WO2016006049A1 - Concrete structure crack survey method and crack survey system - Google Patents

Concrete structure crack survey method and crack survey system Download PDF

Info

Publication number
WO2016006049A1
WO2016006049A1 PCT/JP2014/068250 JP2014068250W WO2016006049A1 WO 2016006049 A1 WO2016006049 A1 WO 2016006049A1 JP 2014068250 W JP2014068250 W JP 2014068250W WO 2016006049 A1 WO2016006049 A1 WO 2016006049A1
Authority
WO
WIPO (PCT)
Prior art keywords
crack
hole
concrete structure
drilling
press
Prior art date
Application number
PCT/JP2014/068250
Other languages
French (fr)
Japanese (ja)
Inventor
泉 谷倉
晋也 渡邉
佐藤 智
平田 康夫
Original Assignee
一般社団法人日本建設機械施工協会
株式会社ティ・エス・プランニング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 一般社団法人日本建設機械施工協会, 株式会社ティ・エス・プランニング filed Critical 一般社団法人日本建設機械施工協会
Priority to JP2016532829A priority Critical patent/JP6348980B2/en
Priority to PCT/JP2014/068250 priority patent/WO2016006049A1/en
Publication of WO2016006049A1 publication Critical patent/WO2016006049A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/954Inspecting the inner surface of hollow bodies, e.g. bores
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/38Concrete; ceramics; glass; bricks

