JP2009204034A - Sliding bearing unit and pre-standby pump using the same - Google Patents

Sliding bearing unit and pre-standby pump using the same Download PDF

Info

Publication number
JP2009204034A
JP2009204034A JP2008045377A JP2008045377A JP2009204034A JP 2009204034 A JP2009204034 A JP 2009204034A JP 2008045377 A JP2008045377 A JP 2008045377A JP 2008045377 A JP2008045377 A JP 2008045377A JP 2009204034 A JP2009204034 A JP 2009204034A
Authority
JP
Japan
Prior art keywords
sliding
bearing
ceramic
pump
bearing unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008045377A
Other languages
Japanese (ja)
Inventor
Seiji Watabe
誠司 渡部
Shigeki Ando
繁樹 安藤
Takaharu Honda
隆治 本田
Tomonori Yoshida
智紀 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishigaki Co Ltd
Original Assignee
Ishigaki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishigaki Co Ltd filed Critical Ishigaki Co Ltd
Priority to JP2008045377A priority Critical patent/JP2009204034A/en
Publication of JP2009204034A publication Critical patent/JP2009204034A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bearing sliding member for a pre-standby pump which is free from breakage under long-time dry/wet repetitive and high-load sliding motion. <P>SOLUTION: A sliding bearing unit 2 comprises: a shaft sleeve 4 cylindrically formed of a fiber reinforced ceramics material in which ceramics fibers are bunched into bunched ceramics fibers, the bunched ceramics fibers are braided and laminated in a plurality of layers, and cavities are impregnated with ceramics base materials; and a bearing 3 formed of an oil impregnated porous ceramics material and combined therewith. It is suitably used in a bearing device for the pre-standby pump, which is free from cracking and breakage under long-time dry sliding motion or dry/wet repetitive sliding motion, and which has an operation system for keeping the pump in standby operation. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ドライ雰囲気に適用する高面圧用の軸スリーブと軸受の組み合わせで構成した滑り軸受ユニットおよびこの滑り軸受ユニットを用いた先行待機型ポンプに関する。   The present invention relates to a sliding bearing unit constituted by a combination of a shaft sleeve for high surface pressure applied to a dry atmosphere and a bearing, and a preceding standby type pump using the sliding bearing unit.

従来、無注水起動で先行待機運転を行うポンプの軸受等の摺動部材に使用される材料として、超硬合金やセラミックスが広く使用されている。   Conventionally, cemented carbides and ceramics have been widely used as materials used for sliding members such as pump bearings that perform a preliminary standby operation with no water injection.

セラミックス製固定部材と超硬合金製回転部材の組み合せからなる摺動部材は、例えば特許文献1に記載されている。また、セラミックスと炭素繊維を焼結して得られる炭素繊維複合セラミックス焼結体からなる摺動部材は、例えば特許文献2に記載されている。
特開2001−173661号公報 特開平5−155665号公報
A sliding member made of a combination of a ceramic fixing member and a cemented carbide rotating member is described in Patent Document 1, for example. Moreover, the sliding member which consists of a carbon fiber composite ceramic sintered compact obtained by sintering ceramics and carbon fiber is described in patent document 2, for example.
JP 2001-173661 A JP-A-5-155665

摺動部材としてセラミックス製固定部材を組み合わせる超硬合金は、一定の面圧までは安定した低い動摩擦係数を示すが、脆性特性として靭性が低い。回転機器は経年的な劣化による振動の増加やアンバランスの増大等により許容面圧を超えるような高負荷の面圧が発生することが知られている。そして、高面圧下のドライ摺動においては、凝着磨耗による摩擦係数の増大により異常な温度上昇が生じ、そこに揚水した水による急冷で熱応力や熱衝撃が発生して破損することがある。そして、炭素繊維複合セラミックス焼結体は、自己潤滑性をもつ炭素繊維を複合させることで摩擦係数を低減できるが、磨耗量が増大する。摺動面に堆積する微小な磨耗粉の凝着により、摩擦係数が増大し、摺動特性が悪化するという問題があった。 A cemented carbide combined with a ceramic fixing member as a sliding member shows a stable low dynamic friction coefficient up to a certain surface pressure, but has low toughness as a brittle characteristic. It is known that a rotating device generates a high load surface pressure exceeding an allowable surface pressure due to an increase in vibration due to deterioration over time, an increase in unbalance, and the like. In dry sliding under high surface pressure, an abnormal temperature rise occurs due to an increase in the coefficient of friction due to adhesion wear, and thermal stress and thermal shock may occur due to rapid cooling by the pumped water, which may cause damage. . And a carbon fiber composite ceramic sintered compact can reduce a friction coefficient by combining the carbon fiber which has self-lubricating property, However, Abrasion amount increases. There is a problem that the friction coefficient increases due to the adhesion of minute wear powder accumulated on the sliding surface, and the sliding characteristics deteriorate.

