WO2016004650A1 - 可调节式液晶狭缝光栅、立体显示装置及其调整方法 - Google Patents

可调节式液晶狭缝光栅、立体显示装置及其调整方法 Download PDF

Info

Publication number
WO2016004650A1
WO2016004650A1 PCT/CN2014/082707 CN2014082707W WO2016004650A1 WO 2016004650 A1 WO2016004650 A1 WO 2016004650A1 CN 2014082707 W CN2014082707 W CN 2014082707W WO 2016004650 A1 WO2016004650 A1 WO 2016004650A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving
electrodes
lead
liquid crystal
layer
Prior art date
Application number
PCT/CN2014/082707
Other languages
English (en)
French (fr)
Inventor
刘美鸿
张涛
Original Assignee
深圳市亿思达科技集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市亿思达科技集团有限公司 filed Critical 深圳市亿思达科技集团有限公司
Publication of WO2016004650A1 publication Critical patent/WO2016004650A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection

Definitions

  • the present invention relates to the field of stereoscopic display, and in particular, to an adjustable liquid crystal slit grating and a stereoscopic display device using the liquid crystal slit grating and an adjustment method thereof.
  • a stereoscopic display device needs to wear stereo glasses when viewing, so that viewers who wear glasses (such as glasses, reading glasses, etc.) originally need to overlap the two pairs of glasses in order to obtain a clear viewing effect, so that the stereoscopic display is performed. It is inconvenient to watch. Furthermore, since the width between the two temples of the stereoscopic glasses is generally fixed, this may make viewers of different face types unable to obtain a better experience when wearing the stereoscopic glasses. Therefore, the naked-eye stereoscopic display technology that does not need to wear stereoscopic glasses is more and more concerned.
  • liquid crystal materials are widely used in various fields.
  • the liquid crystal slit grating has a wide range of applications.
  • One typical application is a stereoscopic (3D) display application.
  • the liquid crystal slit grating cooperates with the display device to guide the parallax screen displayed by the display device to the left and right eyes of the user respectively, thereby forming a stereoscopic vision for the user. .
  • it can also realize the switching function of the plane/stereo (2D/3D) picture, which is convenient for the user to use.
  • liquid crystal slit grating due to the complexity of the stereoscopic display, a precise fit between the liquid crystal slit grating and the display panel is required.
  • the general liquid crystal slit grating is attached to the display surface of the display panel.
  • Liquid crystal slit gratings often fail to fit precisely on the display panel according to design requirements, resulting in deviations in the separation of stereo images, resulting in ghosting, unsatisfactory stereoscopic effects, or even the inability to produce stereoscopic images, which greatly limits stereoscopicity.
  • the displayed application reduces the viewer's stereoscopic experience.
  • the present invention provides a liquid crystal slit grating comprising a first polarizing plate, a first substrate, a driving electrode structure, a first alignment layer, a liquid crystal layer, a second alignment layer, a common electrode structure, a second substrate, and a first layer.
  • the driving electrode structure comprising a driving electrode layer and a wiring layer, the driving electrode layer comprising a plurality of strip-shaped driving electrodes arranged in parallel, the plurality of driving electrodes being divided into a plurality of driving electrode groups, each driving The electrode group includes N driving electrodes, and the lead layer includes N lead electrodes, and N driving electrodes in each driving electrode group are electrically connected to the N lead electrodes in a one-to-one correspondence, and the driving electrodes are connected through corresponding connections.
  • the lead electrode obtains a drive signal.
  • the drive electrodes connected to the same lead electrode in the different drive electrode groups are in the same position in each set of drive electrode groups.
  • the lead layer further includes a lead terminal disposed at an end of the lead electrode, the lead terminal being used to connect an external circuit.
  • a portion of the lead electrode is in an open state such that the drive electrode coupled thereto is electrically disconnected from the external circuit.
  • the present invention also provides a stereoscopic display device including a display panel and a liquid crystal slit grating disposed on a display surface side of the display panel, the liquid crystal slit grating being used to display the display panel
  • the displayed parallax image light is guided to a predetermined field of view spatial position, thereby realizing stereoscopic display, wherein the liquid crystal slit grating comprises a first polarizing plate, a first substrate, a driving electrode structure, and a first layer which are sequentially stacked.
  • the drive electrodes connected to the same lead electrode in the different drive electrode groups are in the same position in each set of drive electrode groups.
  • the lead layer further includes a lead terminal disposed at an end of the lead electrode, the lead terminal being used to connect an external circuit.
  • a portion of the lead electrode is in an open state such that the drive electrode coupled thereto is electrically disconnected from the external circuit.
  • the stereoscopic display device further includes a user tracking device for tracking a position of the user relative to the display panel, and a controller obtained according to the user tracking device
  • the position information of the user respectively adjusts the optical characteristics of the liquid crystal slit grating and the display characteristics of the display panel to provide a stereoscopic display for the user at the position.
  • the present invention also provides a method for adjusting a stereoscopic display device, the stereoscopic display device comprising a display panel and a liquid crystal slit grating, the liquid crystal slit grating being disposed on a side of a display surface of the display panel, the liquid crystal slit And a grating for guiding the displayed parallax image light of the display panel to a predetermined field of view spatial position, the liquid crystal slit grating comprising a first polarizing plate sequentially disposed, a first substrate, a driving electrode structure, and a first alignment a layer, a liquid crystal layer, a second alignment layer, a common electrode structure, a second substrate, and a second polarizing plate, the driving electrode structure including a driving electrode layer and a wiring layer, the driving electrode layer including a plurality of strips arranged in parallel a driving electrode, the plurality of driving electrodes being divided into a plurality of driving electrode groups, each driving electrode group including N driving electrodes, the wiring layer comprising
  • the present invention also provides a liquid crystal slit grating comprising a first polarizing plate, a first substrate, a driving electrode structure, a first alignment layer, a liquid crystal layer, a second alignment layer, a common electrode structure, a second substrate, and a laminated layer.
  • the driving electrode structure comprising a driving electrode layer and a wiring layer, the driving electrode layer comprising a plurality of strip-shaped driving electrodes arranged in parallel, the plurality of driving electrodes being divided into a plurality of driving electrode groups, each The driving electrode group includes N driving electrodes, and the wiring layer includes M first lead electrodes and N lead electrodes, wherein M is greater than N, and N driving electrodes in each driving electrode group respectively pass N first