Definitions

  • the present invention relates to a crack investigation method and a crack investigation system for a concrete structure for investigating the state of cracks generated inside the concrete.
  • a method for investigating the cracks in the concrete structure As a method for investigating the cracks in the concrete structure, a method is generally used in which the concrete structure is perforated and the interior is imaged and investigated. For example, a researcher drills a concrete structure with a vibration drill. The investigator then inserts a bar-shaped scanner into the hole and analyzes the image obtained by scanning to investigate cracks. Alternatively, the investigator inserts an industrial endoscope inside the hole and confirms the state of cracking (see, for example, Patent Document 1, Non-Patent Documents 1 and 2).
  • Non-Patent Document 3 a method for investigating cracks in a concrete structure, a method for observing a microscopic cross section of concrete using a fluorescent epoxy resin impregnation method has been proposed (for example, see Non-Patent Document 3).
  • the technique using this fluorescent epoxy resin impregnation method is to inject and cure an epoxy resin with a fluorescent dye added to a core sample collected from a concrete structure in a low vacuum state and irradiate the core cut surface with ultraviolet rays.
  • the evaluation is made by visualizing fine cracks with a fluorescent color.
  • the above-mentioned method of observing the inside of a concrete structure with an endoscope or the like performs drilling with a vibration drill, so even if cleaning is performed at the time of drilling with air cleaning, water cleaning, etc., the chips that have entered fine cracks are removed. It cannot be removed reliably. For this reason, in this method, the width of the crack is determined to be smaller than the actual width at a fine crack portion where the chip is clogged.
  • the drilling is performed by vibrating the concrete with the vibration drill, so that a corner chip occurs at the position of the crack inside the concrete facing the position where the drill penetrates. For this reason, the crack width is determined to be larger than the actual width at the portion where the corner chip is generated.
  • a core sample must be collected from a concrete structure.
  • this method since this method is aimed at investigating cracks rather than maintaining the current state of concrete structures, it destroys a concrete structure that opens a large-diameter hole (for example, a diameter of 50 mm or more) to the concrete structure.
  • This is a survey method.
  • the conventional method of investigating cracks by the fluorescent epoxy resin impregnation method using the core sample is not a microdestructive inspection like the conventional investigation method of endoscopes, but a destructive inspection. When repairing an object, there is a problem that it takes time and cost.
  • the present invention has been made in view of such problems, and on the premise of investigating cracks by microfracture by drill drilling, even when corner cracks occur at the cracks, the state of cracks is accurately investigated. It is an object of the present invention to provide a crack investigation method and a crack investigation system for a concrete structure that can be performed.
  • the method for investigating cracks in a concrete structure according to the present invention is as follows.
  • the method for investigating cracks in a concrete structure includes a first drilling step of drilling a hole having a depth to be investigated in the concrete structure with a predetermined hole diameter by a drilling machine, and the first drilling step.
  • a second drilling step for drilling a hole of the depth to be investigated with a diameter, and an image pickup device is inserted into the hole drilled in the second drilling step, and the crack is detected by detecting the specific color And a detection step.
  • the method for investigating cracks in a concrete structure opens a hole for investigating cracks in the first drilling step.
  • this crack investigation method hardens
  • the specific color is different from the color of the concrete structure to be investigated.
  • the liquid member is filled in the cracked portion and, if the crack has a corner chip, along with the drilled hole.
  • this crack investigation method is a hole diameter larger than the hole diameter (for example, about 2 mm larger) after hardening of a liquid member with respect to the hole into which the liquid member was press-fitted in the press-fitting process in the second drilling step. Drill a hole at the depth to be investigated.
  • the corner chipped portion generated in the first drilling process is cut.
  • the liquid member press-fitted in the press-fitting step is hardened, no cracked corners due to drilling occur. Therefore, the surface of the hole drilled in the second drilling step is exposed in a state where the liquid member is cured at a cracked portion without a corner chip, and the size at the time of occurrence of the crack is accurately set on the inner surface of the hole. It will appear.
  • this crack investigation method in the detection process, an imaging device such as an endoscope is inserted into the hole drilled in the second drilling process, and a specific color different from the color of the concrete structure to be investigated is detected. To detect cracks. As a result, this crack investigation method can accurately investigate the occurrence of cracks by imaging the holes drilled in the second drilling step.
  • the present invention has the following excellent effects. According to the present invention, even when corner breakage occurs in the cracked part due to microfracture by drilling, after the liquid member is press-fitted and hardened, by drilling with a hole diameter larger than the previously drilled hole diameter, The chipped corners can be removed, and the cracks can be accurately exposed on the surface inside the hole. Thereby, this invention can investigate correctly the crack state inside a concrete structure. Further, according to the present invention, by using a liquid member having a specific color at the time of curing, a crack can be recognized as a specific color from an image obtained by imaging the inside of the hole, and the presence or absence of a crack is accurately recognized by color. can do.
  • FIG. 4 is a cross-sectional view showing a state where the (syringe) is mounted
  • FIG. 3C is a cross-sectional view showing a state where the imaging device is mounted
  • FIG. 4 is a cross-sectional view showing a state where the (syringe) is mounted
  • FIG. 5B is a diagram showing a state after a liquid member (epoxy resin) is press-fitted into the hole (press-fitting step)
  • FIG. 5C is a diagram showing a state after re-piercing (second punching step).
  • (c) is a figure which shows an example of the stereo image imaged with the imaging device. It is explanatory drawing for demonstrating the method of calculating the position of the point designated by the stereo image. It is a figure which shows the example of the other imaging device used at the detection process in the crack investigation method of the concrete structure which concerns on this invention.
  • the method for investigating cracks in a concrete structure according to the present invention is a micro-destructive inspection using drill drilling, in which a concrete structure to be investigated is drilled with a drill (first drilling step), and the inside of the hole is specified at the time of hardening. A liquid member having a color is press-fitted (press-fitting process) and cured. And after hardening of a liquid member, this crack investigation method is again drilled in the same position by enlarging a hole diameter (second drilling step). By increasing the diameter of the hole, the cracked corner missing portion generated by the previous drilling is scraped off.
  • a crack investigation method for a concrete structure of the present invention (hereinafter referred to as a crack investigation method) will be described in detail with reference to the drawings.
  • the crack investigation method according to the embodiment of the present invention can be realized by, for example, a concrete structure crack investigation system (hereinafter referred to as a crack investigation system) S as shown in FIG.
  • the crack investigation system S includes a drilling machine 13 for drilling in a concrete structure Co, a syringe (pressing apparatus) 20 for press-fitting a liquid member having a specific color into a hole drilled by the drilling machine 13, and a drilling machine. And an imaging device 40 that images the inside of the hole and is configured to be detachably mounted on the tool mounting portion 18 that moves along the guide 12a of the support column 12.
  • a concrete structure Co is first drilled by a small-diameter bit 16 and then a liquid member is press-fitted into the hole by a syringe 20.
  • the crack investigation system S re-perforates a hole having the same central axis as the small-diameter bit 16 with the small-diameter bit 16b having a larger hole diameter than the small-diameter bit 16.
  • the crack investigation system S inserts the imaging device 40 into the re-drilled hole, and images the state of the crack inside the hole.
  • the punching machine 13, the syringe 20, and the imaging device 40 are detachably attached to the tool mounting portion 18 by means of attachment means (here, key structure and fixing screw) via tool fixing tools (insertion assisting tools) 19, 29, and 49. It is configured to be.
  • the tool fixtures 19, 29, and 49 are formed in shapes that can hold the tools (the punching machine 13, the syringe 20, and the imaging device 40), and can be supported in common by the tool mounting unit 18. It is configured.
  • the tool mounting portion 18 includes a sliding portion 18a that moves along the guide 12a, a holder portion 18b that is formed on the sliding portion 18a and that holds the tool fixtures 19, 29, and 49, and the holder portion 18b.
  • a key groove 18c and a fixing screw 18d for fixing the tool fixtures 19, 29, 49 to the holder portion 18b are provided.
  • the crack investigation method SA uses a drilling machine (drill) 13 to investigate a concrete structure such as a road bridge deck to be examined for cracks with a predetermined hole diameter. Is drilled (step S1).
  • the drilling machine 13 can use, for example, a general drill that uses a small-diameter diamond bit and drills at high speed while flowing fresh water.
  • the drilling machine 13 is used by holding the diamond bit on the tool fixture 19 and mounting it on the tool mounting portion 18 as shown in the figure.
  • the tool fixture 19 includes a holding main body 19a for holding the punching machine 13, and a key 19b formed on one end side of the holding main body 19a.
  • the hole diameter by the punch 13 in the first drilling step is, for example, about 4 mm to 25 mm.
  • the crack investigation method SA searches for the reinforcing bar in advance with a reinforcing bar probe before the step S1 and drills to avoid the reinforcing bar part. .
  • this drilling procedure is an example, and general drilling may be performed.
  • the base 10 is attached to the wall surface of the concrete structure Co.
  • a vacuum pad is used as the base 10 and the base 10 is attached to the wall surface by vacuum suction with the vacuum pump 11.
  • the base 10 may be fixed with an anchor bolt.
  • the drilling procedure is performed by holding the drilling machine 13 on the tool fixture 19 and mounting it on the tool mounting part 18, and the guide of the column 12 installed on the base 10 by the drilling machine 13. It is attached so that it can move linearly along 12a.
  • the key 19b of the tool fixture 19 is engaged with the key groove 18c, as shown in FIG.
  • the drilling machine 13 held by the tool fixing tool 19 is mounted on the tool mounting portion 18.
  • the centering rod 14 is attached to the punching machine 13, and the tip thereof is set to the position of the marking position T previously attached to the position of the hole to be investigated. Further, as shown in FIG. 5D, in the drilling procedure, a right-angle jig 15 for holding the drilling angle vertically is attached.
  • the drilling procedure is performed by removing the centering rod 14 and attaching a small-diameter bit (diamond bit) 16.
  • a small-diameter bit diamond bit
  • the crack investigation method SA drills a small-diameter hole for investigating cracks by drilling as the first drilling step.
  • the state inside the concrete structure in a 1st drilling process is demonstrated.
  • FIG. 6A it is assumed that cracks Cr are generated inside the concrete structure Co.
  • the drilling machine 13 drills to the depth of the crack investigation target (for example, 1 cm to 1000 cm).
  • the depth of the crack investigation target for example, 1 cm to 1000 cm.
  • FIG. 6C is an enlarged view of the region A in FIG.
  • FIG. 6C when the inside of the hole H is observed in a state where the corner chip B is generated, a crack larger than an actual crack before the hole H is opened by the drilling machine 13 is observed. Become. For example, if the hole diameter is about 4 mm to 25 mm, corner cracks of about 0.05 mm to 1.0 mm occur at most from the actual end of the crack. In the crack investigation method according to the present invention, corner chipping in the first drilling step is allowed. The reason for this is to remove corner defects in the following steps. Returning to FIG. 1, the description of the procedure of the crack investigation method SA will be continued.
  • the crack investigation method SA press-fits a synthetic resin (here, methyl methacrylate resin) that is an organic injection material mixed with a fluorescent dye into the hole drilled in the first drilling step (step S1). S2).
  • the tool fixture 19 holding the punch 13 is removed from the tool mounting portion 18, and the tool fixture 29 holding the syringe 20 is mounted on the tool mounting portion 18, so that the synthetic resin is used using the support 12. It is comprised here so that it can press-fit.
  • the organic injection material is mixed with a curing agent just before press-fitting.
  • the methyl methacrylate resin which is a liquid member, is press-fitted into the hole drilled in the first drilling step, so that not only the drilled hole but also the inside of the crack including the corner missing portion is methyl methacrylate resin. Penetrates and fills.
  • a fluorescent dye into the methyl methacrylate resin, it is possible to inspect the cracked state with a fluorescent color different from the color of the concrete structure to be investigated. For example, by using an orange color (light wavelength of 590 to 610 nm) as a color different from the color of the concrete structure, it is possible to make it easier to visually recognize cracks in comparison with the color of concrete.
  • this press-fitting process it is desirable to perform press-fitting at a pressure of about 0.1 MPa in order to prevent damage inside the concrete structure.
  • This press-fitting process can be performed by a general press obtaining method.
  • a needle (blunt needle) 21 is attached to a syringe (press-fit device) 20, and methyl methacrylate resin E, which is a liquid member, is placed inside the syringe 20.
  • the methyl methacrylate resin E is mixed with a curing agent immediately before being put into the syringe 20.
  • the tool 20 is held by the tool fixture 29 and mounted on the tool mounting portion 18.
  • the syringe 20 Is mounted on the tool mounting portion 18. Then, the methyl methacrylate resin E, which is a liquid member, is placed inside the syringe 20 attached to the tool attachment portion 18. The methyl methacrylate resin E is mixed with a curing agent immediately before being put into the syringe 20.
  • the sealing plug 22 may be a rubber plug such as a natural rubber plug, a synthetic rubber plug, a silicon rubber plug, or a fluorine rubber plug, a Teflon plug, a uni-stopper plug (silicon + Teflon powder bonding plug), or the like. it can.
  • the sealing plug 22 may not be used depending on the viscosity of the liquid member to be press-fitted. In this press-fitting step, for example, in the drilling procedure described in FIG. 5, after FIG.
  • step S3 After the methyl methacrylate resin is cured in step S3, the crack investigation method SA again drills a hole having a depth to be investigated with a hole diameter larger than the hole diameter in the first drilling step (step S1) (step S4). . At this time, the center axis of the hole to be re-drilled is matched with the center axis of the hole opened in the first drilling step.
  • the drilling in the second drilling step can be performed in the same manner as the drilling in the first drilling step described with reference to FIG. That is, in the second drilling process, the small-diameter bit 16 (16b: see FIG.
  • the hole diameter of the drilling in the second drilling process may be a size that scrapes off the corner missing portion generated in the first drilling process.
  • the hole diameter is about 4 mm to 25 mm, a corner chip of about 0.05 mm to 1.0 mm is generated even if it is large. Re-drilling is performed with a large hole diameter in the range of 0 mm, preferably in the range of 2.0 mm to 4.0 mm.
  • 8A, 8 ⁇ / b> B, and 8 ⁇ / b> C show a cross-sectional view in the drilling direction of the concrete structure on the left side, and a cross-sectional view perpendicular to the drilling direction on the right side.
  • the corner chip B has generate
  • the crack investigation method press-fits the methyl methacrylate resin E which mixed the fluorescent dye in the hole H in the press-fit process. Since this methyl methacrylate resin E is a liquid member, it penetrates into the cracked Cr by being press-fitted.
  • a crack investigation method re-drills with a hole diameter larger than the hole diameter drilled by 1st drilling in a 2nd drilling process.
  • the corner chip B existing in the hole H shown in FIG. 8A is scraped off as a region inside the hole H 2 shown in FIG. 8C, and the width of the crack Cr is accurately set in the hole H 2. Will appear on the inside surface.
  • the description of the procedure of the crack investigation method SA will be continued.
  • step S4 the crack investigation method SA inserts an imaging device equipped with a direct-view camera into the hole drilled in the second drilling step, and an operator (inspector) selects a specific color (here) from the captured image. Then, the presence or absence of cracks is observed by detecting the fluorescent color (step S5).
  • the endoscope 40 as an imaging device used here is held by a tool fixture 49 and attached to the tool attachment unit 18.
  • the tool fixture 49 includes a main body holding portion 49a that abuts and holds the outer periphery of the tube of the endoscope 40, a key 49b that protrudes outward from the rear side of the main body holding portion 49a, and the key
  • An engaging portion 49c formed in a concave shape toward the front side on the inner peripheral side of 49b, and a positioning holder 49d that engages with the engaging portion 49c and supports the endoscope 40 are provided.
  • the engaging part 49c has a recessed space and an internal thread part (not shown) here.
  • the positioning holder 49d has an insertion hole through which the endoscope 40 can be inserted at the center, includes an elastic member (fixed rubber) provided on the distal end side, and a washer, and is provided in the concave space of the engaging portion 49c.
  • the endoscope 40 is supported by being inserted and screwed into the female screw portion. That is, the positioning holder 49d can be screwed into the female screw portion to deform the tip elastic member so as to spread in a single-handed direction, and fix the inserted endoscope 40.
  • the operator measures the depth from the surface of the concrete structure to the position where the crack is generated, based on the inserted depth (insertion depth). It is good to do.
  • an endoscope 40 that includes an imaging unit that captures an image for direct viewing at the tip can be used as the imaging device.
  • the endoscope cable is sequentially inserted into the hole and picked up to display an image including a crack inside the hole on the screen of a display device (not shown).
  • the detection step (observation step) will be described in more detail with reference to FIG.
  • an endoscope 40 and a display device 30 that displays an image captured by the endoscope 40 are used. That is, in the crack investigation method, as shown in FIG. 9A, the inside of the hole drilled in the concrete structure Co is imaged with the endoscope 40. An image captured by the endoscope 40 is transmitted to the display device 30 via a cable and displayed on the screen of the display device 30.
  • the endoscope 40 is provided with an optical adapter Dv that captures an image for direct viewing (forward direction) at the distal end.
  • the optical adapter Dv includes a camera C and a light emitting unit L.
  • the camera C captures an image in the direct viewing direction.
  • the camera C includes an objective lens group 41, an imaging device 42, and an imaging unit 43.
  • the camera C captures an image through an observation window 44, and displays the captured image signal through a signal line 45 on the display device 30 ( Output to FIG.
  • the objective lens group 41 is a lens that guides light incident from the observation window 44 to the image sensor 42, and may be a single lens or a combined lens in which a plurality of lenses are combined. .
  • the image sensor 42 converts incident light such as a CCD (Charge Coupled Device) into an image signal (electric signal).
  • the image pickup unit 43 drives and controls the image pickup element 42 to pick up an image, and is a general circuit board or the like.
  • the imaging unit 43 outputs an image signal captured by the imaging element 42 to the signal line 45.
  • the objective lens group 41 may be a wide-angle lens. Further, when the inside of the hole is imaged widely, the objective lens group 41 may be a fish-eye lens (for example, an angle of view of about 180 to 220 degrees). In that case, the camera C may be configured by omitting the observation window 44 and projecting the fisheye lens from the distal end of the endoscope 40.
  • the light emitting unit L emits light for the camera C to image the inside of the hole.
  • the light emitting unit L emits light from the light guide 47 in which a plurality of optical fibers 47 a are bundled through the illumination window 46.
  • An LED may be used for the light emitting portion L.
  • the light emitted from the light emitting portion L uses ultraviolet rays to cause the methyl methacrylate resin inserted in the cracked Cr to emit light.
  • the display device 30 displays an image captured by the endoscope 40.
  • the display device 30 includes light emitting means (not shown) in order to emit light (in this case, ultraviolet rays) from the light emitting portion L. Returning to FIG. 9, the description will be continued.
  • the endoscope 40 includes the camera C that captures an image and the light emitting unit L that emits ultraviolet light at the distal end portion, so that a cracked portion inside the hole is formed as illustrated in FIG. Can be captured with a fluorescent color, and a captured image F obtained by capturing the inside of the hole can be displayed on the display device 30.
  • the operator can easily confirm the presence or absence of cracks by visually recognizing the captured image F displayed on the display device 30.
  • an operator inserts the endoscope 40, from the surface of the concrete structure Co to the position where the crack is generated by measuring the insertion depth (insertion depth). The depth of the can be grasped.
  • the display device 30 may not only display the captured image but also record the captured image on a recording medium that is not illustrated.
  • the crack investigation method provides the operator with an image in which the cracked portion is expressed in a fluorescent color, thereby making it possible to easily recognize whether or not the crack has occurred. Moreover, if a wider-angle image is captured as the captured image, the field of view for investigating the inside of the hole is further expanded, so that the presence or absence of cracks can be easily and quickly confirmed. Returning to FIG. 1, the description of the procedure of the crack investigation method SA will be continued.
  • step S6 If no crack is observed in the observation in step S5 (No in step S6), the crack investigation is terminated. On the other hand, when a crack is observed (Yes in step S6), the crack investigation method SA proceeds to a crack measurement process.
  • step S5 When a crack is observed in step S5 (Yes in step S6), the crack investigation method SA inserts an imaging device equipped with a side-view camera into the hole drilled in the second drilling step, and images the measurement device. By analyzing the image, the width of the crack is measured (step S7). At this time, when inserting the endoscope, the operator measures the depth from the surface of the concrete structure to the position where the crack is generated, based on the inserted depth (insertion depth).
  • step S5 when the depth to the position where the crack has already occurred is measured, the measurement is not performed here, and the endoscope is inserted to the measured depth. do it. As a result, the endoscope can be quickly inserted to the position where the crack width is measured, and the crack investigation time can be shortened.
  • an endoscope provided with an image pickup unit for picking up a stereo image for side view can be used as the image pickup apparatus.
  • the size (width) of the crack is measured by sequentially inserting the endoscope cable into the hole and analyzing the captured stereo image.
  • an endoscope 40B and a measuring device 30B that measures the size of a crack from a stereo image captured by the endoscope 40B are used. That is, in the crack investigation method, as shown in FIG. 11A, the inside of the hole drilled in the concrete structure Co is imaged with the endoscope 40B. The image captured by the endoscope 40B is transmitted to the measuring device 30B via a cable and analyzed, whereby the size of the crack is measured.
  • the endoscope 40B is provided with an optical adapter Sv that captures a stereo image for side view (lateral direction) at the tip.
  • the optical adapter Sv includes cameras C L and CR and a light emitting unit L on the side surface side.
  • Camera C L, C R is for imaging the different stereo image parallax.
  • Emitting portion L is for camera C L, C R emits light for imaging an interior bore.
  • the light emitting portion L is the same as the light emitting portion L described with reference to FIG.
  • the measuring device 30B measures the size (width) of a crack by analyzing a stereo image captured by the endoscope 40B.
  • the stereo image for example, as shown in FIG. 9 (c), the camera different two viewpoint position C L, C R the two images F L captured by a F R.
  • Measuring device 30B displays the stereo image F L, the F R on the screen.
  • the measuring device 30B the operator, one of the images on the screen (e.g., image F R) on, point 2 for specifying the width of the crack locations are represented by fluorescent color (e.g., the image F R (P R1 , P R2 ) are designated, the distance between the two points is calculated and the value is displayed.
  • a general method can be used as a method of measuring the distance between two points designated in the stereo image. That is, the distance between two points may be calculated by calculating the position of the corresponding three-dimensional coordinates (xyz coordinates) from the stereo image for each designated point, and obtaining the distance between the two three-dimensional coordinate positions.
  • the lens L L, L R is the camera C L described in FIG. 11, respectively, the C R of the lens.
  • the focal length of each lens is f, and the distance between the lenses is d.
  • the image is an image F L shown in FIG. 11, the F R, the horizontal and vertical direction in FIG. 12, to be imaged on the lens L L, the imaging element away from the L R by the focal length f (not shown) (Positive and negative in x direction and y direction) are reversed.
  • the pixels on the image sensor (not shown) corresponding to the image point F designated by R P R1 shown in FIG. 11 (c) is a positive x-axis from the image center Assume that the distance a is away in the direction.
  • the pixel on the image sensor (not shown) corresponding to the point P L1 of image F L showing the same position as the point P R1 image F R has spaced negative direction of the x-axis by a distance b from the image center Shall.
  • the point P L1 of image F L showing the same position as the point P R1 image F R, the measurement device 30B is determined by the block matching image feature in the pixel area of a predetermined size to explore the regions similar be able to.
  • the pixels on the image sensor (not shown) corresponding to the image point F designated by R P R1 shown in FIG. 11 (c) is, the positive direction of the y-axis from the image center Is a distance c.
  • the measuring device 30B based on the principle of triangulation, as shown in the following formula (1), the designated point P The three-dimensional coordinates (x, y, z) corresponding to R1 are calculated.
  • the measuring device 30B calculates the three-dimensional coordinates (x, y, z) of one point out of the two points that specify the width of the cracked portion. Similarly, the measuring device 30B designates the other one point (for example, PR2 on the image FR ) of the two points that specify the width of the cracked portion, so that the three-dimensional coordinates (x , Y, z). Then, the measuring device 30B (here, P R1, P R2) points designated 2 by calculating the distance of the three-dimensional coordinates of (x, y, z), determining the width of the crack locations. In addition, since this distance is a value based on the pixel of the image sensor, it is not necessary to actually convert it to an actual distance according to the resolution of the image sensor.
  • this method can accurately measure the location where a crack occurs, when repairing a concrete structure, it can be repaired without waste by shaving and repairing the portion where the crack occurred.
  • this invention is not limited to this procedure. Hereinafter, modifications of the present invention will be described.
  • the methyl methacrylate resin mixed with the fluorescent dye is press-fitted.
  • the member to be press-fitted in this press-fitting step is not particularly limited as long as it is a liquid member having a specific color after curing.
  • methyl methacrylate resin mixed with fluorescent dye instead of methyl methacrylate resin mixed with fluorescent dye, other synthetic resins mixed with fluorescent dye (for example, acrylic resin, epoxy resin, etc.) may be used. These synthetic resins may be thermosetting resins or thermoplastic resins. In this way, by using an acrylic resin, an epoxy resin, or the like mixed with a fluorescent dye as the liquid member, the crack investigation method is the same as when using a methyl methacrylate resin. By imaging the surface of the hole drilled in the two drilling steps, the crack can be investigated in a state where the cracked portion is colored with a fluorescent color.
  • fluorescent dye for example, acrylic resin, epoxy resin, etc.
  • colorants dyes, pigments, etc.
  • specific colors for example, red, pink, etc.
  • synthetic resins methyl methacrylate resin, acrylic resin, You may mix in an epoxy resin etc.
  • a blast furnace slag cement (ultrafine blast furnace) that is an inorganic injection material is used without using a synthetic resin (methyl methacrylate resin, acrylic resin, epoxy resin, etc.) that is an organic injection material.
  • Slag cement cracking injection material for example, TS crack filler
  • the crack investigation method detects the crack surface in the detection process by imaging the surface of the hole drilled in the second drilling process. It is possible to investigate cracks in the state.
  • This blast furnace slag cement is concrete using blast furnace slag fine powder as an admixture.
  • This blast furnace slag cement hardens in about 24 to 30 hours and develops a blue color. Therefore, in the detection process (observation process, measurement process) of steps S5 to S7 shown in FIG. 1, a light emitting unit that emits white light is used as the light emitting unit of the endoscope instead of the light emitting unit that emits ultraviolet rays. Thus, the crack inside the hole can be observed and measured as a spot imaged in blue.
  • the blast furnace slag cement fine powder of blast furnace slag reacts with calcium hydroxide produced by cement hydration reaction, thereby densifying the hardened body structure. Therefore, the blast furnace slag cement is resistant to water and can be used in a wet environment and a leaked environment.
  • the synthetic resin which is an organic injection material, is vulnerable to water, so the inside of the hole must be used in a dry environment.
  • the synthetic resin since the synthetic resin has a high viscosity, the liquid of the liquid member press-fitted in the press-fitting process can be used without using the sealing plug 22 as shown in FIG. No one will occur. Therefore, the liquid member to be press-fitted in the press-fitting process may be appropriately selected depending on the perforating direction and the dry state inside the hole.
  • the observation process (step S5) is performed as the detection process, and the measurement process (step S7) is performed at the stage where cracks are observed. .
  • the observation process may be omitted and the measurement process (step S7) may be performed.
  • the crack detection method in the detection step, an imaging device that captures a side-viewing stereo image is used as an imaging device, and the stereo image is analyzed as a specific color by analyzing the stereo image. Only the measurement process of measuring the width of the imaged crack and specifying the position of the crack by the insertion depth of the distal end portion of the endoscope may be performed.
  • the crack investigation method can measure the width of the crack from a stereo image captured by the imaging unit of the endoscope.
  • this crack investigation method can specify the position of a crack by the depth inserted to the crack location of the front-end
  • the detection process may be performed by performing only the observation process (step S5) without performing the measurement process (step S7) and examining only the presence or absence of cracks. Even in this case, the present investigation method can visually examine the cracked state in a state where there is no corner chipping.
  • the observation process (step S5) and the measurement process (step S7) are sequentially performed as the detection process.
  • the detection step may be performed simultaneously with the observation step and the measurement step.
  • an endoscope provided with an imaging unit that captures a direct-view image and an imaging unit that captures a side-viewing stereo image at the distal end portion is used to check for cracks from the image. While observing and analyzing the stereo image, the width of the crack captured as the specific color may be measured, and the position of the crack may be specified by the insertion depth of the distal end portion of the endoscope.
  • an imaging unit that captures a direct-view image as illustrated in FIG. 13 and a stereo image for side-view are captured.
  • An endoscope 40C provided with an imaging unit at the tip may be used.
  • the endoscope 40C includes an optical adapter DSv that includes an imaging unit that captures an image for direct viewing (forward direction) and an imaging unit that captures a stereo image for side viewing (lateral direction). It is formed as.
  • the configuration for direct viewing of the optical adapter DSv (camera C, light emitting unit L) of the endoscope 40C is the same as the configuration of the optical adapter Dv shown in FIG. Further, the configuration for side viewing of the optical adapter DSv (camera C L , C R , light emitting unit L) of the endoscope 40C is the same as the configuration of the optical adapter Sv shown in FIG. .
  • the image captured by the camera C, the camera C L, and the stereo image captured by C R is displayed on the screen of the not shown measuring device.
  • the image captured by the camera C is the same image as that described with reference to FIG.
  • the stereo image captured by the cameras C L and CR is the same image as that described with reference to FIG. That is, a measuring device (not shown) displays a direct-view image and a side-view stereo image in respective areas that are divided on the screen. Of course, each image may be switched to display a direct-view image or a side-view stereo image on the entire screen.
  • the optical adapter DSv including the imaging unit that captures an image for direct viewing (forward direction) and the imaging unit that captures a stereo image for side viewing (lateral direction) at the distal end portion of the endoscope 40C.
  • the operator searches for a cracked portion quickly by visually recognizing an image for direct viewing.
  • an operator designates two points which identify a crack in the stereo image for side view, and a measuring device (not shown) is the distance between two points, ie, The size (width) of the crack is calculated and the value is displayed on the screen.
  • the operator can specify the position (depth) of the crack by measuring the depth at which the distal end portion of the endoscope 40C is inserted.
  • this cracking investigation method it is possible to quickly find (observe) a crack inside a concrete structure with a color different from that of the concrete structure under investigation, and to reduce the width of the crack inside the concrete structure. From a stereo image, it can be measured accurately.
  • the position of the holder portion 18b may be configured to move vertically with respect to the support column 12. That is, the tool mounting portion 18A may be configured such that the position of the holder portion 18b and the sliding portion 18a can be adjusted by the extendable arm 18e.
  • the telescopic arm 18e has, for example, a first holder part 18b and a second holder part 18f as a holding mechanism, and is configured to be fixed at a predetermined position by screws (not shown).
  • the telescopic arm 18e is set in advance so that the endoscope 40 attached to the second holder portion 18f in the extended state is positioned on the center axis of the hole attached to the first holder portion 18b and perforated. This makes positioning easy. Therefore, the tool mounting portion 18A mounts the drilling machine 13 on the first holder portion 18b via the tool fixture 19 as described above, and mounts the endoscope 40 on the second holder portion 18f. The two tools are held at the same time. Then, after the tool mounting portion 18A is punched by the punching machine 13, the telescopic arm 18e is extended in a direction perpendicular to the drilling direction, so that the endoscope 40 can be placed on the center axis of the hole immediately drilled. Can be performed smoothly.
  • the first holder portion 18 b and the second holder portion 18 f have been described as holding mechanisms.
  • the configuration further includes a third holder portion (not shown), for example, on the circumference.
  • a cylindrical configuration (holding mechanism) having a plurality of holder portions may be used.
  • the tool mounting portion 18 is mounted via the tool fixtures 19, 29, and 49 having the same outer dimensions, for example, the holder portion 18b directly on the basis of the outer dimensions of the syringe 20.
  • the perforator 13 and the endoscope 40 may be attached to the holder portion 18b via the tool fixtures 19 and 49.
  • the punching machine 13 is moved to the rear side of the support column 12 to secure a working space and press-fitting step (S2, S2). You may make it perform S3) and an inspection process (S5, S6).
  • S crack investigation system SA crack investigation method S1 first drilling process S2, S3 press-fitting process S4 second drilling process S5, S6 detection process (observation process) S7 Detection process (measurement process) Co Concrete Structure 10 Base 11 Vacuum Pump 12 Strut 13 Punching Machine 14 Centering Rod 15 Right Angle Jig 16 Small Diameter Bit (Diamond Bit) 17 Rod 18 Tool mounting part 19 Tool fixing tool (insertion aid) 20 Syringe (press-fit device) 21 Needle 22 Seal plug 29 Tool fixture (insertion aid) 30 Display device 30B Measuring device 40, 40B, 40C Endoscope 49 Tool fixture (insertion aid) C, C L , C R camera L Light emitting part Dv Optical adapter (For direct viewing) Sv optical adapter (for side view) DSv optical adapter (for direct / side view)

Abstract

To provide a concrete structure crack survey method capable of accurately surveying a crack state even if corner chipping occurs at a crack location as a result of drilling. A concrete structure crack survey method (SA) includes a first boring step (S1) in which a hole of a survey-subject depth is bored in a concrete structure, injection steps (S2, S3) for injecting a liquid material having a specific color upon curing into the hole bored in the first boring step, a second boring step (S4) for reboring a hole having a larger hole diameter than that of the hole into which the liquid material was injected in the injection step after the liquid material has been cured, and detection steps (S5-S7) for inserting an imaging device into the hole bored in the second boring step and detecting cracking by detecting the specific color.

