WO2016009484A1 - Electron emitting element array, image pickup device, and method for manufacturing electron emitting element array - Google Patents

Electron emitting element array, image pickup device, and method for manufacturing electron emitting element array Download PDF

Info

Publication number
WO2016009484A1
WO2016009484A1 PCT/JP2014/068733 JP2014068733W WO2016009484A1 WO 2016009484 A1 WO2016009484 A1 WO 2016009484A1 JP 2014068733 W JP2014068733 W JP 2014068733W WO 2016009484 A1 WO2016009484 A1 WO 2016009484A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
electron
layer
emitting device
device array
Prior art date
Application number
PCT/JP2014/068733
Other languages
French (fr)
Japanese (ja)
Inventor
智成 中田
一到 酒村
一智 小幡
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2014/068733 priority Critical patent/WO2016009484A1/en
Publication of WO2016009484A1 publication Critical patent/WO2016009484A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/312Cold cathodes, e.g. field-emissive cathode having an electric field perpendicular to the surface, e.g. tunnel-effect cathodes of Metal-Insulator-Metal [MIM] type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/04Cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/26Image pick-up tubes having an input of visible light and electric output
    • H01J31/28Image pick-up tubes having an input of visible light and electric output with electron ray scanning the image screen
    • H01J31/34Image pick-up tubes having an input of visible light and electric output with electron ray scanning the image screen having regulation of screen potential at cathode potential, e.g. orthicon
    • H01J31/38Tubes with photoconductive screen, e.g. vidicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range

