JP4819147B2 - Underwater bearing - Google Patents

Underwater bearing Download PDF

Info

Publication number
JP4819147B2
JP4819147B2 JP2009138373A JP2009138373A JP4819147B2 JP 4819147 B2 JP4819147 B2 JP 4819147B2 JP 2009138373 A JP2009138373 A JP 2009138373A JP 2009138373 A JP2009138373 A JP 2009138373A JP 4819147 B2 JP4819147 B2 JP 4819147B2
Authority
JP
Japan
Prior art keywords
bearing
main shaft
hole
grooves
underwater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009138373A
Other languages
Japanese (ja)
Other versions
JP2010285882A (en
Inventor
祐治 兼森
和彦 本崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Torishima Pump Manufacturing Co Ltd
Original Assignee
Torishima Pump Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Torishima Pump Manufacturing Co Ltd filed Critical Torishima Pump Manufacturing Co Ltd
Priority to JP2009138373A priority Critical patent/JP4819147B2/en
Publication of JP2010285882A publication Critical patent/JP2010285882A/en
Application granted granted Critical
Publication of JP4819147B2 publication Critical patent/JP4819147B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

本発明は、ポンプの主軸を支持するための水中軸受に関する。   The present invention relates to an underwater bearing for supporting a main shaft of a pump.

水中軸受とポンプの主軸との間の隙間に圧縮空気を供給してポンプケーシング内に流出させることで、水中軸受の摩耗や破損を診断することが知られている。例えば、特許文献1には、供給される空気流量と、空気供給圧とポンプの吐出圧との差圧に基づいて水中軸受の摩耗等を診断することが開示されている。また、特許文献2には、圧力タンク内の空気を水中軸受と主軸の隙間に供給し、圧力タンク内の圧力低下に要する時間から水中軸受の摩耗等を診断することが開示されている。さらに、非特許文献1には、空気が供給される水中軸受と主軸の隙間の上流にオリフィスを設け、空気マイクロメータの原理を利用して水中軸受の摩耗等を診断することが開示されている。   It is known to diagnose wear and breakage of a submerged bearing by supplying compressed air to a gap between the submerged bearing and the main shaft of the pump and letting it flow into the pump casing. For example, Patent Document 1 discloses diagnosing wear of a submerged bearing based on a supplied air flow rate and a differential pressure between an air supply pressure and a pump discharge pressure. Patent Document 2 discloses that air in a pressure tank is supplied to a gap between the underwater bearing and the main shaft, and the wear of the underwater bearing is diagnosed from the time required for pressure drop in the pressure tank. Furthermore, Non-Patent Document 1 discloses that an orifice is provided upstream of the gap between the underwater bearing to which air is supplied and the main shaft, and the wear of the underwater bearing is diagnosed using the principle of an air micrometer. .

水中軸受が樹脂軸受等である場合、軸受孔の孔周壁に軸線方向に一端から他端まで貫通する複数の溝が周方向に間隔を開けて設けられている。これらの溝は主軸との摩擦低減によってポンプの気中運転時の軸受温度の上昇とそれに起因する焼き付け防止を目的としている。しかし、樹脂軸受と主軸の隙間に供給された診断用の圧縮空気は、これら軸線方向に貫通する複数の溝を通って抜け出てしまい、孔周壁の溝を設けていない部分(ランド部)と主軸の外周面と間を通過する圧縮空気の流量が著しく少なくなる現象(吹き抜け現象)が生じる。この吹き抜け現象のため、樹脂軸受のように軸受孔の孔周壁に溝を設けた水中軸受の場合、ポンプの主軸との間の隙間に空気することで高精度で摩耗や破損を診断することが困難である。   When the underwater bearing is a resin bearing or the like, a plurality of grooves penetrating from one end to the other end in the axial direction are provided at intervals in the circumferential direction on the hole peripheral wall of the bearing hole. The purpose of these grooves is to reduce the friction with the main shaft and to prevent the seizure caused by the bearing temperature rise during the air operation of the pump. However, the diagnostic compressed air supplied to the gap between the resin bearing and the main shaft escapes through the plurality of grooves penetrating in the axial direction, and the portion (land portion) where the groove is not provided in the hole peripheral wall and the main shaft This causes a phenomenon in which the flow rate of compressed air passing between the outer peripheral surface and the outer peripheral surface of the steel sheet is remarkably reduced (blow-through phenomenon). Because of this blow-through phenomenon, in the case of an underwater bearing with a groove in the peripheral wall of the bearing hole, such as a resin bearing, wear and breakage can be diagnosed with high accuracy by airing the gap between the main shaft of the pump. Have difficulty.

特許第3933586号明細書Japanese Patent No. 3933586 特開2009−074530号公報JP 2009-074530 A

兼森、外1名、「ポンプ水中軸受外部診断装置の開発」、とりしまレビュー、株式会社酉島製作所、平成21年3月10日、通巻第22号Kanemori, 1 outside, “Development of pump underwater bearing external diagnostic device”, Torishima Review, Takashima Seisakusho Co., Ltd., March 10, 2009, Vol. 22

本発明は、ポンプの気中運転時の軸受温度の上昇を防止しつつ、ポンプの主軸との間の隙間に圧縮空気を供給することで摩耗や破損を高精度で診断可能とした水中軸受を提供することを課題とする。   The present invention provides an underwater bearing capable of diagnosing wear and breakage with high accuracy by supplying compressed air to a gap between the main shaft of the pump while preventing an increase in bearing temperature during an air operation of the pump. The issue is to provide.

本発明は、ポンプのケーシング内に配置されてポンプの主軸を支持する水中軸受であって、前記主軸を貫通する軸受孔を備える軸受体と、前記軸受体を前記ケーシングに保持すると共に、前記軸受体の前記軸受孔の孔周壁と前記主軸との間の隙間に診断用の空気を供給するための供給ポートが形成された保持体とを備え、前記軸受孔の前記孔周壁には、前記軸受孔の前記主軸の軸線方向に部分的に形成され、かつ前記主軸の周方向に互いに間隔を開けて配置された複数の第1の溝と、前記複数の第1の溝と隣接するように前記軸受孔の前記主軸の軸線方向に部分的に形成され、かつ前記主軸の周方向に互いに間隔を開けて配置された複数の第2の溝とが形成され、前記第1の溝と前記第2の溝は、前記主軸の軸線回りの回転角度位置を異ならせて互いに非連通としている、水中軸受を提供する。   The present invention is an underwater bearing that is disposed in a casing of a pump and supports a main shaft of the pump, the bearing body including a bearing hole that penetrates the main shaft, the bearing body being held in the casing, and the bearing A holding body having a supply port for supplying diagnostic air to a clearance between the hole peripheral wall of the bearing hole of the body and the main shaft, and the hole peripheral wall of the bearing hole includes the bearing A plurality of first grooves that are partially formed in the axial direction of the main shaft of the hole and that are spaced apart from each other in the circumferential direction of the main shaft, and the first grooves are adjacent to the first grooves. A plurality of second grooves that are partially formed in the axial direction of the main shaft of the bearing hole and are spaced apart from each other in the circumferential direction of the main shaft are formed, and the first groove and the second groove If the rotation angle position of the groove around the axis of the main shaft is different, Are not communicate with each other Te, it provides water bearing.