Description

コンクリート構造物のひび割れ調査方法およびひび割れ調査システムMethod and system for investigating cracks in concrete structures
 本発明は、コンクリート内部に発生するひび割れの状態を調査するコンクリート構造物のひび割れ調査方法およびひび割れ調査システムに関する。 The present invention relates to a crack investigation method and a crack investigation system for a concrete structure for investigating the state of cracks generated inside the concrete.
 従来、道路橋床版等のコンクリート構造物のひび割れ調査は、コンクリート表面を目視検査したり、スケール付きの拡大レンズを備えた光学装置を用いて、ひび割れの大きさを計測したり、等により行われている。
 さらに、昨今、コンクリート構造物の劣化原因、劣化状況等を把握するため、コンクリート構造物の内部におけるひび割れの調査を行うケースが増加している。
Conventionally, the investigation of cracks in concrete structures such as road bridge decks has been carried out by visually inspecting the concrete surface or measuring the size of cracks using an optical device equipped with a magnifying lens with a scale. It has been broken.
Furthermore, in recent years, in order to grasp the cause of deterioration of concrete structures, the state of deterioration, etc., there are increasing cases of investigating cracks inside concrete structures.
 このコンクリート構造物の内部のひび割れを調査する手法は、コンクリート構造物に穿孔し、その内部を撮像して調査する手法が一般的である。
 例えば、調査担当者は、振動ドリルによってコンクリート構造物に穿孔する。そして、調査担当者は、その穴の内部に棒形スキャナを挿入し、スキャンさせることで得られる画像を解析して、ひび割れの調査を行う。あるいは、調査担当者は、穴内部に工業用内視鏡を挿入し、ひび割れの状況を確認する(例えば、特許文献1、非特許文献1,2参照)。
As a method for investigating the cracks in the concrete structure, a method is generally used in which the concrete structure is perforated and the interior is imaged and investigated.
For example, a researcher drills a concrete structure with a vibration drill. The investigator then inserts a bar-shaped scanner into the hole and analyzes the image obtained by scanning to investigate cracks. Alternatively, the investigator inserts an industrial endoscope inside the hole and confirms the state of cracking (see, for example, Patent Document 1, Non-Patent Documents 1 and 2).
 また、コンクリート構造物のひび割れを調査する手法として、蛍光エポキシ樹脂含浸法を用いて、コンクリートの微視的断面を観察する手法が提案されている(例えば、非特許文献3参照)。
 この蛍光エポキシ樹脂含浸法を用いた手法は、コンクリート構造物から採取したコア試料に、蛍光染料を添加したエポキシ樹脂を低真空状態で注入・硬化させ、コア切断面に紫外線を照射することで、微細ひび割れを蛍光色で可視化して評価するものである。
Further, as a method for investigating cracks in a concrete structure, a method for observing a microscopic cross section of concrete using a fluorescent epoxy resin impregnation method has been proposed (for example, see Non-Patent Document 3).
The technique using this fluorescent epoxy resin impregnation method is to inject and cure an epoxy resin with a fluorescent dye added to a core sample collected from a concrete structure in a low vacuum state and irradiate the core cut surface with ultraviolet rays. The evaluation is made by visualizing fine cracks with a fluorescent color.
特開平8-29413号公報JP-A-8-29413
 前記したコンクリート構造物内部を内視鏡等で観察する手法は、振動ドリルにより穿孔を行うため、エア洗浄、水洗浄等により穿孔時に洗浄を行ったとしても、微細なひび割れに入った切粉を確実に取り除くことができない。そのため、この手法は、切粉が目詰まりした微細なひび割れ箇所では、ひび割れの幅が実際よりも小さく判定されてしまう。 The above-mentioned method of observing the inside of a concrete structure with an endoscope or the like performs drilling with a vibration drill, so even if cleaning is performed at the time of drilling with air cleaning, water cleaning, etc., the chips that have entered fine cracks are removed. It cannot be removed reliably. For this reason, in this method, the width of the crack is determined to be smaller than the actual width at a fine crack portion where the chip is clogged.
 また、この手法は、振動ドリルによって、回転とともにコンクリートに振動を与えて穿孔するため、ドリルが貫通する位置に面するコンクリート内部のひび割れの位置に角欠けが発生する。そのため、角欠けが発生した箇所では、ひび割れの幅が実際よりも大きく判定されてしまう。 Also, in this method, the drilling is performed by vibrating the concrete with the vibration drill, so that a corner chip occurs at the position of the crack inside the concrete facing the position where the drill penetrates. For this reason, the crack width is determined to be larger than the actual width at the portion where the corner chip is generated.
 なお、ダイヤモンドビットを使用して清水を流入させながら高速回転で穿孔するドリルを用いた場合、微細なひび割れに対する目詰まりを抑えることができる。しかし、このようなドリルを用いた場合でも、ひび割れ箇所に小さい角欠けが発生してしまう現象を防止することはできない。
 このように、コンクリート構造物に振動ドリルで穿孔し、内部を内視鏡等で観察する従来の手法は、実際のひび割れの幅を正確に調査することができないという問題がある。
In addition, when using a drill that uses a diamond bit to drill at high speed while flowing fresh water, clogging of fine cracks can be suppressed. However, even when such a drill is used, it is impossible to prevent a phenomenon in which a small corner chip occurs at a cracked portion.
As described above, the conventional method of drilling a concrete structure with a vibration drill and observing the interior with an endoscope or the like has a problem that the actual crack width cannot be accurately investigated.
 また、前記した蛍光エポキシ樹脂含浸法を用いた手法は、コンクリート構造物からコア試料を採取しなければならない。すなわち、この手法は、コンクリート構造物の現状を保持することよりも、ひび割れの調査が目的であるため、ある程度大径の穿孔(例えば、直径50mm以上)をコンクリート構造物に開けるコンクリート構造物を破壊する調査方法である。
 このように、コア試料を用いて蛍光エポキシ樹脂含浸法によりひび割れを調査する従来の手法は、従来の内視鏡等の調査手法のような微破壊検査ではなく、破壊検査であるため、コンクリート構造物を修復する場合、時間とコストがかかってしまうという問題がある。
Further, in the method using the fluorescent epoxy resin impregnation method described above, a core sample must be collected from a concrete structure. In other words, since this method is aimed at investigating cracks rather than maintaining the current state of concrete structures, it destroys a concrete structure that opens a large-diameter hole (for example, a diameter of 50 mm or more) to the concrete structure. This is a survey method.
In this way, the conventional method of investigating cracks by the fluorescent epoxy resin impregnation method using the core sample is not a microdestructive inspection like the conventional investigation method of endoscopes, but a destructive inspection. When repairing an object, there is a problem that it takes time and cost.
 本発明は、このような問題に鑑みてなされたものであり、ドリル穿孔による微破壊によりひび割れを調査することを前提とし、ひび割れ箇所に角欠けが発生する場合でも、正確にひび割れの状態を調査することが可能なコンクリート構造物のひび割れ調査方法およびひび割れ調査システムを提供することを課題とする。 The present invention has been made in view of such problems, and on the premise of investigating cracks by microfracture by drill drilling, even when corner cracks occur at the cracks, the state of cracks is accurately investigated. It is an object of the present invention to provide a crack investigation method and a crack investigation system for a concrete structure that can be performed.
 前記課題を解決するため、本発明に係るコンクリート構造物のひび割れ調査方法は、以下の手順とした。 In order to solve the above-mentioned problems, the method for investigating cracks in a concrete structure according to the present invention is as follows.
 すなわち、コンクリート構造物のひび割れ調査方法は、穿孔機により、予め定めた穴径で前記コンクリート構造物に調査対象の深さの穴を穿孔する第1穿孔工程と、この第1穿孔工程で穿孔された穴に、硬化時において特定色を有する液状部材を圧入する圧入工程と、前記圧入工程で前記液状部材が圧入された穴に対して、前記液状部材の硬化後、前記穴径よりも大きい穴径で前記調査対象の深さの穴を穿孔する第2穿孔工程と、この第2穿孔工程で穿孔された穴に、撮像装置を挿入し、前記特定色を検出することで前記ひび割れを検出する検出工程と、を含む手順とした。 In other words, the method for investigating cracks in a concrete structure includes a first drilling step of drilling a hole having a depth to be investigated in the concrete structure with a predetermined hole diameter by a drilling machine, and the first drilling step. A press-fitting process for press-fitting a liquid member having a specific color at the time of curing, and a hole larger than the hole diameter after curing of the liquid member with respect to the hole into which the liquid member is press-fitted in the press-fitting process. A second drilling step for drilling a hole of the depth to be investigated with a diameter, and an image pickup device is inserted into the hole drilled in the second drilling step, and the crack is detected by detecting the specific color And a detection step.
 かかる手順により、コンクリート構造物のひび割れ調査方法は、第1穿孔工程で、ひび割れを調査するための穴を開ける。そして、このひび割れ調査方法は、圧入工程で、時間経過により硬化し、硬化時において特定色を有する液状部材を圧入する。なお、特定色は、調査対象のコンクリート構造物の色とは異なる色である。
 これによって、穿孔した穴とともに、ひび割れ箇所、および、ひび割れに角欠けがある場合にはその角欠け箇所にも、液状部材が充填されることになる。
 そして、このひび割れ調査方法は、第2穿孔工程で、圧入工程で液状部材が圧入された穴に対して、液状部材の硬化後、その穴径よりも大きい(例えば、2mm程度大きい)穴径で調査対象の深さの穴を穿孔する。
According to such a procedure, the method for investigating cracks in a concrete structure opens a hole for investigating cracks in the first drilling step. And this crack investigation method hardens | cures with progress of time at a press-fit process, and press-fits the liquid member which has a specific color at the time of hardening. The specific color is different from the color of the concrete structure to be investigated.
As a result, the liquid member is filled in the cracked portion and, if the crack has a corner chip, along with the drilled hole.
And this crack investigation method is a hole diameter larger than the hole diameter (for example, about 2 mm larger) after hardening of a liquid member with respect to the hole into which the liquid member was press-fitted in the press-fitting process in the second drilling step. Drill a hole at the depth to be investigated.
 このように、穴径を大きくして再穿孔することで、第1穿孔工程において発生した角欠け箇所を削ることになる。なお、第2穿孔工程においては、圧入工程で圧入された液状部材が硬化しているため、穿孔によるひび割れの角欠けは発生しない。そのため、第2穿孔工程で穿孔された穴の表面には、角欠けのないひび割れ箇所に液状部材が硬化した状態で露出することになり、ひび割れ発生時の大きさが正確に穴の内表面に現れることなる。 In this way, by re-drilling with a larger hole diameter, the corner chipped portion generated in the first drilling process is cut. Note that, in the second drilling step, since the liquid member press-fitted in the press-fitting step is hardened, no cracked corners due to drilling occur. Therefore, the surface of the hole drilled in the second drilling step is exposed in a state where the liquid member is cured at a cracked portion without a corner chip, and the size at the time of occurrence of the crack is accurately set on the inner surface of the hole. It will appear.
 そして、このひび割れ調査方法は、検出工程で、第2穿孔工程で穿孔された穴に、内視鏡等の撮像装置を挿入し、調査対象のコンクリート構造物の色とは異なる特定色を検出することでひび割れを検出する。
 これによって、このひび割れ調査方法は、第2穿孔工程で穿孔された穴を撮像することで、ひび割れの発生状況を正確に調査することができる。
In the crack investigation method, in the detection process, an imaging device such as an endoscope is inserted into the hole drilled in the second drilling process, and a specific color different from the color of the concrete structure to be investigated is detected. To detect cracks.
As a result, this crack investigation method can accurately investigate the occurrence of cracks by imaging the holes drilled in the second drilling step.
 本発明は、以下に示す優れた効果を奏するものである。
 本発明によれば、ドリル穿孔による微破壊により、ひび割れ箇所に角欠けが発生した場合でも、液状部材を圧入し硬化した後に、先に穿孔した穴径よりも大きい穴径で穿孔することで、角欠け部分を削除し、穴内部の表面にひび割れを正確に露出させることができる。これにより、本発明は、コンクリート構造物内部のひび割れ状態を正確に調査することができる。
 また、本発明によれば、硬化時において特定色を有する液状部材を用いることで、穴内部を撮像した画像から、ひび割れを特定色として認識することができ、ひび割れの有無を色によって正確に認識することができる。
The present invention has the following excellent effects.
According to the present invention, even when corner breakage occurs in the cracked part due to microfracture by drilling, after the liquid member is press-fitted and hardened, by drilling with a hole diameter larger than the previously drilled hole diameter, The chipped corners can be removed, and the cracks can be accurately exposed on the surface inside the hole. Thereby, this invention can investigate correctly the crack state inside a concrete structure.
Further, according to the present invention, by using a liquid member having a specific color at the time of curing, a crack can be recognized as a specific color from an image obtained by imaging the inside of the hole, and the presence or absence of a crack is accurately recognized by color. can do.
本発明に係るコンクリート構造物のひび割れ調査方法の手順の一例を示すフローチャートである。It is a flowchart which shows an example of the procedure of the crack investigation method of the concrete structure which concerns on this invention. 本発明に係るコンクリート構造物のひび割れ調査システムの構成を示すシステム構成図である。It is a system configuration figure showing the composition of the crack investigation system of the concrete structure concerning the present invention. 本発明に係るコンクリート構造物のひび割れ調査システムのツール装着部に各種ツールを装着した状態を示す図であって、(a)は穿孔機を装着した状態を示す断面図、(b)は圧入装置(注射器)を装着した状態を示す断面図、(c)は撮像装置を装着した状態を示す断面図、(d)はツールを固定するツール固定具を示す斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the state which mounted | worn with various tools in the tool mounting part of the crack investigation system of the concrete structure which concerns on this invention, Comprising: (a) is sectional drawing which shows the state which mounted | worn the drilling machine, (b) is a press-fit apparatus. FIG. 4 is a cross-sectional view showing a state where the (syringe) is mounted, FIG. 3C is a cross-sectional view showing a state where the imaging device is mounted, and FIG. ツール装着部にツールを固定する様子を示す穿孔方向の背面図であって、(a)はツール挿入時の状態を示す図、(b)はツールを固定した状態を示す図である。It is a rear view of the perforation direction showing a state where the tool is fixed to the tool mounting portion, (a) is a diagram showing a state when the tool is inserted, (b) is a diagram showing a state where the tool is fixed. 本発明に係るコンクリート構造物のひび割れ調査方法における穿孔の手順の一例を(a)~(f)で説明する説明図である。It is explanatory drawing explaining an example of the procedure of the drilling | boring in the crack investigation method of the concrete structure which concerns on this invention with (a)-(f). ドリル穿孔により発生する角欠けを説明するための図であって、(a)はコンクリート構造物内にひび割れが発生した状態を示す断面図、(b)はコンクリート構造物をドリル穿孔した状態を示す断面図、(c)は(b)の角欠け箇所を拡大して表示した拡大図である。It is a figure for demonstrating the corner chip | corner which generate | occur | produces by drill drilling, Comprising: (a) is sectional drawing which shows the state which the crack generate | occur | produced in the concrete structure, (b) shows the state which drilled the concrete structure. Sectional drawing, (c) is an enlarged view showing an enlarged corner missing portion of (b). ドリル穿孔した穴に液状部材を注入する手法を説明するための図である。It is a figure for demonstrating the method of inject | pouring a liquid member into the hole drilled. 本発明に係るコンクリート構造物のひび割れ調査方法における第1穿孔工程、圧入工程、第2穿孔工程を模式的に示す図であって、(a)は穿孔(第1穿孔工程)後の状態を示す図、(b)は穴内部に液状部材(エポキシ樹脂)を圧入した(圧入工程)後の状態を示す図、(c)は再穿孔(第2穿孔工程)後の状態を示す図である。It is a figure which shows typically the 1st drilling process, press-fit process, and 2nd drilling process in the crack investigation method of the concrete structure which concerns on this invention, Comprising: (a) shows the state after a drilling (1st drilling process). FIG. 5B is a diagram showing a state after a liquid member (epoxy resin) is press-fitted into the hole (press-fitting step), and FIG. 5C is a diagram showing a state after re-piercing (second punching step). 本発明に係るコンクリート構造物のひび割れ調査方法における検出工程に含まれる観察工程を説明するための説明図であって、(a)は観察工程を模式的に示す図、(b)は観察工程で使用する撮像装置の一例を示す図、(c)は撮像装置で撮像された画像の一例を示す図である。It is explanatory drawing for demonstrating the observation process included in the detection process in the crack investigation method of the concrete structure which concerns on this invention, Comprising: (a) is a figure which shows an observation process typically, (b) is an observation process. The figure which shows an example of the imaging device to be used, (c) is a figure which shows an example of the image imaged with the imaging device. 内視鏡先端部の内部構造を示す断面図である。It is sectional drawing which shows the internal structure of an endoscope front-end | tip part. 本発明に係るコンクリート構造物のひび割れ調査方法における検出工程に含まれる計測工程を説明するための説明図であって、(a)は計測工程を模式的に示す図、(b)は計測工程で使用する撮像装置の一例を示す図、(c)は撮像装置で撮像されたステレオ画像の一例を示す図である。It is explanatory drawing for demonstrating the measurement process included in the detection process in the crack investigation method of the concrete structure which concerns on this invention, Comprising: (a) is a figure which shows a measurement process typically, (b) is a measurement process. The figure which shows an example of the imaging device to be used, (c) is a figure which shows an example of the stereo image imaged with the imaging device. ステレオ画像で指定された点の位置を算出する手法を説明するための説明図である。It is explanatory drawing for demonstrating the method of calculating the position of the point designated by the stereo image. 本発明に係るコンクリート構造物のひび割れ調査方法における検出工程で用いる他の撮像装置の例を示す図である。It is a figure which shows the example of the other imaging device used at the detection process in the crack investigation method of the concrete structure which concerns on this invention. 複数のツールを保持する保持機構を示す図であって、(a)は1つ目のツールの中心軸を穴の中心軸に合致するように配置した例を示す図、(b)は2つ目のツールの中心軸を穴の中心軸に合致するよに移動して配置した例を示す図である。It is a figure which shows the holding mechanism which hold | maintains several tools, Comprising: (a) is a figure which shows the example arrange | positioned so that the center axis of the 1st tool may correspond to the center axis of a hole, (b) is two It is a figure which shows the example which moved and arrange | positioned the center axis | shaft of the eye tool so that it might correspond with the center axis | shaft of a hole.
 以下、本発明の実施形態について説明する。
[コンクリート構造物のひび割れ調査方法の概要]
 本発明のコンクリート構造物のひび割れ調査方法は、ドリル穿孔を用いた微破壊検査であって、調査対象のコンクリート構造物にドリルにより穿孔し(第1穿孔工程)、その穴内部に硬化時において特定色を有する液状部材を圧入し(圧入工程)、硬化させる。そして、液状部材の硬化後、このひび割れ調査方法は、再度同じ位置に、穴径を大きくして穿孔する(第2穿孔工程)。この穴径を大きくすることで、先の穿孔で発生したひび割れの角欠け箇所が削り取られることになる。
 その後、ひび割れ調査方法は、穴内部に撮像装置を挿入し、特定色で撮像されたひび割れを検出することで、ひび割れの状態を調査する(検出工程)。
 以下、図面を参照して、本発明のコンクリート構造物のひび割れ調査方法(以下、ひび割れ調査方法という)について詳細に説明する。
Hereinafter, embodiments of the present invention will be described.
[Outline of crack investigation method for concrete structures]
The method for investigating cracks in a concrete structure according to the present invention is a micro-destructive inspection using drill drilling, in which a concrete structure to be investigated is drilled with a drill (first drilling step), and the inside of the hole is specified at the time of hardening. A liquid member having a color is press-fitted (press-fitting process) and cured. And after hardening of a liquid member, this crack investigation method is again drilled in the same position by enlarging a hole diameter (second drilling step). By increasing the diameter of the hole, the cracked corner missing portion generated by the previous drilling is scraped off.
Thereafter, in the crack investigation method, an image pickup device is inserted into the hole, and a crack imaged in a specific color is detected to investigate the state of the crack (detection step).
Hereinafter, a crack investigation method for a concrete structure of the present invention (hereinafter referred to as a crack investigation method) will be described in detail with reference to the drawings.
[コンクリート構造物のひび割れ調査方法の詳細]
 図1を参照して、本発明の実施形態に係るひび割れ調査方法の第1穿孔工程、圧入工程、第2穿孔工程、検出工程について順次説明する。
 なお、本発明の実施形態に係るひび割れ調査方法は、例えば、図2に示すようなコンクリート構造物のひび割れ調査システム(以下、ひび割れ調査システム)Sで実現することができる。
[Details of crack investigation method for concrete structures]
With reference to FIG. 1, the 1st drilling process of the crack investigation method which concerns on embodiment of this invention, a press injection process, a 2nd drilling process, and a detection process are demonstrated one by one.
The crack investigation method according to the embodiment of the present invention can be realized by, for example, a concrete structure crack investigation system (hereinafter referred to as a crack investigation system) S as shown in FIG.