Definitions

  • the present invention relates to a surface emission type electron-emitting device array having a cold cathode type electron source, an imaging apparatus, and a method for manufacturing the electron-emitting device array.
  • a HEED cold cathode array incorporated in a HEED cold cathode HARP imaging device is known (see Patent Document 1).
  • This HEED cold cathode array is provided on a driving circuit layer of a MOS transistor and has a laminated structure including a lower electrode, a silicon layer (semiconductor layer), a silicon oxide layer (insulator layer), an upper electrode, and a carbon layer. ing.
  • the upper electrode is common to all the pixels, and the lower electrode and the silicon layer are electrically separated through an insulating partition wall to constitute a plurality of pixels in a matrix form. Further, an opening is formed in the silicon oxide layer and the upper electrode for each pixel, and an emission site is formed on the surface of the silicon layer exposed through the opening.
  • the barrier layer for protecting a lower electrode is formed between the lower electrode and the silicon layer.
  • a base of an insulating partition is formed on the lower electrode, and then a contact hole is formed in the base for conducting the lower electrode and the silicon layer (semiconductor layer).
  • the size of the contact hole must be under the size of the lower electrode so that the end face of the lower electrode is not exposed. That is, in order to protect the end face of the lower electrode from the silicon layer, the base of the insulating partition wall is formed to overhang the peripheral edge of the lower electrode.
  • the present invention relates to an electron-emitting device array, an imaging device, and an electron-emitting device array manufacturing method capable of preventing film peeling of a semiconductor layer and current path reduction based on a step between a lower electrode layer and a base of an insulating partition. It is an issue to provide.
  • the electron-emitting device array of the present invention is an electron-emitting device array including a semiconductor layer between a lower electrode layer and an upper electrode layer, the semiconductor layer including a first semiconductor layer on the lower electrode layer side and an upper electrode. And a second semiconductor layer on the layer side.
  • the lower electrode layer and the semiconductor layer are separated into a plurality of pixels via an insulating partition.
  • the semiconductor layer preferably further includes a protective resistance layer interposed between the first semiconductor layer and the second semiconductor layer and serving as a protective resistance against overcurrent.
  • the first semiconductor layer and the second semiconductor layer are preferably made of a semiconductor containing silicon as a main component, and the protective resistance layer is preferably made of an oxide of silicon.
  • the surface of the first semiconductor layer on the second semiconductor layer side is subjected to planarization treatment.
  • the first semiconductor layer preferably has a higher film density than the second semiconductor layer.
  • the first semiconductor layer is preferably formed by a film forming method having a higher film density than the second semiconductor layer.
  • the first semiconductor layer and the second semiconductor layer are made of a semiconductor containing silicon as a main component, and the first semiconductor layer is formed under film forming conditions having a higher step coverage than the second semiconductor layer. It is preferred that
  • the first semiconductor layer and the second semiconductor layer are made of a semiconductor containing silicon as a main component, and the first semiconductor layer is formed by a film formation method having a higher step coverage than the second semiconductor layer. It is preferred that
  • An imaging apparatus has an electron emission substrate section having the above-described electron emission element array and a drive circuit for driving the electron emission element array, and faces the electron emission substrate section in a vacuum space, and includes a photoelectric conversion layer. And a light receiving substrate portion.
  • the manufacturing method of the electron-emitting device array according to the present invention is the above-described manufacturing method of the electron-emitting device array, wherein the first semiconductor layer and the second semiconductor layer are each made of a semiconductor containing silicon as a main component, and the first insulation is used.
  • the first semiconductor layer forming step under film forming conditions having a step coverage higher than that of the second semiconductor layer forming step instead of the planarization step.
  • the first semiconductor layer forming step by a film forming method having a step coverage higher than that of the second semiconductor layer forming step instead of the planarization step.
  • This electron-emitting device array is a so-called HEED (High-efficiency Electron Emission Device) cold cathode array that constitutes an electron-emitting source, and is combined with an HARP (High-gain Avalanche Rushing amorphous Photoconductor) film that is a photoelectric conversion film. (Imaging device).
  • HEED High-efficiency Electron Emission Device
  • HARP High-gain Avalanche Rushing amorphous Photoconductor
  • FIG. 1 is a schematic cross-sectional view of an imaging apparatus according to an embodiment.
  • the imaging apparatus 100 includes an electron emission substrate portion 101 in which the electron emission element array 1 is incorporated, and a light receiving substrate portion 103 that is opposed to the electron emission substrate portion 101 with a vacuum space 102 therebetween. And a mesh electrode 104 disposed in a vacuum space 102 between the electron emission substrate portion 101 and the light receiving substrate portion 103.
  • the electron emission substrate 101 emits electrons as a surface electron emission source, and the mesh electrode 104 controls the trajectory of electrons (electron beams) emitted from the electron emission substrate 101 and accelerates the electrons.
  • the light receiving substrate unit 103 receives light to be imaged and serves as a target for electrons emitted from the electron emission substrate unit 101.
  • the electron-emitting substrate unit 101 includes a rear substrate 111 made of silicon or the like, a driving circuit layer 112 formed on the rear substrate 111, and an electron-emitting device array 1 formed on the driving circuit layer 112. is doing.
  • an active matrix drive circuit switching circuit
  • a horizontal scanning circuit (driver) and a vertical scanning circuit (driver) for controlling driving of the active matrix driving circuit are disposed in the peripheral portion of the back substrate 111.
  • the horizontal scanning circuit and the vertical scanning circuit drive the plurality of electron-emitting devices 1a of the electron-emitting device array 1 dot-sequentially via the active matrix driving circuit.
  • the light receiving substrate unit 103 includes a light transmitting side light transmitting substrate 121, a transparent electrode layer 122 formed on the back surface (lower surface) of the light transmitting substrate 121, and a photoelectric conversion layer 123 formed on the back surface of the transparent electrode layer 122. And have. Although not shown in the drawing, the light receiving substrate 103 includes a circuit for supplying signals and voltages necessary for driving, a circuit for outputting the detected video signal, and the like.
  • the translucent substrate 121 is made of glass or the like that is transparent to visible light when the object to be imaged is visible light, sapphire or quartz glass or the like when it is ultraviolet light, and beryllium or the like when it is X-ray. Is formed.
  • the photoelectric conversion layer 123 is formed of a semiconductor layer containing amorphous selenium (a-Se) as a main component.
  • Light incident from the surface of the translucent substrate 121 generates electron / hole pairs corresponding to the amount of light in the photoelectric conversion layer 123.
  • the generated holes are accelerated by a strong electric field applied to the transparent electrode layer 122 and continuously collide with atoms constituting the photoelectric conversion layer 123 to generate new electron / hole pairs (avalanche multiplication). .
  • the avalanche-multiplied holes are accumulated near the back surface of the photoelectric conversion layer 123 to form a hole pattern corresponding to the incident light image. And the electric current at the time of this hole pattern and the electron discharge
  • bonding is detected as a video signal according to an incident light image.
  • the mesh electrode 104 is formed of a metal plate or the like having a plurality of openings, and controls the trajectory of electrons emitted from the electron-emitting device array 1 and accelerates the electrons toward the photoelectric conversion layer 123.
  • the mesh electrode 104 absorbs surplus electrons. For this reason, a voltage that is significantly higher than the drive voltage of the drive circuit layer 112 is applied to the mesh electrode 104.
  • Electrons emitted from the electron emission substrate 101 are extracted to the photoelectric conversion layer 123 side by the voltage applied to the mesh electrode 104, and also due to the electric field generated between the electron emission element array 1 and the photoelectric conversion layer 123. And converged on the back surface of the photoelectric conversion layer 123. Then, the emitted electrons are combined with the hole pattern of the photoelectric conversion layer 123.
  • a color filter may be formed on the surface of the light receiving substrate portion 103. In this case, it is possible to perform color imaging by individually capturing R, G, and B images (videos).
  • the electron-emitting device array 1 of the embodiment will be described in detail with reference to FIG.
  • the electron-emitting device array 1 is formed on the lower electrode layer 2 formed on the drive circuit layer 112, the semiconductor layer 3 formed on the lower electrode layer 2, and the semiconductor layer 3.
  • the insulator layer 4 and the upper electrode layer 5 are formed with a plurality of emission recesses 6 (circular shape) extending through them to the surface of the semiconductor layer 3.
  • the plurality of emission recesses 6 are formed in a matrix, and an emission site 7 is formed in an exposed portion of the semiconductor layer 3 corresponding to the bottom of the emission recess 6.
  • a carbon layer 8 is formed on the upper electrode layer 5 and over the inner peripheral surfaces of the plurality of discharge recesses 6.
  • the electron-emitting device array 1 is composed of a plurality of electron-emitting devices 1 a arranged in a matrix, and each electron-emitting device 1 a constitutes one pixel that is a drive unit of the drive circuit layer 112.
  • the lower electrode layer 2 and the semiconductor layer 3 are separated by an insulating partition wall 9.
  • the insulating partition 9 includes an insulating wall base 11 (first insulating partition) formed so as to overhang the adjacent lower electrode layer 2, and a standing wall 12 (second insulating partition) formed on the insulating wall base 11. have.
  • the lower electrode layer 2 is formed of a layer mainly composed of a metal such as Al, W, or Cu.
  • the semiconductor layer 3 is made of, for example, amorphous silicon (a-Si).
  • the insulator layer 4 and the insulating wall base 11 are made of, for example, silicon oxide formed by a CVD method.
  • the upper electrode layer 5 is formed of a layer containing a metal such as tungsten (W) as a main component.
  • the standing wall 12 is made of, for example, silicon oxide formed by a CVD method.
  • the lower electrode layer 2 and the upper electrode layer 5 may be other electrode materials or nitride / oxide electrode materials, and the insulator layer 4 and the insulating wall base 11 may be oxide-based or nitride-based. Insulating material may be used.
  • the lower electrode layer 2 When the lower electrode layer 2 is set to the ground potential and a predetermined voltage is applied to the upper electrode layer 5, a strong electric field is generated at each emission site 7 of the semiconductor layer 3. By this electric field, electrons inside the semiconductor layer 3 are accelerated, and electrons are emitted from the emission site 7 by the tunnel effect.
  • the carbon layer 8 conducts the upper electrode layer 5 and the emission site 7 and excites the emission of electrons.
  • a focusing electrode layer or the like for focusing the emitted electrons (electron beam) may be provided on the upper electrode layer 5.
  • the insulating wall base 11 is formed so as to overhang at the edge of the lower electrode layer 2, and a step is generated in this portion.
  • a barrier layer that protects the lower electrode layer 2 from the semiconductor layer 3 is provided between the metal lower electrode layer 2 and the silicon semiconductor layer 3.
  • the end face of the lower electrode layer 2 where the barrier layer cannot be formed is protected by overhanging the insulating wall base 11.
  • the semiconductor layer 3 has a two-layer structure.
  • the semiconductor layer 3 includes a first semiconductor layer 21 on the lower electrode layer 2 side, a second semiconductor layer 22 on the upper electrode layer 5 side, and between the first semiconductor layer 21 and the second semiconductor layer 22. And a protective resistance layer 23 interposed therebetween.
  • a planarization process is performed on the surface of the first semiconductor layer 21 that is uneven due to the step. Further, the surface of the planarized first semiconductor layer 21 is oxidized to form the protective resistance layer 23. Then, the second semiconductor layer 22 is formed on the protective resistance layer 23.
  • the first semiconductor layer 21 and the second semiconductor layer 22 constituting the semiconductor layer 3 are formed of amorphous silicon (a-Si) as described above, and the protective resistance layer 23 is an oxide layer of the first semiconductor layer 21. It is made of silicon oxide (SiO 2 ).
  • the protective resistance layer 23 protects the electron-emitting device 1a from failure and deterioration of each part due to a sudden current (overcurrent).
  • a method for manufacturing the electron-emitting device array 1 will be described with reference to FIGS.
  • a first semiconductor layer forming step (FIG. 3A) for forming the first semiconductor layer 21 on the lower electrode layer 2 separated by the insulating wall base 11 is performed.
  • a planarization step (FIG. 3B) for planarizing the upper surface, an oxidation step for oxidizing the surface of the first semiconductor layer 21, and a second semiconductor layer 22 are formed on the first semiconductor layer 21.
  • this manufacturing method includes a recess forming step (FIG. 4 (f)) for forming the discharge recess 6 and a carbon layer forming step (FIG. 4 (g)) for forming the carbon layer 8.
  • the first semiconductor layer 21 is formed by sputtering (see FIG. 3A).
  • the film thickness of the first semiconductor layer 21 is about 2 ⁇ m.
  • a CVD method may be used instead of the sputtering method.
  • the generation of the seam S is allowed.
  • the planarization step the surface of the first semiconductor layer 21 is polished and planarized by a CMP (Chemical Mechanical Polishing) method (see FIG. 3B).
  • the polishing amount of the first semiconductor layer 21 is about 1 ⁇ m. Note that planarization may be performed by an etch-back method using a dry etcher instead of the CMP method.
  • the oxidation step the surface of the polished first semiconductor layer 21 is exposed to air to oxidize it.
  • the protective resistance layer 23 formed by the oxidation treatment has a thickness of about 2.5 nm.
  • the second semiconductor layer 22 is formed on the protective resistance layer 23 by sputtering as in the first semiconductor layer forming step (FIG. 3C). Also in this case, the film thickness of the second semiconductor layer 22 is about 2 ⁇ m. Note that a CVD method may be used instead of the sputtering method.
  • the insulating wall forming step first, trenches for the standing walls 12 are formed in the first semiconductor layer 21, the protective resistance layer 23, and the second semiconductor layer 22 by RIE (reactive ion etching). Next, a silicon oxide film for embedding the standing wall 12 in the formed trench is formed by CVD. The wall thickness is about 1 ⁇ m.
  • the surface of the formed silicon oxide is polished by CMP to expose the surface of the second semiconductor layer 22 (see FIG. 3D). This polishing amount is sufficient if the surface of the second semiconductor layer 22 can be formed (approximately 1 ⁇ m or more).
  • the electrode forming step first, the insulator layer 4 is formed on the second semiconductor layer 22 and the standing wall 12 by the CVD method (FIG. 4E). The thickness of the insulator layer 4 is about 300 nm.
  • the upper electrode layer 5 is formed on the insulator layer 4 by sputtering. The film thickness of the upper electrode layer 5 is about 50 nm.
  • the recess forming step as in the insulating wall forming step, a plurality of circular discharge recesses 6 are formed in a matrix in the insulating layer 4 and the upper electrode layer 5 by the RIE method (FIG. 4F). reference).
  • the carbon layer forming step the carbon layer 8 is formed on the surface of the upper electrode layer 5 and the inner peripheral surface of each emission recess 6 by sputtering (see FIG. 4G).
  • the film thickness of the carbon layer 8 is about 50 nm.
  • the semiconductor layer 3 has a two-layer structure of the first semiconductor layer 21 and the second semiconductor layer 22 and is planarized.
  • the second semiconductor layer 22 is formed on the substrate. For this reason, even if the seam S occurs in the first semiconductor layer 21, the seam S does not occur in the second semiconductor layer 22. Accordingly, it is possible to effectively prevent the rigidity of the semiconductor layer 3 from being lowered, the semiconductor layer 3 from being partially peeled off, and the electron emission efficiency from being reduced due to the semiconductor layer 3 and the current path being reduced.
  • the protective resistance layer 23 is formed by oxidizing the surface of the first semiconductor layer 21, the electron-emitting device 1a is protected from failure and deterioration of each part due to sudden current (overcurrent). Can do.
  • an electron-emitting device array 1A according to the second embodiment will be described with reference to FIG. In this embodiment, parts different from the first embodiment will be mainly described.
  • the first semiconductor layer 21 of the semiconductor layer 3 is formed under film forming conditions having a higher step coverage than the second semiconductor layer 22. It is filmed.
  • the first semiconductor layer forming step of the manufacturing method sputtering is controlled so that silicon particles reach the target with high energy in order to improve the step coverage of the first semiconductor layer 21.
  • the first semiconductor layer 21 is a film having a dense particle density.
  • the second semiconductor layer forming step it is necessary to relax the film stress for obtaining a film thickness necessary for stable electron emission, and sputtering is controlled so that silicon particles reach the target with low energy.
  • the second semiconductor layer 22 is a film having a coarse particle density.
  • the planarization step in the manufacturing method can be omitted.
  • the semiconductor layer 3 since the semiconductor layer 3 has a two-layer structure of the first semiconductor layer 21 and the second semiconductor layer 22, a seam S is formed on the first semiconductor layer 21. Even if this occurs, the seam S does not occur in the second semiconductor layer 22. Accordingly, it is possible to effectively prevent the rigidity of the semiconductor layer 3 from being lowered, the semiconductor layer 3 from being partially peeled off, and the electron emission efficiency from being reduced due to the semiconductor layer 3 and the current path being reduced.
  • the electron-emitting device array 1B of the embodiment will be described in detail with reference to FIG. In this embodiment, parts different from the first embodiment will be mainly described.
  • the first semiconductor layer 21 of the semiconductor layer 3 is formed by a film forming method having a higher step coverage than the second semiconductor layer 22. It is filmed.
  • the first semiconductor layer 21 is formed (controlled) by the CVD method to form, for example, a microcrystalline film structure.
  • the second semiconductor layer forming step the second semiconductor layer 22 is formed by a normal sputtering method.
  • the first semiconductor layer 21 having good step coverage is formed, while in the second semiconductor layer forming step, the second semiconductor having a stable film thickness necessary for electron emission.
  • Layer 22 is deposited.
  • the first semiconductor layer forming step may be performed by an oblique sputtering method.
  • the planarization step in the manufacturing method can be omitted.
  • the seam S is formed on the first semiconductor layer 21. Even if this occurs, the seam S does not occur in the second semiconductor layer 22. Accordingly, it is possible to effectively prevent the rigidity of the semiconductor layer 3 from being lowered, the semiconductor layer 3 from being partially peeled off, and the electron emission efficiency from being reduced due to the semiconductor layer 3 and the current path being reduced.
  • the HEED type electron-emitting device arrays 1, 1A, and 1B have been described.
  • the present invention also applies to a BSD (ballistic electron conduction electron source) or a Spindt-type electron source that is a surface electron emission source. Applicable.
  • 1, 1A, 1B electron-emitting device array 1a electron-emitting device, 2 lower electrode layer, 3 semiconductor layer, 4 insulator layer, 5 upper electrode layer, 9 insulating partition, 11 insulating wall base, 12 standing wall, 21st 1 semiconductor layer, 22 second semiconductor layer, 23 protective resistance layer, 100 imaging device, 101 electron emission substrate, 102 vacuum space, 103 light receiving substrate, 123 photoelectric conversion layer, S seam

Abstract

The present invention addresses the problem of providing an electron emitting element array or the like whereby film peeling of a semiconductor layer and reduction of a current path due to a step between a lower electrode layer and base portions of insulating barrier ribs can be eliminated. An electron emitting element array (1) of the present invention is provided with a semiconductor layer (3) between a lower electrode layer (2) and an upper electrode layer (5), and is characterized in that the semiconductor layer (3) has a first semiconductor layer (21) on the lower electrode layer (2) side, and a second semiconductor layer (22) on the upper electrode layer (5) side.

