WO2016006614A1 - Functional nonwoven used for molded resin body, molded resin body obtained using said nonwoven, and method for manufacturing said molded resin body - Google Patents

Functional nonwoven used for molded resin body, molded resin body obtained using said nonwoven, and method for manufacturing said molded resin body Download PDF

Info

Publication number
WO2016006614A1
WO2016006614A1 PCT/JP2015/069565 JP2015069565W WO2016006614A1 WO 2016006614 A1 WO2016006614 A1 WO 2016006614A1 JP 2015069565 W JP2015069565 W JP 2015069565W WO 2016006614 A1 WO2016006614 A1 WO 2016006614A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
resin
nonwoven fabric
molded body
resin molded
Prior art date
Application number
PCT/JP2015/069565
Other languages
French (fr)
Japanese (ja)
Inventor
津田 統
浩 北原
恵一郎 和田
高士 見置
Original Assignee
株式会社巴川製紙所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社巴川製紙所 filed Critical 株式会社巴川製紙所
Publication of WO2016006614A1 publication Critical patent/WO2016006614A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/10Organic non-cellulose fibres
    • D21H13/20Organic non-cellulose fibres from macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/36Inorganic fibres or flakes
    • D21H13/46Non-siliceous fibres, e.g. from metal oxides
    • D21H13/48Metal or metallised fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/36Inorganic fibres or flakes
    • D21H13/46Non-siliceous fibres, e.g. from metal oxides
    • D21H13/50Carbon fibres

