals, and redundant description is omitted. In the following description, “upper” means the upper side (discharge side) in the state where the vertical shaft pump is installed, and “lower” means the lower side (suction side) in the state where the vertical axis pump is installed.
 図2は、本発明の一実施形態における立軸ポンプを示す模式図である。図2に示すように、立軸ポンプは、吸込ベルマウス1aおよび吐出ボウル1bを有するガイドケーシング1と、ガイドケーシング1を水槽5内に吊り下げる吊下管3と、吊下管3の上端に接続された吐出曲管4と、ガイドケーシング1内に収容された羽根車10と、羽根車10が固定された回転軸6とを備えている。 FIG. 2 is a schematic diagram showing a vertical shaft pump according to an embodiment of the present invention. As shown in FIG. 2, the vertical pump is connected to a guide casing 1 having a suction bell mouth 1a and a discharge bowl 1b, a suspension pipe 3 for suspending the guide casing 1 in a water tank 5, and an upper end of the suspension pipe 3 The discharge curved pipe 4, the impeller 10 accommodated in the guide casing 1, and the rotating shaft 6 to which the impeller 10 is fixed are provided.
 吊下管3は、水槽5上部のポンプ据付床22に形成された挿通孔24を通って下方に延び、吊下管3の上端に設けられたポンプベース23を介してポンプ据付床22に固定されている。回転軸(立軸)6は、吐出曲管4および吊下管3を通って鉛直方向に延びており、その下端はガイドケーシング1内に位置している。ガイドケーシング1および吊下管3によりポンプケーシング2が構成されている。ポンプ据付床22より上の領域である床上部Fは常時点検が可能な領域であり、ポンプ据付床22より下の領域である水槽部Uは没水される領域である。 The suspension pipe 3 extends downward through an insertion hole 24 formed in the pump installation floor 22 above the water tank 5 and is fixed to the pump installation floor 22 via a pump base 23 provided at the upper end of the suspension pipe 3. Has been. The rotating shaft (vertical shaft) 6 extends in the vertical direction through the discharge bent tube 4 and the suspension tube 3, and the lower end thereof is located in the guide casing 1. A pump casing 2 is constituted by the guide casing 1 and the suspension pipe 3. The upper floor F that is an area above the pump installation floor 22 is an area that can be inspected at all times, and the water tank section U that is an area below the pump installation floor 22 is an area that is submerged.
 図2に示すように、吸込ベルマウス1aは下方(吸い込み側)に開口を有し、吸込ベルマウス1aの上端は吐出ボウル1bの下端に固定されている。羽根車10は回転軸6の下部に固定されており、羽根車10と回転軸6とは一体的に回転するようになっている。この羽根車10は複数の翼を有し、羽根車10の上方(吐出側)には複数のガイドベーン14が配置されている。これらのガイドベーン14はガイドケーシング1の内周面およびボウルブッシュ13の外周面に固定されている。 As shown in FIG. 2, the suction bell mouth 1a has an opening on the lower side (suction side), and the upper end of the suction bell mouth 1a is fixed to the lower end of the discharge bowl 1b. The impeller 10 is fixed to the lower part of the rotating shaft 6, and the impeller 10 and the rotating shaft 6 rotate integrally. The impeller 10 has a plurality of blades, and a plurality of guide vanes 14 are disposed above (the discharge side) the impeller 10. These guide vanes 14 are fixed to the inner peripheral surface of the guide casing 1 and the outer peripheral surface of the bowl bush 13.
 また、回転軸6は、水中軸受ユニット12および外軸受11により回転自在に支持されている。水中軸受ユニット12は、羽根車10の下方(吸い込み側)に位置しており、回転軸6の下端を支持している。この水中軸受ユニット12は、吸込ベルマウス1aの内周面に固定された支持部材15によって支持されている。なお、ボウルブッシュ13の内部を含め、外軸受11と水中軸受ユニット12の間には水中軸受は配置されていない。外軸受11は吐出曲管4の上部(外部)に設けられ、回転軸6の上部(一端)を支持している。回転軸6は、外軸受11以外の軸受を介さずに外軸受11から羽根車10を貫通して延びる。また、水中軸受ユニット12は、回転軸6の径方向外側(回転軸6の周囲)に配置され、回転軸6の摺動部を軸受内周面で支持する内接軸受(第1の軸受)と、回転軸6の径方向内側に配置され、回転軸6の摺動部を軸受外周面で支持する外接軸受(第2の軸受)を有している。 Further, the rotating shaft 6 is rotatably supported by the underwater bearing unit 12 and the outer bearing 11. The underwater bearing unit 12 is located below (the suction side) of the impeller 10 and supports the lower end of the rotating shaft 6. The underwater bearing unit 12 is supported by a support member 15 fixed to the inner peripheral surface of the suction bell mouth 1a. In addition, the underwater bearing is not arranged between the outer bearing 11 and the underwater bearing unit 12 including the inside of the bowl bush 13. The outer bearing 11 is provided on the upper part (outside) of the discharge curved pipe 4 and supports the upper part (one end) of the rotating shaft 6. The rotating shaft 6 extends through the impeller 10 from the outer bearing 11 without any bearing other than the outer bearing 11. The underwater bearing unit 12 is disposed on the radially outer side of the rotating shaft 6 (around the rotating shaft 6), and is an inscribed bearing (first bearing) that supports the sliding portion of the rotating shaft 6 on the bearing inner peripheral surface. And a circumscribed bearing (second bearing) that is disposed on the radially inner side of the rotating shaft 6 and supports the sliding portion of the rotating shaft 6 on the outer peripheral surface of the bearing.
 水中軸受ユニット12に設けられている第1の軸受と第2の軸受は、ポンプの定常運転時に回転軸6に滑り接触しながら回転軸を支える、いわゆるすべり軸受である。外軸受11は、ラジアル荷重を受けるだけでなく、スラスト荷重を受けることができるように構成されている。外軸受11は、ラジアル荷重およびスラスト荷重の両方を受けることができる1つの軸受であってもよく、またはラジアル荷重を受けることができるラジアル軸受とスラスト荷重を受けることができるスラスト軸受との組み合わせであってもよい。 The first bearing and the second bearing provided in the underwater bearing unit 12 are so-called slide bearings that support the rotating shaft while slidingly contacting the rotating shaft 6 during steady operation of the pump. The outer bearing 11 is configured not only to receive a radial load but also to receive a thrust load. The outer bearing 11 may be a single bearing capable of receiving both a radial load and a thrust load, or a combination of a radial bearing capable of receiving a radial load and a thrust bearing capable of receiving a thrust load. There may be.
 図2に示すように、回転軸6は吐出曲管4から上方に突出している。回転軸6の上端は、自在軸継手45を介して減速機41の駆動軸42に連結されている。さらに減速機41は駆動源43に連結されている。駆動源43としては、ディーゼルエンジン、ガスタービン、モータなどを使用することができる。なお、減速機41が用いられない場合もある。 As shown in FIG. 2, the rotating shaft 6 protrudes upward from the discharge curved pipe 4. The upper end of the rotary shaft 6 is connected to the drive shaft 42 of the speed reducer 41 via a universal shaft joint 45. Furthermore, the speed reducer 41 is connected to a drive source 43. As the drive source 43, a diesel engine, a gas turbine, a motor, or the like can be used. Note that the speed reducer 41 may not be used.
 駆動源43により回転軸6を介して羽根車10を回転させると、水槽5内の水(取扱液)が吸込ベルマウス1aから吸い込まれ、吐出ボウル1b、吊下管3、吐出曲管4を通って吐出配管20に移送される。なお、立軸ポンプの排水運転時は、羽根車10および水中軸受ユニット12は、水面よりも下に位置している。 When the impeller 10 is rotated by the drive source 43 via the rotating shaft 6, water (handling liquid) in the water tank 5 is sucked from the suction bell mouth 1 a, and the discharge bowl 1 b, the suspension pipe 3, and the discharge bent pipe 4 are drawn. It is transferred to the discharge pipe 20 through. During the drainage operation of the vertical shaft pump, the impeller 10 and the underwater bearing unit 12 are located below the water surface.
 図1に示す従来の立軸ポンプでは、水中軸受508はボウルブッシュ内に収容されているため、立軸ポンプを据え付けた状態で水中軸受508を交換することは難しい。本実施形態においては、羽根車10の下方に水中軸受ユニット12を配置しているため、水槽5の内部の水を取り除き、立軸ポンプの下部に作業員が入れば、隙間ゲージなどを用いて水中軸受ユニット12の摩耗量や損傷具合を容易に判断することができ、さらには水中軸受ユニット12を簡単に交換することができる。 In the conventional vertical shaft pump shown in FIG. 1, since the submersible bearing 508 is housed in the bowl bush, it is difficult to replace the submersible bearing 508 with the vertical pump installed. In the present embodiment, since the underwater bearing unit 12 is disposed below the impeller 10, if water inside the water tank 5 is removed and an operator enters the lower part of the vertical shaft pump, The amount of wear and damage of the bearing unit 12 can be easily determined, and the underwater bearing unit 12 can be easily replaced.
 このように、立軸ポンプを引き上げることなく水中軸受ユニット12の点検および交換を行うことができるので、立軸ポンプの引き上げに必要な費用を削減することができ、点検および交換時の運転不能時間を大幅に短縮することができる。したがって、ポンプ機場の経済性および信頼性を向上することができる。また、水中軸受ユニット12の位置が従来の位置よりも低く、羽根車10の下方に位置するため、ポンプの運転時においては、水中軸受ユニット12を確実に没水させることができる。したがって、水中軸受ユニット12と回転軸6の間に形成される水膜により、水中軸受ユニット12の摩耗を抑制し、水中軸受ユニット12の耐久性を向上させることができる。 As described above, since the submersible bearing unit 12 can be inspected and replaced without lifting the vertical shaft pump, the cost required for lifting the vertical shaft pump can be reduced, and the downtime during inspection and replacement can be greatly increased. Can be shortened. Therefore, the economical efficiency and reliability of the pump station can be improved. Moreover, since the position of the underwater bearing unit 12 is lower than the conventional position and is located below the impeller 10, the underwater bearing unit 12 can be surely submerged during the operation of the pump. Therefore, the water film formed between the underwater bearing unit 12 and the rotating shaft 6 can suppress wear of the underwater bearing unit 12 and improve the durability of the underwater bearing unit 12.
 次に、第1のすべり軸受と第2のすべり軸受について説明する。図3は、軸受ユニットの原理を説明する縦断面模式図である。本軸受ユニットは、回転軸30の外周にスリーブ31を有している。スリーブ31の材料は実用的には超硬合金やステンレス鋼等からなる。スリーブ31の外周側には、中空円筒の第1のすべり軸受44が設けられている。すなわち、第1のすべり軸受44の内側にスリーブ31が接触し摺動する。第1のすべり軸受44の材料は実用的には樹脂材料、セラミックス、焼結金属又は表面改質された金属からなる。スリーブ31の外周面(第1の摺動部46)は、第1のすべり軸受44の内周面(すべり面)と非常に狭い第1のクリアランス47を介して対面し、第1のすべり軸受44のすべり面に対して摺動するように構成されている。第1のすべり軸受44の外周部は、略円筒状の軸受ケース32の内周面に固定されている。軸受ケース32の材料は実用的には金属又は樹脂からなる。 Next, the first slide bearing and the second slide bearing will be described. FIG. 3 is a schematic longitudinal sectional view illustrating the principle of the bearing unit. This bearing unit has a sleeve 31 on the outer periphery of the rotary shaft 30. The material of the sleeve 31 is practically made of cemented carbide or stainless steel. A hollow cylindrical first slide bearing 44 is provided on the outer peripheral side of the sleeve 31. That is, the sleeve 31 contacts and slides inside the first slide bearing 44. The material of the first plain bearing 44 is practically made of a resin material, ceramics, sintered metal, or surface-modified metal. The outer peripheral surface (first sliding portion 46) of the sleeve 31 faces the inner peripheral surface (slip surface) of the first slide bearing 44 through a very narrow first clearance 47, and the first slide bearing. It is configured to slide with respect to 44 sliding surfaces. The outer peripheral portion of the first plain bearing 44 is fixed to the inner peripheral surface of the substantially cylindrical bearing case 32. The material of the bearing case 32 is practically made of metal or resin.