  • the lead electrode is electrically connected in one-to-one correspondence with the N second lead electrodes, and the drive electrode obtains a driving signal through the correspondingly connected lead electrodes.
  • the adjustment deviation of the liquid crystal slit grating from the display panel is determined by adopting a method of aligning marks or adopting a test screen.
  • the driving electrode is divided into a plurality of driving electrode groups, and the driving electrodes of the same position in different driving electrode groups are connected to the same lead.
  • the distribution of the driving voltage of the driving electrode can be adjusted by the lead electrode to form a dynamically adjustable liquid crystal slit grating to adapt to different stereoscopic display requirements, and the driving method is relatively.
  • the test screen can be displayed through the display panel, and the deviation of the liquid crystal slit grating and the display panel is calculated, thereby interrupting
  • the alignment deviation is adjusted or the liquid crystal slit grating is fixed to meet the bonding requirements, and the stereoscopic display device has a strong ability to adjust the bonding deviation.
  • the adjustment method of the stereoscopic display device of the present invention has low requirements on the fitting precision of the product.
  • the initial state of each liquid crystal slit grating is adjusted by the breaking treatment of the first lead electrode, so that the driving is performed.
  • the end does not need to consider the misalignment between different liquid crystal slit gratings, adopts a unified driving method to meet the needs of stereoscopic display, improves production efficiency, and reduces the adjustment of the stereoscopic display by the user, which is convenient for the user to use.
  • the driving electrodes are connected to the external driving circuit through the second lead electrode, and by setting different driving modes, the light shielding region and the light transmittance having different positions and widths can be formed.
  • the area is advantageous for improving the stereoscopic display effect, and the driving method thereof is as described above, and will not be described herein.
  • the user tracking device monitors the position of the user relative to the display panel, and the controller separately adjusts the optical characteristics of the liquid crystal slit grating and the display characteristics of the display panel according to the position information of the user obtained by the user tracking device. Thereby, the display of the stereoscopic image can be corrected for the user at the location, so that the user at the location can obtain the best stereoscopic experience.
  • FIG. 1 is a schematic view showing the structure of a first embodiment of a stereoscopic display device of the present invention.
  • FIG. 2 is a schematic view showing a stereoscopic display of the stereoscopic display device shown in FIG. 1 at another angle.
  • FIG. 3 is a cross-sectional structural view showing a liquid crystal slit grating of the stereoscopic display device shown in FIG. 1.
  • FIG. 4 is a schematic plan view showing the structure of a driving electrode of the liquid crystal slit grating shown in FIG. 3.
  • Fig. 5 is a plan view showing the planar structure of a common electrode of the liquid crystal slit grating shown in Fig. 2.
  • Fig. 6 is a schematic view showing the principle of forming a slit by the liquid crystal slit grating shown in Fig. 3.
  • Fig. 7 is a schematic view showing the principle of forming another slit by the liquid crystal slit grating shown in Fig. 3.
  • FIG. 8 is a plan view showing the structure of the drive electrode structure of the liquid crystal slit grating shown in FIG.
  • Fig. 9 is a schematic view showing the principle of forming a slit by the liquid crystal slit grating shown in Fig. 8.
  • Figure 10 is a schematic view showing the structure of a stereoscopic display device of the present invention.
  • FIG. 1 is a schematic structural view of a first embodiment of a stereoscopic display device of the present invention.
  • the stereoscopic display device 100 provides a parallax display screen to a specific field of view direction, which includes a liquid crystal slit grating 102 and a display panel 101.
  • the display panel 101 is a flat display device, and generally includes a pixel unit having a matrix structure for generating a left eye image L and a right eye image R having parallax of the same scene, wherein the left eye image L and the right eye image R may be strips respectively
  • the image images are displayed alternately on the display panel 101 in the horizontal direction.
  • the display panel 101 may be a liquid crystal display panel, a plasma display panel, an organic light emitting display panel, or the like, and is not limited herein. In the present embodiment, a liquid crystal display panel will be described.
  • the liquid crystal slit grating 102 is disposed on the display surface of the display panel 101 to guide the parallax image light emitted from the display panel 101 to a predetermined field of view spatial position, thereby realizing stereoscopic display.
  • the light of the left-eye image L displayed by the display panel 101 is propagated into the left eye L of the observer in the space, similarly, right.
  • the light of the eye image R is propagated into the right eye R of the observer in the space, and the left and right eyes of the observer respectively receive the left eye image L and the right eye image R having the parallax, thereby forming stereoscopic vision in the human brain.
  • the viewer moves a certain distance relative to the stereoscopic display device 100, for example, at the first moment, the viewer is in the position shown in FIG. 1, and at the second moment, the viewer moves a certain distance relative to the display device 100 to the right, as shown in FIG. 2.
  • the controllable slit grating 102 holds the light-transmitting area and the light-shielding area shown in FIG. 1, the left and right eyes will not be able to see the corresponding left-eye image L and right-eye image R, causing visual confusion and stereoscopic vision cannot be formed.
  • the position shown in FIG. 2 is adjusted, that is, the light-transmitting region of the controllable slit grating 101 is positioned to the right side thereof with respect to the display panel 101. mobile. This makes it possible for the left eye of the viewer of the current position to still see only the left eye image L displayed on the display panel 101 through the light transmitting area, while the right eye can only see the right eye image R displayed on the display panel 101.
  • the position of the viewer ie, the position of the eye
  • the position of the light-shielding region and the light-transmitting region of the controllable slit grating 102 is changed correspondingly, and the left eye image L having the parallax can be ensured by the viewer left and right eyes.
  • the right eye image R maintaining a good stereoscopic vision.
  • FIG. 3 is a cross-sectional structural diagram of the liquid crystal slit grating 102 in the stereoscopic display device 100 of FIG.
  • the liquid crystal slit grating 102 includes a first polarizing plate 10, a first substrate 11, a driving electrode structure 12, a first alignment layer 13, a liquid crystal layer 14, a second alignment layer 15, and a common electrode which are sequentially stacked.
  • the first substrate 11 and the second substrate 17 are disposed in parallel.