Definitions

  • the present invention relates to a nonwoven fabric or the like that can achieve both functional provision (for example, electromagnetic wave shielding provision) and good workability.
  • Resin molding material having some function such as a shield material, by in-mold integral molding, insert mold integral molding, hot pressing, etc., in order to give functionality (including decoration) to the surface or surface layer of the resin molded body
  • a method for integrating the resin and the resin has been proposed.
  • a shield material formed in a sheet shape is inserted and installed between the split surfaces of the mold opening state of the molding die provided with a molding cavity and formed to be openable and closable through the split surfaces
  • a method for producing a molded article with a shield material in which a thermoplastic resin material is injected and filled into the molding cavity after the mold is closed, and the shield material is transferred to one surface of the molded article.
  • the shield material is fixed to the molded article by using a shield material formed in a mesh shape or a woven fabric shape with fibers made of a conductive material, and by allowing a part of the thermoplastic resin material to enter between the fibers.
  • a method for producing a molded article with a shielding material characterized by the above.
  • Patent Document 2 states that “when joining a thermoplastic laser-permeable resin member and a porous member, the laser-permeable resin member and the porous member are laminated, and the laser-permeable resin member side is laminated.
  • the laser transmission is characterized in that the porous member is heated by irradiating a laser to melt the laser permeable resin member, impregnating the melted resin into the pores of the porous member, and then cooling and solidifying.
  • a bonding method between the conductive resin member and the porous member is disclosed.
  • the object of the present invention is to provide a resin molding material capable of achieving both functionalization (for example, electromagnetic wave shielding) and good workability, in contrast to the resin molding material according to the conventional technology.
  • the present inventors ensured the balance of the surface resistance value, tensile strength, and air permeability resistance of the nonwoven fabric, thereby imparting functionality (for example, imparting electromagnetic shielding properties) and It has been found that it is possible to provide a nonwoven fabric capable of achieving both good processability.
  • the present inventors have conducted trial and error on various materials, compositions, shapes, manufacturing methods, etc. in order to ensure the balance of the surface resistance value, tensile strength, and air permeability resistance of the nonwoven fabric. Completed the invention.
  • the present invention (1) is a functional non-woven fabric used for a resin molded article obtained by making a slurry obtained by adding 20 to 70 parts by mass of organic fibers to 30 to 80 parts by mass of conductive fibers. is there.
  • the organic fiber includes a first thermoplastic resin fiber having a softening point of less than 140 ° C. and a second thermoplastic resin fiber having a softening point of 140 ° C. or higher. It is a functional nonwoven fabric of invention (1).
  • the present invention (3) is based on the total mass of the first thermoplastic resin fiber and the second thermoplastic resin fiber, the ratio of the mass of the first thermoplastic resin fiber to the total mass Is a functional nonwoven fabric according to the invention (2), wherein 0.07 to 0.95.
  • the conductive fiber includes at least one of stainless fiber, carbon fiber, and copper fiber
  • the invention (5) is the functional nonwoven fabric of the invention (4), wherein the polyphenylene sulfide fiber contains 50 to 100% by mass of unstretched polyphenylene sulfide fiber based on the whole polyphenylene sulfide fiber.
  • the present invention (6) is the functional nonwoven fabric according to any one of the inventions (1) to (5), which is used when a resin molded product is produced by injection molding.
  • the present invention (7) is characterized in that the functional nonwoven fabric used in the resin molded body according to any one of the inventions (1) to (6) is integrated with the surface layer or inside of the thermoplastic resin. It is a resin molding.
  • the thermoplastic resin is at least one selected from the group consisting of a polyarylene sulfide resin, a polybutylene terephthalate resin, a polyacetal resin, and a liquid crystal polymer resin. It is.
  • the present invention (9) is a method for producing a resin molded body comprising a step of integrating the functional nonwoven fabric according to any one of the inventions (1) to (5) into the surface layer or inside of a thermoplastic resin,
  • the integrating step is one of injection molding, laser welding, high-frequency induction heating welding, and hot pressing.
  • the nonwoven fabric according to the present invention when used, in contrast to conventional resin molding materials, it provides functionality (for example, imparting electromagnetic shielding properties) and good workability (for example, suppression characteristics such as gas burning and weld lines). It is possible to achieve both. Furthermore, the resin molded body obtained using the nonwoven fabric according to the present invention also has an advantage that it is difficult to detach or peel from the surface or surface layer of the resin molded body.
  • the present invention is a functional non-woven fabric used for a resin molded article obtained by making a slurry obtained by adding 20 to 70 parts by mass of organic fibers to 30 to 80 parts by mass of conductive fibers.
  • a slurry obtained by adding 20 to 70 parts by mass of organic fibers to 30 to 80 parts by mass of conductive fibers.
  • conductive fiber examples include carbon fibers, metal-coated carbon fibers, stainless fibers, aluminum fibers, copper fibers, brass fibers, and other inorganic fibers, and metal-coated glass fibers.
  • carbon fiber, copper fiber, or stainless steel fiber is particularly excellent in degassing characteristics. This is because these fibers are highly rigid, so that the gas on the resin side can be discharged almost certainly through the skeleton of the fibers during processing.
  • these fibers are preferable from the viewpoint of excellent electromagnetic shielding properties. Two or more of these can be used in combination.
  • conductive as used in the present specification and claims means that the volume resistivity is less than 100 ⁇ cm.
  • functionality as used in the present specification and claims refers to the ability to impart shielding properties and thermal conductivity.
  • carbon fibers include, for example, trading cards manufactured by Toray Industries, Inc., besfite filaments manufactured by Toho Tenax Co., Ltd., and pyrofils manufactured by Mitsubishi Rayon Co., Ltd.
  • stainless fibers include For example, stainless steel fibers manufactured by Nippon Seisen Co., Ltd. or Bekaert Co., Ltd. can be mentioned, and specific examples of copper fibers include C1100 manufactured by Nijigi Co., Ltd.
  • these conductive fibers may be surface-treated with a silane coupling agent, a titanate coupling agent, an aluminate coupling agent, or the like in order to improve the adhesion with the resin molded body component.
  • the average fiber length of the conductive fibers is preferably in the range of 1 mm to 10 mm, more preferably in the range of 3 mm to 6 mm. When the average fiber length is within this range, it is easier to balance the electromagnetic shielding properties of the resin molded body in addition to the ease of manufacturing the nonwoven fabric.
  • "average fiber length" in this specification including the organic fiber and PPS fiber which are demonstrated below is a value which measured 20 values with the microscope and averaged the measured value.
  • the fiber diameter of the conductive fibers is preferably in the range of an average fiber diameter of 1 to 20 ⁇ m. When the average fiber diameter is within this range, it is easier to balance the moldability of the resin molded body and the electromagnetic wave shielding property in addition to the ease of manufacturing the nonwoven fabric.
  • “average fiber diameter” in the present specification calculates a cross-sectional area based on a cross-section of a fiber imaged with a microscope (for example, with known software), and calculates a diameter of a circle having the same area as the cross-sectional area. It is the average value of the area diameter derived by this (average value of 20 fibers).
  • organic fiber examples include polyamide fiber, polyester fiber, polyethylene terephthalate fiber (hereinafter also referred to as PET or PET fiber), acrylic fiber, polyolefin fiber, aramid fiber, polyethylene naphthalate fiber, polybutylene terephthalate fiber, poly Examples include arylene sulfide resin ⁇ for example, polyphenylene sulfide fiber (hereinafter also referred to as PPS fiber) ⁇ , polyacetal fiber, liquid crystal polymer fiber, polyimide fiber, cotton, hemp and the like. These can be used alone or in combination of two or more. Moreover, when heat resistance is required, a PPS fiber can be used conveniently.
  • modified polyethylene terephthalate fibers can be suitably used from the viewpoint of sheet shape retention after papermaking and drying.
  • the “modified polyethylene terephthalate” means an ethylene glycol unit and a terephthalic acid unit as main structural units, an isophthalic acid unit, a phthalic acid unit, a 2,3-naphthalene dicarboxylic acid unit, and a 5-alkali metal sulfoisophthalic acid unit.
  • Aromatic dicarboxylic acid units such as adipic acid units, azelaic acid units, sebacic acid units and other aliphatic dicarboxylic acid units; diethylene glycol units, propylene glycol units, 1,4-butanediol units and other diol units
  • These organic fibers may be surface-treated with a silane coupling agent, a titanate coupling agent, an aluminate coupling agent or the like in order to improve the adhesion with the resin molded body component.
  • a stretched or unstretched PPS fiber can be used.
  • the stretched or unstretched PPS fiber can be used. It is preferable to mainly use PPS fibers.
  • the unstretched PPS resin is contained in an amount of 50 to 100% by mass of the entire PPS fiber. Since the unstretched PPS fiber has not progressed in crystallization, it tends to be melted at the time of heat calendering described later or during resin molding, and tends to ensure adhesion with the resin for the molded body.
  • the unstretched or stretched PPS fiber may be beaten to adjust the average fiber length or make it fluffy.
  • a beating process method it can carry out suitably by SDR, DDR, a beater etc. which are generally used in a papermaking process.
  • a PPS resin powder that has been made into a fiber by beating treatment can also be used. From the viewpoint of cost, it is advantageous to use the PPS resin powder rather than the PPS fiber, but it is difficult to make the resin powder as it is in the wet papermaking process.
  • the organic fiber includes a first thermoplastic resin fiber having a first softening point and a second thermoplastic resin fiber having a softening point higher than the first softening point.
  • a combination of thermoplastic resin fibers having different softening points can provide functionality (for example, imparting electromagnetic shielding properties) and good workability (for example, suppression characteristics such as gas burning and weld lines). It is more convenient to achieve both.
  • the organic fiber may include a first thermoplastic resin fiber (binding fiber) having a softening point of less than 140 ° C. and a second thermoplastic resin fiber having a softening point of 140 ° C. or higher. Is preferred.
  • the first thermoplastic resin fiber melts at the drying temperature at the time of papermaking, thereby serving to fuse the metal fiber and the second thermoplastic resin fiber.
  • "140 degreeC” here is a drying temperature at the time of general papermaking. That is, in other words, it is particularly preferable to select the first and second thermoplastic resin fibers such that the softening points of the first and second thermoplastic resin fibers straddle the drying temperature.
  • the “softening point” in the present specification and claims is a value measured according to the following measurement method. (Measurement method of softening point) Using 3 g of organic fibers, the fibers are entangled to prepare an approximately 8 ⁇ 8 cm rectangular body having a substantially uniform thickness. Then, the substantially rectangular body is sandwiched between two metal plates, and the substantially rectangular body is heated at a predetermined temperature for 2 minutes in a pressurized state of 100 g / cm 2 while maintaining the state. Then, it is cooled and lifted, and it is confirmed whether or not it is bound into a sheet.
  • At least one of the organic fibers is preferably the same type as the resin for the resin molded body from the viewpoint of improving processability.
  • the average fiber length of the organic fiber according to the present invention is preferably in the range of 1 mm to 10 mm, more preferably 3 mm to 6 mm. If the average fiber length is within the above range, the moldability of the resin molded body can be further improved in addition to the ease of producing the nonwoven fabric.
  • the average fiber diameter of the organic fibers is preferably in the range of 1 ⁇ m to 30 ⁇ m. When the average fiber diameter is within the above range, the entanglement of the added fibers is easy to proceed, and a supple nonwoven fabric can be obtained, so that the processing characteristics when integrated into the resin molded body are excellent.
  • conductive fibers and organic fibers As raw materials, but other components may be added depending on the application.
  • other components for example, glass fiber, magnesium silicate fiber, or inorganic fiber such as glass wool, slag wool, rock wool, etc., for example, calcium carbonate, cinnabar sand, microsilica, mica, hydroxide
  • Various powders such as aluminum can be supported on the functional nonwoven fabric of the present invention.
  • the blending amount of the conductive fiber is 30 to 80 parts by mass, preferably 40 to 80 parts by mass with respect to 20 to 70 parts by mass of the organic fiber.
  • the organic fiber that is one raw material of the nonwoven fabric according to the present invention has a first thermoplastic resin fiber (binding fiber) whose softening point is the first temperature (preferably less than 140 ° C.); And a second thermoplastic resin fiber having a second softening point higher than the first temperature (preferably 140 ° C. or higher).
  • first thermoplastic resin fiber binding fiber
  • second thermoplastic resin fiber having a second softening point higher than the first temperature (preferably 140 ° C. or higher).
  • the ratio of the mass of the first thermoplastic resin fiber to the total mass is 0. 0.07 to 0.95 is preferable, 0.10 to 0.93 is more preferable, and 0.15 to 0.50 is still more preferable.
  • the nonwoven fabric according to the present invention is obtained by making a slurry (wet paper making method) by adding 20 to 70 parts by mass of organic fibers to 30 to 80 parts by mass of conductive fibers.
  • the method for producing the functional nonwoven fabric by wet papermaking method is a papermaking slurry formed by adding one or more kinds of conductive fibers and organic fibers and other raw materials as required.
  • the sheet is formed by the wet papermaking method, it includes a fiber entanglement process step in which the conductive fibers and the organic fibers forming the sheet containing moisture on the net are entangled with each other.
  • each process is explained in full detail.
  • Paper making process For the paper making process, various methods such as long net paper making, circular net paper making, inclined wire paper making and the like can be adopted as necessary. In addition, when manufacturing a slurry containing long-fiber conductive fibers and / or organic fibers, the dispersibility of these fibers in water may be deteriorated, so that polyvinylpyrrolidone, polyvinyl alcohol, and carboxymethylcellulose having a thickening action A small amount of an aqueous polymer solution such as (CMC) may be added.
  • CMC aqueous polymer solution
  • a fiber entanglement treatment step of injecting a high-pressure jet water stream onto the functional nonwoven fabric surface after paper making is preferably employed.
  • the fibers can be entangled over the entire sheet by the technique (for example, a technique in which a plurality of nozzles are arranged in a direction orthogonal to the flow direction of the sheet and a high-pressure jet water stream is simultaneously ejected from the nozzles). It is possible. That is, for example, by injecting a high-pressure jet water stream in the Z-axis direction of the sheet into a sheet composed of fibers etc.
  • each of the portions where the high-pressure jet water stream is injected The fibers are oriented in the Z-axis direction.
  • Each fiber oriented in the Z-axis direction is entangled between fibers irregularly oriented in the plane direction, and each fiber is entangled three-dimensionally with each other, that is, the physical strength can be obtained by entanglement. is there.
  • the organic fiber constituting the functional nonwoven fabric is dried by heating at a temperature equal to or higher than the softening point of at least one kind (first thermoplastic resin fiber) (removal of a dispersion medium such as water). It is preferable to do. As a result, an adhesive effect is produced between fibers heated above the softening point, or between fibers heated above the softening point and other fibers (for example, metal fibers). It is possible to increase the pressure resistance of the functional nonwoven fabric when the is injected.
  • first thermoplastic resin fiber removal of a dispersion medium such as water
  • thermal calendar process A thermal calendar can be further applied after the above step.
  • the functional non-woven fabric with heat and pressure, for example, the organic fibers that have not been fused in the dryer step are fused, exhibit further adhesion effects, and the distance between the conductive fibers by pressurization By shrinking, the electromagnetic wave shielding property of the functional nonwoven fabric can be further enhanced.
  • the obtained functional nonwoven fabric may be configured to include a sintering step in which the functional nonwoven fabric is sintered in a vacuum or in a non-oxidizing atmosphere at a temperature not higher than the melting point of the conductive fibers. That is, if the sintering process is performed after the wet papermaking process described above, the fixing of the conductive fiber entangled portion is promoted, and therefore the electromagnetic wave shielding property and heat of the functional nonwoven fabric used in the resin molded body of the present invention. There is an advantage that the conductivity is easily improved.
  • the air resistance of the functional nonwoven fabric used in the resin molded product of the present invention is preferably 10 sec or less, and more preferably 3 sec or less. Within this range, it is possible to provide a nonwoven fabric that can exhibit better processability during the production of a resin molded body. Further, the air resistance is not particularly limited as long as the strength required for the functional nonwoven fabric is maintained. The air resistance is a value measured according to JIS P8117.
  • the basis weight of the functional nonwoven fabric used in the resin molded body of the present invention is preferably 50 g / m 2 to 500 g / m 2 , more preferably 90 g / m 2 to 400 g / m 2 .
  • a nonwoven fabric capable of imparting higher electromagnetic wave shielding properties and the like to the resulting resin molded article and exhibiting superior processability during the production of the resin molded article within the range. It becomes possible.
  • Density functional nonwoven used for resin molding of the present invention is preferably 1.20g / cm 3 ⁇ 1.90g / cm 3. Provided a nonwoven fabric capable of imparting higher electromagnetic wave shielding properties and the like to the resulting resin molded article and exhibiting superior processability during the production of the resin molded article within the range. It becomes possible.
  • the thickness of the functional nonwoven fabric used in the resin molded product of the present invention is preferably 50 ⁇ m to 320 ⁇ m, and more preferably 50 ⁇ m to 100 ⁇ m. Within this range, it is possible to provide a nonwoven fabric that can exhibit better processability during the production of a resin molded body.
  • the tensile strength of the functional nonwoven fabric used in the resin molded body of the present invention is preferably 10N or more, and more preferably 25N or more. Within this range, it is possible to provide a nonwoven fabric that can exhibit better processability during the production of a resin molded body.
  • the tensile strength and tensile elongation were measured according to JIS P8113, with the sheet width in the tensile direction being 15 mm.
  • the functional nonwoven fabric is presumed to exist in a state in which conductive fibers and organic fibers are appropriately entangled with each other and have micropores. Thereby, it is understood that the functional nonwoven fabric has an appropriate surface resistance value, an appropriate tensile strength, and an appropriate air resistance. For this reason, while being able to provide high electromagnetic shielding property etc. to a resin molding, it becomes possible to exhibit the extremely outstanding workability at the time of manufacture of a resin molding.
  • thermoplastic resin to be bonded to the functional nonwoven fabric of the present invention is not particularly limited.
  • thermoplastic resin include polyamide resin, polyester resin, polyethylene terephthalate resin (hereinafter also referred to as PET resin), acrylic resin, polyolefin resin, aramid resin, polyethylene naphthalate resin, polybutylene terephthalate resin, and polyarylene sulfide resin.
  • polyphenylene sulfide resin hereinafter also referred to as PPS resin
  • polyacetal resin polyacetal resin
  • liquid crystal polymer resin polyimide resin
  • PPS resin polyphenylene sulfide resin
  • polyacetal resin polyacetal resin
  • liquid crystal polymer resin polyimide resin
  • PPS resin polyphenylene sulfide resin
  • polyacetal resin polyacetal resin
  • liquid crystal polymer resin polyimide resin
  • the thermoplastic resin may contain, as necessary, other components such as an inorganic filler, a lubricant, carbon black, a nucleating agent, a flame retardant, a flame retardant aid, an antioxidant, a metal deactivator, a UV absorber, It may contain polymers such as stabilizers, plasticizers, pigments, dyes, colorants, antistatic agents, foaming agents, other resins, and additives.
  • the method for producing the resin molded body according to the present invention that is, the method for integrating the functional nonwoven fabric and the thermoplastic resin used in the resin molded body of the present invention is not particularly limited, and a known method is adopted. can do. For example, it can be produced by in-mold integral molding by injection molding, insert mold integral molding, laser welding, high-frequency induction heating welding, hot pressing, or the like. However, among these, the functional nonwoven fabric according to the present invention is particularly suitable for injection molding. Although a technique for impregnating a molten resin into a nonwoven fabric is known, many are techniques for heating and pressing a sheet-like resin.
  • the functional nonwoven fabric according to the present invention has a function of discharging the gas on the molten resin side through the functional nonwoven fabric, and thus is particularly suitable for injection molding as described above. .
  • Example 1 Stainless fiber with an average fiber length of 4 mm, an average fiber diameter of 8 ⁇ m, an average fiber length of 5 mm, an average fiber diameter of 22 ⁇ m, an unstretched polyphenylene sulfide fiber with a softening point of 200 ° C., an average fiber length of 3 mm, an average fiber diameter of 10 ⁇ m, and an isophthalate with a softening point of 120 ° C.
  • the acid-modified polyethylene terephthalate fiber was stirred for 5 minutes using an agitator with the following composition and dispersed in water.
  • Stainless steel fiber 45 parts by mass Unstretched polyphenylene sulfide fiber: 45 parts by mass Isophthalic acid-modified polyethylene terephthalate fiber: 10 parts by mass Water 100 parts by mass Then, the above fiber dispersion 2L was poured into a square handmaking machine and simply dehydrated. Thereafter, moisture was further removed using a Yankee dryer heated to 140 ° C., and fibers constituting the nonwoven fabric were bound together by melting isophthalic acid-modified polyethylene terephthalate fibers. The nonwoven fabric thus formed into a sheet is heated to 210 ° C. and passed through a heat calender pressurized to 2 kg / cm 2 , and further heated and compressed to promote binding. The functional nonwoven used was obtained.
  • Thermoplastic resin polyphenylene sulfide resin composition (manufactured by Polyplastics Co., Ltd., “Durafide (registered trademark) 1140A7 (HF2000)”)
  • Injection molding machine SE100D, manufactured by Sumitomo Heavy Industries, Ltd.
  • Molded body shape flat plate having a length of 80 mm, a width of 80 mm, and a thickness of 4 mm (one side surface layer of the flat plate and the nonwoven fabric were integrated) Molding conditions: cylinder temperature: 320 ° C., mold temperature: 150 ° C., injection speed: 10 mm / sec, holding pressure: 50 MPa, holding pressure time: 15 sec, cooling time: 15 sec
  • the functional nonwoven fabric was sandwiched between thermoplastic resin plates and integrated by laser welding to obtain a resin molded body of the present invention.
  • Laser welding equipment Laser welding system NOVOLAS C (manufactured by Leister Technologies)
  • Thermoplastic resin plate Polyphenylene sulfide resin composition (manufactured by Polyplastics Co., Ltd., "Durafide (registered trademark) 0220A9 (HF2000)", by injection molding machine (Sumitomo Heavy Industries, Ltd., SE100D) Two test pieces (flat plates) having a cylinder temperature of 320 ° C. and a mold temperature of 150 ° C.
  • Hot press machine Mini test press MP-SNH (manufactured by Toyo Seiki Seisakusho)
  • Thermoplastic resin plate Polyplastics Co., Ltd., “Durafide (registered trademark) 0220A9 (HD9100)”, injection molding machine (Sumitomo Heavy Industries, Ltd., SE100D), cylinder temperature 320 ° C., gold
  • One test piece (flat plate) having a mold temperature of 150 ° C. and a length of 50 mm, a width of 50 mm, and a thickness of 3 mm was produced.
  • Example 2 A functional nonwoven fabric used for the resin molded body of Example 2 was obtained in the same manner as in Example 1 except that 30 parts by mass of stainless steel fiber and 60 parts by mass of unstretched polyphenylene sulfide fiber were obtained. Furthermore, the functional nonwoven fabric was integrated with the surface of the polyphenylene sulfide resin molded body by in-mold injection molding to obtain the resin molded body of the present invention. In addition, integration by injection molding was implemented in the following examples including this example.
  • Example 3 A functional nonwoven fabric used for the resin molded body of Example 3 was obtained in the same manner as in Example 1 except that 80 parts by mass of stainless steel fibers and 10 parts by mass of unstretched polyphenylene sulfide fibers were obtained. Furthermore, the functional nonwoven fabric was integrated with the surface of the polyphenylene sulfide resin molded body by in-mold injection molding to obtain the resin molded body of the present invention.
  • Example 4 A functional nonwoven fabric used for the resin molded body of Example 4 was obtained in the same manner as in Example 1 except that the fiber dispersion was 10 L. Furthermore, the functional nonwoven fabric was integrated with the surface of the polyphenylene sulfide resin molded body by in-mold injection molding to obtain the resin molded body of the present invention.
  • Example 5 A functional nonwoven fabric used for the resin molded body of Example 5 was obtained in the same manner as in Example 1 except that stainless steel fibers having an average fiber length of 1 mm and an average fiber diameter of 8 ⁇ m were used. Furthermore, the functional nonwoven fabric was integrated with the surface of the polyphenylene sulfide resin molded body by in-mold injection molding to obtain the resin molded body of the present invention.
  • Example 6 A functional nonwoven fabric used for the resin molded body of Example 6 was obtained in the same manner as in Example 1 except that stainless steel fibers having an average fiber length of 10 mm and an average fiber diameter of 8 ⁇ m were used. Furthermore, the functional nonwoven fabric was integrated with the surface of the polyphenylene sulfide resin molded body by in-mold injection molding to obtain the resin molded body of the present invention.
  • Example 7 A functional nonwoven fabric used for the resin molded body of Example 7 is obtained in the same manner as in Example 1 except that unstretched polyphenylene sulfide fibers having an average fiber length of 1 mm, an average fiber diameter of 22 ⁇ m, and a softening point of 200 ° C. are used. It was. Furthermore, the functional nonwoven fabric was integrated with the surface of the polyphenylene sulfide resin molded body by in-mold injection molding to obtain the resin molded body of the present invention.
  • Example 8 Used in the resin molded body of Example 8 in the same manner as in Example 1 except that polyethylene terephthalate fiber having an average fiber length of 5 mm, an average fiber diameter of 7 ⁇ m, and a softening point of 225 ° C. was used instead of unstretched polyphenylene sulfide fiber. A functional nonwoven fabric was obtained. Furthermore, the functional nonwoven fabric was integrated with the surface of the polyphenylene sulfide resin molded body by in-mold injection molding to obtain the resin molded body of the present invention.
  • Example 9 A functional nonwoven fabric used for the resin molding of Example 9 was obtained in the same manner as in Example 1 except that 5 parts by mass of unstretched polyphenylene sulfide fiber and 50 parts by mass of isophthalic acid-modified polyethylene terephthalate fiber were obtained. . Furthermore, the functional nonwoven fabric was integrated with the surface of the polyphenylene sulfide resin molded body by in-mold injection molding to obtain the resin molded body of the present invention.
  • Example 10 A functional nonwoven fabric used for the resin molding of Example 10 was obtained in the same manner as in Example 1 except that 25 parts by mass of unstretched polyphenylene sulfide fiber and 30 parts by mass of isophthalic acid-modified polyethylene terephthalate fiber were obtained. . Furthermore, the functional nonwoven fabric was integrated with the surface of the polyphenylene sulfide resin molded body by in-mold injection molding to obtain the resin molded body of the present invention.
  • Example 2 A functional nonwoven fabric used for the resin molded article of Comparative Example 2 was obtained in the same manner as in Example 1 except that the stainless fiber was not added and that 90 parts by mass of unstretched polyphenylene sulfide fiber was used. Furthermore, the functional nonwoven fabric was integrated with the surface of the polyphenylene sulfide resin molded body by in-mold injection molding to obtain the resin molded body of the present invention.
  • Comparative Example 3 A functional nonwoven fabric used for the resin molding of Comparative Example 3 is obtained in the same manner as in Example 1 except that 100 parts by mass of stainless steel fiber, unstretched polyphenylene sulfide fiber, and isophthalic acid-modified polyethylene terephthalate fiber are not added. It was. Furthermore, the functional nonwoven fabric was integrated with the surface of the polyphenylene sulfide resin molded body by in-mold injection molding to obtain the resin molded body of the present invention.
  • Comparative Example 4 A functional nonwoven fabric used for the resin molding of Comparative Example 4 was obtained in the same manner as in Example 1 except that 85 parts by mass of stainless steel fibers and 5 parts by mass of unstretched polyphenylene sulfide fibers were obtained. Furthermore, the functional nonwoven fabric was integrated with the surface of the polyphenylene sulfide resin molded body by in-mold injection molding to obtain the resin molded body of the present invention.
  • Comparative Example 5 A functional nonwoven fabric used for the resin molding of Comparative Example 5 was obtained in the same manner as in Example 1 except that 20 parts by mass of stainless steel fiber and 70 parts by mass of unstretched polyphenylene sulfide fiber were obtained. Furthermore, the functional nonwoven fabric was integrated with the surface of the polyphenylene sulfide resin molded body by in-mold injection molding to obtain the resin molded body of the present invention.
  • Table 1 shows an outline of the constitution of the functional nonwoven fabric produced in Examples 1 to 10 and Comparative Examples 1 to 5.
  • the air resistance was measured for the functional nonwoven fabrics produced in the examples and comparative examples.
  • the air resistance was measured according to JIS P8117. The evaluation was carried out with a case where the air permeability resistance was less than 3 seconds, a case where it was 3-10 seconds, a case where it was more than 10 seconds, and a case where it was more than 10 seconds.
  • the tensile strength and the tensile elongation were measured for the functional nonwoven fabrics produced in Examples and Comparative Examples.
  • the tensile strength and tensile elongation were measured according to JIS P8113, with the sheet width in the tensile direction being 15 mm.
  • the evaluation was carried out with a case where the tensile strength was 25N or more, ⁇ , a case where the tensile strength was less than 8 to 25N, and a case where the tensile strength was less than 8N.
  • the surface resistivity was measured for the functional nonwoven fabrics produced in Examples and Comparative Examples. Using Loresta AX MCP-T370 (manufactured by Mitsubishi Analytech Co., Ltd.), any five locations of the functional nonwoven fabrics produced in the examples and comparative examples were tested by the resistivity test method based on the 4-probe method of JIS K7194 conductive plastic. The average value was measured as the surface resistance value. The lower the surface resistance, the more easily the electromagnetic wave shielding effect is expressed.
  • the effective radiated power is attenuated by 99.9% due to the shielding effect of 30 dBm
  • a sufficient electromagnetic shielding effect can be expected if the electromagnetic shielding effect in the frequency range of 10 MHz to 1 GHz is 30 dBm or more.
  • Evaluation results Examples 1 to 10 had an air permeability resistance of 10 sec or less and an electromagnetic wave shielding effect of 30 to 60 dBm, and the functional nonwoven fabric of the present invention was not easily peeled from the resin molded body. In all of the examples, no processing defects (for example, gas burns or weld lines) to the extent of quality problems were found. On the other hand, since Comparative Example 1 is obtained by welding a copper foil to a resin molded body, it is restricted by a mold design for degassing and cannot be expected to have an anchor effect of a molding resin like a nonwoven fabric. For this reason, the copper foil tends to be peeled off particularly from the end portion.
  • the comparative example 2 did not contain the conductive fiber, the electromagnetic wave shielding effect was not acquired and the air permeability resistance was also high.
  • Comparative Example 3 the nonwoven fabric collapsed during removal from the dryer process, and the sheet shape could not be maintained.
  • Comparative Example 4 the surface resistivity was good, but the nonwoven fabric broke during in-mold injection molding, and the electromagnetic shielding properties could not be measured.
  • Comparative Example 5 the electromagnetic wave shielding effect was as low as 20 dBm.
  • any processing method such as injection molding, laser welding, and hot pressing can be applied.