 このひび割れ調査システムSの個々の構成、処理については、各工程の説明において詳細に説明するが、概略以下の通りである。
 ひび割れ調査システムSは、コンクリート構造物Coに穿孔する穿孔機13と、穿孔機13で穿孔された穴に、硬化時において特定色を有する液状部材を圧入する注射器(圧入装置)20と、穿孔機で穿孔した穴に挿入し、穴内部を撮像する撮像装置40と、を備え、支柱12のガイド12aに沿って移動するツール装着部18に着脱自在に装着できるように構成されている。
 このひび割れ調査システムSは、最初に小口径ビット16によりコンクリート構造物Coに穿孔した後、注射器20で穴内部に液状部材を圧入する。そして、ひび割れ調査システムSは、液状部材硬化後、小口径ビット16よりも穴径が大きい小口径ビット16bで小口径ビット16と中心軸が同じ穴を再穿孔する。
The individual configuration and processing of the crack investigation system S will be described in detail in the description of each process, but is as follows.
The crack investigation system S includes a drilling machine 13 for drilling in a concrete structure Co, a syringe (pressing apparatus) 20 for press-fitting a liquid member having a specific color into a hole drilled by the drilling machine 13, and a drilling machine. And an imaging device 40 that images the inside of the hole and is configured to be detachably mounted on the tool mounting portion 18 that moves along the guide 12a of the support column 12.
In this crack inspection system S, a concrete structure Co is first drilled by a small-diameter bit 16 and then a liquid member is press-fitted into the hole by a syringe 20. Then, after the liquid member is hardened, the crack investigation system S re-perforates a hole having the same central axis as the small-diameter bit 16 with the small-diameter bit 16b having a larger hole diameter than the small-diameter bit 16.
 そして、ひび割れ調査システムSは、再穿孔した穴に、撮像装置40を挿入し穴内部のひび割れの状態を撮像する。なお、穿孔機13、注射器20、撮像装置40は、ツール固定具(挿入補助具)19,29,49を介して取付手段(ここでは、キー構造および固定ねじ)によりツール装着部18に着脱自在になるように構成されている。なお、ツール固定具19,29,49は、各ツール(穿孔機13、注射器20、撮像装置40)を保持することができる形状に形成され、ツール装着部18に共通に支持することができるように構成されている。
 また、ツール装着部18は、ガイド12aに沿って移動する摺動部18aと、この摺動部18aに形成され、ツール固定具19,29、49を装着して保持するホルダ部18bと、このホルダ部18bにツール固定具19,29,49を固定するためのキー溝18cおよび固定ねじ18dを備えている。
 以下、主に図1を参照して、各工程について詳細に説明する。
And the crack investigation system S inserts the imaging device 40 into the re-drilled hole, and images the state of the crack inside the hole. The punching machine 13, the syringe 20, and the imaging device 40 are detachably attached to the tool mounting portion 18 by means of attachment means (here, key structure and fixing screw) via tool fixing tools (insertion assisting tools) 19, 29, and 49. It is configured to be. The tool fixtures 19, 29, and 49 are formed in shapes that can hold the tools (the punching machine 13, the syringe 20, and the imaging device 40), and can be supported in common by the tool mounting unit 18. It is configured.
The tool mounting portion 18 includes a sliding portion 18a that moves along the guide 12a, a holder portion 18b that is formed on the sliding portion 18a and that holds the tool fixtures 19, 29, and 49, and the holder portion 18b. A key groove 18c and a fixing screw 18d for fixing the tool fixtures 19, 29, 49 to the holder portion 18b are provided.
Hereinafter, each step will be described in detail mainly with reference to FIG.
〔第1穿孔工程〕
 図1に示すように、まず、ひび割れ調査方法SAは、穿孔機(ドリル)13により、予め定めた穴径で、ひび割れを調査する対象となる道路橋床版等のコンクリート構造物に、調査対象の深さの穴を穿孔する(ステップS1)。
[First drilling step]
As shown in FIG. 1, first, the crack investigation method SA uses a drilling machine (drill) 13 to investigate a concrete structure such as a road bridge deck to be examined for cracks with a predetermined hole diameter. Is drilled (step S1).
 この穿孔機13は、例えば、小口径のダイヤモンドビットを使用し、清水を流入させながら高速回転で穿孔する一般的なドリルを用いることができる。ここでは、穿孔機13は、図に示すように、ダイヤモンドビットをツール固定具19に保持しツール装着部18に装着して使用する。なお、ツール固定具19は、穿孔機13を保持する保持本体部19aと、この保持本体部19aの一端側に形成されたキー19bとを備えている。また、第1穿孔工程における穿孔機13による穴径は、例えば、4mm~25mm程度である。
 なお、コンクリート構造物内部に鉄筋が存在する場合は、このひび割れ調査方法SAは、ステップS1より前に、予め鉄筋探査機により鉄筋を探査し、鉄筋部分を避けて穿孔することはいうまでもない。
The drilling machine 13 can use, for example, a general drill that uses a small-diameter diamond bit and drills at high speed while flowing fresh water. Here, the drilling machine 13 is used by holding the diamond bit on the tool fixture 19 and mounting it on the tool mounting portion 18 as shown in the figure. The tool fixture 19 includes a holding main body 19a for holding the punching machine 13, and a key 19b formed on one end side of the holding main body 19a. Further, the hole diameter by the punch 13 in the first drilling step is, for example, about 4 mm to 25 mm.
In addition, when a reinforcing bar exists in the concrete structure, it is needless to say that the crack investigation method SA searches for the reinforcing bar in advance with a reinforcing bar probe before the step S1 and drills to avoid the reinforcing bar part. .
 ここで、図5を参照して、ひび割れ調査方法SAにおける穿孔の手順を説明する。なお、この穿孔手順は、一例であって、一般的なドリル穿孔を行えばよい。
 図5(a)に示すように、この穿孔手順は、まず、コンクリート構造物Coの壁面に基台10を取り付ける。ここでは、基台10として真空パッドを用い、バキュームポンプ11によって、基台10を真空吸引することで壁面に取り付けた例を示している。もちろん、真空パッドが取り付けられない場合は、基台10をアンカーボルトで固定することとしてもよい。
Here, with reference to FIG. 5, the procedure of drilling in the crack investigation method SA will be described. Note that this drilling procedure is an example, and general drilling may be performed.
As shown in FIG. 5A, in this drilling procedure, first, the base 10 is attached to the wall surface of the concrete structure Co. Here, an example is shown in which a vacuum pad is used as the base 10 and the base 10 is attached to the wall surface by vacuum suction with the vacuum pump 11. Of course, when the vacuum pad cannot be attached, the base 10 may be fixed with an anchor bolt.
 そして、図5(b)に示すように、穿孔手順は、穿孔機13をツール固定具19に保持してツール装着部18に装着し、穿孔機13が基台10に設置した支柱12のガイド12aに沿って直線的に移動できるように取り付ける。なお、ツール装着部18にツール固定具19を装着するときには、図4(a)(b)に示すように、ツール固定具19のキー19bをキー溝18cに係合させ、図2に示した固定ねじ18dで固定することで、ツール固定具19に保持した穿孔機13をツール装着部18に装着している。
 そして、図5(c)に示すように、穿孔手順は、穿孔機13に芯出し棒14を取り付け、その先端を、調査対象の穴の位置に予め付した墨出し位置Tの位置に合わせる。
 さらに、図5(d)に示すように、穿孔手順は、穿孔角度を垂直に保持するための直角用治具15を取り付ける。
Then, as shown in FIG. 5 (b), the drilling procedure is performed by holding the drilling machine 13 on the tool fixture 19 and mounting it on the tool mounting part 18, and the guide of the column 12 installed on the base 10 by the drilling machine 13. It is attached so that it can move linearly along 12a. When the tool fixture 19 is attached to the tool attachment portion 18, as shown in FIGS. 4A and 4B, the key 19b of the tool fixture 19 is engaged with the key groove 18c, as shown in FIG. By fixing with the fixing screw 18d, the drilling machine 13 held by the tool fixing tool 19 is mounted on the tool mounting portion 18.
Then, as shown in FIG. 5C, in the drilling procedure, the centering rod 14 is attached to the punching machine 13, and the tip thereof is set to the position of the marking position T previously attached to the position of the hole to be investigated.
Further, as shown in FIG. 5D, in the drilling procedure, a right-angle jig 15 for holding the drilling angle vertically is attached.
 その後、図5(e)に示すように、穿孔手順は、芯出し棒14をはずし、小口径ビット(ダイヤモンドビット)16を取り付けて穿孔を行う。なお、このとき、図示を省略するが、孔内を常時洗浄することとする。これによって、ひび割れの目詰まりを防止することができる。 Thereafter, as shown in FIG. 5 (e), the drilling procedure is performed by removing the centering rod 14 and attaching a small-diameter bit (diamond bit) 16. At this time, although not shown, the inside of the hole is always cleaned. Thereby, clogging of cracks can be prevented.
 そして、図5(f)に示すように、穿孔手順は、穿孔の深さに応じて、適宜、ロッド17を継ぎ足して、小口径ビット16を延長することで、所望の深さまで穿孔する。
 このように、ひび割れ調査方法SAは、第1穿孔工程として、ドリル穿孔によってひび割れを調査するための小口径の穴を穿孔する。
Then, as shown in FIG. 5 (f), in the drilling procedure, the rod 17 is appropriately added according to the drilling depth, and the small-diameter bit 16 is extended to drill to a desired depth.
Thus, the crack investigation method SA drills a small-diameter hole for investigating cracks by drilling as the first drilling step.
 ここで、図6を参照して、第1穿孔工程におけるコンクリート構造物内部の状態を説明する。
 図6(a)に示すように、コンクリート構造物Coの内部に、ひび割れCrが発生しているものとする。
 この状態で、ひび割れ調査方法は、図6(b)に示すように、第1穿孔工程において、穿孔機13により、ひび割れ調査対象の深さ(例えば、1cm~1000cm)まで穿孔する。
 このとき、穿孔機13により開けられた穴Hとひび割れCrとが交差する領域Aにおいて、ひび割れ箇所に角欠けが発生する。
Here, with reference to FIG. 6, the state inside the concrete structure in a 1st drilling process is demonstrated.
As shown in FIG. 6A, it is assumed that cracks Cr are generated inside the concrete structure Co.
In this state, as shown in FIG. 6B, in the crack investigation method, in the first drilling step, the drilling machine 13 drills to the depth of the crack investigation target (for example, 1 cm to 1000 cm).
At this time, in the region A where the hole H opened by the punching machine 13 and the crack Cr intersect, corner breakage occurs at the cracked portion.
 この図6(b)の領域Aを拡大した図が、図6(c)である。この図6(c)に示すように、角欠けBが発生した状態で穴H内部を観察すると、穿孔機13により穴Hが開けられる前の実際のひび割れよりも大きいひび割れが観測されることになる。例えば、穴径が4mm~25mm程度であれば、ひび割れの実際の端部から大きくても0.05mm~1.0mm程度の角欠けが発生する。
 なお、本発明にかかるひび割れ調査方法では、この第1穿孔工程における角欠けを許容する。その理由は、以下の工程において、角欠けを削除するためである。
 図1に戻って、ひび割れ調査方法SAの手順について説明を続ける。
FIG. 6C is an enlarged view of the region A in FIG. As shown in FIG. 6C, when the inside of the hole H is observed in a state where the corner chip B is generated, a crack larger than an actual crack before the hole H is opened by the drilling machine 13 is observed. Become. For example, if the hole diameter is about 4 mm to 25 mm, corner cracks of about 0.05 mm to 1.0 mm occur at most from the actual end of the crack.
In the crack investigation method according to the present invention, corner chipping in the first drilling step is allowed. The reason for this is to remove corner defects in the following steps.
Returning to FIG. 1, the description of the procedure of the crack investigation method SA will be continued.
〔圧入工程〕
 ステップS1の後、ひび割れ調査方法SAは、第1穿孔工程で穿孔された穴に、蛍光染料を混入した、有機系注入材である合成樹脂(ここでは、メタクリル酸メチル樹脂)を圧入する(ステップS2)。なお、穿孔機13を保持しているツール固定具19をツール装着部18から取り外し、注射器20を保持するツール固定具29をツール装着部18に装着することで、支柱12を使用して合成樹脂を圧入することができるように、ここでは構成されている。有機系注入材は、圧入を行う直前に硬化剤を混合する。
[Press-fit process]
After step S1, the crack investigation method SA press-fits a synthetic resin (here, methyl methacrylate resin) that is an organic injection material mixed with a fluorescent dye into the hole drilled in the first drilling step (step S1). S2). The tool fixture 19 holding the punch 13 is removed from the tool mounting portion 18, and the tool fixture 29 holding the syringe 20 is mounted on the tool mounting portion 18, so that the synthetic resin is used using the support 12. It is comprised here so that it can press-fit. The organic injection material is mixed with a curing agent just before press-fitting.
 このように、第1穿孔工程で穿孔された穴に、液状部材であるメタクリル酸メチル樹脂を圧入することで、穿孔した穴のみならず、角欠け箇所を含むひび割れ内部にまで、メタクリル酸メチル樹脂が浸透し充填する。
 ここでは、メタクリル酸メチル樹脂に蛍光染料を混入しておくことで、調査対象のコンクリート構造物の色とは異なる蛍光色によって、ひび割れの状態を検査することが可能になる。例えば、コンクリート構造物の色と異なる色として、オレンジ色(光の波長590~610nm)を用いることで、コンクリートの色との対比でひび割れを視認しやすくすることができる。
 なお、この圧入工程では、コンクリート構造物内部の破損を防止するため、0.1MPa程度の圧力で圧入を行うことが望ましい。
Thus, the methyl methacrylate resin, which is a liquid member, is press-fitted into the hole drilled in the first drilling step, so that not only the drilled hole but also the inside of the crack including the corner missing portion is methyl methacrylate resin. Penetrates and fills.
Here, by mixing a fluorescent dye into the methyl methacrylate resin, it is possible to inspect the cracked state with a fluorescent color different from the color of the concrete structure to be investigated. For example, by using an orange color (light wavelength of 590 to 610 nm) as a color different from the color of the concrete structure, it is possible to make it easier to visually recognize cracks in comparison with the color of concrete.
In this press-fitting process, it is desirable to perform press-fitting at a pressure of about 0.1 MPa in order to prevent damage inside the concrete structure.
 この圧入工程は、一般的な圧入手法により行うことができる。例えば、図7に示すように、注射器(圧入装置)20に針(鈍針)21を取り付け、注射器20内部に液状部材であるメタクリル酸メチル樹脂Eを入れる。なお、このメタクリル酸メチル樹脂Eは、注射器20に入れる直前に硬化剤を混合しておく。
 ここでは、図2に示すように、ツール固定具29に注射器20を保持させてツール装着部18に装着する。つまり、ツール固定具29の一端に形成されているキー29bをツール装着部18のキー溝18cに係合させ、注射器20を保持する保持本体部29aを固定ねじ18dで固定することで、注射器20をツール装着部18に装着する。そして、ツール装着部18に装着した注射器20内部に液状部材であるメタクリル酸メチル樹脂Eを入れる。なお、このメタクリル酸メチル樹脂Eは、注射器20に入れる直前に硬化剤を混合しておく。
This press-fitting process can be performed by a general press obtaining method. For example, as shown in FIG. 7, a needle (blunt needle) 21 is attached to a syringe (press-fit device) 20, and methyl methacrylate resin E, which is a liquid member, is placed inside the syringe 20. The methyl methacrylate resin E is mixed with a curing agent immediately before being put into the syringe 20.
Here, as shown in FIG. 2, the tool 20 is held by the tool fixture 29 and mounted on the tool mounting portion 18. That is, by engaging the key 29b formed at one end of the tool fixture 29 with the key groove 18c of the tool mounting portion 18 and fixing the holding main body portion 29a holding the syringe 20 with the fixing screw 18d, the syringe 20 Is mounted on the tool mounting portion 18. Then, the methyl methacrylate resin E, which is a liquid member, is placed inside the syringe 20 attached to the tool attachment portion 18. The methyl methacrylate resin E is mixed with a curing agent immediately before being put into the syringe 20.
 そして、第1穿孔工程で穿孔された穴Hに封止栓22で蓋をした後、封止栓22に針21を差し込み、メタクリル酸メチル樹脂Eを圧入する。なお、この封止栓22には、天然ゴム栓、合成ゴム栓、シリコンゴム栓、フッ素ゴム栓等のゴム栓や、テフロン栓、ユニストッパー栓(シリコン+テフロンパウダー結合栓)等を用いることができる。また、封止栓22は、圧入する液状部材の粘度によっては、使用しない場合もある。
 なお、この圧入工程は、例えば、図5で説明した穿孔手順において、図5(f)の後、穿孔機13を保持するツール固定具19に当接している固定ねじ18dを取り外し、キー19bをキー溝18cから外すことで、ツール装着部18から取り外し、注射器20を保持するツール固定具29を代わりにホルダ部18bに装着する。そして、装着した注射器20から、合成樹脂(メタクリル酸メチル樹脂E)を圧入する。
 この圧入工程後、圧入した合成樹脂の硬化に要する時間に応じた硬化養生を行う(ステップS3)。
Then, the hole H drilled in the first drilling step is covered with the sealing plug 22, and then the needle 21 is inserted into the sealing plug 22, and methyl methacrylate resin E is press-fitted. The sealing plug 22 may be a rubber plug such as a natural rubber plug, a synthetic rubber plug, a silicon rubber plug, or a fluorine rubber plug, a Teflon plug, a uni-stopper plug (silicon + Teflon powder bonding plug), or the like. it can. The sealing plug 22 may not be used depending on the viscosity of the liquid member to be press-fitted.
In this press-fitting step, for example, in the drilling procedure described in FIG. 5, after FIG. 5 (f), the fixing screw 18d abutting on the tool fixture 19 holding the drilling machine 13 is removed, and the key 19b is pressed. By removing from the keyway 18c, the tool mounting part 18 is removed from the tool mounting part 18, and the tool fixing tool 29 holding the syringe 20 is mounted on the holder part 18b instead. Then, a synthetic resin (methyl methacrylate resin E) is press-fitted from the attached syringe 20.
After this press-fitting process, curing curing according to the time required for curing the press-fitted synthetic resin is performed (step S3).
〔第2穿孔工程〕
 ステップS3でメタクリル酸メチル樹脂が硬化した後、ひび割れ調査方法SAは、第1穿孔工程(ステップS1)の穴径よりも大きい穴径で調査対象の深さの穴を再度穿孔する(ステップS4)。
 このとき、再穿孔する穴の中心軸は、第1穿孔工程で開けた穴の中心軸と一致させる。
 この第2穿孔工程における穿孔は、工具径を大きくして、図5で説明した第1穿孔工程における穿孔と同様の手法で行うことができる。すなわち、第2穿孔工程は、第1穿孔工程で用いた穿孔機13に穴径の異なる小口径ビット16(16b:図2参照)を取り付け、第1穿孔工程と同じ位置に設置した支柱12のガイド12aに沿って、穿孔機13を移動させることで、第1穿孔工程で開けた穴と同じ中心軸の穴を穿孔することができる。この穿孔機13は、前記したようにツール固定具19によりツール装着部18に装着される。
[Second drilling step]
After the methyl methacrylate resin is cured in step S3, the crack investigation method SA again drills a hole having a depth to be investigated with a hole diameter larger than the hole diameter in the first drilling step (step S1) (step S4). .
At this time, the center axis of the hole to be re-drilled is matched with the center axis of the hole opened in the first drilling step.
The drilling in the second drilling step can be performed in the same manner as the drilling in the first drilling step described with reference to FIG. That is, in the second drilling process, the small-diameter bit 16 (16b: see FIG. 2) having a different hole diameter is attached to the drilling machine 13 used in the first drilling process, and the column 12 installed at the same position as the first drilling process. By moving the drilling machine 13 along the guide 12a, it is possible to drill a hole having the same central axis as the hole drilled in the first drilling process. The punching machine 13 is mounted on the tool mounting portion 18 by the tool fixture 19 as described above.
 なお、この第2穿孔工程における穿孔の穴径は、第1穿孔工程により発生する角欠け箇所を削り取る大きさであればよい。例えば、前記したように、穴径が4mm~25mm程度であれば、大きくても0.05mm~1.0mm程度の角欠けが発生するため、それよりも大きい、例えば、0.1mm~2.0mmの範囲、好ましくは、2.0mm~4.0mmの範囲大きい穴径で、再穿孔を行うこととする。 In addition, the hole diameter of the drilling in the second drilling process may be a size that scrapes off the corner missing portion generated in the first drilling process. For example, as described above, if the hole diameter is about 4 mm to 25 mm, a corner chip of about 0.05 mm to 1.0 mm is generated even if it is large. Re-drilling is performed with a large hole diameter in the range of 0 mm, preferably in the range of 2.0 mm to 4.0 mm.
 ここで、図8を参照して、第1穿孔工程から第2穿孔工程までにおけるコンクリート構造物内部の状態を説明する。なお、図8の(a),(b),(c)は、左側に、コンクリート構造物の穿孔方向の断面図を示し、右側に、穿孔方向に垂直の断面図を示す。 Here, with reference to FIG. 8, the state inside the concrete structure from the first drilling process to the second drilling process will be described. 8A, 8 </ b> B, and 8 </ b> C show a cross-sectional view in the drilling direction of the concrete structure on the left side, and a cross-sectional view perpendicular to the drilling direction on the right side.
 図8(a)に示すように、第1穿孔工程後のコンクリート構造物Co内部には、穿孔した穴Hと、ひび割れCrとが交差する箇所に角欠けBが発生している。
 そして、図8(b)に示すように、ひび割れ調査方法は、圧入工程において、穴Hに蛍光染料を混入したメタクリル酸メチル樹脂Eを圧入する。このメタクリル酸メチル樹脂Eは、液状部材であるため、圧入されることで、ひび割れCr内部まで浸透する。
As shown to Fig.8 (a), the corner chip B has generate | occur | produced in the location where the drilled hole H and the crack Cr cross | intersect inside the concrete structure Co after a 1st drilling process.
And as shown in FIG.8 (b), the crack investigation method press-fits the methyl methacrylate resin E which mixed the fluorescent dye in the hole H in the press-fit process. Since this methyl methacrylate resin E is a liquid member, it penetrates into the cracked Cr by being press-fitted.
 そして、図8(c)に示すように、ひび割れ調査方法は、第2穿孔工程において、第1穿孔で穿孔した穴径よりも大きい穴径で再穿孔する。これによって、図8(a)に示した穴Hに存在する角欠けBは、図8(c)に示した穴Hの内側の領域として削り取られ、ひび割れCrの幅が正確に穴Hの内側表面に現れることになる。
 図1に戻って、ひび割れ調査方法SAの手順について説明を続ける。
And as shown in FIG.8 (c), a crack investigation method re-drills with a hole diameter larger than the hole diameter drilled by 1st drilling in a 2nd drilling process. As a result, the corner chip B existing in the hole H shown in FIG. 8A is scraped off as a region inside the hole H 2 shown in FIG. 8C, and the width of the crack Cr is accurately set in the hole H 2. Will appear on the inside surface.