 また、軸受ケース32の外周面には、中空円筒の第2のすべり軸受39が設けられている。第2のすべり軸受39の材料は、実用的には樹脂材料、セラミックス、焼結金属又は表面改質された金属からなる。 Further, a hollow cylindrical second sliding bearing 39 is provided on the outer peripheral surface of the bearing case 32. The material of the second plain bearing 39 is practically made of a resin material, ceramics, sintered metal, or surface-modified metal.
 回転軸30には、固定ピン又はボルト等の固定手段33aによって略円筒状のスリーブケース38が固定されており、スリーブケース38は、回転軸30が回転することで回転軸30とともに回転するように構成されている。スリーブケース38の内周面にはスリーブ37が設けられ、スリーブ37の内周面(第2の摺動部36)は第2のすべり軸受39の外周面(すべり面)と非常に狭い第2のクリアランス48を介して対面し、第2のすべり軸受39のすべり面に対して摺動するように構成されている。すなわち、第2のすべり軸受39の外側でスリーブ37が外接し摺動する。尚、スリーブ31,37は、一般的に軸材等の外周に設置されるものであるが、本願においては、軸受ユニットの構成を分かりやすくするため、便宜上、主となる軸受材を担うものを第1、第2のすべり軸受とし、相対する被摺動部材をスリーブと称するものとする。 A substantially cylindrical sleeve case 38 is fixed to the rotating shaft 30 by fixing means 33a such as a fixing pin or a bolt, and the sleeve case 38 rotates with the rotating shaft 30 as the rotating shaft 30 rotates. It is configured. A sleeve 37 is provided on the inner peripheral surface of the sleeve case 38, and the inner peripheral surface (second sliding portion 36) of the sleeve 37 is the second narrower than the outer peripheral surface (sliding surface) of the second slide bearing 39. Are arranged so as to face each other through the clearance 48 and slide with respect to the sliding surface of the second sliding bearing 39. That is, the sleeve 37 circumscribes and slides outside the second slide bearing 39. The sleeves 31 and 37 are generally installed on the outer periphery of a shaft member or the like, but in the present application, in order to make the configuration of the bearing unit easy to understand, for the sake of convenience, the sleeves 31 and 37 bear the main bearing material. First and second sliding bearings are used, and the opposed sliding members are referred to as sleeves.
 以上が軸受ユニットの構成であるが、軸受ユニットは、軸受ケース32のつば部32aを介してポンプなどのケーシングとつながる支持部材35等に、ボルト等の固定手段33bにより固定されている。尚、以上の例では、回転体(回転軸30)の外周にスリーブ31が保持され、スリーブ31の外周側に対応する非回転のすべり軸受を第1のすべり軸受44としている。一方、回転体(スリーブケース38)の内周にスリーブ37を設け、スリーブ37の内周側に対応する非回転のすべり軸受を第2のすべり軸受39としている。しかし、回転体(回転軸30)の外周にすべり軸受を保持し、対応する非回転体にスリーブを備える場合もあり得る。また、第1のすべり軸受が回転体の外周にスリーブを保持し、それに対応するすべり軸受が非回転側にある状態で、第2のすべり軸受が回転体の外周にすべり軸受を保持し、それに対応するスリーブが非回転側にある状態、およびその逆もあり得る。 The above is the configuration of the bearing unit. The bearing unit is fixed to a support member 35 or the like connected to a casing such as a pump via a flange portion 32a of the bearing case 32 by fixing means 33b such as a bolt. In the above example, the sleeve 31 is held on the outer periphery of the rotating body (rotating shaft 30), and the non-rotating slide bearing corresponding to the outer peripheral side of the sleeve 31 is used as the first slide bearing 44. On the other hand, a sleeve 37 is provided on the inner circumference of the rotating body (sleeve case 38), and a non-rotating slide bearing corresponding to the inner circumference side of the sleeve 37 is used as a second slide bearing 39. However, a slide bearing may be held on the outer periphery of the rotating body (rotating shaft 30), and a sleeve may be provided on the corresponding non-rotating body. Further, the first slide bearing holds the sleeve on the outer periphery of the rotating body, and the second slide bearing holds the slide bearing on the outer periphery of the rotating body in a state where the corresponding slide bearing is on the non-rotating side. It is possible that the corresponding sleeve is on the non-rotating side and vice versa.
 当該軸受ユニットが、例えば立軸ポンプなどの排水ポンプで用いられ、水中の環境で使用される場合を考慮して、スリーブケース38には、スラリー等を含む水を第1のクリアランス47及び第2のクリアランス48に通水する給水口40が設けられている。給水口40に流入した水は、流路としての第1のクリアランス47及び第2のクリアランス48を通過する。このように、第1のクリアランス47及び第2のクリアランス48へ水を通過させる流路が形成され、第1のクリアランス47及び第2のクリアランス48も流路として機能するので、排水運転時に空気が滞留することなく速やかに第1のクリアランス47及び第2のクリアランス48に水が流れ、第1のすべり軸受44及び第2のすべり軸受39の機能を速やかに発揮することができる。 In consideration of the case where the bearing unit is used, for example, in a drainage pump such as a vertical shaft pump and used in an underwater environment, the sleeve case 38 is supplied with water containing slurry or the like in the first clearance 47 and the second clearance. A water supply port 40 for passing water through the clearance 48 is provided. The water that has flowed into the water supply port 40 passes through the first clearance 47 and the second clearance 48 as flow paths. In this way, a flow path for allowing water to pass through the first clearance 47 and the second clearance 48 is formed, and the first clearance 47 and the second clearance 48 also function as a flow path. Water quickly flows into the first clearance 47 and the second clearance 48 without staying, and the functions of the first slide bearing 44 and the second slide bearing 39 can be exhibited quickly.
 また、第1のすべり軸受44及び第2のすべり軸受39は、始動時はドライ条件下でスリーブ31及びスリーブ37を支持し、排水条件においては極めて薄い液膜を介してスリーブ31及びスリーブ37を支持する。ここで、ドライ条件とは、運転中の第1のすべり軸受44及び第2のすべり軸受39の雰囲気が、液体の潤滑がない大気中である条件をいい、ドライ運転とはその条件で運転することをいう。 Further, the first slide bearing 44 and the second slide bearing 39 support the sleeve 31 and the sleeve 37 under dry conditions at the time of start-up, and the sleeve 31 and the sleeve 37 through a very thin liquid film under drainage conditions. To support. Here, the dry condition refers to a condition in which the atmosphere of the first slide bearing 44 and the second slide bearing 39 in operation is in the air without liquid lubrication, and the dry operation is performed under the conditions. That means.
 回転軸30の定常的な振れ回りを抑制し、また振れ回りによって第1のすべり軸受44及び第2のすべり軸受39に加わる荷重を抑制するために、第1のクリアランス47の直径隙間寸法(第1のすべり軸受44の内径-スリーブ31の外径)及び第2のクリアランス48の直径隙間寸法(スリーブ37の内径-第2のすべり軸受39の外径)は、それぞれ第1のすべり軸受44の内径の1/1000以上1/100以下、第2のすべり軸受39の外径の1/1000以上1/100以下であることが好ましい。第1のクリアランス47及び第2のクリアランス48の寸法がこれらの範囲より大きい場合は、回転軸30の定常的な振れ回りが大きくなり、この振れ回りによって第1のすべり軸受44及び第2のすべり軸受39に加わる荷重も大きくなり、安定的な運転が困難になる場合がある。また、第1のクリアランス47及び第2のクリアランス48の寸法がこれらの範囲より小さい場合は、第1のクリアランス47及び第2のクリアランス48が異物により閉塞したり、第1のすべり軸受44及び第2のすべり軸受39が異物との摩擦により焼きついたりする場合がある。 In order to suppress steady swinging of the rotating shaft 30 and to suppress the load applied to the first slide bearing 44 and the second slide bearing 39 by swinging, the diameter clearance dimension (the first clearance 47) The inner diameter of the first slide bearing 44—the outer diameter of the sleeve 31) and the diameter clearance dimension of the second clearance 48 (the inner diameter of the sleeve 37—the outer diameter of the second slide bearing 39) are the same as those of the first slide bearing 44. It is preferable that the inner diameter is 1/1000 or more and 1/100 or less and the outer diameter of the second slide bearing 39 is 1/1000 or more and 1/100 or less. When the dimensions of the first clearance 47 and the second clearance 48 are larger than these ranges, the steady swinging of the rotating shaft 30 becomes large, and the swinging causes the first sliding bearing 44 and the second sliding. The load applied to the bearing 39 is also increased, and stable operation may be difficult. Further, when the dimensions of the first clearance 47 and the second clearance 48 are smaller than these ranges, the first clearance 47 and the second clearance 48 are blocked by foreign matter, or the first slide bearing 44 and the second clearance 48 are closed. In some cases, the second slide bearing 39 may be seized due to friction with foreign matter.
 第1のクリアランス47の直径隙間寸法と第2のクリアランス48の直径隙間寸法は同一であることが好ましいが、第1のすべり軸受44、第2のすべり軸受39、スリーブ37、又はスリーブ31が樹脂で形成されている等、これらの部材が弾性を有していれば、その寸法に差があっても本発明の機能を発揮する。この場合は、第1のクリアランス47の直径隙間寸法に対する第2のクリアランス48の直径隙間寸法の比率は、好ましくは0.5以上2.0以下であり、より好ましくは0.7以上1.3以下である。ただし、後述するように、第1のすべり軸受44、第2のすべり軸受39、スリーブ37、又はスリーブ31を、さらにゴムなどの緩衝材を介して固定する場合は(図11等参照)、緩衝材の変形によって上記寸法の範囲でなくとも第1のすべり軸受44と第2のすべり軸受39が同時に夫々スリーブ31及びスリーブ37と接触可能であり、本発明の機能を発揮する。 The diameter clearance dimension of the first clearance 47 and the diameter clearance dimension of the second clearance 48 are preferably the same, but the first sliding bearing 44, the second sliding bearing 39, the sleeve 37, or the sleeve 31 is made of resin. If these members have elasticity, such as being formed of, the function of the present invention is exhibited even if there is a difference in dimensions. In this case, the ratio of the diameter clearance dimension of the second clearance 48 to the diameter clearance dimension of the first clearance 47 is preferably 0.5 or more and 2.0 or less, more preferably 0.7 or more and 1.3. It is as follows. However, as will be described later, when the first sliding bearing 44, the second sliding bearing 39, the sleeve 37, or the sleeve 31 is further fixed via a cushioning material such as rubber (see FIG. 11 and the like), the cushioning is performed. The first slide bearing 44 and the second slide bearing 39 can simultaneously contact the sleeve 31 and the sleeve 37 at the same time, even if the dimensions are not in the above-mentioned range due to the deformation of the material, and the function of the present invention is exhibited.