Abstract

 The problem of the present invention is to provide a resin molding material in which functionality (e.g., imparting an electromagnetic wave shielding ability) and workability can be achieved simultaneously, in contrast to resin molding materials according to prior art. The present invention is a functional nonwoven used in a molded resin body, the functional nonwoven being obtained by causing a slurry obtained by adding 20-70 parts by mass of an organic fiber to 30-80 parts by mass of an electroconductive fiber to be made into a sheet.

Description

樹脂成形体に使用される機能性不織布、それを用いて得られた樹脂成形体及びその製造方法Functional nonwoven fabric used for resin molded body, resin molded body obtained using the same, and method for producing the same
 本発明は、機能性付与(例えば、電磁波シールド性付与)と良好な加工性とを両立させることができる不織布等に関するものである。 The present invention relates to a nonwoven fabric or the like that can achieve both functional provision (for example, electromagnetic wave shielding provision) and good workability.
 樹脂成形体表面又は表層に機能性(加飾を含む)を持たせるべく、インモールド一体成形、インサートモールド一体成形又はホットプレス等によって、例えばシールド材のような、何らかの機能を有する樹脂成型用材料と樹脂とを一体化させる手法が、従来から提案されている。 Resin molding material having some function, such as a shield material, by in-mold integral molding, insert mold integral molding, hot pressing, etc., in order to give functionality (including decoration) to the surface or surface layer of the resin molded body Conventionally, a method for integrating the resin and the resin has been proposed.
 例えば、特許文献1には、「成形用キャビティを備えかつ分割面を介して開閉可能に形成した成形用金型の型開き状態の分割面間にシート状に形成したシールド材を挿入設置し、前記成形用金型の型閉め後において熱可塑性樹脂材料を前記成形用キャビティ内に射出充填し、成形品の一方の面に前記シールド材を転写するシールド材付成形品の製造方法であり、導電性材料からなる繊維によりメッシュ状若しくは織布状に形成したシールド材を使用し、前記繊維間に前記熱可塑性樹脂材料の一部を進入させることにより、前記シールド材を前記成形品に固定することを特徴とするシールド材付成形品の製造方法」が開示されている。 For example, in Patent Document 1, “a shield material formed in a sheet shape is inserted and installed between the split surfaces of the mold opening state of the molding die provided with a molding cavity and formed to be openable and closable through the split surfaces, A method for producing a molded article with a shield material, in which a thermoplastic resin material is injected and filled into the molding cavity after the mold is closed, and the shield material is transferred to one surface of the molded article. The shield material is fixed to the molded article by using a shield material formed in a mesh shape or a woven fabric shape with fibers made of a conductive material, and by allowing a part of the thermoplastic resin material to enter between the fibers. A method for producing a molded article with a shielding material characterized by the above.
 また、特許文献2には、「熱可塑性のレーザー透過性樹脂部材と多孔質部材とを接合するにあたり、前記レーザー透過性樹脂部材と前記多孔質部材とを積層し、前記レーザー透過性樹脂部材側からレーザーを照射し、前記多孔質部材を発熱させて前記レーザー透過性樹脂部材を溶融し、溶融した樹脂を前記多孔質部材の空孔に含浸し、その後冷却固化することを特徴とするレーザー透過性樹脂部材と多孔質部材との接合方法」が開示されている。 Further, Patent Document 2 states that “when joining a thermoplastic laser-permeable resin member and a porous member, the laser-permeable resin member and the porous member are laminated, and the laser-permeable resin member side is laminated. The laser transmission is characterized in that the porous member is heated by irradiating a laser to melt the laser permeable resin member, impregnating the melted resin into the pores of the porous member, and then cooling and solidifying. A bonding method between the conductive resin member and the porous member "is disclosed.
特開平8-216182号公報JP-A-8-216182 特開2005-297288号公報JP 2005-297288 A
 本発明は、前記従来技術に係る樹脂成型用材料と対比し、機能性付与(例えば、電磁波シールド性付与)と良好な加工性とを両立させることができる樹脂成形用材料を提供することを課題とする。 The object of the present invention is to provide a resin molding material capable of achieving both functionalization (for example, electromagnetic wave shielding) and good workability, in contrast to the resin molding material according to the conventional technology. And
 本発明者らは、前記課題を解決すべく鋭意研究の結果、不織布の表面抵抗値、引張り強度及び透気抵抗度のバランスを担保することで、機能性付与(例えば、電磁波シールド性付与)と良好な加工性とを両立させることができる不織布を提供し得ることを見出した。その上で、本発明者らは、不織布の表面抵抗値、引張り強度及び透気抵抗度のバランスを担保すべく、様々な材料、組成、形状及び製造方法等について試行錯誤を重ねた結果、本発明を完成させた。 As a result of diligent research to solve the above problems, the present inventors ensured the balance of the surface resistance value, tensile strength, and air permeability resistance of the nonwoven fabric, thereby imparting functionality (for example, imparting electromagnetic shielding properties) and It has been found that it is possible to provide a nonwoven fabric capable of achieving both good processability. In addition, the present inventors have conducted trial and error on various materials, compositions, shapes, manufacturing methods, etc. in order to ensure the balance of the surface resistance value, tensile strength, and air permeability resistance of the nonwoven fabric. Completed the invention.
 本発明(1)は、導電性繊維30~80質量部に対して有機繊維20~70質量部を添加してなるスラリーを抄造することにより得られる、樹脂成形体に使用される機能性不織布である。
 本発明(2)は、前記有機繊維が、軟化点が140℃未満である第一の熱可塑性樹脂繊維と、軟化点が140℃以上である第二の熱可塑性樹脂繊維と、を含む、前記発明(1)の機能性不織布である。
 本発明(3)は、前記第一の熱可塑性樹脂繊維と前記第二の熱可塑性樹脂繊維との合計質量を基準とした際、前記合計質量に対する前記第一の熱可塑性樹脂繊維の質量の比が、0.07~0.95である、前記発明(2)の機能性不織布である。
 本発明(4)は、導電性繊維がステンレス繊維、炭素繊維、銅繊維のうち少なくとも1種類を含み、
 有機繊維がポリフェニレンサルファイド繊維を含む、前記(1)~(3)のいずれか一つの機能性不織布である。
 本発明(5)は、ポリフェニレンサルファイド繊維が、未延伸のポリフェニレンサルファイド繊維を、ポリフェニレンサルファイド繊維全体の50~100質量%含む、前記発明(4)の機能性不織布である。
 本発明(6)は、射出成形にて樹脂成形体を製造する際に使用される、前記発明(1)~(5)のいずれか一つの機能性不織布である。
 本発明(7)は、前記発明(1)~(6)のいずれか一つの樹脂成形体に使用される機能性不織布を熱可塑性樹脂の表層又は内部に一体化させてなることを特徴とする樹脂成形体である。
 本発明(8)は、前記熱可塑性樹脂が、ポリアリーレンサルファイド樹脂、ポリブチレンテレフタレート樹脂、ポリアセタール樹脂及び液晶ポリマー樹脂からなる群より選択される少なくとも一種である、前記発明(7)の樹脂成形体である。
 本発明(9)は、前記発明(1)~(5)のいずれかの機能性不織布を熱可塑性樹脂の表層又は内部に一体化させる工程を含む樹脂成形体を製造する方法であって、前記一体化させる工程が、射出成形、レーザー溶着、高周波誘導加熱溶着及びホットプレスのいずれかの工程である、樹脂成形体の製造方法である。
The present invention (1) is a functional non-woven fabric used for a resin molded article obtained by making a slurry obtained by adding 20 to 70 parts by mass of organic fibers to 30 to 80 parts by mass of conductive fibers. is there.
In the present invention (2), the organic fiber includes a first thermoplastic resin fiber having a softening point of less than 140 ° C. and a second thermoplastic resin fiber having a softening point of 140 ° C. or higher. It is a functional nonwoven fabric of invention (1).
When the present invention (3) is based on the total mass of the first thermoplastic resin fiber and the second thermoplastic resin fiber, the ratio of the mass of the first thermoplastic resin fiber to the total mass Is a functional nonwoven fabric according to the invention (2), wherein 0.07 to 0.95.
In the present invention (4), the conductive fiber includes at least one of stainless fiber, carbon fiber, and copper fiber,
The functional nonwoven fabric according to any one of (1) to (3), wherein the organic fiber includes polyphenylene sulfide fiber.
The invention (5) is the functional nonwoven fabric of the invention (4), wherein the polyphenylene sulfide fiber contains 50 to 100% by mass of unstretched polyphenylene sulfide fiber based on the whole polyphenylene sulfide fiber.
The present invention (6) is the functional nonwoven fabric according to any one of the inventions (1) to (5), which is used when a resin molded product is produced by injection molding.
The present invention (7) is characterized in that the functional nonwoven fabric used in the resin molded body according to any one of the inventions (1) to (6) is integrated with the surface layer or inside of the thermoplastic resin. It is a resin molding.
In the present invention (8), the thermoplastic resin is at least one selected from the group consisting of a polyarylene sulfide resin, a polybutylene terephthalate resin, a polyacetal resin, and a liquid crystal polymer resin. It is.
The present invention (9) is a method for producing a resin molded body comprising a step of integrating the functional nonwoven fabric according to any one of the inventions (1) to (5) into the surface layer or inside of a thermoplastic resin, In the method for producing a resin molded body, the integrating step is one of injection molding, laser welding, high-frequency induction heating welding, and hot pressing.
 本発明に係る不織布を用いると、従来の樹脂成型用材料と対比し、機能性付与(例えば、電磁波シールド性付与)と良好な加工性(例えば、ガス焼けやウェルドライン等の抑制特性)とを両立させることが可能となる。更には、本発明に係る不織布を用いて得られた樹脂成形体は、該樹脂成形体表面又は表層から、脱離又は剥がれ難いという利点をも有する。 When the nonwoven fabric according to the present invention is used, in contrast to conventional resin molding materials, it provides functionality (for example, imparting electromagnetic shielding properties) and good workability (for example, suppression characteristics such as gas burning and weld lines). It is possible to achieve both. Furthermore, the resin molded body obtained using the nonwoven fabric according to the present invention also has an advantage that it is difficult to detach or peel from the surface or surface layer of the resin molded body.
 本発明は、導電性繊維30~80質量部に対して有機繊維20~70質量部を添加してなるスラリーを抄造することにより得られる、樹脂成形体に使用される機能性不織布である。以下、本発明に係る機能性不織布の製造方法、機能性不織布の構造や物性、機能性不織布の用途等について順に説明する。 The present invention is a functional non-woven fabric used for a resin molded article obtained by making a slurry obtained by adding 20 to 70 parts by mass of organic fibers to 30 to 80 parts by mass of conductive fibers. Hereinafter, the production method of the functional nonwoven fabric according to the present invention, the structure and physical properties of the functional nonwoven fabric, the use of the functional nonwoven fabric, and the like will be described in order.
≪機能性不織布の製造方法≫
<原料>
(導電性繊維)
 本発明に係る導電性繊維としては、炭素繊維、金属被覆炭素繊維、ステンレス繊維、アルミニウム繊維、銅繊維、黄銅繊維等の金属繊維、金属被覆ガラス繊維等の無機繊維が挙げられる。これらの中では、炭素繊維、銅繊維又はステンレス繊維が、特にガス抜き特性に優れると理解される。これら繊維は高剛性であるが故、加工時に樹脂側のガスを、当該繊維の骨格を介して略確実に排出することが可能であるからである。加えて、これら繊維は電磁波シールド性に優れている点からも好ましい。また、これらの内の2種類以上を併用して使用することも出来る。ここで、本明細書及び本特許請求の範囲にいう「導電性」とは、体積抵抗率が100Ωcm未満であることをいう。また、本明細書及び本特許請求の範囲にいう「機能性」とは、シールド性や熱伝導性を付与し得ることをいう。
≪Method for producing functional nonwoven fabric≫
<Raw material>
(Conductive fiber)
Examples of the conductive fiber according to the present invention include carbon fibers, metal-coated carbon fibers, stainless fibers, aluminum fibers, copper fibers, brass fibers, and other inorganic fibers, and metal-coated glass fibers. Among these, it is understood that carbon fiber, copper fiber, or stainless steel fiber is particularly excellent in degassing characteristics. This is because these fibers are highly rigid, so that the gas on the resin side can be discharged almost certainly through the skeleton of the fibers during processing. In addition, these fibers are preferable from the viewpoint of excellent electromagnetic shielding properties. Two or more of these can be used in combination. Here, “conductive” as used in the present specification and claims means that the volume resistivity is less than 100 Ωcm. The term “functionality” as used in the present specification and claims refers to the ability to impart shielding properties and thermal conductivity.
 炭素繊維の具体例としては、例えば、東レ(株)製のトレカ、東邦テナックス(株)製のベスファイト フィラメント、三菱レイヨン(株)製のパイロフィル等が挙げられ、ステンレス繊維の具体例としては、例えば、日本精線(株)製やベカルト社製のステンレス繊維等が挙げられ、銅繊維の具体例としては、例えば、虹技(株)製のC1100が挙げられる。 Specific examples of carbon fibers include, for example, trading cards manufactured by Toray Industries, Inc., besfite filaments manufactured by Toho Tenax Co., Ltd., and pyrofils manufactured by Mitsubishi Rayon Co., Ltd. Specific examples of stainless fibers include For example, stainless steel fibers manufactured by Nippon Seisen Co., Ltd. or Bekaert Co., Ltd. can be mentioned, and specific examples of copper fibers include C1100 manufactured by Nijigi Co., Ltd.
 なお、これら導電性繊維は、樹脂成形体成分との密着性を高めるために、シランカップリング剤、チタネートカップリング剤、アルミネートカップリング剤等により表面処理されていてもよい。 In addition, these conductive fibers may be surface-treated with a silane coupling agent, a titanate coupling agent, an aluminate coupling agent, or the like in order to improve the adhesion with the resin molded body component.
 導電性繊維の平均繊維長は、1mm~10mmの範囲であることが好ましく、更に好ましくは、3mm~6mmの範囲である。平均繊維長が当該範囲内であると、不織布の製造し易さに加え、樹脂成形体の電磁波シールド性等のバランスがよりとり易い。尚、下記で説明する有機繊維やPPS繊維を含め、本明細書における「平均繊維長」は、顕微鏡で20本を測定し、測定値を平均した値である。 The average fiber length of the conductive fibers is preferably in the range of 1 mm to 10 mm, more preferably in the range of 3 mm to 6 mm. When the average fiber length is within this range, it is easier to balance the electromagnetic shielding properties of the resin molded body in addition to the ease of manufacturing the nonwoven fabric. In addition, "average fiber length" in this specification including the organic fiber and PPS fiber which are demonstrated below is a value which measured 20 values with the microscope and averaged the measured value.
 導電性繊維の繊維径は、平均繊維径1~20μmの範囲であることが好ましい。平均繊維径が当該範囲内であると、不織布の製造し易さに加え、樹脂成形体の成形性と電磁波シールド性等とのバランスがよりとり易い。尚、本明細書における「平均繊維径」は、顕微鏡で撮像された繊維の断面に基づき断面積を算出し(例えば公知ソフトにて)、当該断面積と同一面積を有する円の直径を算出することにより導かれた面積径の平均値(20個の繊維の平均値)である。 The fiber diameter of the conductive fibers is preferably in the range of an average fiber diameter of 1 to 20 μm. When the average fiber diameter is within this range, it is easier to balance the moldability of the resin molded body and the electromagnetic wave shielding property in addition to the ease of manufacturing the nonwoven fabric. In addition, “average fiber diameter” in the present specification calculates a cross-sectional area based on a cross-section of a fiber imaged with a microscope (for example, with known software), and calculates a diameter of a circle having the same area as the cross-sectional area. It is the average value of the area diameter derived by this (average value of 20 fibers).
(有機繊維)
 本発明に係る有機繊維としては、ポリアミド繊維、ポリエステル繊維、ポリエチレンテレフタレート繊維(以下、PET、又はPET繊維ともいう)、アクリル繊維、ポリオレフィン繊維、アラミド繊維、ポリエチレンナフタレート繊維、ポリブチレンテレフタレート繊維、ポリアリーレンサルファイド樹脂{例えば、ポリフェニレンサルファイド繊維(以下、PPS繊維ともいう)}、ポリアセタール繊維、液晶ポリマー繊維、ポリイミド繊維、綿、麻等が挙げられる。これらは単独又は2種以上組み合わせて使用することが可能である。また、耐熱性が必要な場合には、PPS繊維が好適に使用できる。更に、抄造し乾燥した後のシート形状保持性の観点からは、変性ポリエチレンテレフタレート繊維が好適に使用できる。ここで、「変性ポリエチレンテレフタレート」とは、主たる構造単位であるエチレングリコール単位及びテレフタル酸単位と共に、イソフタル酸単位、フタル酸単位、2,3-ナフタリンジカルボン酸単位、5-アルカリ金属スルホイソフタル酸単位等の芳香族ジカルボン酸単位、アジピン酸単位、アゼライン酸単位、セバシン酸単位等の脂肪族ジカルボン酸単位;ジエチレングリコール単位、プロピレングリコール単位、1,4-ブタンジオール単位等のジオール単位等を少量(通常25モル%以下)で含むエチレンテレフタレート系重合体をいい、そのうちでも特に非晶質のエチレンテレフタレート系重合体が好ましい。なお、これら有機繊維は、樹脂成形体成分との密着性を高めるためにシランカップリング剤、チタネートカップリング剤、アルミネートカップリング剤等により表面処理されていてもよい。また、前記有機繊維として、PPS繊維を選択する場合には、延伸又は未延伸のPPS繊維を用いることができるが、熱融着のしやすさ及び加熱時の寸法安定性の観点から未延伸のPPS繊維を主として用いることが好ましい。中でも、未延伸のPPS樹脂が、PPS繊維全体の50~100質量%含まれていることが特に好ましい。未延伸のPPS繊維は、結晶化が進んでいないため、後述する熱カレンダーや、樹脂成形時に溶融しやすく、成形体用樹脂との密着性を確保しやすい傾向がある。前記未延伸又は延伸PPS繊維を叩解処理し、平均繊維長の調整又は毛羽立たせることもできる。これにより、緻密且つ繊維同士の絡みや、ひっかかりによる強度確保等の効果を得ることが出来る。叩解処理方法としては、抄紙工程で一般的に用いられるSDR、DDR、ビーター等で適宜行うことが出来る。前記叩解処理したPPS繊維の代用として、PPS樹脂粉末を叩解処理により繊維化したものを用いることもできる。コスト面から考えてPPS繊維よりもPPS樹脂粉末を用いることが有利であるが、樹脂粉末をそのまま湿式抄紙工程で抄造することは困難である。したがって、叩解処理によりPPS樹脂粉末の小粒径化や毛羽立ちを行い、樹脂粉末同士のひっかかりやPPS繊維との絡みやひっかかりにより不織布を得ることが可能となる。PPS樹脂粉末の叩解処理方法は、繊維と同じくSDR、DDR、ビーターを用いることができる。加えて、乾式でのミキサーやすりつぶし、粉砕等を行う各種機械による処理を行うこともできる。
(Organic fiber)