Returning to FIG. 1, the description of the procedure of the crack investigation method SA will be continued.
〔検出工程(観察工程)〕
 ステップS4の後、ひび割れ調査方法SAは、第2穿孔工程で穿孔された穴に、直視用カメラを備えた撮像装置を挿入し、作業者(調査担当者)が、撮像画像から特定色(ここでは、蛍光色)を検出することでひび割れの有無を観察する(ステップS5)。
 ここで使用される撮像装置としての内視鏡40は、図3に示すように、ツール固定具49により保持されて、ツール装着部18に装着される。なお、ツール固定具49は、内視鏡40の管外周に当接して保持する本体保持部49aと、この本体保持部49aの後部側で外周側に突出して形成されたキー49bと、このキー49bの内周側に前部側に向かって凹状に形成された係合部49cと、この係合部49cに係合して内視鏡40を支持する位置決保持具49dとを備えている。そして、係合部49cは、凹空間および雌ねじ部(不図示)をここでは有している。また、位置決保持具49dは、中央に内視鏡40が挿通できる挿入穴を有し、先端側に設けた弾性部材(固定ゴム)と、ワッシャとを備え、係合部49cの凹空間に挿入し雌ねじ部に螺合することで内視鏡40を支持する。つまり、位置決保持具49dは、雌ねじ部に螺合することで先端の弾性部材を単手方向に広がるように変形させ、挿通している内視鏡40を固定することができる。なお、このとき、作業者は、内視鏡を挿入する際に、その挿入した深さ(挿入深さ)によって、コンクリート構造物の表面から、ひび割れが発生している位置までの深さを計測することとしてもよい。
[Detection process (observation process)]
After step S4, the crack investigation method SA inserts an imaging device equipped with a direct-view camera into the hole drilled in the second drilling step, and an operator (inspector) selects a specific color (here) from the captured image. Then, the presence or absence of cracks is observed by detecting the fluorescent color (step S5).
As shown in FIG. 3, the endoscope 40 as an imaging device used here is held by a tool fixture 49 and attached to the tool attachment unit 18. The tool fixture 49 includes a main body holding portion 49a that abuts and holds the outer periphery of the tube of the endoscope 40, a key 49b that protrudes outward from the rear side of the main body holding portion 49a, and the key An engaging portion 49c formed in a concave shape toward the front side on the inner peripheral side of 49b, and a positioning holder 49d that engages with the engaging portion 49c and supports the endoscope 40 are provided. . And the engaging part 49c has a recessed space and an internal thread part (not shown) here. The positioning holder 49d has an insertion hole through which the endoscope 40 can be inserted at the center, includes an elastic member (fixed rubber) provided on the distal end side, and a washer, and is provided in the concave space of the engaging portion 49c. The endoscope 40 is supported by being inserted and screwed into the female screw portion. That is, the positioning holder 49d can be screwed into the female screw portion to deform the tip elastic member so as to spread in a single-handed direction, and fix the inserted endoscope 40. At this time, when inserting the endoscope, the operator measures the depth from the surface of the concrete structure to the position where the crack is generated, based on the inserted depth (insertion depth). It is good to do.
 この観察工程では、撮像装置として、例えば、直視用の画像を撮像する撮像部を先端に備えた内視鏡40を用いることができる。そして、この観察工程では、内視鏡のケーブルを穴内部に順次挿入し撮像することで、穴内部のひび割れを含んだ画像を表示装置(不図示)の画面上に表示する。 In this observation step, for example, an endoscope 40 that includes an imaging unit that captures an image for direct viewing at the tip can be used as the imaging device. In this observation step, the endoscope cable is sequentially inserted into the hole and picked up to display an image including a crack inside the hole on the screen of a display device (not shown).
 ここで、図9を参照して、検出工程(観察工程)について、さらに詳細に説明する。
 図9(a)に示すように、観察工程では、内視鏡40と、この内視鏡40で撮像された画像を表示する表示装置30とを用いる。
 すなわち、ひび割れ調査方法は、図9(a)に示すように、コンクリート構造物Coに穿孔された穴内部を内視鏡40で撮像する。この内視鏡40で撮像された画像は、表示装置30にケーブルを介して伝送され、表示装置30の画面上に表示される。
Here, the detection step (observation step) will be described in more detail with reference to FIG.
As shown in FIG. 9A, in the observation process, an endoscope 40 and a display device 30 that displays an image captured by the endoscope 40 are used.
That is, in the crack investigation method, as shown in FIG. 9A, the inside of the hole drilled in the concrete structure Co is imaged with the endoscope 40. An image captured by the endoscope 40 is transmitted to the display device 30 via a cable and displayed on the screen of the display device 30.
 ここで、内視鏡40は、図9(b)に示すように、直視(前方向)用の画像を撮像する光学アダプタDvが先端部に備えられている。
 この光学アダプタDvは、カメラCと、発光部Lとを備える。
Here, as shown in FIG. 9B, the endoscope 40 is provided with an optical adapter Dv that captures an image for direct viewing (forward direction) at the distal end.
The optical adapter Dv includes a camera C and a light emitting unit L.
 ここで、さらに、図10を参照して、内視鏡40の光学アダプタDvの構造について説明する。
 カメラCは、直視方向の画像を撮像するものである。このカメラCは、対物レンズ群41と、撮像素子42と、撮像部43とを備え、観察窓44を介して画像を撮像し、信号線45を介して、撮像した画像信号を表示装置30(図9)に出力する。
Here, the structure of the optical adapter Dv of the endoscope 40 will be further described with reference to FIG.
The camera C captures an image in the direct viewing direction. The camera C includes an objective lens group 41, an imaging device 42, and an imaging unit 43. The camera C captures an image through an observation window 44, and displays the captured image signal through a signal line 45 on the display device 30 ( Output to FIG.
 対物レンズ群41は、観察窓44から入射する光を撮像素子42に導くレンズであって、単一のレンズであっても構わないし、複数のレンズが合成された合成レンズであっても構わない。
 撮像素子42は、CCD(Charge Coupled Device)等の入射した光を画像信号(電気信号)に変換するものである。
 撮像部43は、撮像素子42を駆動制御し、画像を撮像するものであって、一般的な回路基板等である。この撮像部43は、撮像素子42によって撮像された画像信号を、信号線45に出力する。
The objective lens group 41 is a lens that guides light incident from the observation window 44 to the image sensor 42, and may be a single lens or a combined lens in which a plurality of lenses are combined. .
The image sensor 42 converts incident light such as a CCD (Charge Coupled Device) into an image signal (electric signal).
The image pickup unit 43 drives and controls the image pickup element 42 to pick up an image, and is a general circuit board or the like. The imaging unit 43 outputs an image signal captured by the imaging element 42 to the signal line 45.
 なお、穴内部をより視野角(画角)を広くして撮像する場合は、対物レンズ群41を広角レンズとすればよい。さらに、穴内部を広く撮像する場合は、対物レンズ群41を魚眼レンズ(例えば、画角180~220度程度)とすればよい。その場合、カメラCは、観察窓44を省き、魚眼レンズを内視鏡40の先端から突出して構成すればよい。 Note that when the inside of the hole is imaged with a wider viewing angle (field angle), the objective lens group 41 may be a wide-angle lens. Further, when the inside of the hole is imaged widely, the objective lens group 41 may be a fish-eye lens (for example, an angle of view of about 180 to 220 degrees). In that case, the camera C may be configured by omitting the observation window 44 and projecting the fisheye lens from the distal end of the endoscope 40.
 発光部Lは、カメラCが穴内部を撮像するための光を出射するものである。ここでは、発光部Lは、照明窓46を介して、光ファイバ47aを複数束ねたライトガイド47から光を出射する。この発光部Lには、LEDを用いてもよい。なお、発光部Lが出射する光は、ひび割れCr内に挿入されたメタクリル酸メチル樹脂を発光させるため、紫外線を用いることとする。
 表示装置30は、内視鏡40で撮像された画像を表示するものである。なお、表示装置30は、発光部Lから、光(ここでは紫外線)を出射するため、図示を省略した発光手段を備えることとする。
 図9に戻って説明を続ける。
The light emitting unit L emits light for the camera C to image the inside of the hole. Here, the light emitting unit L emits light from the light guide 47 in which a plurality of optical fibers 47 a are bundled through the illumination window 46. An LED may be used for the light emitting portion L. The light emitted from the light emitting portion L uses ultraviolet rays to cause the methyl methacrylate resin inserted in the cracked Cr to emit light.
The display device 30 displays an image captured by the endoscope 40. The display device 30 includes light emitting means (not shown) in order to emit light (in this case, ultraviolet rays) from the light emitting portion L.
Returning to FIG. 9, the description will be continued.
 このように、内視鏡40は、先端部に、画像を撮像するカメラCと、紫外線を発光する発光部Lとを備えることで、図9(c)に示すように、穴内部のひび割れ箇所を蛍光色で撮像し、穴内部を撮像した撮像画像Fを表示装置30に表示することができる。 As described above, the endoscope 40 includes the camera C that captures an image and the light emitting unit L that emits ultraviolet light at the distal end portion, so that a cracked portion inside the hole is formed as illustrated in FIG. Can be captured with a fluorescent color, and a captured image F obtained by capturing the inside of the hole can be displayed on the display device 30.
 これによって、作業者は、表示装置30に表示される撮像画像Fを視認することで、ひび割れの有無を容易に確認することができる。なお、作業者は、内視鏡40を挿入する際に、その挿入した深さ(挿入深さ)を計測しておくことで、コンクリート構造物Coの表面から、ひび割れが発生している位置までの深さを把握することができる。
 なお、表示装置30は、撮像画像を表示するのみならず、図示を省略した記録媒体に、撮像画像を記録することとしてもよい。
Thus, the operator can easily confirm the presence or absence of cracks by visually recognizing the captured image F displayed on the display device 30. In addition, when an operator inserts the endoscope 40, from the surface of the concrete structure Co to the position where the crack is generated by measuring the insertion depth (insertion depth). The depth of the can be grasped.
The display device 30 may not only display the captured image but also record the captured image on a recording medium that is not illustrated.
 このように、ひび割れ調査方法は、ひび割れ箇所が蛍光色で表された画像を作業者に提供することで、ひび割れの発生の有無を容易に視認させることができる。また、撮像画像として、より広角の画像で撮像すれば、さらに、穴内部を調査するための視野が広がるため、ひび割れの発生の有無を容易かつ素早く確認することができる。
 図1に戻って、ひび割れ調査方法SAの手順について説明を続ける。
Thus, the crack investigation method provides the operator with an image in which the cracked portion is expressed in a fluorescent color, thereby making it possible to easily recognize whether or not the crack has occurred. Moreover, if a wider-angle image is captured as the captured image, the field of view for investigating the inside of the hole is further expanded, so that the presence or absence of cracks can be easily and quickly confirmed.
Returning to FIG. 1, the description of the procedure of the crack investigation method SA will be continued.
 ステップS5による観察で、ひび割れが観察されない場合(ステップS6でNo)、ひび割れ調査を終了する。一方、ひび割れが観察された場合(ステップS6でYes)、ひび割れ調査方法SAは、ひび割れの計測工程へと進む。 If no crack is observed in the observation in step S5 (No in step S6), the crack investigation is terminated. On the other hand, when a crack is observed (Yes in step S6), the crack investigation method SA proceeds to a crack measurement process.
〔検出工程(計測工程)〕
 ステップS5でひび割れが観察された場合(ステップS6でYes)、ひび割れ調査方法SAは、第2穿孔工程で穿孔された穴に、側視用カメラを備えた撮像装置を挿入し、計測装置によって撮像画像を画像解析することで、ひび割れの幅を計測する(ステップS7)。このとき、作業者は、内視鏡を挿入する際に、その挿入した深さ(挿入深さ)によって、コンクリート構造物の表面から、ひび割れが発生している位置までの深さを計測する。
[Detection process (measurement process)]
When a crack is observed in step S5 (Yes in step S6), the crack investigation method SA inserts an imaging device equipped with a side-view camera into the hole drilled in the second drilling step, and images the measurement device. By analyzing the image, the width of the crack is measured (step S7). At this time, when inserting the endoscope, the operator measures the depth from the surface of the concrete structure to the position where the crack is generated, based on the inserted depth (insertion depth).
 なお、ステップS5の検出工程(観察工程)において、すでにひび割れが発生している位置までの深さが計測されている場合、ここではその計測を行わず、計測済みの深さまで内視鏡を挿入すればよい。これによって、ひび割れの幅を計測する位置まで、素早く内視鏡を挿入することができ、ひび割れの調査時間を短縮することができる。 In addition, in the detection process (observation process) of step S5, when the depth to the position where the crack has already occurred is measured, the measurement is not performed here, and the endoscope is inserted to the measured depth. do it. As a result, the endoscope can be quickly inserted to the position where the crack width is measured, and the crack investigation time can be shortened.
 この計測工程では、撮像装置として、例えば、側視用のステレオ画像を撮像する撮像部を先端に備えた内視鏡を用いることができる。そして、この計測工程では、内視鏡のケーブルを穴内部に順次挿入し、撮像されたステレオ画像を画像解析することで、ひび割れの大きさ(幅)を計測する。 In this measurement process, for example, an endoscope provided with an image pickup unit for picking up a stereo image for side view can be used as the image pickup apparatus. In this measurement step, the size (width) of the crack is measured by sequentially inserting the endoscope cable into the hole and analyzing the captured stereo image.
 ここで、図11を参照して、検出工程(計測工程)について、さらに詳細に説明する。
 図11(a)に示すように、計測工程では、内視鏡40Bと、この内視鏡40Bで撮像されたステレオ画像から、ひび割れの大きさを計測する計測装置30Bとを用いる。
 すなわち、ひび割れ調査方法は、図11(a)に示すように、コンクリート構造物Coに穿孔された穴内部を内視鏡40Bで撮像する。この内視鏡40Bで撮像された画像は、計測装置30Bにケーブルを介して伝送され、解析されることで、ひび割れの大きさが計測される。
Here, the detection process (measurement process) will be described in more detail with reference to FIG.
As shown in FIG. 11A, in the measurement process, an endoscope 40B and a measuring device 30B that measures the size of a crack from a stereo image captured by the endoscope 40B are used.
That is, in the crack investigation method, as shown in FIG. 11A, the inside of the hole drilled in the concrete structure Co is imaged with the endoscope 40B. The image captured by the endoscope 40B is transmitted to the measuring device 30B via a cable and analyzed, whereby the size of the crack is measured.
 ここで、内視鏡40Bは、図11(b)に示すように、側視(横方向)用のステレオ画像を撮像する光学アダプタSvが先端部に備えられている。
 この光学アダプタSvは、側面側にカメラC,Cと、発光部Lとを備える。
Here, as shown in FIG. 11B, the endoscope 40B is provided with an optical adapter Sv that captures a stereo image for side view (lateral direction) at the tip.
The optical adapter Sv includes cameras C L and CR and a light emitting unit L on the side surface side.
 カメラC,Cは、視差の異なるステレオ画像を撮像するものである。
 発光部Lは、カメラC,Cが穴内部を撮像するための光を出射するものである。この発光部Lは、図9(b)で説明した発光部Lと同じものである。
Camera C L, C R is for imaging the different stereo image parallax.
Emitting portion L is for camera C L, C R emits light for imaging an interior bore. The light emitting portion L is the same as the light emitting portion L described with reference to FIG.
 計測装置30Bは、内視鏡40Bで撮像されたステレオ画像を画像解析することで、ひび割れの大きさ(幅)を計測するものである。
 ここで、ステレオ画像は、例えば、図9(c)に示すように、2つの視点位置の異なるカメラC,Cによって撮像された2つの画像F,Fである。計測装置30Bは、このステレオ画像F,Fを画面上に表示する。
The measuring device 30B measures the size (width) of a crack by analyzing a stereo image captured by the endoscope 40B.
Here, the stereo image, for example, as shown in FIG. 9 (c), the camera different two viewpoint position C L, C R the two images F L captured by a F R. Measuring device 30B displays the stereo image F L, the F R on the screen.
 そして、計測装置30Bは、作業者によって、画面上の一方の画像(例えば、画像F)上で、蛍光色で表されているひび割れ箇所の幅を特定する2点(例えば、画像F上のPR1,PR2)を指定されることで、2点間の距離を算出し、その値を表示する。
 なお、このステレオ画像で指定された2点間の距離を計測する手法は、一般的な手法を用いることができる。すなわち、2点間の距離は、指定された1点ごとにステレオ画像から、対応する3次元座標(xyz座標)の位置を算出し、2点の3次元座標位置の距離を求めればよい。
Then, the measuring device 30B, the operator, one of the images on the screen (e.g., image F R) on, point 2 for specifying the width of the crack locations are represented by fluorescent color (e.g., the image F R (P R1 , P R2 ) are designated, the distance between the two points is calculated and the value is displayed.
Note that a general method can be used as a method of measuring the distance between two points designated in the stereo image. That is, the distance between two points may be calculated by calculating the position of the corresponding three-dimensional coordinates (xyz coordinates) from the stereo image for each designated point, and obtaining the distance between the two three-dimensional coordinate positions.
 ここで、図12を参照(適宜図11参照)して、ステレオ画像から指定された1点の3次元座標(xyz座標)を算出する手法を説明する。ここで、レンズL、Lは、それぞれ図11で説明したカメラC,Cのレンズとする。また、各レンズの焦点距離をfとし、レンズ間の距離をdとする。
 なお、図12において、レンズL、Lから焦点距離fだけ離れた撮像素子(不図示)に撮像される画像は、図11に示した画像F,Fとは、左右上下の方向(x方向,y方向の正負)が反転している。
Here, with reference to FIG. 12 (refer to FIG. 11 as appropriate), a method of calculating the three-dimensional coordinates (xyz coordinates) of one point designated from the stereo image will be described. The lens L L, L R is the camera C L described in FIG. 11, respectively, the C R of the lens. The focal length of each lens is f, and the distance between the lenses is d.
Note that the image is an image F L shown in FIG. 11, the F R, the horizontal and vertical direction in FIG. 12, to be imaged on the lens L L, the imaging element away from the L R by the focal length f (not shown) (Positive and negative in x direction and y direction) are reversed.
 ここで、図12(a)に示すように、図11(c)の画像Fで指定された点PR1に対応する撮像素子(不図示)上の画素が、画像中心からx軸の正方向に距離aだけ離れていたとする。また、画像Fの点PR1と同じ位置を示す画像Fの点PL1に対応する撮像素子(不図示)上の画素が、画像中心からx軸の負方向に距離bだけ離れているものとする。
 なお、画像Fの点PR1と同じ位置を示す画像Fの点PL1は、計測装置30Bが、予め定めた大きさの画素領域で画像特徴が類似する領域を探索するブロックマッチングにより求めることができる。
Here, as shown in FIG. 12 (a), the pixels on the image sensor (not shown) corresponding to the image point F designated by R P R1 shown in FIG. 11 (c) is a positive x-axis from the image center Assume that the distance a is away in the direction. The pixel on the image sensor (not shown) corresponding to the point P L1 of image F L showing the same position as the point P R1 image F R has spaced negative direction of the x-axis by a distance b from the image center Shall.
Incidentally, the point P L1 of image F L showing the same position as the point P R1 image F R, the measurement device 30B is determined by the block matching image feature in the pixel area of a predetermined size to explore the regions similar be able to.
 また、図12(b)に示すように、図11(c)の画像Fで指定された点PR1に対応する撮像素子(不図示)上の画素が、画像中心からy軸の正方向に距離cだけ離れていたとする。
 そして、このように、a,b,c,dが既知の情報であるとき、計測装置30Bは、三角測量の原理に基づいて、以下の式(1)に示すように、指定された点PR1に対応する3次元座標(x,y,z)を算出する。
Further, as shown in FIG. 12 (b), the pixels on the image sensor (not shown) corresponding to the image point F designated by R P R1 shown in FIG. 11 (c) is, the positive direction of the y-axis from the image center Is a distance c.
Thus, when a, b, c, and d are known information, the measuring device 30B, based on the principle of triangulation, as shown in the following formula (1), the designated point P The three-dimensional coordinates (x, y, z) corresponding to R1 are calculated.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 このように、計測装置30Bは、ひび割れ箇所の幅を特定する2点のうちの1点の3次元座標(x,y,z)を算出する。また、同様に、計測装置30Bは、ひび割れ箇所の幅を特定する2点のうちの他の1点(例えば、画像F上のPR2)を指定されることで、その3次元座標(x,y,z)を算出する。
 そして、計測装置30Bは、指定された2点(ここでは、PR1,PR2)の3次元座標(x,y,z)の距離を算出することで、ひび割れ箇所の幅を求める。なお、この距離は、撮像素子の画素を基準とした値であるため、実際には、撮像素子の解像度に応じて、実際の距離に変換することはいうもでもない。
Thus, the measuring device 30B calculates the three-dimensional coordinates (x, y, z) of one point out of the two points that specify the width of the cracked portion. Similarly, the measuring device 30B designates the other one point (for example, PR2 on the image FR ) of the two points that specify the width of the cracked portion, so that the three-dimensional coordinates (x , Y, z).
Then, the measuring device 30B (here, P R1, P R2) points designated 2 by calculating the distance of the three-dimensional coordinates of (x, y, z), determining the width of the crack locations. In addition, since this distance is a value based on the pixel of the image sensor, it is not necessary to actually convert it to an actual distance according to the resolution of the image sensor.
 以上説明したような方法を用いることでコンクリート構造物に穿孔した穴内部のひび割れを蛍光色で観察することができ、素早くひび割れの有無を確認することができる。
 また、この方法では、ドリル穿孔による微破壊により、ひび割れ箇所に角欠けが発生した場合でも、角欠け箇所を削り取ることができ、ひび割れ箇所を正確に穴内部の表面に露出させることができる。これによって、この手法は、コンクリート構造物の内部に発生したひび割れの大きさ、位置を正確に測定することができる。