 図4は、図3に示すXX´断面における断面図である。図示のように、スリーブ31の外周面、第1のすべり軸受44の内周面、第2のすべり軸受39の外周面、及びスリーブ37の内周面のそれぞれの中心が中心軸Oと略一致するように構成されている。なお、図4においては、第1のクリアランス47及び第2のクリアランス48の寸法は、便宜上拡大されて示されている。 FIG. 4 is a cross-sectional view taken along the line XX ′ shown in FIG. As shown in the figure, the centers of the outer peripheral surface of the sleeve 31, the inner peripheral surface of the first slide bearing 44, the outer peripheral surface of the second slide bearing 39, and the inner peripheral surface of the sleeve 37 substantially coincide with the central axis O. Is configured to do. In FIG. 4, the dimensions of the first clearance 47 and the second clearance 48 are shown enlarged for the sake of convenience.
 図5は、ドライ運転時における軸受ユニットの動作を示す図である。回転軸30が回転すると、回転軸30に固定されたスリーブ31、及びスリーブケース38に固定されたスリーブ37も回転する。ドライ条件においては、スリーブ31の外周面が第1のすべり軸受44に点Aにて接触したときに、回転軸30には軸受反力FANが発生する。この軸受反力FANによって、回転軸30の回転方向とは逆方向に摩擦力FAFが発生し、この摩擦力FAFが回転軸30に回転方向とは逆方向の振れ回り振動を引き起こす不安定化力となる。 FIG. 5 is a diagram illustrating the operation of the bearing unit during the dry operation. When the rotating shaft 30 rotates, the sleeve 31 fixed to the rotating shaft 30 and the sleeve 37 fixed to the sleeve case 38 also rotate. Under dry conditions, when the outer peripheral surface of the sleeve 31 contacts the first slide bearing 44 at point A, a bearing reaction force FAN is generated on the rotary shaft 30. By this bearing reaction force FAN , a frictional force FAF is generated in a direction opposite to the rotation direction of the rotating shaft 30, and this frictional force FAF causes a whirling vibration in the direction opposite to the rotating direction in the rotating shaft 30. Stabilization power.
 一方で、スリーブ37が第2のすべり軸受39に点Bにて接触することで、軸受反力FBNが発生し、この軸受反力FBNによって、摩擦力FAFと逆方向の力である摩擦力FBFが発生する。回転軸30の系において、摩擦力FAFと摩擦力FBFは相殺されるので、回転軸30は安定して回転することができる。また、回転軸30に係る荷重(軸受反力)が点Aと点Bに分散されることで、すべり軸受に加わる摩擦力も分散される。その結果摩擦による発熱が低減され、ドライ運転時における軸受の温度上昇が抑制される。 On the other hand, when the sleeve 37 contacts the second sliding bearing 39 at the point B, a bearing reaction force FBN is generated, and this bearing reaction force FBN is a force in a direction opposite to the frictional force FAF. A frictional force FBF is generated. In the system of the rotary shaft 30, the frictional force FAF and the frictional force FBF are canceled out, so that the rotary shaft 30 can rotate stably. Further, since the load (bearing reaction force) related to the rotating shaft 30 is distributed to the points A and B, the frictional force applied to the slide bearing is also distributed. As a result, heat generation due to friction is reduced, and the temperature rise of the bearing during dry operation is suppressed.
 図6は、排水運転時における軸受ユニットの動作を示す図である。第1のクリアランス47及び第2のクリアランス48は水で満たされており、この水は夫々液膜49、液膜50を構成し、これにより本軸受ユニットは流体潤滑軸受ユニットとして機能する。このとき液膜49には、回転軸30の回転による周方向の圧力不均一が生じ、その結果、回転軸30に半径方向流体力FARと周方向流体力FATが発生する。この周方向流体力FATは排水運転時に振動を発生させる不安定化力となる。なお、この周方向流体力FATは上記ドライ運転で発生する摩擦力FAFとは逆方向の力である。 FIG. 6 is a diagram illustrating the operation of the bearing unit during the drainage operation. The first clearance 47 and the second clearance 48 are filled with water, and this water constitutes a liquid film 49 and a liquid film 50, respectively, whereby the bearing unit functions as a fluid lubrication bearing unit. This time the liquid film 49, the circumferential direction of the pressure nonuniformity due to the rotation of the rotating shaft 30 occurs, as a result, the radial fluid forces F AR and the circumferential fluid force F AT occurs in the rotation shaft 30. The circumferential fluid force F AT becomes destabilizing force that generates vibrations during drainage operation. Incidentally, the circumferential fluid force F AT is the frictional force F AF generated by the drying operation is a reverse force.
 従来は、立型の回転軸においてこの液膜による不安定振動を防止するために、軸受の内面形状を真円形状ではなく多円弧形状に形成することが行われていた。しかしながら、スラリーを多く含有する水中において、樹脂からなる軸受を用いた場合、摩耗によって軸受の内面形状が真円形状に近づき、振動抑制効果を失うことがあった。 Conventionally, in order to prevent unstable vibration due to this liquid film on a vertical rotating shaft, the inner surface of the bearing has been formed into a multi-arc shape instead of a perfect circle shape. However, when a bearing made of a resin is used in water containing a large amount of slurry, the inner surface shape of the bearing approaches a perfect circle shape due to wear, and the vibration suppressing effect may be lost.
 ここで、本軸受ユニットによれば、第2のクリアランス48における液膜50において、スリーブ37の回転による周方向の圧力不均一が生じ、その結果、回転軸30に半径方向流体力FBRと周方向流体力FBTが発生する。このとき、周方向流体力FATと周方向流体力FBTとは互いに逆方向であるので、液膜49、液膜50による不安定化力は相殺され、回転軸30は不安定化力による振動を発生することなく安定して回転することができる。 Here, according to the present bearing unit, in the liquid film 50 in the second clearance 48, circumferential pressure non-uniformity occurs due to the rotation of the sleeve 37, and as a result, the radial fluid force F BR and the circumferential pressure are applied to the rotating shaft 30. A directional fluid force FBT is generated. At this time, the circumferential fluid force F AT and the circumferential fluid force F BT is opposite to each other, the liquid film 49, destabilizing forces due to the liquid film 50 is canceled, the rotary shaft 30 by a destabilizing force It can rotate stably without generating vibration.
 以上、軸受ユニットは、ドライ運転時、及び排水運転時のいずれの常用運転においても、摺動面で常時摺動して回転軸を支えるすべり軸受でありながら、第1のすべり軸受の接点と、第2のすべり軸受の接点に働く摩擦力が相殺するので、不安定化力による回転軸の振動を抑制し、回転軸の安定した回転を維持することができる。 As described above, the bearing unit is a sliding bearing that always slides on the sliding surface and supports the rotating shaft in both the normal operation during the dry operation and the drain operation, and the contact of the first sliding bearing, Since the frictional force acting on the contact point of the second sliding bearing cancels out, vibration of the rotating shaft due to the destabilizing force can be suppressed, and stable rotation of the rotating shaft can be maintained.
 図7は、図3に示した軸受ユニットを立軸ポンプに設け、大気中の雰囲気で水による潤滑や冷却のないドライ運転したときの振動速度を示す図である。比較のため、図10に示す従来構造の軸受装置を備えた立軸ポンプ(従来構造)がドライ運転したときの振動速度が示されている。 FIG. 7 is a diagram showing the vibration speed when the bearing unit shown in FIG. 3 is provided in the vertical shaft pump and the dry operation without lubrication or cooling with water is performed in the atmosphere in the atmosphere. For comparison, the vibration speed when the vertical shaft pump (conventional structure) including the conventional bearing device shown in FIG.
 図10に示す従来の軸受装置は、回転軸25の外周に、スリーブ29を有している。スリーブ29の外周側には、中空円筒のすべり軸受28が設けられている。スリーブ29の外周面は、すべり軸受28の内周面(すべり面)と非常に狭いクリアランスを介して対面し、すべり軸受28に対して摺動するように構成されている。図10に示す回転軸25の径や回転数、およびスリーブ29やすべり軸受28の材料は、図3に示した軸受ユニットと同じ条件である。 10 has a sleeve 29 on the outer periphery of the rotary shaft 25. The conventional bearing device shown in FIG. A hollow cylindrical slide bearing 28 is provided on the outer peripheral side of the sleeve 29. The outer peripheral surface of the sleeve 29 is configured to face the inner peripheral surface (slip surface) of the slide bearing 28 through a very narrow clearance and slide relative to the slide bearing 28. The diameter and the number of rotations of the rotating shaft 25 and the material of the sleeve 29 and the plain bearing 28 shown in FIG. 10 are the same conditions as the bearing unit shown in FIG.
 図7に示すように、図3に示した軸受ユニットを備えた立軸ポンプ(本実施形態)の方が、従来構造の軸受装置を備えた立軸ポンプと比べて、始動開始から停止まで一定して従来構造と比較して低い振動速度で運転されていることがわかる。 As shown in FIG. 7, the vertical pump (this embodiment) having the bearing unit shown in FIG. 3 is more constant from the start to the start than the vertical pump having the conventional bearing device. It can be seen that the system is operated at a lower vibration speed than the conventional structure.
 図8は、図3に示した軸受ユニットを立軸ポンプに設け、ドライ運転したときの軸受温度を示す図である。比較のため、図10に示した従来構造の軸受装置を備えた立軸ポンプ(従来構造)がドライ運転したときの軸受温度が示されている。 FIG. 8 is a diagram showing the bearing temperature when the bearing unit shown in FIG. 3 is provided in the vertical shaft pump and the dry operation is performed. For comparison, the bearing temperature when the vertical shaft pump (conventional structure) including the conventional bearing device shown in FIG.
 図8に示すように、図3に示した軸受ユニットを備えた立軸ポンプ(本実施形態)の方が、従来構造の軸受装置を備えた立軸ポンプと比べて、始動開始から停止まで一定して従来構造と比較して低い軸受温度が保たれていることがわかる。 As shown in FIG. 8, the vertical pump (this embodiment) having the bearing unit shown in FIG. 3 is more constant from the start to the stop than the vertical pump having the conventional bearing device. It can be seen that a lower bearing temperature is maintained compared to the conventional structure.
 図7及び図8に示したように、従来構造の軸受装置を備えた立軸ポンプでは、回転軸に加わる摩擦力が大きいため、大きな振動が発生し、その結果軸受の温度上昇が大きくなっている。一方、本軸受ユニットを備えた立軸ポンプでは、図5において説明したように、振動を低減すると共に摩擦力を低減することができ、軸受温度の上昇を抑制することができる。 As shown in FIGS. 7 and 8, in the vertical shaft pump having the conventional bearing device, the frictional force applied to the rotating shaft is large, so that a large vibration is generated, and as a result, the temperature rise of the bearing is increased. . On the other hand, in the vertical shaft pump provided with the present bearing unit, as described with reference to FIG. 5, it is possible to reduce vibration and frictional force and to suppress an increase in bearing temperature.
