WO2016003212A1 - Non-spherical amphiphilic polymer nanoparticles having interfacial properties which can be reversibly controlled by temperature, method for producing same, and composition comprising same - Google Patents

Non-spherical amphiphilic polymer nanoparticles having interfacial properties which can be reversibly controlled by temperature, method for producing same, and composition comprising same Download PDF

Info

Publication number
WO2016003212A1
WO2016003212A1 PCT/KR2015/006806 KR2015006806W WO2016003212A1 WO 2016003212 A1 WO2016003212 A1 WO 2016003212A1 KR 2015006806 W KR2015006806 W KR 2015006806W WO 2016003212 A1 WO2016003212 A1 WO 2016003212A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
temperature
nanoparticles
spherical
spherical amphiphilic
Prior art date
Application number
PCT/KR2015/006806
Other languages
French (fr)
Korean (ko)
Inventor
조은철
박지훈
임소라
한누리
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140082315A external-priority patent/KR101621148B1/en
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority claimed from KR1020150094438A external-priority patent/KR101766958B1/en
Publication of WO2016003212A1 publication Critical patent/WO2016003212A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating

Definitions

  • the present invention relates to non-spherical amphiphilic dimer nanoparticles, a method for preparing the same, and a composition comprising the same. More specifically, the present invention relates to a non-spherical shape capable of reversibly adjusting interfacial properties according to temperature at an aqueous solution-oil and an aqueous-solid interface. Amphiphilic dimer nanoparticles, a method for preparing the same and an emulsion composition or composition for forming a nanopattern comprising the same.
  • various surfactants are used to stably disperse the oil composition of an emulsion system having a water-oil composition in an aqueous phase.
  • the oil is applied to the skin interface to have an occlusive effect that prevents the evaporation of water present in the skin and at the same time serves to deliver the bioactive ingredients and drugs mixed in the oil to the skin.
  • the surfactant controls the size of the oil particles and the skin absorption of the oil by controlling the interfacial energy of the water and the oil.
  • the lithography process which is the first step in the manufacture of semiconductor chips in the electronics industry, is currently using photolithography technology based on photosensitizers capable of reacting to light stimuli such as ultraviolet rays.
  • a method of patterning a substrate using various methods has been applied, including soft lithography, a pattern using a block copolymer or nanoparticles, and for this purpose, various surfaces of the substrate are manufactured. have.
  • the substrate is patterned using an aqueous solution, when the surface property is hydrophobic, wetting is not secured, thus making it difficult to process.
  • Non-Patent Document 1 Jin-Woong Kim, Ryan J. Larsen, and David A. Weitz, J. Am. Chem. Soc., 2006, 128 (44), pp 1437414377
  • the present invention relates to non-spherical particles formed by phase separation by adding glycidyl methacrylate (GMA) different from styrene to polymerized seed particles.
  • GMA glycidyl methacrylate
  • non-spherical particles functionalized by coating gold nanoparticles on only part of them using the amphiphilic affinities. These non-spherical particles form aggregates and are used to control interfacial energy or interfacial tension between liquid-liquid and liquid-solids, but there is a limit to use because the size of aggregated particles cannot be adjusted according to temperature.
  • the size of the emulsion can be controlled by controlling the interfacial properties acting on the water-oil, and the wettability of the liquid on the solid substrate by controlling the interfacial properties between the solid substrate and the liquid having various surface properties.
  • the present invention is to provide a non-spherical amphiphilic dimer nanoparticles that can reversibly adjust the interface properties according to the temperature.
  • the present invention is to provide a method for producing non-spherical amphiphilic dimer nanoparticles that can reversibly adjust the interface properties according to the temperature.
  • the present invention is to provide an emulsion composition and a composition for forming a nanopattern comprising the non-spherical amphiphilic dimer nanoparticles.
  • the present invention provides a non-spherical amphiphilic dimer nanoparticles consisting of the first particles and the second particles, and reversibly adjust the interfacial energy with water according to the temperature in order to solve the above problems.
  • the first particles may be hydrophilic in surface characteristics
  • the second particles may be hydrophobic in surface characteristics.
  • non-spherical amphiphilic dimer nanoparticles according to the present invention is characterized in that the interfacial energy between the surface of the first particle and water is reversibly increased or decreased with temperature.
  • the first particle is characterized in that the core-shell structure comprising a core made of a hydrophobic polymer, and a shell made of a hydrophilic polymer surrounding the core
  • the second particle may be formed by protruding a hydrophobic polymer constituting the core from one point of the first particle, and the second particle is partially in contact with the first particle.
  • the hydrophobic polymer is styrene, methyl acrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, pentyl acrylate, pentyl methacrylate, glycidyl methacrylate Acrylates and polymers thereof.
  • the hydrophilic polymer may be selected from N-isopropyl acrylamide, methacrylic acid, methacrylate, allylamine, ethylene glycol methacrylate, and polymers thereof.
  • the present invention comprises the steps of (a) adding a hydrophobic monomer, an ionic initiator and a crosslinking agent to an aqueous solution containing cyclodextrin to prepare a solution in which seed particles are formed;
  • step (d) reswelling the first particles by heating and restirring to 25 to 100 ° C. after step (c);
  • step (e) adding a radical initiator after the reswelling to polymerize the hydrophobic monomer added in step (c);
  • the first particle of the core-shell structure includes a core made of a hydrophobic polymer and a hydrophilic polymer surrounding the core, the surface property of the first particle is hydrophilic, and the surface property of the second particle is hydrophobic. It is characterized by.
