WO2015143781A1 - 一种三光路偏振分光立体视频转换系统 - Google Patents

一种三光路偏振分光立体视频转换系统 Download PDF

Info

Publication number
WO2015143781A1
WO2015143781A1 PCT/CN2014/079235 CN2014079235W WO2015143781A1 WO 2015143781 A1 WO2015143781 A1 WO 2015143781A1 CN 2014079235 W CN2014079235 W CN 2014079235W WO 2015143781 A1 WO2015143781 A1 WO 2015143781A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
polarization
light
beam splitting
conductive layer
Prior art date
Application number
PCT/CN2014/079235
Other languages
English (en)
French (fr)
Inventor
刘美鸿
母林
吴新民
Original Assignee
深圳市亿思达科技集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市亿思达科技集团有限公司 filed Critical 深圳市亿思达科技集团有限公司
Publication of WO2015143781A1 publication Critical patent/WO2015143781A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques

Definitions

  • the present invention relates to the field of stereoscopic display technologies, and in particular, to a three-light path polarization splitting stereoscopic video conversion system.
  • the three-dimensional film projection system needs to send two video images with parallax to the left and right eyes of the viewer, and then synthesize through the human brain to produce a stereoscopic effect.
  • the existing technologies mainly include a left-right polarization splitting mode, a left-right shutter switch synchronization mode, and left and right red and blue splitting modes.
  • FIG. 1 is a schematic structural view of a prior art single optical path polarization splitting stereoscopic video conversion system
  • FIG. 2 is a schematic structural diagram of a prior art dual optical path polarization splitting stereoscopic video conversion system.
  • the liquid crystal sync controller 13 drives the liquid crystal panel 12 to synchronously change the polarization directions of the polarized light incident on the liquid crystal panel 12, and alternately generate the first polarized light and the second polarized light whose polarization directions are perpendicular to each other.
  • the first polarized light and the second polarized light are selectively transmitted through the left and right parallax images through the polarized glasses of the observer, so that the left and right eyes of the person can only see the respective left and right parallax images, thereby forming a 3D picture in the human brain.
  • This method is simple and easy to implement, but it loses more than half of the luminous flux, so the picture is dark and the light efficiency is low.
  • the natural light and video image light projected by the projector passes through the polarizing beam splitter 21 to generate two polarized lights whose polarization directions are perpendicular to each other.
  • the first polarized light passes through the polarizing beam splitter 21 into the main path, and the other polarized light is polarized.
  • the beam splitter 21 is reflected into the side path.
  • a mirror 22 is disposed on the side path for reflecting the second polarized light such that the side path light and the main path light coincide on the imaging screen of the projector.
  • a compensator 23 is disposed on the main path to compensate for the optical path difference of the main path polarized light and the side path polarized light.
  • a half-wave plate 24 is further disposed on the side path such that the polarization direction of the side path polarized light coincides with the polarization direction of the main path polarized light. It is of course also possible to arrange the half-wave plate 24 on the main path, so that the polarization directions of the two paths of light are the same. Then, the liquid crystal panel 25 respectively disposed on the main path and the side path is synchronously driven by the same liquid crystal synchronization controller 26 to change the polarization directions of the two paths of light, and the first polarized light and the second polarized light are alternately generated.
  • FIG. 3 is a schematic diagram of the principle of two-way optical alignment of the dual optical path polarization splitting stereo video conversion system shown in FIG. 2.
  • the arrows in Figure 3 represent the direction of propagation of the light.
  • the entire picture light of the natural light and video image projected by the projector is split into two paths of light by the polarization beam splitter 21, one of which is directly transmitted and the other of which is reflected.
  • the reflected light is reflected by the mirror 22 and then coincides with the light transmitted by the polarization beam splitter 21 on the imaging screen. Since the two light paths separated by the polarization beam splitter 21 are the entire picture, the deflection angle of the light is relatively large, the image overlap adjustment amount is relatively large, and the image deformation is relatively large.
  • the dual optical path polarization splitting stereo video conversion system has higher optical efficiency than the single optical path polarization stereoscopic video conversion system, and the image quality is high, but the alignment of the video images in the main optical path and the side optical path is difficult. Not easy to implement.
  • the present invention provides a three-light path polarization splitting stereoscopic video conversion system.
  • the invention mainly solves the technical problem that the existing single-light path polarization splitting stereo video conversion system has low light efficiency and the image alignment of the dual optical path polarization splitting stereo video conversion system is difficult, and provides a high light efficiency, easy alignment and high image quality.
  • Optical path polarization splitting stereo video conversion system Optical path polarization splitting stereo video conversion system.
  • a technical solution adopted by the present invention is to provide a three-light path polarization splitting stereoscopic video conversion system, including:
  • a polarization beam splitting device comprising an intersecting first polarization beam splitting layer and a second polarization beam splitting layer, the first polarizing beam splitting layer is configured to receive the natural light and video image light and direct it to the main path and the first side path, and the second polarizing beam splitting layer is used for Receiving light of the natural light and video image and guiding it to the main path and the second side path, wherein the first polarization splitting layer and the second polarization splitting layer have the same vibration transmission direction and the same polarization direction of the reflected light;
  • Two reflecting means are respectively disposed on the first side path and the second side path, one reflecting means for overlapping the two paths of the first polarizing beam splitting layer, and the other reflecting means for making the second polarizing beam splitting layer Separate two paths of light coincide;
  • a compensation mirror disposed on the main path for compensating for an optical path difference between the main path and the side path;
  • a half wave plate disposed on the main path or the side path for polarizing the three paths of light in the same direction;
  • a synchronous controller and three identical liquid crystal optical devices electrically connected thereto the three liquid crystal optical devices are respectively disposed on the main path, the first side path and the second side path, and the synchronization controller is configured to synchronize according to the left and right eyes
  • the signal synchronously drives the three liquid crystal optical devices to change the polarization state of the polarized light entering the liquid crystal optical device, alternately generating left-handed circular polarization and right-handed circularly polarized light.
  • the driving liquid crystal cell includes a first glass plate, a first conductive layer, a first liquid crystal layer, a second conductive layer, and a second glass plate which are sequentially arranged in parallel along the transmission direction of the incident light.
  • the first conductive layer and the second conductive layer are transparent conductive layers, the first conductive layer is disposed on the first glass plate, the second conductive layer is disposed on the second glass plate, and the compensation liquid crystal cell is included a third conductive layer, a second liquid crystal layer, a fourth conductive layer and a third glass plate arranged in parallel along the light emitting direction of the driving liquid crystal cell, wherein the third conductive layer and the fourth conductive layer are transparent conductive layers, and the third The conductive layer is disposed on the second glass plate, and the fourth conductive layer is disposed on the third glass plate.
  • the driving liquid crystal cell includes a first glass plate, a first conductive layer, a first liquid crystal layer, a second conductive layer, and a second glass plate which are sequentially arranged in parallel in the transmission direction of the incident light.
  • the first conductive layer and the second conductive layer are transparent conductive layers, the first conductive layer is disposed on the first glass plate, and the second conductive layer is disposed on the second glass plate, the compensation liquid crystal cell
  • the fourth glass plate, the third conductive layer, the second liquid crystal layer, the fourth conductive layer and the third glass plate are sequentially arranged in parallel along the light emitting direction of the driving liquid crystal cell, and the third conductive layer and the fourth conductive layer are a transparent conductive layer, the third conductive layer is disposed on the fourth glass plate, and the fourth conductive layer is disposed on the third glass plate.
  • the polarization beam splitting device comprises two transparent substrates arranged together by means of mechanical positioning, the first polarization beam splitting layer is disposed on the first transparent substrate, and the second polarization beam splitting layer is disposed on the second transparent layer.
  • the first polarizing beam splitting layer is disposed on the first transparent substrate by coating or filming, and the second polarizing beam splitting layer is disposed on the second transparent substrate by coating or filming.
  • the polarization beam splitting device comprises an isosceles prism and two first right-angle prisms and a second right-angle prism disposed in contact with each other, and the top surface of the right-angled prism at which the first right-angle prism and the second right-angle prism meet is received by the natural light. Irradiation of the light of the video image, and the right angle sides of the first right angle prism and the second right angle prism are parallel, and the oblique sides of the first right angle prism and the second right angle prism are equal,
  • first polarizing beam splitting layer and the second polarizing beam splitting layer are respectively disposed on the surface of the first right-angle prism and the oblique side of the second right-angled prism by coating or filming, wherein the isosceles prism is located at the waist
  • the kneading surfaces are respectively glued with the first polarizing beam splitting layer and the second polarizing beam splitting layer, or
