WO2016006439A1 - Method and device for optimizing efficiency of induction motor in electric vehicle - Google Patents

Method and device for optimizing efficiency of induction motor in electric vehicle Download PDF

Info

Publication number
WO2016006439A1
WO2016006439A1 PCT/JP2015/068105 JP2015068105W WO2016006439A1 WO 2016006439 A1 WO2016006439 A1 WO 2016006439A1 JP 2015068105 W JP2015068105 W JP 2015068105W WO 2016006439 A1 WO2016006439 A1 WO 2016006439A1
Authority
WO
WIPO (PCT)
Prior art keywords
induction motor
control
frequency
voltage
load factor
Prior art date
Application number
PCT/JP2015/068105
Other languages
French (fr)
Japanese (ja)
Inventor
神王偉国
Original Assignee
神王偉国
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201410320838.9A external-priority patent/CN104079230B/en
Application filed by 神王偉国 filed Critical 神王偉国
Priority to KR1020177000006A priority Critical patent/KR20170015963A/en
Priority to US15/322,115 priority patent/US10063177B2/en
Publication of WO2016006439A1 publication Critical patent/WO2016006439A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the present invention relates to the field of controlling an induction motor in an electric vehicle, specifically to a control method, apparatus, and system for optimizing the efficiency of the induction motor.
  • An induction motor controller for electric vehicles is one of the important parts of electric vehicles, and its main application is to operate the electric vehicles according to the determined direction, speed, angle and reaction time, and the output efficiency of the induction motor Is to maximize.
  • Induction motors are widely used as induction motors most suitable for electric vehicles because of their advantages such as low cost, high stability, high speed, low torque fluctuation / noise and position sensorlessness.
  • copper loss and iron loss increase due to an increase in the reactive power of the induction motor, which significantly reduces the operating efficiency and power factor of the induction motor.
  • the usage time and travel distance of the charged battery are considerably shortened.
  • the present invention can constantly adjust the input power of the induction motor to the total load of the electric vehicle by detecting the fluctuation of the load factor and the rotation speed in real time when the total load of the induction motor of the electric vehicle changes greatly. It became.
  • the input power of the induction motor is automatically adjusted to the minimum value; when the maximum load of the electric vehicle is reached, the induction motor input power of the electric vehicle is It is an efficiency optimization method and control device that automatically adjusts to the maximum value, and its main role is to increase the output efficiency of the induction motor through the control of the related parameters of the induction motor.
  • the present invention obtains a load factor of an induction motor instantaneously and accurately in real time, and a voltage that causes the induction motor to always operate at a high efficiency with a variable load factor and an arbitrary frequency through an optimization algorithm. Based on the amount of frequency control, the induction motor input voltage and frequency are adjusted in real time, and a new method and apparatus for optimizing the efficiency of the induction motor is proposed in which the input power of the induction motor always adapts to the load factor of the induction motor. did.
  • the voltage and frequency controlled variables that make the induction motor always operate in a highly efficient state at a variable load factor and an arbitrary frequency (rotation speed) through an optimization algorithm are collected, instantaneously, and accurately.
  • the input voltage and frequency of the induction motor are adjusted in real time, the input power of the induction motor is always adapted to the load factor of the induction motor, the minimum current and the optimum voltage
  • the induction motor with a medium to low load which is a common technology, which is often seen in the past, has increased copper loss and iron loss due to an increase in reactive power.
  • the technical problem of drastic reduction in operating efficiency and power factor and serious wasted power consumption was solved.
  • an energy saving operation is realized with the minimum current and the optimum voltage of the induction motor.
  • This method has the following effects: 1) Copper loss and iron loss of induction motors are greatly reduced, and operating efficiency is improved; 2) Reactive power of induction motors has been greatly reduced and power factor has been improved; 3) The effective power of the induction motor has been greatly reduced, saving the effective power; 4) The operating temperature rise and noise of induction motors are greatly reduced, extending the life of induction motors; 5) Since both the reactive power and active power of the induction motor are storage battery power, the cruising time and mileage of the electric vehicle storage battery after charging have been greatly extended by saving reactive power and active power.
  • FIG. 5 is a vector diagram that can be represented by a three-phase AC coordinate system and a three-phase DC coordinate system in an induction motor efficiency optimization method. It is explanatory drawing which shows the flowchart of 2nd Example of the efficiency optimization method of the induction motor which concerns on this invention.
  • FIG. 3 is a structural diagram of a second embodiment of the efficiency optimization control device for an induction motor according to the present invention.
  • the operating efficiency ⁇ of the induction motor can be calculated by the following formula:
  • P1 represents the input capacity of the induction motor
  • P2 represents the output capacity of the induction motor (shaft output capacity)
  • Pcu1 represents the copper loss of the stator, ie the power loss that occurs when the stator current flows through the stator winding, the magnitude of which depends on the load
  • Pcu2 represents the rotor copper loss, ie the power loss that occurs when current flows through the stator winding, the magnitude of which depends on the load
  • PFe represents the iron loss, that is, the excitation loss caused by the rotating magnetic field in the stator core.
  • the size of the left and right is mainly determined by the excitation electromotive force. Does not depend on load; Pmec represents the mechanical loss, that is, the power lost when generating friction by bearings, fans, etc., the magnitude of which is almost the same; Pad represents accessory loss, that is, loss caused by stator, rotor core groove and harmonics, the magnitude of which depends on the load but can be ignored. Since (Pcu1 + Pcu2) depends on the load, it is called variable loss (copper loss), and (PFe + Pmec + Pad) is almost independent of the load, so it is called invariable loss (iron loss).
  • FIG. 5 is a flow chart of a second embodiment of the method for realizing the efficiency optimization control of the induction motor according to the present invention, and the steps for carrying out this method are described in detail: Step 30 of acquiring in real time each related parameter value of the induction motor including the input current ia, ib, ic, input voltage ua, ub, uc and phase angle of the induction motor.
  • the phase angle is closely related to the load factor of the induction motor, and the phase angle is inversely proportional to the load factor of the induction motor, that is, the larger the phase angle, the smaller the load factor, and the smaller the phase angle, the load.
  • the rate is large.
  • Step 31 for obtaining each related parameter value of the induction motor including the operating power factor PF, the field current component id, the torque current component iq and the rotational speed ⁇ by calculation The field current component id and the torque current component iq in the present embodiment are obtained by vector conversion.
  • the three-phase excitation current of A, B, C is converted into the rotor torque current and stator field current of the induction motor. Can be changed.
  • the obtained field current component Id of the induction motor is compared with a set field current command value to obtain a deviation value, fuzzy inference is performed on the deviation value, and an excitation current control coefficient Idk is obtained 33.
  • the obtained torque current component Iq and rotation speed ⁇ of the obtained induction motor are compared with the set rotational speed command value to obtain a deviation value, and cascade control calculation is performed on the deviation value to obtain the frequency control amount Fq. 35.
  • Step 36 for obtaining the voltage control amount by the following equation: Ud Fq ⁇ k1 ⁇ Pk
  • Ud the voltage control amount
  • Fq the control amount of the frequency (rotational speed)
  • k1 the V / F coefficient (rated voltage V / rated frequency F.
  • the rated voltage V of the induction motor is 200V
  • the V / F coefficient is 200/50, that is, 4.0, where the rated voltage V is not necessarily 200 V
  • the rated frequency F is not necessarily 50 Hz.
  • Pk represents the load factor coefficient.
  • Step 37 Based on the acquired voltage control amount Ud and frequency control amount Fq, the waveform of SPWM generation is adjusted, and the three-phase input voltages ua, ub, uc of the induction motor (currents ia, ib, ic are Step 37, which adjusts in real-time the frequency (rotation speed) and frequency (rotation speed) so that the input power of the induction motor can always adapt to the load factor of the induction motor.
  • an induction motor efficiency optimization control device including an induction motor efficiency optimization control and an induction motor and a voltage adjustment unit has been proposed.
  • the induction motor efficiency optimization control device is connected to the induction motor and the voltage adjustment unit, and is used to operate the induction motor with high efficiency at all times.
  • an electric motor vehicle composed of the induction motor efficiency optimization control device and the vehicle body has been proposed.
  • the induction motor efficiency optimization control device is connected to the drive shaft of the vehicle body, and is used to operate the vehicle body at a high efficiency at a variable load factor and an arbitrary rotational speed (frequency). Increased the usage time after charging the battery and the mileage of the electric vehicle.
  • Each step and calculation algorithm proposed in the present invention can be realized by a general computing device, such as aggregating in one computing device or distributing it in a network connecting a plurality of computing devices.
  • induction motors have variable load factors (for example, low load, medium load, heavy load). Under the load), the induction motor of the present invention can be operated with the minimum current and the optimum voltage and high efficiency, and the cruising time and mileage of the electric vehicle storage battery after charging can be extended. .