本発明は、セラミックス繊維を束ねてセラミックス繊維束とし、セラミックス繊維束を編んで複数層積層して円筒状に形成し、空隙にセラミックス基材を含浸した繊維強化セラミックス材の軸スリーブと、油含浸多孔質セラミックス材の軸受とを回転摺動可能に組み合わせるもので、セラミックスが本来有する摺動性と耐摩耗性等の特性を維持しつつ引張強度が向上し靭性が高い。また、セラミックス繊維を束ねたセラミックス繊維束を編んでいるので、摺動部には網目状の凹部が形成され、そこにドライ雰囲気で高面圧下での摺動による微小な磨耗粉が堆積し、摺動面に凝着することがなく異常な摩擦係数の上昇がない。さらに、時間の経過とともに油含浸多孔質セラミックス材の内部に保持している油分が徐々に表面に浸み出し、摺動部の潤滑に寄与するので、摺動特性が向上する。   The present invention relates to a fiber-reinforced ceramic material shaft sleeve in which ceramic fibers are bundled to form a ceramic fiber bundle, and the ceramic fiber bundle is knitted and laminated into a plurality of layers to form a cylindrical shape. It is a combination of a porous ceramic material bearing so as to be able to rotate and slide, and the tensile strength is improved and the toughness is high while maintaining the characteristics such as slidability and wear resistance inherent in ceramics. In addition, because we knit the ceramic fiber bundle that bundles the ceramic fibers, a mesh-like recess is formed in the sliding part, where minute wear powder due to sliding under high surface pressure in a dry atmosphere accumulates, There is no adhesion to the sliding surface and there is no abnormal increase in the coefficient of friction. Furthermore, as the oil content retained inside the oil-impregnated porous ceramic material gradually oozes out to the surface over time and contributes to the lubrication of the sliding portion, the sliding characteristics are improved.

滑り軸受ユニットを用いた立軸ポンプであって、ポンプケーシング内に数箇所配設し、先端に羽根車を固着した主軸を支持する滑り軸受ユニットが、ポンプケーシング側に固定された油含浸多孔質セラミックス材の固定部材で形成された軸受と、主軸に回転を拘束して外挿されると共に、前記軸受に回転摺動可能に内挿された繊維強化セラミックス材の回転部材で形成された軸スリーブとを備えるもので、長時間のドライ摺動やドライとウエットが繰り返される摺動での使用でもクラックの発生や破損の恐れが無い。また、ドライ運転を一定時間継続していると、油含浸多孔質セラミックス材で構成した固定部材の油分が摺動部の潤滑に寄与するので、摩擦係数が小さくなり安定する。さらに、高面圧下での摺動でも異常な摩擦係数の上昇がないので、大口径のポンプにも適用できる。   Oil-impregnated porous ceramics in which a vertical shaft pump using a sliding bearing unit is disposed in a pump casing, and a sliding bearing unit supporting a main shaft having an impeller fixed to the tip is fixed to the pump casing side And a shaft sleeve formed by a fiber-reinforced ceramic material rotating member inserted into the bearing so as to be rotationally slidable. There is no risk of cracking or breakage even when used for long periods of dry sliding or sliding where dry and wet are repeated. Further, when the dry operation is continued for a certain time, the oil content of the fixing member made of the oil-impregnated porous ceramic material contributes to the lubrication of the sliding portion, so that the friction coefficient becomes small and stable. Furthermore, since the friction coefficient does not increase abnormally even when sliding under high surface pressure, it can be applied to a large-diameter pump.

本発明の繊維強化セラミックス材の摺動部材は、セラミックス基材にセラミックス繊維を複合強化した材料であるため、セラミックスが本来有する摺動性と耐摩耗性等の特性を維持しつつ引張強度が向上し靭性が高い。また、セラミックス繊維を束ねたセラミックス繊維束を編んでいるので、摺動部には網目状の凹部が形成される。ドライ雰囲気で高面圧下での摺動による微小な磨耗粉は凹部に堆積し、摺動面に凝着することがなく異常な摩擦係数の上昇がない。時間の経過とともに油含浸多孔質セラミックス材の内部に保持している油分が徐々に表面に浸み出し、摺動部の潤滑に寄与するので、摺動特性が向上する。高面圧下で長時間のドライ摺動やドライとウエットが繰り返される摺動での使用でもクラックの発生や破損の恐れが無く、大口径の先行待機型ポンプの軸受装置としても使用可能な摺動部材である。   The sliding member of the fiber-reinforced ceramic material of the present invention is a material in which ceramic fibers are reinforced with a ceramic base material, so that the tensile strength is improved while maintaining the inherent characteristics of ceramics such as slidability and wear resistance. High toughness. In addition, since the ceramic fiber bundle in which the ceramic fibers are bundled is knitted, a mesh-like concave portion is formed in the sliding portion. The minute wear powder caused by sliding under a high surface pressure in a dry atmosphere accumulates in the concave portion, and does not adhere to the sliding surface and does not increase the abnormal friction coefficient. As time passes, the oil retained in the oil-impregnated porous ceramic material gradually oozes out to the surface and contributes to lubrication of the sliding portion, so that the sliding characteristics are improved. Sliding that can be used as a bearing device for large-diameter advanced stand-by pumps with no risk of cracking or breakage even when used for long-time dry sliding under high surface pressure or sliding with dry and wet repeated. It is a member.