  • the first polarizing beam splitting layer and the second polarizing beam splitting layer are respectively disposed on the surface of the isosceles prism on both sides of the waist, and the first polarizing beam splitting layer and the second polarizing beam splitting layer are respectively glued at two right angles.
  • the compensating mirror is glued to the crotch surface on which the bottom edge of the isosceles prism is located.
  • the polarization beam splitting device comprises a pentagonal prism and an isosceles prism, the pentagonal prism having two adjacent right angles, two equal acute angles adjacent to two right angles, and a fifth angle, forming a fifth The two sides of the corner are equal, and the fifth corner is concave inside the pentagonal prism.
  • the first polarizing beam splitting layer and the second polarizing beam splitting layer are respectively disposed on the surface of the fifth edge of the fifth corner by coating or filming, the first polarizing beam splitting layer and the second polarizing beam splitting layer. Glue separately on the side of the waist of the isosceles prism, or
  • the first polarizing beam splitting layer and the second polarizing beam splitting layer are respectively disposed on the surface of the waist of the isosceles prism by coating or filming, and the first polarizing beam splitting layer and the second polarizing beam splitting layer are respectively glued and disposed on The two sides of the fifth corner are on the face.
  • the compensation mirror is glued on the face of the heel of the isosceles prism.
  • the polarization beam splitting device further includes an isosceles prism, and the first polarization splitting layer and the second polarization splitting layer are respectively disposed on the surface of the isosceles of the isosceles prism by coating or filming.
  • the compensating mirror is glued to the crotch surface on which the bottom edge of the isosceles prism is located.
  • the reflecting means is a planar or curved mirror.
  • the three-light-path polarization splitting stereoscopic video conversion system of the present invention divides a video image light into three paths by using a polarization splitting device having two polarization splitting layers, and then uses the reflection.
  • the device makes the two beams separated by each polarization splitting layer coincide on the imaging screen, not only can obtain high light efficiency and can reduce the difficulty of light alignment, improve image quality, and is easy to implement.
  • FIG. 1 is a schematic structural diagram of a single optical path polarization splitting stereo video conversion system in the prior art
  • FIG. 2 is a schematic structural diagram of a dual optical path polarization splitting stereo video conversion system in the prior art
  • FIG. 3 is a schematic diagram of the alignment principle of two paths of light of the dual optical path polarization splitting stereo video conversion system shown in FIG. 2;
  • FIG. 4 is a schematic structural view of a first embodiment of a three-light path polarization splitting stereoscopic video conversion system according to the present invention
  • FIG. 5 is a schematic diagram of a three-optical path alignment principle of the three-light path polarization splitting stereo video conversion system 30 shown in FIG. 4;
  • FIG. 6 is a schematic structural diagram of an embodiment of a liquid crystal optical rotator 36 of the three-light polarization polarization stereoscopic video conversion system 30 shown in FIG. 4;
  • FIG. 7 is a schematic structural view of a second embodiment of a three-light path polarization splitting stereoscopic video conversion system according to the present invention.
  • FIG. 8 is a schematic structural view of a third embodiment of a three-light path polarization splitting stereoscopic video conversion system according to the present invention.
  • FIG. 9 is a schematic structural view of a fourth embodiment of a three-light path polarization splitting stereoscopic video conversion system according to the present invention.
  • FIG. 10 is a schematic structural view of a fifth embodiment of a three-light path polarization splitting stereoscopic video conversion system according to the present invention.
  • FIG. 11 is a schematic structural view of a sixth embodiment of a three-light path polarization splitting stereoscopic video conversion system according to the present invention.
  • FIG. 12 is a schematic structural diagram of a seventh embodiment of a three-light path polarization splitting stereoscopic video conversion system according to the present invention.
  • FIG. 13 is a schematic diagram showing the principle of a synchronous controller driving a dual liquid crystal cell in the three-light polarization polarization stereoscopic video conversion system 30 shown in FIG.
  • FIG. 4 is a schematic structural diagram of a first node embodiment of a three-light path polarization splitting stereoscopic video conversion system according to the present invention.
  • the three-beam polarization splitting stereoscopic video conversion system 30 of the present embodiment mainly includes a polarization beam splitting device 31 (shown by a broken line in FIG. 4), two reflecting devices 32 and 33, a half wave plate 34, and a compensation mirror. 35.
  • the polarization beam splitting device 31 includes an intersecting first polarization beam splitting layer 311, a second polarization beam splitting layer 312, and two transparent substrates 313 and 314 disposed together by means of a device positioning manner.
  • the first polarization beam splitting layer 311 is disposed.
  • the second polarization splitting layer 312 is disposed on the second transparent substrate 314, and the first polarization splitting layer 311 and the second polarization splitting layer 312 are respectively disposed on the first transparent substrate 313 by coating or filming.
  • the first polarization splitting layer 311 is configured to receive the natural light and video image light and then direct it to the main path and the first side path
  • the second polarized light splitting layer 312 is configured to receive the natural light and video image light and then direct it to the main path and Second side path.
  • the polarized light on the main path is perpendicular to the polarization direction of the polarized light on the side path.
  • the two transparent substrates 313 and 314 are preferably transparent glass substrates, and of course, other transparent material substrates that can replace the functions of the glass substrate.
  • the first polarization splitting layer 311 and the second polarization splitting layer 312 in this embodiment may also be disposed on the surfaces of the transparent substrates 313 and 314 facing the main path, which are not limited in the present invention.
  • the reflecting devices 32 and 33 are disposed on the first side path and the second side path, respectively.
  • the reflecting means 32 is for collecting the polarized light reflected by the first polarizing beam splitting layer 311 and directing it to the imaging screen, and causing the two pieces of image light separated by the first polarizing beam splitting layer 311 to coincide when they reach the imaging screen.
  • the reflecting means 33 is for collecting the polarized light reflected by the second polarizing beam splitting layer 312 and directing it to the imaging screen, and causing the two paths of light separated by the second polarizing beam splitting layer 312 to coincide when reaching the imaging screen.
  • the reflecting means 32 and 33 may be planar mirrors, curved mirrors or combined mirrors for the same purpose of the invention.
  • FIG. 5 is a schematic diagram of a three-optical path alignment principle of the three-light path polarization splitting stereo video conversion system shown in FIG.
  • the first half of the image light of the entire natural light video image is incident on the first polarization splitting layer 311 and then guided to the first side path and the main path, and the reflecting device 32 disposed on the first side path is used for collecting
  • the first polarization beam splitting layer 311 guides the polarized light of the first path and directs it to the imaging screen, and causes the two image light beams separated by the first polarization beam splitting layer 311 to coincide when reaching the imaging screen.
  • the second half of the image light of the entire natural light video image is first split by the second polarizing beam splitting layer 312 and then reflected by the reflecting device 33, and the separated two paths of light overlap when they reach the imaging screen.
  • the three-light path polarization splitting stereoscopic video conversion system 30 of the present embodiment has the advantages that only half of the image light aligning is realized, the light deflection is relatively small, the image overlap adjustment is small, the adjustment is convenient, and the image deformation is small.
  • a compensation mirror 35 is further disposed on the main path.
  • the half-wave plate 34 is further disposed on the two paths.
  • the half-wave plate 34 may be disposed only on the main path, and the half-wave plate 34 is used to adjust the polarization direction of the polarized light on the two paths. It is the same as the polarization direction of the polarized light of the main path.
  • three liquid crystal optical devices 36 are respectively disposed on three paths, and three liquid crystal optical devices 36 are electrically connected to a synchronous controller 37.
  • the synchronization controller 37 is configured to synchronously drive three identical liquid crystal optical devices 36 according to the left and right eye synchronization signals to change the polarization state of the incident polarized light to alternately generate left-handed circularly polarized light and right-handed circularly polarized light, and time-divided into the viewer's left.
  • the right eye through the matching polarized glasses, allows the observer to view the 3D video image.
  • the liquid crystal optical rotator 36 may be a single box liquid crystal device.
  • FIG. 6 is a schematic structural diagram of a preferred embodiment of the liquid crystal optical rotator 36 of the three-beam polarization splitting stereoscopic video conversion system 30 shown in FIG.
  • the liquid crystal rotator 36 includes a driving liquid crystal cell 361 and a compensating liquid crystal cell 362.
  • the electrodes driving the liquid crystal cell 361 and the compensation liquid crystal cell 362 may be the same as the positive electrode or the same negative electrode.
  • the driving liquid crystal cell 361 includes a first glass plate, a first conductive layer, a first liquid crystal layer, a second conductive layer, and a second glass plate which are sequentially arranged in parallel in the transmission direction of incident light.
  • the first conductive layer and the second conductive layer are transparent conductive layers, the first conductive layer is disposed on the first glass plate, and the second conductive layer is disposed on the second glass plate.