Abstract

The objective of the present invention is to cause parameters related to a desired rotational speed and the fluctuating load factor of an electric motor of an electric vehicle to be adjusted via an optimization algorithm, and carry out efficient driving over the full range. In order to optimize the efficiency of an electric motor for an electricity-based vehicle: the working load factor is obtained in real time using an algorithm (9) for calculating the load factor; the rotational speed (ω) is obtained by carrying out ω detection (6); the power factor (PF) is obtained by carrying out PF calculation (4); a torque current component (Iq) and a field current component (Id) are obtained using an Id, Iq conversion algorithm (5); the amount of frequency (rotational speed) control (Fq) is calculated by carrying out ω control (1); the amount of field current control (Idk) is calculated by carrying out Fazzy control (2); the amount of power factor control (PFk) is calculated by carrying out PF control (3); and Fq, Idk, and PFk are entered into an optimal voltage-calculating algorithm (7) to calculate the amount of optimal voltage control (Ud) in an optimization-controlling device (20). A SPWM generation (8) waveform is adjusted using the amount of optimal voltage control (Ud) and the amount of frequency (rotational speed) control (Fq), and the power inputted into an induction motor (17) in an electrical power-adjusting unit (12) is automatically adjusted to the lowest value in a highly efficient manner.

Description

電動自動車における誘導電動機の効率最適化方法及び装置Method and apparatus for optimizing efficiency of induction motor in electric vehicle
   本発明は、電気自動車における誘導電動機の制御分野、具体的には誘導電動機の効率最適化する制御方法、装置、システムに関わる。 The present invention relates to the field of controlling an induction motor in an electric vehicle, specifically to a control method, apparatus, and system for optimizing the efficiency of the induction motor.
電動自動車用の誘導電動機の制御装置は電動自動車の重要な部分の一つとして、主な用途は電動自動車を決められた方向、速度、角度、反応時間に沿って動作させ、誘導電動機の出力効率を最大限に引き上げることである。誘導電動機は、低コスト、高い安定性、高速、低トルク変動/騒音と位置センサーレス等のメリットがあることから、今や電動自動車に最も適した誘導電動機として幅広く導入されている。しかし、誘導電動機は、中、低負荷の状態で稼働していると、誘導電動機の無効電力の増加により銅損、鉄損も増加し、誘導電動機の運転効率、力率が大幅に低下して深刻な無駄電力の消費が発生するという大きい問題が存在している。電気自動車の場合は、充電した電池の使用時間や行走距離がかなり短縮してしまう。本発明は、電気自動車の誘導電動機の総合負荷が大きく変化の時、負荷率及び回転速度の変動をリアルタイムで検知することで、誘導電動機の入力電力を常に電気自動車の総合負荷に合わせることが可能となった。電気自動車の総合負荷が誘導電動機の入力電力を下回ると、誘導電動機の入力電力は自動的最小値に調整される;電気自動車の最大負荷に達した場合には、電気自動車の誘導電動機入力電力は自動的に最大値に調整するという効率最適化方法及び制御装置であり、主な役割は、誘導電動機の関連パラメータの制御を通じて誘導電動機の出力効率を高めることである。 An induction motor controller for electric vehicles is one of the important parts of electric vehicles, and its main application is to operate the electric vehicles according to the determined direction, speed, angle and reaction time, and the output efficiency of the induction motor Is to maximize. Induction motors are widely used as induction motors most suitable for electric vehicles because of their advantages such as low cost, high stability, high speed, low torque fluctuation / noise and position sensorlessness. However, when an induction motor is operated at a medium or low load, copper loss and iron loss increase due to an increase in the reactive power of the induction motor, which significantly reduces the operating efficiency and power factor of the induction motor. There is a big problem that serious wasteful power consumption occurs. In the case of an electric vehicle, the usage time and travel distance of the charged battery are considerably shortened. The present invention can constantly adjust the input power of the induction motor to the total load of the electric vehicle by detecting the fluctuation of the load factor and the rotation speed in real time when the total load of the induction motor of the electric vehicle changes greatly. It became. When the total load of the electric vehicle falls below the input power of the induction motor, the input power of the induction motor is automatically adjusted to the minimum value; when the maximum load of the electric vehicle is reached, the induction motor input power of the electric vehicle is It is an efficiency optimization method and control device that automatically adjusts to the maximum value, and its main role is to increase the output efficiency of the induction motor through the control of the related parameters of the induction motor.
今現在、業界の電動自動車用の誘導電動機の制御技術において、主に下記の制御方法が、(1)従来のインバーター制御方法;(2)ベクトル制御方法などが使われている、これらの技術では、駆動トルクが注目されているが、常に定格固定電圧で稼動しているので、電気自動車の走行の過程で様々な要素(例えば走行の速度、上り坂、下り坂、道路状況、重量ベアリング等)の影響により誘導電動機の負荷が変動することが無視される、これはこれらの技術には共通の欠陥である。これは本発明が解決しようとする課題。 Currently, in the induction motor control technology for electric vehicles in the industry, the following control methods are mainly used: (1) conventional inverter control method; (2) vector control method, etc. Although driving torque is attracting attention, it is always operating at the rated fixed voltage, so various factors (such as driving speed, uphill, downhill, road conditions, weight bearing, etc.) It is neglected that the load of the induction motor fluctuates due to the influence of this, which is a common defect in these technologies. This is a problem to be solved by the present invention.
この課題を解決するために、本発明は、誘導電動機の負荷率をリアルタイムで瞬時、精確に獲得し、最適化アルゴリズムを通じて変動負荷率及び任意の周波数において誘導電動機を常に高い効率で運転させる電圧及び周波数の制御量をもとに、誘導電動機の入力電圧と周波数をリアルタイムで調整し、誘導電動機の入力電力が常に誘導電動機の負荷率に適応する新しい誘導電動機の効率最適化する方法及び装置を提案した。
  提案した誘導電動機の効率最適化方法では、最適化アルゴリズムを通じて変動負荷率及び任意の周波数(回転速度)において誘導電動機を常に高い効率な状態で運転させる電圧及び周波数の制御量を一括かつ瞬時、精確に獲得し、この電圧及び周波数の制御量をもとに、誘導電動機の入力電圧と周波数をリアルタイムで調整し、誘導電動機の入力電力を常に誘導電動機の負荷率に適応させ、最小電流と最適電圧の省エネ状態において誘導電動機を高い効率で運転させることを確保したことで、従来の技術であるよく見かける中低負荷の誘導電動機だと無効電力の増加により銅損、鉄損も増加し、誘導電動機の運転効率、力率の大幅な低下と深刻な無駄電力の消耗が生じるという技術的な課題を解決した。