Description

電子放出素子アレイ、撮像装置および電子放出素子アレイの製造方法ELECTRON EMITTING ELEMENT ARRAY, IMAGING DEVICE, AND ELECTRON EMITTING ELEMENT ARRAY MANUFACTURING METHOD
 本発明は、冷陰極型の電子源を有する面放出型の電子放出素子アレイ、撮像装置および電子放出素子アレイの製造方法に関するものである。 The present invention relates to a surface emission type electron-emitting device array having a cold cathode type electron source, an imaging apparatus, and a method for manufacturing the electron-emitting device array.
 従来、この種の電子放出素子アレイとして、HEED冷陰極HARP撮像素子に組み込まれたHEED冷陰極アレイが知られている(特許文献1参照)。
 このHEED冷陰極アレイは、MOSトランジスターの駆動回路層上に設けられ、下部電極とシリコン層(半導体層)と酸化シリコン層(絶縁体層)と上部電極と炭素層とから成る積層構造を有している。上部電極は全画素共通になっており、下部電極およびシリコン層は、絶縁隔壁を介して電気的に分離され、マトリクス状の複数の画素を構成している。また、酸化シリコン層および上部電極には、画素単位で開口部が形成され、この開口部により露出したシリコン層の表面にエミッションサイトが形成されている。
Conventionally, as this type of electron-emitting device array, a HEED cold cathode array incorporated in a HEED cold cathode HARP imaging device is known (see Patent Document 1).
This HEED cold cathode array is provided on a driving circuit layer of a MOS transistor and has a laminated structure including a lower electrode, a silicon layer (semiconductor layer), a silicon oxide layer (insulator layer), an upper electrode, and a carbon layer. ing. The upper electrode is common to all the pixels, and the lower electrode and the silicon layer are electrically separated through an insulating partition wall to constitute a plurality of pixels in a matrix form. Further, an opening is formed in the silicon oxide layer and the upper electrode for each pixel, and an emission site is formed on the surface of the silicon layer exposed through the opening.
特開2010-28267号公報JP 2010-28267 A
 ところで、下部電極上に直接シリコン層を形成すると、金属とシリコン(半導体)との相互拡散により接触不良が発生する。このため、実際のものでは、下部電極とシリコン層との間に、下部電極を保護するためのバリア層が形成されている。しかし、プロセス上、下部電極の端面にバリア層を形成することは、ほとんど困難である。
 このため、従来のHEED冷陰極アレイでは、下部電極の上に絶縁隔壁のベースを成膜した後、このベースに、下部電極とシリコン層(半導体層)とを導通させるためのコンタクトホールを形成するときに、下部電極の端面が露出しないように、コンタクトホールのサイズを下部電極のサイズよりアンダーにせざるを得ない。すなわち、下部電極の端面をシリコン層から保護するために、下部電極の周縁部に対し、絶縁隔壁のベースをオーバーハングするように形成している。
By the way, when a silicon layer is directly formed on the lower electrode, a contact failure occurs due to mutual diffusion of metal and silicon (semiconductor). For this reason, in a real thing, the barrier layer for protecting a lower electrode is formed between the lower electrode and the silicon layer. However, in the process, it is almost difficult to form a barrier layer on the end face of the lower electrode.
For this reason, in a conventional HEED cold cathode array, a base of an insulating partition is formed on the lower electrode, and then a contact hole is formed in the base for conducting the lower electrode and the silicon layer (semiconductor layer). In some cases, the size of the contact hole must be under the size of the lower electrode so that the end face of the lower electrode is not exposed. That is, in order to protect the end face of the lower electrode from the silicon layer, the base of the insulating partition wall is formed to overhang the peripheral edge of the lower electrode.
 これにより、下部電極aと絶縁隔壁bのベースbaとの間に段差が生じ、この段差に起因して、成膜したシリコン層cにシームSが発生する(図7(a)参照)。
 加えて、絶縁隔壁bの上端面を研磨する画素分離プロセスの研磨工程において、発生したシームSに研磨薬液や洗浄薬液が侵入すると、その侵食によりシームSが拡大する(図7(b)参照)。
 その結果、シリコン層cの物理的剛性が低下するだけでなく、後工程においてシリコン層cに部分的な膜剥れが生ずる問題がある。また、画素の高精細化に伴い、シリコン層c内の電流経路が極端に狭まり、実効的な電子放出領域が縮小し電子放出効率が低下する問題がある(図7(c)参照)。
As a result, a step is generated between the lower electrode a and the base ba of the insulating partition b, and a seam S is generated in the deposited silicon layer c due to the step (see FIG. 7A).
In addition, in the polishing step of the pixel separation process for polishing the upper end surface of the insulating partition wall b, when the polishing chemical or cleaning chemical enters the generated seam S, the seam S expands due to the erosion (see FIG. 7B). .
As a result, not only the physical rigidity of the silicon layer c is lowered, but there is a problem that partial film peeling occurs in the silicon layer c in a later process. In addition, as the pixel becomes higher in definition, there is a problem that the current path in the silicon layer c becomes extremely narrow, the effective electron emission region is reduced, and the electron emission efficiency is lowered (see FIG. 7C).
 本発明は、下部電極層と絶縁隔壁の基部との段差に基づく、半導体層の膜剥れや電流経路の縮小を防止することができる電子放出素子アレイ、撮像装置および電子放出素子アレイの製造方法を提供することを課題としている。 The present invention relates to an electron-emitting device array, an imaging device, and an electron-emitting device array manufacturing method capable of preventing film peeling of a semiconductor layer and current path reduction based on a step between a lower electrode layer and a base of an insulating partition. It is an issue to provide.
 本発明の電子放出素子アレイは、下部電極層と上部電極層との間に半導体層を備えた電子放出素子アレイであって、半導体層は、下部電極層側の第1半導体層と、上部電極層側の第2半導体層と、を有していることを特徴とする。 The electron-emitting device array of the present invention is an electron-emitting device array including a semiconductor layer between a lower electrode layer and an upper electrode layer, the semiconductor layer including a first semiconductor layer on the lower electrode layer side and an upper electrode. And a second semiconductor layer on the layer side.
 この場合、下部電極層および半導体層が絶縁隔壁を介して複数に画素分離されていることが好ましい。 In this case, it is preferable that the lower electrode layer and the semiconductor layer are separated into a plurality of pixels via an insulating partition.
 この場合、半導体層は、第1半導体層と第2半導体層との間に介設され、過電流に対する保護抵抗となる保護抵抗層を、更に有していることが好ましい。 In this case, the semiconductor layer preferably further includes a protective resistance layer interposed between the first semiconductor layer and the second semiconductor layer and serving as a protective resistance against overcurrent.
 この場合、第1半導体層および第2半導体層は、シリコンを主成分とする半導体で構成され、保護抵抗層は、シリコンの酸化物で構成されていることが好ましい。 In this case, the first semiconductor layer and the second semiconductor layer are preferably made of a semiconductor containing silicon as a main component, and the protective resistance layer is preferably made of an oxide of silicon.
 また、第1半導体層における第2半導体層側の表面は、平坦化処理されていることが好ましい。 Further, it is preferable that the surface of the first semiconductor layer on the second semiconductor layer side is subjected to planarization treatment.
 一方、第1半導体層は、第2半導体層に比べて、膜の密度が高いことが好ましい。 On the other hand, the first semiconductor layer preferably has a higher film density than the second semiconductor layer.
 同様に、第1半導体層は、第2半導体層に比べて、膜の密度が高い成膜方法で成膜されたことが好ましい。 Similarly, the first semiconductor layer is preferably formed by a film forming method having a higher film density than the second semiconductor layer.
 同様に、第1半導体層および第2半導体層は、シリコンを主成分とする半導体で構成され、第1半導体層は、第2半導体層に比べて、段差被覆性の高い成膜条件で成膜されたものであることが好ましい。 Similarly, the first semiconductor layer and the second semiconductor layer are made of a semiconductor containing silicon as a main component, and the first semiconductor layer is formed under film forming conditions having a higher step coverage than the second semiconductor layer. It is preferred that
 同様に、第1半導体層および第2半導体層は、シリコンを主成分とする半導体で構成され、第1半導体層は、第2半導体層に比べて、段差被覆性の高い成膜方法で成膜されたものであることが好ましい。 Similarly, the first semiconductor layer and the second semiconductor layer are made of a semiconductor containing silicon as a main component, and the first semiconductor layer is formed by a film formation method having a higher step coverage than the second semiconductor layer. It is preferred that
 本発明の撮像装置は、上記した電子放出素子アレイ、および電子放出素子アレイを駆動する駆動回路を有する電子放出基板部と、真空空間を存して電子放出基板部に対面し、光電変換層を有する受光基板部と、を備えたことを特徴とする。 An imaging apparatus according to the present invention has an electron emission substrate section having the above-described electron emission element array and a drive circuit for driving the electron emission element array, and faces the electron emission substrate section in a vacuum space, and includes a photoelectric conversion layer. And a light receiving substrate portion.
 本発明の電子放出素子アレイの製造方法は、上記した電子放出素子アレイの製造方法であって、第1半導体層および第2半導体層に、それぞれシリコンを主成分とする半導体を用い、第1絶縁隔壁により画素分離された下部電極層の上に第1半導体層を形成する第1半導体層形成工程と、第1半導体層の上表面を平坦化処理する平坦化工程と、第1半導体層の上に第2半導体層を形成する第2半導体層形成工程と、第1絶縁隔壁の上に第2絶縁隔壁を形成して、第1半導体層および第2半導体層を画素分離する絶縁壁形成工程と、第2半導体層および第2絶縁隔壁の上に、絶縁体層を介して上部電極層を形成する電極形成工程と、を備えたことを特徴とする。 The manufacturing method of the electron-emitting device array according to the present invention is the above-described manufacturing method of the electron-emitting device array, wherein the first semiconductor layer and the second semiconductor layer are each made of a semiconductor containing silicon as a main component, and the first insulation is used. A first semiconductor layer forming step of forming a first semiconductor layer on the lower electrode layer separated by pixels by the partition; a flattening step of flattening an upper surface of the first semiconductor layer; A second semiconductor layer forming step of forming a second semiconductor layer on the first insulating layer; and an insulating wall forming step of forming a second insulating partition on the first insulating partition and separating the first semiconductor layer and the second semiconductor layer from each other. And an electrode forming step of forming an upper electrode layer on the second semiconductor layer and the second insulating partition via the insulator layer.
 この場合、平坦化工程と第2半導体層形成工程との間に、第1半導体層の表面を酸化処理する酸化工程、を更に備えることが好ましい。 In this case, it is preferable to further include an oxidation step of oxidizing the surface of the first semiconductor layer between the planarization step and the second semiconductor layer formation step.
 また、平坦化工程に代えて、第2半導体層形成工程より段差被覆性の高い成膜条件で、第1半導体層形成工程を実施することが好ましい。 In addition, it is preferable to perform the first semiconductor layer forming step under film forming conditions having a step coverage higher than that of the second semiconductor layer forming step instead of the planarization step.
 同様に、平坦化工程に代えて、第2半導体層形成工程より段差被覆性の高い成膜方法で、第1半導体層形成工程を実施することが好ましい。 Similarly, it is preferable to perform the first semiconductor layer forming step by a film forming method having a step coverage higher than that of the second semiconductor layer forming step instead of the planarization step.