この発明に係る滑り軸受ユニットを図面に基づき詳述すると、図1は繊維強化セラミックス材の回転部材であって、SiC系セラミックスからなるSiC繊維を複数本束ねてSiC繊維束14とし、SiC繊維束14を編んで円筒状に複数層積層して3〜5mm厚に形成し、空隙にSiC系セラミックス基材を含浸して軸スリーブ4としたものである。   A sliding bearing unit according to the present invention will be described in detail with reference to the drawings. FIG. 1 shows a rotating member of a fiber reinforced ceramic material. A SiC fiber bundle 14 is formed by bundling a plurality of SiC fibers made of SiC ceramics. 14 is knitted and laminated in a cylindrical shape to form a thickness of 3 to 5 mm, and an air gap is impregnated with a SiC ceramic substrate to form a shaft sleeve 4.

実施例ではSiC系セラミックス基材を含浸させる方法としてCVI法(化学気相浸透法/Chemical Vapor Infiltration)を用いているが、セラミックス繊維及びセラミックス基材の種類に応じてRS法(反応焼結法/Reaction Sintering)、溶浸直接金属酸化法(Directed Oxidation(Lanxide) Process)、PIP法(ポリマー含浸・熱分解法/Polymer Infiltration and Pyrolysis)、MI法(溶融浸透法/Melt Infiltration)、ゾルゲル法(Sol−Gel Techniques)、HIP法(加圧焼結法/Hot Isostatic Processing)等の各種セラミック充填方法を用いてもよい。セラミックの材質としては、炭化ケイ素(SiC)、窒化ケイ素(SiN)、アルミナ(Al2O3)、ジルコニア(ZrO2)、チタンカーバイト等を用いる。   In the examples, the CVI method (Chemical Vapor Infiltration method) is used as a method for impregnating the SiC ceramic substrate, but the RS method (reactive sintering method) is used depending on the type of ceramic fiber and ceramic substrate. / Reaction Sintering, Infiltration Direct Metal Oxidation (Direct Oxidation (Lanxide) Process), PIP (Polymer Impregnation and Pyrolysis), MI (Melt Infiltration / Melt Infiltration), Sol Gel Various ceramic filling methods such as Sol-Gel Technologies) and HIP method (Pressurized Sintering / Hot Isostatic Processing). It can have. As the ceramic material, silicon carbide (SiC), silicon nitride (SiN), alumina (Al2O3), zirconia (ZrO2), titanium carbide, or the like is used.

SiC繊維束14は図2に示すように平織りしており、直交するSiC繊維束14が1本おきに交互に上下するよう成形されている。実施例では平織りであるが、ニット編み、ブレード編み等で編成したものであってもよい。高面圧ドライ摺動時に発生する微小な磨耗粉17は、表面に存在する網目状の凹部15に堆積するので、摺動面16に凝着することはない。   The SiC fiber bundle 14 is plain woven as shown in FIG. 2, and is formed so that every other orthogonal SiC fiber bundle 14 is alternately raised and lowered. In the embodiment, it is plain weave, but it may be knitted by knitting, blade knitting or the like. The minute wear powder 17 generated at the time of high surface pressure dry sliding accumulates in the mesh-shaped recess 15 existing on the surface, and therefore does not adhere to the sliding surface 16.

図3および図4は、滑り軸受ユニット2を、本発明に係る摺動部材で構成した立軸ポンプ1を示す。図3は、立軸ポンプ1の全体を示す概念図であり、図4は、立軸ポンプ1の要部拡大図である。   3 and 4 show the vertical shaft pump 1 in which the sliding bearing unit 2 is constituted by a sliding member according to the present invention. FIG. 3 is a conceptual diagram showing the entirety of the vertical shaft pump 1, and FIG.

立軸ポンプ1は、ポンプケーシング8内の数個所(図3では上,下2個所)に配設した滑り軸受ユニット2に、先端に羽根車6を固着した主軸5が回転自在に支持されて大略構成されている。このとき、主軸5は、その下部が案内羽根7の基部に嵌合された滑り軸受ユニット2に、その上部がポンプケーシング8に設けたリブ9に嵌合された滑り軸受ユニット2によって回転自在に支持されている。   The vertical shaft pump 1 is roughly configured by a main shaft 5 having an impeller 6 fixed to a tip end thereof rotatably supported by a sliding bearing unit 2 disposed at several locations (upper and lower locations in FIG. 3) in a pump casing 8. It is configured. At this time, the main shaft 5 is freely rotatable by the slide bearing unit 2 whose lower part is fitted to the base part of the guide blade 7 and whose upper part is fitted by the rib 9 provided in the pump casing 8. It is supported.

また、滑り軸受ユニット2は、図4に示すように、ポンプケーシング8側に固定された軸受3と、主軸5に回転を拘束して外挿されると共に、軸受3に回転摺動可能に内挿された軸スリーブ4とを備えて構成されている。図4は、図3の上部に位置する滑り軸受ユニット2を示している。   Further, as shown in FIG. 4, the sliding bearing unit 2 is inserted outside the bearing 3 fixed to the pump casing 8 side and the spindle 5 while restricting the rotation, and is inserted into the bearing 3 so as to be slidable. The shaft sleeve 4 is formed. FIG. 4 shows the plain bearing unit 2 located in the upper part of FIG.