Examples of the organic fiber according to the present invention include polyamide fiber, polyester fiber, polyethylene terephthalate fiber (hereinafter also referred to as PET or PET fiber), acrylic fiber, polyolefin fiber, aramid fiber, polyethylene naphthalate fiber, polybutylene terephthalate fiber, poly Examples include arylene sulfide resin {for example, polyphenylene sulfide fiber (hereinafter also referred to as PPS fiber)}, polyacetal fiber, liquid crystal polymer fiber, polyimide fiber, cotton, hemp and the like. These can be used alone or in combination of two or more. Moreover, when heat resistance is required, a PPS fiber can be used conveniently. Furthermore, modified polyethylene terephthalate fibers can be suitably used from the viewpoint of sheet shape retention after papermaking and drying. Here, the “modified polyethylene terephthalate” means an ethylene glycol unit and a terephthalic acid unit as main structural units, an isophthalic acid unit, a phthalic acid unit, a 2,3-naphthalene dicarboxylic acid unit, and a 5-alkali metal sulfoisophthalic acid unit. Aromatic dicarboxylic acid units such as adipic acid units, azelaic acid units, sebacic acid units and other aliphatic dicarboxylic acid units; diethylene glycol units, propylene glycol units, 1,4-butanediol units and other diol units The ethylene terephthalate polymer contained at 25 mol% or less), and among them, an amorphous ethylene terephthalate polymer is particularly preferred. These organic fibers may be surface-treated with a silane coupling agent, a titanate coupling agent, an aluminate coupling agent or the like in order to improve the adhesion with the resin molded body component. Moreover, when selecting a PPS fiber as the organic fiber, a stretched or unstretched PPS fiber can be used. From the viewpoint of ease of thermal fusion and dimensional stability during heating, the stretched or unstretched PPS fiber can be used. It is preferable to mainly use PPS fibers. In particular, it is particularly preferable that the unstretched PPS resin is contained in an amount of 50 to 100% by mass of the entire PPS fiber. Since the unstretched PPS fiber has not progressed in crystallization, it tends to be melted at the time of heat calendering described later or during resin molding, and tends to ensure adhesion with the resin for the molded body. The unstretched or stretched PPS fiber may be beaten to adjust the average fiber length or make it fluffy. Thereby, it is possible to obtain effects such as dense and entangled fibers and securing strength by catching. As a beating process method, it can carry out suitably by SDR, DDR, a beater etc. which are generally used in a papermaking process. As a substitute for the PPS fiber subjected to the beating treatment, a PPS resin powder that has been made into a fiber by beating treatment can also be used. From the viewpoint of cost, it is advantageous to use the PPS resin powder rather than the PPS fiber, but it is difficult to make the resin powder as it is in the wet papermaking process. Therefore, it is possible to reduce the particle size and fluff of the PPS resin powder by beating treatment, and to obtain a nonwoven fabric by being caught between resin powders and entangled or caught with PPS fibers. SDR, DDR, and a beater can be used for the beating process method of PPS resin powder similarly to a fiber. In addition, it is possible to carry out processing by various machines that perform dry mixing, grinding, pulverization, and the like.
 ここで、当該有機繊維は、第一の軟化点を有する第一の熱可塑性樹脂繊維と、前記第一の軟化点よりも高い軟化点を有する第二の熱可塑性樹脂繊維と、を含むことが好適である。このような軟化点の異なる熱可塑性樹脂繊維を組み合わせて使用することが、機能性付与(例えば、電磁波シールド性付与)と良好な加工性(例えば、ガス焼けやウェルドライン等の抑制特性)とを両立させる上でより都合がよい。特に、当該有機繊維は、軟化点が140℃未満である第一の熱可塑性樹脂繊維(結着用繊維)と、軟化点が140℃以上である第二の熱可塑性樹脂繊維と、を含むことが好適である。第一の熱可塑性樹脂繊維は、抄造時の乾燥温度にて溶融し、これにより金属繊維と第二の熱可塑性樹脂繊維とを融着させる役割を果たす。尚、ここでの「140℃」は、一般的な抄造時での乾燥温度である。即ち、換言すれば、第一及び第二の熱可塑性樹脂繊維の軟化点が当該乾燥温度を跨ぐような、第一及び第二の熱可塑性樹脂繊維を選択することが特に好適である。 Here, the organic fiber includes a first thermoplastic resin fiber having a first softening point and a second thermoplastic resin fiber having a softening point higher than the first softening point. Is preferred. Use of a combination of thermoplastic resin fibers having different softening points can provide functionality (for example, imparting electromagnetic shielding properties) and good workability (for example, suppression characteristics such as gas burning and weld lines). It is more convenient to achieve both. In particular, the organic fiber may include a first thermoplastic resin fiber (binding fiber) having a softening point of less than 140 ° C. and a second thermoplastic resin fiber having a softening point of 140 ° C. or higher. Is preferred. The first thermoplastic resin fiber melts at the drying temperature at the time of papermaking, thereby serving to fuse the metal fiber and the second thermoplastic resin fiber. In addition, "140 degreeC" here is a drying temperature at the time of general papermaking. That is, in other words, it is particularly preferable to select the first and second thermoplastic resin fibers such that the softening points of the first and second thermoplastic resin fibers straddle the drying temperature.
 尚、本明細書及び特許請求の範囲における「軟化点」とは、下記測定法に従い測定された値である。
(軟化点の測定法)
 有機繊維3gを用い、当該繊維を交絡させ、略均一な厚さの、8×8cmの略方形体を調製する。そして、当該略方形体を2枚の金属板間に挟み、当該状態を維持しつつ、100g/cmの加圧した状態にて、該略方形体を所定温度にて2分間加熱する。その後冷却して持ち上げ、シート状に結着しているか否かを確認する。この際、片部から持ち上げた際、90質量%以上が持ち上がった場合(即ち、金属板上の残存量が10質量%未満である場合)、「シート状に結着」と判定する。このような状態になる最低温度を軟化点とする(100回平均)。
The “softening point” in the present specification and claims is a value measured according to the following measurement method.
(Measurement method of softening point)
Using 3 g of organic fibers, the fibers are entangled to prepare an approximately 8 × 8 cm rectangular body having a substantially uniform thickness. Then, the substantially rectangular body is sandwiched between two metal plates, and the substantially rectangular body is heated at a predetermined temperature for 2 minutes in a pressurized state of 100 g / cm 2 while maintaining the state. Then, it is cooled and lifted, and it is confirmed whether or not it is bound into a sheet. At this time, when 90% by mass or more is lifted when it is lifted from one part (that is, when the remaining amount on the metal plate is less than 10% by mass), it is determined as “binding in a sheet shape”. The lowest temperature at which such a state occurs is defined as the softening point (average of 100 times).
 また、当該有機繊維の少なくとも一つは、加工性向上の観点から、樹脂成形体用の樹脂と同一種であることが好ましい。 Further, at least one of the organic fibers is preferably the same type as the resin for the resin molded body from the viewpoint of improving processability.
 本発明に係る有機繊維の平均繊維長は、1mm~10mmの範囲であることが好ましく、更に好ましくは、3mm~6mmである。平均繊維長が当該範囲内であると、不織布の製造し易さに加え、樹脂成形体の成形性等がより向上し得る。また、有機繊維の平均繊維径は、1μm~30μmの範囲であることが好ましい。平均繊維径が当該範囲内であると、添加繊維の交絡が進み易く、かつしなやかな不織布を得ることが出来るため、樹脂成形体に一体化する際の加工特性に優れる。 The average fiber length of the organic fiber according to the present invention is preferably in the range of 1 mm to 10 mm, more preferably 3 mm to 6 mm. If the average fiber length is within the above range, the moldability of the resin molded body can be further improved in addition to the ease of producing the nonwoven fabric. The average fiber diameter of the organic fibers is preferably in the range of 1 μm to 30 μm. When the average fiber diameter is within the above range, the entanglement of the added fibers is easy to proceed, and a supple nonwoven fabric can be obtained, so that the processing characteristics when integrated into the resin molded body are excellent.
(他の成分)
 本発明に係る不織布を製造するに際しては、原料として導電性繊維及び有機繊維を使用することは必須であるが、用途に応じて他の構成成分を添加してもよい。その他の構成成分として、必要に応じて、例えば、ガラス繊維、ケイ酸マグネシウム繊維、或いはガラスウール、スラグウール、ロックウール等の無機繊維や、例えば、炭酸カルシウム、硅砂、マイクロシリカ、マイカ、水酸化アルミニウム等の各種粉体等を本発明の機能性不織布に担持させることも出来る。
(Other ingredients)
In producing the nonwoven fabric according to the present invention, it is essential to use conductive fibers and organic fibers as raw materials, but other components may be added depending on the application. As other components, for example, glass fiber, magnesium silicate fiber, or inorganic fiber such as glass wool, slag wool, rock wool, etc., for example, calcium carbonate, cinnabar sand, microsilica, mica, hydroxide Various powders such as aluminum can be supported on the functional nonwoven fabric of the present invention.
(作用機序)
 前記のように、本発明に係る不織布を製造するに際しては、導電性繊維と有機繊維とを必須原料とする。これらを必須成分とし、更に配合量を限定することにより本発明の効果が実現できる作用機序は定かではないが、(理由1)熱により溶融した樹脂が不織布内を含浸する際、親和性が高い有機繊維が存在するためにそもそも含浸し易いことに加え、(理由2)熱によって有機繊維も溶融する場合には更に含浸が促進され、且つ、(理由3)熱によっては溶融しない導電性繊維が骨格として存在することにより、圧力を印加した際に樹脂側のガスを当該骨格を介して確実に排出することが可能となる、と推定される。
(Mechanism of action)
As mentioned above, when manufacturing the nonwoven fabric which concerns on this invention, electroconductive fiber and organic fiber are made into an essential raw material. Although these are essential components, and the mechanism of action that can achieve the effects of the present invention by further limiting the blending amount is not clear, (Reason 1) When the resin melted by heat impregnates the inside of the nonwoven fabric, the affinity is In addition to being easy to impregnate in the first place due to the presence of high organic fibers, (Reason 2) When organic fibers are also melted by heat, impregnation is further promoted, and (Reason 3) conductive fibers that are not melted by heat Is present as a skeleton, it is presumed that the gas on the resin side can be reliably discharged through the skeleton when pressure is applied.
<配合>
(導電性繊維/有機繊維)
 本発明に係る不織布を製造するに際し、導電性繊維の配合量は、有機繊維20~70質量部に対し、30~80質量部であり、40~80質量部であることが好適である。導電性繊維と有機繊維とを当該範囲で配合することにより、表面抵抗値、引張り強度及び透気抵抗値度の適度なバランスを担保できる。当該バランスが担保されることにより、従来の樹脂成型用材料と対比し、高い電磁波シールド性等を樹脂成形体に付与し得る(即ち、高い導電性を有する)と共に、樹脂成形体の製造時において極めて優れた加工性(例えば、ガス焼けやウェルドライン等の抑制特性)を発揮することが可能となる。
<Combination>
(Conductive fiber / organic fiber)
In the production of the nonwoven fabric according to the present invention, the blending amount of the conductive fiber is 30 to 80 parts by mass, preferably 40 to 80 parts by mass with respect to 20 to 70 parts by mass of the organic fiber. By blending the conductive fiber and the organic fiber in the range, an appropriate balance of the surface resistance value, the tensile strength, and the air resistance value can be ensured. By ensuring the balance, it is possible to impart high electromagnetic shielding properties and the like to the resin molded body as compared with conventional resin molding materials (that is, having high conductivity), and at the time of manufacturing the resin molded body It is possible to exhibit extremely excellent workability (for example, suppression characteristics such as gas burning and weld lines).
(第一の熱可塑性樹脂繊維/第二の熱可塑性樹脂繊維)
 前記のように、本発明に係る不織布の一原料である有機繊維は、軟化点が第一の温度(好適には140℃未満)である第一の熱可塑性樹脂繊維(結着用繊維)と、軟化点が前記第一の温度よりも高い第二の温度(好適には140℃以上)である第二の熱可塑性樹脂繊維と、を含むことが好適である。ここで、前記第一の熱可塑性樹脂繊維と前記第二の熱可塑性樹脂繊維との合計質量を基準とした際、前記合計質量に対する前記前記第一の熱可塑性樹脂繊維の質量の比が、0.07~0.95であることが好適であり、0.10~0.93であることがより好適であり、0.15~0.50であることが更に好適である。
(First thermoplastic resin fiber / second thermoplastic resin fiber)
As described above, the organic fiber that is one raw material of the nonwoven fabric according to the present invention has a first thermoplastic resin fiber (binding fiber) whose softening point is the first temperature (preferably less than 140 ° C.); And a second thermoplastic resin fiber having a second softening point higher than the first temperature (preferably 140 ° C. or higher). Here, when the total mass of the first thermoplastic resin fiber and the second thermoplastic resin fiber is used as a reference, the ratio of the mass of the first thermoplastic resin fiber to the total mass is 0. 0.07 to 0.95 is preferable, 0.10 to 0.93 is more preferable, and 0.15 to 0.50 is still more preferable.
<プロセス>
 前記のように、本発明に係る不織布は、導電性繊維30~80質量部に対して有機繊維20~70質量部を添加してなるスラリーを抄造すること(湿式抄造法)により得られる。より具体的には、該機能性不織布の湿式抄造法による製造方法は、1種又は2種以上の導電性繊維及び有機繊維と必要に応じてその他の原材料とを添加してなる抄造用スラリーを湿式抄造法によりシート形成する際に、網上の水分を含んだシートを形成している前記導電性繊維及び前記有機繊維とを互いに交絡させる繊維交絡処理工程を含んで構成される。以下、各工程を詳述する。
<Process>
As described above, the nonwoven fabric according to the present invention is obtained by making a slurry (wet paper making method) by adding 20 to 70 parts by mass of organic fibers to 30 to 80 parts by mass of conductive fibers. More specifically, the method for producing the functional nonwoven fabric by wet papermaking method is a papermaking slurry formed by adding one or more kinds of conductive fibers and organic fibers and other raw materials as required. When the sheet is formed by the wet papermaking method, it includes a fiber entanglement process step in which the conductive fibers and the organic fibers forming the sheet containing moisture on the net are entangled with each other. Hereinafter, each process is explained in full detail.
(抄造工程)
 抄造工程は、例えば、長網抄紙、円網抄紙、傾斜ワイヤ抄紙等、必要に応じて種々の手法を採用することができる。なお、長繊維の導電性繊維及び/又は有機繊維を含むスラリーを製造する場合、これら繊維の水中での分散性が悪くなることがあるので、増粘作用のあるポリビニルピロリドン、ポリビニルアルコール、カルボキシメチルセルロース(CMC)等の高分子水溶液を少量添加してもよい。
(Paper making process)
For the paper making process, various methods such as long net paper making, circular net paper making, inclined wire paper making and the like can be adopted as necessary. In addition, when manufacturing a slurry containing long-fiber conductive fibers and / or organic fibers, the dispersibility of these fibers in water may be deteriorated, so that polyvinylpyrrolidone, polyvinyl alcohol, and carboxymethylcellulose having a thickening action A small amount of an aqueous polymer solution such as (CMC) may be added.
(繊維交絡工程)
 繊維交絡処理工程としては、例えば、抄造後の該機能性不織布面に高圧ジェット水流を噴射する繊維交絡処理工程を採用するのが好ましい。当該手法(例えば、シートの流れ方向に直交する方向に複数のノズルを配列し、この複数のノズルから同時に高圧ジェット水流を噴射する手法)により、シート全体に亘って各繊維同士を交絡させることが可能であるからである。すなわち、湿式抄造により平面方向に不規則に交差した各繊維等で構成されるシートに、例えば、高圧ジェット水流をシートのZ軸方向に噴射することにより、高圧ジェット水流が噴射された部分の各繊維がZ軸方向に配向する。このZ軸方向に配向した各繊維が平面方向に不規則に配向した繊維間に絡みつき、各繊維が互いに三次元的に絡み合った状態、すなわち交絡することで物理的強度を得ることができるものである。
(Fiber entanglement process)
As the fiber entanglement treatment step, for example, a fiber entanglement treatment step of injecting a high-pressure jet water stream onto the functional nonwoven fabric surface after paper making is preferably employed. The fibers can be entangled over the entire sheet by the technique (for example, a technique in which a plurality of nozzles are arranged in a direction orthogonal to the flow direction of the sheet and a high-pressure jet water stream is simultaneously ejected from the nozzles). It is possible. That is, for example, by injecting a high-pressure jet water stream in the Z-axis direction of the sheet into a sheet composed of fibers etc. that irregularly intersect the plane direction by wet papermaking, each of the portions where the high-pressure jet water stream is injected The fibers are oriented in the Z-axis direction. Each fiber oriented in the Z-axis direction is entangled between fibers irregularly oriented in the plane direction, and each fiber is entangled three-dimensionally with each other, that is, the physical strength can be obtained by entanglement. is there.
(ドライヤー工程)
 ドライヤー工程(乾燥工程)では、該機能性不織布を構成する有機繊維のうち、少なくとも1種類(第一の熱可塑性樹脂繊維)の軟化点以上の温度で加熱乾燥(水等の分散媒の除去)することが好ましい。これにより、軟化点以上に加熱された繊維同士、あるいは軟化点以上に加熱された繊維とその他の繊維(例えば金属繊維)間において接着効果が生まれ、例えば引張強度が高くなることによって成形体用樹脂が射出された時の該機能性不織布の圧力耐性を高めることが出来る。
(Dryer process)
In the dryer process (drying process), the organic fiber constituting the functional nonwoven fabric is dried by heating at a temperature equal to or higher than the softening point of at least one kind (first thermoplastic resin fiber) (removal of a dispersion medium such as water). It is preferable to do. As a result, an adhesive effect is produced between fibers heated above the softening point, or between fibers heated above the softening point and other fibers (for example, metal fibers). It is possible to increase the pressure resistance of the functional nonwoven fabric when the is injected.