  • the compensation liquid crystal cell 362 includes a fourth glass plate, a third conductive layer, a second liquid crystal layer, a fourth conductive layer, and a third glass plate which are sequentially arranged in parallel in the light emission direction for driving the liquid crystal cell.
  • the third conductive layer and the fourth conductive layer are transparent conductive layers, the third conductive layer is disposed on the fourth glass plate, and the fourth conductive layer is disposed on the third glass plate.
  • the conductive layer and the adjacent glass plate in this embodiment are disposed together by gluing.
  • the compensation liquid crystal cell 362 does not include the fourth glass plate, and the third conductive layer is preferably glued to the second glass plate, so that the liquid crystal cell 361 and the compensation liquid crystal cell are driven.
  • the 362 shares a glass plate.
  • FIG. 13 is a schematic diagram showing the principle of driving a dual liquid crystal cell by a synchronous controller in the three-light polarization polarization stereoscopic video conversion system 30 shown in FIG.
  • the synchronizing controller 37 applies a high and low staggered AC voltage which is changed in synchronization with the left and right eye synchronizing signals to the driving liquid crystal cell 361 and the compensating liquid crystal cell 362, so that the incident linearly polarized light passes through the liquid crystal rotating device 36 and becomes alternating.
  • Left-handed circular polarization and right-handed circular polarization are examples of the driving liquid crystal cell 361 and the compensating liquid crystal cell 362, so that the incident linearly polarized light passes through the liquid crystal rotating device 36 and becomes alternating.
  • liquid crystal optical rotator 36 of the present invention other structures may be employed to achieve the same object of the present invention, which is not limited in the present invention.
  • FIG. 7 is a schematic structural diagram of a second embodiment of a three-light path polarization splitting stereoscopic video conversion system according to the present invention.
  • the three-light path polarization splitting stereoscopic video conversion system 40 of FIG. 7 mainly includes a polarization beam splitting device 41, two reflecting devices 42 and 43, a half wave plate 44, a compensation mirror 45, three liquid crystal optical devices 46, and a synchronization controller 47.
  • the three-light polarization polarization stereoscopic video conversion system 40 of the present embodiment is different from the three-light polarization polarization stereoscopic video conversion system 30 of the first embodiment in that the polarization beam splitting device 41 includes an intersecting first polarization beam splitting layer 411 and a second polarization beam splitting layer. 412. Two first right angle prisms 413 and two right angle prisms 414 and an isosceles prism 415 are disposed in contact with each other.
  • the face of the right angle edge where the first right angle prism 413 and the second right angle prism 414 meet is received by the natural light video image light, and the right angle sides of the first right angle prism 413 and the second right angle prism 414 are parallel,
  • the oblique sides of the first right angle prism 413 and the second right angle prism 414 are equal in length.
  • the first structure of the polarization beam splitting device 41 is such that the first polarization beam splitting layer 411 and the second polarization beam splitting layer 412 are respectively disposed on the oblique sides of the first right angle prism 413 and the second right angle edge 414 by coating or filming.
  • the sides of the isosceles prism 415 are respectively glued to the first polarization beam splitting layer 411 and the second polarization beam splitting layer 412.
  • the second structure of the polarizing beam splitting device 41 of FIG. 7 is that the first polarizing beam splitting layer 411 and the second polarizing beam splitting layer 412 are respectively disposed on the surface of the isosceles prism 415 by the coating or film, and the first right-angle prism
  • the kneading surfaces of the 413 and the oblique sides of the second right angle rib 414 are respectively glued to the kneading surfaces of the waists of the isosceles prism 415.
  • FIG. 8 is a schematic structural diagram of a third embodiment of a three-light path polarization splitting stereoscopic video conversion system according to the present invention.
  • the three-light-path polarization splitting stereoscopic video conversion system 50 of FIG. 8 mainly includes a polarization beam splitting device 51, two reflecting devices 52 and 53, a half-wave plate 54, a compensation mirror 55, three liquid crystal optical devices 56, and synchronization. Controller 57.
  • the polarization beam splitting device 51 includes a first polarization beam splitting layer 511, a second polarization beam splitting layer 512, a first right angle prism 513, a second right angle prism 514, and an isosceles prism 515.
  • the three-light polarization polarization stereoscopic video conversion system 50 of the present embodiment is different from the three-light polarization polarization stereoscopic video conversion system 40 of the second embodiment in that the compensation mirror 55 is glued to the surface of the isosceles prism. on.
  • FIG. 9 is a schematic structural diagram of a fourth embodiment of a three-light path polarization splitting stereoscopic video conversion system according to the present invention.
  • the three-beam polarization splitting stereoscopic video conversion system 60 mainly includes a polarization splitting device 61, two reflecting devices 62 and 63, a half-wave plate 64, a compensation mirror 65, three liquid crystal optical devices 66, and a synchronization controller 67. .
  • the polarization beam splitting device 61 includes a first polarization beam splitting layer 611, a second polarization beam splitting layer 612, a pentagonal prism 613, and an isosceles prism 614.
  • the pentagonal prism 613 has two adjacent right angles, respectively adjacent to two right angles. The two equal acute angles and the fifth angle, the two sides forming the fifth corner are equal, and the fifth corner is concave toward the inside of the pentagonal prism.
  • the three-light polarization polarization stereoscopic video conversion system 60 of the present embodiment is different from the three-light polarization polarization stereoscopic video conversion system 30 of the first embodiment in that:
  • the first polarizing beam splitting layer 611 and the second polarizing beam splitting layer 612 are respectively disposed on the surface of the fifth side of the fifth corner of the pentagonal prism 613 by coating or filming, and the first polarizing beam splitting layer 611 and the second polarizing layer are respectively disposed.
  • the light splitting layer 612 is respectively glued on the surface of the waist of the isosceles prism 614, or
  • the first polarizing beam splitting layer 611 and the second polarizing beam splitting layer 612 are respectively disposed on the surface of the waist of the isosceles prism 614 by coating or filming, and the first polarizing beam splitting layer 611 and the second polarizing beam splitting layer 612 are respectively glued and disposed. On the face of the fifth side of the fifth corner of the isosceles prism 614.
  • FIG. 10 is a schematic structural diagram of a fifth embodiment of a three-light path polarization splitting stereoscopic video conversion system according to the present invention.
  • the three-light polarization polarization stereoscopic video conversion system 70 of the present embodiment is different from the three-light polarization polarization stereoscopic video conversion system 60 shown in FIG. 7 in that the compensation mirror 75 is disposed on the bottom surface of the isosceles prism 714.
  • the compensating mirror 75 is glued to the crotch surface on which the bottom edge of the isosceles prism 714 is located.
  • FIG. 11 is a schematic structural diagram of a sixth embodiment of a three-light path polarization splitting stereoscopic video conversion system according to the present invention.
  • the three-beam polarization splitting stereoscopic video conversion system 80 of the present embodiment mainly includes a polarization splitting device 81, two reflecting devices 82 and 83, a half-wave plate 84, a compensating mirror 85, three liquid crystal optical devices 86, and a synchronization controller 87.
  • the three-beam polarization splitting stereoscopic video conversion system 80 of the present embodiment is different from the three-channel polarization splitting stereoscopic video conversion system 30 of the first embodiment in that the polarization splitting device 81 includes a first polarization splitting layer 811 and a first polarization splitting layer. 812, isosceles prism 813.
  • the first polarization splitting layer 811 and the second polarization splitting layer 812 are disposed on the top surface of the isosceles prism 813 by the coating or filming method.
  • FIG. 12 is a schematic structural diagram of a seventh embodiment of a three-light path polarization splitting stereoscopic video conversion system according to the present invention.
  • the three-beam polarization splitting stereoscopic video conversion system 90 of the present embodiment mainly includes a polarization splitting device 91, two mirrors 92 and 93, a half-wave plate 84, a compensation mirror 95, three liquid crystal optical devices 96, and a synchronization controller 97.
  • the present embodiment is different from the sixth embodiment in that the polarization beam splitting device 91 includes a first polarization beam splitting layer 911, a second polarization beam splitting layer 912, and an isosceles prism 913, a first polarization beam splitting layer 911 and a second polarization beam splitting layer.
  • the 912 is disposed on the crotch surface of the waist of the isosceles prism 913 by coating or filming
  • the compensation mirror 95 is disposed on the crotch surface of the bottom side of the isosceles prism 913.
  • the compensation mirror 95 is glued to the crucible surface on which the bottom edge of the isosceles prism 913 is located.
  • splitting and aligning principle of the natural light stereoscopic video image of the second, third, fourth, fifth, sixth and seventh embodiments of the present invention and the three-light path polarization splitting stereoscopic video conversion system of the first embodiment of the present invention The principle of splitting and aligning is the same, and will not be described again.
  • the three-light-path polarization splitting stereoscopic video conversion system of the present invention divides one video image light into three paths by using a polarization splitting device having two polarization beam splitting layers, and then uses the reflecting device to separate two beams of each polarization splitting layer.
  • the light overlaps on the imaging screen, which not only achieves high light efficiency, but also reduces the difficulty of light alignment, improves image quality, and is easy to implement.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