このとき、軸受3は油含浸多孔質SiCからなるセラミックス製固定部材で形成されており、軸スリーブ4はSiC系セラミックスからなるSiC繊維を複数本束ねてSiC繊維束14とし、SiC繊維束14を編んで円筒状に複数層積層して形成し、空隙にSiC系セラミックス基材を含浸した繊維強化SiC製回転部材で形成されている。   At this time, the bearing 3 is formed of a ceramic fixing member made of oil-impregnated porous SiC, and the shaft sleeve 4 bundles a plurality of SiC fibers made of SiC-based ceramics to form a SiC fiber bundle 14. It is formed of a fiber reinforced SiC rotating member formed by knitting and laminating a plurality of layers in a cylindrical shape and impregnating a SiC-based ceramic base material in the gap.

そしてより詳しくは、滑り軸受ユニット2は、軸スリーブ4が、廻り止め部材13により相対回転を拘束されて主軸5に取り付けられており、かつ軸受3が、緩衝材10を介在させて取付治具11に嵌着されると共に、この嵌着状態のまま、ポンプケーシング8にリブ9を介して固着された軸受支持部12に嵌合されて取り付けられることによって構成されている。緩衝材10は、軸受3に急激な負荷がかかった場合にセラミックが破損するのを防止するためのものであり、ゴム等の弾性体を用いて形成されている。   More specifically, in the sliding bearing unit 2, the shaft sleeve 4 is attached to the main shaft 5 with the relative rotation being restrained by the anti-rotation member 13, and the bearing 3 is provided with a cushioning material 10 interposed therebetween. 11, and is fitted and attached to the bearing support portion 12 fixed to the pump casing 8 via the rib 9 in this fitted state. The cushioning material 10 is for preventing the ceramic from being damaged when a sudden load is applied to the bearing 3, and is formed using an elastic body such as rubber.

この立軸ポンプ1においては、主軸5が回転すれば軸受3と軸スリーブ4との間で摺動する。本実施例の立軸ポンプ1は、吸水槽の水位に関らずあらかじめ待機運転を行う全速全水位型先行待機ポンプであるので、低水位時の気中運転では滑り軸受ユニット2に無注水で長時間待機運転を行うことができる。   In this vertical shaft pump 1, if the main shaft 5 rotates, it slides between the bearing 3 and the shaft sleeve 4. The vertical shaft pump 1 of this embodiment is a full-speed, full-water-type advanced standby pump that performs standby operation in advance regardless of the water level of the water absorption tank. Time standby operation can be performed.

このように構成された立軸ポンプ1は、本発明に係る摺動部材で構成した滑り軸受ユニット2を採用しているので、軸スリーブ4の極めて優秀な摩擦係数、温度上昇、強度、耐腐食性に起因して、長時間のドライ摺動状態における先行待機運転が可能になる。   The vertical shaft pump 1 configured as described above employs the sliding bearing unit 2 configured by the sliding member according to the present invention, so that the shaft sleeve 4 has an extremely excellent coefficient of friction, temperature rise, strength, and corrosion resistance. Due to this, it is possible to perform a preliminary standby operation in a dry sliding state for a long time.

図5は本発明の軸受摺動試験に用いる実験装置の概念図である。実験装置100は試験用滑り軸受ユニット101の実験を行う装置であり、この試験用滑り軸受ユニット101は、軸104を支持する試験軸受であり、軸104に固定された前記試験用軸スリーブ102と、装置ケーシング105側に固定され前記試験用軸スリーブ102を回転摺動可能に内挿する前記試験用軸受103とから構成されている。そして、試験用滑り軸受ユニット101に振れ回り荷重がかかるように軸104にアンバランスウエイト106を設け、このウエイトを増減することにより軸受面圧を調節することができるようになっている。なお、符号107は、インバーターモータであり、軸受部の周速度を実機に近い周速度に調節可能である。また、トルク測定は、トルクメータ108で測定することができ、温度測定は、固定側の試験用軸受103に温度センサー(図示せず)を取付け測定する。温度測定の場所は、摺動面より約3mm離れた所である。   FIG. 5 is a conceptual diagram of an experimental apparatus used for the bearing sliding test of the present invention. The experimental apparatus 100 is an apparatus for performing an experiment on the test slide bearing unit 101. The test slide bearing unit 101 is a test bearing that supports the shaft 104, and the test shaft sleeve 102 that is fixed to the shaft 104. The test bearing 103 is fixed to the apparatus casing 105 and is inserted into the test shaft sleeve 102 so as to be able to rotate and slide. An unbalanced weight 106 is provided on the shaft 104 so that a swinging load is applied to the test sliding bearing unit 101, and the bearing surface pressure can be adjusted by increasing or decreasing the weight. Reference numeral 107 denotes an inverter motor, which can adjust the peripheral speed of the bearing portion to a peripheral speed close to that of the actual machine. Torque can be measured with the torque meter 108, and the temperature is measured by attaching a temperature sensor (not shown) to the fixed test bearing 103. The place for temperature measurement is about 3 mm away from the sliding surface.

図6および図7は、実験装置100における試験用軸スリーブ102を、本発明品の繊維強化SiCで形成したものと、従来の超硬合金で形成したものとを使用して、それぞれ油含浸多孔質SiCで形成した試験用軸受103と組合わせた摺動部の摩擦係数及び上昇温度(ドライ上昇)とを比較して示している。   FIG. 6 and FIG. 7 show that the test shaft sleeve 102 in the experimental apparatus 100 is made of a fiber-reinforced SiC of the present invention and a conventional cemented carbide, respectively, and is impregnated with oil. The friction coefficient and the rising temperature (dry rise) of the sliding portion combined with the test bearing 103 made of high quality SiC are shown in comparison.