実施形態に係る撮像装置の断面模式図である。It is a cross-sectional schematic diagram of the imaging device according to the embodiment. 第1実施形態に係る電子放出素子アレイの断面模式図である。It is a cross-sectional schematic diagram of the electron-emitting device array which concerns on 1st Embodiment. 第1実施形態に係る電子放出素子アレイの製造方法(a),(b),(c),(d)を表した断面模式図である。It is a cross-sectional schematic diagram showing the manufacturing method (a), (b), (c), (d) of the electron-emitting device array which concerns on 1st Embodiment. 第1実施形態に係る電子放出素子アレイの製造方法(e),(f),(g)を表した断面模式図である。It is a cross-sectional schematic diagram showing the manufacturing method (e), (f), (g) of the electron-emitting device array which concerns on 1st Embodiment. 第2実施形態に係る電子放出素子アレイの断面模式図である。It is a cross-sectional schematic diagram of the electron-emitting device array which concerns on 2nd Embodiment. 第3実施形態に係る電子放出素子アレイの断面模式図である。It is a cross-sectional schematic diagram of the electron-emitting device array which concerns on 3rd Embodiment. 従来の電子放出素子アレイの問題点を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the problem of the conventional electron emission element array.
 以下、添付の図面を参照して、本発明の実施形態に係る電子放出素子アレイ、これを備えた撮像装置および電子放出素子アレイの製造方法について説明する。
 この電子放出素子アレイは、電子放出源を構成するいわゆるHEED(High-efficiency Electron Emission Device)冷陰極アレイであり、光電変換膜であるHARP(High-gain Avalanche Rushing amorphous Photoconductor)膜と組み合わせて撮像装置(撮像デバイス)を構成するものである。以下、撮像装置、電子放出素子アレイ、電子放出素子アレイの製造方法の順で説明を進める。
Hereinafter, an electron-emitting device array according to an embodiment of the present invention, an imaging apparatus including the same, and a method for manufacturing the electron-emitting device array will be described with reference to the accompanying drawings.
This electron-emitting device array is a so-called HEED (High-efficiency Electron Emission Device) cold cathode array that constitutes an electron-emitting source, and is combined with an HARP (High-gain Avalanche Rushing amorphous Photoconductor) film that is a photoelectric conversion film. (Imaging device). Hereinafter, the description will proceed in the order of the imaging device, the electron-emitting device array, and the method for manufacturing the electron-emitting device array.
 図1は、実施形態に係る撮像装置の断面模式図である。同図に示すように、撮像装置100は、電子放出素子アレイ1を組み込んだ電子放出基板部101と、電子放出基板部101に対し真空空間102を存して対向配置された受光基板部103と、電子放出基板部101と受光基板部103との間の真空空間102に配設されたメッシュ電極104と、を備えている。電子放出基板部101は、面電子放出源として電子を放出し、メッシュ電極104は、電子放出基板部101から放出された電子(電子ビーム)の軌道を制御し且つ電子を加速する。受光基板部103は、撮像対象となる光を受光すると共に、電子放出基板部101から放出された電子のターゲットとなる。 FIG. 1 is a schematic cross-sectional view of an imaging apparatus according to an embodiment. As shown in FIG. 1, the imaging apparatus 100 includes an electron emission substrate portion 101 in which the electron emission element array 1 is incorporated, and a light receiving substrate portion 103 that is opposed to the electron emission substrate portion 101 with a vacuum space 102 therebetween. And a mesh electrode 104 disposed in a vacuum space 102 between the electron emission substrate portion 101 and the light receiving substrate portion 103. The electron emission substrate 101 emits electrons as a surface electron emission source, and the mesh electrode 104 controls the trajectory of electrons (electron beams) emitted from the electron emission substrate 101 and accelerates the electrons. The light receiving substrate unit 103 receives light to be imaged and serves as a target for electrons emitted from the electron emission substrate unit 101.
 電子放出基板部101は、シリコン等で構成された背面基板111と、背面基板111上に形成された駆動回路層112と、駆動回路層112上に形成された電子放出素子アレイ1と、を有している。駆動回路層112には、アクティブマトリクス駆動回路(スイッチング回路)が形成されている。また、背面基板111の周辺部には、図示しないが、アクティブマトリクス駆動回路の駆動を制御する水平走査回路(ドライバ)および垂直走査回路(ドライバ)が配設されている。そして、この水平走査回路および垂直走査回路により、アクティブマトリクス駆動回路を介して、電子放出素子アレイ1の複数の電子放出素子1aが点順次駆動される。 The electron-emitting substrate unit 101 includes a rear substrate 111 made of silicon or the like, a driving circuit layer 112 formed on the rear substrate 111, and an electron-emitting device array 1 formed on the driving circuit layer 112. is doing. In the drive circuit layer 112, an active matrix drive circuit (switching circuit) is formed. Further, although not shown, a horizontal scanning circuit (driver) and a vertical scanning circuit (driver) for controlling driving of the active matrix driving circuit are disposed in the peripheral portion of the back substrate 111. The horizontal scanning circuit and the vertical scanning circuit drive the plurality of electron-emitting devices 1a of the electron-emitting device array 1 dot-sequentially via the active matrix driving circuit.
 受光基板部103は、受光側の透光性基板121と、透光性基板121の裏面(下面)に形成された透明電極層122と、透明電極層122の裏面に形成された光電変換層123と、を有している。また、図示では省略したが、受光基板部103は、駆動に必要な信号や電圧を供給する回路、検出した映像信号を出力する回路等も有している。透光性基板121は、撮像対象が可視光である場合には可視光に対し透明なガラス等で、紫外線である場合にはサファイアや石英ガラス等で、X線である場合にはベリリウム等で形成されている。また、光電変換層123は、アモルファス・セレン(a-Se)を主成分とする半導体層で形成されている。 The light receiving substrate unit 103 includes a light transmitting side light transmitting substrate 121, a transparent electrode layer 122 formed on the back surface (lower surface) of the light transmitting substrate 121, and a photoelectric conversion layer 123 formed on the back surface of the transparent electrode layer 122. And have. Although not shown in the drawing, the light receiving substrate 103 includes a circuit for supplying signals and voltages necessary for driving, a circuit for outputting the detected video signal, and the like. The translucent substrate 121 is made of glass or the like that is transparent to visible light when the object to be imaged is visible light, sapphire or quartz glass or the like when it is ultraviolet light, and beryllium or the like when it is X-ray. Is formed. The photoelectric conversion layer 123 is formed of a semiconductor layer containing amorphous selenium (a-Se) as a main component.
 透光性基板121の表面から入射した光は、光電変換層123においてその光量に応じた電子・正孔対を生成させる。生成した正孔は透明電極層122に印加された強い電界により加速され、光電変換層123を構成する原子と連続的に衝突して、新たな電子・正孔対を生成する(アバランシェ増倍)。アバランシェ増倍された正孔は、光電変換層123の裏面付近に蓄積され、入射光像に対応する正孔パターンを形成する。そして、この正孔パターンと電子放出素子1a(電子放出素子アレイ1)から放出された電子とが結合する際の電流が、入射光像に応じた映像信号として検出される。 Light incident from the surface of the translucent substrate 121 generates electron / hole pairs corresponding to the amount of light in the photoelectric conversion layer 123. The generated holes are accelerated by a strong electric field applied to the transparent electrode layer 122 and continuously collide with atoms constituting the photoelectric conversion layer 123 to generate new electron / hole pairs (avalanche multiplication). . The avalanche-multiplied holes are accumulated near the back surface of the photoelectric conversion layer 123 to form a hole pattern corresponding to the incident light image. And the electric current at the time of this hole pattern and the electron discharge | released from the electron emission element 1a (electron emission element array 1) couple | bonding is detected as a video signal according to an incident light image.
 メッシュ電極104は、複数の開口を有しする金属板等で形成され、電子放出素子アレイ1から放出された電子の軌道を制御すると共に電子を光電変換層123に向かって加速する。また、メッシュ電極104は、余剰電子を吸収する。このため、メッシュ電極104には、駆動回路層112の駆動電圧に比べて格段に高い電圧が印加される。 The mesh electrode 104 is formed of a metal plate or the like having a plurality of openings, and controls the trajectory of electrons emitted from the electron-emitting device array 1 and accelerates the electrons toward the photoelectric conversion layer 123. The mesh electrode 104 absorbs surplus electrons. For this reason, a voltage that is significantly higher than the drive voltage of the drive circuit layer 112 is applied to the mesh electrode 104.
 電子放出基板部101から放出された電子は、メッシュ電極104に印加された電圧により、光電変換層123側に引き出されると共に、電子放出素子アレイ1と光電変換層123との間に生じた電界により、光電変換層123の裏面に収束される。そして、この放出された電子は、光電変換層123の正孔パターンと結合する。なお、受光基板部103の表面にカラーフィルタを形成してもよい。この場合には、R・G・Bの画像(映像)を個々に取り込むことにより、カラーによる撮像が可能になる。 Electrons emitted from the electron emission substrate 101 are extracted to the photoelectric conversion layer 123 side by the voltage applied to the mesh electrode 104, and also due to the electric field generated between the electron emission element array 1 and the photoelectric conversion layer 123. And converged on the back surface of the photoelectric conversion layer 123. Then, the emitted electrons are combined with the hole pattern of the photoelectric conversion layer 123. A color filter may be formed on the surface of the light receiving substrate portion 103. In this case, it is possible to perform color imaging by individually capturing R, G, and B images (videos).
[第1実施形態]
 次に、図2を参照して、実施形態の電子放出素子アレイ1について詳細に説明する。図2に示すように、電子放出素子アレイ1は、上記の駆動回路層112上に形成した下部電極層2と、下部電極層2の上に形成した半導体層3と、半導体層3上に形成した絶縁体層4と、絶縁体層4上に形成した上部電極層5と、を備えている。絶縁体層4および上部電極層5には、これらを貫通して半導体層3の表面のまで延びる複数の放出凹部6(円形)が形成されている。複数の放出凹部6は、マトリクス状に形成されており、この放出凹部6の底に相当する半導体層3の露出部分に、エミッションサイト7が構成されている。また、上部電極層5上および複数の放出凹部6の内周面に亘って、炭素層8が形成されている。
[First Embodiment]
Next, the electron-emitting device array 1 of the embodiment will be described in detail with reference to FIG. As shown in FIG. 2, the electron-emitting device array 1 is formed on the lower electrode layer 2 formed on the drive circuit layer 112, the semiconductor layer 3 formed on the lower electrode layer 2, and the semiconductor layer 3. And the upper electrode layer 5 formed on the insulator layer 4. The insulator layer 4 and the upper electrode layer 5 are formed with a plurality of emission recesses 6 (circular shape) extending through them to the surface of the semiconductor layer 3. The plurality of emission recesses 6 are formed in a matrix, and an emission site 7 is formed in an exposed portion of the semiconductor layer 3 corresponding to the bottom of the emission recess 6. A carbon layer 8 is formed on the upper electrode layer 5 and over the inner peripheral surfaces of the plurality of discharge recesses 6.