In order to solve this problem, the present invention obtains a load factor of an induction motor instantaneously and accurately in real time, and a voltage that causes the induction motor to always operate at a high efficiency with a variable load factor and an arbitrary frequency through an optimization algorithm. Based on the amount of frequency control, the induction motor input voltage and frequency are adjusted in real time, and a new method and apparatus for optimizing the efficiency of the induction motor is proposed in which the input power of the induction motor always adapts to the load factor of the induction motor. did.
In the proposed method for optimizing the efficiency of induction motors, the voltage and frequency controlled variables that make the induction motor always operate in a highly efficient state at a variable load factor and an arbitrary frequency (rotation speed) through an optimization algorithm are collected, instantaneously, and accurately. Based on the control amount of this voltage and frequency, the input voltage and frequency of the induction motor are adjusted in real time, the input power of the induction motor is always adapted to the load factor of the induction motor, the minimum current and the optimum voltage As a result of ensuring that the induction motor can be operated with high efficiency in the energy-saving state of the conventional type, the induction motor with a medium to low load, which is a common technology, which is often seen in the past, has increased copper loss and iron loss due to an increase in reactive power. The technical problem of drastic reduction in operating efficiency and power factor and serious wasted power consumption was solved.
本発明により、誘導電動機の最小電流と最適電圧での省エネ状態運転を実現した。この方法には次のような効果がある:
1)誘導電動機の銅損、鉄損が大幅に低減し、運転効率が向上した;
2)誘導電動機の無効電力が大幅に低減し、力率が向上した;
3)誘導電動機の有効電力が大幅に低減し、有効電力を節約した;
4)誘導電動機の運転温度上昇と騒音が大幅に低減し、誘導電動機の寿命を伸ばした;
5)誘導電動機の無効電力と有効電力とも蓄電池の電力なので、無効電力と有効電力が節約されることにより、充電後の電気自動車蓄電池の航続時間及び走行距離の大幅に延長した。
According to the present invention, an energy saving operation is realized with the minimum current and the optimum voltage of the induction motor. This method has the following effects:
1) Copper loss and iron loss of induction motors are greatly reduced, and operating efficiency is improved;
2) Reactive power of induction motors has been greatly reduced and power factor has been improved;
3) The effective power of the induction motor has been greatly reduced, saving the effective power;
4) The operating temperature rise and noise of induction motors are greatly reduced, extending the life of induction motors;
5) Since both the reactive power and active power of the induction motor are storage battery power, the cruising time and mileage of the electric vehicle storage battery after charging have been greatly extended by saving reactive power and active power.
誘導電動機の運転効率ηモデルである。It is an operating efficiency η model of an induction motor. 誘導電動機の効率最適化方法の第一実施例のフローチャートを示す説明図である。It is explanatory drawing which shows the flowchart of the 1st Example of the efficiency optimization method of an induction motor. 本発明に係る誘導電動機の効率最適化方法における誘導電動機の高い効率運転点を示す説明図である。It is explanatory drawing which shows the high efficiency driving | running point of the induction motor in the efficiency optimization method of the induction motor which concerns on this invention. 誘導電動機の効率最適化方法における3相交流座標系と3相直流座標系で表せるベクトル図である。FIG. 5 is a vector diagram that can be represented by a three-phase AC coordinate system and a three-phase DC coordinate system in an induction motor efficiency optimization method. 本発明に係る誘導電動機の効率最適化方法の第二実施例のフローチャートを示す説明図である。It is explanatory drawing which shows the flowchart of 2nd Example of the efficiency optimization method of the induction motor which concerns on this invention. 本発明に係る誘導電動機の効率最適化制御装置の第二実施例の構造図である。FIG. 3 is a structural diagram of a second embodiment of the efficiency optimization control device for an induction motor according to the present invention.
次に、第一実施例と説明図を使って本発明について詳述する。
図1に示す誘導電動機の運転効率ηモデルより、誘導電動機の運転効率ηを次の式で算出できる:
Figure JPOXMLDOC01-appb-I000001
  式中:
P1は誘導電動機の入力容量を表す;
P2は誘導電動機の出力容量(軸の出力容量)を表す;
Pcu1は固定子の銅損を表し、即ち固定子電流が固定子巻線に流れた時に生じる電力損失で、その大きさは負荷に依存する; 
Pcu2は回転子銅損を表し、即ち電流が固定子巻線に流れた時に生じる電力損失で、その大きさは負荷に依存する;
PFeは鉄損を表し、即ち回転磁場が固定子鉄心の中で生じる励磁損失で、そ 
 の大きさは主に励磁起電力によって左右(誘導電動機入力電圧の平方とは正比  
 例をなす)されるため、負荷に依存しない;
Pmecは機械損失を表し、即ち軸受、ファン等による摩擦を発生する際に損失する電力で、その大きさはほぼ変わらない;
Padは附属品損失を表し、即ち固定子、回転子鉄心溝付及び調波により生じる損失で、その大きさは負荷に依存するが、無視できる。
 (Pcu1+ Pcu2)は負荷に依存するため可変損失(銅損)と、(PFe+Pmec+Pad)は負荷に殆ど依存しないため不変損失(鉄損)とそれぞれ呼ばれる。效率ηの公式を見てもわかるように、P2が変わらない場合において、誘導電動機を省エネの状態で運転させるには、誘導電動機の效率を上げ、即ちあらゆる損失の合計値を低減させる必要がある。誘導電動機の原理より、エネルギー保存則からもわかるように、銅損と鉄損が同じとき、即ち(Pcu1+ Pcu2)=(PFe+Pmec+ Pad)の時は、図3の交点(最適効率点)に示すように、誘導電動機の損失が最も低く、運転効率が最も高くなる。
図2誘導電動機の効率最適化方法のフローチャートに示すように、誘導電動機における鉄損Pf=V12×g0、銅損Pc= I2×(R1+R2)、(Pcu1+Pcu2)=(PFe+Pmec+Pad)の時、即ちPf=Pc=V12×g0= I2×(R1+R2)=(V1/Z)2×(R1+R2)の時は、V12/I2=Z2= (R1+R2)/g0となり、即ち誘導特性の誘導電動機は抵抗負荷を呈し、この時の誘導電動機の運転効率と力率は最高水準となる、誘導電動機の変動負荷に対して、リアルタイムでPf=Pcまで入力電圧を瞬時、精確的に調整すれば、誘導電動機が最適効率で運転できることがわかる。
Next, the present invention will be described in detail using the first embodiment and explanatory diagrams.
From the operating efficiency η model of the induction motor shown in FIG. 1, the operating efficiency η of the induction motor can be calculated by the following formula:
Figure JPOXMLDOC01-appb-I000001
In the formula:
P1 represents the input capacity of the induction motor;
P2 represents the output capacity of the induction motor (shaft output capacity);
Pcu1 represents the copper loss of the stator, ie the power loss that occurs when the stator current flows through the stator winding, the magnitude of which depends on the load;
Pcu2 represents the rotor copper loss, ie the power loss that occurs when current flows through the stator winding, the magnitude of which depends on the load;