By using the method described above, cracks inside the hole drilled in the concrete structure can be observed with a fluorescent color, and the presence or absence of cracks can be quickly confirmed.
Further, in this method, even when a corner defect is generated at a cracked part due to microfracture by drill drilling, the cornered chipped part can be scraped off, and the cracked part can be accurately exposed to the surface inside the hole. Thus, this method can accurately measure the size and position of cracks generated in the concrete structure.
 なお、ひび割れ評価後の処理については、ここでは特に限定しないが、例えば、ひび割れが存在していなければ、再度、メタクリル酸メチル樹脂やコンクリートで穴を埋めればよい。このように、この手法は微破壊検査であるため、コア試料を抽出する従来の破壊検査に比べて、コンクリート構造物の修復の時間とコストを低減させることができる。 In addition, although it does not specifically limit here about the process after a crack evaluation, For example, if a crack does not exist, what is necessary is just to fill a hole with methyl methacrylate resin or concrete again. Thus, since this method is a microdestructive inspection, the time and cost of repairing a concrete structure can be reduced compared with the conventional destructive inspection which extracts a core sample.
 また、この手法は、ひび割れ発生個所を正確に測定できるため、コンクリート構造物を修復する際に、ひび割れ発生個所までを削り、修復を行うことで、無駄なく修復作業を行うことができる。
 以上、本発明の実施形態に係るコンクリート構造物のひび割れ調査方法について説明したが、本発明は、この手順に限定されるものではない。以下、本発明の変形例について説明する。
In addition, since this method can accurately measure the location where a crack occurs, when repairing a concrete structure, it can be repaired without waste by shaving and repairing the portion where the crack occurred.
As mentioned above, although the crack investigation method of the concrete structure which concerns on embodiment of this invention was demonstrated, this invention is not limited to this procedure. Hereinafter, modifications of the present invention will be described.
[コンクリート構造物のひび割れ調査方法の変形例]
 ここでは、図1に示したステップS2の圧入工程において、蛍光染料を混入したメタクリル酸メチル樹脂を圧入することとした。しかし、この圧入工程において圧入する部材は、硬化後、特定色を有する液状部材であれば、特に限定するものではない。
[Modified example of crack investigation method for concrete structures]
Here, in the press-fitting process of step S2 shown in FIG. 1, the methyl methacrylate resin mixed with the fluorescent dye is press-fitted. However, the member to be press-fitted in this press-fitting step is not particularly limited as long as it is a liquid member having a specific color after curing.
 例えば、蛍光染料を混入したメタクリル酸メチル樹脂の代わりに、蛍光染料を混入した、他の合成樹脂(例えば、アクリル樹脂、エポキシ樹脂等)を用いても構わない。また、これらの合成樹脂は、熱硬化性樹脂であっても、熱可塑性樹脂であっても構わない。このように、液状部材として、蛍光染料を混入したアクリル樹脂、エポキシ樹脂等を用いることで、ひび割れ調査方法は、メタクリル酸メチル樹脂を用いる場合と同様、検出工程において、紫外線を照射して、第2穿孔工程で穿孔された穴の表面を撮像することで、ひび割れ箇所が蛍光色で発色した状態でひび割れを調査することができる。 For example, instead of methyl methacrylate resin mixed with fluorescent dye, other synthetic resins mixed with fluorescent dye (for example, acrylic resin, epoxy resin, etc.) may be used. These synthetic resins may be thermosetting resins or thermoplastic resins. In this way, by using an acrylic resin, an epoxy resin, or the like mixed with a fluorescent dye as the liquid member, the crack investigation method is the same as when using a methyl methacrylate resin. By imaging the surface of the hole drilled in the two drilling steps, the crack can be investigated in a state where the cracked portion is colored with a fluorescent color.
 また、蛍光染料の代わりに、調査対象のコンクリート構造物の色とは異なる特定色(例えば、赤、ピンク等)の着色剤(染料、顔料等)を合成樹脂(メタクリル酸メチル樹脂、アクリル樹脂、エポキシ樹脂等)に混入しても構わない。その場合、内視鏡の発光部として、紫外線を照射する発光部の代わりに白色光を照射する発光部を用いることで、穴内部のひび割れを特定色で撮像された箇所として観察、計測することができる。 Also, instead of fluorescent dyes, colorants (dyes, pigments, etc.) of specific colors (for example, red, pink, etc.) that are different from the color of the concrete structure under investigation are synthesized with synthetic resins (methyl methacrylate resin, acrylic resin, You may mix in an epoxy resin etc.). In that case, using a light emitting part that emits white light instead of a light emitting part that emits ultraviolet rays as the light emitting part of the endoscope, the crack inside the hole is observed and measured as a spot imaged in a specific color. Can do.
 また、圧入工程で使用する液状部材として、有機系注入材である合成樹脂(メタクリル酸メチル樹脂、アクリル樹脂、エポキシ樹脂等)を用いずに、無機系注入材である高炉スラグセメント(超微粒子高炉スラグセメントひび割れ注入材〔例えば、TSクラックフィラー〕)を用いても構わない。
 このように、液状部材として、高炉スラグセメントを用いることで、ひび割れ調査方法は、検出工程において、第2穿孔工程で穿孔された穴の表面を撮像することで、ひび割れ箇所が高炉スラグ特有の青色の状態でひび割れを調査することができる。
Also, as a liquid member used in the press-fitting process, a blast furnace slag cement (ultrafine blast furnace) that is an inorganic injection material is used without using a synthetic resin (methyl methacrylate resin, acrylic resin, epoxy resin, etc.) that is an organic injection material. Slag cement cracking injection material (for example, TS crack filler)) may be used.
In this way, by using blast furnace slag cement as the liquid member, the crack investigation method detects the crack surface in the detection process by imaging the surface of the hole drilled in the second drilling process. It is possible to investigate cracks in the state.
 この高炉スラグセメントは、高炉スラグ微粉末を混和材として用いたコンクリートである。この高炉スラグセメントは、24時間から30時間程度で硬化し青色が発現する。そのため、図1に示したステップS5~S7の検出工程(観察工程,計測工程)において、内視鏡の発光部として、紫外線を照射する発光部の代わりに白色光を照射する発光部を用いることで、穴内部のひび割れを青色で撮像された箇所として観察、計測することができる。 This blast furnace slag cement is concrete using blast furnace slag fine powder as an admixture. This blast furnace slag cement hardens in about 24 to 30 hours and develops a blue color. Therefore, in the detection process (observation process, measurement process) of steps S5 to S7 shown in FIG. 1, a light emitting unit that emits white light is used as the light emitting unit of the endoscope instead of the light emitting unit that emits ultraviolet rays. Thus, the crack inside the hole can be observed and measured as a spot imaged in blue.
 また、この高炉スラグセメントは、高炉スラグ微粉末がセメントの水和反応で生成された水酸化カルシウムと反応し、硬化体組織を緻密化している。そのため、高炉スラグセメントは、水に強く、湿潤環境、漏水環境においても使用することができる。
 これに対し、有機系注入材である合成樹脂は、水に弱いため、穴内部が乾燥環境において使用しなければならない。しかし、合成樹脂は、粘度が強いため、コンクリート構造物に対して上向きに穿孔した場合、図7で示したような封止栓22を使用しなくても、圧入工程で圧入した液状部材の液だれが発生しない。
 そのため、圧入工程で圧入する液状部材は、その穿孔方向や、穴内部の乾燥状態によって、適宜、適したものを使用すればよい。
Further, in this blast furnace slag cement, fine powder of blast furnace slag reacts with calcium hydroxide produced by cement hydration reaction, thereby densifying the hardened body structure. Therefore, the blast furnace slag cement is resistant to water and can be used in a wet environment and a leaked environment.
On the other hand, the synthetic resin, which is an organic injection material, is vulnerable to water, so the inside of the hole must be used in a dry environment. However, since the synthetic resin has a high viscosity, the liquid of the liquid member press-fitted in the press-fitting process can be used without using the sealing plug 22 as shown in FIG. No one will occur.
Therefore, the liquid member to be press-fitted in the press-fitting process may be appropriately selected depending on the perforating direction and the dry state inside the hole.
 また、ここでは、図1のステップS5~S7で示したように、検出工程として観察工程(ステップS5)を実施し、ひび割れを観測した段階で、計測工程(ステップS7)を実施することとした。
 しかし、検出工程は、必ずしも観察工程を実施する必要はなく、例えば、第2穿孔工程(ステップS4)の後、観察工程を省略して、計測工程(ステップS7)を実施することとしてもよい。
In addition, here, as shown in steps S5 to S7 in FIG. 1, the observation process (step S5) is performed as the detection process, and the measurement process (step S7) is performed at the stage where cracks are observed. .
However, it is not always necessary to perform the observation process in the detection process. For example, after the second drilling process (step S4), the observation process may be omitted and the measurement process (step S7) may be performed.
 すなわち、ひび割れ調査方法は、検出工程において、撮像装置として、側視用のステレオ画像を撮像する撮像部を先端部に備えた内視鏡を用い、ステレオ画像を画像解析することで、特定色として撮像されたひび割れの幅を計測し、内視鏡の先端部の挿入深さによってひび割れの位置を特定する計測工程のみを実施することとしてもよい。
 この手順によって、ひび割れ調査方法は、内視鏡の撮像部によって撮像されたステレオ画像からひび割れの幅を計測することができる。また、このひび割れ調査方法は、内視鏡の先端部のひび割れ箇所まで挿入された深さによって、ひび割れの位置を特定することができる。
In other words, in the crack detection method, in the detection step, an imaging device that captures a side-viewing stereo image is used as an imaging device, and the stereo image is analyzed as a specific color by analyzing the stereo image. Only the measurement process of measuring the width of the imaged crack and specifying the position of the crack by the insertion depth of the distal end portion of the endoscope may be performed.
By this procedure, the crack investigation method can measure the width of the crack from a stereo image captured by the imaging unit of the endoscope. Moreover, this crack investigation method can specify the position of a crack by the depth inserted to the crack location of the front-end | tip part of an endoscope.
 また、検出工程は、計測工程(ステップS7)を実施せずに、観察工程(ステップS5)のみを実施して、ひび割れの有無のみを調査することとしてもよい。この場合であっても、本調査方法は、角欠けがない状態で、ひび割れ状態を視認により調査することができる。 In addition, the detection process may be performed by performing only the observation process (step S5) without performing the measurement process (step S7) and examining only the presence or absence of cracks. Even in this case, the present investigation method can visually examine the cracked state in a state where there is no corner chipping.
 また、ここでは、図1のステップS5~S7で示したように、検出工程として観察工程(ステップS5)と、計測工程(ステップS7)とを順番に行うこととした。
 しかし、検出工程は、観察工程と計測工程とを同時に行うこととしてもよい。
Here, as shown in steps S5 to S7 in FIG. 1, the observation process (step S5) and the measurement process (step S7) are sequentially performed as the detection process.
However, the detection step may be performed simultaneously with the observation step and the measurement step.
 すなわち、検出工程において、撮像装置として、直視用の画像を撮像する撮像部と側視用のステレオ画像を撮像する撮像部とを先端部に備えた内視鏡を用い、画像からひび割れの有無を観察するとともに、ステレオ画像を画像解析することで、特定色として撮像されたひび割れの幅を計測し、内視鏡の先端部の挿入深さによってひび割れの位置を特定することとしてもよい。 That is, in the detection step, as an imaging device, an endoscope provided with an imaging unit that captures a direct-view image and an imaging unit that captures a side-viewing stereo image at the distal end portion is used to check for cracks from the image. While observing and analyzing the stereo image, the width of the crack captured as the specific color may be measured, and the position of the crack may be specified by the insertion depth of the distal end portion of the endoscope.
 この観察工程と計測工程とを同時に行う検出工程では、例えば、穴内部を撮像する撮像装置として、図13に示すような直視用の画像を撮像する撮像部と側視用のステレオ画像を撮像する撮像部とを先端部に備えた内視鏡40Cを用いればよい。 In the detection process in which the observation process and the measurement process are performed simultaneously, for example, as an imaging apparatus that images the inside of the hole, an imaging unit that captures a direct-view image as illustrated in FIG. 13 and a stereo image for side-view are captured. An endoscope 40C provided with an imaging unit at the tip may be used.
 図13に示すように、内視鏡40Cは、直視(前方向)用の画像を撮像する撮像部と、側視(横方向)用のステレオ画像を撮像する撮像部とが1つの光学アダプタDSvとして形成されている。 As illustrated in FIG. 13, the endoscope 40C includes an optical adapter DSv that includes an imaging unit that captures an image for direct viewing (forward direction) and an imaging unit that captures a stereo image for side viewing (lateral direction). It is formed as.
 この内視鏡40Cの光学アダプタDSvの直視用の構成(カメラC、発光部L)は、図9に示した光学アダプタDvの構成と同じであるため、説明を省略する。また、内視鏡40Cの光学アダプタDSvの側視用の構成(カメラC,C、発光部L)は、図11に示した光学アダプタSvの構成と同じであるため、説明を省略する。 The configuration for direct viewing of the optical adapter DSv (camera C, light emitting unit L) of the endoscope 40C is the same as the configuration of the optical adapter Dv shown in FIG. Further, the configuration for side viewing of the optical adapter DSv (camera C L , C R , light emitting unit L) of the endoscope 40C is the same as the configuration of the optical adapter Sv shown in FIG. .
 この内視鏡40Cが撮像する画像として、カメラCで撮像された画像と、カメラC,Cで撮像されたステレオ画像とが、図示を省略した計測装置の画面上に表示される。なお、カメラCで撮像される画像は、図9(c)で説明したものと同様の画像である。また、カメラC,Cで撮像されるステレオ画像は、図11(c)で説明したものと同様の画像である。
 すなわち、計測装置(不図示)は、直視用の画像と側視用のステレオ画像とを、それぞれ画面上で区分された領域に表示する。もちろん、それぞれの画像を切り替えて全画面に直視用の画像または側視用のステレオ画像を表示することとしてもよい。
As an image the endoscope 40C is captured, the image captured by the camera C, the camera C L, and the stereo image captured by C R, is displayed on the screen of the not shown measuring device. Note that the image captured by the camera C is the same image as that described with reference to FIG. In addition, the stereo image captured by the cameras C L and CR is the same image as that described with reference to FIG.
That is, a measuring device (not shown) displays a direct-view image and a side-view stereo image in respective areas that are divided on the screen. Of course, each image may be switched to display a direct-view image or a side-view stereo image on the entire screen.
 このように、内視鏡40Cの先端部に、直視(前方向)用の画像を撮像する撮像部と、側視(横方向)用のステレオ画像を撮像する撮像部とを備えた光学アダプタDSvを用いることで、検出工程では、作業者が、直視用の画像を視認することで、素早くひび割れ箇所を探索する。そして、ひび割れ箇所を見つけた段階で、作業者が、側視用のステレオ画像において、ひび割れを特定する2点を指定することで、計測装置(不図示)が、2点間の距離、すなわち、ひび割れの大きさ(幅)を算出して、画面上にその値を表示する。
 なお、このとき、作業者は、内視鏡40Cの先端部を挿入する深さを計測しておくことで、ひび割れの位置(深さ)を特定することができる。
As described above, the optical adapter DSv including the imaging unit that captures an image for direct viewing (forward direction) and the imaging unit that captures a stereo image for side viewing (lateral direction) at the distal end portion of the endoscope 40C. By using this, in the detection step, the operator searches for a cracked portion quickly by visually recognizing an image for direct viewing. And in the stage which found the crack location, an operator designates two points which identify a crack in the stereo image for side view, and a measuring device (not shown) is the distance between two points, ie, The size (width) of the crack is calculated and the value is displayed on the screen.
At this time, the operator can specify the position (depth) of the crack by measuring the depth at which the distal end portion of the endoscope 40C is inserted.
 このひび割れ調査方法によれば、コンクリート構造物内部のひび割れを、調査対象のコンクリート構造物とは異なる色で視覚的に素早く発見(観察)することができるとともに、コンクリート構造物内部のひび割れの幅を、ステレオ画像から、正確に測定することができる。 According to this cracking investigation method, it is possible to quickly find (observe) a crack inside a concrete structure with a color different from that of the concrete structure under investigation, and to reduce the width of the crack inside the concrete structure. From a stereo image, it can be measured accurately.
 また、ツール装着部18Aとして、例えば、図14で示すように、ホルダ部18bの位置が支柱12に対して垂直直線的に移動できるように構成しても構わない。つまり、ツール装着部18Aは、ホルダ部18bと摺動部18aとを伸縮アーム18eによって位置調整できるように構成しても構わない。伸縮アーム18eは、例えば、保持機構として、第1のホルダ部18bおよび第2のホルダ部18fを有しており、図示しないねじにより所定の位置で固定できるように構成されている。なお、伸縮アーム18eは、伸長した状態で第2のホルダ部18fに装着した内視鏡40が第1のホルダ部18bに装着して穿孔した穴中心軸に位置するように予め設定されることで位置合わせが容易となる。したがって、ツール装着部18Aは、第1のホルダ部18bに穿孔機13を前記したようにツール固定具19を介して装着し、かつ、第2のホルダ部18fにより内視鏡40を装着して2つのツールを同時に保持する状態とする。そして、ツール装着部18Aは穿孔機13で穿孔した後に、伸縮アーム18eを穿孔方向とは直交する方向に延ばすことで、内視鏡40を直ぐに穿孔した穴中心軸に配置することが可能となり手順をスムーズに行うことが可能となる。なお、図14では、第1のホルダ部18bと第2のホルダ部18fとを保持機構として説明したが、さらに、第3のホルダ部(図示せず)を備える構成、例えば、円周上にホルダ部を複数有するシリンダ状の構成(保持機構)としても構わない。 Further, as the tool mounting portion 18A, for example, as shown in FIG. 14, the position of the holder portion 18b may be configured to move vertically with respect to the support column 12. That is, the tool mounting portion 18A may be configured such that the position of the holder portion 18b and the sliding portion 18a can be adjusted by the extendable arm 18e. The telescopic arm 18e has, for example, a first holder part 18b and a second holder part 18f as a holding mechanism, and is configured to be fixed at a predetermined position by screws (not shown). The telescopic arm 18e is set in advance so that the endoscope 40 attached to the second holder portion 18f in the extended state is positioned on the center axis of the hole attached to the first holder portion 18b and perforated. This makes positioning easy. Therefore, the tool mounting portion 18A mounts the drilling machine 13 on the first holder portion 18b via the tool fixture 19 as described above, and mounts the endoscope 40 on the second holder portion 18f. The two tools are held at the same time. Then, after the tool mounting portion 18A is punched by the punching machine 13, the telescopic arm 18e is extended in a direction perpendicular to the drilling direction, so that the endoscope 40 can be placed on the center axis of the hole immediately drilled. Can be performed smoothly. In FIG. 14, the first holder portion 18 b and the second holder portion 18 f have been described as holding mechanisms. However, the configuration further includes a third holder portion (not shown), for example, on the circumference. A cylindrical configuration (holding mechanism) having a plurality of holder portions may be used.
 さらに、ツール装着部18には、外形寸法が同じであるツール固定具19,29,49を介して装着するように説明したが、例えば、注射器20の外形寸法を基準として、直接、ホルダ部18bに装着できる構成とし、穿孔機13および内視鏡40を、ツール固定具19,49を介してホルダ部18bに装着できるようにしてもよい。また、注射器20および内視鏡40の使用時において、正確な位置合わせ作業が必要ない場合には、穿孔機13を支柱12の後部側に移動させて作業スペースを確保して圧入工程(S2,S3)および検査工程(S5、S6)を行うようにしても構わない。 Furthermore, although it has been described that the tool mounting portion 18 is mounted via the tool fixtures 19, 29, and 49 having the same outer dimensions, for example, the holder portion 18b directly on the basis of the outer dimensions of the syringe 20. The perforator 13 and the endoscope 40 may be attached to the holder portion 18b via the tool fixtures 19 and 49. Further, when the positioning operation is not necessary when the syringe 20 and the endoscope 40 are used, the punching machine 13 is moved to the rear side of the support column 12 to secure a working space and press-fitting step (S2, S2). You may make it perform S3) and an inspection process (S5, S6).
 S   ひび割れ調査システム
 SA  ひび割れ調査方法
 S1  第1穿孔工程
 S2,S3 圧入工程
 S4  第2穿孔工程
 S5,S6 検出工程(観察工程)
 S7  検出工程(計測工程)
 Co  コンクリート構造物
 10  基台
 11  バキュームポンプ
 12  支柱
 13  穿孔機
 14  芯出し棒
 15  直角用治具
 16  小口径ビット(ダイヤモンドビット)
 17  ロッド
 18  ツール装着部
 19  ツール固定具(挿入補助具)
 20  注射器(圧入装置)
 21  針
 22  封止栓
 29  ツール固定具(挿入補助具)
 30  表示装置
 30B 計測装置
 40,40B,40C 内視鏡
 49  ツール固定具(挿入補助具)
 C,C,C カメラ
 L   発光部
 Dv  光学アダプタ(直視用)
 Sv  光学アダプタ(側視用)
 DSv 光学アダプタ(直視・側視用)
S crack investigation system SA crack investigation method S1 first drilling process S2, S3 press-fitting process S4 second drilling process S5, S6 detection process (observation process)
S7 Detection process (measurement process)
Co Concrete Structure 10 Base 11 Vacuum Pump 12 Strut 13 Punching Machine 14 Centering Rod 15 Right Angle Jig 16 Small Diameter Bit (Diamond Bit)
17 Rod 18 Tool mounting part 19 Tool fixing tool (insertion aid)
20 Syringe (press-fit device)
21 Needle 22 Seal plug 29 Tool fixture (insertion aid)
30 Display device 30B Measuring device 40, 40B, 40C Endoscope 49 Tool fixture (insertion aid)
C, C L , C R camera L Light emitting part Dv Optical adapter (For direct viewing)
Sv optical adapter (for side view)
DSv optical adapter (for direct / side view)