本发明涉及一种三光路偏振分光立体视频转换系统。该系统包括:偏振分光装置,包括相交的第一偏振分光层和第二偏振分光层,第一偏振分光层用于将接收到的自然光视频图像导向第一侧路径和主路径,第二偏振分光层用于将接收到的自然光视频图像导向第二侧路径和主路径;两个反射装置;设置于主路径上的补偿镜;设置于主路径或侧路径上的半波片;一个同步控制器以及与之电连接的三个相同的液晶旋光装置,同步控制器用于根据左右眼同步信号同步驱动三个液晶旋光装置改变入射线偏振光的偏振态,交替产生左旋圆偏光和右旋圆偏光。通过上述方式,本发明的三光路偏振分光立体视频转换系统可获得较高的光效,图像易对位,成像质量高。

Description

一种三光路偏振分光立体视频转换系统
【技术领域】
本发明涉及立体显示技术领域,特别是涉及一种三光路偏振分光立体视频转换系统。
【背景技术】
立体电影放映系统,需要将有视差的二幅视频画面,分别发送到观看者的左、右眼,再经过人的大脑合成,产生立体感。现有的技术主要有左右偏振分光方式、左右快门开关同步方式和左右红蓝分光方式。
其中,左右偏振分光方式是最为普遍使用的影院立体转换方式,目前主要有单光路偏振分光(图1所示)和双光路偏振分光(图2所示)。图1是现有技术的单光路偏振分光立体视频转换系统的结构示意图,图2是现有技术的双光路偏振分光立体视频转换系统的结构示意图。
请参见图1,放映机放映的自然光视频图像入射到偏振片11上后,仅有偏振方向平行于偏振片11的透振方向的光通过入射到液晶旋板12上。液晶同步控制器13驱动液晶板12分时同步改变入射到液晶板12上的偏振光的偏振方向,交替产生偏振方向相互垂直的第一偏振光和第二偏振光。第一偏振光和第二偏振光经过观察者的偏光眼镜选择性透过左右视差画面,使得人的左右眼只能看到各自的左右视差图像,从而在人脑形成3d画面。这种方式系统简单,容易实现,但它会损失一半以上的光通量,因此画面偏暗,光效率低。
请参见图2,放映机放映的自然光视频图像光线经过偏振分光板21后生成两路偏振方向相互垂直的偏振光,第一路偏振光透过偏振分光板21入主路径,另一路偏振光被偏振分光板21反射入侧路径。侧路径上设置有反射镜22,用于反射第二路偏振光,使得侧路径光线与主路径光线在放映机的成像屏幕上重合。主路径上设置有补偿器23,以补偿主路径偏振光和侧路径偏振光的光程差。另外,在侧路径上还设置有半波片24,使得侧路径偏振光的偏振方向与主路径偏振光的偏振方向一致。当然也可以将半波片24设置在主路径上,同样可使得两路光偏振方向相同。然后,再利用同一液晶同步控制器26同步驱动分别设置在主路径和侧路径上的液晶板25分时改变两路光的偏振方向,交替产生第一偏振光和第二偏振光。
请参见图3,图3是图2所示的双光路偏振分光立体视频转换系统的两路光对位的原理示意图。图3中箭头代表光线的传播方向。如图3所示,放映机放映的自然光视频图像的整个画面光线经偏振分光板21分成两路光,一路直接透射,另一路反射。反射光再经过反射镜22反射后在成像屏幕上与偏振分光板21透射的光线重合。由于偏振分光板21分开的两路光画面都是整个画面,所以光线的偏折角度比较大,图像重合调节量比较大,且图像形变也比较大。
因此,双光路偏振分光立体视频转换系统相较于单光路偏振分光立体视频转换系统,虽然光效可以提高100%以上,成像质量高,但主光路和侧光路中的视频画面的对位难度高,不易于实现。
为解决上述技术问题,本发明提供一种三光路偏振分光立体视频转换系统。
【发明内容】
本发明主要为解决现有单光路偏振分光立体视频转换系统光效低、双光路偏振分光立体视频转换系统图像对位难的技术问题,提供一种高光效、易对位、高成像质量的三光路偏振分光立体视频转换系统。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种三光路偏振分光立体视频转换系统,包括:
偏振分光装置,包括相交的第一偏振分光层和第二偏振分光层,第一偏振分光层用于接收自然光视频图像光线并将其导向主路径和第一侧路径,第二偏振分光层用于接收自然光视频图像光线并将其导向主路径和第二侧路径,第一偏振分光层和第二偏振分光层的透振方向相同、反射光偏振方向也相同;
两个反射装置,分别设置于第一侧路径上、第二侧路径上,一个反射装置用于使第一偏振分光层分开的两路光重合,另一个反射装置用于使第二偏振分光层分开的两路光重合;
补偿镜,设置于主路径上,用于补偿经主路径和侧路径的光程差;
半波片,设置于主路径或侧路径上,用于使三路光偏振同向;
一个同步控制器以及与之电连接的三个相同的液晶旋光装置,所述三个液晶旋光装置分别设置于主路径、第一侧路径、第二侧路径上,同步控制器用于根据左右眼同步信号同步驱动三个液晶旋光装置改变进入液晶旋光装置的偏振光的偏振态,交替产生左旋圆偏光和右旋圆偏光。
在本发明的优选实施例中,所述驱动液晶盒包括沿入射光的传递方向依次平行排列的第一玻璃板、第一导电层、第一液晶层、第二导电层和第二玻璃板,所述第一导电层和第二导电层为透明导电层,所述第一导电层设置于第一玻璃板上,所述第二导电层设置于第二玻璃板上,所述补偿液晶盒包括沿驱动液晶盒的光线出射方向依次平行排列的第三导电层、第二液晶层、第四导电层和第三玻璃板,所述第三导电层和第四导电层为透明导电层,第三导电层设置于第二玻璃板上,所述第四导电层设置于第三玻璃板上。
在本发明的一个优选实施例中,所述驱动液晶盒包括沿入射光的传递方向依次平行排列的第一玻璃板、第一导电层、第一液晶层、第二导电层和第二玻璃板,所述第一导电层和第二导电层为透明导电层,所述第一导电层设置于第一玻璃板上,所述第二导电层设置于第二玻璃板上,所述补偿液晶盒包括沿驱动液晶盒的光线出射方向依次平行排列的第四玻璃板、第三导电层、第二液晶层、第四导电层和第三玻璃板,所述第三导电层和第四导电层为透明导电层,第三导电层设置于第四玻璃板上,所述第四导电层设置于第三玻璃板上。
优选地,所述偏振分光装置包括利用机件定位方式设置在一起的两个透明基板,所述第一偏振分光层设置于第一透明基板上,所述第二偏振分光层设置于第二透明基板上,所述第一偏振分光层通过镀膜或者贴膜的方式设置于第一透明基板上,所述第二偏振分光层通过镀膜或者贴膜的方式设置于第二透明基板上。
优选,所述偏振分光装置包括等腰三棱镜以及两个相接触设置的第一直角棱镜和第二直角棱镜,且第一直角棱镜和第二直角棱镜相接处的直角边所在的楞面接收自然光视频图像光线的照射,且第一直角棱镜和第二直角棱镜相接的直角边平行,所述第一直角棱镜和第二直角棱镜的斜边等长,
其中,所述第一偏振分光层和第二偏振分光层分别通过镀膜或贴膜方式设置于第一直角棱镜与第二直角棱的斜边所在的楞面上,所述等腰三棱镜两腰所在的楞面分别与第一偏振分光层和第二偏振分光层胶合设置,或者