 図9は、図3に示した軸受ユニットを立軸ポンプに設け、排水運転したときの振動速度を示す図である。排水運転時は、軸受ユニットは水中に没する。比較のため、図10に示した従来構造の軸受装置を備えた立軸ポンプ(従来構造)が排水運転したときの振動速度が示されている。なお、図9に示す結果は、立軸ポンプの運転条件を振動が発生しやすい条件で運転して、そのときの振動を計測したものである。 FIG. 9 is a diagram showing the vibration speed when the vertical axis pump is provided with the bearing unit shown in FIG. 3 and the drainage operation is performed. During the drainage operation, the bearing unit is submerged in water. For comparison, the vibration speed when the vertical shaft pump (conventional structure) including the conventional bearing device shown in FIG. Note that the results shown in FIG. 9 are obtained by measuring the vibration at the time when the operation condition of the vertical shaft pump is operated under a condition where vibration is likely to occur.
 図9に示すように、図3に示した軸受ユニットを備えた立軸ポンプ(本実施形態)の方が、従来構造の軸受装置を備えた立軸ポンプと比べて、始動開始から停止まで一定して従来構造と比較して低い振動速度で運転されていることがわかる。 As shown in FIG. 9, the vertical pump (this embodiment) provided with the bearing unit shown in FIG. 3 is more constant from the start to the stop than the vertical pump provided with the conventional bearing device. It can be seen that the system is operated at a lower vibration speed than the conventional structure.
 以上で説明したように、図3に示した軸受ユニットによれば、ドライ運転時において回転軸30の軸の振れ回りにより、第1のすべり軸受44及び第2のすべり軸受39に回転体(スリーブ31及びスリーブ37)が衝突しても、その衝突時に摩擦力の向きが互いに逆向きに作用して相殺するので、回転軸30の振れ回りの発散を抑制し、不安定化による振動を防止することができる。加えて、この振動に起因する摩擦を低減して、軸受温度の上昇を抑制することができる。 As described above, according to the bearing unit shown in FIG. 3, the first slide bearing 44 and the second slide bearing 39 are rotated by the rotating body (sleeve) due to the swing of the shaft of the rotary shaft 30 during the dry operation. 31 and the sleeve 37) collide with each other because the frictional forces act in opposite directions to cancel each other at the time of the collision, thereby suppressing the divergence of the swing of the rotating shaft 30 and preventing the vibration due to destabilization. be able to. In addition, it is possible to reduce friction caused by this vibration and suppress an increase in bearing temperature.
 図3に示した軸受ユニットは、第1のすべり軸受44と第2のすべり軸受39を有するので、ドライ運転時における軸受すべり面の摩擦力を分散して、軸受すべり面の摩擦による発熱を抑制することができる。これにより、従来構造よりも摩擦係数の高い軸受材料、即ち耐摩耗性の高い軸受材料を使用することができ、長期間にわたって安定した運転をすることができる。 Since the bearing unit shown in FIG. 3 has the first slide bearing 44 and the second slide bearing 39, the frictional force of the bearing slide surface during the dry operation is dispersed to suppress heat generation due to the friction of the bearing slide surface. can do. Thereby, a bearing material having a higher friction coefficient than that of the conventional structure, that is, a bearing material having higher wear resistance can be used, and stable operation can be performed for a long period of time.
 また、図3に示した軸受ユニットは、軸受ケース32の内周面に第1のすべり軸受44を保持し、その外周面に第2のすべり軸受39を保持するので、立軸ポンプの軸方向にコンパクトな構造とすることができる。 Further, the bearing unit shown in FIG. 3 holds the first slide bearing 44 on the inner peripheral surface of the bearing case 32 and the second slide bearing 39 on the outer peripheral surface thereof. A compact structure can be obtained.
 ところで、本実施形態に係る軸受ユニットを備えた立軸ポンプは、回転軸30の水中に位置する部分(スリーブ31及びスリーブ37)の支持は第1のすべり軸受44及び第2のすべり軸受39等のすべり軸受のみで行われる。即ち、排水運転を行う回転機械の水中軸受には、玉軸受やコロ軸受のような転がり軸受は適しておらず、すべり軸受によって本実施形態の効果を奏することができる。 By the way, in the vertical shaft pump including the bearing unit according to the present embodiment, the portions (the sleeve 31 and the sleeve 37) located in the water of the rotary shaft 30 are supported by the first slide bearing 44, the second slide bearing 39, and the like. This is done only with plain bearings. That is, a rolling bearing such as a ball bearing or a roller bearing is not suitable for an underwater bearing of a rotating machine that performs drainage operation, and the effect of this embodiment can be achieved by a sliding bearing.
 (嵌脱構成:ユニット化)
 次に本発明に係る立軸ポンプに設けられる軸受ユニット構造について説明する。この軸受ユニットの原理は、図3ないし図6において説明した軸受ユニットの原理と同一である。図11は、図2における立軸ポンプの吸込ベルマウス1aの内周面に固定された支持部材15に取り付けられた軸受ユニットを示している。回転軸6は、端部が中空な円筒構造になっている。軸受ユニットは、第1のすべり軸受52と第2のすべり軸受57とを有する。回転軸6の径方向外側(回転軸6の周囲)に配置された第1のすべり軸受52に対応するスリーブ51(回転軸の摺動部の一例に相当する)が、羽根車下方の回転軸6の端部の外周に設けられる。第2のすべり軸受57に対応するスリーブ55(回転軸の摺動部の一例に相当する)が、緩衝材56を介して回転軸6の端部の中空円筒構造の内側に設けられる。第2のすべり軸受57に対応するスリーブ55と緩衝材56は、押さえ板58により回転軸6に固定される。
(Fitting / removal configuration: unitized)
Next, the bearing unit structure provided in the vertical shaft pump according to the present invention will be described. The principle of this bearing unit is the same as the principle of the bearing unit described in FIGS. FIG. 11 shows the bearing unit attached to the support member 15 fixed to the inner peripheral surface of the suction bell mouth 1a of the vertical shaft pump in FIG. The rotating shaft 6 has a cylindrical structure with a hollow end. The bearing unit includes a first slide bearing 52 and a second slide bearing 57. A sleeve 51 (corresponding to an example of a sliding portion of the rotating shaft) corresponding to the first slide bearing 52 disposed on the radially outer side of the rotating shaft 6 (around the rotating shaft 6) is a rotating shaft below the impeller. 6 is provided on the outer periphery of the end portion. A sleeve 55 (corresponding to an example of a sliding portion of the rotating shaft) corresponding to the second sliding bearing 57 is provided inside the hollow cylindrical structure at the end of the rotating shaft 6 with a cushioning material 56 interposed therebetween. The sleeve 55 and the buffer material 56 corresponding to the second sliding bearing 57 are fixed to the rotating shaft 6 by the pressing plate 58.
 第1のすべり軸受52は、緩衝材53を介して略円筒状の第1の軸受ケース54に保持される。第1の軸受ケース54は、支持部材15に固定されている。第1の軸受ケース54は、略円盤状のつば部54aを有する。第1の軸受ケース54をポンプの鉛直下方(吸い込み側)に取り外すことができるよう、つば部54aが支持部材15の下面にボルト61aにより嵌脱可能に取り付けられている。また、第2のすべり軸受57は、第1のすべり軸受52の直近下方に配置され、略円柱又は円筒状の第2の軸受ケース60によって、第1の軸受ケース54に固定される。第2の軸受ケース60は、略円盤状のつば部60aを有し、つば部60a第1軸受ケース54の下面にボルト61bによって着脱可能に取り付けられる。 The first plain bearing 52 is held by a substantially cylindrical first bearing case 54 via a buffer material 53. The first bearing case 54 is fixed to the support member 15. The first bearing case 54 has a substantially disc-shaped collar portion 54a. A flange portion 54a is removably attached to the lower surface of the support member 15 with a bolt 61a so that the first bearing case 54 can be removed vertically downward (suction side) of the pump. The second sliding bearing 57 is disposed immediately below the first sliding bearing 52, and is fixed to the first bearing case 54 by a substantially cylindrical or cylindrical second bearing case 60. The second bearing case 60 has a substantially disc-shaped collar portion 60a, and is detachably attached to the lower surface of the first bearing case 54 of the collar portion 60a by a bolt 61b.
 このように、第1の軸受ケース54と第2の軸受ケース60を分割して構成することにより、軸受点検作業と軸受交換作業において、最小の大きさと荷重を有する機器を取り外すだけで作業ができる。 As described above, by dividing the first bearing case 54 and the second bearing case 60, it is possible to perform work only by removing the device having the minimum size and load in the bearing inspection work and the bearing replacement work. .
 例えば、軸受の摩耗状況を観察する点検作業においては、立軸ポンプが大容量であり、軸受ユニットのサイズが大きい場合でも、第2の軸受ケース60を第1の軸受ケース54から分割して、第2の軸受ケース60のみを外すだけで、軸受の点検・維持管理性を向上させることができる。それとは反対に、点検後は、第2の軸受ケース60を第1の軸受ケース54に組み立てるだけであるので、作業性を向上させることができる。 For example, in the inspection work for observing the wear situation of the bearing, even when the vertical shaft pump has a large capacity and the size of the bearing unit is large, the second bearing case 60 is divided from the first bearing case 54, The bearing inspection / maintenance can be improved by removing only the bearing case 60 of the second bearing. On the contrary, after the inspection, it is only necessary to assemble the second bearing case 60 into the first bearing case 54, so that workability can be improved.
 この場合、取り外し及び組み立ての作業性の向上に加えて、第1の軸受ケース54を基台として第1のすべり軸受52と第2のすべり軸受57の芯を確実に合わせることが可能となるので、点検作業後の運転状態を作業前の運転状態と変わらない状態に維持することができ、安定性の高い軸受ユニットを構成することができる。 In this case, in addition to improving workability of removal and assembly, it is possible to reliably align the cores of the first slide bearing 52 and the second slide bearing 57 with the first bearing case 54 as a base. The operation state after the inspection work can be maintained in the same state as the operation state before the work, and a highly stable bearing unit can be configured.
 また、軸受を交換する場合には、第1の軸受ケース54を外すことにより、第1のすべり軸受52及び第2のすべり軸受57を一体として同時に取り外すことが可能となり、軸受交換時における作業性を向上させることができる。尚、回転軸6の径が比較的小さい場合には、機器の大きさも相対的に小さいので、第1の軸受ケース54と第2の軸受ケース60が分割された部品ではなく、図12に示すように、第1のすべり軸受52と第2のすべり軸受57とを保持する一体型の軸受ケース62であっても良い。一体型の軸受ケース62は、略円盤状のつば部62aを有し、ポンプの鉛直下方(吸い込み側)に取り外すことができるよう、つば部62aが支持部材15の下面にボルト61cにより嵌脱可能に取り付けられる。 When the bearing is replaced, the first bearing case 54 is removed, so that the first slide bearing 52 and the second slide bearing 57 can be removed as a unit at the same time. Can be improved. When the diameter of the rotary shaft 6 is relatively small, the size of the device is also relatively small. Therefore, the first bearing case 54 and the second bearing case 60 are not divided parts and are shown in FIG. As described above, it may be an integrated bearing case 62 that holds the first slide bearing 52 and the second slide bearing 57. The integral bearing case 62 has a substantially disc-shaped collar portion 62a, and the collar portion 62a can be fitted to and detached from the lower surface of the support member 15 with a bolt 61c so that the collar portion 62a can be removed vertically below the pump (suction side). Attached to.