(熱カレンダー工程)
 上記工程後に更に、熱カレンダーをかけることも出来る。熱と圧力で前記機能性不織布を加工することによって、例えば、前記ドライヤー工程で融着しなかった有機繊維が融着し、更なる接着効果を発揮すると共に、加圧によって導電性繊維間の距離が縮まることにより、該機能性不織布の電磁波シールド性を更に高めることが可能となる。
(Thermal calendar process)
A thermal calendar can be further applied after the above step. By processing the functional non-woven fabric with heat and pressure, for example, the organic fibers that have not been fused in the dryer step are fused, exhibit further adhesion effects, and the distance between the conductive fibers by pressurization By shrinking, the electromagnetic wave shielding property of the functional nonwoven fabric can be further enhanced.
(焼成工程)
 更に、上述した湿式抄造工程後、得られた機能性不織布を真空中又は非酸化雰囲気中で導電性繊維の融点以下の温度で焼結する焼結工程を含んで構成されていてもよい。すなわち、上述した湿式抄造工程後、焼結工程が行われれば、導電性繊維交絡部の固定化が促進されるため、本発明の樹脂成形体に使用される機能性不織布の電磁波シールド性及び熱伝導性を向上させやすくなるという利点がある。
(Baking process)
Furthermore, after the above-described wet papermaking step, the obtained functional nonwoven fabric may be configured to include a sintering step in which the functional nonwoven fabric is sintered in a vacuum or in a non-oxidizing atmosphere at a temperature not higher than the melting point of the conductive fibers. That is, if the sintering process is performed after the wet papermaking process described above, the fixing of the conductive fiber entangled portion is promoted, and therefore the electromagnetic wave shielding property and heat of the functional nonwoven fabric used in the resin molded body of the present invention. There is an advantage that the conductivity is easily improved.
≪機能性不織布の物性・構造等≫
(透気抵抗度)
 本発明の樹脂成形体に使用される機能性不織布の透気抵抗度は、10sec以下であることが好ましく、更に好ましくは、3sec以下である。当該範囲内であると、樹脂成形体の製造時において、より優れた加工性を発揮できる不織布を提供することが可能となる。また、透気抵抗度は該機能性不織布に必要な強度等が維持されるのであれば、下限は特にない。尚、透気抵抗度は、JIS P8117に準じて測定した値である。
≪Physical properties and structure of functional nonwoven fabric≫
(Air permeability resistance)
The air resistance of the functional nonwoven fabric used in the resin molded product of the present invention is preferably 10 sec or less, and more preferably 3 sec or less. Within this range, it is possible to provide a nonwoven fabric that can exhibit better processability during the production of a resin molded body. Further, the air resistance is not particularly limited as long as the strength required for the functional nonwoven fabric is maintained. The air resistance is a value measured according to JIS P8117.
(坪量)
 本発明の樹脂成形体に使用される機能性不織布の坪量は、50g/m~500g/mであることが好ましく、更に好ましくは、90g/m~400g/mである。当該範囲内であると、得られる樹脂成形体に対し、より高い電磁波シールド性等を付与可能であると共に、樹脂成形体の製造時において、より優れた加工性を発揮できる不織布を提供することが可能となる。
(Basis weight)
The basis weight of the functional nonwoven fabric used in the resin molded body of the present invention is preferably 50 g / m 2 to 500 g / m 2 , more preferably 90 g / m 2 to 400 g / m 2 . Provided a nonwoven fabric capable of imparting higher electromagnetic wave shielding properties and the like to the resulting resin molded article and exhibiting superior processability during the production of the resin molded article within the range. It becomes possible.
(密度)
 本発明の樹脂成形体に使用される機能性不織布の密度は、1.20g/cm~1.90g/cmであることが好ましい。当該範囲内であると、得られる樹脂成形体に対し、より高い電磁波シールド性等を付与可能であると共に、樹脂成形体の製造時において、より優れた加工性を発揮できる不織布を提供することが可能となる。
(density)
Density functional nonwoven used for resin molding of the present invention is preferably 1.20g / cm 3 ~ 1.90g / cm 3. Provided a nonwoven fabric capable of imparting higher electromagnetic wave shielding properties and the like to the resulting resin molded article and exhibiting superior processability during the production of the resin molded article within the range. It becomes possible.
(厚さ)
 本発明の樹脂成形体に使用される機能性不織布の厚さは、50μm~320μmが好ましく、更に好ましくは、50μm~100μmである。当該範囲内であると、樹脂成形体の製造時において、より優れた加工性を発揮できる不織布を提供することが可能となる。
(thickness)
The thickness of the functional nonwoven fabric used in the resin molded product of the present invention is preferably 50 μm to 320 μm, and more preferably 50 μm to 100 μm. Within this range, it is possible to provide a nonwoven fabric that can exhibit better processability during the production of a resin molded body.
 本発明の樹脂成形体に使用される機能性不織布の引張強度は、10N以上であることが好ましく、更に好ましくは、25N以上である。当該範囲内であると、樹脂成形体の製造時において、より優れた加工性を発揮できる不織布を提供することが可能となる。尚、引張強度及び引張り伸び率の測定は、引張り方向に対するシート幅を15mmとして、JIS P8113に準じて測定した値である。 The tensile strength of the functional nonwoven fabric used in the resin molded body of the present invention is preferably 10N or more, and more preferably 25N or more. Within this range, it is possible to provide a nonwoven fabric that can exhibit better processability during the production of a resin molded body. The tensile strength and tensile elongation were measured according to JIS P8113, with the sheet width in the tensile direction being 15 mm.
(構造)
 前記機能性不織布は、導電性繊維と有機繊維が適度に互いに交絡し、微細孔を適度に有した状態で存在していると推定される。これにより、機能性不織布は、適度な表面抵抗値、適度な引張り強度及び適度な透気抵抗度を有すると理解される。このため、高い電磁波シールド性等を樹脂成形体に付与し得ると共に、樹脂成形体の製造時において極めて優れた加工性を発揮することが可能となる。
(Construction)
The functional nonwoven fabric is presumed to exist in a state in which conductive fibers and organic fibers are appropriately entangled with each other and have micropores. Thereby, it is understood that the functional nonwoven fabric has an appropriate surface resistance value, an appropriate tensile strength, and an appropriate air resistance. For this reason, while being able to provide high electromagnetic shielding property etc. to a resin molding, it becomes possible to exhibit the extremely outstanding workability at the time of manufacture of a resin molding.
≪機能性不織布の用途≫
(使用対象)
 本発明の樹脂成形体は、後述の手法にて、本発明の機能性不織布を熱可塑性樹脂に接合させたものである。ここで、本発明の機能性不織布の接合対象となる熱可塑性樹脂(即ち、機能性不織布と一体化する熱可塑性樹脂)は、特に限定されない。当該熱可塑性樹脂としては、例えば、ポリアミド樹脂、ポリエステル樹脂、ポリエチレンテレフタレート樹脂(以下、PET樹脂ともいう)、アクリル樹脂、ポリオレフィン樹脂、アラミド樹脂、ポリエチレンナフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリアリーレンサルファイド樹脂{例えば、ポリフェニレンサルファイド樹脂(以下、PPS樹脂ともいう)}、ポリアセタール樹脂、液晶ポリマー樹脂、ポリイミド樹脂等が挙げられる。これらは単独又は2種以上組み合わせて使用することが可能である。中でも、耐熱性の観点から、PPS樹脂、ポリブチレンテレフタレート樹脂、ポリアセタール樹脂、液晶ポリマー樹脂が好適に使用できる。該熱可塑性樹脂は、その他の構成成分として、必要に応じて、無機充填材、滑剤、カーボンブラック、核剤、難燃剤、難燃助剤、酸化防止剤、金属不活性剤、UV吸収剤、安定剤、可塑剤、顔料、染料、着色剤、帯電防止剤、発泡剤、その他の樹脂等の高分子や、添加剤を含有していてもよい。
≪Use of functional nonwoven fabric≫
(Use target)
The resin molded body of the present invention is obtained by bonding the functional nonwoven fabric of the present invention to a thermoplastic resin by the method described later. Here, the thermoplastic resin to be bonded to the functional nonwoven fabric of the present invention (that is, the thermoplastic resin integrated with the functional nonwoven fabric) is not particularly limited. Examples of the thermoplastic resin include polyamide resin, polyester resin, polyethylene terephthalate resin (hereinafter also referred to as PET resin), acrylic resin, polyolefin resin, aramid resin, polyethylene naphthalate resin, polybutylene terephthalate resin, and polyarylene sulfide resin. {For example, polyphenylene sulfide resin (hereinafter also referred to as PPS resin)}, polyacetal resin, liquid crystal polymer resin, polyimide resin, and the like. These can be used alone or in combination of two or more. Among these, PPS resin, polybutylene terephthalate resin, polyacetal resin, and liquid crystal polymer resin can be suitably used from the viewpoint of heat resistance. The thermoplastic resin may contain, as necessary, other components such as an inorganic filler, a lubricant, carbon black, a nucleating agent, a flame retardant, a flame retardant aid, an antioxidant, a metal deactivator, a UV absorber, It may contain polymers such as stabilizers, plasticizers, pigments, dyes, colorants, antistatic agents, foaming agents, other resins, and additives.
(使用方法)
 本発明に係る樹脂成形体を作製する方法、即ち、本発明の樹脂成形体に使用される機能性不織布と熱可塑性樹脂とを一体化する方法としては、特に限定はなく、公知の方法を採用することができる。例えば、射出成形によるインモールド一体成形やインサートモールド一体成形、レーザー溶着、高周波誘導加熱溶着、ホットプレス等によって作製することができる。但し、これらの内、本発明に係る機能性不織布は、射出成形に特に適している。溶融した樹脂を不織布に含浸させる手法は既知であるが、多くはシート状の樹脂を加熱加圧する手法である。この場合、シート状樹脂側にはガスが残らない(シート状樹脂は略すべて機能性不織布に入り込むため)。他方、射出成形では、溶融樹脂の一部が機能性シートに入り込むに留まり、多量の溶融樹脂が機能性シートに入り込まない状態で存在する。この場合、溶融樹脂側(溶融樹脂と機能性不織布の界面付近)にガスが残る結果、加工不良等の問題を招く。本発明に係る機能性不織布は、このような場合でも溶融樹脂側のガスが機能性不織布を介して排出される機能を有しているため、前記のように射出成形に特に適しているのである。
(how to use)
The method for producing the resin molded body according to the present invention, that is, the method for integrating the functional nonwoven fabric and the thermoplastic resin used in the resin molded body of the present invention is not particularly limited, and a known method is adopted. can do. For example, it can be produced by in-mold integral molding by injection molding, insert mold integral molding, laser welding, high-frequency induction heating welding, hot pressing, or the like. However, among these, the functional nonwoven fabric according to the present invention is particularly suitable for injection molding. Although a technique for impregnating a molten resin into a nonwoven fabric is known, many are techniques for heating and pressing a sheet-like resin. In this case, no gas remains on the sheet-shaped resin side (because almost all the sheet-shaped resin enters the functional nonwoven fabric). On the other hand, in the injection molding, a part of the molten resin stays in the functional sheet, and a large amount of the molten resin does not enter the functional sheet. In this case, the gas remains on the molten resin side (near the interface between the molten resin and the functional nonwoven fabric), resulting in problems such as processing defects. Even in such a case, the functional nonwoven fabric according to the present invention has a function of discharging the gas on the molten resin side through the functional nonwoven fabric, and thus is particularly suitable for injection molding as described above. .
 以下に本発明の樹脂成形体に使用される機能性不織布について、実施例及び比較例を挙げてより具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。 Hereinafter, the functional nonwoven fabric used in the resin molded body of the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples.
≪実施例1≫
 平均繊維長4mm、平均繊維径8μmのステンレス繊維、平均繊維長5mm、平均繊維径22μm、軟化点200℃の未延伸ポリフェニレンサルファイド繊維、平均繊維長3mm、平均繊維径10μm、軟化点120℃のイソフタル酸変性ポリエチレンテレフタレート繊維を以下の配合でアジテーターを用いて5分間攪拌して水中に分散した。
ステンレス繊維:                                                 45質量部
未延伸ポリフェニレンサルファイド繊維:                  45質量部
イソフタル酸変性ポリエチレンテレフタレート繊維:              10質量部
水                                                             100質量部
 その後、上記繊維分散液2Lを角型手抄きマシンに注いで、簡易脱水した後、140℃に加熱したヤンキードライヤーを用いて更に水分除去すると共に、イソフタル酸変性ポリエチレンテレフタレート繊維の溶融によって不織布を構成する繊維同士を結着させた。このようにしてシート化された該不織布を210℃に加熱及び、2kg/cmに加圧された熱カレンダーを通して、更に加熱・圧縮し、結着を促進させ、実施例1の樹脂成形体に使用される機能性不織布を得た。
Example 1
Stainless fiber with an average fiber length of 4 mm, an average fiber diameter of 8 μm, an average fiber length of 5 mm, an average fiber diameter of 22 μm, an unstretched polyphenylene sulfide fiber with a softening point of 200 ° C., an average fiber length of 3 mm, an average fiber diameter of 10 μm, and an isophthalate with a softening point of 120 ° C. The acid-modified polyethylene terephthalate fiber was stirred for 5 minutes using an agitator with the following composition and dispersed in water.
Stainless steel fiber: 45 parts by mass Unstretched polyphenylene sulfide fiber: 45 parts by mass Isophthalic acid-modified polyethylene terephthalate fiber: 10 parts by mass Water 100 parts by mass Then, the above fiber dispersion 2L was poured into a square handmaking machine and simply dehydrated. Thereafter, moisture was further removed using a Yankee dryer heated to 140 ° C., and fibers constituting the nonwoven fabric were bound together by melting isophthalic acid-modified polyethylene terephthalate fibers. The nonwoven fabric thus formed into a sheet is heated to 210 ° C. and passed through a heat calender pressurized to 2 kg / cm 2 , and further heated and compressed to promote binding. The functional nonwoven used was obtained.
射出成形による一体化
 以下の条件において、上記機能性不織布と熱可塑性樹脂とを射出成形にて一体化させて、本発明の樹脂成形体を得た。
熱可塑性樹脂:ポリフェニレンサルファイド系樹脂組成物(ポリプラスチックス(株)製、「ジュラファイド(登録商標)1140A7(HF2000)」)
射出成形機:住友重機械工業(株)製、SE100D
成形体形状:縦80mm、横80mm、厚み4mmの平板(平板の片側表層と不織布とを一体化させた。)
成形条件:シリンダー温度:320℃、金型温度:150℃、射出速度:10mm/sec、保圧力:50MPa、保圧時間:15sec、冷却時間:15sec
Integration by injection molding Under the following conditions, the functional nonwoven fabric and the thermoplastic resin were integrated by injection molding to obtain a resin molded body of the present invention.
Thermoplastic resin: polyphenylene sulfide resin composition (manufactured by Polyplastics Co., Ltd., “Durafide (registered trademark) 1140A7 (HF2000)”)
Injection molding machine: SE100D, manufactured by Sumitomo Heavy Industries, Ltd.
Molded body shape: flat plate having a length of 80 mm, a width of 80 mm, and a thickness of 4 mm (one side surface layer of the flat plate and the nonwoven fabric were integrated)
Molding conditions: cylinder temperature: 320 ° C., mold temperature: 150 ° C., injection speed: 10 mm / sec, holding pressure: 50 MPa, holding pressure time: 15 sec, cooling time: 15 sec
レーザー溶着による一体化
 以下の条件において、上記機能性不織布を熱可塑性樹脂板間に挟みレーザー溶着にて一体化させて、本発明の樹脂成形体を得た。
レーザー溶着装置:レーザー溶接システムNOVOLAS C((株)ライスター・テクノロジーズ製)
熱可塑性樹脂板:ポリフェニレンサルファイド系樹脂組成物(ポリプラスチックス(株)製、「ジュラファイド(登録商標)0220A9(HF2000)」から、射出成形機(住友重機械工業(株)製、SE100D)により、シリンダー温度320℃、金型温度150℃で縦80mm、横80mm、厚み1mmの試験片(平板)を2枚作製した。
溶着条件:スキャン速度:10mm/sec、ビーム径:0.6mm、電流30A;2枚の平板の間に不織布を挟み、上記溶着条件で平板の上部からレーザーを照射し、溶着させた。
Integration by Laser Welding Under the following conditions, the functional nonwoven fabric was sandwiched between thermoplastic resin plates and integrated by laser welding to obtain a resin molded body of the present invention.
Laser welding equipment: Laser welding system NOVOLAS C (manufactured by Leister Technologies)
Thermoplastic resin plate: Polyphenylene sulfide resin composition (manufactured by Polyplastics Co., Ltd., "Durafide (registered trademark) 0220A9 (HF2000)", by injection molding machine (Sumitomo Heavy Industries, Ltd., SE100D) Two test pieces (flat plates) having a cylinder temperature of 320 ° C. and a mold temperature of 150 ° C. having a length of 80 mm, a width of 80 mm, and a thickness of 1 mm were produced.
Welding conditions: scan speed: 10 mm / sec, beam diameter: 0.6 mm, current 30 A; a nonwoven fabric was sandwiched between two flat plates, and laser was irradiated from the upper part of the flat plates under the above-mentioned welding conditions for welding.
ホットプレスによる一体化
 以下の条件において、上記機能性不織布と熱可塑性樹脂板とをホットプレスにて一体化させて、本発明の樹脂成形体を得た。
ホットプレス装置:ミニテストプレスMP-SNH((株)東洋精機製作所製)
熱可塑性樹脂板:ポリプラスチックス(株)製、「ジュラファイド(登録商標)0220A9(HD9100)」から、射出成形機(住友重機械工業(株)製、SE100D)により、シリンダー温度320℃、金型温度150℃で縦50mm、横50mm、厚み3mmの試験片(平板)を1枚作製した。
一体化条件:温度:300℃、加圧:5MPa、加圧時間:30sec;平板の上に不織布を置いてプレスし、一体化させた。
Integration by hot pressing Under the following conditions, the functional nonwoven fabric and the thermoplastic resin plate were integrated by hot pressing to obtain a resin molded body of the present invention.
Hot press machine: Mini test press MP-SNH (manufactured by Toyo Seiki Seisakusho)
Thermoplastic resin plate: Polyplastics Co., Ltd., “Durafide (registered trademark) 0220A9 (HD9100)”, injection molding machine (Sumitomo Heavy Industries, Ltd., SE100D), cylinder temperature 320 ° C., gold One test piece (flat plate) having a mold temperature of 150 ° C. and a length of 50 mm, a width of 50 mm, and a thickness of 3 mm was produced.