 一方、電子放出素子アレイ1は、マトリクス状に配置した複数の電子放出素子1aで構成され、この各電子放出素子1aが、駆動回路層112の駆動単位となる1の画素を構成している。そして、この各画素を構成すべく、下部電極層2および半導体層3は、絶縁隔壁9により画素分離されている。絶縁隔壁9は、隣接する下部電極層2にオーバーハングするように形成した絶縁壁ベース11(第1絶縁隔壁)と、絶縁壁ベース11上に形成した立設壁12(第2絶縁隔壁)とを有している。 On the other hand, the electron-emitting device array 1 is composed of a plurality of electron-emitting devices 1 a arranged in a matrix, and each electron-emitting device 1 a constitutes one pixel that is a drive unit of the drive circuit layer 112. In order to configure each pixel, the lower electrode layer 2 and the semiconductor layer 3 are separated by an insulating partition wall 9. The insulating partition 9 includes an insulating wall base 11 (first insulating partition) formed so as to overhang the adjacent lower electrode layer 2, and a standing wall 12 (second insulating partition) formed on the insulating wall base 11. have.
 下部電極層2は、例えばAl、W、Cu等の金属を主成分とする層で形成されている。半導体層3は、例えばアモルファスシリコン(a-Si)で形成されている。絶縁体層4および絶縁壁ベース11は、例えばCVD法で成膜された酸化シリコンで形成されている。上部電極層5は、例えばタングステン(W)等の金属を主成分とする層で形成されている。立設壁12は、例えばCVD法で成膜された酸化シリコンで形成されている。なお、下部電極層2および上部電極層5は、他の電極材料や窒化物・酸化物電極材料であってもよく、また絶縁体層4および絶縁壁ベース11は、酸化物系もしくは窒化物系の絶縁材料であってもよい。 The lower electrode layer 2 is formed of a layer mainly composed of a metal such as Al, W, or Cu. The semiconductor layer 3 is made of, for example, amorphous silicon (a-Si). The insulator layer 4 and the insulating wall base 11 are made of, for example, silicon oxide formed by a CVD method. The upper electrode layer 5 is formed of a layer containing a metal such as tungsten (W) as a main component. The standing wall 12 is made of, for example, silicon oxide formed by a CVD method. The lower electrode layer 2 and the upper electrode layer 5 may be other electrode materials or nitride / oxide electrode materials, and the insulator layer 4 and the insulating wall base 11 may be oxide-based or nitride-based. Insulating material may be used.
 下部電極層2を接地電位とし上部電極層5に所定の電圧を印加すると、半導体層3の各エミッションサイト7に強い電界が発生する。この電界によって、半導体層3の内部の電子が加速され、トンネル効果によりエミッションサイト7から電子が放出される。また、炭素層8は、上部電極層5とエミッションサイト7とを導通し、電子の放出を励起する。なお、上部電極層5の上に、放出した電子(電子ビーム)を集束させる集束電極層等を設けるようにしてもよい。 When the lower electrode layer 2 is set to the ground potential and a predetermined voltage is applied to the upper electrode layer 5, a strong electric field is generated at each emission site 7 of the semiconductor layer 3. By this electric field, electrons inside the semiconductor layer 3 are accelerated, and electrons are emitted from the emission site 7 by the tunnel effect. The carbon layer 8 conducts the upper electrode layer 5 and the emission site 7 and excites the emission of electrons. A focusing electrode layer or the like for focusing the emitted electrons (electron beam) may be provided on the upper electrode layer 5.
 ところで、本実施形態の電子放出素子アレイ1では、絶縁壁ベース11が下部電極層2の縁部にオーバーハングするように形成され、この部分に段差が生じている。図示では省略したが、金属の下部電極層2とシリコンの半導体層3との間には、半導体層3から下部電極層2を保護するバリア層が設けられている。しかし、バリア層を形成することができない下部電極層2の端面は、絶縁壁ベース11をオーバーハングさせることで保護している。 By the way, in the electron-emitting device array 1 of the present embodiment, the insulating wall base 11 is formed so as to overhang at the edge of the lower electrode layer 2, and a step is generated in this portion. Although not shown in the drawing, a barrier layer that protects the lower electrode layer 2 from the semiconductor layer 3 is provided between the metal lower electrode layer 2 and the silicon semiconductor layer 3. However, the end face of the lower electrode layer 2 where the barrier layer cannot be formed is protected by overhanging the insulating wall base 11.
 一方、絶縁壁ベース11と下部電極層2との段差上に形成される半導体層3には、この段差に起因してシームSが発生する。そして、後工程でシームSが拡大すると、半導体層3に部分的な膜剥れが生じ、或いは半導体層3内の電流経路が極端に狭まる等の不具合が生ずる(図7(c)参照)。そこで、本実施形態の電子放出素子アレイ1では、半導体層3を2層構造としている。 On the other hand, a seam S is generated in the semiconductor layer 3 formed on the step between the insulating wall base 11 and the lower electrode layer 2 due to this step. Then, when the seam S is enlarged in the subsequent process, a defect such as partial film peeling in the semiconductor layer 3 or an extremely narrow current path in the semiconductor layer 3 occurs (see FIG. 7C). Therefore, in the electron-emitting device array 1 of the present embodiment, the semiconductor layer 3 has a two-layer structure.
 具体的には、半導体層3は、下部電極層2側の第1半導体層21と、上部電極層5側の第2半導体層22と、第1半導体層21と第2半導体層22との間に介設した保護抵抗層23と、を有している。詳細は後述するが、第1半導体層21を形成した後、段差の影響で凹凸の生じた第1半導体層21の表面に対し、平坦化処理を行う。さらに、平坦化処理した第1半導体層21の表面を酸化処理して、保護抵抗層23を形成する。そして、保護抵抗層23の上に、第2半導体層22を形成するようにしている。 Specifically, the semiconductor layer 3 includes a first semiconductor layer 21 on the lower electrode layer 2 side, a second semiconductor layer 22 on the upper electrode layer 5 side, and between the first semiconductor layer 21 and the second semiconductor layer 22. And a protective resistance layer 23 interposed therebetween. Although details will be described later, after the first semiconductor layer 21 is formed, a planarization process is performed on the surface of the first semiconductor layer 21 that is uneven due to the step. Further, the surface of the planarized first semiconductor layer 21 is oxidized to form the protective resistance layer 23. Then, the second semiconductor layer 22 is formed on the protective resistance layer 23.
 この場合、第1半導体層21にシームSが発生しても、平坦面上に形成した第2半導体層22では、シームSの発生が防止される。すなわち、第1半導体層21の表面を平坦化することにより第1半導体層21のシームSに連続するように、第2半導体層22にシームSが発生することはない。半導体層3を構成する第1半導体層21および第2半導体層22は、上記のようにアモルファスシリコン(a-Si)で形成され、保護抵抗層23は、第1半導体層21の酸化層である酸化シリコン(SiO)で形成されている。なお、保護抵抗層23は、突発的な電流(過電流)による各部の故障や劣化から電子放出素子1aを保護する。  In this case, even if the seam S is generated in the first semiconductor layer 21, the generation of the seam S is prevented in the second semiconductor layer 22 formed on the flat surface. That is, the seam S does not occur in the second semiconductor layer 22 so as to be continuous with the seam S of the first semiconductor layer 21 by planarizing the surface of the first semiconductor layer 21. The first semiconductor layer 21 and the second semiconductor layer 22 constituting the semiconductor layer 3 are formed of amorphous silicon (a-Si) as described above, and the protective resistance layer 23 is an oxide layer of the first semiconductor layer 21. It is made of silicon oxide (SiO 2 ). The protective resistance layer 23 protects the electron-emitting device 1a from failure and deterioration of each part due to a sudden current (overcurrent).
 次に、図3および図4を参照して、電子放出素子アレイ1の製造方法について説明する。この製造方法は、絶縁壁ベース11により画素分離された下部電極層2の上に第1半導体層21を形成する第1半導体層形成工程(図3(a))と、第1半導体層21の上表面を平坦化処理する平坦化工程(図3(b))と、第1半導体層21の表面を酸化処理する酸化工程と、第1半導体層21の上に第2半導体層22を形成する第2半導体層形成工程(図3(c))と、絶縁壁ベース11の上に立設壁12を形成して、第1半導体層21および第2半導体層22を画素分離する絶縁壁形成工程と、立設壁12の上端部を研磨する埋込み研磨工程(図3(d))と、第2半導体層22および立設壁12の上に、絶縁体層4を介して上部電極層5を形成する電極形成工程(図4(e))と、を備えている。さらに、この製造方法は、放出凹部6を形成する凹部形成工程(図4(f))と、炭素層8を形成する炭素層形成工程(図4(g))と、を備えている。 Next, a method for manufacturing the electron-emitting device array 1 will be described with reference to FIGS. In this manufacturing method, a first semiconductor layer forming step (FIG. 3A) for forming the first semiconductor layer 21 on the lower electrode layer 2 separated by the insulating wall base 11 is performed. A planarization step (FIG. 3B) for planarizing the upper surface, an oxidation step for oxidizing the surface of the first semiconductor layer 21, and a second semiconductor layer 22 are formed on the first semiconductor layer 21. A second semiconductor layer forming step (FIG. 3C) and an insulating wall forming step in which the standing wall 12 is formed on the insulating wall base 11 and the first semiconductor layer 21 and the second semiconductor layer 22 are separated from each other by pixels. And an embedded polishing step (FIG. 3 (d)) for polishing the upper end of the standing wall 12, and the upper electrode layer 5 is formed on the second semiconductor layer 22 and the standing wall 12 via the insulator layer 4. And an electrode forming step (FIG. 4E) to be formed. Further, this manufacturing method includes a recess forming step (FIG. 4 (f)) for forming the discharge recess 6 and a carbon layer forming step (FIG. 4 (g)) for forming the carbon layer 8.
 第1半導体層形成工程では、スパッタリング法により、第1半導体層21を成膜する(図3(a)参照)。第1半導体層21の膜厚は、2μm程度とする。なお、スパッタリング法に代えてCVD法を用いてもよい。また、この第1半導体層形成工程では、シームSの発生を許容するものとする。
 平坦化工程では、CMP(化学的機械的研磨)法により、第1半導体層21の表面を研磨し平坦化する(図3(b)参照)。第1半導体層21の研磨量は、1μm程度とする。なお、CMP法に代えてドライエッチャーによるエッチバック法により、平坦化を行ってもよい。
 酸化工程では、研磨した第1半導体層21の表面を空気にさらすことで、これを酸化処理する。酸化処理により形成される保護抵抗層23の層厚は、2.5nm程度である。
In the first semiconductor layer forming step, the first semiconductor layer 21 is formed by sputtering (see FIG. 3A). The film thickness of the first semiconductor layer 21 is about 2 μm. Note that a CVD method may be used instead of the sputtering method. In the first semiconductor layer forming step, the generation of the seam S is allowed.
In the planarization step, the surface of the first semiconductor layer 21 is polished and planarized by a CMP (Chemical Mechanical Polishing) method (see FIG. 3B). The polishing amount of the first semiconductor layer 21 is about 1 μm. Note that planarization may be performed by an etch-back method using a dry etcher instead of the CMP method.
In the oxidation step, the surface of the polished first semiconductor layer 21 is exposed to air to oxidize it. The protective resistance layer 23 formed by the oxidation treatment has a thickness of about 2.5 nm.
 第2半導体層形成工程では、第1半導体層形成工程と同様に、スパッタリング法により、保護抵抗層23上に第2半導体層22を成膜する(図3(c))。この場合も第2半導体層22の膜厚は、2μm程度とする。なお、スパッタリング法に代えてCVD法を用いてもよい。
 絶縁壁形成工程では、先ずRIE(反応性イオンエッチング)法により、第1半導体層21、保護抵抗層23および第2半導体層22に、立設壁12用のトレンチを形成する。次に、CVD法により、形成したトレンチに立設壁12を埋込み形成するための酸化シリコンの成膜を行う。なお、この壁厚は、1μm程度とする。
In the second semiconductor layer forming step, the second semiconductor layer 22 is formed on the protective resistance layer 23 by sputtering as in the first semiconductor layer forming step (FIG. 3C). Also in this case, the film thickness of the second semiconductor layer 22 is about 2 μm. Note that a CVD method may be used instead of the sputtering method.
In the insulating wall forming step, first, trenches for the standing walls 12 are formed in the first semiconductor layer 21, the protective resistance layer 23, and the second semiconductor layer 22 by RIE (reactive ion etching). Next, a silicon oxide film for embedding the standing wall 12 in the formed trench is formed by CVD. The wall thickness is about 1 μm.
 埋込み研磨工程では、平坦化工程と同様に、成膜した酸化シリコンの表面をCMP法により研磨し、第2半導体層22の表面出しを行う(図3(d)参照)。この研磨量は、第2半導体層22の表面出しができればよい(1μm強程度)。