 また、図11に示す第2の軸受ケース60及び図12に示す一体型の軸受ケース62には、複数の給排水口(穴)59が複数設けられていることが好ましい。給排水口59を設けることにより、ポンプの水流を確実に第1のすべり軸受52及び第2のすべり軸受57の表面に導き、軸受表面の内水による軸受表面の摩擦低減をはかることができ、軸受寿命の向上と振動の抑制が可能となる。 Further, the second bearing case 60 shown in FIG. 11 and the integrated bearing case 62 shown in FIG. 12 are preferably provided with a plurality of water supply / drain ports (holes) 59. By providing the water supply / drain port 59, the water flow of the pump can be reliably guided to the surfaces of the first slide bearing 52 and the second slide bearing 57, and the friction of the bearing surface due to the internal water on the bearing surface can be reduced. The life can be improved and vibration can be suppressed.
 図13は、本発明に係る立軸ポンプに設けられる軸受ユニットの他の実施形態を示した図である。この軸受ユニットの構造は、回転軸6の外径Dが図11に示した回転軸6の外径Dより大きい大型の立軸ポンプに適用される。第2のすべり軸受57は、第1のすべり軸受52の設置位置の略水平XX面上の回転軸6の中空円筒構造の内面に設置されている。この様に第1のすべり軸受52と第2のすべり軸受57が、鉛直方向(軸方向)に離れずに同一水平面上に配置されることで、同一水平面上に相対する位置での軸受接触が多くなるので、長尺の回転軸6の回転による軸の曲がり等の影響を受けることなく、軸受摺動の安定性を向上させることが可能となる。 FIG. 13 is a view showing another embodiment of the bearing unit provided in the vertical shaft pump according to the present invention. The structure of the bearing unit, the outer diameter D 2 of the rotary shaft 6 is applied to the outer diameter D 1 greater than a large vertical shaft pump of the rotary shaft 6 shown in FIG. 11. The second slide bearing 57 is installed on the inner surface of the hollow cylindrical structure of the rotary shaft 6 on the substantially horizontal XX plane at the installation position of the first slide bearing 52. As described above, the first slide bearing 52 and the second slide bearing 57 are arranged on the same horizontal plane without being separated in the vertical direction (axial direction), so that the bearing contact at the position facing the same horizontal plane is achieved. Therefore, the bearing sliding stability can be improved without being affected by the bending of the shaft caused by the rotation of the long rotating shaft 6.
 また、第1のすべり軸受52と第2のすべり軸受57を同一水平面上に配置することにより、軸受ユニットの鉛直方向(軸方向)長さを短縮することが可能となり、軸受ユニットをコンパクトに構成することができる。軸受ユニットがコンパクトになるので、取り扱い液の流れの邪魔になる部分が少なくなり、ポンプ効率の低下や、締め切り軸動力の増大等のポンプ性能への悪影響を低減することが可能となる。 Further, by arranging the first slide bearing 52 and the second slide bearing 57 on the same horizontal plane, it becomes possible to shorten the vertical (axial) length of the bearing unit, and the bearing unit is configured compactly. can do. Since the bearing unit becomes compact, there are fewer parts that obstruct the flow of the handling liquid, and it is possible to reduce adverse effects on pump performance such as a decrease in pump efficiency and an increase in deadline shaft power.
 (ユニットカバー)
 図14は、本発明の立軸ポンプに設ける保護カバーを示す図である。保護カバー63は先端が略球面上の形状を有しており、第2の軸受ケース60に着脱可能に固定部材64で取り付けられている。また、保護カバー63には、ポンプの取り扱い液を給排水する給排水口(小孔)63aが水平方向に(側方を向くように)設けられている。このように軸受ユニットを構成することにより、ポンプ回転体の下方に設置され、水流を直接受ける軸受ユニットで生じる水頭損失を低減することができ、ポンプ性能(効率)の悪化を防止することが可能となる。
(Unit cover)
FIG. 14 is a view showing a protective cover provided in the vertical shaft pump of the present invention. The protective cover 63 has a substantially spherical shape at the tip, and is attached to the second bearing case 60 by a fixing member 64 so as to be detachable. Further, the protective cover 63 is provided with a water supply / drain port (small hole) 63a for supplying / draining the liquid handled by the pump in the horizontal direction (to face the side). By configuring the bearing unit in this way, it is possible to reduce the head loss caused by the bearing unit that is installed below the pump rotating body and directly receives the water flow, and it is possible to prevent deterioration of the pump performance (efficiency). It becomes.
 また、給排水口63aを保護カバー63に水平方向(回転軸6の軸方向に対して直角方向)に設けたことにより、取り扱い液の中にスラリーが含まれる河川や下水道の排水ポンプの使用においても、軸受部へのスラリーの入り込みを防止し、軸受摩耗を抑制することが可能である。なお、本給排水口63aは、ポンプ停止時に軸受部内水を吸水槽側に排水するため、ポンプ軸受内部のスラリー溜まりを防止することにも効果を奏する。 Further, by providing the water supply / drainage port 63a in the protective cover 63 in the horizontal direction (perpendicular to the axial direction of the rotary shaft 6), it is possible to use a drainage pump for rivers or sewers in which slurry is contained in the handling liquid. It is possible to prevent the slurry from entering the bearing portion and suppress the wear of the bearing. In addition, since the main water supply / drain port 63a drains the water in the bearing portion to the water absorption tank side when the pump is stopped, it is effective in preventing slurry accumulation inside the pump bearing.
 また、保護カバー63においては、第2の軸受ケース60に固定部材64により着脱可能に取り付けられているため、軸受の点検や、取り外し・取り付け作業時に保護カバー63を取り外すことで、保護カバー63がこれらの作業に及ぼす影響をなくすことができる。なお、図14においては、保護カバー63は、第2の軸受ケース60に着脱可能に取り付けられているが、第1の軸受ケース54又は支持部材15に着脱可能に取り付けられていてもよい。 In addition, since the protective cover 63 is detachably attached to the second bearing case 60 by the fixing member 64, the protective cover 63 is removed by removing the protective cover 63 during the inspection of the bearing or during the removal / attachment operation. The influence on these operations can be eliminated. In FIG. 14, the protective cover 63 is detachably attached to the second bearing case 60, but may be detachably attached to the first bearing case 54 or the support member 15.
 次に本発明に係る別の形態の軸受ユニット構造について説明する。図13に示した実施形態のように、回転軸6の外表面にスリーブ51を備え、スリーブ51の外側においてスリーブ51に対応する第1のすべり軸受52を第1の軸受ケース54で保持する方式では、回転軸6の外径Dが大きくなれば周速度が大きくなり、摺動部分の負荷が大きくなる。また、図13に示した実施形態における第2のすべり軸受57の摺動部分の外径Dが、回転軸6の外径Dに比べて極端に小さい場合、中心からスリーブ51の外周までの距離と中心から第2のすべり軸受57の外周までの距離とが大きく違うので第2のすべり軸受57がスリーブ55からの面圧を受けることができない。このため、第2のすべり軸受57の軸受反力が不足し、第1のすべり軸受52と第2のすべり軸受57にかかる互いに逆方向の摩擦力に差が生じる。 Next, another type of bearing unit structure according to the present invention will be described. As shown in the embodiment shown in FIG. 13, the sleeve 51 is provided on the outer surface of the rotary shaft 6, and the first sliding bearing 52 corresponding to the sleeve 51 is held by the first bearing case 54 outside the sleeve 51. in the peripheral speed the larger the outer diameter D 2 of the rotary shaft 6 is increased, the load of the sliding portion increases. When the outer diameter D 3 of the sliding portion of the second plain bearing 57 in the embodiment shown in FIG. 13 is extremely smaller than the outer diameter D 2 of the rotating shaft 6, from the center to the outer periphery of the sleeve 51. And the distance from the center to the outer periphery of the second slide bearing 57 are significantly different from each other, so that the second slide bearing 57 cannot receive the surface pressure from the sleeve 55. For this reason, the bearing reaction force of the second sliding bearing 57 is insufficient, and a difference occurs in the frictional forces in the opposite directions applied to the first sliding bearing 52 and the second sliding bearing 57.
 そこで、図15及び図16に示す軸受ユニットは、これまでの説明で示した交換・点検容易性などのメインテナンス性を確保しつつ、回転軸6の径の大きさに直接依存しない摺動部の最適な周速、最適な面圧、及び最適な軸受反力を確保することができる軸受ユニット構造を提供するものである。 Therefore, the bearing unit shown in FIGS. 15 and 16 has a sliding portion that does not directly depend on the diameter of the rotating shaft 6 while ensuring the maintenance such as the ease of replacement and inspection shown in the above description. The present invention provides a bearing unit structure capable of ensuring an optimum peripheral speed, an optimum surface pressure, and an optimum bearing reaction force.
 図15は、図2における立軸ポンプの吸込ベルマウス1aの内周面に固定された支持部材15に取り付けられた本発明の他の実施形態に係る軸受ユニットを示している。回転軸6の端部には、第1の軸受ケース71が固定部材(ボルト等)70により固定されている。第1の軸受ケース71は、中空の円筒状部分71aを有し、その内周面に緩衝材56を介してスリーブ55(回転軸の摺動部の一例に相当する)が設けられている。これらスリーブ55と緩衝材56は、押さえ板58により第1の軸受ケース71に固定される。また、第1の軸受ケース71の円筒状部分71aの外周面に第1のすべり軸受52が備えられている。第1の軸受ケース71は、回転軸6に固定されているので、回転軸6とともに回転する。 FIG. 15 shows a bearing unit according to another embodiment of the present invention attached to a support member 15 fixed to the inner peripheral surface of the suction bell mouth 1a of the vertical shaft pump in FIG. A first bearing case 71 is fixed to the end of the rotating shaft 6 by a fixing member (bolt or the like) 70. The first bearing case 71 has a hollow cylindrical portion 71a, and a sleeve 55 (corresponding to an example of a sliding portion of the rotating shaft) is provided on the inner peripheral surface of the first bearing case 71 via a buffer material 56. The sleeve 55 and the buffer material 56 are fixed to the first bearing case 71 by a pressing plate 58. In addition, a first plain bearing 52 is provided on the outer peripheral surface of the cylindrical portion 71 a of the first bearing case 71. Since the first bearing case 71 is fixed to the rotating shaft 6, it rotates together with the rotating shaft 6.