  • the interfacial energy between the surface of the first particle and water is reversibly increased or decreased depending on the temperature.
  • step (c) may be performed at 10 to 40 ° C. for 10 to 30 hours.
  • the size of the first particles increases and the size of the second particles decreases as the reswelling time of step (d) increases.
  • the hydrophobic monomer is styrene, methyl acrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, pentyl acrylate, pentyl methacrylate, glycy It may be at least one selected from dimethyl methacrylate.
  • the hydrophilic monomer may be at least one selected from N-isopropyl acrylamide, methacrylic acid, methacrylate, allylamine, ethylene glycol methacrylate.
  • the cyclodextrin is methyl- ⁇ -cyclodextrin (methyl- ⁇ -cyclo dextrin), ⁇ -cyclodextrin ( ⁇ -cyclodextrin), 2,6-dimethyl- ⁇ -cyclodextrin (2,6-dimethyl- ⁇ -cyclodextrin) and sulfobutyl ether- ⁇ -cyclodextrin may be one or more selected from sodium sulphobutyl ether- ⁇ -cyclodextrin.
  • the ionic initiator may be at least one selected from potassium peroxodisulfate (KPS), ammonium persulfate (APS) and sodium persulfate (SPS).
  • KPS potassium peroxodisulfate
  • APS ammonium persulfate
  • SPS sodium persulfate
  • the radical initiator is 2,2-azobisisobutyronitrile (AIBN), 2,2-azobis (2-methylisobutyronitrile), 2,2-azo Bis (2,4-dimethylvaleronitrile), benzoyl peroxide, lauryl peroxide, cumene hydroperoxide, methyl ethyl ketone peroxide, t-butyl hydroperoxide, o-chlorobenzoyl peroxide, o-methoxy Benzoyl peroxide, t-butylperoxy-2-ethylhexanoate, t-butylperoxyisobutyrate and mixtures thereof.
  • AIBN 2,2-azobisisobutyronitrile
  • 2,2-azo Bis (2,4-dimethylvaleronitrile) 2,2-azobisisobutyronitrile
  • benzoyl peroxide lauryl peroxide, cumene hydroperoxide, methyl
  • the present invention provides an emulsion composition comprising the non-spherical amphiphilic dimer nanoparticles.
  • the non-spherical amphiphilic dimer nanoparticles in the composition are arranged on an aqueous solution-oil interface to form an emulsion, and the interface between water and the first particle surface forming the non-spherical amphiphilic dimer nanoparticles
  • the energy is reversibly changed with temperature.
  • the interfacial energy between the surface of the first particle and water is reversibly changed with temperature, so that the size of the emulsion is reversibly adjusted with temperature.
  • the size of the emulsion may be 1 to 50 ⁇ m.
  • the present invention provides a composition for forming a nanopattern comprising the non-spherical amphiphilic dimer nanoparticles.
  • composition for forming a nanopattern according to the present invention is characterized in that the non-spherical amphiphilic dimer nanoparticles in the composition are arranged on the interface of the nanopattern-forming solid substrate, and the surface of the first particle and the water forming the non-spherical amphiphilic dimer nanoparticle Is characterized in that the interfacial energy of reversibly changes with temperature.
  • the interfacial energy between the surface of the first particle and water is reversibly changed with temperature
  • the interfacial energy between the aqueous dispersion including the nanoparticles and the solid substrate for forming the nanopattern is reversibly controlled. do.
  • Amphiphilic non-spherical dimer nanoparticles according to the present invention can reversibly adjust the liquid-liquid or liquid-solid interface characteristics with temperature as the hydrophilic and hydrophobic properties of the particle surface reversibly change with temperature. Therefore, the emulsion composition comprising an amphiphilic non-spherical dimer according to the present invention can maximize the delivery of drug cosmetics, such as by adjusting the size of the emulsion by adjusting the interfacial properties according to the temperature in the field of medicine, cosmetics.
  • the wettability of a liquid on a solid substrate may be controlled by using a property of reversibly adjusting interface characteristics according to temperature, thereby maximizing the efficiency of a lithography process for manufacturing a semiconductor chip.
  • 1A is a cross-sectional view of non-spherical amphiphilic dimer nanoparticles prepared according to the present invention.
  • Figure 1b is a schematic diagram showing the characteristics of the production method and non-spherical amphiphilic dimer nanoparticles according to Example 1 of the present invention.
  • Figure 1c is a schematic diagram showing the characteristics of the production method and non-spherical amphiphilic dimeric nanoparticles according to Example 2 of the present invention.
  • FIG. 2A is a SEM image of polystyrene seed particles (PS), and FIG. 2B is a SEM image of Pnipaam-co-MA coated polystyrene nanoparticles (Core-shell).
  • PS polystyrene seed particles
  • FIG. 2B is a SEM image of Pnipaam-co-MA coated polystyrene nanoparticles (Core-shell).
  • FIG. 3A is a graph illustrating a change in hydrodynamic diameter of particles according to temperature change of polystyrene nanoparticles (PS) and polystyrene nanoparticles (core-shell) coated with a hydrophilic polymer
  • FIG. 3B is zeta according to temperature change. It is a graph showing the change in potential (zeta potential).
  • FIG. 4 is an optical microscope illustrating a process of forming a pickling emulsion by adding a polystyrene monomer to a solution in which polystyrene nanoparticles (core-shell) coated with a hydrophilic polymer are formed and stirred according to Example 2 of the present invention. Image taken with microscope.