 電極形成工程では、先ずCVD法により、第2半導体層22および立設壁12の上に、絶縁体層4を成膜する(図4(e))。この絶縁体層4の膜厚は、300nm程度とする。次に、スパッタリング法により、絶縁体層4上に上部電極層5を成膜する。上部電極層5の膜厚は、50nm程度とする。
In the embedded polishing step, as in the planarization step, the surface of the formed silicon oxide is polished by CMP to expose the surface of the second semiconductor layer 22 (see FIG. 3D). This polishing amount is sufficient if the surface of the second semiconductor layer 22 can be formed (approximately 1 μm or more).
In the electrode forming step, first, the insulator layer 4 is formed on the second semiconductor layer 22 and the standing wall 12 by the CVD method (FIG. 4E). The thickness of the insulator layer 4 is about 300 nm. Next, the upper electrode layer 5 is formed on the insulator layer 4 by sputtering. The film thickness of the upper electrode layer 5 is about 50 nm.
 凹部形成工程では、絶縁壁形成工程と同様に、RIE法により、絶縁体層4および上部電極層5に、画素単位で円形の複数の放出凹部6をマトリクス状に形成する(図4(f)参照)。
 炭素層形成工程では、スパッタリング法により、上部電極層5の表面および各放出凹部6の内周面に炭素層8を成膜する(図4(g)参照)。なお、炭素層8の膜厚は、50nm程度とする。このように複数の製造プロセスを経て、電子放出素子アレイ1が製造される。
In the recess forming step, as in the insulating wall forming step, a plurality of circular discharge recesses 6 are formed in a matrix in the insulating layer 4 and the upper electrode layer 5 by the RIE method (FIG. 4F). reference).
In the carbon layer forming step, the carbon layer 8 is formed on the surface of the upper electrode layer 5 and the inner peripheral surface of each emission recess 6 by sputtering (see FIG. 4G). The film thickness of the carbon layer 8 is about 50 nm. Thus, the electron-emitting device array 1 is manufactured through a plurality of manufacturing processes.
 以上のように、第1実施形態の電子放出素子アレイ1によれば、半導体層3を、第1半導体層21と第2半導体層22との2層構造とし、平坦化した第1半導体層21の上に第2半導体層22を成膜するようにしている。このため、第1半導体層21にシームSが発生しても、第2半導体層22にシームSが発生することがない。したがって、シームSに基づく、半導体層3の剛性の低下、半導体層3の部分的な膜剥れ、半導体層3や電流経路の縮小による電子放出効率の低下、を有効に防止することができる。 As described above, according to the electron-emitting device array 1 of the first embodiment, the semiconductor layer 3 has a two-layer structure of the first semiconductor layer 21 and the second semiconductor layer 22 and is planarized. The second semiconductor layer 22 is formed on the substrate. For this reason, even if the seam S occurs in the first semiconductor layer 21, the seam S does not occur in the second semiconductor layer 22. Accordingly, it is possible to effectively prevent the rigidity of the semiconductor layer 3 from being lowered, the semiconductor layer 3 from being partially peeled off, and the electron emission efficiency from being reduced due to the semiconductor layer 3 and the current path being reduced.
 また、第1半導体層21の表面を酸化処理することで、保護抵抗層23を形成しているため、突発的な電流(過電流)による各部の故障や劣化から電子放出素子1aを保護することができる。 Further, since the protective resistance layer 23 is formed by oxidizing the surface of the first semiconductor layer 21, the electron-emitting device 1a is protected from failure and deterioration of each part due to sudden current (overcurrent). Can do.
[第2実施形態]
 次に、図5を参照して、第2実施形態の電子放出素子アレイ1Aについて説明する。この実施形態では、主に第1実施形態と異なる部分について説明する。
 図5に示すように、第2実施形態の電子放出素子アレイ1Aでは、半導体層3の第1半導体層21が、第2半導体層22に比して、段差被覆性の高い成膜条件で成膜されている。
[Second Embodiment]
Next, an electron-emitting device array 1A according to the second embodiment will be described with reference to FIG. In this embodiment, parts different from the first embodiment will be mainly described.
As shown in FIG. 5, in the electron-emitting device array 1 </ b> A of the second embodiment, the first semiconductor layer 21 of the semiconductor layer 3 is formed under film forming conditions having a higher step coverage than the second semiconductor layer 22. It is filmed.
 具体的には、上記製造方法の第1半導体層形成工程において、第1半導体層21の段差被覆性を良くすべく、シリコン粒子が高いエネルギーでターゲットに到達するようにスパッタリングを制御する。結果として、第1半導体層21は粒子の密度が密な膜となる。一方、第2半導体層形成工程では、安定した電子放出に必要な膜厚を得るための膜応力を緩和させる必要があり、シリコン粒子が低いエネルギーでターゲットに到達するようにスパッタリングを制御する。結果として、第2半導体層22は、粒子の密度が粗な膜となる。これにより、第1半導体層形成工程では、段差被覆性の良好な第1半導体層21が成膜される一方、第2半導体層形成工程では、電子放出に必要な安定した膜厚の第2半導体層22が成膜される。 Specifically, in the first semiconductor layer forming step of the manufacturing method, sputtering is controlled so that silicon particles reach the target with high energy in order to improve the step coverage of the first semiconductor layer 21. As a result, the first semiconductor layer 21 is a film having a dense particle density. On the other hand, in the second semiconductor layer forming step, it is necessary to relax the film stress for obtaining a film thickness necessary for stable electron emission, and sputtering is controlled so that silicon particles reach the target with low energy. As a result, the second semiconductor layer 22 is a film having a coarse particle density. Thereby, in the first semiconductor layer forming step, the first semiconductor layer 21 having good step coverage is formed, while in the second semiconductor layer forming step, the second semiconductor having a stable film thickness necessary for electron emission. Layer 22 is deposited.
 このように、本実施形態では、段差被覆性の良好な第1半導体層21が形成されるため、上記製造方法における平坦化工程を省略することが可能である。なお、この場合も、第1半導体層21上に保護抵抗層23を形成することが好ましい。 Thus, in this embodiment, since the first semiconductor layer 21 with good step coverage is formed, the planarization step in the manufacturing method can be omitted. In this case as well, it is preferable to form the protective resistance layer 23 on the first semiconductor layer 21.
 このように、第2実施形態の電子放出素子アレイ1Aにおいても、半導体層3を、第1半導体層21と第2半導体層22との2層構造としているため、第1半導体層21にシームSが発生しても、第2半導体層22にシームSが発生することがない。したがって、シームSに基づく、半導体層3の剛性の低下、半導体層3の部分的な膜剥れ、半導体層3や電流経路の縮小による電子放出効率の低下、を有効に防止することができる。 Thus, also in the electron-emitting device array 1A of the second embodiment, since the semiconductor layer 3 has a two-layer structure of the first semiconductor layer 21 and the second semiconductor layer 22, a seam S is formed on the first semiconductor layer 21. Even if this occurs, the seam S does not occur in the second semiconductor layer 22. Accordingly, it is possible to effectively prevent the rigidity of the semiconductor layer 3 from being lowered, the semiconductor layer 3 from being partially peeled off, and the electron emission efficiency from being reduced due to the semiconductor layer 3 and the current path being reduced.
[第3実施形態]
 次に、図6を参照して、実施形態の電子放出素子アレイ1Bについて詳細に説明する。この実施形態では、主に第1実施形態と異なる部分について説明する。
 図6に示すように、第3実施形態の電子放出素子アレイ1Bでは、半導体層3の第1半導体層21が、第2半導体層22に比して、段差被覆性の高い成膜方法で成膜されている。
[Third Embodiment]
Next, the electron-emitting device array 1B of the embodiment will be described in detail with reference to FIG. In this embodiment, parts different from the first embodiment will be mainly described.
As shown in FIG. 6, in the electron-emitting device array 1B of the third embodiment, the first semiconductor layer 21 of the semiconductor layer 3 is formed by a film forming method having a higher step coverage than the second semiconductor layer 22. It is filmed.
 具体的には、上記製造方法の第1半導体層形成工程において、第1半導体層21の成膜をCVD法で行って(制御して)、例えば微結晶の膜構造とする。一方、第2半導体層形成工程では、第2半導体層22の成膜を通常のスパッタリング法で行う。これにより、第1半導体層形成工程では、段差被覆性の良好な第1半導体層21が成膜される一方、第2半導体層形成工程では、電子放出に必要な安定した膜厚の第2半導体層22が成膜される。なお、第1半導体層形成工程を斜めスパッタリング法で行ってもよい。 Specifically, in the first semiconductor layer forming step of the above manufacturing method, the first semiconductor layer 21 is formed (controlled) by the CVD method to form, for example, a microcrystalline film structure. On the other hand, in the second semiconductor layer forming step, the second semiconductor layer 22 is formed by a normal sputtering method. Thereby, in the first semiconductor layer forming step, the first semiconductor layer 21 having good step coverage is formed, while in the second semiconductor layer forming step, the second semiconductor having a stable film thickness necessary for electron emission. Layer 22 is deposited. Note that the first semiconductor layer forming step may be performed by an oblique sputtering method.
 このように、本実施形態では、段差被覆性の良好な第1半導体層21が形成されるため、上記製造方法における平坦化工程を省略することが可能である。なお、この場合も、第1半導体層21上に保護抵抗層23を形成することが好ましい。 Thus, in this embodiment, since the first semiconductor layer 21 with good step coverage is formed, the planarization step in the manufacturing method can be omitted. In this case as well, it is preferable to form the protective resistance layer 23 on the first semiconductor layer 21.
 このように、第3実施形態の電子放出素子アレイ1Bにおいても、半導体層3を、第1半導体層21と第2半導体層22との2層構造としているため、第1半導体層21にシームSが発生しても、第2半導体層22にシームSが発生することがない。したがって、シームSに基づく、半導体層3の剛性の低下、半導体層3の部分的な膜剥れ、半導体層3や電流経路の縮小による電子放出効率の低下、を有効に防止することができる。 Thus, also in the electron-emitting device array 1B of the third embodiment, since the semiconductor layer 3 has a two-layer structure of the first semiconductor layer 21 and the second semiconductor layer 22, the seam S is formed on the first semiconductor layer 21. Even if this occurs, the seam S does not occur in the second semiconductor layer 22. Accordingly, it is possible to effectively prevent the rigidity of the semiconductor layer 3 from being lowered, the semiconductor layer 3 from being partially peeled off, and the electron emission efficiency from being reduced due to the semiconductor layer 3 and the current path being reduced.
 なお、これらの実施形態では、HEED型の電子放出素子アレイ1,1A,1Bについて説明したが、本発明は、面電子放出源であるBSD(弾道電子伝導電子源)やスピント型電子源にも適用可能である。 In these embodiments, the HEED type electron-emitting device arrays 1, 1A, and 1B have been described. However, the present invention also applies to a BSD (ballistic electron conduction electron source) or a Spindt-type electron source that is a surface electron emission source. Applicable.
 1,1A,1B 電子放出素子アレイ、1a 電子放出素子、2 下部電極層、3 半導体層、4 絶縁体層、5 上部電極層、9 絶縁隔壁、11 絶縁壁ベース、12 立設壁、21 第1半導体層、22 第2半導体層、23 保護抵抗層、100 撮像装置、101 電子放出基板部、102 真空空間、103 受光基板部、123 光電変換層、S シーム 1, 1A, 1B electron-emitting device array, 1a electron-emitting device, 2 lower electrode layer, 3 semiconductor layer, 4 insulator layer, 5 upper electrode layer, 9 insulating partition, 11 insulating wall base, 12 standing wall, 21st 1 semiconductor layer, 22 second semiconductor layer, 23 protective resistance layer, 100 imaging device, 101 electron emission substrate, 102 vacuum space, 103 light receiving substrate, 123 photoelectric conversion layer, S seam