Integration conditions: temperature: 300 ° C., pressurization: 5 MPa, pressurization time: 30 sec; a nonwoven fabric was placed on a flat plate and pressed to be integrated.
≪実施例2≫
 ステンレス繊維を30質量部、未延伸ポリフェニレンサルファイド繊維を60質量部としたこと以外は実施例1と同様の方法で実施例2の樹脂成形体に使用される機能性不織布を得た。更に、該機能性不織布をインモールド射出成形によって、ポリフェニレンサルファイド樹脂成形体表面と一体化させて、本発明の樹脂成形体を得た。尚、本実施例を含め、以下の実施例では射出成形による一体化を実施した。
<< Example 2 >>
A functional nonwoven fabric used for the resin molded body of Example 2 was obtained in the same manner as in Example 1 except that 30 parts by mass of stainless steel fiber and 60 parts by mass of unstretched polyphenylene sulfide fiber were obtained. Furthermore, the functional nonwoven fabric was integrated with the surface of the polyphenylene sulfide resin molded body by in-mold injection molding to obtain the resin molded body of the present invention. In addition, integration by injection molding was implemented in the following examples including this example.
≪実施例3≫
 ステンレス繊維を80質量部、未延伸ポリフェニレンサルファイド繊維を10質量部としたこと以外は実施例1と同様の方法で実施例3の樹脂成形体に使用される機能性不織布を得た。更に、該機能性不織布をインモールド射出成形によって、ポリフェニレンサルファイド樹脂成形体表面と一体化させて、本発明の樹脂成形体を得た。
Example 3
A functional nonwoven fabric used for the resin molded body of Example 3 was obtained in the same manner as in Example 1 except that 80 parts by mass of stainless steel fibers and 10 parts by mass of unstretched polyphenylene sulfide fibers were obtained. Furthermore, the functional nonwoven fabric was integrated with the surface of the polyphenylene sulfide resin molded body by in-mold injection molding to obtain the resin molded body of the present invention.
≪実施例4≫
 前記繊維分散液を10Lとしたこと以外は実施例1と同様の方法で実施例4の樹脂成形体に使用される機能性不織布を得た。更に、該機能性不織布をインモールド射出成形によって、ポリフェニレンサルファイド樹脂成形体表面と一体化させて、本発明の樹脂成形体を得た。
Example 4
A functional nonwoven fabric used for the resin molded body of Example 4 was obtained in the same manner as in Example 1 except that the fiber dispersion was 10 L. Furthermore, the functional nonwoven fabric was integrated with the surface of the polyphenylene sulfide resin molded body by in-mold injection molding to obtain the resin molded body of the present invention.
≪実施例5≫
 平均繊維長1mm、平均繊維径8μmのステンレス繊維を使用したこと以外は実施例1と同様の方法で実施例5の樹脂成形体に使用される機能性不織布を得た。更に、該機能性不織布をインモールド射出成形によって、ポリフェニレンサルファイド樹脂成形体表面と一体化させて、本発明の樹脂成形体を得た。
Example 5
A functional nonwoven fabric used for the resin molded body of Example 5 was obtained in the same manner as in Example 1 except that stainless steel fibers having an average fiber length of 1 mm and an average fiber diameter of 8 μm were used. Furthermore, the functional nonwoven fabric was integrated with the surface of the polyphenylene sulfide resin molded body by in-mold injection molding to obtain the resin molded body of the present invention.
≪実施例6≫
 平均繊維長10mm、平均繊維径8μmのステンレス繊維を使用したこと以外は実施例1と同様の方法で実施例6の樹脂成形体に使用される機能性不織布を得た。更に、該機能性不織布をインモールド射出成形によって、ポリフェニレンサルファイド樹脂成形体表面と一体化させて、本発明の樹脂成形体を得た。
Example 6
A functional nonwoven fabric used for the resin molded body of Example 6 was obtained in the same manner as in Example 1 except that stainless steel fibers having an average fiber length of 10 mm and an average fiber diameter of 8 μm were used. Furthermore, the functional nonwoven fabric was integrated with the surface of the polyphenylene sulfide resin molded body by in-mold injection molding to obtain the resin molded body of the present invention.
≪実施例7≫
 平均繊維長1mm、平均繊維径22μm、軟化点200℃の未延伸ポリフェニレンサルファイド繊維を使用したこと以外は実施例1と同様の方法で実施例7の樹脂成形体に使用される機能性不織布を得た。更に、該機能性不織布をインモールド射出成形によって、ポリフェニレンサルファイド樹脂成形体表面と一体化させて、本発明の樹脂成形体を得た。
Example 7
A functional nonwoven fabric used for the resin molded body of Example 7 is obtained in the same manner as in Example 1 except that unstretched polyphenylene sulfide fibers having an average fiber length of 1 mm, an average fiber diameter of 22 μm, and a softening point of 200 ° C. are used. It was. Furthermore, the functional nonwoven fabric was integrated with the surface of the polyphenylene sulfide resin molded body by in-mold injection molding to obtain the resin molded body of the present invention.
≪実施例8≫
 未延伸ポリフェニレンサルファイド繊維に変えて、平均繊維長5mm、平均繊維径7μm、軟化点225℃のポリエチレンテレフタレート繊維を使用したこと以外は実施例1と同様の方法で実施例8の樹脂成形体に使用される機能性不織布を得た。更に、該機能性不織布をインモールド射出成形によって、ポリフェニレンサルファイド樹脂成形体表面と一体化させて、本発明の樹脂成形体を得た。
Example 8
Used in the resin molded body of Example 8 in the same manner as in Example 1 except that polyethylene terephthalate fiber having an average fiber length of 5 mm, an average fiber diameter of 7 μm, and a softening point of 225 ° C. was used instead of unstretched polyphenylene sulfide fiber. A functional nonwoven fabric was obtained. Furthermore, the functional nonwoven fabric was integrated with the surface of the polyphenylene sulfide resin molded body by in-mold injection molding to obtain the resin molded body of the present invention.
≪実施例9≫
 未延伸ポリフェニレンサルファイド繊維を5質量部、イソフタル酸変性ポリエチレンテレフタレート繊維を50質量部としたこと以外は実施例1と同様の方法で実施例9の樹脂成形体に使用される機能性不織布を得た。更に、該機能性不織布をインモールド射出成形によって、ポリフェニレンサルファイド樹脂成形体表面と一体化させて、本発明の樹脂成形体を得た。
Example 9
A functional nonwoven fabric used for the resin molding of Example 9 was obtained in the same manner as in Example 1 except that 5 parts by mass of unstretched polyphenylene sulfide fiber and 50 parts by mass of isophthalic acid-modified polyethylene terephthalate fiber were obtained. . Furthermore, the functional nonwoven fabric was integrated with the surface of the polyphenylene sulfide resin molded body by in-mold injection molding to obtain the resin molded body of the present invention.
≪実施例10≫
 未延伸ポリフェニレンサルファイド繊維を25質量部、イソフタル酸変性ポリエチレンテレフタレート繊維を30質量部としたこと以外は実施例1と同様の方法で実施例10の樹脂成形体に使用される機能性不織布を得た。更に、該機能性不織布をインモールド射出成形によって、ポリフェニレンサルファイド樹脂成形体表面と一体化させて、本発明の樹脂成形体を得た。
Example 10
A functional nonwoven fabric used for the resin molding of Example 10 was obtained in the same manner as in Example 1 except that 25 parts by mass of unstretched polyphenylene sulfide fiber and 30 parts by mass of isophthalic acid-modified polyethylene terephthalate fiber were obtained. . Furthermore, the functional nonwoven fabric was integrated with the surface of the polyphenylene sulfide resin molded body by in-mold injection molding to obtain the resin molded body of the present invention.
≪比較例1≫
 厚さ21μmの銅箔を、インモールド射出成形によりポリフェニレンサルファイド樹脂成形体表面に一体化させて比較例1の樹脂成形体を得た。
≪Comparative example 1≫
A 21 μm thick copper foil was integrated with the surface of the polyphenylene sulfide resin molded body by in-mold injection molding to obtain a resin molded body of Comparative Example 1.
≪比較例2≫
 ステンレス繊維を添加せず、未延伸ポリフェニレンサルファイド繊維を90質量部としたこと以外は実施例1と同様の方法で比較例2の樹脂成形体に使用される機能性不織布を得た。更に、該機能性不織布をインモールド射出成形によって、ポリフェニレンサルファイド樹脂成形体表面と一体化させて、本発明の樹脂成形体を得た。
≪Comparative example 2≫
A functional nonwoven fabric used for the resin molded article of Comparative Example 2 was obtained in the same manner as in Example 1 except that the stainless fiber was not added and that 90 parts by mass of unstretched polyphenylene sulfide fiber was used. Furthermore, the functional nonwoven fabric was integrated with the surface of the polyphenylene sulfide resin molded body by in-mold injection molding to obtain the resin molded body of the present invention.
≪比較例3≫
 ステンレス繊維を100質量部、未延伸ポリフェニレンサルファイド繊維及び、イソフタル酸変性ポリエチレンテレフタレート繊維を添加しないこと以外は実施例1と同様の方法で比較例3の樹脂成形体に使用される機能性不織布を得た。更に、該機能性不織布をインモールド射出成形によって、ポリフェニレンサルファイド樹脂成形体表面と一体化させて、本発明の樹脂成形体を得た。
«Comparative Example 3»
A functional nonwoven fabric used for the resin molding of Comparative Example 3 is obtained in the same manner as in Example 1 except that 100 parts by mass of stainless steel fiber, unstretched polyphenylene sulfide fiber, and isophthalic acid-modified polyethylene terephthalate fiber are not added. It was. Furthermore, the functional nonwoven fabric was integrated with the surface of the polyphenylene sulfide resin molded body by in-mold injection molding to obtain the resin molded body of the present invention.
≪比較例4≫
 ステンレス繊維を85質量部、未延伸ポリフェニレンサルファイド繊維を5質量部としたこと以外は実施例1と同様の方法で比較例4の樹脂成形体に使用される機能性不織布を得た。更に、該機能性不織布をインモールド射出成形によって、ポリフェニレンサルファイド樹脂成形体表面と一体化させて、本発明の樹脂成形体を得た。
<< Comparative Example 4 >>
A functional nonwoven fabric used for the resin molding of Comparative Example 4 was obtained in the same manner as in Example 1 except that 85 parts by mass of stainless steel fibers and 5 parts by mass of unstretched polyphenylene sulfide fibers were obtained. Furthermore, the functional nonwoven fabric was integrated with the surface of the polyphenylene sulfide resin molded body by in-mold injection molding to obtain the resin molded body of the present invention.
≪比較例5≫
 ステンレス繊維を20質量部、未延伸ポリフェニレンサルファイド繊維を70質量部としたこと以外は実施例1と同様の方法で比較例5の樹脂成形体に使用される機能性不織布を得た。更に、該機能性不織布をインモールド射出成形によって、ポリフェニレンサルファイド樹脂成形体表面と一体化させて、本発明の樹脂成形体を得た。
<< Comparative Example 5 >>
A functional nonwoven fabric used for the resin molding of Comparative Example 5 was obtained in the same manner as in Example 1 except that 20 parts by mass of stainless steel fiber and 70 parts by mass of unstretched polyphenylene sulfide fiber were obtained. Furthermore, the functional nonwoven fabric was integrated with the surface of the polyphenylene sulfide resin molded body by in-mold injection molding to obtain the resin molded body of the present invention.
 実施例1~10、比較例1~5で作製した機能性不織布構成の概要を表1に示す。
Figure JPOXMLDOC01-appb-T000001
Table 1 shows an outline of the constitution of the functional nonwoven fabric produced in Examples 1 to 10 and Comparative Examples 1 to 5.
Figure JPOXMLDOC01-appb-T000001
 実施例1~10、比較例1~5の機能性不織布及び銅箔の物性値を以下に示す。 The physical properties of the functional nonwoven fabrics and copper foils of Examples 1 to 10 and Comparative Examples 1 to 5 are shown below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
透気抵抗度の測定
 実施例及び比較例で作製した機能性不織布について、透気抵抗度を測定した。透気抵抗度は、JIS P8117に準じて測定した。透気抵抗度が3sec未満の場合を◎、3~10secの場合を○、10sec超の場合を×として評価を実施した。
Measurement of air resistance The air resistance was measured for the functional nonwoven fabrics produced in the examples and comparative examples. The air resistance was measured according to JIS P8117. The evaluation was carried out with a case where the air permeability resistance was less than 3 seconds, a case where it was 3-10 seconds, a case where it was more than 10 seconds, and a case where it was more than 10 seconds.
引張強度、引張り伸び率の測定
 実施例及び比較例で作製した機能性不織布について、引張強度及び引張り伸び率を測定した。引張強度及び引張り伸び率の測定は、引張り方向に対するシート幅を15mmとして、JIS P8113に準じて測定した。引張強度が25N以上の場合を◎、8~25N未満の場合を○、8N未満の場合を×として評価を実施した。
Measurement of Tensile Strength and Tensile Elongation The tensile strength and the tensile elongation were measured for the functional nonwoven fabrics produced in Examples and Comparative Examples. The tensile strength and tensile elongation were measured according to JIS P8113, with the sheet width in the tensile direction being 15 mm. The evaluation was carried out with a case where the tensile strength was 25N or more, ◎, a case where the tensile strength was less than 8 to 25N, and a case where the tensile strength was less than 8N.
表面抵抗率の測定
 実施例及び比較例で作製した機能性不織布について、表面抵抗率を測定した。ロレスタAX  MCP-T370(三菱アナリテック社製)を用いて、JIS  K7194導電性プラスチックの4探針法による抵抗率試験法により、実施例及び比較例で作製した機能性不織布の任意の5箇所を測定し、その平均値を表面抵抗値とした。表面抵抗は、低い程電磁波シールド効果を発現しやすい。表面抵抗値が2.5Ω/□以下の場合を◎、2.5超~5.0Ω/□の場合を○、5.0Ω/□超の場合を×として評価した。
Measurement of surface resistivity The surface resistivity was measured for the functional nonwoven fabrics produced in Examples and Comparative Examples. Using Loresta AX MCP-T370 (manufactured by Mitsubishi Analytech Co., Ltd.), any five locations of the functional nonwoven fabrics produced in the examples and comparative examples were tested by the resistivity test method based on the 4-probe method of JIS K7194 conductive plastic. The average value was measured as the surface resistance value. The lower the surface resistance, the more easily the electromagnetic wave shielding effect is expressed. The case where the surface resistance value was 2.5Ω / □ or less was evaluated as “◎”, the case where the surface resistance value was over 2.5 to 5.0Ω / □ was evaluated as “◯”, and the case where the surface resistance value was above 5.0Ω / □ was evaluated as “X”.
電磁波シールド性の測定及び結果
 U3741  SPECTRUM  ANALYZER(アドバンテスト社製)を用いて、アドバンテスト法により、実施例及び比較例で作製した樹脂成形体の電磁波シールド性を測定した。その結果、実施例1~10、比較例1、比較例4の樹脂成形体の電磁波シールド効果は、30dBm~60dBmであった。また、比較例5の樹脂成形体の電磁波シールド効果は、20dBm程度であった。それに対して、比較例2は電磁波シールド効果が殆ど無かった。30dBmのシールド効果で、実効放射電力が99.9%減衰することを勘案すれば、10MHz~1GHzの周波数領域での電磁波シールド効果が、30dBm以上であれば、充分な電磁波シールド効果が期待できる。
Measurement and Results of Electromagnetic Shielding Using U3741 SPECTRUM ANALYZER (manufactured by Advantest), the electromagnetic shielding properties of the resin moldings produced in Examples and Comparative Examples were measured by the Advantest method. As a result, the electromagnetic wave shielding effects of the resin moldings of Examples 1 to 10, Comparative Example 1 and Comparative Example 4 were 30 dBm to 60 dBm. Moreover, the electromagnetic wave shielding effect of the resin molding of Comparative Example 5 was about 20 dBm. In contrast, Comparative Example 2 had almost no electromagnetic shielding effect. Considering that the effective radiated power is attenuated by 99.9% due to the shielding effect of 30 dBm, a sufficient electromagnetic shielding effect can be expected if the electromagnetic shielding effect in the frequency range of 10 MHz to 1 GHz is 30 dBm or more.
評価結果
 実施例1~10は、透気抵抗度が10sec以下であり、かつ電磁波シールド効果が30~60dBmあり、樹脂成形体から本発明の機能性不織布が容易に剥がれることも無かった。尚、いずれの実施例も、品質上問題となる程度の加工不良(例えばガス焼けやウェルドライン)は見受けられなかった。一方、比較例1は、銅箔を樹脂成形体に溶着させたものであるため、ガス抜きのための金型設計に制約を受けると共に、不織布のように成形用樹脂のアンカー効果が期待出来ないため、特に端部から銅箔が剥がれやすい傾向にあった。また、比較例2は、導電性繊維が含まれていないため、電磁波シールド効果が得られず、透気抵抗度も高かった。比較例3は、ドライヤー工程からの取り出しにおいて不織布が崩壊してしまい、シート形状を維持出来なかった。比較例4は、表面抵抗率は良好だったが、インモールド射出成形時に不織布が破断してしまい、電磁波シールド性が測定出来なかった。比較例5は、電磁波シールド効果が20dBmと低かった。尚、実施例1に示されるように、射出成形、レーザー溶着、ホットプレス等、いずれの加工法にも対応可能であることが示された。
Evaluation results Examples 1 to 10 had an air permeability resistance of 10 sec or less and an electromagnetic wave shielding effect of 30 to 60 dBm, and the functional nonwoven fabric of the present invention was not easily peeled from the resin molded body. In all of the examples, no processing defects (for example, gas burns or weld lines) to the extent of quality problems were found. On the other hand, since Comparative Example 1 is obtained by welding a copper foil to a resin molded body, it is restricted by a mold design for degassing and cannot be expected to have an anchor effect of a molding resin like a nonwoven fabric. For this reason, the copper foil tends to be peeled off particularly from the end portion. Moreover, since the comparative example 2 did not contain the conductive fiber, the electromagnetic wave shielding effect was not acquired and the air permeability resistance was also high. In Comparative Example 3, the nonwoven fabric collapsed during removal from the dryer process, and the sheet shape could not be maintained. In Comparative Example 4, the surface resistivity was good, but the nonwoven fabric broke during in-mold injection molding, and the electromagnetic shielding properties could not be measured. In Comparative Example 5, the electromagnetic wave shielding effect was as low as 20 dBm. In addition, as shown in Example 1, it was shown that any processing method such as injection molding, laser welding, and hot pressing can be applied.