所述第一偏振分光层和第二偏振分光层分别通过镀膜或贴膜方式设置于等腰三棱镜两腰所在的楞面上,第一偏振分光层和第二偏振分光层分别胶合设置于两个直角三角形的斜边所在的楞面上。
在本发明的一个优选实施例中,所述补偿镜胶合设置于等腰三棱镜的底边所在的楞面上。
优选地,所述偏振分光装置包括五角棱镜和等腰三棱镜,所述五角棱镜具有两个相邻的直角、分别与两个直角临近的两个相等的锐角以及第五个角,构成第五个角的两条边相等,且第五个角凹向五角棱镜内部,
其中,所述第一偏振分光层和第二偏振分光层分别通过镀膜或贴膜方式设置于第五个角的两条边所在的楞面上,所述第一偏振分光层和第二偏振分光层分别胶合设置于等腰三棱镜两腰所在的个楞面上,或者
所述第一偏振分光层和第二偏振分光层分别通过镀膜或贴膜方式设置于等腰三棱镜两腰所在的个楞面上,所述第一偏振分光层和第二偏振分光层分别胶合设置于第五个角的两条边所在的楞面上。
优选地,所述补偿镜胶合设置于等腰三棱镜的底边所在的楞面上。
优选,所述偏振分光装置进一步包括等腰三棱镜,所述第一偏振分光层和第二偏振分光层分别通过镀膜或贴膜方式设置于等腰三棱镜两腰所在的楞面上。
在本发明的一个优选实施例中,所述补偿镜胶合设置于等腰三棱镜的底边所在的楞面上。
优选,所述反射装置为平面或曲面反射镜。
本发明的有益效果是:区别于现有技术的情况,本发明的三光路偏振分光立体视频转换系统利用具有两个偏振分光层的偏振分光装置将一路视频图像光分成三路光,再利用反射装置使得每一偏振分光层分开的两束光在成像屏幕上重合,不但可获得较高的光效且可降低光线对位的难度,提高成像质量,易于实现。
【附图说明】
图1是现有技术一种单光路偏振分光立体视频转换系统的结构示意图;
图2是现有技术一种双光路偏振分光立体视频转换系统的结构示意图;
图3是图2所示的双光路偏振分光立体视频转换系统的两路光的对位原理示意图;
图4是本发明的三光路偏振分光立体视频转换系统的第一实施例的结构示意图;
图5是图4所示的三光路偏振分光立体视频转换系统30的三光路对位原理示意图;
图6是图4所示的三光路偏振分光立体视频转换系统30的液晶旋光装置36的一实施例的结构示意图;
图7是本发明的三光路偏振分光立体视频转换系统的第二实施例的结构示意图;
图8是本发明的三光路偏振分光立体视频转换系统的第三实施例的结构示意图;
图9是本发明的三光路偏振分光立体视频转换系统的第四实施例的结构示意图;
图10是本发明的三光路偏振分光立体视频转换系统的第五实施例的结构示意图;
图11是本发明的三光路偏振分光立体视频转换系统的第六实施例的结构示意图;
图12是本发明的三光路偏振分光立体视频转换系统的第七实施例的结构示意图;
图13是图4所示的图4所示的三光路偏振分光立体视频转换系统30中同步控制器驱动双液晶盒的原理简图。
【具体实施方式】
请参见图4,图4是本发明的三光路偏振分光立体视频转换系统的第一结实施例的结构示意图。如图4所示,本实施例的三光路偏振分光立体视频转换系统30主要包括偏振分光装置31(图4中虚线框所示)、两个反射装置32和33、半波片34、补偿镜35、三个液晶旋光装置36以及同步控制器37。
本实施例中,偏振分光装置31包括相交的第一偏振分光层311、第二偏振分光层312以及利用机件定位方式设置在一起的两个透明基板313和314,第一偏振分光层311设置于第一透明基板313上,第二偏振分光层312设置于第二透明基板314上,第一偏振分光层311和第二偏振分光层312分别通过镀膜或者贴膜的方式设置于第一透明基板313和第二透明基板314上。
本实施例中,第一偏振分光层311用于接收自然光视频图像光线后将其导向主路径和第一侧路径,第二偏振分光层312用于接收自然光视频图像光线后将其导向主路径和第二侧路径。其中,主路径上的偏振光与侧路径上偏振光偏振方向垂直。
本实施例中,两个透明基板313和314优选透明玻璃基板,当然也可以是其他能替代玻璃基板功能的透明材料基板。
本实施例中的第一偏振分光层311和第二偏振分光层312也可以分别设置于透明基板313和314的面向主路径的面上,本发明对此不作限制。
本实施例中,反射装置32和33分别设置于第一侧路径和第二侧路径上。反射装置32用于收集经第一偏振分光层311反射的偏振光并将其导向成像屏幕,且使得经第一偏振分光层311分开的两路图像光到达成像屏幕时重合。反射装置33用于收集经第二偏振分光层312反射的偏振光并将其导向成像屏幕,且使得经第二偏振分光层312分开的两路光在到达成像屏幕时重合。
在本实施例中, 反射装置32和33可以为平面反射镜,也可以采用曲面反射镜,还可以是组合镜的形式来达到本发明的同样目的。
请参见图5,图5是图4所示的三光路偏振分光立体视频转换系统的三光路对位原理示意图。如图5所示,整个自然光视频图像的第一半部分图像光线入射到第一偏振分光层311后被导向第一侧路径和主路径,第一侧路径上设置的反射装置32用于收集由第一偏振分光层311导向第一路径的偏振光并将其导向成像屏幕,并使得第一偏振分光层311分开的两路图像光在到达成像屏幕上时重合。同理,整个自然光视频图像光的第二半部分图像光线先经过第二偏振分光层312的分光后再经过反射装置33反射,被分开的两路光在到达成像屏幕时重合。
因此,本实施例的三光路偏振分光立体视频转换系统30的优点在于:只需实现每半部分图像光线对位,光线偏折比较小,图像重合调节小,调节比较方便,图像形变小。
在本实施例中,为了补偿两侧路径上偏振光与主路径上的偏振光之间的光程差,在主路径上还设置有补偿镜35。
在本实施例中,两侧路径上还设置有半波片34,当然也可以仅在主路径上设置半波片34,半波片34用于将两侧路径上的偏振光的偏振方向调整到和主路径的偏振光的偏振方向一致。
在本实施例中,三个液晶旋光装置36分别设置于三个路径上,三个液晶旋光装置36电连接一个同步控制器37。同步控制器37用于根据左右眼同步信号同步驱动三个相同的液晶旋光装置36改变入射偏振光的偏振态,以交替产生左旋圆偏振光和右旋圆偏振光,分时进入观察者的左、右眼,经过相匹配的偏光眼镜,使得观察者能观看到3D视频图像。
在本发明的实施例中,液晶旋光装置36可以是单盒液晶装置。
请参见图6,图6是图4所示的三光路偏振分光立体视频转换系统30的液晶旋光装置36的一优选实施例的结构示意图。如图6所示,液晶旋光装置36包括驱动液晶盒361与补偿液晶盒362。驱动液晶盒361与补偿液晶盒362临近的电极可以同为正电极或同为负电极。