Claims (14)

  1.  下部電極層と上部電極層との間に半導体層を備えた電子放出素子アレイであって、
     前記半導体層は、
     前記下部電極層側の第1半導体層と、前記上部電極層側の第2半導体層と、を有していることを特徴とする電子放出素子アレイ。
    An electron-emitting device array including a semiconductor layer between a lower electrode layer and an upper electrode layer,
    The semiconductor layer is
    An electron-emitting device array, comprising: a first semiconductor layer on the lower electrode layer side; and a second semiconductor layer on the upper electrode layer side.
  2.  前記下部電極層および前記半導体層が絶縁隔壁を介して複数に画素分離されていることを特徴とする請求項1に記載の電子放出素子アレイ。 2. The electron-emitting device array according to claim 1, wherein the lower electrode layer and the semiconductor layer are separated into a plurality of pixels via an insulating partition.
  3.  前記半導体層は、
     前記第1半導体層と前記第2半導体層との間に介設され、過電流に対する保護抵抗となる保護抵抗層を、更に有していることを特徴とする請求項1または2に記載の電子放出素子アレイ。
    The semiconductor layer is
    3. The electron according to claim 1, further comprising a protective resistance layer interposed between the first semiconductor layer and the second semiconductor layer and serving as a protective resistance against overcurrent. Emitting element array.
  4.  前記第1半導体層および前記第2半導体層は、シリコンを主成分とする半導体で構成され、
     前記保護抵抗層は、シリコンの酸化物で構成されていることを特徴とする請求項3に記載の電子放出素子アレイ。
    The first semiconductor layer and the second semiconductor layer are made of a semiconductor containing silicon as a main component,
    4. The electron-emitting device array according to claim 3, wherein the protective resistance layer is made of silicon oxide.
  5.  前記第1半導体層における前記第2半導体層側の表面は、平坦化処理されていることを特徴とする請求項1ないし4のいずれかに記載の電子放出素子アレイ。 5. The electron-emitting device array according to claim 1, wherein the surface of the first semiconductor layer on the second semiconductor layer side is flattened.
  6.  前記第1半導体層は、前記第2半導体層に比べて、膜の密度が高いことを特徴とする請求項1ないし4のいずれかに記載の電子放出素子アレイ。 5. The electron-emitting device array according to claim 1, wherein the first semiconductor layer has a higher film density than the second semiconductor layer.
  7.  前記第1半導体層は、前記第2半導体層に比べて、膜の密度が高い成膜方法で成膜されたことを特徴とする請求項1ないし4のいずれかに記載の電子放出素子アレイ。 5. The electron-emitting device array according to claim 1, wherein the first semiconductor layer is formed by a film forming method having a higher film density than the second semiconductor layer.
  8.  前記第1半導体層および前記第2半導体層は、シリコンを主成分とする半導体で構成され、
     前記第1半導体層は、前記第2半導体層に比べて、段差被覆性の高い成膜条件で成膜されたものであることを特徴とする請求項1ないし4のいずれかに記載の電子放出素子アレイ。
    The first semiconductor layer and the second semiconductor layer are made of a semiconductor containing silicon as a main component,
    5. The electron emission according to claim 1, wherein the first semiconductor layer is formed under a film forming condition having a step coverage higher than that of the second semiconductor layer. Element array.
  9.  前記第1半導体層および前記第2半導体層は、シリコンを主成分とする半導体で構成され、
     前記第1半導体層は、前記第2半導体層に比べて、段差被覆性の高い成膜方法で成膜されたものであること特徴とする請求項1ないし4のいずれかに記載の電子放出素子アレイ。
    The first semiconductor layer and the second semiconductor layer are made of a semiconductor containing silicon as a main component,
    5. The electron-emitting device according to claim 1, wherein the first semiconductor layer is formed by a film forming method having a higher step coverage than the second semiconductor layer. array.
  10.  請求項1ないし9のいずれかに記載の電子放出素子アレイ、および前記電子放出素子アレイを駆動する駆動回路を有する電子放出基板部と、
     真空空間を存して前記電子放出基板部に対面し、光電変換層を有する受光基板部と、を備えたことを特徴とする撮像装置。
    An electron-emitting substrate unit having an electron-emitting device array according to any one of claims 1 to 9, and a drive circuit that drives the electron-emitting device array,
    An image pickup apparatus comprising: a light receiving substrate portion having a photoelectric conversion layer facing the electron emission substrate portion in a vacuum space.
  11.  請求項2に記載の電子放出素子アレイの製造方法であって、
     前記第1半導体層および前記第2半導体層に、それぞれシリコンを主成分とする半導体を用い、
     第1絶縁隔壁により画素分離された前記下部電極層の上に前記第1半導体層を形成する第1半導体層形成工程と、
     前記第1半導体層の上表面を平坦化処理する平坦化工程と、
     前記第1半導体層の上に前記第2半導体層を形成する第2半導体層形成工程と、
     前記第1絶縁隔壁の上に第2絶縁隔壁を形成して、前記第1半導体層および前記第2半導体層を画素分離する絶縁壁形成工程と、
     前記第2半導体層および前記第2絶縁隔壁の上に、絶縁体層を介して前記上部電極層を形成する電極形成工程と、を備えたことを特徴とする電子放出素子アレイの製造方法。
    A method for manufacturing an electron-emitting device array according to claim 2,
    For each of the first semiconductor layer and the second semiconductor layer, a semiconductor containing silicon as a main component is used.
    A first semiconductor layer forming step of forming the first semiconductor layer on the lower electrode layer separated by pixels by a first insulating partition;
    A planarization step of planarizing the upper surface of the first semiconductor layer;
    A second semiconductor layer forming step of forming the second semiconductor layer on the first semiconductor layer;
    Forming an insulating wall on the first insulating partition, and forming an insulating wall for pixel separation of the first semiconductor layer and the second semiconductor layer;
    And an electrode forming step of forming the upper electrode layer on the second semiconductor layer and the second insulating partition via an insulator layer.
  12.  前記平坦化工程と前記第2半導体層形成工程との間に、
     前記第1半導体層の表面を酸化処理する酸化工程、を更に備えたことを特徴とする請求項11に記載の電子放出素子アレイの製造方法。
    Between the planarization step and the second semiconductor layer formation step,
    The method of manufacturing an electron-emitting device array according to claim 11, further comprising an oxidation step of oxidizing the surface of the first semiconductor layer.
  13.  前記平坦化工程に代えて、
     前記第2半導体層形成工程より段差被覆性の高い成膜条件で、前記第1半導体層形成工程を実施することを特徴とする請求項11に記載の電子放出素子アレイの製造方法。
    Instead of the planarization step,
    12. The method of manufacturing an electron-emitting device array according to claim 11, wherein the first semiconductor layer forming step is performed under a film forming condition having a step coverage higher than that of the second semiconductor layer forming step.
  14.  前記平坦化工程に代えて、
     前記第2半導体層形成工程より段差被覆性の高い成膜方法で、前記第1半導体層形成工程を実施することを特徴とする請求項11に記載の電子放出素子アレイの製造方法。
    Instead of the planarization step,
    12. The method of manufacturing an electron-emitting device array according to claim 11, wherein the first semiconductor layer forming step is performed by a film forming method having a step coverage higher than that of the second semiconductor layer forming step.
PCT/JP2014/068733 2014-07-14 2014-07-14 Electron emitting element array, image pickup device, and method for manufacturing electron emitting element array WO2016009484A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/068733 WO2016009484A1 (en) 2014-07-14 2014-07-14 Electron emitting element array, image pickup device, and method for manufacturing electron emitting element array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/068733 WO2016009484A1 (en) 2014-07-14 2014-07-14 Electron emitting element array, image pickup device, and method for manufacturing electron emitting element array