  • the first substrate 11 and the second substrate 17 are both glass substrates, and of course, may be transparent substrates of other materials, as long as the light is transmitted. Not listed one by one.
  • the drive electrode structure 12 and the common electrode structure 16 are disposed on the inner surfaces of the opposite sides of the first substrate 11 and the second substrate 17, respectively.
  • the driving electrode structure 12 includes a laminated lead layer 121, a driving electrode layer 123, and an insulating layer disposed between the wiring layer 121 and the driving electrode layer 123 for electrically insulating the wiring layer 121 and the driving electrode layer 123 from each other. 122.
  • the common electrode structure 16 is generally a monolithic flat plate-shaped transparent electrode.
  • FIG. 4 is a schematic plan view of the driving electrode structure 12 shown in FIG.
  • the drive electrode layer 123 of the drive electrode structure 12 includes a plurality of strip-shaped drive electrodes 1231 disposed in parallel.
  • the plurality of driving electrodes 1231 are spaced apart from each other and arranged in parallel with each other. Further, the plurality of driving electrodes 1231 have the same width and the same distance between each other. The spacing between any two adjacent drive electrodes 1231 can be set according to actual needs.
  • the plurality of driving electrodes 1231 are divided into a plurality of driving electrode groups, and each of the driving electrode groups includes N (N is a natural number) driving electrodes 1231.
  • the number of driving electrodes 1231 in each driving electrode group is determined according to a specific design. Generally, the number of driving electrodes 1231 in each driving electrode group is equal. In some special designs, driving electrodes in each driving electrode group The number of 1231 can also vary.
  • the number of the driving electrodes 1231 in each driving electrode group is equal, for example, five, and are respectively recorded as the driving electrode 1231a, the driving electrode 1231b, the driving electrode 1231c, the driving electrode 1231d, and the driving electrodes 1231d in the same arrangement order.
  • the electrode 1231e is driven.
  • Each of the driving electrode groups may form a one-period light-transmitting region and a light-blocking region.
  • the driving electrode 1231 can be formed by etching on a whole transparent electrode, and the adjacent driving electrodes 1231 have a certain gap therebetween. Under certain circumstances, the gap does not affect the formation of the liquid crystal slit grating; If it is too large, it will cause unnecessary light leakage. In order to prevent the occurrence of light leakage, a light shielding tape, such as a black matrix (not shown), may be selectively provided in the gap between adjacent driving electrodes 1231 to overcome this technical problem. It is also possible to eliminate light leakage by disposing adjacent driving electrodes 1231 on transparent electrodes of different layers and partially overlapping adjacent driving electrodes 1231.
  • the lead layer 121 is for transmitting a driving signal to the driving electrode layer 123, which includes N parallel-connected lead electrodes 1211.
  • the plurality of lead electrodes 1211 are spaced apart from each other and arranged in parallel with each other.
  • the number of lead electrodes 1211 may be equal to the number of driving electrodes 1231 in each driving electrode group, and in other modified embodiments, there may be other numbers, but not less than N.
  • the number of the lead electrodes 1211 is equal to the number of the drive electrodes 1231 in each of the drive electrode groups, and is referred to as a lead electrode 1211a, a lead electrode 1211b, a lead electrode 1211c, a lead electrode 1211d, and a lead electrode 1211e, respectively.
  • the same lead electrode 1211 is connected to the driving electrode 1231 at the same position in each driving electrode group.
  • the lead electrode 1211a is electrically connected to the driving electrode 1231a in each driving electrode group through the via hole 1215, respectively;
  • 1211b is electrically connected to the driving electrode 1231b of each driving electrode group through the via hole 1215, respectively;
  • the lead electrode 1211c is electrically connected to the driving electrode 1231c of each driving electrode group through the via hole 1215, respectively;
  • the lead electrode 1211d is separately driven by each
  • the driving electrodes 1231d in the electrode group are electrically connected through the via holes 1215;
  • the lead electrodes 1211e are electrically connected to the driving electrodes 1231e in the driving electrode groups through the via holes 1215, respectively.
  • the drive electrodes 123 connected to the same lead electrode 1211 can have the same driving voltage.
  • the via hole 1215 is disposed in the insulating layer 122.
  • one end of the lead electrode 1211 for connecting an external circuit is further provided with a lead terminal 1213 to facilitate electrical connection of the lead electrode 1211 with an external circuit.
  • the lead layer 121 and the driving electrode layer 123 may be interchanged, and are not specifically limited herein.
  • FIG. 5 is a schematic structural diagram of the common electrode structure 16 shown in FIG.
  • the common electrode structure 16 is a planar electrode disposed on the inner surface of the second substrate 17.
  • the common electrode pin 161 may be formed at a predetermined edge of the common electrode structure 16 to facilitate the common electrode to receive a common voltage.
  • the driving electrode structure 12 and the common electrode structure 16 are transparent conductive layers, such as indium tin oxide (Indium Tin) Oxide, ITO) or Indium Zinc Oxide (Indium Zinc Oxide, IZO), not listed here.
  • the lead electrode 1211 can also be made of a metal material having excellent electrical conductivity.
  • the extending direction of the driving electrode 1231 may be parallel to the pixel arrangement direction of the display panel 101.
  • the liquid crystal slit grating 102 and the display panel 101 are reduced.
  • the optical interference can make the extending direction of the driving electrode 1231 and the pixel arrangement direction of the display panel 101 form a certain angle to reduce the occurrence of moiré and the like, thereby improving the display effect.
  • the liquid crystal layer 14 is disposed between the driving electrode structure 12 and the common electrode structure 16
  • the first alignment layer 13 is disposed between the liquid crystal layer 14 and the driving electrode structure 12
  • the second alignment layer 15 is disposed on the liquid crystal layer.
  • the alignment direction of the first alignment layer 13 and the second alignment layer 15 is perpendicular, so that the liquid crystal molecules in the liquid crystal layer 12 can be twist-aligned.
  • the liquid crystal layer 14 includes nematic liquid crystal molecules. Under the alignment of the first alignment layer 13 and the second alignment layer 15, the nematic liquid crystal molecules 141 are formed in a twisted arrangement as shown in FIG.
  • the first polarizing plate 10 is disposed on the outer side of the first substrate 11, that is, on the side opposite to the first alignment film 13, and the polarization direction of the first polarizing plate 10 is parallel to the alignment direction of the first alignment film 13.
  • the second polarizing plate 18 is disposed on the outer side of the second substrate 17, that is, on the side opposite to the second alignment film 15, and the polarization direction of the second polarizing film 18 is parallel to the alignment direction of the second alignment film 15.