  • FIG. 5 is a cross-sectional view schematically illustrating a process of forming a pickling emulsion according to Example 2 of the present invention and a change in size of the pickling emulsion according to agitation time.
  • Figure 6 is a graph showing the size change with stirring time of the pickling emulsion formed according to Example 2 of the present invention.
  • ac is a polystyrene nanoparticles coated with a hydrophilic polymer
  • Core (shell) shows the emulsion change after injecting styrene monomer into the dispersion solution (a: after stirring for 11 hours at room temperature, b: heating to 80 °C, re-stirring and 10 minutes after AIBN addition, c: heating to 80 °C, re 20 minutes after stirring and AIBN addition)
  • dg shows the emulsion change after injection of styrene monomer into distilled water and homogenization (d: immediately after homogenization at room temperature, e: after heating to 80 ° C, f: heating to 80 ° C, re 20 min after stirring and AIBN addition, g: heating to 80 ° C., restirring and 4 hours after AIBN addition).
  • 10 is a swelling time (a: 0h, b: 1h, c: 2h, d: 6h, e: 18h, h in the process of re-swelling the first particles by re-stirring at 80 °C according to Example 2 of the present invention)
  • Figure 12a is a polystyrene nanoparticles (PS), hydrophilic polymer-coated polystyrene nanoparticles (Core-shell), non-spherical amphiphilic dimer nanoparticles according to Example 2 of the present invention prepared by varying the reswelling time (0h , 6h, 18h) and poly fluoride intensities (FL Intensity) of poly (N-isopropylacrylamide) hydrogel nanoparticles.
  • PS polystyrene nanoparticles
  • Core-shell hydrophilic polymer-coated polystyrene nanoparticles
  • non-spherical amphiphilic dimer nanoparticles according to Example 2 of the present invention prepared by varying the reswelling time (0h , 6h, 18h) and poly fluoride intensities (FL Intensity) of poly (N-isopropylacrylamide) hydrogel nanoparticles.
  • Figure 12b is a polystyrene nanoparticles (PS), hydrophilic polymer-coated polystyrene nanoparticles (Core-shell), non-spherical amphiphilic dimer nanoparticles according to Example 2 of the present invention prepared by varying the reswelling time (0h , 1h, 2h, 6h, 12h, 24h) is a graph showing the change in the diameter of the particles (hydrodynamic diameter) with the temperature change (diameter at room temperature (RT)-diameter at 50 ° C).
  • Figure 12c is a polystyrene nanoparticles (PS), polystyrene nanoparticles (Core-shell) coated with a hydrophilic polymer, non-spherical amphiphilic dimer nanoparticles according to Example 2 of the present invention prepared by varying the reswelling time (0h , 1h, 2h, 6h, 12h, 24h) is a graph showing the change in zeta potential (zeta potential at room temperature (RT)-zeta potential at 50 ° C.) with temperature changes.
  • zeta potential at room temperature (RT)-zeta potential at 50 ° C. room temperature
  • Figure 13 is a schematic diagram showing the change in the size of the emulsion formed with temperature.
  • FIG. 14 is a schematic diagram showing the contact angle of an aqueous solution containing non-spherical amphiphilic dimer nanoparticles with temperature.
  • FIG. 15a to 15d is an image showing the change in emulsion size according to the temperature of the non-spherical amphiphilic dimer nanoparticle dispersion solution and coconut oil solution prepared according to Example 1 of the present invention using an optical microscope (Fig. 15A is room temperature, FIG. 15B is 50 ° C., and FIG. 15C is cooled again to room temperature) and a graph (FIG. 15D).
  • FIG. 16A to 16C are images showing particle size changes according to the temperature of a solution of a polystyrene dispersion solution and coconut oil using an optical microscope (FIG. 16A is room temperature, FIG. 16B is 50 ° C, and FIG. 16C is again cooled to room temperature). In one case).
  • 17 is a change in the size of the emulsion according to the temperature of the non-spherical amphiphilic dimer nanoparticle dispersion solution and silicon oil (DC 200) solution prepared according to Example 2 of the present invention (a: room temperature (RT), b: 30 ° C., c: 35 ° C., d: 40 ° C., e: 45 ° C., f: 50 ° C.) is an image taken with an optical microscope.
  • RT room temperature
  • b 30 ° C.
  • c 35 ° C.
  • d 40 ° C.
  • e 45 ° C.
  • f 50 ° C.
  • Example 18 is a change in emulsion size according to the temperature of the non-spherical amphiphilic dimer nanoparticle dispersion solution prepared according to Example 2 of the present invention and a silicone oil (DC 200) solution (a: room temperature (RT), b : 30 degreeC, c: 35 degreeC, d: 40 degreeC, e: 45 degreeC f: 50 degreeC).
  • DC 200 silicone oil
  • Figure 19 is the size of the emulsion while repeating cooling to room temperature and heating to 50 ° C solution of a non-spherical amphiphilic dimer nanoparticle dispersion solution prepared in Example 2 of the present invention and a silicone oil (DC 200) The change was taken with an optical microscope.
  • FIG. 21A is a surface of polystyrene film of water, polystyrene dispersion (PS) at room temperature (25 ° C.) and 50 ° C., and a non-spherical amphiphilic dimer dispersion solution prepared according to Example 1 of the present invention. Image showing contact angle for.
  • PS polystyrene dispersion
  • FIG. 21A Image showing contact angle for.
  • Figure 21b is a polydimethyl of water (water), polystyrene dispersion (PS) at room temperature (25 °C) and 50 °C and non-spherical amphiphilic dimer (dimer) dispersion solution prepared according to Example 1 of the present invention Image showing contact angle with respect to siloxane film surface.