第1及び第2の溝はいずれも軸受孔の主軸の軸線方向に部分的に形成されている。また、第1及び第2の溝は主軸の軸線回りの回転角度位置を異ならせて互いに非連通としている。そのため、保持体に形成された供給ポートから診断用の圧縮空気が第1及び第2溝を通って抜け出てしまい、孔周壁の第1の溝や第2の溝を設けていない部分(ランド部)と主軸の外周面と間を通過する圧縮空気の流量が著しく少なくなる現象(吹き抜け現象)は生じない。この吹き抜け現象の防止により、水中軸受の軸受体の摩耗や破損を高精度で診断できる。また、軸受体の孔周壁に第1及び第2の溝を設けたことにより、主軸との摩擦低減によってポンプの気中運転時の軸受温度の上昇とそれに起因する焼き付け防止できる。   Both the first and second grooves are partially formed in the axial direction of the main shaft of the bearing hole. Further, the first and second grooves are not in communication with each other at different rotational angle positions around the axis of the main shaft. Therefore, the compressed air for diagnosis escapes from the supply port formed in the holding body through the first and second grooves, and the portion where the first groove and the second groove of the hole peripheral wall are not provided (the land portion). ) And the outer peripheral surface of the main shaft does not cause a phenomenon that the flow rate of compressed air significantly decreases (blow-through phenomenon). By preventing this blow-through phenomenon, it is possible to diagnose the wear and breakage of the bearing body of the underwater bearing with high accuracy. Further, by providing the first and second grooves in the hole peripheral wall of the bearing body, it is possible to prevent the bearing temperature from increasing during the air operation of the pump and the seizure due to the friction reduction with the main shaft.

具体的には、前記軸受体は、前記孔周壁に前記第1の溝が形成された第1の部材と、前記孔周壁に前記第2の溝が形成された第2の部材とを備える。   Specifically, the bearing body includes a first member in which the first groove is formed in the peripheral wall of the hole, and a second member in which the second groove is formed in the peripheral wall of the hole.

この場合、前記第1の部材は前記第2の部材よりも前記主軸の軸線方向で前記保持体の外部側に位置し、前記第1の部材は前記第2の部材よりも耐摩耗性が高い材料からなり、前記第2の部材は第1の部材よりも摺動特性が良好な材料からなることが好ましい。   In this case, the first member is located on the outer side of the holding body in the axial direction of the main shaft than the second member, and the first member has higher wear resistance than the second member. It is preferable that the second member is made of a material that has better sliding characteristics than the first member.

この構成により、軸受体の耐摩耗性と摺動特性の良好について良好な特性が得られる。   With this configuration, good characteristics can be obtained with respect to good wear resistance and sliding characteristics of the bearing body.

代案としては、前記軸受体は前記第1及び第2の溝が形成された単一の部材からなる。   As an alternative, the bearing body comprises a single member in which the first and second grooves are formed.

前記軸受体の少なくとも一方の端部に配置された環状部をさらに備えてもよい。   You may further provide the cyclic | annular part arrange | positioned at the at least one edge part of the said bearing body.

この構成により、より効果的に吹き抜け現象を防止できる。   With this configuration, the blow-through phenomenon can be prevented more effectively.

本発明の水中軸受は、軸受体の軸受孔の孔周壁にいずれも主軸の軸線方向に部分的に形成され、かつ主軸の軸線回りの回転角度位置を異ならせて互いに非連通とした第1及び第2の溝を備えるので、ポンプの気中運転時の軸受温度の上昇を防止しつつ、ポンプの主軸との間の隙間に圧縮空気を供給することで摩耗や破損を高精度で診断できる。   The underwater bearing according to the present invention includes a first and a second part that are partially formed in the axial direction of the main shaft on the hole peripheral wall of the bearing hole of the bearing body, and that are not in communication with each other at different rotational angle positions around the main shaft. Since the second groove is provided, wear or breakage can be diagnosed with high accuracy by supplying compressed air to the gap between the main shaft of the pump while preventing an increase in bearing temperature during the air operation of the pump.

本発明の実施形態である水中軸受を備える先行待機型立軸ポンプを示す縦断面図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a longitudinal sectional view showing a preceding standby vertical shaft pump provided with an underwater bearing according to an embodiment of the present invention. 図1の部分IIの模式的な部分拡大図。FIG. 2 is a schematic partial enlarged view of a part II in FIG. 1. 本発明の第1実施形態の水中軸受の断面図。Sectional drawing of the underwater bearing of 1st Embodiment of this invention. 本発明の第1実施形態の水中軸受のシェルと摺動体を軸線方向(上方)から見た図。The figure which looked at the shell and sliding body of the underwater bearing of a 1st embodiment of the present invention from the direction of an axis (above). 図4のV−V線での断面図。Sectional drawing in the VV line | wire of FIG. 軸受体における溝の配置を説明するための図。The figure for demonstrating arrangement | positioning of the groove | channel in a bearing body. 本発明の第2実施形態の水中軸受の断面図。Sectional drawing of the underwater bearing of 2nd Embodiment of this invention. 本発明の第3実施形態の水中軸受の断面図。Sectional drawing of the underwater bearing of 3rd Embodiment of this invention.

次に、添付図面を参照して本発明の実施形態を詳細に説明する。   Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

(第1実施形態)
図1は、本発明の実施形態にかかる無注水水中軸受(以下、単に水中軸受という)を備える先行待機型立軸ポンプ(以下、単に立軸ポンプという)2を示す。
(First embodiment)
FIG. 1 shows a pre-standby vertical pump (hereinafter simply referred to as a vertical pump) 2 that is provided with a non-poured submersible bearing (hereinafter simply referred to as a submersible bearing) according to an embodiment of the present invention.