図6は、
<摺動試験条件>
・軸スリーブ :繊維強化SiC/超硬合金(BN5C)
・軸受 :油含浸多孔質SiC
・周速度 :4.70m/sec
・面圧 :0.13MPa
・摺動時間 :70分
の摺動試験条件で、本発明品と比較品における摩擦係数と時間の関係をグラフ化したものであり、横軸に時間(分)、縦軸に摩擦係数(μ)を表わしている。図1から解るように、本発明品である繊維強化SiC材で形成した試験用軸スリーブ102aは、摺動試験の初期に若干大きな数値(摩擦係数0.25)となり、時間の経過とともに摩擦係数は小さくなり、約10分で安定した低い数値(摩擦係数0.15〜0.13)となる。それに対して、比較品である超硬合金の試験用軸スリーブ102bは、摺動試験の初期に摩擦係数が0.4前後まで上昇し、時間の経過(約30分)とともに摩擦係数は小さくなる。この現象は摺動試験開始直後は油含浸多孔質SiC製の試験用軸受103内に保持している油分が固化しており、摺動部の潤滑に寄与していない為であり、時間の経過とともに油含浸多孔質SiCの温度が上昇を始め、内部に保持している油分が徐々に表面に浸み出し、摺動部の潤滑に寄与し始める為である。摩擦係数が安定して小さい値を示すまでの時間は、繊維強化SiCの試験用軸スリーブ102aが超硬合金の試験用軸スリーブ102bよりも早く、このことから、繊維強化SiCの試験用軸スリーブ102aは摩擦による発熱量が少なく、割れ等の問題が生じにくいことが分かる。
FIG.
<Sliding test conditions>
・ Shaft sleeve: Fiber-reinforced SiC / Cemented carbide (BN5C)
・ Bearings: Oil-impregnated porous SiC
・ Peripheral speed: 4.70 m / sec
・ Surface pressure: 0.13 MPa
・ Sliding time: A graph showing the relationship between the friction coefficient and time of the product of the present invention and the comparative product under a sliding test condition of 70 minutes, with the horizontal axis representing time (minutes) and the vertical axis representing the friction coefficient (μ ). As can be seen from FIG. 1, the test shaft sleeve 102a formed of the fiber-reinforced SiC material of the present invention has a slightly large value (friction coefficient 0.25) at the initial stage of the sliding test, and the friction coefficient over time. Becomes small and becomes a stable low numerical value (friction coefficient of 0.15 to 0.13) in about 10 minutes. On the other hand, in the cemented carbide test shaft sleeve 102b, which is a comparative product, the friction coefficient rises to around 0.4 at the initial stage of the sliding test, and the friction coefficient decreases with time (about 30 minutes). . This phenomenon is because immediately after the sliding test is started, the oil retained in the oil-impregnated porous SiC test bearing 103 is solidified and does not contribute to the lubrication of the sliding portion. At the same time, the temperature of the oil-impregnated porous SiC starts to rise, and the oil component held inside gradually oozes out to the surface and starts to contribute to the lubrication of the sliding portion. The time until the coefficient of friction stably shows a small value is faster for the fiber-reinforced SiC test shaft sleeve 102a than for the cemented carbide test shaft sleeve 102b. From this, the fiber-reinforced SiC test shaft sleeve It can be seen that 102a has a small amount of heat generated by friction and is less likely to cause problems such as cracking.

図7は、
<摺動試験条件>
・軸スリーブ :繊維強化SiC/超硬合金(BN5C)
・軸受 :油含浸多孔質SiC
・周速度 :1.57m/sec
・面圧 :0.19MPa
・摺動時間 :70分
の摺動試験条件で、本発明品と比較品における摩擦係数と時間の関係をグラフ化したものであり、横軸に時間(分)、縦軸に摩擦係数(μ)を表わしている。面圧が高い場合でも、本発明品である繊維強化SiCの試験用軸スリーブ102aは、摺動試験の初期に若干大きな数値(摩擦係数0.25)となるが、時間の経過とともに摩擦係数は小さくなり、約15〜20分で安定した低い数値(摩擦係数0.14)となる。それに対して、比較品である超硬合金の試験用軸スリーブ102bは、摺動試験の初期に摩擦係数が0.4付近まで上昇し、時間の経過とともに摩擦係数は小さくなるが、70分後には摩擦係数が0.3前後であり、面圧が0.13MPaの場合と比較して、2倍以上の摩擦係数の数値を示している。このことから、繊維強化SiCの試験用軸スリーブ102aは面圧の影響を受けることなく、常時良好な摺動性を有することが分かる。
FIG.
<Sliding test conditions>
・ Shaft sleeve: Fiber-reinforced SiC / Cemented carbide (BN5C)
・ Bearings: Oil-impregnated porous SiC
・ Peripheral speed: 1.57 m / sec
・ Surface pressure: 0.19 MPa
・ Sliding time: A graph showing the relationship between the friction coefficient and time of the product of the present invention and the comparative product under a sliding test condition of 70 minutes, with the horizontal axis representing time (minutes) and the vertical axis representing the friction coefficient (μ ). Even when the surface pressure is high, the fiber-reinforced SiC test shaft sleeve 102a according to the present invention has a slightly large value (friction coefficient 0.25) at the initial stage of the sliding test. It becomes small and becomes a stable low numerical value (friction coefficient 0.14) in about 15 to 20 minutes. On the other hand, in the comparative cemented carbide test shaft sleeve 102b, the coefficient of friction rises to near 0.4 at the beginning of the sliding test, and the coefficient of friction decreases with time, but after 70 minutes. Indicates a value of the friction coefficient that is twice or more compared to the case where the friction coefficient is around 0.3 and the surface pressure is 0.13 MPa. From this, it can be seen that the fiber-reinforced SiC test shaft sleeve 102a always has good slidability without being affected by the surface pressure.