  • FIG. 21C is a surface of polystyrene film of water, polystyrene dispersion (PS) at room temperature (25 ° C.) and 50 ° C., and a non-spherical amphiphilic dimer dispersion solution prepared according to Example 1 of the present invention. And a contact angle with respect to the polydimethylsiloxane film surface, respectively.
  • PS polystyrene dispersion
  • Figure 22a shows the contact angle to the surface of the polystyrene film of water at room temperature (25 °C) and 50 °C, non-spherical amphiphilic dimer nanoparticles (Dimer) dispersion solution prepared according to Example 2 of the present invention Image.
  • 22b is water prepared at room temperature (25 ° C.) and 50 ° C., polystyrene nanoparticles (PS), hydrophilic polymer-coated polystyrene nanoparticles (Core-shell, CS), and prepared according to Example 2 of the present invention.
  • PS polystyrene nanoparticles
  • Core-shell, CS hydrophilic polymer-coated polystyrene nanoparticles
  • Example 2 of the present invention Is a graph showing the contact angle to the surface of the polystyrene film of the non-spherical amphiphilic dimer nanoparticles (Dimer) dispersion solution.
  • FIG. 23A is a polydimethylsiloxane (PDMS) film of water at room temperature (25 ° C.) and 50 ° C., a non-spherical amphiphilic dimer nanoparticle (Dimer) dispersion solution prepared according to Example 2 of the present invention. This image shows the contact angle to the surface.
  • PDMS polydimethylsiloxane
  • Example 23b is prepared according to Example 2 of the present invention and water, polystyrene nanoparticles (PS), hydrophilic polymer-coated polystyrene nanoparticles (Core-shell, CS) at room temperature (25 ° C.) and 50 ° C.
  • PS polystyrene nanoparticles
  • Core-shell, CS hydrophilic polymer-coated polystyrene nanoparticles
  • PDMS polydimethylsiloxane
  • the present inventors can effectively control the interface characteristics such as interfacial energy or interfacial tension between liquid-liquid and liquid-solid, and in particular, the interfacial characteristics between water and oil are reversibly adjusted according to temperature and dispersed in water. It is possible to control the size of the oil and the function of the oil, non-spherical, characterized in that it is possible to adjust the interface properties of the water and the substrate reversibly according to the temperature to control the wettability of the substrate or pattern of particles patterned on the substrate Amphiphilic dimeric nanoparticles, and methods for their preparation are provided.
  • Figure 1a is a cross-sectional view of the non-spherical amphiphilic dimer nanoparticles prepared in accordance with the present invention.
  • Non-spherical amphiphilic dimer nanoparticles according to the present invention is composed of the first particles and the second particles, it is characterized in that the reversible energy control with the water depending on the temperature.
  • the first particle is characterized in that the core-shell structure comprising a core made of a hydrophobic polymer, and a shell made of a hydrophilic polymer surrounding the core
  • the second particle may be formed by protruding a hydrophobic polymer constituting the core from one point of the first particle, and the second particle is partially in contact with the first particle.
  • the first particles in contact with the second particles are characterized in that the phase separation without mixing with each other.
  • the first particle has a hydrophilic surface property
  • the second particle has a hydrophobic surface property, thereby implementing amphiphilic properties.
  • the surface of the first particle has a hydrophilic property, but it is characterized by a change in hydrophobicity as the temperature increases, in particular, the change of the surface hydrophilicity and hydrophobic properties is characterized in that it is reversible with temperature changes.
  • RT room temperature
  • the hydrophobic polymer is styrene, methyl acrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, pentyl acrylate, pentyl methacrylate, glycidyl methacryl
  • the hydrophilic polymer may be selected from N-isopropylacrylamide, methacrylic acid, methacrylate, allylamine, ethylene glycol methacrylate, and polymers thereof.
  • Example 1B shows a method for preparing non-spherical amphiphilic dimer nanoparticles and a non-spherical amphiphilic dimer nanoparticle according to Example 1 of the present invention.
  • the hydrophilic polymer material having different phases is coated on the seed particles made of the hydrophobic polymer material to form seed particles surface-coated with the hydrophilic polymer.
  • the monomer first monomer
  • the hydrophobic polymer in the seed particles increases and protrudes out of the seed particle surface to form second particles.
  • the size of the second particles can be controlled by the amount of the first monomer added in excess to swell the seed particles.
  • the amount of the first monomer to be added may be 5 to 15 times than the amount of the first monomer added to form the seed particles, and preferably 9 to 11 times. If it is less than the lower limit, it is insufficient to form the second particles, and if it is more than the upper limit, the second particles may grow too much to cover the first particles, thereby weakening the properties of the dimer.
  • the manufacturing method according to Example 1 of the present invention is characterized by including the following steps.
  • step (d) adding an aqueous solution containing an anionic surfactant and a radical initiator to polymerize the hydrophobic monomer added in step (c).
  • the hydrophobic monomer is styrene, methyl acrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, pentyl acrylate, pentyl methacrylate, glycidyl methacrylate It is preferable that it is 1 or more types chosen from a acrylate and these polymers.
  • the hydrophilic monomer is preferably at least one selected from N-isopropyl acrylamide, methacrylic acid, methacrylate, allylamine, ethylene glycol methacrylate and polymers thereof.