立軸ポンプ2は、図示しない流入側管路から排水ポンプ場の吸水槽3内に流入する雨水等の水を下流側に排水するためのものであり、鉛直方向に延びるケーシング4を備えている。ケーシング4は、直管状の揚水管4a,4b、揚水管4bの下端に連結されたインペラケーシング4c,4d、インペラケーシング4dの下端に連結された吸込ベル4e、揚水管4aの上端に連結されて鉛直方向から水平方向に湾曲した吐出ケーシング4fを備える。吐出ケーシング4fには、仕切弁5を設けた吐出管6が連結されている。インペラケーシング4d内にインペラ7が配設されている。   The vertical shaft pump 2 is for draining water such as rainwater flowing into the water absorption tank 3 of the drainage pump station from an inflow side pipe (not shown) to the downstream side, and includes a casing 4 extending in the vertical direction. The casing 4 is connected to the straight tubular pumping pipes 4a and 4b, the impeller casings 4c and 4d connected to the lower end of the pumping pipe 4b, the suction bell 4e connected to the lower end of the impeller casing 4d, and the upper end of the pumping pipe 4a. A discharge casing 4f curved from the vertical direction to the horizontal direction is provided. A discharge pipe 6 provided with a gate valve 5 is connected to the discharge casing 4f. An impeller 7 is disposed in the impeller casing 4d.

インペラ7が下端に固定されている主軸8は、鉛直方向に延びてケーシング4の外部に突出している。9は主軸8のスラスト軸受、10は軸封装置である。主軸8の上端側はモータ又は内燃機関、減速機構等からなるポンプ駆動機構(図示せず)に連結されている。   The main shaft 8 on which the impeller 7 is fixed to the lower end extends in the vertical direction and protrudes outside the casing 4. 9 is a thrust bearing of the main shaft 8, and 10 is a shaft seal device. The upper end side of the main shaft 8 is connected to a pump drive mechanism (not shown) including a motor, an internal combustion engine, a speed reduction mechanism, or the like.

図1において、13A,13B,13Cはポンプ2のケーシング4内に配置されて主軸8のラジアル軸受として機能する水中軸受である。個々の水中軸受13A〜13Cには診断装置101の空気注入配管102A,102B,102Cの一端が接続されている。診断装置101は、コンプレッサ103から、エアタンク104、レギュレータ105、圧縮空気の供給圧力を測定する圧力計106、オリフィス107、及び流量計108等を介して空気注入配管102A,102B,102Cの他端に接続された供給配管109を備える。供給配管109から分岐した分岐管路110は吐出ケーシング4f内に接続されている。この分岐管路110には差圧計111が設けられている。   In FIG. 1, 13 </ b> A, 13 </ b> B, and 13 </ b> C are submerged bearings that are disposed in the casing 4 of the pump 2 and function as radial bearings for the main shaft 8. One end of each of the air injection pipes 102A, 102B, and 102C of the diagnostic apparatus 101 is connected to each of the underwater bearings 13A to 13C. The diagnostic apparatus 101 is connected to the other end of the air injection pipes 102A, 102B, and 102C from the compressor 103 via an air tank 104, a regulator 105, a pressure gauge 106 that measures the supply pressure of compressed air, an orifice 107, a flow meter 108, and the like. A connected supply pipe 109 is provided. A branch pipe 110 branched from the supply pipe 109 is connected to the discharge casing 4f. The branch line 110 is provided with a differential pressure gauge 111.

診断装置101が備える制御装置112は、コンプレッサ103で生成してエアタンク104に貯めた圧縮空気を供給配管109から空気注入配管102A〜102Cを介して水中軸受13A〜13C(より詳しくは後述する軸受体41A,41B)と主軸8の外周面との隙間に供給することで、水中軸受13A〜13C(軸受体41A,41B)の摩耗や破損を診断する。例えば、制御装置111は以下の方法で水中軸受13A〜13Cの摩耗等を診断できる。まず、特許文献1に記載されているように、水中軸受13A〜13Cと主軸8の隙間に供給される圧縮空気の流量(流量計108で測定される)と、圧縮空気の供給圧とポンプ2の吐出圧との差圧(差圧計111で測定される)に基づいて水中軸受13A〜13Cの摩耗等を診断できる。また、特許文献2に記載されているように、エアタンク104内の圧縮空気を水中軸受13A〜13Cと主軸8の隙間に供給し、エアタンク104内の圧力低下に要する時間から水中軸受13A〜13Cの摩耗等を診断できる。さらに、非特許文献1に記載されているように、エアタンク104内の圧縮空気を水中軸受13A〜13Cと主軸8の隙間に供給し、オリフィス107の前後の圧縮空気の圧力を測定することで、空気マイクロメータの原理を利用して水中軸受13A〜13Cの摩耗等を診断できる。   The control device 112 included in the diagnostic device 101 includes submerged bearings 13A to 13C (which will be described later in detail) through compressed air generated by the compressor 103 and stored in the air tank 104 from the supply pipe 109 through the air injection pipes 102A to 102C. 41A, 41B) and the outer peripheral surface of the main shaft 8 are supplied to diagnose the wear and breakage of the underwater bearings 13A to 13C (bearing bodies 41A, 41B). For example, the control device 111 can diagnose wear of the underwater bearings 13A to 13C by the following method. First, as described in Patent Document 1, the flow rate of compressed air (measured by the flow meter 108) supplied to the gap between the underwater bearings 13A to 13C and the main shaft 8, the supply pressure of the compressed air, and the pump 2 The wear of the underwater bearings 13A to 13C can be diagnosed based on the differential pressure (measured by the differential pressure gauge 111) with respect to the discharge pressure. Further, as described in Patent Document 2, the compressed air in the air tank 104 is supplied to the gaps between the underwater bearings 13A to 13C and the main shaft 8, and the time required for the pressure drop in the air tank 104 to reduce the pressure of the underwater bearings 13A to 13C. Diagnose wear and the like. Furthermore, as described in Non-Patent Document 1, by supplying compressed air in the air tank 104 to the gap between the underwater bearings 13A to 13C and the main shaft 8, and measuring the pressure of the compressed air before and after the orifice 107, Wear of the underwater bearings 13A to 13C can be diagnosed using the principle of the air micrometer.