 一方、支持部材15には、第2の軸受ケース65が固定部材(ボルト等)69により固定されている。第2の軸受ケース65は、第1の軸受ケース71の中空の円筒状部分71aの中空の部分(円筒の内部)に差し込まれる円柱状部分65aと、第1の軸受ケース71の中空の円筒状部分71aの外周を囲繞する円筒状部分65bとを有する。円柱状部分65aの外周面には、第1の軸受ケース71の中空の円筒状部分71aの内周面に緩衝材56を介して備えられたスリーブ55に対応して、第2のすべり軸受57が備えられている。また、第2の軸受ケース65の円筒状部分65bの内周面には、第1の軸受ケース71に備えられた第1のすべり軸受52に対応して、緩衝材53を介してスリーブ51(回転軸の摺動部の一例に相当する)が備えられている。これらスリーブ51と緩衝材53は、押さえ板66により第2の軸受ケース65に固定される。 On the other hand, a second bearing case 65 is fixed to the support member 15 by a fixing member (bolt or the like) 69. The second bearing case 65 includes a columnar portion 65 a inserted into a hollow portion (inside the cylinder) of the hollow cylindrical portion 71 a of the first bearing case 71, and a hollow cylindrical shape of the first bearing case 71. And a cylindrical portion 65b surrounding the outer periphery of the portion 71a. A second sliding bearing 57 is provided on the outer peripheral surface of the columnar portion 65a corresponding to the sleeve 55 provided on the inner peripheral surface of the hollow cylindrical portion 71a of the first bearing case 71 via a buffer material 56. Is provided. Further, on the inner peripheral surface of the cylindrical portion 65 b of the second bearing case 65, a sleeve 51 (through a buffer material 53 is provided corresponding to the first sliding bearing 52 provided in the first bearing case 71. Corresponding to an example of the sliding portion of the rotating shaft). The sleeve 51 and the buffer material 53 are fixed to the second bearing case 65 by a pressing plate 66.
 第1のすべり軸受52の摺動部の外径D´は、回転軸6の外径Dよりも小さく、回転軸6が回転したときに、摺動部の周速が摺動部材の適性使用が継続可能な範囲となるように設定されている。また、第2のすべり軸受57の摺動部の外径Dは、第1のすべり軸受52の摺動部の外径D´よりも小さいが、第2のすべり軸受57がスリーブ55からの面圧を適性に受けられる範囲の大きさである。 The outer diameter D 2 ′ of the sliding portion of the first sliding bearing 52 is smaller than the outer diameter D 2 of the rotating shaft 6, and when the rotating shaft 6 rotates, the peripheral speed of the sliding portion is that of the sliding member. It is set so that proper use can be continued. Further, the outer diameter D 3 of the sliding portion of the second sliding bearing 57 is smaller than the outer diameter D 2 ′ of the sliding portion of the first sliding bearing 52, but the second sliding bearing 57 is removed from the sleeve 55. It is the size of the range where the surface pressure can be properly received.
 このような構成により、回転軸6の径にあまり依存せずに第1の軸受ケース71、第2の軸受ケース65のサイズをコンパクトにすることができる。また、メインテナンスにおいては、第2の軸受ケース65だけを取り外すことにより、第1のすべり軸受52および第2のすべり軸受57の点検・交換作業を行うことができるので、作業性が向上する。 With such a configuration, the size of the first bearing case 71 and the second bearing case 65 can be made compact without depending much on the diameter of the rotating shaft 6. In maintenance, the first sliding bearing 52 and the second sliding bearing 57 can be inspected and replaced by removing only the second bearing case 65, so that workability is improved.
 さらに、本実施形態においては、内周面と外周面に摺動部を有する第1の軸受ケース71を回転軸6の端部に固定し、第1の軸受ケース71の内周面および外周面の摺動部に対応する摺動部を有する第2の軸受ケース65を支持部材15のような非回転の固定体に固定している。これにより、回転軸6の径が大きくなっても、各摺動部の回転周速を適正な範囲に抑制し、各摺動部にかかる面圧も適正な範囲に抑制し、互いに逆方向の摩擦力を適正な範囲にし、安定的な軸受性能を発揮することができる。 Further, in the present embodiment, the first bearing case 71 having sliding portions on the inner peripheral surface and the outer peripheral surface is fixed to the end of the rotating shaft 6, and the inner peripheral surface and the outer peripheral surface of the first bearing case 71 are fixed. A second bearing case 65 having a sliding portion corresponding to the sliding portion is fixed to a non-rotating fixed body such as the support member 15. Thereby, even if the diameter of the rotating shaft 6 is increased, the rotational peripheral speed of each sliding portion is suppressed to an appropriate range, the surface pressure applied to each sliding portion is also suppressed to an appropriate range, and the directions opposite to each other are suppressed. The friction force can be set within an appropriate range, and stable bearing performance can be exhibited.
 図16は、図2における立軸ポンプの吸込ベルマウス1aの内周面に固定された支持部材15に取り付けられた本発明の他の実施形態に係る軸受ユニット構造を示している。回転軸6の端部には、第1の軸受ケース72が固定部材(ボルト等)77により固定されている。第1の軸受ケース72は、円柱状部分72aとそれを取り囲む中空の円筒状部分72bを有する。円柱状部分72aの外周には第2のすべり軸受57(回転軸の摺動部の一例に相当する)が設けられ、円筒状部分72bの内面には、緩衝材53を介してスリーブ51(回転軸の摺動部の一例に相当する)が設けられている。これらスリーブ51と緩衝材53は、押さえ板79により第1の軸受ケース72に固定される。第1の軸受ケース72は、回転軸6に固定されているので、回転軸6とともに回転する。 FIG. 16 shows a bearing unit structure according to another embodiment of the present invention attached to a support member 15 fixed to the inner peripheral surface of the suction bell mouth 1a of the vertical shaft pump in FIG. A first bearing case 72 is fixed to the end of the rotating shaft 6 by a fixing member (bolt or the like) 77. The first bearing case 72 has a columnar portion 72a and a hollow cylindrical portion 72b surrounding the columnar portion 72a. A second slide bearing 57 (corresponding to an example of a sliding portion of the rotating shaft) is provided on the outer periphery of the columnar portion 72a, and a sleeve 51 (rotation) is provided on the inner surface of the cylindrical portion 72b via a buffer material 53. Corresponding to an example of a sliding portion of the shaft). The sleeve 51 and the buffer material 53 are fixed to the first bearing case 72 by a pressing plate 79. Since the first bearing case 72 is fixed to the rotating shaft 6, it rotates together with the rotating shaft 6.
 一方、支持部材15には、第2の軸受ケース73が固定部材(ボルト等)74により固定されている。第2の軸受ケース73は、第1の軸受ケース72の円柱状部分72aと円筒状部分72bの間に差し込まれる円筒部分73aを有する。第2の軸受ケース73の円筒部分73aの内周面には、第2のすべり軸受57に対応するスリーブ55が緩衝材56を介して備えられる。スリーブ55及び緩衝材56は、押さえ板80により第2の軸受ケース73に固定されている。第2の軸受ケース73の円筒部分73aの外周面には、スリーブ51に対応する第1のすべり軸受52が備えられている。 On the other hand, a second bearing case 73 is fixed to the support member 15 by a fixing member (bolt or the like) 74. The second bearing case 73 has a cylindrical portion 73a inserted between the columnar portion 72a and the cylindrical portion 72b of the first bearing case 72. A sleeve 55 corresponding to the second sliding bearing 57 is provided on the inner peripheral surface of the cylindrical portion 73 a of the second bearing case 73 via a cushioning material 56. The sleeve 55 and the buffer material 56 are fixed to the second bearing case 73 by a pressing plate 80. A first plain bearing 52 corresponding to the sleeve 51 is provided on the outer peripheral surface of the cylindrical portion 73 a of the second bearing case 73.
 第1のすべり軸受52の摺動部の外径D´は、回転軸6の外径Dよりも小さく、回転軸6が回転したときに、摺動部の周速が摺動部材の適性使用が継続可能な範囲となるように設定されている。また、第2のすべり軸受の57の摺動部の外径Dは、第1のすべり軸受52の摺動部の外径D´よりも小さいが、第2のすべり軸受57がスリーブ55からの面圧を適性に受けられる範囲の大きさである。 The outer diameter D 2 ′ of the sliding portion of the first sliding bearing 52 is smaller than the outer diameter D 2 of the rotating shaft 6, and when the rotating shaft 6 rotates, the peripheral speed of the sliding portion is that of the sliding member. It is set so that proper use can be continued. Further, the outer diameter D 3 of the sliding portion of the second sliding bearing 57 is smaller than the outer diameter D 2 ′ of the sliding portion of the first sliding bearing 52, but the second sliding bearing 57 has the sleeve 55. It is the size of the range where the surface pressure can be properly received.
 図16に示した実施形態の軸受ユニットの作用効果は、図15に示した軸受ユニットの作用効果と同じであるので説明を省略する。 The operational effects of the bearing unit of the embodiment shown in FIG. 16 are the same as the operational effects of the bearing unit shown in FIG.
 (先行待機、樹脂軸受)
 本軸受ユニットの第1のすべり軸受52及び第2のすべり軸受57の材料には、セラミックス、樹脂、ゴム等を用いることが可能である。なお、気中運転と排水運転を行う先行待機ポンプにおいては、運転状態の急変(軸受温度の急変を含む)による軸受の損傷を防止するため、セラミックスなどの脆性材料ではなく、無水状態でも使用可能な樹脂又は樹脂複合材を用いる。このような樹脂軸受を使用する場合、樹脂軸受は、セラミックス軸受に比べて耐摩耗性が劣ることと、摩擦係数が大きいことから、気中運転時における軸受発熱量が大きくなるという課題が生じる。しかしながら、本発明の第1のすべり軸受52及び第2のすべり軸受57の組み合わせユニットを用いることで、摩耗量及び発熱を抑制することが可能となる。
(Advance standby, resin bearing)
As materials for the first slide bearing 52 and the second slide bearing 57 of this bearing unit, ceramics, resin, rubber, or the like can be used. In the standby standby pump that performs air operation and drainage operation, it can be used in an anhydrous state rather than a brittle material such as ceramics in order to prevent damage to the bearing due to a sudden change in operating state (including a sudden change in bearing temperature). A resin or a resin composite material is used. When such a resin bearing is used, since the resin bearing is inferior in wear resistance and has a large friction coefficient compared to a ceramic bearing, there arises a problem that the amount of heat generated by the bearing during air operation increases. However, by using the combination unit of the first slide bearing 52 and the second slide bearing 57 of the present invention, it is possible to suppress the amount of wear and heat generation.
 以上で説明した本願発明に係る軸受装置及び軸受ユニット構造において、スリーブ、及び各すべり軸受の摺動面の反対側には、必ずしも緩衝材を設けなくてもよい。以上、本発明の好ましい実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことはいうまでもない。 In the bearing device and the bearing unit structure according to the present invention described above, it is not always necessary to provide a cushioning material on the opposite side of the sliding surface of the sleeve and each slide bearing. As mentioned above, although preferable embodiment of this invention was described, it cannot be overemphasized that this invention is not limited to the above-mentioned embodiment, and may be implemented with a different form within the range of the technical idea.
1…ガイドケーシング
3…吊下管
4…吐出曲管
6…回転軸
10…羽根車
11…外軸受
44,52…第1のすべり軸受
39,57…第2のすべり軸受
63…保護カバー
63a…給排水口
DESCRIPTION OF SYMBOLS 1 ... Guide casing 3 ... Suspension pipe | tube 4 ... Discharge curved pipe 6 ... Rotating shaft 10 ... Impeller 11 ... Outer bearing 44, 52 ... 1st slide bearing 39, 57 ... 2nd slide bearing 63 ... Protective cover 63a ... Water supply / drainage