  • the first polarizing plate 10 and the second polarizing plate 18 may also be disposed on the inner side of the first substrate 11 and the second substrate 17, which are not specifically limited herein.
  • the stereo disparity image emitted from the light emitting surface of the display panel 101 is a polarized light image, and the polarization direction of the polarized light is parallel to the polarization direction of the second polarizing plate 18 of the liquid crystal slit grating 102.
  • a retardation film may be added between the light-emitting surface of the display panel 101 and the second polarizing film 18 of the liquid crystal slit grating 102.
  • the polarization direction of the light emitted from the display panel 101 is adjusted to be parallel to the polarization direction of the second polarizing film 18.
  • FIG. 6 is a schematic diagram showing the principle of forming a slit by the liquid crystal slit grating 102 shown in FIG.
  • a common voltage is applied to the common electrode structure 16, and an external driving circuit applies a driving voltage to the driving electrode layer 123 through the wiring layer 121.
  • a driving voltage may be applied to the driving electrodes 1231a, 1231b, and 1231c, and a common voltage is applied to the driving electrodes 1231d and 1231e.
  • the driving voltages of equal voltages so that the electric fields spaced apart between the strips between the driving electrode layer structure 12 and the common electrode structure 16 drive the liquid crystal molecules in the liquid crystal layer 14 to be aligned according to the direction of the electric field, and the light cannot pass through the driving voltage.
  • the driving electrode 1231 is located in the region, and is capable of passing through the region where the driving electrode 1231 to which the common voltage is applied, thereby forming alternating light transmitting regions and light blocking regions (or light and dark stripes). Since the ratio of the driving electrode 1231 to which the driving voltage and the common voltage are applied is 3:2, the formed light-shielding region is also 3:2 corresponding to the light-transmitting region.
  • the driving voltage is applied to the driving electrode 1231, the light transmitting region and the light shielding region of the liquid crystal slit are parallel to the extending direction of the driving electrode 1231.
  • FIG. 7 is a schematic diagram showing the principle of forming another slit by the liquid crystal slit grating 102 shown in FIG.
  • the number and position of the driving electrodes 1231 to which the driving voltage and the common voltage are applied on the driving electrode layer 123 may be adjusted, for example, at the driving electrode 1231b.
  • a driving voltage is applied to the driving electrodes 1231a and 1231e, and a driving voltage equal to a common voltage is applied to the driving electrodes 1231a and 1231e.
  • the liquid crystal slit can be used as follows.
  • the grating 102 is adjusted:
  • Step S1 providing a display panel and a liquid crystal slit grating
  • liquid crystal slit grating 102 and the display panel 101 are provided first, wherein the lead electrode 1211 is connected as shown in FIG. 4, and details are not described herein again.
  • Step S2 the display panel displays a test screen, and determines a fitting deviation of the liquid crystal slit grating and the display panel;
  • test pattern is displayed through the display panel 101.
  • the test pattern can be, for example, a common black and white stripe or other type of pattern.
  • the deviation between the stripe of the actual grating and the predetermined value, thereby calculating the position of the driving electrode 1231 corresponding to the light-shielding stripe and the light-transmitting stripe, for example, the position-driving electrodes 1231c, 1231d of the light-transmitting stripe required at this time, the shading stripe The position corresponds to the drive electrodes 1231a, 1231b, 1231e, Then, the drive electrodes 1231c and 1231d do not need to apply a voltage, but apply voltage only to the drive electrodes 1231a, 1231b, and 1231e.
  • step S3 part of the lead electrodes are cut so that the driving electrodes connected thereto are electrically disconnected from the external circuit.
  • the lead electrodes 1211c and 1211d connected to the driving electrodes 1231c and 1231d are interrupted by a display manufacturing process to form a breaking region 1217, so that the driving electrodes 1231c and 1231d cannot receive the driving voltage.
  • the normal connection of the lead electrodes 1211a, 1211b, 1211e is retained.
  • the liquid crystal slit grating 102 is adjusted by the above method to form a desired liquid crystal slit grating. As shown in Fig. 8, the liquid crystal slit grating 102 is adjusted to produce a liquid crystal slit as shown in Fig. 9.
  • the area corresponding to the driving electrodes 1231c and 1231d is a light transmitting area.
  • the position of the lead electrode 1211 that needs to be interrupted is not fixed, and it is specifically calculated according to the measurement in step S2, and the position of the broken lead electrode 1211 is also adjusted correspondingly according to the difference of the products. In order to guarantee the effect of interruption.
  • the driving electrode 1231 is divided into a plurality of driving electrode groups, and the driving electrodes 1231 of the same position in different driving electrode groups are different. Connected to the same lead electrode 1211, the distribution of the driving voltage of the driving electrode 1231 can be adjusted by the lead electrode 1211 to form a dynamically adjustable liquid crystal slit grating to accommodate different stereoscopic display requirements.
  • the test screen can be displayed through the display panel, and the deviation of the liquid crystal slit grating 102 from the display panel 101 can be calculated. Therefore, the lead electrode 1211 to which the driving electrode 1231 to which the driving voltage is not required to be applied is interrupted, the bonding deviation is adjusted, or the liquid crystal slit grating is formed to meet the bonding requirement, and the stereoscopic display device 100 has a strong ability to adjust the bonding deviation. .
  • FIG. 10 is a schematic structural view of a second embodiment of the stereoscopic display device of the present invention.
  • the stereoscopic display device 900 of the second embodiment includes a liquid crystal slit grating 91, a display panel 92, a user tracking device 93, and a controller 94.
  • the liquid crystal slit grating 91 may be the same or similar liquid crystal slit grating as the liquid crystal slit grating 102 of the first embodiment
  • the display panel 92 has the same or similar structure and function as the display panel 101 shown in FIG. It can also be any other type of display panel, which is not specifically limited herein.
  • the user tracking device 93 is configured to track the position of the user, particularly the position of the user's eyes relative to the display panel 92, and transmit the position information of the user to the controller 94, and the controller 94 adjusts the liquid crystal slits according to the position of the user.
  • the optical characteristics of the grating 91 e.g., the position and width of the slits, etc.
  • the display characteristics of the display panel 92 provide an optimal stereoscopic display experience for the user of the viewing position.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)