3個の水中軸受13A〜13Cは同様の構造を有するので、以下、水中軸受13Aについて説明する。図2から図5を参照すると、軸受13Aは両端開口の筒状の軸受ホルダ31を備える。この軸受ホルダ31の上端には外向きに突出するフランジ部31aが設けられている。このフランジ部31aがケーシング4(揚水管4b)の内面から突出するリブ32にボルト33で固定されている。また、軸受ホルダ31の上端には両端開口の押さえ部材34がボルト35により固定されている。軸受ホルダ31内には両端開口のシェル36が収容されている。シェル36はボルト37により軸受ホルダ31内に対して固定されている。シェル36の外面には上下一対の段部36a,36bが形成されている。これらの段部36a,36に配置されたクッションリング38とパッキン39が、シェル36と軸受ホルダ31及び押さえ部材34との間にそれぞれ介在している。軸受ホルダ31とシェル36には、それぞれ貫通孔からなる供給ポート31b,36cが設けられている。これらの供給ポート31b,36cは対向して設けられており、互いに連通している。空気供給配管102Aの一端が軸受ホルダ31の供給ポート31bに接続されている。軸受ホルダ31、蓋部材34、及びシェル36は本発明における保持体を構成する。   Since the three underwater bearings 13A to 13C have the same structure, the underwater bearing 13A will be described below. 2 to 5, the bearing 13 </ b> A includes a cylindrical bearing holder 31 that is open at both ends. A flange portion 31 a that protrudes outward is provided at the upper end of the bearing holder 31. The flange portion 31a is fixed by a bolt 33 to a rib 32 protruding from the inner surface of the casing 4 (pump 4b). A holding member 34 having openings at both ends is fixed to the upper end of the bearing holder 31 with bolts 35. A shell 36 having openings at both ends is accommodated in the bearing holder 31. The shell 36 is fixed to the bearing holder 31 by bolts 37. A pair of upper and lower step portions 36 a and 36 b are formed on the outer surface of the shell 36. A cushion ring 38 and a packing 39 disposed on these step portions 36a and 36 are interposed between the shell 36, the bearing holder 31, and the pressing member 34, respectively. The bearing holder 31 and the shell 36 are provided with supply ports 31b and 36c each having a through hole. These supply ports 31b and 36c are provided to face each other and communicate with each other. One end of the air supply pipe 102 </ b> A is connected to the supply port 31 b of the bearing holder 31. The bearing holder 31, the lid member 34, and the shell 36 constitute a holding body in the present invention.

シェル36内には上下方向に配置された2個の軸受体41A,41Bが収容されている。シェル36内に2個の軸受体41A,41Bの間には、空気供給空間42が設けられている。この空気供給空間42は供給ポート36cと連通している。   In the shell 36, two bearing bodies 41A and 41B arranged in the vertical direction are accommodated. In the shell 36, an air supply space 42 is provided between the two bearing bodies 41A and 41B. The air supply space 42 communicates with the supply port 36c.

下側の軸受体41Bは、その姿勢が天地逆となっている点を除いて。上側の軸受体41Aと同一構造である。以下、上側の軸受体41Aについて詳細に説明する。軸受体41Aは、いずれも両端開口の一体構造の筒状体である内側軸受部品(第2の部品)43Aと外側軸受部品(第1の部品)43Bとを備える。内側軸受部品43Aはシェル36内の主軸8の軸線L方向で内側(空気供給空間42側)に配置され、外側軸受部品43Bはシェル36内の主軸8の軸線L方向で外側(シェル36の開口側)に配置されている。内側軸受部品43Aの上端面と外側軸受部品43Bの下端面とが互いに密接している。内側軸受部品43Aと外側軸受部品43Bの貫通孔は同軸に配置されており、軸受孔44を構成する。   Except for the fact that the lower bearing body 41B is upside down. It has the same structure as the upper bearing body 41A. Hereinafter, the upper bearing body 41A will be described in detail. The bearing body 41A includes an inner bearing part (second part) 43A and an outer bearing part (first part) 43B, both of which are integrally structured cylindrical bodies having openings at both ends. The inner bearing part 43A is disposed on the inner side (air supply space 42 side) in the axis L direction of the main shaft 8 in the shell 36, and the outer bearing part 43B is disposed on the outer side (opening of the shell 36) in the axis L direction of the main shaft 8 in the shell 36. Side). The upper end surface of the inner bearing part 43A and the lower end surface of the outer bearing part 43B are in close contact with each other. The through-holes of the inner bearing part 43 </ b> A and the outer bearing part 43 </ b> B are arranged coaxially and constitute a bearing hole 44.

内側軸受部品43Aと外側軸受部品43Bの材質は、PBI(ポリベンゾイミダゾール)、PEEK(ポリエーテルエーテルケトン)等の樹脂が好ましいが、必要な摺動性や耐摩耗性が確保できる限り、ゴム等の他の材料であってもよい。   The material of the inner bearing part 43A and the outer bearing part 43B is preferably a resin such as PBI (polybenzimidazole) or PEEK (polyetheretherketone), but rubber or the like as long as necessary slidability and wear resistance can be secured. Other materials may be used.

内側軸受部品43Aの内周壁面(軸受孔44の孔周壁)には、主軸8の軸線L方向に貫通する一定幅の複数の溝45が周方向に一定の間隔をあけて形成されている。つまり、内側軸受部品43Aの内周壁面には、溝45と溝45がない部分(ランド部46)が交互に配置されている。内側軸受部品43の溝45は、主軸8の軸線L方向の内側の端部が空気供給空間42に連通し、主軸8の軸線L方向の外側の端部が外側軸受部品43の下端面に達している。軸受体41A全体としてみると、複数の溝45は、軸受体41Aの孔周壁44の図において上端から主軸8の軸線L方向で内側に向けて部分的にも設けられた同一長さの溝である。   On the inner peripheral wall surface of the inner bearing part 43A (the hole peripheral wall of the bearing hole 44), a plurality of grooves 45 having a constant width that penetrates in the direction of the axis L of the main shaft 8 are formed at regular intervals in the circumferential direction. That is, on the inner peripheral wall surface of the inner bearing part 43A, the grooves 45 and the portions without the grooves 45 (land portions 46) are alternately arranged. In the groove 45 of the inner bearing part 43, the inner end of the main shaft 8 in the axis L direction communicates with the air supply space 42, and the outer end of the main shaft 8 in the axis L direction reaches the lower end surface of the outer bearing part 43. ing. When viewed as a whole of the bearing body 41A, the plurality of grooves 45 are grooves of the same length provided partially from the upper end toward the inside in the axis L direction of the main shaft 8 in the drawing of the hole peripheral wall 44 of the bearing body 41A. is there.