PFe represents the iron loss, that is, the excitation loss caused by the rotating magnetic field in the stator core.
The size of the left and right is mainly determined by the excitation electromotive force.
Does not depend on load;
Pmec represents the mechanical loss, that is, the power lost when generating friction by bearings, fans, etc., the magnitude of which is almost the same;
Pad represents accessory loss, that is, loss caused by stator, rotor core groove and harmonics, the magnitude of which depends on the load but can be ignored.
Since (Pcu1 + Pcu2) depends on the load, it is called variable loss (copper loss), and (PFe + Pmec + Pad) is almost independent of the load, so it is called invariable loss (iron loss). As can be seen from the formula of efficiency η, in order to operate the induction motor in an energy saving state when P2 does not change, it is necessary to increase the efficiency of the induction motor, that is, to reduce the total value of all losses. . From the principle of induction motor, as can be seen from the law of conservation of energy, when copper loss and iron loss are the same, that is, when (Pcu1 + Pcu2) = (PFe + Pmec + Pad), the intersection (optimum efficiency point) in FIG. As shown, the induction motor has the lowest loss and the highest operating efficiency.
As shown in the flow chart of Fig. 2, the induction motor efficiency optimization method, iron loss Pf = V1 2 × g0, copper loss Pc = I 2 × (R1 + R2), (Pcu1 + Pcu2) = (PFe +) Pmec + Pad), that is, Pf = Pc = V1 2 × g0 = I 2 × (R1 + R2) = (V1 / Z) 2 × (R1 + R2), V1 2 / I 2 = Z 2 = (R1 + R2) / g0, that is, the induction motor with induction characteristics exhibits a resistance load, and the operating efficiency and power factor of the induction motor at this time are the highest level. It can be seen that if the input voltage is adjusted instantaneously and accurately to Pf = Pc, the induction motor can be operated with optimum efficiency.
  図5では、本発明における誘導電動機の効率最適化制御を実現する方法の第二実施例のフローチャートで、この方法の実施ステップについて詳述する:
誘導電動機の入力電流ia、ib、ic,入力電圧ua、ub、uc及位相角を含む誘導電動機の各関連パラメータ値をリアルタイムで獲得するステップ30。
このうち位相角は誘導電動機の負荷率と密接に関係しており、位相角は誘導電動機の負荷率とは反比例を成し、即ち位相角が大きいほど負荷率が小さく、位相角が小さいほど負荷率が大きい。
計算により稼動力率PF、界磁電流成分id、トルク電流成分iq及回転速度ωを含む誘導電動機の各関連パラメータ値を獲得するステップ31,
本実施例における界磁電流成分id、トルク電流成分iqはベクトル変換により求められる。図4に示す3相交流座標系と2相直流座標系に含まれるベクトルを示す説明図を参照されたい。
誘導電動機3相巻線A、B、Cと2相巻線の間にある座標変換ことで、A、B、Cの3相励磁電流を誘導電動機の回転子トルク電流と固定子界磁電流に変えることができる。誘導電動機3相A、B、Cと二つの座標系に含まれるベクトルは
二つの座標系の原点を重ね、ひいてはA軸をα軸と重ねている。起磁力同一の等価原理に基づき、3相合成起磁力は2相合成起磁力と等しく、故にqd軸上の二つの巻線起磁力の投影も同じであるため、下記の行列式とした。
Figure JPOXMLDOC01-appb-I000002
獲得した誘導電動機の稼動力率PFを設定した力率の指令値と比較して偏差値を獲得し、その偏差値に対して補償制御演算を行い、その力率制御係数PFkを求めるステップ32。
獲得した誘導電動機の界磁電流成分Idを設定した界磁電流の指令値と比較して偏差値を獲得し、その偏差値に対してファジィ推論を行い、励磁電流制御係数Idkを求める33。
算出された力率制御係数PFkに励磁電流制御係数Idkをかけて、負荷率係数Pkを求めるステップ34。
獲得した誘導電動機のトルク電流成分Iq及び回転速度ωを設定した回転速度の指令値と比較して偏差値を獲得し、その偏差値に対してカスケード制御演算を行って、周波数制御量Fqを求める35。
以下の式により電圧制御量を求めるステップ36:
Ud=Fq×k1×Pk
式中,Udは電圧制御量,Fqは周波数(回転速度)の制御量,k1はV/F係数(定格電圧V/定格周波数Fをそれぞれ表す。例えば、誘導電動機の定格電圧Vが200V、定格周波数Fが50Hzの時は、V/F係数は200/50、即ち4.0とする。ここにおける定格電圧Vは200Vとは限らず、定格周波数Fも50Hzとは限らない。ほかの定格電圧、例えば60V~700V、ほかの定格周波数,例えば10Hz~500Hzの時も本発明に適用する。),Pkは負荷率係数を表す。
獲得した電圧制御量Udと周波数制御量Fqをもとに、SPWM生成の波形を調整し、電圧調整ユニットで誘導電動機の3相入力電圧ua、ub、uc(電流ia、ib、icは電圧の変化に応じて変化する)と周波数(回転速度)をリアルタイム調整して、誘導電動機の入力電力が常に誘導電動機の負荷率に適応できるようにするステップ37。
本実施例では、さらに前記の誘導電動機の効率最適化制御を実現する装置、誘導電動機及び電圧調整ユニットから構成される一つの誘導電動機の効率最適化制御装置を提案した。前記の誘導電動機の効率最適化制御装置は誘導電動機及び電圧調整ユニットと接続し、誘導電動機を常に高い効率で運転させるのに用いられる。
  本実施例ではさらに前記の誘導電動機の効率最適化制御装置と車体から構成される一つの電動自動車を提案した。前記の誘導電動機の効率最適化制御装置は車体の駆動軸と接続し、変動負荷率及び任意の回転速度(周波数)において車体を常に高い効率で稼働させるのに用いられ、これにより電気自動車の蓄電池を充電した後の使用時間や電気自動車の走行距離を伸ばした。
  上記の本発明で提案した各ステップ及び演算アルゴリズムは、一つの計算装置
に集成させたり、複数の計算装置を繋ぐネットワークに分布させたりと、一般的な計算装置でもって実現することができる。また、別の選択肢として、計算装置にインストールされたプログラムにより実現できるため、それらを記憶装置に保存して計算装置に実行させるか、或はそれぞれの集積回路モジュール或はプリント基板に制作し、もしくはそれに含まれる複数の各ステップ及び演算アルゴリズムを一つの集積回路モジュール或はプリント基板にして実現できることを意味し、よって本発明は、いかなるハードとソフトの結合にも制限されないことはこの分野の技術者にとって自明である。
また、上記の内容は、本発明の一最優先実施例に過ぎず、その実施形態に限定されるものではなく、この分野の技術者にとって、さまざまな変更が可能であるが、本発明の理念と原則に沿ったものであれば、本発明に対するいかなる修正、導価入れ替え、改良などは、いずれも本発明の保護対象と見なされる。
FIG. 5 is a flow chart of a second embodiment of the method for realizing the efficiency optimization control of the induction motor according to the present invention, and the steps for carrying out this method are described in detail:
Step 30 of acquiring in real time each related parameter value of the induction motor including the input current ia, ib, ic, input voltage ua, ub, uc and phase angle of the induction motor.
Of these, the phase angle is closely related to the load factor of the induction motor, and the phase angle is inversely proportional to the load factor of the induction motor, that is, the larger the phase angle, the smaller the load factor, and the smaller the phase angle, the load. The rate is large.
Step 31 for obtaining each related parameter value of the induction motor including the operating power factor PF, the field current component id, the torque current component iq and the rotational speed ω by calculation,
The field current component id and the torque current component iq in the present embodiment are obtained by vector conversion. Refer to the explanatory diagrams showing the vectors included in the three-phase AC coordinate system and the two-phase DC coordinate system shown in FIG.
By converting the coordinates between the three-phase windings A, B, C of the induction motor and the two-phase winding, the three-phase excitation current of A, B, C is converted into the rotor torque current and stator field current of the induction motor. Can be changed. The induction motor 3-phases A, B, and C and the vectors contained in the two coordinate systems overlap the origins of the two coordinate systems, and thus the A axis overlaps the α axis. Based on the same principle of magnetomotive force, the three-phase combined magnetomotive force is equal to the two-phase combined magnetomotive force. Therefore, the projections of the two coil magnetomotive forces on the qd axis are the same.