  • the cyclodextrin is methyl- ⁇ -cyclodextrin (methyl- ⁇ -cyclo dextrin), ⁇ -cyclodextrin ( ⁇ -cyclodextrin), 2,6-dimethyl- ⁇ -cyclodextrin (2 It is preferable that it is at least one selected from, 6-dimethyl- ⁇ -cyclodextrin) and sodium sulphobutyl ether- ⁇ -cyclodextrin.
  • the ionic initiator is preferably at least one selected from potassium peroxodisulfate (KPS), ammonium persulfate (APS) and sodium persulfate (SPS).
  • KPS potassium peroxodisulfate
  • APS ammonium persulfate
  • SPS sodium persulfate
  • the anionic surfactant is sodium dodecyl sulfate (SDS), diisooctyl sodium sulfosuccinate (DSS), sodium tetratradecylsulfate, sodium hexadecyl sulfate (sodiumhexadecylsulfate), sodium Dodecylbenzenesulfonate, xylenesulfonate, sodium oleate, 4-n-decylbenzenesulfonate, sodium laurate, 4-dode 4-benzene-sulfonic acid, dodecylamine hydrochloride, dodecyltrimethylammonium chloride, 4-n-octylbenzenesulfonate, ethoxylatedsulfonate (Ethoxylatedsulfonate), Decylbenzenesulfonate, Potassium oleate, n-decyl sulfate (SDS),
  • the radical initiator is 2,2-azobisisobutyronitrile (AIBN), 2,2-azobis (2-methylisobutyronitrile), 2,2-azobis ( 2,4-dimethylvaleronitrile), benzoyl peroxide, lauryl peroxide, cumene hydroperoxide, methyl ethyl ketone peroxide, t-butyl hydroperoxide, o-chlorobenzoyl peroxide, o-methoxybenzoyl per It is preferable that it is at least 1 sort (s) chosen from an oxide, t-butylperoxy-2-ethylhexanoate, t-butylperoxy isobutyrate, and mixtures thereof.
  • AIBN 2,2-azobisisobutyronitrile
  • 2,2-azobis ( 2,4-dimethylvaleronitrile) 2,4-dimethylvaleronitrile
  • benzoyl peroxide la
  • the polymerized polymer flows out of the seed particles while the first monomer polymerized into the seed particles is polymerized to form second particles, and the non-spherical particles as a whole.
  • the amount of the first monomer added may be 5 to 15 times based on the first monomer used in step (a), preferably 9 to 11 times.
  • step (c) may be carried out at 10 to 40 °C, for 10 to 30 hours.
  • 1C shows the method for preparing the non-spherical amphiphilic dimer nanoparticles according to Example 2 of the present invention and the characteristics of the non-spherical amphiphilic dimer nanoparticles, and the non-spherical amphiphilic dimer according to Example 2 of the present invention.
  • the method for preparing sieve nanoparticles includes the following steps.
  • step (d) reswelling the first particles by heating and restirring to 25 to 100 ° C. after step (c);
  • step (e) adding a radical initiator after the reswelling to polymerize the hydrophobic monomer added in step (c).
  • step (c) while the hydrophobic monomer added in step (c) is polymerized, the second particles protruding from one point of the first particles are formed, thereby forming non-spherical particles as a whole.
  • step (a) a hydrophobic monomer, an ionic initiator and a crosslinking agent are added to an aqueous solution containing cyclodextrin to prepare a solution in which seed particles are formed.
  • step (b) a solution in which the seed particles are formed and an ionic initiator are added to an aqueous solution containing a hydrophilic monomer to prepare a solution in which the first particles having a core-shell structure are formed.
  • the prepared core-shell structured first particles include a core made of a hydrophobic polymer and a hydrophilic polymer surrounding the core, the surface properties of the first particles are hydrophilic, and the surface properties of the second particles are hydrophobic. It is characterized by.
  • Figure 2a is a SEM image of the polystyrene seed particles (PS) prepared through the step (a) according to an embodiment of the present invention
  • Figure 2b is coated with Pnipaam-co-MA prepared through the step (b) SEM images of polystyrene nanoparticles (Core-shell) are shown.
  • the polystyrene seed particles (PS) prepared through the step (a) has little change in the diameter and zeta potential of the particles with temperature changes
  • the (b) Pnipaam-co-MA-coated polystyrene nanoparticles (Core-shell) prepared by the step) is reduced solubility with water when the temperature is increased due to the temperature sensitivity of Pnipaam-co-MA coated on the surface of the seed particles Phase separation occurs to reduce the particle size through shrinkage, zeta potential can also be seen that the negative (negative) properties are higher.
  • step (c) the hydrophobic monomer is further added to the solution in which the first particles are formed, followed by stirring to swell the first particles.
  • step (c) is preferably performed for 10 to 30 hours at 10 to 40 °C.
  • the core-shell structured first particles surround the added hydrophobic monomer to form a picking emulsion.
  • the size of the pickling emulsion gradually decreases with the stirring time, which is the first hydrophobic monomer is added to the first hydrophobic monomer swelling It is implied that the pickling emulsion enters or breaks down to form a smaller size pickling emulsion.
  • the amount of the hydrophobic monomer to be added may be 5 to 15 times based on the hydrophobic monomer used in step (a), preferably 7 to 11 times.
  • the step of reswelling the first particles is performed by heating and restirring at 25 to 100 ° C.
  • the reswelling time of the first particles through the restirring increases, the size of the first particles of the core-shell structure of the prepared non-spherical amphiphilic dimer nanoparticles increases, while the size of the second particles decreases.
  • the overall shape is close to the spherical shape (Figs. 9 and 10), in the present invention by adjusting the swelling time of the step (d) by controlling the size and shape of the particle surface
  • the hydrophilic and hydrophobic properties of can be controlled.