Claims (5)

  1.  羽根車と、
     前記羽根車を貫通して延び、前記羽根車が固定される回転軸と、
     前記回転軸を支持する外軸受と、
     前記羽根車の下方に設けられ、前記羽根車を貫通する前記回転軸を支持する軸受ユニットと、を備え、
     前記回転軸は、前記外軸受以外の軸受を介さずに前記外軸受から前記羽根車を貫通して延び、
     前記軸受ユニットは、前記回転軸の摺動部を軸受内周面で支持する第1の軸受と、前記回転軸の摺動部を軸受外周面で支持する第2の軸受を有する、立軸ポンプ。
    Impeller,
    A rotating shaft extending through the impeller and to which the impeller is fixed;
    An outer bearing that supports the rotating shaft;
    A bearing unit provided below the impeller and supporting the rotating shaft penetrating the impeller, and
    The rotating shaft extends through the impeller from the outer bearing without a bearing other than the outer bearing,
    The bearing unit includes a first bearing that supports a sliding portion of the rotating shaft on a bearing inner peripheral surface, and a second bearing that supports a sliding portion of the rotating shaft on a bearing outer peripheral surface.
  2.  前記軸受ユニットは、前記羽根車の下方に嵌脱可能に取り付けられる、請求項1に記載の立軸ポンプ。 The vertical shaft pump according to claim 1, wherein the bearing unit is removably attached to the lower side of the impeller.
  3.  前記第1の軸受及び前記第2の軸受は、前記羽根車の下方に嵌脱可能に構成される、請求項1又は2に記載された立軸ポンプ。 The vertical shaft pump according to claim 1 or 2, wherein the first bearing and the second bearing are configured to be fitted / removed below the impeller.
  4.  前記軸受ユニットの下方に設けられる保護カバーを有し、
     前記保護カバーは、前記軸受ユニットへ水流を導くための、側方に向く小孔を有する、請求項1ないし3のいずれか一項に記載された立軸ポンプ。
    A protective cover provided below the bearing unit;
    The vertical shaft pump according to any one of claims 1 to 3, wherein the protective cover has a small side hole for guiding a water flow to the bearing unit.
  5.   前記第1の軸受と前記第2の軸受は、同一の材料で構成され、
     前記材料は、樹脂または樹脂複合材で構成される、請求項1ないし4のいずれか一項に記載された立軸ポンプ。
    The first bearing and the second bearing are made of the same material,
    The vertical pump according to any one of claims 1 to 4, wherein the material is made of a resin or a resin composite material.
PCT/JP2015/069985 2014-07-14 2015-07-13 Vertical shaft pump WO2016009977A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SG11201610976PA SG11201610976PA (en) 2014-07-14 2015-07-13 Vertical pump
CN201580038340.6A CN106662109B (en) 2014-07-14 2015-07-13 Vertical shaft pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-144050 2014-07-14
JP2014144050A JP6320208B2 (en) 2014-07-14 2014-07-14 Vertical shaft pump