Figure JPOXMLDOC01-appb-I000002
A step 32 for obtaining a power factor control coefficient PFk by obtaining a deviation value by comparing the obtained operating power factor PF of the induction motor with a set power factor command value and performing a compensation control calculation on the deviation value.
The obtained field current component Id of the induction motor is compared with a set field current command value to obtain a deviation value, fuzzy inference is performed on the deviation value, and an excitation current control coefficient Idk is obtained 33.
A step 34 of obtaining the load factor coefficient Pk by multiplying the calculated power factor control coefficient PFk by the exciting current control coefficient Idk.
The obtained torque current component Iq and rotation speed ω of the obtained induction motor are compared with the set rotational speed command value to obtain a deviation value, and cascade control calculation is performed on the deviation value to obtain the frequency control amount Fq. 35.
Step 36 for obtaining the voltage control amount by the following equation:
Ud = Fq × k1 × Pk
In the equation, Ud is the voltage control amount, Fq is the control amount of the frequency (rotational speed), k1 is the V / F coefficient (rated voltage V / rated frequency F. For example, the rated voltage V of the induction motor is 200V, rated When the frequency F is 50 Hz, the V / F coefficient is 200/50, that is, 4.0, where the rated voltage V is not necessarily 200 V, and the rated frequency F is not necessarily 50 Hz. This also applies to the present invention at 60V to 700V and other rated frequencies such as 10Hz to 500Hz.), Pk represents the load factor coefficient.
Based on the acquired voltage control amount Ud and frequency control amount Fq, the waveform of SPWM generation is adjusted, and the three-phase input voltages ua, ub, uc of the induction motor (currents ia, ib, ic are Step 37, which adjusts in real-time the frequency (rotation speed) and frequency (rotation speed) so that the input power of the induction motor can always adapt to the load factor of the induction motor.
In the present embodiment, an induction motor efficiency optimization control device including an induction motor efficiency optimization control and an induction motor and a voltage adjustment unit has been proposed. The induction motor efficiency optimization control device is connected to the induction motor and the voltage adjustment unit, and is used to operate the induction motor with high efficiency at all times.
In the present embodiment, an electric motor vehicle composed of the induction motor efficiency optimization control device and the vehicle body has been proposed. The induction motor efficiency optimization control device is connected to the drive shaft of the vehicle body, and is used to operate the vehicle body at a high efficiency at a variable load factor and an arbitrary rotational speed (frequency). Increased the usage time after charging the battery and the mileage of the electric vehicle.
Each step and calculation algorithm proposed in the present invention can be realized by a general computing device, such as aggregating in one computing device or distributing it in a network connecting a plurality of computing devices. As another option, it can be realized by a program installed in a computing device, so that they are stored in a storage device and executed by the computing device, or each integrated circuit module or printed circuit board is produced, or It means that each of the steps and operation algorithms included therein can be realized by one integrated circuit module or a printed circuit board, and thus it is understood that the present invention is not limited to any combination of hardware and software. It is self explanatory.
Further, the above-described contents are only one of the highest priority examples of the present invention, and are not limited to the embodiments. Various modifications can be made for engineers in this field. Any modifications, substitutions, improvements, etc. to the present invention are considered to be protected by the present invention.
電気自動車で応用でき、電気自動車の走行の過程で様々な要素(例えば上り坂、下り坂、道路状況、重量ベアリング等)の影響により、誘導電動機が変動負荷率(例えば低負荷、中負荷、重負荷)のもとで、本発明の誘導電動機が最小電流と最適電圧の高い効率の状態で運転できるようにして、充電後の電気自動車蓄電池の航続時間及び走行距離の延長が可能になりました。 Applicable to electric vehicles, and due to the influence of various factors (for example, uphill, downhill, road conditions, heavy bearings, etc.) in the process of running an electric motor, induction motors have variable load factors (for example, low load, medium load, heavy load). Under the load), the induction motor of the present invention can be operated with the minimum current and the optimum voltage and high efficiency, and the cruising time and mileage of the electric vehicle storage battery after charging can be extended. .
   1   カスケード制御器
   2   ファジィ推論器
   3  力率補償制御器
   4  力率演算制御器
   5  電流変換演算器
   6  速度検出器
   7  最適電圧演算器
   8  駆動波形生成器
   9  負荷率獲得演算器
10 動力バッテリ
11 コンデンサ
12 電圧調整ユニット
13 駆動ケーブル
14 電圧検出センサー
15 電流検出センサー
16 出力端子台
17 誘導電動機
20 効率最適化装置
DESCRIPTION OF SYMBOLS 1 Cascade controller 2 Fuzzy reasoning device 3 Power factor compensation controller 4 Power factor calculation controller 5 Current conversion calculator 6 Speed detector 7 Optimal voltage calculator 8 Drive waveform generator 9 Load factor acquisition calculator 10 Power battery 11 Capacitor 12 voltage adjustment unit 13 drive cable 14 voltage detection sensor 15 current detection sensor 16 output terminal block 17 induction motor 20 efficiency optimization device