Abstract

一种液晶狭缝光栅(102),包括依次层叠设置的第一偏振片(10)、第一基板(11)、驱动电极结构(12)、第一配向层(13)、液晶层(14)、第二配向层(15)、公共电极结构(16)、第二基板(17)以及第二偏振片(18),所述驱动电极结构(12)包括驱动电极层(123)和引线层(121),所述驱动电极层(123)包括多个平行设置的条形的驱动电极(1231),所述多个驱动电极(1231)分为若干驱动电极组,每个驱动电极组中包括N个驱动电极(1231),所述引线层(121)包括N个引线电极(1211),每个驱动电极组中的N个驱动电极(1231)分别与N个引线电极(1211)一对一对应电连接。还提供一种采用上述液晶狭缝光栅(102)的立体显示装置(100)及其调整方法。该液晶狭缝光栅(102)和立体显示装置(100)具有自动可调且调整方法简单的优点。

Description

可调节式液晶狭缝光栅、立体显示装置及其调整方法
【技术领域】
本发明涉及立体显示领域,尤其涉及一种可调节式液晶狭缝光栅和应用所述液晶狭缝光栅的立体显示装置及其调整方法。
【背景技术】
人的左眼和右眼有间距,造成两眼的视角存在细微的差别,这样的差别会让左眼和右眼分别观察的景物有略微的视差,从而在人的大脑中形成立体图像。
一般的立体显示装置在观看时,需要佩戴立体眼镜,使得本来就戴有眼镜(如近视眼镜、老花眼镜等)的观看者,为了获得清晰的观看效果,需要将两副眼镜重叠,使得立体显示观看较为不便。此外,由于立体眼镜的两镜脚之间的宽度通常是固定的,这可能使得不同脸型的观看者,在佩戴立体眼镜时不能获得较佳的体验。因此,不需要佩戴立体眼镜的裸眼立体显示技术越来越为人们所关注。
随着液晶技术的不断发展,液晶材料广泛地应用于各种领域。
液晶狭缝光栅具有广泛的应用,其中一种典型应用为立体(3D)显示应用,液晶狭缝光栅配合显示装置,将显示装置显示的视差画面分别导向用户的左右眼,从而使用户形成立体视觉。同时还可以实现平面/立体(2D/3D)画面的切换功能,方便用户的使用。
然而,由于立体显示的复杂性,液晶狭缝光栅和显示面板之间需要有精确的配合,一般的液晶狭缝光栅是贴合在显示面板的显示面上,然而,由于受制程工艺的限制,液晶狭缝光栅常常无法按照设计要求精确地贴合在显示面板上,导致对立体图像的分离出现偏差,从而出现重影、立体效果不理想甚至无法产生立体影像的缺陷,这极大地限制了立体显示的应用,降低了观看者的立体视觉体验。
【发明内容】
本发明提供一种液晶狭缝光栅,包括依次层叠设置的第一偏振片、第一基板、驱动电极结构、第一配向层、液晶层、第二配向层、公共电极结构、第二基板以及第二偏振片,所述驱动电极结构包括驱动电极层和引线层,所述驱动电极层包括多个平行设置的条形的驱动电极,所述多个驱动电极分为若干驱动电极组,每个驱动电极组中包括N个驱动电极,所述引线层包括N个引线电极,每个驱动电极组中的N个驱动电极分别与N个引线电极一对一对应电连接,所述驱动电极通过对应连接的引线电极获得驱动信号。
根据本发明的一优选实施例,不同驱动电极组中的连接到同一引线电极的驱动电极在每组驱动电极组中的位置相同。
根据本发明的一优选实施例,所述引线层还包括设置在所述引线电极端部的引线端子,所述引线端子用于连接外部电路。
根据本发明的一优选实施例,部分引线电极为断开状态,使连接在其上的驱动电极与外部电路电性断开。
本发明还提供一种立体显示装置,包括显示面板和液晶狭缝光栅,所述液晶狭缝光栅设置在所述显示面板的显示面一侧,所述液晶狭缝光栅用于将所述显示面板的显示的视差图像光线导向到预定的视场空间位置,从而实现立体显示,其特征在于,所述液晶狭缝光栅包括依次层叠设置的第一偏振片、第一基板、驱动电极结构、第一配向层、液晶层、第二配向层、公共电极结构、第二基板以及第二偏振片,所述驱动电极结构包括驱动电极层和引线层,所述驱动电极层包括多个平行设置的条形的驱动电极,所述多个驱动电极分为若干驱动电极组,每个驱动电极组中包括N个驱动电极,所述引线层包括N个引线电极,每个驱动电极组中的N个驱动电极分别与N个引线电极一对一对应电连接,所述驱动电极通过对应连接的引线电极获得驱动信号。
根据本发明的一优选实施例,不同驱动电极组中的连接到同一引线电极的驱动电极在每组驱动电极组中的位置相同。
根据本发明的一优选实施例,所述引线层还包括设置在所述引线电极端部的引线端子,所述引线端子用于连接外部电路。
根据本发明的一优选实施例,部分引线电极为断开状态,使连接在其上的驱动电极与外部电路电性断开。
根据本发明的一优选实施例,所述立体显示装置还包括用户追踪装置和控制器,所述用户追踪装置用于追踪用户相对所述显示面板的位置,所述控制器根据用户追踪装置获得的用户的位置信息,分别调整所述液晶狭缝光栅的光学特性和所述显示面板的显示特性,为该位置的用户提供立体显示。
本发明还提供一种立体显示装置的调整方法,所述立体显示装置包括显示面板和液晶狭缝光栅,所述液晶狭缝光栅设置在所述显示面板的显示面一侧,所述液晶狭缝光栅用于将所述显示面板的显示的视差图像光线导向到预定的视场空间位置,所述液晶狭缝光栅包括依次层叠设置的第一偏振片、第一基板、驱动电极结构、第一配向层、液晶层、第二配向层、公共电极结构、第二基板以及第二偏振片,所述驱动电极结构包括驱动电极层和引线层,所述驱动电极层包括多个平行设置的条形的驱动电极,所述多个驱动电极分为若干驱动电极组,每个驱动电极组中包括N个驱动电极,所述引线层包括N个引线电极,每个驱动电极组中的N个驱动电极分别与N个引线电极一对一对应电连接,所述驱动电极通过对应连接的引线电极获得驱动信号,所述调整方法包括:所述显示面板显示测试画面,确定所述液晶狭缝光栅与所述显示面板的调整偏差;切断部分引线电极,使连接到其上的驱动电极与外部电路为电性断开。
本发明还提供一种液晶狭缝光栅,包括依次层叠设置的第一偏振片、第一基板、驱动电极结构、第一配向层、液晶层、第二配向层、公共电极结构、第二基板以及第二偏振片,所述驱动电极结构包括驱动电极层和引线层,所述驱动电极层包括多个平行设置的条形的驱动电极,所述多个驱动电极分为若干驱动电极组,每个驱动电极组中包括N个驱动电极,所述引线层包括M个第一引线电极和N个引线电极,其中M大于N,每个驱动电极组中的N个驱动电极分别与通过N个第一引线电极与N个第二引线电极一对一对应电连接,所述驱动电极通过对应连接的引线电极获得驱动信号。
根据本发明的一优选实施例,所述液晶狭缝光栅与所述显示面板的调整偏差的通过采用对位标记的方式或采用测试画面的方式确定。
相较于现有技术,本发明的立体显示装置的液晶狭缝光栅的驱动电极结构中,驱动电极分为若干个驱动电极组,将不同驱动电极组中相同位置的驱动电极连接到相同的引线电极上,这样可以通过引线电极调节驱动电极的驱动电压的分布,形成动态可调的液晶狭缝光栅,以适应不同的立体显示需求,其驱动方法相对。
同时,当液晶狭缝光栅与显示面板贴合出现偏差或需要形成固定的液晶狭缝光栅时,可通过显示面板显示测试画面,计算出液晶狭缝光栅与显示面板的贴合偏差,从而打断部分不需要施加驱动电压的驱动电极连接的引线电极,调整贴合偏差或形成符合贴合要求固定液晶狭缝光栅,立体显示装置具有较强的调整贴合偏差的能力。
本发明立体显示装置的调整方法对产品的贴合精度要求较低,在大规模生产时,通过对第一引线电极的打断处理,将每个液晶狭缝光栅的初始状态调整一致,这样驱动端不用考虑不同液晶狭缝光栅之间的贴合偏差,采取统一的驱动方法来满足立体显示的需要,提高生产效率,同时减少了用户对立体显示器的调整,方便用户的使用。