Publications (1)

Publication Number Publication Date
WO2016009484A1 true WO2016009484A1 (en) 2016-01-21

Family

ID=55078008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068733 WO2016009484A1 (en) 2014-07-14 2014-07-14 Electron emitting element array, image pickup device, and method for manufacturing electron emitting element array

Country Status (1)

Country Link
WO (1) WO2016009484A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002197970A (en) * 1997-08-27 2002-07-12 Matsushita Electric Ind Co Ltd Manufacturing method for electron emitting element and manufacturing method for field emitting display device
JP2004206967A (en) * 2002-12-24 2004-07-22 Matsushita Electric Works Ltd Method of manufacturing field emission type electron source
JP2004214016A (en) * 2002-12-27 2004-07-29 Matsushita Electric Works Ltd Field emission type electron source and its manufacturing method
JP2004221076A (en) * 2002-12-27 2004-08-05 Matsushita Electric Works Ltd Field emission type electron source and its manufacturing method
JP2010028267A (en) * 2008-07-16 2010-02-04 Pioneer Electronic Corp Imaging apparatus
JP2011216349A (en) * 2010-03-31 2011-10-27 Panasonic Electric Works Co Ltd Electron source

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002197970A (en) * 1997-08-27 2002-07-12 Matsushita Electric Ind Co Ltd Manufacturing method for electron emitting element and manufacturing method for field emitting display device
JP2004206967A (en) * 2002-12-24 2004-07-22 Matsushita Electric Works Ltd Method of manufacturing field emission type electron source
JP2004214016A (en) * 2002-12-27 2004-07-29 Matsushita Electric Works Ltd Field emission type electron source and its manufacturing method
JP2004221076A (en) * 2002-12-27 2004-08-05 Matsushita Electric Works Ltd Field emission type electron source and its manufacturing method
JP2010028267A (en) * 2008-07-16 2010-02-04 Pioneer Electronic Corp Imaging apparatus
JP2011216349A (en) * 2010-03-31 2011-10-27 Panasonic Electric Works Co Ltd Electron source

Similar Documents

Publication Publication Date Title
US9812481B2 (en) Solid-state imaging device and manufacturing method of the same, and electronic apparatus
US20060043437A1 (en) Transparent metal shielded isolation for image sensors
US8039808B2 (en) Performance solid state detectors
JP2009176777A (en) Solid-state image pickup apparatus, manufacturing method thereof and camera
CN105489621A (en) Back-illuminated integrated imaging device with simplified interconnect routing
CN109427834A (en) Improve the image sensor apparatus and its manufacturing method of shutter efficiency
JP2016033972A (en) Imaging apparatus and imaging system
JP2012175067A (en) Image pickup device, and manufacturing method therefor, and electronic apparatus
WO2012070171A1 (en) Solid-state imaging device and manufacturing method thereof
JP2011159758A (en) Solid-state imaging device and method of manufacturing the same, and electronic equipment
US11942493B2 (en) Imaging device and electronic device
US20220208608A1 (en) Semiconductor device and manufacturing method of semiconductor device
US20220293651A1 (en) Pixel sensor including a layer stack
WO2016009484A1 (en) Electron emitting element array, image pickup device, and method for manufacturing electron emitting element array
JP2008034699A (en) Solid-state image pickup element and method for manufacturing the same, electronic information equipment and ionization sputtering device
JP5301683B2 (en) Electron emitting device and imaging apparatus provided with the same
JP5328939B2 (en) Electron emitting device and imaging apparatus provided with the same
JP2006189296A (en) Radiation detector and its manufacturing method
US20120086010A1 (en) Electronic image detection device
JP2009140983A (en) Solid-state imaging device
JP2007180092A (en) Imaging device
WO2012168970A1 (en) Electron emission element and image pickup apparatus provided with same
TW202235924A (en) Pixel sensor
JPWO2012168970A1 (en) Electron emitting device and imaging apparatus provided with the same
JP2013531349A (en) Charged particle collector for CMOS image sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14897610

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14897610

Country of ref document: EP

Kind code of ref document: A1