Claims (10)

  1. 誘導電動機の負荷率をリアルタイムで検知し、最適化アルゴリズムを通じて変動負荷率及び任意の周波数において誘導電動機を常に高い効率で運転させる電圧及び周波数の制御量を算出する。及び算出された電圧及び周波数の制御量をもとに、誘導電動機の入力電圧と周波数をリアルタイムで調整し、誘導電動機の入力電力が常に誘導電動機の負荷率に適応することを確保することを特徴とする新しい誘導電動機の効率最適化する制御方法。 The load factor of the induction motor is detected in real time, and the control amount of the voltage and frequency at which the induction motor is always operated with high efficiency at the variable load factor and an arbitrary frequency is calculated through an optimization algorithm. In addition, the input voltage and frequency of the induction motor are adjusted in real time based on the calculated voltage and frequency control amounts, and the input power of the induction motor is always adapted to the load factor of the induction motor. A control method that optimizes the efficiency of a new induction motor.
  2. 誘導電動機の負荷率をリアルタイムで検知し、最適化アルゴリズムを通じて変動負荷率及び任意の周波数において誘導電動機を常に高い効率で運転させる電圧及び周波数の制御量を算出することと、その前に誘導電動機の入力電流、入力電圧、負荷率及び回転速度を含む誘導電動機の各関連パラメータ値をリアルタイムで獲得することを特徴とする請求項1に記載される誘導電動機の効率最適化する制御方法。 The load factor of the induction motor is detected in real time, and through the optimization algorithm, the variable load factor and the control amount of the voltage and frequency that always drive the induction motor at a high efficiency at any frequency are calculated. 2. The control method for optimizing the efficiency of an induction motor according to claim 1, wherein each related parameter value of the induction motor including an input current, an input voltage, a load factor, and a rotation speed is obtained in real time.
  3. 誘導電動機の負荷率をリアルタイムで検知し、最適化アルゴリズムを通じて変動負荷率及び任意の周波数において誘導電動機を常に高い効率で運転させる電圧及び周波数の制御量を算出する。及び計算により稼動力率、トルク電流成分、界磁電流成分及び回転速度制御量を含む誘導電動機の各関連パラメータ値をそれぞれ取得し、獲得した誘導電動機の稼動力率を設定した力率指令値と比較して、その偏差値に対して補償制御演算を行い、力率制御係数を求める。 獲得した誘導電動機の界磁電流成分を設定した界磁電流の指令値と比較して、その偏差値及び偏差値の変化率に対してファジィ推論を行い、励磁電流制御係数を求める。 取得した力率制御係数に励磁電流制御係数をかけて負荷率係数を求める。獲得した誘導電動機のトルク電流成分及び回転速度を設定した回転速度の指令値と比較して、その偏差値に対してカスケード制御演算を行い、周波数の制御量を求める。 以下の式により前記の電圧制御量を求める。 Ud=Fq×k1×Pk 式中、Udは電圧制御量、Fqは周波数の制御量、k1はV/F比係数,Pkは負荷率係数をそれぞれ表す。 以上を特徴とする請求項2に記載される誘導電動機の効率最適化する制御方法。  The load factor of the induction motor is detected in real time, and the control amount of the voltage and frequency at which the induction motor is always operated with high efficiency at the variable load factor and an arbitrary frequency is calculated through an optimization algorithm. And a power factor command value that sets the obtained operating power factor of the induction motor, and obtains each related parameter value of the induction motor including the operating power factor, torque current component, field current component, and rotational speed control amount by calculation. In comparison, a compensation control calculation is performed on the deviation value to obtain a power factor control coefficient.比較 Compare the field current component of the acquired induction motor with the set field current command value, perform fuzzy inference on the deviation value and the rate of change of the deviation value, and obtain the excitation current control coefficient.か け て Multiply the acquired power factor control coefficient by the excitation current control coefficient to obtain the load factor coefficient. The obtained torque current component of the induction motor and the rotational speed are compared with the set rotational speed command value, and a cascade control calculation is performed on the deviation value to obtain a frequency control amount.前 記 Determine the voltage control amount by the following equation. Ud = Fq × k1 × Pk In the equation, Ud represents a voltage control amount, Fq represents a frequency control amount, k1 represents a V / F ratio coefficient, and Pk represents a load factor coefficient. 3. The control method for optimizing the efficiency of the induction motor according to claim 2, characterized by the above.
  4. 前記の回転速度制御量は、リアルタイムで獲得した回転速度を設定した回転速度の指令値と比較して、その偏差値に対してカスケード制御演算を行って得られることを特徴とする請求項4に記載される誘導電動機の効率最適化する制御方法。 5. The rotational speed control amount is obtained by performing a cascade control calculation on a deviation value of the rotational speed acquired in real time in comparison with a set rotational speed command value. A control method for optimizing the efficiency of the described induction motor.