図8は本発明の滑り軸受ユニットと従来の滑り軸受ユニットの要部概略断面図である。(a)に示す本発明の繊維強化SiCの軸スリーブ4の摺動面16には、SiC系セラミックスからなるSiC繊維を複数本束ねてSiC繊維束14とし、そのSiC繊維束14を編んだ際に発生する網目状の凹部15が存在する。そのため、高い面圧で摺動する際に発生する微小な磨耗粉17は、前記凹部15に入り込み、軸受3と軸スリーブ4の間の摺動クリアランスを一定に維持している。一方、(b)に示すように摺動面16に凹部15のない部材同士の滑り軸受ユニットでは、高い面圧時に発生する多くの磨耗粉17の逃げ場がなく、軸受3と軸スリーブ4’の間の摺動面16に堆積していく。そして、堆積した磨耗粉17が熱で固定部材の表面に凝着し、摺動特性の悪化を招く。摩擦係数は大きくなり、摩擦による発熱量が急激に増加し、破壊靭性が小さい部材は割れを生じる。
本発明のSiC系セラミックスからなるSiC繊維を用いた繊維強化構造体は、靭性があり、割れが生じにくい。特に破壊靭性が高いので、異物が摺動面に入り込んでも割れることはない。
FIG. 8 is a schematic sectional view of a main part of the sliding bearing unit of the present invention and the conventional sliding bearing unit. When the SiC fiber bundle 14 is formed by bundling a plurality of SiC fibers made of SiC ceramics on the sliding surface 16 of the fiber-reinforced SiC shaft sleeve 4 of the present invention shown in FIG. There is a mesh-like recess 15 generated in For this reason, minute wear powder 17 generated when sliding at a high surface pressure enters the recess 15 and keeps the sliding clearance between the bearing 3 and the shaft sleeve 4 constant. On the other hand, as shown in FIG. 5B, in the sliding bearing unit in which the sliding surface 16 does not have the recess 15, there is no escape place for the large amount of wear powder 17 generated at the time of high surface pressure, and the bearing 3 and the shaft sleeve 4 ′. It accumulates on the sliding surface 16 in the meantime. Then, the accumulated wear powder 17 adheres to the surface of the fixing member by heat, and the sliding characteristics are deteriorated. The coefficient of friction increases, the amount of heat generated by friction increases rapidly, and a member with low fracture toughness cracks.
The fiber reinforced structure using the SiC fiber made of the SiC ceramic of the present invention has toughness and is not easily cracked. In particular, since the fracture toughness is high, even if foreign matter enters the sliding surface, it does not crack.

本発明に係る滑り軸受ユニットおよびこの滑り軸受ユニットを用いた先行待機型ポンプは上記のように構成してあり、繊維強化セラミックス材の摺動部材は、セラミックス基材にセラミックス繊維を複合強化した材料であるため、セラミックスが本来有する摺動性と耐摩耗性等の特性を維持しつつ引張強度が向上し靭性が高い。また、セラミックス繊維を束ねたセラミックス繊維束を編んでいるので、摺動部には網目状の凹部が形成され、そこにドライ雰囲気で高面圧下での摺動による微小な磨耗粉が堆積し、摺動面に凝着することがなく異常な摩擦係数の上昇がないので、摺動特性が向上する。
長時間のドライ摺動やドライとウエットが繰り返される摺動での使用でもクラックの発生や破損の恐れが無く、ポンプを待機運転させておく運転方式の先行待機型ポンプの軸受装置に適するものである。
The sliding bearing unit according to the present invention and the preliminary standby pump using the sliding bearing unit are configured as described above, and the sliding member of the fiber reinforced ceramic material is a material in which ceramic fibers are reinforced with a ceramic base material. Therefore, the tensile strength is improved and the toughness is high while maintaining the characteristics such as slidability and wear resistance inherent in ceramics. In addition, because we knit the ceramic fiber bundle that bundles the ceramic fibers, a mesh-like recess is formed in the sliding part, where minute wear powder due to sliding under high surface pressure in a dry atmosphere accumulates, Since it does not adhere to the sliding surface and there is no abnormal increase in the friction coefficient, the sliding characteristics are improved.
There is no risk of cracking or breakage even when using dry sliding for a long time or sliding with dry and wet repeated, and it is suitable for the bearing device of the preceding standby type pump that operates the pump in standby mode. is there.