图6中,驱动液晶盒361包括沿入射光的传递方向依次平行排列的第一玻璃板、第一导电层、第一液晶层、第二导电层和第二玻璃板。其中,第一导电层和第二导电层为透明导电层,第一导电层设置于第一玻璃板上,第二导电层设置于第二玻璃板上。补偿液晶盒362包括沿驱动液晶盒的光线出射方向依次平行排列的第四玻璃板、第三导电层、第二液晶层、第四导电层和第三玻璃板。其中,第三导电层和第四导电层为透明导电层,第三导电层设置于第四玻璃板上,第四导电层设置于第三玻璃板上。其中,本实施例中的导电层和相邻的玻璃板通过胶合方式设置在一起。
在本发明的液晶旋光装置36的另一个优选实施例中,补偿液晶盒362不包括第四玻璃板,第三导电层优选胶合设置于第二玻璃板上,使得驱动液晶盒361和补偿液晶盒362共用一个玻璃板。
请参见图13,图13是图4所示的三光路偏振分光立体视频转换系统30中同步控制器驱动双液晶盒的原理简图。如图13所示,同步控制器37向驱动液晶盒361和补偿液晶盒362施加与左右眼同步信号同步改变的高低交错的交流电压,使得入射的线偏振光经过液晶旋转装置36之后变成交替的左旋圆偏光和右旋圆偏光。
在本发明的液晶旋光装置36的其他实施例中,也可以采用其他结构以达到本发明的同样目的,本发明对此不作限制。
请参见图7,图7是本发明的三光路偏振分光立体视频转换系统的第二实施例的结构示意图。图7中三光路偏振分光立体视频转换系统40主要包括偏振分光装置41、两个反射装置42和43、半波片44、补偿镜45、三个液晶旋光装置46以及同步控制器47。本实施例的三光路偏振分光立体视频转换系统40与第一实施例的三光路偏振分光立体视频转换系统30不同在于:偏振分光装置41包括相交的第一偏振分光层411、第二偏振分光层412、两个相接触设置的第一直角棱镜413和第二直角棱镜414、等腰三棱镜415。其中,第一直角棱镜413和第二直角棱镜414相接处的直角边所在的楞面接收自然光视频图像光线的照射,且第一直角棱镜413和第二直角棱镜414相接的直角边平行,第一直角棱镜413和第二直角棱镜414的斜边等长。
图7中,偏振分光装置41的第一种结构为:第一偏振分光层411和第二偏振分光层412分别通过镀膜或贴膜设置于第一直角棱镜413与第二直角棱414的斜边所在的楞面上,等腰三棱镜415两腰所在的楞面分别与第一偏振分光层411和第二偏振分光层412胶合设置。
图7中偏振分光装置41的第二种结构为:第一偏振分光层411和第二偏振分光层412分别通过镀膜或贴膜设置于等腰三棱镜415两腰所在的楞面上,第一直角棱镜413与第二直角棱414的斜边所在的楞面分别与等腰三棱镜415两腰所在的楞面胶合设置。
请参见图8,图8是本发明的三光路偏振分光立体视频转换系统的第三实施例的结构示意图。如图8所示,图8中三光路偏振分光立体视频转换系统50主要包括偏振分光装置51、两个反射装置52和53、半波片54、补偿镜55、三个液晶旋光装置56以及同步控制器57。本实施例中,偏振分光装置51包括第一偏振分光层511、第二偏振分光层512、第一直角棱镜513、第二直角棱镜514和等腰三棱镜515。本实施例的三光路偏振分光立体视频转换系统50与第二实施例的三光路偏振分光立体视频转换系统40的不同之处在于:补偿镜55胶合设置于等腰三棱镜的底边所在的楞面上。
请参见图9,图9是本发明的三光路偏振分光立体视频转换系统的第四实施例的结构示意图。如图9所示,三光路偏振分光立体视频转换系统60主要包括偏振分光装置61、两个反射装置62和63、半波片64、补偿镜65、三个液晶旋光装置66以及同步控制器67。
本实施例中,偏振分光装置61包括第一偏振分光层611、第二偏振分光层612、五角棱镜613和等腰三棱镜614,五角棱镜613具有两个相邻的直角、分别与两个直角临近的两个相等的锐角以及第五个角,构成第五个角的两条边相等,且第五个角凹向五角棱镜内部。
本实施例的三光路偏振分光立体视频转换系统60与第一实施例的三光路偏振分光立体视频转换系统30的不同之处在于:
第一偏振分光层611、第二偏振分光层612分别通过镀膜或贴膜的方式设置于五角棱镜613第五个角的两条边所在的楞面上,且第一偏振分光层611、第二偏振分光层612分别胶合设置于等腰三棱镜614两腰所在的楞面上,或者
第一偏振分光层611和第二偏振分光层612分别通过镀膜或贴膜方式设置于等腰三棱镜614两腰所在的个楞面上,第一偏振分光层611和第二偏振分光层612分别胶合设置于等腰三棱镜614第五个角的两条边所在的楞面上。
请参见图10,图10是本发明的三光路偏振分光立体视频转换系统的第五实施例的结构示意图。本实施例的三光路偏振分光立体视频转换系统70与图7所示的三光路偏振分光立体视频转换系统60的不同之处在于:补偿镜75设置于等腰三棱镜714的底边所在的楞面上,优选补偿镜75胶合设置于等腰三棱镜714的底边所在的楞面上。
请参见图11,图11是本发明的三光路偏振分光立体视频转换系统的第六实施例的结构示意图。本实施例的三光路偏振分光立体视频转换系统80主要包括偏振分光装置81、两个反射装置82和83、半波片84、补偿镜85、三个液晶旋光装置86以及同步控制器87。
本实施例的三光路偏振分光立体视频转换系统80与第一实施例的三光路偏振分光立体视频转换系统30不同之处在于,偏振分光装置81包括第一偏振分光层811、第一偏振分光层812、等腰三棱镜813。第一偏振分光层811和第二偏振分光层812通过镀膜或贴膜方式设置于等腰三棱镜813两腰所在的楞面上。
请参见图12,图12是本发明的三光路偏振分光立体视频转换系统的第七实施例的结构示意图。本实施例的三光路偏振分光立体视频转化系统90主要包括偏振分光装置91、两个反射镜92和93、半波片84、补偿镜95、三个液晶旋光装置96以及同步控制器97。
本实施例与第六实施例的不同之处在于:偏振分光装置91包括第一偏振分光层911、第二偏振分光层912和等腰三棱镜913,第一偏振分光层911和第二偏振分光层912通过镀膜或贴膜方式设置于等腰三棱镜913两腰所在的楞面上,补偿镜95设置于等腰三棱镜913的底边所在的楞面上。在本实施例中,优选补偿镜95胶合设置于等腰三棱镜913的底边所在的楞面上。
本发明的第二、第三、第四、第五、第六以及第七实施例对自然光立体视频图像的分光及对位原理与本发明的第一实施例的三光路偏振分光立体视频转换系统的分光及对位原理相同,对此不再赘述。
通过上述方式,本发明的三光路偏振分光立体视频转换系统利用具有两个偏振分光层的偏振分光装置将一路视频图像光分成三路光,再利用反射装置使得每一偏振分光层分开的两束光在成像屏幕上重合,不但可获得较高的光效且可降低光线对位的难度,提高成像质量,易于实现。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (11)