进一步地,通过上述调整方法形成的液晶狭缝光栅,所有的驱动电极均通过第二引线电极与外部驱动电路相连,通过设定不同的驱动模式,可以形成位置和宽度不同的遮光区域和透光区域,有利于提高立体显示效果,其驱动方法如前文所述,在此不再赘述。
更进一步,通过用户追踪装置追踪用户相对所述显示面板的位置,控制器根据用户追踪装置获得的用户的位置信息,分别调整所述液晶狭缝光栅的光学特性和所述显示面板的显示特性,从而可以为该位置的用户修正立体图像的显示,使该位置的用户能够得到最佳的立体视觉体验。
【附图说明】
图1是本发明立体显示装置的第一实施方式的结构示意图。
图2是图1所示的立体显示装置另一个角度形成立体显示的示意图。
图3是图1所示的立体显示装置的液晶狭缝光栅的剖面结构示意图。
图4是图3所示的液晶狭缝光栅的驱动电极结构的平面结构示意图。
图5是图2所示的液晶狭缝光栅的公共电极的平面结构示意图。
图6是图3所示的液晶狭缝光栅形成狭缝的原理示意图。
图7是图3所示的液晶狭缝光栅形成另一种狭缝的原理示意图。
图8是图3所示的液晶狭缝光栅经调整后的驱动电极结构的平面结构示意图。
图9是图8所示液晶狭缝光栅形成狭缝的原理示意图。
图10是本发明立体显示装置的结构示意图。
【具体实施方式】
下面结合附图和实施例对本发明进行详细说明。
请参阅图1,是本发明立体显示装置的第一实施方式的结构示意图。该立体显示装置100提供视差显示画面至特定的视场方向,其包括液晶狭缝光栅102、显示面板101。
显示面板101为平面显示装置,一般包括具有矩阵结构的像素单元,用于产生同一场景的具有视差的左眼图像L和右眼图像R,其中左眼图像L和右眼图像R可以分别为条形图像,并在水平方向相互交替的显示在显示面板101上。显示面板101可以为液晶显示面板、等离子显示面板、有机发光显示面板等,此处不受限制。本实施例中以液晶显示面板进行说明。
液晶狭缝光栅102设置在显示面板101的显示面上,以将显示面板101发出的视差图像光线导向到预定的视场空间位置,从而实现立体显示。
如图1所示,显示面板101发出的光线经过液晶狭缝光栅2的调制后,显示面板101显示的左眼图像L的光线被传播到空间中观察者的左眼L中,类似的,右眼图像R的光线被传播到空间中观察者的右眼R中,观察者的左右眼分别接收到具有视差的左眼图像L和右眼图像R,从而在人脑中形成立体视觉。
当观看者相对立体显示装置100移动一定的距离,例如在第一时刻,观看者在图1所示的位置,在第二时刻,观看者相对显示装置100向其右边移动一定距离,如图2所示的位置。此时,如果可控狭缝光栅102保持图1所示的透光区域和遮光区域,左右眼将不能看到对应的左眼图像L和右眼图像R,造成视觉混乱,无法形成立体视觉。此时通过调整可控狭缝光栅101的透光区域和遮光区域的位置,例如调整为图2所示的位置,即,可控狭缝光栅101透光区域相对于显示面板101向其右边位置移动。这样可以使当前位置的观看者的左眼仍然能够通过透光区域只看到显示面板101上显示的左眼图像L,同时右眼只能看到显示面板101上显示的右眼图像R。则此时,根据观看者的位置(即眼睛的位置)变化,相应改变可控狭缝光栅102的遮光区域和透光区域的位置,仍然能够保证观看者左右眼看到具有视差的左眼图像L和右眼图像R,保持较好的立体视觉。
请参阅图3,图3是图1所示立体显示装置100中的液晶狭缝光栅102的剖面结构示意图。
在本实施例中,液晶狭缝光栅102包括依次层叠设置的第一偏振片10、第一基板11、驱动电极结构12、第一配向层13、液晶层14、第二配向层15、公共电极结构16、第二基板17以及第二偏振片18。
第一基板11和第二基板17相对平行设置,优选的,第一基板11和第二基板17均为玻璃基板,当然也可以是其它材料的透明基板,只要使得光线能够透过即可,此处不一一列举。
驱动电极结构12和公共电极结构16分别设置于第一基板11和第二基板17的相对侧的内表面。其中,驱动电极结构12包括层叠设置的引线层121、驱动电极层123,以及设置在引线层121和驱动电极层123之间的用于使引线层121和驱动电极层123彼此电气绝缘的绝缘层122。公共电极结构16一般为整块的平板状的透明电极。
请同时参阅图4,图4是图3所示的驱动电极结构12的平面结构示意图。驱动电极结构12的驱动电极层123包括多个平行设置的条形的驱动电极1231。多个驱动电极1231相互间隔且彼此平行排列,进一步的,多个驱动电极1231的宽度相等且彼此之间的间距相等。任意相邻的两个驱动电极1231之间的间距可以根据实际需求进行设定。
为了能够形成重复周期的狭缝光栅,多个驱动电极1231分为若干个驱动电极组,每个驱动电极组包含N(N为自然数)个驱动电极1231。其中每个驱动电极组中驱动电极1231的数量根据具体设计而定,一般的,每个驱动电极组中驱动电极1231的数量相等,在某些特殊的设计中,每个驱动电极组中驱动电极1231的数量也可以不等。本实施例中,每个驱动电极组中驱动电极1231的数量均相等,例如均为5个,分别按照同样的排列顺序分别记为驱动电极1231a、驱动电极1231b、驱动电极1231c、驱动电极1231d、驱动电极1231e。每个驱动电极组可以形成一个周期的透光区域和遮光区域。
一般的,驱动电极1231可以通过在一整块透明电极上蚀刻形成,相邻的驱动电极1231之间具有一定的间隙,在一定的情况下,该间隙不影响液晶狭缝光栅的形成;在间隙过大的情况下,将会造成不必要的漏光现象。为防止漏光现象的发生,可以在相邻的驱动电极1231之间的间隙选择性地设置遮光带,例如黑矩阵(图未示)的方式克服此技术问题。还可以通过将相邻的驱动电极1231设置在不同层的透明电极上,并使相邻的驱动电极1231部分重叠,从而消除漏光现象。
引线层121用于将驱动信号传输到驱动电极层123,其包括N个平行设置的引线电极1211。多个引线电极1211相互间隔且彼此平行排列。一般的,引线电极1211的数量可以与每个驱动电极组中驱动电极1231中的数量相等,在其他的变形实施方式中,可以有其他的数量,但不小于N个。本实施例中,引线电极1211的数量与每个驱动电极组中驱动电极1231中的数量相等,分别对应分别记为引线电极1211a、引线电极1211b、引线电极1211c、引线电极1211d、引线电极1211e。其中,同一引线电极1211连接到每个驱动电极组中处于相同位置的驱动电极1231上,具体的,引线电极1211a分别与每个驱动电极组中驱动电极1231a通过导通孔1215电连接;引线电极1211b分别与每个驱动电极组中驱动电极1231b通过导通孔1215电连接;引线电极1211c分别与每个驱动电极组中驱动电极1231c通过导通孔1215电连接;引线电极1211d分别与每个驱动电极组中驱动电极1231d通过导通孔1215电连接;引线电极1211e分别与每个驱动电极组中驱动电极1231e通过导通孔1215电连接。这样,可以使连接在同一个引线电极1211上的驱动电极123具有相同的驱动电压。其中,导通孔1215设置在绝缘层122中。
进一步地,所述引线电极1211用于连接外部电路的一端还设置有引线端子1213,以方便引线电极1211与外部电路的电连接。
当然,在某些变形实施方式中,引线层121与驱动电极层123可以互换位置,在此不做具体限定。