  5. 誘導電動機の負荷率をリアルタイムで検知し、最適化アルゴリズムを通じて変動負率及び任意の周波数において誘導電動機を常に高い効率で運転させる電圧と周波数の制御量を算出するための最適化アルゴリズム。及び算出された電圧と周波数の制御量をもとに、誘導電動機の入力電圧と周波数をリアルタイムで調整し、誘導電動機の入力電力を常に誘導電動機の負荷率に適応させるための調整アルゴリズムを含むことを特徴とする誘導電動機の効率最適化制御装置。 An optimization algorithm for detecting the load factor of the induction motor in real time and calculating the control amount of the voltage and frequency that always causes the induction motor to operate at a high efficiency at a variable negative rate and an arbitrary frequency through an optimization algorithm. And an adjustment algorithm for adjusting the input voltage and frequency of the induction motor in real time based on the calculated control amount of the voltage and frequency, and always adapting the input power of the induction motor to the load factor of the induction motor. An induction motor efficiency optimization control device characterized by the above.
  6. 誘導電動機の入力電流、入力電圧、負荷率及び回転速度を含む誘導電動機の各関連パラメータ値をリアルタイムで獲得するための獲得アルゴリズムを含むことを特徴とする請求項5に記載される誘導電動機の効率最適化制御装置。 6. The efficiency of the induction motor according to claim 5, including an acquisition algorithm for acquiring each related parameter value of the induction motor in real time including an input current, an input voltage, a load factor and a rotation speed of the induction motor. Optimization controller.
  7. 前記の最適化アルゴリズムの具体的な用途は次の通り: 計算により稼動力率、界磁電流成分、トルク電流成分及び回転速度の制御量を含む誘導電動機の各関連パラメータ値をそれぞれ獲得し、獲得した誘導電動機の稼動力率を設定した力率指令値と比較して、その偏差値に対して補償制御演算を行い、力率制御係数を求める。獲得した誘導電動機の界磁電流成分を設定した界磁電流の指令値と比較して、その偏差値及び偏差値の変化率に対してファジィ推論を行い、励磁電流制御係数を求める。算出した力率制御係数に励磁電流制御係数をかけて、負荷率係数を求める。獲得した誘導電動機のトルク電流成分及び回転速度を設定した回転速度の指令値と比較して、その偏差値に対してカスケード制御演算を行い、周波数の制御量を求める。以下の式により前記の電圧制御量を求める: Ud=Fq×k1×Pk 式中、Udは電圧制御量,Fqは周波数の制御量,k1はV/F比係数,Pkは負荷率係数をそれぞれ表す。以上を特徴とする請求項6に記載される誘導電動機の効率最適化制御装置。  Specific applications of the optimization algorithm are as follows: Obtain and obtain each related parameter value of the induction motor including operating power factor, field current component, torque current component, and control amount of rotational speed by dredging calculation The operating power factor of the induction motor is compared with the set power factor command value, and a compensation control calculation is performed on the deviation value to obtain a power factor control coefficient. The obtained field current component of the induction motor is compared with a set field current command value, and fuzzy inference is performed on the deviation value and the rate of change of the deviation value to obtain an excitation current control coefficient. A load factor coefficient is obtained by multiplying the calculated power factor control coefficient by the excitation current control coefficient. The obtained torque current component of the induction motor and the rotational speed are compared with the set rotational speed command value, and a cascade control calculation is performed on the deviation value to obtain a frequency control amount. Calculate the voltage control amount by the following formula: Ud = Fq × k1 × Pk In the equation, Ud is the voltage control amount, Fq is the frequency control amount, k1 is the V / F ratio coefficient, and Pk is the load factor coefficient. To express. The efficiency optimization control device for an induction motor according to claim 6, characterized in that it is described above.
  8. 請求項4~7の何れか1つに記載される装置、誘導電動機及び出力電圧調整ユニットから構成され、請求項4~7のいずれか一つに記載される装置は、前記の交流出力電圧調整ユニット及び誘導電動機と接続し、前記の誘導電動機を常に高い効率で運転させる機能を持つことを特徴とする誘導電動機の効率最適化制御装置。 A device according to any one of claims 4 to 7, comprising an induction motor and an output voltage adjustment unit, wherein the device according to any one of claims 4 to 7 comprises the AC output voltage adjustment An induction motor efficiency optimizing control device characterized in that the induction motor is connected to a unit and an induction motor and has a function of operating the induction motor at a high efficiency at all times.
  9. 前記の請求項7に記載される電圧制御量で、前記の交流出力電圧調整ユニットを駆動する任意の周波数と電圧を可変できるSPWM波形を生成する方法。 A method for generating an SPWM waveform capable of varying an arbitrary frequency and voltage for driving the AC output voltage adjusting unit with the voltage control amount according to claim 7.
  10.     請求項8に記載される制御装置と車体から構成され、請求項8に記載される制御装置は車体の駆動軸と接続し、前記の車体を変動負荷率及び任意の回転速度において常に高い効率で運転させる役割を持つことを特徴とする誘導電動機の効率最適化制御 The control device according to claim 8 is constituted by a vehicle body, and the control device according to claim 8 is connected to a drive shaft of the vehicle body so that the vehicle body is always highly efficient at a variable load factor and an arbitrary rotational speed. Efficiency optimization control of an induction motor characterized by having a role to operate
PCT/JP2015/068105 2014-07-07 2015-06-23 Method and device for optimizing efficiency of induction motor in electric vehicle WO2016006439A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020177000006A KR20170015963A (en) 2014-07-07 2015-06-23 Method and device for optimizing efficiency of induction motor in electric vehicle
US15/322,115 US10063177B2 (en) 2014-07-07 2015-06-23 Method and apparatus for optimizing efficiency of induction motor in electric vehicle