  • the higher the temperature within the above-described temperature range the larger the size of the first particle of the core-shell structure within a short time, thereby reducing the reswelling time for adjusting to a spherical shape relatively shorter
  • the size of the first particles of the core-shell structure is gradually increased, so that the reswelling time for adjusting to a shape close to a spherical shape is required.
  • step (e) a radical initiator is added to polymerize the hydrophobic monomer added through step (c), wherein the added hydrophobic monomer is polymerized, from one point of the first particle. Protruding second particles are formed, which form the non-spherical amphiphilic dimer particles according to the invention as a whole.
  • the hydrophobic monomer is styrene, methyl acrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, pentyl acrylate, pentyl methacrylate, glycidyl methacrylate It is preferable that it is at least 1 sort (s) chosen from a acrylate.
  • the hydrophilic monomer is preferably at least one selected from N-isopropyl acrylamide, methacrylic acid, methacrylate, allylamine, ethylene glycol methacrylate.
  • the cyclodextrin is methyl- ⁇ -cyclodextrin (methyl- ⁇ -cyclo dextrin), ⁇ -cyclodextrin ( ⁇ -cyclodextrin), 2,6-dimethyl- ⁇ -cyclodextrin (2 It is preferable that it is at least one selected from, 6-dimethyl- ⁇ -cyclodextrin) and sodium sulphobutyl ether- ⁇ -cyclodextrin.
  • the ionic initiator is preferably at least one selected from potassium peroxodisulfate (KPS), ammonium persulfate (APS) and sodium persulfate (SPS).
  • KPS potassium peroxodisulfate
  • APS ammonium persulfate
  • SPS sodium persulfate
  • the radical initiator is 2,2-azobisisobutyronitrile (AIBN), 2,2-azobis (2-methylisobutyronitrile), 2,2-azobis ( 2,4-dimethylvaleronitrile), benzoyl peroxide, lauryl peroxide, cumene hydroperoxide, methyl ethyl ketone peroxide, t-butyl hydroperoxide, o-chlorobenzoyl peroxide, o-methoxybenzoyl per It is preferable that it is at least 1 sort (s) chosen from an oxide, t-butylperoxy-2-ethylhexanoate, t-butylperoxy isobutyrate, and mixtures thereof.
  • AIBN 2,2-azobisisobutyronitrile
  • 2,2-azobis ( 2,4-dimethylvaleronitrile) 2,4-dimethylvaleronitrile
  • benzoyl peroxide la
  • non-spherical amphiphilic dimer nanoparticles according to the present invention prepared according to the production method of Examples 1 and 2 have both hydrophobicity and hydrophilicity and thus reversibly change the interfacial characteristics of liquid-liquid or solid-liquid according to temperature.
  • the wettability to the solid surface may be adjusted, in particular depending on the temperature.
  • non-spherical amphiphilic dimer nanoparticles without the use of a surfactant, which can greatly reduce human stimulation and toxicity, as well as swelling time (swelling) by controlling the size and shape of the particles to control the hydrophilicity and hydrophobicity of the particle surface.
  • the non-spherical amphiphilic dimer according to the present invention can form an emulsion in a water-soluble or fat-soluble solvent, the size of the emulsion can be reversibly changed with temperature by the interfacial properties that are reversibly controlled with temperature.
  • Figure 13 is a schematic diagram showing the size change of the emulsion with temperature.
  • the emulsion formed at room temperature (RT) is large in size due to the large number of non-spherical amphiphilic dimers of the present invention is formed, but at 50 °C a small number of dimers gather to form a large number of micelles of small size. Due to the change in the size of the emulsion with temperature, the contact angle between the aqueous solution containing the non-spherical amphiphilic dimer of the present invention and the surface also varies with temperature.
  • FIG. 14 is a schematic view showing the contact angle of the non-spherical amphiphilic dimer aqueous solution on the hydrophobic surface.
  • the contact angle is large at room temperature (RT), the contact angle is small at 50 °C and the size of the contact angle can be reversibly changed depending on the temperature.
  • non-spherical amphiphilic dimer according to the present invention can control the interfacial properties between liquid and liquid, it minimizes skin irritation, maximizes the feeling of use, and is included in the emulsion system of water-oil composition in medicine, cosmetics It is possible to maximize the skin delivery of the drug can be used in pharmaceutical or cosmetic compositions, such as ointments, lotions, creams, essences.
  • the non-spherical amphiphilic dimer according to the present invention can control the interfacial properties between the liquid and solid, and in particular, in the electronic industry, the interfacial energy with the hydrophobic surface is reduced in the process requiring a nanopattern based on an aqueous solution.
  • wetting can be increased, and the shape of the nanopattern can be controlled when the nanopattern is formed by reversibly controlling the interfacial property between water and the solid surface, and thus can also be used for an ink liquid composition for a printer or a composition for a lithography nanopattern process.
  • it can be used as a template in the nano-pattern forming process based on an aqueous solution to increase the wetting by reducing the interfacial energy with the hydrophobic surface.
  • the 250 ml flask was immersed in an oil reaction vessel at 80 ° C. and nitrogen was added thereto, added with a 1 wt% methyl- ⁇ -cyclodextrin (M- ⁇ -CD) aqueous solution and heated to 80 ° C., followed by potassium peroxodisulfate (KPS ) An initiator was added.
  • KPS potassium peroxodisulfate
  • An initiator was added.