本発明に係る繊維強化セラミックス摺動部材の概略斜視図である。1 is a schematic perspective view of a fiber-reinforced ceramic sliding member according to the present invention. 同じく、繊維強化セラミックス摺動部材の部分拡大図である。Similarly, it is the elements on larger scale of a fiber reinforced ceramic sliding member. 本発明に係る摺動部材を用いた立軸ポンプの概念図である。It is a conceptual diagram of the vertical shaft pump using the sliding member which concerns on this invention. 同じく、摺動部材を用いた立軸ポンプの要部拡大図である。Similarly, it is a principal part enlarged view of the vertical shaft pump using a sliding member. 軸受摺動試験に用いる実験装置の概念図である。It is a conceptual diagram of the experimental apparatus used for a bearing sliding test. 本発明品と比較品の超硬合金と、油含浸多孔質SiCとを組合わせた摺動部の摩擦係数の時間変化を示すグラフである。It is a graph which shows the time change of the friction coefficient of the sliding part which combined the cemented carbide of this invention and the comparative product, and oil impregnation porous SiC. 同じく、発明品と比較品の超硬合金と、油含浸多孔質SiCとを組合わせた摺動部の摩擦係数の時間変化を示すグラフである。Similarly, it is a graph which shows the time change of the friction coefficient of the sliding part which combined the cemented carbide of the invention and the comparative product, and oil-impregnated porous SiC. 本発明に係る滑り軸受ユニットと、従来の滑り軸受ユニットの要部概略断面図である。It is the principal part schematic sectional drawing of the sliding bearing unit which concerns on this invention, and the conventional sliding bearing unit.

符号の説明Explanation of symbols

1 立軸ポンプ
2 滑り軸受ユニット
3 軸受
4 軸スリーブ
5 主軸
6 羽根車
8 ポンプケーシング
14 セラミックス繊維束
DESCRIPTION OF SYMBOLS 1 Vertical shaft pump 2 Sliding bearing unit 3 Bearing 4 Shaft sleeve 5 Main shaft 6 Impeller 8 Pump casing 14 Ceramic fiber bundle

Claims (2)

セラミックス繊維を束ねてセラミックス繊維束(14)とし、セラミックス繊維束(14)を編んで複数層積層して円筒状に形成し、空隙にセラミックス基材を含浸した繊維強化セラミックス材の軸スリーブ(4)と、油含浸多孔質セラミックス材の軸受(3)とを回転摺動可能に組み合わせて構成したことを特徴とする滑り軸受ユニット。   A fiber-reinforced ceramic material shaft sleeve (4) in which ceramic fibers are bundled to form a ceramic fiber bundle (14), the ceramic fiber bundle (14) is knitted and laminated into a plurality of layers, and the gap is impregnated with a ceramic substrate. ) And a bearing (3) made of an oil-impregnated porous ceramic material so as to be rotatable and slidable. 請求項1に記載の滑り軸受ユニット(2)を用いた立軸ポンプ(1)であって、ポンプケーシング(8)内に数箇所配設し、先端に羽根車(6)を固着した主軸(5)を支持する滑り軸受ユニット(2)が、ポンプケーシング(8)側に固定された油含浸多孔質セラミックス材の固定部材で形成された軸受(3)と、主軸(5)に回転を拘束して外挿されると共に、前記軸受(3)に回転摺動可能に内挿された繊維強化セラミックス材の回転部材で形成された軸スリーブ(4)とを備えて構成したことを特徴とする先行待機型ポンプ。   A vertical shaft (1) using the plain bearing unit (2) according to claim 1, wherein several main shafts (5) are arranged in the pump casing (8) and the impeller (6) is fixed to the tip (5). ) Supports the bearing (3) formed of a fixed member of an oil-impregnated porous ceramic material fixed to the pump casing (8) side and the main shaft (5) to restrain the rotation. And a shaft sleeve (4) formed of a rotating member of a fiber reinforced ceramic material inserted into the bearing (3) so as to be rotatable and slidable. Type pump.
JP2008045377A 2008-02-27 2008-02-27 Sliding bearing unit and pre-standby pump using the same Pending JP2009204034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008045377A JP2009204034A (en) 2008-02-27 2008-02-27 Sliding bearing unit and pre-standby pump using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008045377A JP2009204034A (en) 2008-02-27 2008-02-27 Sliding bearing unit and pre-standby pump using the same

Publications (1)

Publication Number Publication Date
JP2009204034A true JP2009204034A (en) 2009-09-10

Family

ID=41146524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008045377A Pending JP2009204034A (en) 2008-02-27 2008-02-27 Sliding bearing unit and pre-standby pump using the same

Country Status (1)