同様に、外側軸受部品43Bの内周壁面(軸受孔44の孔周壁)には、主軸8の軸線L方向に貫通する複数の溝45’が周方向に一定の間隔をあけて形成されている。つまり、外側軸受部品43Bの内周壁面にも、溝45’と溝45’がない部分(ランド部46’)が交互に配置されている。外側軸受部品43Bの溝45’は、主軸8の軸線L方向の内側の端部が内側軸受部品43Aの上端面に達し、主軸8の軸線L方向の外側の端部がシェル36の外側に開口している。外側軸受部品43Bの溝45’の幅は概ね一定であるが主軸8の軸線L方向の最も外側の部分は円弧状に形成されている。軸受体41A全体としてみると、複数の溝45’は、軸受体41Aの孔周壁44の図において下端から主軸8の軸線L方向で内側に向けて部分的に設けられた長さ同一の溝である。   Similarly, a plurality of grooves 45 ′ penetrating in the direction of the axis L of the main shaft 8 are formed at regular intervals in the circumferential direction on the inner circumferential wall surface of the outer bearing part 43 </ b> B (hole circumferential wall of the bearing hole 44). . That is, portions (land portions 46 ′) without the grooves 45 ′ and the grooves 45 ′ are alternately arranged on the inner peripheral wall surface of the outer bearing part 43 </ b> B. In the groove 45 ′ of the outer bearing part 43 B, the inner end of the main shaft 8 in the axis L direction reaches the upper end surface of the inner bearing part 43 A, and the outer end of the main shaft 8 in the axis L direction opens to the outside of the shell 36. is doing. The width of the groove 45 'of the outer bearing part 43B is substantially constant, but the outermost part of the main shaft 8 in the direction of the axis L is formed in an arc shape. When viewed as a whole of the bearing body 41A, the plurality of grooves 45 ′ are grooves of the same length partially provided from the lower end toward the inside in the axis L direction of the main shaft 8 in the drawing of the hole peripheral wall 44 of the bearing body 41A. is there.

前述のように内側軸受部品43Aの上端面と外側軸受部品43Bの下端面とが互いに密接しており、内側軸受部品43Aの溝45と外側軸受部品43Bの溝45’は主軸8の軸線L方向に互いに隣接している。しかし、図6に最も明瞭に示すように、内側軸受部品43Aの溝45と外側軸受部品43Bの溝45’とは主軸8の軸線L回りの回転角度位置を異ならせて千鳥状に配置することで、互いに非連通としている。具体的には、内側軸受部品43Aの1個の溝45と主軸8の軸線L方向に対向しているのは、外側軸受部品43Bの溝45ではなくランド部45’である。また、外側軸受部品43Bの1個の溝45’と主軸8の軸線L方向に対向しているのは、内側軸受部品43Aの溝45ではなくランド部46である。図6では理解を容易にするために、溝45,45’にハッチングを付している。   As described above, the upper end surface of the inner bearing part 43A and the lower end surface of the outer bearing part 43B are in close contact with each other, and the groove 45 of the inner bearing part 43A and the groove 45 ′ of the outer bearing part 43B are in the direction of the axis L of the main shaft 8. Are adjacent to each other. However, as shown most clearly in FIG. 6, the groove 45 of the inner bearing part 43A and the groove 45 ′ of the outer bearing part 43B are arranged in a staggered manner with the rotational angle positions around the axis L of the main shaft 8 being different. Therefore, they are not in communication with each other. Specifically, it is not the groove 45 of the outer bearing part 43B but the land part 45 'that faces one groove 45 of the inner bearing part 43A in the direction of the axis L of the main shaft 8. Further, it is not the groove 45 of the inner bearing part 43A but the land part 46 that is opposed to the single groove 45 'of the outer bearing part 43B in the direction of the axis L of the main shaft 8. In FIG. 6, the grooves 45 and 45 'are hatched for easy understanding.

図2に示すように、主軸8はシェル36の軸受体41A,41Bの軸受孔44を貫通しており、主軸8のスリーブ47を取り付けた部分が軸受体41A,41Bの軸受孔44の孔周壁と隙間30を隔てて対向している。また、蓋部材34の上方には、主軸8と軸受体41A,41Bの軸受孔44の孔周壁との隙間30に塵等が進入するのを防止する防塵カバー51が配置されている。この防塵カバー51は主軸8に固定されており、主軸8と共に回転する。   As shown in FIG. 2, the main shaft 8 passes through the bearing holes 44 of the bearing bodies 41A and 41B of the shell 36, and the portion where the sleeve 47 of the main shaft 8 is attached is the hole peripheral wall of the bearing holes 44 of the bearing bodies 41A and 41B. With a gap 30 therebetween. Further, a dustproof cover 51 for preventing dust and the like from entering the gap 30 between the main shaft 8 and the peripheral wall of the bearing hole 44 of the bearing bodies 41A and 41B is disposed above the lid member 34. The dust cover 51 is fixed to the main shaft 8 and rotates together with the main shaft 8.

ポンプ2が通常の揚水運転中、ケーシング4内、水中軸受13Aの軸受体41A,41Bの軸受孔44の孔周壁と主軸8との隙間30、及び防塵カバー47の内部はいずれも水が充満している。この通常の揚水運転中に診断装置101により空気供給配管102Aから圧縮空気が供給される。空気供給配管102Aからの圧縮空気は、供給ポート31b,36cを介して介してシェル36内の空気供給空間42に進入し、この空気供給空間42から上下の軸受体41A,41Bの軸受孔44の孔周壁と主軸8との隙間30を通ってケーシング4内に流出する(図2の矢印参照)。この際、軸受体41A,41Bのいずれについても内側軸受部品43Aと外側軸受部品43Bの溝45,45’は主軸8の軸線L回りの回転角度位置を異ならせて互いに非連通としているので、主軸8の軸線L方向に沿って直線的に流れるのではなく、図3に矢印Aで示すように蛇行及び分岐しつつ流れる。その結果、診断用の圧縮空気が溝45,45’を通って抜け出てしまい、ランド部46,46’と主軸8の外周面と間を通過する圧縮空気の流量が著しく少なくなる現象(吹き抜け現象)は生じない。この吹き抜け現象の防止により、水中軸受13Aの軸受体41A,41Bの摩耗や破損を高精度で診断できる。   During normal pumping operation of the pump 2, the inside of the casing 4, the clearance 30 between the bearing hole 44 of the bearing body 41 </ b> A, 41 </ b> B of the underwater bearing 13 </ b> A and the main shaft 8, and the inside of the dust cover 47 are filled with water. ing. During this normal pumping operation, the diagnostic device 101 supplies compressed air from the air supply pipe 102A. The compressed air from the air supply pipe 102A enters the air supply space 42 in the shell 36 via the supply ports 31b and 36c, and from the air supply space 42 the bearing holes 44 of the upper and lower bearing bodies 41A and 41B. It flows out into the casing 4 through the gap 30 between the hole peripheral wall and the main shaft 8 (see the arrow in FIG. 2). At this time, the grooves 45 and 45 ′ of the inner bearing part 43A and the outer bearing part 43B are not in communication with each other with the rotational angle positions around the axis L of the main shaft 8 being different from each other in both the bearing bodies 41A and 41B. Instead of flowing linearly along the direction of the axis L of 8, the flow flows while meandering and branching as indicated by an arrow A in FIG. As a result, the compressed air for diagnosis escapes through the grooves 45 and 45 ′, and the flow rate of the compressed air passing between the land portions 46 and 46 ′ and the outer peripheral surface of the main shaft 8 is remarkably reduced (blow-through phenomenon). ) Does not occur. By preventing this blow-through phenomenon, the wear and breakage of the bearing bodies 41A and 41B of the underwater bearing 13A can be diagnosed with high accuracy.