Claims (9)

  1.  導電性繊維30~80質量部に対して有機繊維20~70質量部を添加してなるスラリーを抄造することにより得られる、樹脂成形体に使用される不織布。 Non-woven fabric used for resin moldings, obtained by making a slurry made by adding 20 to 70 parts by mass of organic fibers to 30 to 80 parts by mass of conductive fibers.
  2.  前記有機繊維が、軟化点が140℃未満である第一の熱可塑性樹脂繊維と、軟化点が140℃以上である第二の熱可塑性樹脂繊維と、を含む、請求項1に記載の不織布。 The nonwoven fabric according to claim 1, wherein the organic fiber includes a first thermoplastic resin fiber having a softening point of less than 140 ° C and a second thermoplastic resin fiber having a softening point of 140 ° C or higher.
  3.  前記第一の熱可塑性樹脂繊維と前記第二の熱可塑性樹脂繊維との合計質量を基準とした際、前記合計質量に対する前記第一の熱可塑性樹脂繊維の質量の比が、0.07~0.95である、請求項2に記載の不織布。 When the total mass of the first thermoplastic resin fiber and the second thermoplastic resin fiber is used as a reference, the ratio of the mass of the first thermoplastic resin fiber to the total mass is 0.07 to 0. The nonwoven fabric of Claim 2 which is .95.
  4.  導電性繊維がステンレス繊維、炭素繊維、銅繊維のうち少なくとも1種類を含み、
     有機繊維がポリフェニレンサルファイド繊維を含む、請求項1~3のいずれか一項に記載の不織布。
    The conductive fiber includes at least one of stainless fiber, carbon fiber, and copper fiber,
    The nonwoven fabric according to any one of claims 1 to 3, wherein the organic fibers include polyphenylene sulfide fibers.
  5.  ポリフェニレンサルファイド繊維が、未延伸のポリフェニレンサルファイド繊維を、ポリフェニレンサルファイド繊維全体の50~100質量%含む、請求項4に記載の不織布。 The nonwoven fabric according to claim 4, wherein the polyphenylene sulfide fiber contains 50 to 100% by mass of unstretched polyphenylene sulfide fiber based on the whole polyphenylene sulfide fiber.
  6.  射出成形にて樹脂成形体を製造する際に使用される、請求項1~5のいずれか一項に記載の不織布。 The nonwoven fabric according to any one of claims 1 to 5, which is used when a resin molded body is produced by injection molding.
  7.  請求項1~6のいずれか一項に記載の樹脂成形体に使用される不織布を熱可塑性樹脂の表層又は内部に一体化させてなることを特徴とする樹脂成形体。 A resin molded body comprising a nonwoven fabric used in the resin molded body according to any one of claims 1 to 6 integrated with a surface layer or inside of a thermoplastic resin.
  8.  前記熱可塑性樹脂が、ポリアリーレンサルファイド樹脂、ポリブチレンテレフタレート樹脂、ポリアセタール樹脂及び液晶ポリマー樹脂からなる群より選択される少なくとも一種である、請求項7に記載の樹脂成形体。 The resin molded article according to claim 7, wherein the thermoplastic resin is at least one selected from the group consisting of a polyarylene sulfide resin, a polybutylene terephthalate resin, a polyacetal resin, and a liquid crystal polymer resin.
  9.  請求項1~5のいずれか一項に記載の不織布を熱可塑性樹脂の表層又は内部に一体化させる工程を含む樹脂成形体を製造する方法であって、前記一体化させる工程が、射出成形、レーザー溶着、高周波誘導加熱溶着及びホットプレスのいずれかの工程である、樹脂成形体の製造方法。 A method for producing a resin molded body comprising a step of integrating the nonwoven fabric according to any one of claims 1 to 5 into a surface layer or inside of a thermoplastic resin, wherein the step of integrating comprises injection molding, A method for producing a resin molded body, which is one of laser welding, high-frequency induction heating welding, and hot pressing.
PCT/JP2015/069565 2014-07-07 2015-07-07 Functional nonwoven used for molded resin body, molded resin body obtained using said nonwoven, and method for manufacturing said molded resin body WO2016006614A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-139462 2014-07-07
JP2014139462 2014-07-07