  • 0.1 g of divinylbenzene (DVB), a crosslinking agent, and 9.9 g of styrene, a monomer were mixed and stirred while adding to the flask at a constant rate for 2 hours through a syringe pump. After adding the crosslinking agent and the monomer, the mixture was stirred for 1 hour and then cooled to prepare a solution in which the polystyrene seed particles were dispersed.
  • VVB divinylbenzene
  • styrene a monomer
  • the 250 ml flask was immersed in an oil reaction vessel at 80 ° C., nitrogen was added, 60 ml of the seed particle dispersion solution and 29 ml of distilled water were added, mixed, and heated to 80 ° C., followed by the addition of a potassium peroxide disulfide (KPS) initiator. It was.
  • KPS potassium peroxide disulfide
  • a solution containing 90: 10 mol% of N-isopropylacrylamide (NIPAAm) monomer and methacrylic acid (MA) monomer in distilled water 1 prepared in advance was added to the flask, followed by stirring for 4 hours to form NIPAAm and MA.
  • a solution in which the copolymer-coated polystyrene seed particles was dispersed was prepared.
  • the 250 ml flask was immersed in an oil reaction vessel at 80 ° C. and nitrogen was added thereto, added with a 1 wt% methyl- ⁇ -cyclodextrin (M- ⁇ -CD) aqueous solution and heated to 80 ° C., followed by potassium peroxodisulfate (KPS ) An initiator was added.
  • KPS potassium peroxodisulfate
  • An initiator was added.
  • 0.4 g of divinylbenzene (DVB), a crosslinking agent, and 5.6 g of styrene, a monomer, were mixed and stirred with a syringe pump at a constant rate for 2 hours. After adding the crosslinking agent and the monomer, the mixture was stirred for 1 hour and then cooled to prepare a solution in which the polystyrene seed particles were dispersed.
  • a 250 ml flask was immersed in an oil reaction vessel at 80 ° C., and nitrogen was added thereto.
  • a solution containing 90: 10 mol% of N-isopropylacrylamide (NIPAAm) monomer and methacrylic acid (MA) monomer was added to 40 ml of distilled water. Put it.
  • NIPAAm and MA having a core-shell structure were reacted for 2 hours and 30 minutes by adding a potassium peroxodisulfate (KPS) initiator.
  • KPS potassium peroxodisulfate
  • Polystyrene seed particles were reswelled. Thereafter, azobisisobutylonitrile (AIBN) initiator was added, followed by reaction for 4 hours and 30 minutes to polymerize the styrene monomer to prepare a solution in which the non-spherical amphiphilic dimer was dispersed.
  • AIBN azobisisobutylonitrile
  • the injected styrene monomer enters the first particle of the swollen core-shell structure, or the pickling emulsion is split to form an emulsion of smaller size. It can be confirmed, thereby means that the non-spherical amphiphilic dimer nanoparticles are formed according to the present invention, which can be prepared according to the production method of the present invention without the use of surfactants Imply that there is.
  • the styrene monomer was injected into distilled water and homogenized, and then the change of the emulsion was observed with an optical microscope, and the results are shown in dg of FIG. f: 20 minutes after heating to 80 ° C., restirring and adding AIBN, g: results after 4 hours after heating to 80 ° C., restirring and adding AIBN). Looking at the d-g of Figure 8 it can be seen that the size of the emulsion gradually decreases as the reaction proceeds, which suggests that the polystyrene nanoparticles can be synthesized without a surfactant.
  • the reaction was carried out by adding styrene monomer to synthesize the non-spherical amphiphilic dimer nanoparticles, and then the SEM image, the image taken by confocal microscope, and the fluorescent dye after synthesis After the adsorption, the image taken by a confocal microscope was observed, and the results are shown in FIG. 11.
  • the dimer nanoparticle according to the present invention is a core-shell structured first particle having a hydrophilic surface property and a second particle having a hydrophobic surface property. It can be confirmed that the particles, that is, amphipathic properties are measured.
  • the peaks of the polystyrene nanoparticles are the highest, and the peaks of the poly N-isopropylacrylamide hydrogel gel nanoparticles are the lowest. This is due to the physical properties of polystyrene nanoparticles and poly N-isopropylacrylamide (Poly (N-isopropylacrylamide)). Polystyrene nanoparticles have relatively hard properties, so that dyes are adsorbed on the surface of particles. Poly N-isopropylacrylamide (Poly (N-isopropylacrylamide)) has soft properties because most of the light is reflected and high peaks appear. The peak will appear.
  • the non-spherical amphiphilic dimer nanoparticles according to the present invention have a lower peak as the reswelling time increases, which is the first particle of the core-shell structure coated with a hydrophilic polymer as the reswelling time increases. While the area of is increased, the area of the second particles composed of hydrophobic polymers means that the reduced particle size is increased.
  • the non-spherical amphiphilic dimer nanoparticles according to the present invention have amphiphilic properties, and the hydrophilicity and hydrophobicity of the surface of the particles can be controlled by controlling the size and shape of the particles by controlling the reswelling time. Means. It also implies that the amphipathic control can control the physicochemical properties of the particles, including the surface properties of the dimers, in particular the softness.
  • polystyrene nanoparticles PS
  • core-shell first particles Core-shell
  • polystyrene nanoparticles have almost no difference in diameter and zeta potential of the particles according to temperature change, whereas core-shell particles of the core-shell structure have the same characteristics.
  • the difference in diameter and zeta potential was very large, and it can be seen that this is a result of the temperature sensitivity of the copolymer consisting of NIPAAm and MA, which are coated hydrophilic polymers.