また、軸受体41A,41Bのいずれについても、内側軸受部品43A及び外側軸受部品43Bの孔周壁に溝45,45’を設けたことにより、主軸8との摩擦低減によってポンプ2の気中運転時の水中軸受13Aの温度の上昇とそれに起因する焼き付け防止できる。   Further, in both the bearing bodies 41A and 41B, the grooves 45 and 45 'are provided in the hole peripheral walls of the inner bearing part 43A and the outer bearing part 43B, so that the friction with the main shaft 8 is reduced and the pump 2 is operated in the air. The temperature rise of the underwater bearing 13A can be prevented and seizure can be prevented.

軸受体41A,41Bの内側軸受部品43Aと外側軸受部品43Bの材質は同一である必要はない。軸受体41A,41Bの摩耗性に対する影響は内側軸受部品43Aより外側軸受部品43Bの方が大きいので、外側軸受部品43Bは内側軸受部品43Aよりも耐摩耗性が高い材料からなることが好ましい。逆に、軸受体41A,41Bの摺動性に対する影響は外側軸受部品43Bよりも内側摺動部品43Aの方が大きいので、内側軸受部品43Bは外側軸受部品43Bより摺動性の良好な材料からなることが好ましい。内側軸受部品43Aと外側軸受部品43BがPBI、PEEK等の樹脂製である場合、カーボングラファィト、ボロン等の添加物の量を調整することで、内側軸受部品43Aは摺動性は良好であるが耐摩耗性は比較的高くない材質とし、外側軸受部品43Bは耐摩耗性は高いが摺動性は比較的良好ではない材質とできる。   The materials of the inner bearing part 43A and the outer bearing part 43B of the bearing bodies 41A and 41B need not be the same. Since the outer bearing part 43B has a greater influence on the wearability of the bearing bodies 41A and 41B than the inner bearing part 43A, the outer bearing part 43B is preferably made of a material having higher wear resistance than the inner bearing part 43A. On the contrary, since the inner sliding part 43A has a greater influence on the slidability of the bearing bodies 41A and 41B than the outer bearing part 43B, the inner bearing part 43B is made of a material having better slidability than the outer bearing part 43B. It is preferable to become. When the inner bearing part 43A and the outer bearing part 43B are made of a resin such as PBI or PEEK, the inner bearing part 43A has good slidability by adjusting the amount of additives such as carbon graphite and boron. However, the outer bearing part 43B can be made of a material having high wear resistance but relatively poor sliding properties.

図4を参照すると、軸受ホルダ31とシェル36の供給ポート31b,36cの孔径は、内視鏡を通過させて内側軸受部品43Aの軸受孔44の孔周壁を観察できるように設定することが好ましい。溝45の初期の深さSは加工寸法として既知である。内側軸受部品43Aの軸受孔44の孔周壁が主軸8の外周面と摩擦により摩耗すると深さSが減少する。従って、内視鏡を利用して溝45の深さSを測定することで、軸受孔44の孔周壁と主軸8の外周面との間の隙間30の距離Cを間接的に測定できる。   Referring to FIG. 4, the hole diameters of the supply ports 31b and 36c of the bearing holder 31 and the shell 36 are preferably set so that the peripheral wall of the bearing hole 44 of the inner bearing part 43A can be observed through the endoscope. . The initial depth S of the groove 45 is known as the machining dimension. When the hole peripheral wall of the bearing hole 44 of the inner bearing part 43A is worn by friction with the outer peripheral surface of the main shaft 8, the depth S decreases. Therefore, by measuring the depth S of the groove 45 using an endoscope, the distance C of the gap 30 between the hole peripheral wall of the bearing hole 44 and the outer peripheral surface of the main shaft 8 can be indirectly measured.

(第2実施形態)
図7に示す本発明の第2実施形態では、軸受体41A,41Bはいずれも単一の両端開口の一体構造の筒状体からなる。軸受体41A,41Bの軸受孔44の孔周壁には、主軸8の軸線L方向でシェル36の内側の位置に複数の溝45が周方向に間隔をあけて形成されている。隣接する溝45間にはランド部46が存在する。また、これらの溝45と主軸8の軸線L方向でシェル36の外側の位置に隣接して複数の溝45’が周方向に間隔をあけて形成されている。隣接する溝45’間にはランド部46’が存在する。内側の溝45と外側の溝45’とは主軸8の軸線L回りの回転角度位置を異ならせて千鳥状に配置することで、互いに非連通としている。
(Second Embodiment)
In the second embodiment of the present invention shown in FIG. 7, each of the bearing bodies 41A and 41B is a single-piece cylindrical body having a single opening at both ends. A plurality of grooves 45 are formed in the circumferential wall of the bearing hole 44 of the bearing bodies 41 </ b> A and 41 </ b> B at intervals in the circumferential direction at positions inside the shell 36 in the axis L direction of the main shaft 8. A land portion 46 exists between the adjacent grooves 45. In addition, a plurality of grooves 45 ′ are formed at intervals in the circumferential direction adjacent to the positions outside the shell 36 in the direction of the axis L of the grooves 45 and the main shaft 8. There is a land portion 46 'between adjacent grooves 45'. The inner groove 45 and the outer groove 45 ′ are arranged in a staggered manner with different rotational angle positions around the axis L of the main shaft 8, so that they are not in communication with each other.