Country Link
JP (1) JP2009204034A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103228889A (en) * 2010-12-08 2013-07-31 博格华纳公司 Exhaust gas turbocharger
WO2015012350A1 (en) * 2013-07-25 2015-01-29 株式会社 荏原製作所 Vertical shaft pump
CN105944912A (en) * 2016-06-20 2016-09-21 海宁辛帝亚自动化科技有限公司 Fully-automatic graphite embedding machine
CN105952799A (en) * 2016-06-20 2016-09-21 海宁辛帝亚自动化科技有限公司 Graphite rod inlaying device
CN106662109A (en) * 2014-07-14 2017-05-10 株式会社荏原制作所 Vertical shaft pump
JP2017155652A (en) * 2016-03-02 2017-09-07 株式会社日立製作所 Vertical shaft pump
US10393177B2 (en) * 2015-07-21 2019-08-27 Deutsches Zentrum Fuer Luft-Und Raumfahrt E.V. Sliding bearing device
CN110461276A (en) * 2017-03-28 2019-11-15 陶瓷技术有限责任公司 Ceramic slide bearing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0544690A (en) * 1991-08-09 1993-02-23 Hitachi Ltd Drain pump and bearing structure for drain pump
JP2006038029A (en) * 2004-07-23 2006-02-09 Torishima Pump Mfg Co Ltd Ceramic fiber reinforced ceramic sliding part

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0544690A (en) * 1991-08-09 1993-02-23 Hitachi Ltd Drain pump and bearing structure for drain pump
JP2006038029A (en) * 2004-07-23 2006-02-09 Torishima Pump Mfg Co Ltd Ceramic fiber reinforced ceramic sliding part

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101839804B1 (en) * 2010-12-08 2018-03-19 보르그워너 인코퍼레이티드 Exhaust gas turbocharger
CN103228889A (en) * 2010-12-08 2013-07-31 博格华纳公司 Exhaust gas turbocharger
CN103228889B (en) * 2010-12-08 2015-11-25 博格华纳公司 Exhaust turbine supercharger
JP2013545036A (en) * 2010-12-08 2013-12-19 ボーグワーナー インコーポレーテッド Exhaust gas turbocharger
WO2015012350A1 (en) * 2013-07-25 2015-01-29 株式会社 荏原製作所 Vertical shaft pump
JPWO2015012350A1 (en) * 2013-07-25 2017-03-02 株式会社荏原製作所 Vertical shaft pump
CN106662109B (en) * 2014-07-14 2018-12-14 株式会社荏原制作所 Vertical shaft pump
CN106662109A (en) * 2014-07-14 2017-05-10 株式会社荏原制作所 Vertical shaft pump
US10393177B2 (en) * 2015-07-21 2019-08-27 Deutsches Zentrum Fuer Luft-Und Raumfahrt E.V. Sliding bearing device
JP2017155652A (en) * 2016-03-02 2017-09-07 株式会社日立製作所 Vertical shaft pump
CN105944912B (en) * 2016-06-20 2018-06-22 浙江辛帝亚自动化科技有限公司 A kind of full-automatic embedding graphite machine
CN105952799A (en) * 2016-06-20 2016-09-21 海宁辛帝亚自动化科技有限公司 Graphite rod inlaying device
CN105944912A (en) * 2016-06-20 2016-09-21 海宁辛帝亚自动化科技有限公司 Fully-automatic graphite embedding machine
CN110461276A (en) * 2017-03-28 2019-11-15 陶瓷技术有限责任公司 Ceramic slide bearing

Similar Documents

Publication Publication Date Title
JP2009204034A (en) Sliding bearing unit and pre-standby pump using the same
Ruggles-Wrenn et al. Effect of frequency and environment on fatigue behavior of a CVI SiC/SiC ceramic matrix composite at 1200 C
KR100471662B1 (en) Sliding material
Ruggles-Wrenn et al. Fatigue behavior of a Hi-Nicalon™/SiC–B4C composite at 1200° C in air and in steam
Ruggles-Wrenn et al. Fatigue behavior of an advanced SiC/SiC ceramic composite with a self-healing matrix at 1300 C in air and in steam
KR102222185B1 (en) Engineered SIC-SIC composite and monolithic SIC layered structure
EP3098464A1 (en) Sliding bearing
Morscher et al. Creep in vacuum of woven Sylramic-iBN melt-infiltrated composites
US8967875B2 (en) Bearing and method of inhibiting crack propagation in a bearing component
Sun et al. Enhanced tribological performance of hybrid polytetrafluoroethylene/Kevlar fabric composite filled with milled pitch‐based carbon fibers
EP2899436A1 (en) Sliding seal member
Ruggles-Wrenn et al. Creep behavior in interlaminar shear of a SiC/SiC ceramic composite with a self-healing matrix
Ruggles-Wrenn et al. Effects of steam environment on compressive creep behavior of Nextel™ 720/Alumina ceramic composite at 1200 C
JP5522797B2 (en) Carbon fiber reinforced silicon carbide ceramics and method for producing the same
JP2016500630A (en) Method for locally treating parts made of porous composite material
US10571415B2 (en) Methods and apparatuses for evaluating ceramic matrix composite components
JP2005036692A (en) Bearing device for pump
JP2009190959A (en) Ceramic sintered compact and rolling object
JP6339527B2 (en) Machine parts and built parts using multi-function hybrid materials
JP2010174227A (en) Sliding member and mechanical seal
Kogo et al. Examination of strength-controlling factors in C/C composites using bundle composites
US10393177B2 (en) Sliding bearing device
RU110150U1 (en) SLIDING BEARING BUSHING
JP2006038029A (en) Ceramic fiber reinforced ceramic sliding part
JP3843198B2 (en) Sliding member and vertical shaft pump using the sliding member

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100129

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20110728

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110804

A521 Written amendment

Effective date: 20110914

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120206