Claims (11)

  1.  コンクリート構造物のひび割れを調査するひび割れ調査方法であって、
     穿孔機により、予め定めた穴径で前記コンクリート構造物に調査対象の深さの穴を穿孔する第1穿孔工程と、
     この第1穿孔工程で穿孔された穴に、硬化時において特定色を有する液状部材を圧入する圧入工程と、
     前記圧入工程で前記液状部材が圧入された穴に対して、前記液状部材の硬化後、前記穴径よりも大きい穴径で前記調査対象の深さの穴を穿孔する第2穿孔工程と、
     この第2穿孔工程で穿孔された穴に、撮像装置を挿入し、前記特定色を検出することで前記ひび割れを検出する検出工程と、
    を含むことを特徴とするコンクリート構造物のひび割れ調査方法。
    A crack investigation method for investigating cracks in a concrete structure,
    A first drilling step of drilling a hole having a depth to be investigated in the concrete structure with a predetermined hole diameter by a drilling machine;
    A press-fitting step of press-fitting a liquid member having a specific color at the time of curing into the hole drilled in the first perforation step;
    A second drilling step of drilling a hole of the depth to be investigated with a hole diameter larger than the hole diameter after the liquid member is hardened with respect to the hole into which the liquid member is press-fitted in the press-fitting step;
    A detection step of detecting the crack by inserting an imaging device into the hole drilled in the second drilling step and detecting the specific color;
    A method for investigating cracks in a concrete structure characterized by comprising:
  2.  前記液状部材は、前記特定色の着色剤を混入した合成樹脂であることを特徴とする請求項1に記載のコンクリート構造物のひび割れ調査方法。 The method for investigating cracks in a concrete structure according to claim 1, wherein the liquid member is a synthetic resin mixed with the colorant of the specific color.
  3.  前記液状部材は、高炉スラグセメントであることを特徴とする請求項1に記載のコンクリート構造物のひび割れ調査方法。 The method for investigating cracks in a concrete structure according to claim 1, wherein the liquid member is blast furnace slag cement.
  4.  前記検出工程は、前記撮像装置として、側視用のステレオ画像を撮像する撮像部を先端部に備えた内視鏡を用い、前記ステレオ画像を画像解析することで、前記特定色として撮像されたひび割れの幅を計測し、前記内視鏡の先端部の挿入深さによってひび割れの位置を特定する計測工程を含むことを特徴とする請求項1から請求項3のいずれか一項に記載のコンクリート構造物のひび割れ調査方法。 In the detection step, as the imaging device, an endoscope having an imaging unit that captures a stereo image for side view is provided at a distal end portion, and the stereo image is imaged and imaged as the specific color. The concrete according to any one of claims 1 to 3, further comprising a measuring step of measuring a width of a crack and specifying a position of the crack based on an insertion depth of a distal end portion of the endoscope. Method for investigating cracks in structures.
  5.  前記検出工程は、前記撮像装置として、直視用の画像を撮像する撮像部を先端に備えた内視鏡を用い、前記計測工程の前に、前記画像から前記ひび割れの有無を観察する観察工程を含むことを特徴とする請求項4に記載のコンクリート構造物のひび割れ調査方法。 The detection step includes an observation step of observing the presence or absence of the crack from the image before the measurement step, using an endoscope provided with an image pickup unit for picking up a direct-view image as the imaging device. The method for investigating cracks in a concrete structure according to claim 4, comprising:
  6.  前記検出工程は、前記撮像装置として、直視用の画像を撮像する撮像部を先端に備えた内視鏡を用い、前記画像から前記ひび割れの有無を観察するとともに、当該内視鏡の先端部の挿入深さによってひび割れの位置を特定する観察工程と、
     前記撮像装置として、側視用のステレオ画像を撮像する撮像部を先端部に備えた内視鏡を用い、前記観察工程で特定されたひび割れの位置まで当該内視鏡を挿入し、前記ステレオ画像を画像解析することで、前記特定色として撮像されたひび割れの幅を計測する計測工程と、
    を含むことを特徴とする請求項1から請求項3のいずれか一項に記載のコンクリート構造物のひび割れ調査方法。
    In the detection step, as the imaging device, an endoscope including an imaging unit that captures an image for direct viewing is provided at the tip, and the presence or absence of the crack is observed from the image, and the tip of the endoscope is An observation process for identifying the position of the crack according to the insertion depth;
    As the imaging device, an endoscope having an imaging unit for capturing a side-viewing stereo image at a distal end portion is inserted, and the endoscope is inserted up to a crack position specified in the observation step, and the stereo image By measuring the width of the crack imaged as the specific color,
    The method for investigating cracks in a concrete structure according to any one of claims 1 to 3, characterized by comprising:
  7.  前記検出工程は、前記撮像装置として、直視用の画像を撮像する撮像部と側視用のステレオ画像を撮像する撮像部とを先端部に備えた内視鏡を用い、前記画像から前記ひび割れの有無を観察するとともに、前記ステレオ画像を画像解析することで、前記特定色として撮像されたひび割れの幅を計測し、前記内視鏡の先端部の挿入深さによってひび割れの位置を特定することを特徴とする請求項1から請求項3のいずれか一項に記載のコンクリート構造物のひび割れ調査方法。 The detection step uses, as the imaging device, an endoscope having an imaging unit that captures a direct-view image and an imaging unit that captures a side-viewing stereo image at a distal end, and the crack is detected from the image. Observing the presence / absence and analyzing the stereo image to measure the width of the crack imaged as the specific color and identifying the position of the crack by the insertion depth of the tip of the endoscope The method for investigating cracks in a concrete structure according to any one of claims 1 to 3, wherein the crack is investigated.
  8.  コンクリート構造物のひび割れを調査するひび割れ調査システムであって、
     前記コンクリート構造物に設置した穿孔方向にガイドを設けた支柱に沿って、穴径の異なるビットを交換して、同一の中心軸の穴を穿孔する穿孔機と、
     前記穿孔機で最初に穿孔された穴に対して、硬化時において特定色を有する液状部材を圧入する圧入装置と、
     前記穿孔機で最初に穿孔された穴よりも大きい穴径で穿孔された穴に挿入し、穴内部を撮像する撮像装置と、
    を備えることを特徴とするコンクリート構造物のひび割れ調査システム。
    A crack investigation system for investigating cracks in a concrete structure,
    A perforator that perforates holes of the same central axis by exchanging bits having different hole diameters along a pillar provided with a guide in a perforation direction installed in the concrete structure;
    A press-fitting device for press-fitting a liquid member having a specific color at the time of curing into a hole first perforated by the perforator;
    An imaging device that inserts into a hole drilled with a hole diameter larger than the hole first drilled by the drilling machine, and images the inside of the hole;
    A crack investigation system for concrete structures characterized by comprising:
  9.  前記穿孔機、前記圧入装置および前記撮像装置を前記中心軸に位置決めし、かつ、前記穿孔機、前記圧入装置および前記撮像装置の少なくとも1つを着脱自在に保持するためのツール装着部をさらに備えることを特徴とする請求項8に記載のコンクリート構造物のひび割れ調査システム。 It further includes a tool mounting portion for positioning the punching machine, the press-fitting device and the imaging device on the central axis and detachably holding at least one of the punching machine, the press-fitting device and the imaging device. The crack investigation system for a concrete structure according to claim 8.
  10.  前記ツール装着部は、前記穿孔機、前記圧入装置および前記撮像装置の短手方向の外径よりも大きい内径を有し、前記穿孔機、前記圧入装置および前記撮像装置の少なくともいずれか1つを、前記短手方向の外径と前記内径との間を埋める挿入補助具を介して装着することを特徴とする請求項9に記載のコンクリート構造物のひび割れ調査システム。 The tool mounting portion has an inner diameter that is larger than an outer diameter in a short direction of the punching machine, the press-fitting device, and the imaging device, and at least one of the punching machine, the press-fitting device, and the imaging device is provided. The crack inspection system for a concrete structure according to claim 9, wherein the crack is investigated through an insertion aid that fills a gap between the outer diameter and the inner diameter in the short direction.
  11.  前記ツール装着部は、前記穿孔機、前記圧入装置および前記撮像装置の少なくともいずれか2つを中心軸に対して直交する方向に同時に保持するための保持機構を備え、前記保持機構は、前記中心軸に対して直交する方向に移動可能であることを特徴とする請求項9に記載のコンクリート構造物のひび割れ調査システム。 The tool mounting portion includes a holding mechanism for simultaneously holding at least any two of the drilling machine, the press-fitting device, and the imaging device in a direction orthogonal to a central axis, and the holding mechanism is The system for investigating cracks in a concrete structure according to claim 9, wherein the system is capable of moving in a direction perpendicular to the axis.
PCT/JP2014/068250 2014-07-09 2014-07-09 Concrete structure crack survey method and crack survey system WO2016006049A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016532829A JP6348980B2 (en) 2014-07-09 2014-07-09 Method and system for investigating cracks in concrete structures
PCT/JP2014/068250 WO2016006049A1 (en) 2014-07-09 2014-07-09 Concrete structure crack survey method and crack survey system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/068250 WO2016006049A1 (en) 2014-07-09 2014-07-09 Concrete structure crack survey method and crack survey system