Publications (1)

Publication Number Publication Date
WO2016009977A1 true WO2016009977A1 (en) 2016-01-21

Family

ID=55078470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069985 WO2016009977A1 (en) 2014-07-14 2015-07-13 Vertical shaft pump

Country Status (5)

Country Link
JP (1) JP6320208B2 (en)
CN (1) CN106662109B (en)
MY (1) MY176184A (en)
SG (1) SG11201610976PA (en)
WO (1) WO2016009977A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6491215B2 (en) * 2014-08-22 2019-03-27 株式会社荏原製作所 Vertical shaft pump
JP7345990B2 (en) 2020-02-17 2023-09-19 株式会社電業社機械製作所 vertical shaft pump

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289191A (en) * 2001-02-26 2001-10-19 Hitachi Ltd Pump bearing device
JP2009074530A (en) * 2007-08-30 2009-04-09 Torishima Pump Mfg Co Ltd Diagnostic device for pump bearing and its method
JP2010285885A (en) * 2009-06-09 2010-12-24 Torishima Pump Mfg Co Ltd Submerged bearing

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6023676A (en) * 1983-07-15 1985-02-06 Fujitsu Ltd Labyrinth structure of lubricating gas
JPH0694035A (en) * 1992-09-10 1994-04-05 Hitachi Ltd Bearing device for vertical drainage pump
JP2000002190A (en) * 1998-06-15 2000-01-07 Kubota Corp Slide bearing device of vertical shaft pump
JP3930734B2 (en) * 2001-12-28 2007-06-13 株式会社荏原製作所 Vertical shaft pump
JP2007016884A (en) * 2005-07-07 2007-01-25 Ge Medical Systems Global Technology Co Llc Bearing mechanism, and x-ray tube
JP2009204034A (en) * 2008-02-27 2009-09-10 Ishigaki Co Ltd Sliding bearing unit and pre-standby pump using the same
CN202707510U (en) * 2012-06-20 2013-01-30 天津长芦海晶集团有限公司 Brine pump for salt pond

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289191A (en) * 2001-02-26 2001-10-19 Hitachi Ltd Pump bearing device
JP2009074530A (en) * 2007-08-30 2009-04-09 Torishima Pump Mfg Co Ltd Diagnostic device for pump bearing and its method
JP2010285885A (en) * 2009-06-09 2010-12-24 Torishima Pump Mfg Co Ltd Submerged bearing

Also Published As

Publication number Publication date
SG11201610976PA (en) 2017-02-27
CN106662109A (en) 2017-05-10
MY176184A (en) 2020-07-24
CN106662109B (en) 2018-12-14
JP6320208B2 (en) 2018-05-09
JP2016020648A (en) 2016-02-04

Similar Documents

Publication Publication Date Title
JP6603382B2 (en) Vertical shaft pump
JP6320208B2 (en) Vertical shaft pump
JP5671334B2 (en) Vertical shaft pump
JP6259289B2 (en) Horizontal shaft pump
JP6189224B2 (en) Journal bearing and steam turbine
JP6411902B2 (en) Vertical shaft pump
JP5047586B2 (en) Vertical shaft support structure
JP6745876B2 (en) Vertical pump
JP4819147B2 (en) Underwater bearing
CN208396963U (en) Two phase flow fluid machinery flow passage components polishing machine test device
JP6952546B2 (en) pump
JP6491215B2 (en) Vertical shaft pump
JP4704066B2 (en) Vertical shaft pump
JP6749393B2 (en) Vertical pump
JP7345990B2 (en) vertical shaft pump
JP6936062B2 (en) Vertical pump
JP2012219728A (en) Submerged bearing device and horizontal shaft pump
JP5155653B2 (en) Vertical shaft pump
JP7158256B2 (en) Vertical shaft pump
JP2022169190A (en) Submerged bearing structure, vertical shaft pump, pump system, and lubricating liquid supply method
JP6936061B2 (en) Vertical pump
JP2023001576A (en) Vertical shaft pump
JP2019015193A (en) Vertical shaft pump
KR100788803B1 (en) Vain damper of blower
JP2012184773A (en) Vertical shaft pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15822013

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15822013

Country of ref document: EP

Kind code of ref document: A1