  1. 一种三光路偏振分光立体视频转换系统,其特征在于,所述偏振分光立体视频转换系统包括:
    偏振分光装置,包括相交的第一偏振分光层和第二偏振分光层,第一偏振分光层用于接收自然光视频图像光线并将其导向主路径和第一侧路径,第二偏振分光层用于接收自然光视频图像光线并将其导向主路径和第二侧路径,第一偏振分光层和第二偏振分光层的透振方向相同、反射光偏振方向也相同;
    两个反射装置,分别设置于第一侧路径上、第二侧路径上,一个反射装置用于使第一偏振分光层分开的两路光重合,另一个反射装置用于使第二偏振分光层分开的两路光重合;
    补偿镜,设置于主路径上,用于补偿经主路径和侧路径的光程差;
    半波片,设置于主路径或侧路径上,用于使三路光偏振同向;
    一个同步控制器以及与之电连接的三个相同的液晶旋光装置,所述三个液晶旋光装置分别设置于主路径、第一侧路径、第二侧路径上,同步控制器用于根据左右眼同步信号同步驱动三个液晶旋光装置改变进入液晶旋光装置的偏振光的偏振态,交替产生左旋圆偏光和右旋圆偏光。
  2. 根据权利要求1所述的三光路偏振分光立体视频转换系统,其特征在于,所述驱动液晶盒包括沿入射光的传递方向依次平行排列的第一玻璃板、第一导电层、第一液晶层、第二导电层和第二玻璃板,所述第一导电层和第二导电层为透明导电层,所述第一导电层设置于第一玻璃板上,所述第二导电层设置于第二玻璃板上,所述补偿液晶盒包括沿驱动液晶盒的光线出射方向依次平行排列的第三导电层、第二液晶层、第四导电层和第三玻璃板,所述第三导电层和第四导电层为透明导电层,第三导电层设置于第二玻璃板上,所述第四导电层设置于第三玻璃板上。
  3. 根据权利要求1所述的三光路偏振分光立体视频转换系统,其特征在于,所述驱动液晶盒包括沿入射光的传递方向依次平行排列的第一玻璃板、第一导电层、第一液晶层、第二导电层和第二玻璃板,所述第一导电层和第二导电层为透明导电层,所述第一导电层设置于第一玻璃板上,所述第二导电层设置于第二玻璃板上,所述补偿液晶盒包括沿驱动液晶盒的光线出射方向依次平行排列的第四玻璃板、第三导电层、第二液晶层、第四导电层和第三玻璃板,所述第三导电层和第四导电层为透明导电层,第三导电层设置于第四玻璃板上,所述第四导电层设置于第三玻璃板上。
  4. 根据权利要求1所述的三光路偏振分光立体视频转换系统,其特征在于,所述偏振分光装置包括利用机件定位方式设置在一起的两个透明基板,所述第一偏振分光层设置于第一透明基板上,所述第二偏振分光层设置于第二透明基板上,所述第一偏振分光层通过镀膜或者贴膜的方式设置于第一透明基板上,所述第二偏振分光层通过镀膜或者贴膜的方式设置于第二透明基板上。
  5. 根据权利要求1所述的三光路偏振分光立体视频转换系统,其特征在于,所述偏振分光装置包括等腰三棱镜以及两个相接触设置的第一直角棱镜和第二直角棱镜,且第一直角棱镜和第二直角棱镜相接处的直角边所在的楞面接收自然光视频图像光线的照射,且第一直角棱镜和第二直角棱镜相接的直角边平行,所述第一直角棱镜和第二直角棱镜的斜边等长,
    其中,所述第一偏振分光层和第二偏振分光层分别通过镀膜或贴膜方式设置于第一直角棱镜与第二直角棱的斜边所在的楞面上,所述等腰三棱镜两腰所在的楞面分别与第一偏振分光层和第二偏振分光层胶合设置,或者
    所述第一偏振分光层和第二偏振分光层分别通过镀膜或贴膜方式设置于等腰三棱镜两腰所在的楞面上,第一偏振分光层和第二偏振分光层分别胶合设置于两个直角三角形的斜边所在的楞面上。
  6. 根据权利要求5所述的三光路偏振分光立体视频转换系统,其特征在于,所述补偿镜胶合设置于等腰三棱镜的底边所在的楞面上。
  7. 根据权利要求1所述的三光路偏振分光立体视频转换系统,其特征在于,所述偏振分光装置包括五角棱镜和等腰三棱镜,所述五角棱镜具有两个相邻的直角、分别与两个直角临近的两个相等的锐角以及第五个角,构成第五个角的两条边相等,且第五个角凹向五角棱镜内部,
    其中,所述第一偏振分光层和第二偏振分光层分别通过镀膜或贴膜方式设置于第五个角的两条边所在的楞面上,所述第一偏振分光层和第二偏振分光层分别胶合设置于等腰三棱镜两腰所在的个楞面上,或者
    所述第一偏振分光层和第二偏振分光层分别通过镀膜或贴膜方式设置于等腰三棱镜两腰所在的个楞面上,所述第一偏振分光层和第二偏振分光层分别胶合设置于第五个角的两条边所在的楞面上。
  8. 根据权利要求7所述的三光路偏振分光立体视频转换系统,其特征在于,所述补偿镜胶合设置于等腰三棱镜的底边所在的楞面上。
  9. 根据权利要求1所述的三光路偏振分光立体视频转换系统,其特征在于,所述偏振分光装置进一步包括等腰三棱镜,所述第一偏振分光层和第二偏振分光层分别通过镀膜或贴膜方式设置于等腰三棱镜两腰所在的楞面上。
  10. 根据权利要求9所述的三光路偏振分光立体视频转换系统,其特征在于,所述补偿镜胶合设置于等腰三棱镜的底边所在的楞面上。
  11. 根据权利要求1所述的三光路偏振分光立体视频转换系统,其特征在于,所述反射装置为平面或曲面反射镜。
PCT/CN2014/079235 2014-03-28 2014-06-05 一种三光路偏振分光立体视频转换系统 WO2015143781A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410123896.2 2014-03-28
CN201410123896.2A CN104954775A (zh) 2014-03-28 2014-03-28 一种三光路偏振分光立体视频转换系统