请参阅图5,图5为图3所示公共电极结构16的结构示意图。公共电极结构16为面状电极,设置在第二基板17的内表面,一般的还可以在公共电极结构16的预定边缘形成公共电极引脚161,方便公共电极接收公共电压。
优选的,驱动电极结构12和公共电极结构16均为透明导电层,譬如可为铟锡氧化物(Indium Tin Oxide, ITO)或铟锌氧化物(Indium Zinc Oxide, IZO),此处不一一列举。特别的,引线电极1211还可以采用导电性能优良的金属材料制成。
进一步的,由于显示面板101一般为矩阵像素排列的形式,驱动电极1231的延伸方向可以平行于显示面板101像素排列方向,为了进一步优化显示效果,减少液晶狭缝光栅102与显示面板101之间的光学干扰,可以使驱动电极1231的延伸方向与显示面板101像素排列方向成一定的夹角,以减少莫尔纹等现象的产生,提高显示效果。
请再次参阅图3,液晶层14设置于驱动电极结构12和公共电极结构16之间,第一配向层13设置于液晶层14与驱动电极结构12之间,第二配向层15设置于液晶层14与公共电极结构16之间,第一配向层13与第二配向层15的配向方向垂直,从而可以对液晶层12内的液晶分子进行扭曲配向作用。
液晶层14内包括有向列型的液晶分子,在第一配向层13和第二配向层15的配向作用下,向列型液晶分子141形成如图3所示的扭曲排列结构。
第一偏振片10设置在第一基板11的外侧,即与第一配向膜13相对的一侧,且第一偏振片10的偏振方向与第一配向膜13的配向方向平行。第二偏振片18设置在第二基板17的外侧,即与第二配向膜15相对的一侧,且第二偏振片18的偏振方向与第二配向膜15的配向方向平行。当然,在某些改进型的设计中,第一偏振片10与第二偏振片18也可设置在第一基板11和第二基板17的内侧,在此不做具体限定。
本实施例中,显示面板101出光面发出的立体视差图像为偏振光图像,且偏振光的偏振方向与液晶狭缝光栅102的第二偏振片18的偏振方向平行。当显示面板101的出射光的偏振方向与第二偏振片18的偏振方向非平行的时候,可以再显示面板101的出光面和液晶狭缝光栅102的第二偏振片18之间添加延迟膜,以调整显示面板101的出光偏振方向与第二偏振片18的偏振方向平行。
请同时参阅图3-图6,图6是图3所示液晶狭缝光栅102形成狭缝的原理示意图。公共电极结构16上施加公共电压,外部驱动电路通过引线层121对驱动电极层123施加驱动电压,例如可以在驱动电极1231a、1231b、1231c上施加驱动电压,在驱动电极1231d、1231e上施加与公共电压相等的驱动电压,从而在驱动电极层结构12与公共电极结构16之间条形间条形间隔的电场,驱动液晶层14中的液晶分子依照电场方向排列,光线不能穿过施加有驱动电压的驱动电极1231所在区域,而能够穿过施加有公共电压的驱动电极1231所在区域,从而形成交替的透光区域与遮光区域(或称为明暗条纹)。由于施加驱动电压和公共电压的驱动电极1231的比例为3:2,形成的遮光区域与透光区域相应的也为3:2。
由于驱动电压施加在驱动电极1231,液晶狭缝的透光区域与遮光区域平行于驱动电极1231的延伸方向。
由于狭缝光栅配合显示面板实现立体显示的方法已为本技术领域一般技术人员所熟知,在此不再赘述。
请参阅图7,图7是图3所示液晶狭缝光栅102形成另一种狭缝的原理示意图。为当需要根据立体图像的显示调整透光区域与遮光区域的比例或位置时,可以调整驱动电极层123上的施加驱动电压和公共电压的驱动电极1231的数量和位置,例如可以在驱动电极1231b、1231c、1231d上施加驱动电压,在驱动电极1231a、1231e上施加与公共电压相等的驱动电压,通过上述配置与方法,形成如图7所示的液晶狭缝,这样可实现液晶狭缝光栅102的狭缝位置、方向、以及透光区域与遮光区域的比例的自由调节。
对于如图3所示的立体显示装置100,当需要液晶狭缝光栅102与显示面板101贴合位置不够精确影响立体显示效果,或者需要实现固定的狭缝时,可以采用如下方式对液晶狭缝光栅102进行调整:
步骤S1,提供显示面板和液晶狭缝光栅;
具体的,先提供液晶狭缝光栅102和显示面板101,其中,引线电极1211采用如图4所示的连接方式,在此不再赘述。
步骤S2,显示面板显示测试画面,确定液晶狭缝光栅与显示面板的贴合偏差;
具体的,通过显示面板101显示测试图案,测试图案例如可以是常见的黑白条纹或其他类型的图案,通过测量测量黑白条纹与液晶狭缝光栅102的条纹形成的莫尔纹的形状,可计算出实际光栅的条纹与预定值之间的偏差,从而计算出需要形成遮光条纹和透光条纹对应的驱动电极1231的位置,例如此时所需要的透光条纹的位置驱动电极1231c、1231d,遮光条纹的位置对应驱动电极1231a、1231b、1231e, 则驱动电极1231c、1231d无需施加电压,而仅在驱动电极1231a、1231b、1231e施加电压。
步骤S3,切断部分引线电极,使连接到其上的驱动电极与外部电路为电性断开。
具体的,请参阅图8所示,通过显示器制作工艺对驱动电极1231c、1231d连接的引线电极1211c、1211d进行打断处理,形成打断区1217,使驱动电极1231c、1231d不能接收驱动电压,而保留引线电极1211a、1211b、1211e的正常连接。通过上述方法对液晶狭缝光栅102进行调整,形成所需的液晶狭缝光栅。如图8调整后的液晶狭缝光栅102,可产生如图9所示的液晶狭缝。其中对应驱动电极1231c、1231d的区域为透光区域。当然,需要做打断处理的引线电极1211的位置并非固定,其具体需根据步骤S2中的测量计算,根据产品的差异,打断的引线电极1211的位置亦做相应的调整。为了保证打断的效果。
相较于现有技术,本发明的立体显示装置100的液晶狭缝光栅102的驱动电极结构12中,驱动电极1231分为若干个驱动电极组,将不同驱动电极组中相同位置的驱动电极1231连接到相同的引线电极1211上,这样可以通过引线电极1211调节驱动电极1231的驱动电压的分布,形成动态可调的液晶狭缝光栅,以适应不同的立体显示需求。
同时,当液晶狭缝光栅102与显示面板101贴合出现偏差或需要形成固定的液晶狭缝光栅时,可通过显示面板显示测试画面,计算出液晶狭缝光栅102与显示面板101的贴合偏差,从而打断部分不需要施加驱动电压的驱动电极1231连接的引线电极1211,调整贴合偏差或形成符合贴合要求固定液晶狭缝光栅,立体显示装置100具有较强的调整贴合偏差的能力。
请参阅图10,图10是本发明立体显示装置的第二实施例的结构示意图。第二实施例的立体显示装置900包括液晶狭缝光栅91、显示面板92、用户追踪装置93和控制器94。其中,液晶狭缝光栅91可以是与第一实施方式中的液晶狭缝光栅102相同或相似的液晶狭缝光栅,显示面板92与图1所示的显示面板101具有相同或相似的结构和功能,还可以是其他任意类型的显示面板,在此不做具体限定。所述用户追踪装置93用于追踪用户的位置,特别是用户的眼睛相对于显示面板92的位置,并将用户的位置信息传输给控制器94,控制器94根据用户的位置分别调整液晶狭缝光栅91的光学特性(如狭缝的位置和宽度等)和显示面板92的显示特性,从而能够为该观看位置的用户提供最佳的立体显示体验。
在上述实施例中,仅对本发明进行了示范性描述,但是本领域技术人员在阅读本专利申请后可以在不脱离本发明的精神和范围的情况下对本发明进行各种修改。