Publications (1)

Publication Number Publication Date
WO2016006614A1 true WO2016006614A1 (en) 2016-01-14

Family

ID=55064243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069565 WO2016006614A1 (en) 2014-07-07 2015-07-07 Functional nonwoven used for molded resin body, molded resin body obtained using said nonwoven, and method for manufacturing said molded resin body

Country Status (2)

Country Link
JP (1) JP6566753B2 (en)
WO (1) WO2016006614A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018056405A1 (en) * 2016-09-26 2018-03-29 株式会社巴川製紙所 Copper fiber nonwoven fabric
WO2019044694A1 (en) * 2017-08-31 2019-03-07 東レ株式会社 Integrated molded body and method for producing same
EP4114662A4 (en) * 2020-03-03 2024-03-06 3M Innovative Properties Company Thermally conductive articles including entangled or aligned fibers, methods of making same, and battery modules

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6723758B2 (en) * 2016-02-22 2020-07-15 三菱製紙株式会社 Method for producing non-woven fabric containing polyphenylene sulfide fiber
JP6506200B2 (en) * 2016-03-18 2019-04-24 株式会社巴川製紙所 Resin-sealed semiconductor device and method of manufacturing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912840A (en) * 1982-07-14 1984-01-23 鍛治 勇 Manufacture of shape having conductivity
JPS59212259A (en) * 1983-05-17 1984-12-01 佐藤 良博 Conductive laminate
JPS61225398A (en) * 1985-03-28 1986-10-07 愛媛県 Sheet like composition containing coudnctive fiber
JPS6218799A (en) * 1985-07-17 1987-01-27 ダイニツク株式会社 Electromagnetic wave shielding material
JPH0222021A (en) * 1988-07-11 1990-01-24 Sekisui Chem Co Ltd Manufacture of fusion-bonding joint
JPH05295691A (en) * 1992-04-17 1993-11-09 Tomoegawa Paper Co Ltd Electrically conductive fluorine-based fiber paper and its production
JP2014050982A (en) * 2012-09-05 2014-03-20 Teijin Ltd Fiber reinforced plastic molding substrate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000223806A (en) * 1999-02-02 2000-08-11 Toray Ind Inc Sheet for printed wiring board and its manufacture
JP2014062336A (en) * 2012-09-19 2014-04-10 Teijin Ltd Method for producing semifinished product for fiber-reinforced plastic
JP2014015706A (en) * 2013-08-19 2014-01-30 Mitsubishi Plastics Inc Carbon fiber nonwoven fabric, carbon fiber-reinforced resin sheet, and carbon fiber-reinforced resin molded article

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912840A (en) * 1982-07-14 1984-01-23 鍛治 勇 Manufacture of shape having conductivity
JPS59212259A (en) * 1983-05-17 1984-12-01 佐藤 良博 Conductive laminate
JPS61225398A (en) * 1985-03-28 1986-10-07 愛媛県 Sheet like composition containing coudnctive fiber
JPS6218799A (en) * 1985-07-17 1987-01-27 ダイニツク株式会社 Electromagnetic wave shielding material
JPH0222021A (en) * 1988-07-11 1990-01-24 Sekisui Chem Co Ltd Manufacture of fusion-bonding joint
JPH05295691A (en) * 1992-04-17 1993-11-09 Tomoegawa Paper Co Ltd Electrically conductive fluorine-based fiber paper and its production
JP2014050982A (en) * 2012-09-05 2014-03-20 Teijin Ltd Fiber reinforced plastic molding substrate

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018056405A1 (en) * 2016-09-26 2018-03-29 株式会社巴川製紙所 Copper fiber nonwoven fabric
JPWO2018056405A1 (en) * 2016-09-26 2019-06-24 株式会社巴川製紙所 Copper fiber non-woven fabric
JP2020153058A (en) * 2016-09-26 2020-09-24 株式会社巴川製紙所 Copper fiber nonwoven fabric and manufacturing method thereof
TWI734837B (en) * 2016-09-26 2021-08-01 日商巴川製紙所股份有限公司 Nonwoven copper fabric and process for producing nonwoven copper fabric
WO2019044694A1 (en) * 2017-08-31 2019-03-07 東レ株式会社 Integrated molded body and method for producing same
CN110869182A (en) * 2017-08-31 2020-03-06 东丽株式会社 Integrated molded body and method for producing same
JPWO2019044694A1 (en) * 2017-08-31 2020-08-13 東レ株式会社 Integrated molded body and manufacturing method thereof
US11141893B2 (en) 2017-08-31 2021-10-12 Toray Industries, Inc. Integrally molded body and method for producing the same
JP7131390B2 (en) 2017-08-31 2022-09-06 東レ株式会社 Integrated molding and method for manufacturing the same
EP4114662A4 (en) * 2020-03-03 2024-03-06 3M Innovative Properties Company Thermally conductive articles including entangled or aligned fibers, methods of making same, and battery modules

Also Published As

Publication number Publication date
JP6566753B2 (en) 2019-08-28
JP2016027221A (en) 2016-02-18

Similar Documents

Publication Publication Date Title
JP6566753B2 (en) Functional nonwoven fabric used for resin molded body, resin molded body obtained using the same, and method for producing the same
US20220081044A1 (en) Underbody shield compositions and articles that provide enhanced peel strength and methods of using them
KR102187523B1 (en) Sandwich laminate, sandwich structure and unified molded product using same and processes for producing both
JP5673375B2 (en) Fiber resin composite structure, method for producing molded body, and molded body
CN108472879B (en) Hybrid veil as an interlayer in a composite material
KR20150100607A (en) Fiber-reinforced resin sheet, integrated molded product and process for producing same
JP2017535649A (en) Prepreg, core and composite article comprising expandable graphite material
JP6694973B2 (en) Metal fiber nonwoven fabric and method for producing the same
CN106223129B (en) A kind of preparation method aligning meta-aramid electric insulation paper
WO2015098470A1 (en) Preform, sheet material, and integrated sheet material
EP2925517A1 (en) Sandwich material
WO2016136790A1 (en) Resin supply material, preform, and method for producing fiber-reinforced resin
CN106928705A (en) A kind of composite polyimide material containing filler, sheet material and the circuit substrate containing it
JP5648338B2 (en) Wet papermaking and fiber reinforced composites
JP5742724B2 (en) Polyimide short fiber and heat-resistant paper using the same
JP2021155553A (en) Continuous manufacturing method of nonwoven fabric-like prepreg
JP6439487B2 (en) Substrate for fiber reinforced plastic molding and fiber reinforced plastic molding
JP6493147B2 (en) Nonwoven fabric, method for producing nonwoven fabric, and fiber-reinforced plastic molded body
CN106120474A (en) A kind of polyester/para-position/meta-aramid is combined the preparation method of electric insulation paper
JP2015217626A (en) Multilayer molded article
JP2017172083A (en) Carbon short fiber nonwoven fabric and composite
JP6625941B2 (en) Method for producing carbon fiber sheet
JP6458589B2 (en) Sheet material, integrated molded product, and integrated molded product manufacturing method
JP7151163B2 (en) Composite material
JP2019199016A (en) Composite molding and method for producing composite molding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15818691

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15818691

Country of ref document: EP

Kind code of ref document: A1