ポンプ2が通常の揚水運転中、診断装置101により供給されて供給ポート36cから空気供給空間42に進入した圧縮空気は、上下の軸受体41A,41Bの軸受孔44の孔周壁と主軸8との隙間30を通ってケーシング4内に流出する。この際、軸受体41A,41Bのいずれについても溝45,45’は主軸8の軸線L回りの回転角度位置を異ならせて互いに非連通としているので、診断用の圧縮空気が溝45,45’を通って抜け出てしまい、ランド部46,46’と主軸8の外周面と間を通過する圧縮空気の流量が著しく少なくなる吹き抜け現象は生じない。この吹き抜け現象の防止により、軸受体41A,41Bの摩耗や破損を高精度で診断できる。また、軸受体41A,41Bの孔周壁に溝45,45’を設けたことにより、主軸8との摩擦低減によってポンプ2の気中運転時の水中軸受13Aの温度の上昇とそれに起因する焼き付け防止できる。   During the normal pumping operation of the pump 2, the compressed air supplied by the diagnostic device 101 and entering the air supply space 42 from the supply port 36 c is formed between the peripheral walls of the bearing holes 44 of the upper and lower bearing bodies 41 A and 41 B and the main shaft 8. It flows out into the casing 4 through the gap 30. At this time, since the grooves 45 and 45 ′ of the bearing bodies 41A and 41B are not in communication with each other with the rotational angle positions around the axis L of the main shaft 8 being different from each other, the diagnostic compressed air is not communicated with the grooves 45 and 45 ′. There is no blowout phenomenon in which the flow rate of the compressed air passing through between the land portions 46, 46 ′ and the outer peripheral surface of the main shaft 8 is remarkably reduced. By preventing the blow-through phenomenon, the wear and breakage of the bearing bodies 41A and 41B can be diagnosed with high accuracy. Further, by providing the grooves 45 and 45 ′ on the peripheral walls of the bearing bodies 41A and 41B, the temperature of the underwater bearing 13A during the air operation of the pump 2 and the seizure prevention caused by the friction with the main shaft 8 are reduced. it can.

第2実施形態のその他の構成及び作用は第1実施形態と同様であるので、同一の要素には同一の符号を付して説明を省略する。   Since other configurations and operations of the second embodiment are the same as those of the first embodiment, the same elements are denoted by the same reference numerals and description thereof is omitted.

(第3実施形態)
図8に示す本発明の第3実施形態では、軸受体41A,41Bのいずれについても、外側軸受部品43Bのさらに外側(シェル36の両端)に円環状板48A,48Bが配置されている。円環状板48A,48Bはボルト49でシェル36に固定されている。円環状板48A,48Bの内径D1はランド部46’の部分(溝45’がない部分)での外側軸受部品43Bの軸受孔44の孔径D2と同一に設定されている。これらの円環状部48A,48Bは外側の溝45’から軸受体41A,41Bの外部に圧縮空気が流出する際に流体抵抗となる。つまり、円環状部48A,48Bは、軸受体41A,41Bの軸受孔44の孔周壁と主軸8との隙間30での圧縮空気の滞在時間を延ばす機能を有する。従って、円環状部48A,48Bを設けることにより、より確実に吹き抜け現象を防止できる。円環状板48A,48Bのうちの一方のみを設けても圧縮空気の滞在時間を延ばす効果がある程度得られる。また、内側と外側の溝45,45’を千鳥状に配置させずに互いに連通させた場合でも、円環状部48A,48Bを設けることで、吹き抜け現象を防止する効果がある程度は得られる。
(Third embodiment)
In the third embodiment of the present invention shown in FIG. 8, the annular plates 48A and 48B are arranged on the outer side of the outer bearing part 43B (both ends of the shell 36) in both of the bearing bodies 41A and 41B. The annular plates 48A and 48B are fixed to the shell 36 with bolts 49. The inner diameter D1 of the annular plates 48A, 48B is set to be the same as the hole diameter D2 of the bearing hole 44 of the outer bearing part 43B at the land portion 46 '(the portion without the groove 45'). These annular portions 48A and 48B provide fluid resistance when compressed air flows out of the bearing bodies 41A and 41B from the outer grooves 45 ′. That is, the annular portions 48 </ b> A and 48 </ b> B have a function of extending the residence time of the compressed air in the gap 30 between the hole peripheral wall of the bearing hole 44 of the bearing bodies 41 </ b> A and 41 </ b> B and the main shaft 8. Therefore, by providing the annular portions 48A and 48B, the blow-through phenomenon can be prevented more reliably. Even if only one of the annular plates 48A and 48B is provided, the effect of extending the stay time of the compressed air can be obtained to some extent. Even when the inner and outer grooves 45, 45 ′ are communicated with each other without being arranged in a staggered manner, the effect of preventing the blow-through phenomenon can be obtained to some extent by providing the annular portions 48A, 48B.

第3実施形態のその他の構成及び作用は第1実施形態と同様であるので、同一の要素には同一の符号を付して説明を省略する。   Since other configurations and operations of the third embodiment are the same as those of the first embodiment, the same elements are denoted by the same reference numerals and description thereof is omitted.

先行待機型立軸ポンプの水中軸受を例に本発明を説明したが、本発明は横軸ポンプを含むの他の形式のポンプの水中軸受にも適用できる。   Although the present invention has been described by taking the submersible bearing of the stand-by type vertical shaft pump as an example, the present invention can also be applied to submersible bearings of other types of pumps including a horizontal shaft pump.

2 先行待機型立軸ポンプ
3 吸水槽
4 ケーシング
4a,4b 揚水管
4c,4d インペラケーシング
4e 吸込ベル
4f 吐出ケーシング
5 仕切弁
6 吐出管
7 インペラ
8 主軸
9 スラスト軸受
10 軸封装置
13A,13B,13C 水中軸受
30 隙間
31 軸受ホルダ
31a フランジ部
31b 供給ポート
32 リブ
33 ボルト
34 押さえ部材
35 ボルト
36 シェル
36a,36b 段部
36c 供給ポート
37 ボルト
38 クッションリング
39 パッキン
41A,41B 軸受体
42 空気供給空間
43A 内側軸受部品
43B 外側軸受部品
44 軸受孔
45,45’ 溝
46,46’ ランド部
47 スリーブ
48A,48B 円環状板
101 診断装置
102A,102B,102C 空気供給配管
103 コンプレッサ
104 エアタンク
105 レギュレータ
106 圧力計
107 オリフィス
108 流量計
109 供給配管
110 分岐管路
111 差圧計
112 制御装置
DESCRIPTION OF SYMBOLS 2 Prior standby type vertical shaft pump 3 Water absorption tank 4 Casing 4a, 4b Pumping pipe 4c, 4d Impeller casing 4e Suction bell 4f Discharge casing 5 Gate valve 6 Discharge pipe 7 Impeller 8 Main shaft 9 Thrust bearing 10 Shaft seal device 13A, 13B, 13C Bearing 30 Clearance 31 Bearing holder 31a Flange part 31b Supply port 32 Rib 33 Bolt 34 Holding member 35 Bolt 36 Shell 36a, 36b Step part 36c Supply port 37 Bolt 38 Cushion ring 39 Packing 41A, 41B Bearing body 42 Air supply space 43A Inner bearing Parts 43B Outer bearing parts 44 Bearing holes 45, 45 'Groove 46, 46' Land part 47 Sleeve 48A, 48B Annular plate 101 Diagnostic device 102A, 102B, 102C Air supply pipe 103 Compressor 104 Atanku 105 regulator 106 pressure gauge 107 orifice 108 flow meter 109 supply pipe 110 branched passage 111 differential pressure gauge 112 controller