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201410320838.9A CN104079230B (en) 2014-07-07 2014-07-07 The method of asynchronous motor efficiency-optimization control, device, system and electric automobile
CN201410320838.9 2014-07-07
JP2014248381A JP2016019465A (en) 2014-07-07 2014-11-20 Efficiency optimizing method and device for induction motor in electric vehicle
JP2014-248381 2014-11-20

Publications (1)

Publication Number Publication Date
WO2016006439A1 true WO2016006439A1 (en) 2016-01-14

Family

ID=55064077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068105 WO2016006439A1 (en) 2014-07-07 2015-06-23 Method and device for optimizing efficiency of induction motor in electric vehicle

Country Status (1)

Country Link
WO (1) WO2016006439A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107962959A (en) * 2017-10-19 2018-04-27 山东科技大学 A kind of tramcar obscures autonomous management system with fuel cell hybrid
CN108162772A (en) * 2017-11-24 2018-06-15 佛山市禾才科技服务有限公司 A kind of automobile intelligent automatic charging system and its control method based on charging pile

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5388115A (en) * 1977-01-13 1978-08-03 Toshiba Corp Controller for alternating current motors
US4207510A (en) * 1978-01-16 1980-06-10 Sri International Control method and means for efficient operation of brushless d-c motors over a wide range of operating conditions
JPS62201085A (en) * 1986-02-24 1987-09-04 Mitsubishi Electric Corp High efficiency operation of varying-speed device for fluid
JPH01311889A (en) * 1988-02-24 1989-12-15 Matsushita Electric Works Ltd Controller for induction motor
JPH0295197A (en) * 1988-09-27 1990-04-05 Toshiba Corp Operation of ac motor
JPH06261597A (en) * 1993-03-08 1994-09-16 Alex Denshi Kogyo Kk Electric-power control apparatus for induction motor
WO2013057780A1 (en) * 2011-10-17 2013-04-25 三菱電機株式会社 Motor control device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5388115A (en) * 1977-01-13 1978-08-03 Toshiba Corp Controller for alternating current motors
US4207510A (en) * 1978-01-16 1980-06-10 Sri International Control method and means for efficient operation of brushless d-c motors over a wide range of operating conditions
JPS62201085A (en) * 1986-02-24 1987-09-04 Mitsubishi Electric Corp High efficiency operation of varying-speed device for fluid
JPH01311889A (en) * 1988-02-24 1989-12-15 Matsushita Electric Works Ltd Controller for induction motor
JPH0295197A (en) * 1988-09-27 1990-04-05 Toshiba Corp Operation of ac motor
JPH06261597A (en) * 1993-03-08 1994-09-16 Alex Denshi Kogyo Kk Electric-power control apparatus for induction motor
WO2013057780A1 (en) * 2011-10-17 2013-04-25 三菱電機株式会社 Motor control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107962959A (en) * 2017-10-19 2018-04-27 山东科技大学 A kind of tramcar obscures autonomous management system with fuel cell hybrid
CN108162772A (en) * 2017-11-24 2018-06-15 佛山市禾才科技服务有限公司 A kind of automobile intelligent automatic charging system and its control method based on charging pile

Similar Documents

Publication Publication Date Title
US10063177B2 (en) Method and apparatus for optimizing efficiency of induction motor in electric vehicle
US9431943B2 (en) Assembly operating in a variable regime
CN103378788B (en) The driving method of convertible frequency air-conditioner compressor and device
CN111884552B (en) Permanent magnet synchronous motor flux weakening optimization control method and system based on voltage feedback
CN106559026A (en) A kind of control method of motor driven systems, control device and transducer air conditioning
CN102201779A (en) Control method for detecting maximum torque current ratio of electromagnetic torque by using stator flux of permanent magnetic synchronous motor
CN106877402A (en) The double pwm converter system coordination control methods of double-fed wind power generator group
CN113346822B (en) Motor control method, motor control device, motor system, and storage medium
JP2020502989A (en) How to adjust wind turbine unloading
Banerjee et al. Control architecture for a switched doubly fed machine propulsion drive
WO2016006439A1 (en) Method and device for optimizing efficiency of induction motor in electric vehicle
WO2016098373A1 (en) Energy saving control method and device for induction motor by load following
Meesala et al. Modified direct torque control of PMSM drive for electric vehicle application
CN110677086B (en) Asynchronous motor operation efficiency optimization method and control system
JP6559563B2 (en) Output control device for wind power generation
CN105305918B (en) He of a kind of double feedback electric engine controls formula control method and its double feedback electric engine system
US9964984B2 (en) System for controlling load sharing
JP5851867B2 (en) Induction motor drive device
Lin et al. Suppression of DC-link voltage fluctuation in the motor drive system with reduced capacitance
Gupta et al. Efficiency optimization of induction motor drive: a review
CN110707975A (en) Control method of multiphase belt suspension capacitor motor drive topology
Thangalakshmi et al. Direct torque controlled induction motor drive for electric vehicles application
Palanivel et al. Design and Analysis of BLDC Motor Drive Based on Fuzzy-PID Controller
Yanamshetti et al. Dynamic search technique for efficiency optimization for variable speed induction machine
Kim et al. Boost and flux-weakening control of engine direct connection type ipmsg over wide-speed range

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15818458

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15322115

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177000006

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15818458

Country of ref document: EP

Kind code of ref document: A1