Publications (1)

Publication Number Publication Date
WO2016006049A1 true WO2016006049A1 (en) 2016-01-14

Family

ID=55063724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068250 WO2016006049A1 (en) 2014-07-09 2014-07-09 Concrete structure crack survey method and crack survey system

Country Status (2)

Country Link
JP (1) JP6348980B2 (en)
WO (1) WO2016006049A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6308541B1 (en) * 2017-07-03 2018-04-11 中日本ハイウェイ・エンジニアリング東京株式会社 How to collect columnar samples of concrete structural members
JP2018119865A (en) * 2017-01-25 2018-08-02 オリンパス株式会社 Light measurement device
CN108828071A (en) * 2018-07-05 2018-11-16 江苏德意高航空智能装备股份有限公司 Coloring and the dual-purpose flaw detection imaging paper handkerchief of fluorescence and paper handkerchief imaging application
CN109900604A (en) * 2019-02-18 2019-06-18 中国建筑材料科学研究总院有限公司 A method of concrete stability is evaluated by image analysis
CN114397311A (en) * 2022-02-07 2022-04-26 浙江致远工程管理有限公司 Cement pipe gap detection device
KR20220129925A (en) * 2021-03-17 2022-09-26 에스폼 주식회사 Safety inspecting apparatus of anker assembly and safety inspecting method of anker assembly
JP7244967B1 (en) 2022-06-01 2023-03-23 株式会社西部システム How to remove the existing joint device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06109723A (en) * 1992-09-25 1994-04-22 Takashi Nishiyama Analyzing method for structure of base rock, concrete and the like
JPH0829413A (en) * 1994-07-20 1996-02-02 Ohbayashi Corp Inside inspecting method for concrete structure
JPH1114914A (en) * 1997-06-18 1999-01-22 Koa:Kk Hole wall surface parallactic image display device
JP2001041903A (en) * 1999-07-28 2001-02-16 Ems Japan Kk Method and apparatus for inspecting civil engineering works, structure and geology
JP2001227925A (en) * 2000-02-15 2001-08-24 Nishimatsu Constr Co Ltd Method for inspecting concrete and measuring jig for use therein
JP2001255322A (en) * 2000-03-10 2001-09-21 Public Works Research Institute Ministry Of Land Infrastructure & Transport Method for investigating cured concrete
JP2006162439A (en) * 2004-12-07 2006-06-22 Saga Univ Apparatus for inspecting inside of concrete structure
JP2009145237A (en) * 2007-12-14 2009-07-02 Kajima Corp Method and device for detecting thermal degradation range of concrete structure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7187784B2 (en) * 1998-09-30 2007-03-06 Florida State University Research Foundation, Inc. Borescope for drilled shaft inspection
JP3932337B2 (en) * 2001-12-21 2007-06-20 黒瀬 愛子 Repair method for injecting injection material
JP4388864B2 (en) * 2004-07-07 2009-12-24 ビルドメンテック株式会社 Cleaning method and perforation device in perforation
JP4887405B2 (en) * 2009-06-25 2012-02-29 伊藤 寿一 Hole wall inspection apparatus and concrete structure inspection method
JP2011256641A (en) * 2010-06-10 2011-12-22 Fs Technical Corp Wall body diagnosis method and wall body diagnosis report

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06109723A (en) * 1992-09-25 1994-04-22 Takashi Nishiyama Analyzing method for structure of base rock, concrete and the like
JPH0829413A (en) * 1994-07-20 1996-02-02 Ohbayashi Corp Inside inspecting method for concrete structure
JPH1114914A (en) * 1997-06-18 1999-01-22 Koa:Kk Hole wall surface parallactic image display device
JP2001041903A (en) * 1999-07-28 2001-02-16 Ems Japan Kk Method and apparatus for inspecting civil engineering works, structure and geology
JP2001227925A (en) * 2000-02-15 2001-08-24 Nishimatsu Constr Co Ltd Method for inspecting concrete and measuring jig for use therein
JP2001255322A (en) * 2000-03-10 2001-09-21 Public Works Research Institute Ministry Of Land Infrastructure & Transport Method for investigating cured concrete
JP2006162439A (en) * 2004-12-07 2006-06-22 Saga Univ Apparatus for inspecting inside of concrete structure
JP2009145237A (en) * 2007-12-14 2009-07-02 Kajima Corp Method and device for detecting thermal degradation range of concrete structure

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018119865A (en) * 2017-01-25 2018-08-02 オリンパス株式会社 Light measurement device
WO2018139512A1 (en) * 2017-01-25 2018-08-02 オリンパス株式会社 Optical measurement device
JP6308541B1 (en) * 2017-07-03 2018-04-11 中日本ハイウェイ・エンジニアリング東京株式会社 How to collect columnar samples of concrete structural members
JP2019012052A (en) * 2017-07-03 2019-01-24 中日本ハイウェイ・エンジニアリング東京株式会社 Columnar sample collection method of concrete structure member
CN108828071A (en) * 2018-07-05 2018-11-16 江苏德意高航空智能装备股份有限公司 Coloring and the dual-purpose flaw detection imaging paper handkerchief of fluorescence and paper handkerchief imaging application
CN109900604A (en) * 2019-02-18 2019-06-18 中国建筑材料科学研究总院有限公司 A method of concrete stability is evaluated by image analysis
CN109900604B (en) * 2019-02-18 2021-08-27 中国建筑材料科学研究总院有限公司 Method for evaluating concrete stability through image analysis
KR20220129925A (en) * 2021-03-17 2022-09-26 에스폼 주식회사 Safety inspecting apparatus of anker assembly and safety inspecting method of anker assembly
KR102578181B1 (en) * 2021-03-17 2023-09-14 삼목에스폼 주식회사 Safety inspecting apparatus of anker assembly and safety inspecting method of anker assembly
CN114397311A (en) * 2022-02-07 2022-04-26 浙江致远工程管理有限公司 Cement pipe gap detection device
JP7244967B1 (en) 2022-06-01 2023-03-23 株式会社西部システム How to remove the existing joint device
JP2023176944A (en) * 2022-06-01 2023-12-13 株式会社西部システム Method of removing existing joint device

Also Published As

Publication number Publication date
JP6348980B2 (en) 2018-06-27
JPWO2016006049A1 (en) 2017-05-25

Similar Documents

Publication Publication Date Title
JP6348980B2 (en) Method and system for investigating cracks in concrete structures
CA2565254C (en) Apparatus for inspecting anchor boreholes
MXPA06002271A (en) An apparatus and a method of visulazing target objects in a fluid-carrying pipe.
CN108562593A (en) The plumpness method of inspection of reinforced bar sleeve grouting material
JP6633454B2 (en) How to detect deformed parts
JP5622075B2 (en) Inspection method
KR101163206B1 (en) Scanning Apparatus for Drilling Holes Using Image Sensors and Razer Sensors
JP5172509B2 (en) Method for evaluating cracks in rock mass using grouting material
CN110593840B (en) Hydraulic fracturing method ground stress test system director
AU2003212762B2 (en) Method of localizing a hole drilling with a rock drilling machine
JP2020016667A (en) Inspection device for deformed part
JP2001227925A (en) Method for inspecting concrete and measuring jig for use therein
JPH07117532B2 (en) Method to analyze the structure of bedrock, concrete, etc.
JP7165396B2 (en) Measurement scale used for concrete neutralization test and method for measuring neutralization depth
CN110514663A (en) A kind of detection method of concrete column component top concrete defect
JP2852559B2 (en) Investigation method for ground structure of paved road
CN2550756Y (en) Observation instrument for steel bar in hole
CN112727442B (en) Coiled tubing visual well repair operation tubular column and method
KR101373198B1 (en) Apparatus and system for borehole viewer
JP2011256641A (en) Wall body diagnosis method and wall body diagnosis report
CN107976448A (en) A kind of active panoramic vision sensor
Watanabe et al. Review of optical inspection methods and results
JP2001041903A (en) Method and apparatus for inspecting civil engineering works, structure and geology
KR101997758B1 (en) Hollow Tube Detection System
JP2020112844A (en) Image processing apparatus and measurement apparatus of space inner surface shape using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14897123

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016532829

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14897123

Country of ref document: EP

Kind code of ref document: A1