Claims (5)

ポンプのケーシング内に配置されてポンプの主軸を支持する水中軸受であって、
前記主軸を貫通する軸受孔を備える軸受体と、
前記軸受体を前記ケーシングに保持すると共に、前記軸受体の前記軸受孔の孔周壁と前記主軸との間の隙間に診断用の空気を供給するための供給ポートが形成された保持体とを備え、
前記軸受孔の前記孔周壁には、
前記軸受孔の前記主軸の軸線方向に部分的に形成され、かつ前記主軸の周方向に互いに間隔を開けて配置された複数の第1の溝と、
前記複数の第1の溝と隣接するように前記軸受孔の前記主軸の軸線方向に部分的に形成され、かつ前記主軸の周方向に互いに間隔を開けて配置された複数の第2の溝と
が形成され、
前記第1の溝と前記第2の溝は、前記主軸の軸線回りの回転角度位置を異ならせて互いに非連通としている、水中軸受。
A submerged bearing disposed in the casing of the pump and supporting the main shaft of the pump,
A bearing body including a bearing hole penetrating the main shaft;
And holding the bearing body in the casing, and a holding body formed with a supply port for supplying diagnostic air to a gap between a peripheral wall of the bearing hole of the bearing body and the main shaft. ,
In the hole peripheral wall of the bearing hole,
A plurality of first grooves that are partially formed in the axial direction of the main shaft of the bearing hole and that are spaced apart from each other in the circumferential direction of the main shaft;
A plurality of second grooves that are partially formed in the axial direction of the main shaft of the bearing hole so as to be adjacent to the plurality of first grooves, and are spaced apart from each other in the circumferential direction of the main shaft; Formed,
The underwater bearing in which the first groove and the second groove are not in communication with each other at different rotational angle positions around the axis of the main shaft.
前記軸受体は、前記孔周壁に前記第1の溝が形成された第1の部材と、前記孔周壁に前記第2の溝が形成された第2の部材とを備える、請求項1に記載の水中軸受。   The said bearing body is provided with the 1st member by which the said 1st groove | channel was formed in the said hole surrounding wall, and the 2nd member by which the said 2nd groove | channel was formed by the said hole surrounding wall. Underwater bearing. 前記第1の部材は前記第2の部材よりも前記主軸の軸線方向で前記保持体の外部側に位置し、
前記第1の部材は前記第2の部材よりも耐摩耗性が高い材料からなり、前記第2の部材は第1の部材よりも摺動特性が良好な材料からなる、請求項2に記載の水中軸受。
The first member is located on the outer side of the holding body in the axial direction of the main shaft than the second member,
The first member is made of a material having higher wear resistance than the second member, and the second member is made of a material having a sliding property better than that of the first member. Underwater bearing.
前記軸受体は前記第1及び第2の溝が形成された単一の部材からなる、請求項1に記載の水中軸受。   The underwater bearing according to claim 1, wherein the bearing body is made of a single member in which the first and second grooves are formed. 前記軸受体の少なくとも一方の端部に配置された環状部をさらに備える、請求項1から請求項4のいずれか1項に記載の水中軸受。   The underwater bearing according to claim 1, further comprising an annular portion disposed at at least one end portion of the bearing body.
JP2009138373A 2009-06-09 2009-06-09 Underwater bearing Active JP4819147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009138373A JP4819147B2 (en) 2009-06-09 2009-06-09 Underwater bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009138373A JP4819147B2 (en) 2009-06-09 2009-06-09 Underwater bearing

Publications (2)

Publication Number Publication Date
JP2010285882A JP2010285882A (en) 2010-12-24
JP4819147B2 true JP4819147B2 (en) 2011-11-24

Family

ID=43541780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009138373A Active JP4819147B2 (en) 2009-06-09 2009-06-09 Underwater bearing

Country Status (1)

Country Link
JP (1) JP4819147B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7261123B2 (en) * 2019-08-23 2023-04-19 株式会社酉島製作所 pump
JP7465779B2 (en) 2020-10-08 2024-04-11 株式会社酉島製作所 Pump bearing diagnostic device and method
CN116123103B (en) * 2023-03-13 2024-01-23 宁波工业供水有限公司 Large water taking pump and maintenance method thereof

Also Published As

Publication number Publication date
JP2010285882A (en) 2010-12-24

Similar Documents

Publication Publication Date Title
JP5916736B2 (en) Device, seal assembly, housing flange and spacer for sealing a propeller shaft of a ship
KR101819782B1 (en) Flowline divertor seal with spring-energized lips
JP4819147B2 (en) Underwater bearing
JP6518399B2 (en) Seal device
RU2332591C2 (en) Centrifugal pump
CN105408635A (en) Vertical shaft pump
EP2745017B1 (en) Bearing assembly for a vertical turbine pump
JP6386340B2 (en) Spindle device
KR101280998B1 (en) Bidirectional pump with external motor
JP4467896B2 (en) Pump shaft seal structure
CN112475336A (en) Turning liquid static pressure electric spindle
JP2010285885A (en) Submerged bearing
CN201575250U (en) Novel swivel joint provided with soft floating ring sealing structure
JP6320208B2 (en) Vertical shaft pump
WO2017150501A1 (en) Journal bearing and rotary machine
JP4802045B2 (en) underwater pump
JP6235873B2 (en) Bearings and pumps
CN214290854U (en) Turning liquid static pressure electric spindle
WO2017135073A1 (en) Ball bearing for spindle with built-in motor
KR20110041887A (en) Bearing unit
JP4826088B2 (en) Hydraulic levitation electric dynamometer
KR101852326B1 (en) Centrifugal pump
CN210978522U (en) Sealing device for cooling roller and water collecting cavity
JP2014034969A (en) Supercharger
CN110159599B (en) Cooling flushing structure of core-pulling type water pump shafting

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4819147

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250