Claims (11)

  1. 一种液晶狭缝光栅,包括依次层叠设置的第一偏振片、第一基板、驱动电极结构、第一配向层、液晶层、第二配向层、公共电极结构、第二基板以及第二偏振片,所述驱动电极结构包括驱动电极层和引线层,所述驱动电极层包括多个平行设置的条形的驱动电极,其特征在于,所述多个驱动电极分为若干驱动电极组,每个驱动电极组中包括N个驱动电极,所述引线层包括N个引线电极,每个驱动电极组中的N个驱动电极分别与N个引线电极一对一对应电连接,所述驱动电极通过对应连接的引线电极获得驱动信号。
  2. 如权利要求1所述的液晶狭缝光栅,其特征在于,不同驱动电极组中的连接到同一引线电极的驱动电极在每组驱动电极组中的位置相同。
  3. 如权利要求1所述的液晶狭缝光栅,其特征在于,所述引线层还包括设置在所述引线电极端部的引线端子,所述引线端子用于连接外部电路。
  4. 如权利要求3所述的液晶狭缝光栅,其特征在于,部分引线电极为断开状态,使连接在其上的驱动电极与外部电路电性断开。
  5. 一种立体显示装置,包括显示面板和液晶狭缝光栅,所述液晶狭缝光栅设置在所述显示面板的显示面一侧,所述液晶狭缝光栅用于将所述显示面板的显示的视差图像光线导向到预定的视场空间位置,从而实现立体显示,其特征在于,所述液晶狭缝光栅包括依次层叠设置的第一偏振片、第一基板、驱动电极结构、第一配向层、液晶层、第二配向层、公共电极结构、第二基板以及第二偏振片,所述驱动电极结构包括驱动电极层和引线层,所述驱动电极层包括多个平行设置的条形的驱动电极,所述多个驱动电极分为若干驱动电极组,每个驱动电极组中包括N个驱动电极,所述引线层包括N个引线电极,每个驱动电极组中的N个驱动电极分别与N个引线电极一对一对应电连接,所述驱动电极通过对应连接的引线电极获得驱动信号。
  6. 如权利要求5所述的立体显示装置,其特征在于,不同驱动电极组中的连接到同一引线电极的驱动电极在每组驱动电极组中的位置相同。
  7. 如权利要求5所述的立体显示装置,其特征在于,所述引线层还包括设置在所述引线电极端部的引线端子,所述引线端子用于连接外部电路。
  8. 如权利要求7所述的立体显示装置,其特征在于,部分引线电极为断开状态,使连接在其上的驱动电极与外部电路电性断开。
  9. 如权利要求5所述的立体显示装置,其特征在于,还包括用户追踪装置和控制器,所述用户追踪装置用于追踪用户相对所述显示面板的位置,所述控制器根据用户追踪装置获得的用户的位置信息,分别调整所述液晶狭缝光栅的光学特性和所述显示面板的显示特性,为该位置的用户提供立体显示。
  10. 一种立体显示装置的调整方法,所述立体显示装置包括显示面板和液晶狭缝光栅,所述液晶狭缝光栅设置在所述显示面板的显示面一侧,所述液晶狭缝光栅用于将所述显示面板的显示的视差图像光线导向到预定的视场空间位置,所述液晶狭缝光栅包括依次层叠设置的第一偏振片、第一基板、驱动电极结构、第一配向层、液晶层、第二配向层、公共电极结构、第二基板以及第二偏振片,所述驱动电极结构包括驱动电极层和引线层,所述驱动电极层包括多个平行设置的条形的驱动电极,其特征在于,所述多个驱动电极分为若干驱动电极组,每个驱动电极组中包括N个驱动电极,所述引线层包括N个引线电极,每个驱动电极组中的N个驱动电极分别与N个引线电极一对一对应电连接,所述驱动电极通过对应连接的引线电极获得驱动信号,所述调整方法包括:
    所述显示面板显示测试画面,确定所述液晶狭缝光栅与所述显示面板的调整偏差;
    切断部分引线电极,使连接到其上的驱动电极与外部电路为电性断开。
  11. 一种液晶狭缝光栅,包括依次层叠设置的第一偏振片、第一基板、驱动电极结构、第一配向层、液晶层、第二配向层、公共电极结构、第二基板以及第二偏振片,所述驱动电极结构包括驱动电极层和引线层,所述驱动电极层包括多个平行设置的条形的驱动电极,其特征在于,所述多个驱动电极分为若干驱动电极组,每个驱动电极组中包括N个驱动电极,所述引线层包括M个第一引线电极和N个引线电极,其中M大于N,每个驱动电极组中的N个驱动电极分别与通过N个第一引线电极与N个第二引线电极一对一对应电连接,所述驱动电极通过对应连接的引线电极获得驱动信号。
PCT/CN2014/082707 2014-07-09 2014-07-22 可调节式液晶狭缝光栅、立体显示装置及其调整方法 WO2016004650A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410326057.0 2014-07-09
CN201410326057.0A CN104317114A (zh) 2014-07-09 2014-07-09 可调节式液晶狭缝光栅、立体显示装置及其调整方法

Publications (1)

Publication Number Publication Date
WO2016004650A1 true WO2016004650A1 (zh) 2016-01-14

Family

ID=52372365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/082707 WO2016004650A1 (zh) 2014-07-09 2014-07-22 可调节式液晶狭缝光栅、立体显示装置及其调整方法

Country Status (2)

Country Link
CN (1) CN104317114A (zh)
WO (1) WO2016004650A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108572489B (zh) * 2018-04-28 2021-05-11 京东方科技集团股份有限公司 液晶光栅和液晶光栅驱动方法及3d显示器
CN114296252B (zh) * 2022-01-10 2024-01-12 合肥京东方光电科技有限公司 光栅控制方法及控制装置、3d显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070023849A (ko) * 2005-08-25 2007-03-02 (주)엔디스 광시야각 입체 영상 표시장치
CN102289113A (zh) * 2011-07-20 2011-12-21 深圳超多维光电子有限公司 液晶显示装置、液晶显示装置的制造方法及其驱动方法
CN102662283A (zh) * 2012-05-25 2012-09-12 天马微电子股份有限公司 液晶狭缝光栅、立体显示装置及其校正方法
CN203054398U (zh) * 2012-12-11 2013-07-10 中航华东光电有限公司 液晶光栅及2d/3d立体显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070023849A (ko) * 2005-08-25 2007-03-02 (주)엔디스 광시야각 입체 영상 표시장치
CN102289113A (zh) * 2011-07-20 2011-12-21 深圳超多维光电子有限公司 液晶显示装置、液晶显示装置的制造方法及其驱动方法
CN102662283A (zh) * 2012-05-25 2012-09-12 天马微电子股份有限公司 液晶狭缝光栅、立体显示装置及其校正方法
CN203054398U (zh) * 2012-12-11 2013-07-10 中航华东光电有限公司 液晶光栅及2d/3d立体显示装置

Also Published As

Publication number Publication date
CN104317114A (zh) 2015-01-28

Similar Documents

Publication Publication Date Title
CN102662283B (zh) 液晶狭缝光栅、立体显示装置及其校正方法
WO2015000448A1 (zh) 液晶狭缝光栅、立体显示装置及其驱动方法
JP5944616B2 (ja) 光学ユニット及びこれを含む表示装置
KR20070082955A (ko) 입체영상 변환패널 및 이를 갖는 입체영상 표시장치
JP2008009370A (ja) 液晶レンズ及びこれを含む映像表示装置
US8773601B2 (en) Display device and electronic apparatus
US9316877B2 (en) Display apparatus, display system having the same and method of manufacturing the display apparatus
WO2012102550A2 (ko) 입체 영상 표시 장치
US20140009590A1 (en) Display system and method thereof
KR101068880B1 (ko) 멀티 모드 입체 영상 표시 장치
CN103995403A (zh) 液晶狭缝光栅、立体显示装置及其驱动方法
TW201407193A (zh) 立體影像顯示器及立體影像顯示裝置
WO2013174249A1 (zh) 立体显示装置
KR20130063311A (ko) 입체영상 표시장치
CN102436100B (zh) 立体显示装置
WO2015018283A1 (zh) 电子狭缝光栅、立体显示装置及其驱动方法
KR20120062192A (ko) 편광 스위칭 패널 및 이를 포함하는 표시 장치
WO2013189054A1 (zh) 立体影像显示器的显示面板
KR101975514B1 (ko) 입체영상 표시장치 및 그 제조방법
WO2014136610A1 (ja) 立体表示装置
WO2015143781A1 (zh) 一种三光路偏振分光立体视频转换系统
WO2016004650A1 (zh) 可调节式液晶狭缝光栅、立体显示装置及其调整方法
KR20100005265A (ko) 입체 엘씨디 패널 및 그 제조 방법
WO2013159372A1 (zh) 立体显示装置及其驱动方法
WO2013181839A1 (zh) 立体显示器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14897415

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14897415

Country of ref document: EP

Kind code of ref document: A1