Publications (1)

Publication Number Publication Date
WO2015143781A1 true WO2015143781A1 (zh) 2015-10-01

Family

ID=54169074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/079235 WO2015143781A1 (zh) 2014-03-28 2014-06-05 一种三光路偏振分光立体视频转换系统

Country Status (2)

Country Link
CN (1) CN104954775A (zh)
WO (1) WO2015143781A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205787403U9 (zh) * 2016-05-18 2017-04-26 颜栋卿 一种可提高光利用率的立体投影装置
CN107422520A (zh) * 2017-08-25 2017-12-01 亚世光电(鞍山)有限公司 一种高光效快速响应3d投影屏及方法
CN108427209A (zh) * 2018-04-18 2018-08-21 深圳市时代华影科技股份有限公司 立体投影光的偏振调制装置、方法及立体影像放映系统
CN112213866A (zh) * 2019-07-10 2021-01-12 深圳市慧创立科技有限公司 一种三光路高光效立体投影装置
CN117008345B (zh) * 2023-09-28 2024-01-09 北京极溯光学科技有限公司 一种成像组件及近眼显示系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1810043A (zh) * 2003-04-16 2006-07-26 逆流工程公司 2d/3d数据投影仪
CN102685541A (zh) * 2012-05-25 2012-09-19 深圳市亿思达显示科技有限公司 立体显示装置
CN203178634U (zh) * 2013-01-23 2013-09-04 深圳市亿思达显示科技有限公司 液晶盒结构
CN203405635U (zh) * 2013-09-05 2014-01-22 深圳市时代华影科技开发有限公司 一种低投射比高光效立体投影装置及立体投影系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101162296B (zh) * 2007-09-24 2010-05-26 红蝶科技(深圳)有限公司 偏振分光器及使用该偏振分光器的lcos液晶立体投影系统
CN103424878B (zh) * 2012-12-02 2015-11-25 上海理工大学 偏振分光装置
CN203365904U (zh) * 2013-01-23 2013-12-25 深圳市亿思达显示科技有限公司 立体投影系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1810043A (zh) * 2003-04-16 2006-07-26 逆流工程公司 2d/3d数据投影仪
CN102685541A (zh) * 2012-05-25 2012-09-19 深圳市亿思达显示科技有限公司 立体显示装置
CN203178634U (zh) * 2013-01-23 2013-09-04 深圳市亿思达显示科技有限公司 液晶盒结构
CN203405635U (zh) * 2013-09-05 2014-01-22 深圳市时代华影科技开发有限公司 一种低投射比高光效立体投影装置及立体投影系统

Also Published As

Publication number Publication date
CN104954775A (zh) 2015-09-30

Similar Documents

Publication Publication Date Title
WO2015143781A1 (zh) 一种三光路偏振分光立体视频转换系统
WO2015032173A1 (zh) 一种低投射比高光效立体投影装置及立体投影系统
EP0099406B1 (en) Stereoscopic television system
WO2016182280A1 (ko) 변조기 비대칭 구동을 이용한 고휘도 입체영상상영장치 및 이를 구동하는 방법
US8328362B2 (en) Waveplate compensation in projection polarization conversion system
RU2011134590A (ru) Стереоскопическая система формирования и представления изображений
JP2016173574A (ja) 高輝度立体投影用のp光線およびs光線の合成
US20070146880A1 (en) Optical device for splitting an incident light into simultaneously spectrally separated and orthogonally polarized light beams having complementary primary color bands
WO2005008617A1 (fr) Dispositif d'affichage couleur par projection
WO2017164571A1 (ko) 입체 영상 디스플레이 장치
TWI457605B (zh) 立體顯示裝置
WO2013135065A1 (zh) 偏光装置、3d显示器和3d显示系统
CN102520575A (zh) 一种基于液晶偏振旋转的三维投影显示系统
WO2017206259A1 (zh) 投影装置及投影系统
WO2012031392A1 (zh) 立体显示光源模块、立体显示成像装置和立体显示系统
WO2011143902A1 (zh) 显示装置及其驱动方法
CN202631942U (zh) 一种双液晶光阀单投影机式的立体投影系统及投影机
WO2013102318A1 (zh) 一种单投影机式立体投影系统、投影机及驱动方法
CN203433263U (zh) 3d投影系统
WO2015088236A1 (en) Beam modulator and display apparatus using the same
WO2019201020A1 (zh) 立体投影光的偏振调制装置、方法及立体影像放映系统
CN203882019U (zh) 一种利用金属偏振分光光栅的双光路立体视频转换系统
WO2013102317A1 (zh) 双液晶光阀单投影机式立体投影系统、投影机及驱动方法
WO2016004650A1 (zh) 可调节式液晶狭缝光栅、立体显示装置及其调整方法
CN207976688U (zh) 立体投影成像装置及立体影像放映系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14887617

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC - FORM 1205A (09.03.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14887617

Country of ref document: EP

Kind code of ref document: A1