  • the non-spherical amphiphilic dimer nanoparticles according to the present invention has a medium value between the polystyrene nanoparticles and the core-shell, which means that the non-spherical amphiphilic dimer nanoparticles according to the present invention have amphiphilic properties.
  • the size and shape can be changed according to the temperature, which means that the physical and chemical properties of the particles change.
  • 15a to 15d is a non-spherical amphiphilic dimer dispersion prepared according to Example 1 of the present invention and coconut oil was cooled to 25 °C, 50 °C and again 25 °C of a solution mixed in a 97.5: 2.5 volume ratio Emulsion size changes in the state are images and graphs shown using an optical microscope.
  • 16A to 16C are comparative examples of the present invention, in which the particle size change according to the temperature of the solution of the polystyrene dispersion solution prepared in Example 1 (1) and the coconut oil in a 97.5: 2.5 volume ratio The image shown using.
  • polystyrene polymers aggregate to form particles at room temperature (RT) (FIG. 16A), and when the temperature increases to 50 ° C., the particle size decreases (FIG. 16B). However, even when cooled to room temperature again, it can be confirmed that the smaller particles do not grow again (FIG. 16C). This is because unstable particles are destroyed with increasing temperature and phase separation can no longer form the particles.
  • 17 to 20 is a non-spherical amphiphilic dimer nanoparticle dispersion solution prepared according to Example 2 (reswelling time is 0 h) of the present invention and the silicone oil (DC 200) in a volume ratio of 9.9: 0.1 Changes in emulsion size with temperature of one solution are images and graphs using an optical microscope.
  • the size of the emulsion may be reversibly increased and decreased, thereby making the non-spherical shape manufactured according to the present invention.
  • Amphiphilic dimer nanoparticles change the physicochemical properties according to the temperature, and eventually can adjust the interface properties reversibly according to the temperature, it can be seen that the size of the emulsion can be reversibly changed according to the temperature.
  • Figure 21a is a polystyrene (PS) film of water (water), polystyrene dispersion (PS) and non-spherical amphiphilic dimer dispersion solution prepared according to an embodiment of the present invention at 25 °C and 50 °C Image showing the contact angle to the surface
  • Figure 21b is an image showing the contact angle to the surface of the poly-dimethylsiloxane (PDMS) film of each solution at 25 °C and 50 °C.
  • 21C is a graph showing each contact angle.
  • the difference in contact angle with temperature can be seen that the largest in the non-spherical amphiphilic dimer dispersion solution of the present invention.
  • the dimer of the present invention forms an emulsion having a different size depending on the temperature than water molecules or polystyrene polymer particles of distilled water.
  • a large number of dimers gather to form an emulsion, which increases the size of the emulsion, resulting in a large contact angle with the interface.
  • a small number of dimers gather to form an emulsion, resulting in a small emulsion and a contact angle with the interface. Becomes smaller.
  • 22A is an image showing the contact angle to the surface of the polystyrene film of water at room temperature (25 °C) and 50 °C, non-spherical amphiphilic dimer nanoparticles (Dimer) dispersion solution prepared according to an embodiment of the present invention 22b shows water, polystyrene nanoparticles (PS), hydrophilic polymer-coated polystyrene nanoparticles (Core-shell, CS) at room temperature (25 ° C.) and 50 ° C., and Example 2 of the present invention. It is a graph showing the contact angle to the surface of the polystyrene film of the non-spherical amphiphilic dimer nanoparticles (Dimer) dispersion solution prepared according to.
  • FIG. 23A is a polydimethylsiloxane (PDMS) film of water at room temperature (25 ° C.) and 50 ° C., a non-spherical amphiphilic dimer nanoparticle (Dimer) dispersion solution prepared according to Example 2 of the present invention.
  • PDMS polydimethylsiloxane
  • Figure 23b shows the contact angle to the surface
  • Figure 23b is water (poly) nanoparticles (PS), hydrophilic polymer coated polystyrene nanoparticles (Core-shell, CS) and water at room temperature (25 °C) and 50 °C
  • PDMS polydimethylsiloxane
  • the difference in contact angle with temperature is large in the first particle (CS) of the core-shell structure and the non-spherical amphiphilic dimer nanoparticle dispersion solution according to the present invention.
  • the core-shell structured first particles (CS) and non-spherical amphiphilic dimer nanoparticles according to the present invention have a hydrophilic polymer surface which is temperature sensitive, and the dimer of the present invention has a temperature This is because they form emulsions of different sizes.
  • RT room temperature
  • dimers since a large number of dimers gather to form an emulsion, the size of the emulsion increases, and the contact angle with the interface appears large.
  • 50 ° C. a small number of dimers gather to form an emulsion, so the size of the emulsion is It turns out that it becomes small and the contact angle with an interface becomes small.
  • the non-spherical amphiphilic dimer nanoparticles prepared according to the present invention will change the physicochemical properties according to the temperature, and thus can reversibly adjust the interfacial properties according to the temperature. It can be seen that the interfacial energy of can be adjusted.
  • Amphiphilic non-spherical dimer nanoparticles according to the present invention can reversibly adjust the interfacial properties between the liquid-liquid or liquid-solid as the hydrophilic and hydrophobic properties of the particle surface reversibly change with temperature, In the field of medicine and cosmetics, by controlling the size of the emulsion by adjusting the interfacial properties according to the temperature, it is possible to maximize the delivery of drug cosmetics.
  • the wettability of a liquid on a solid substrate may be controlled by using a property of reversibly adjusting interface characteristics according to temperature, thereby maximizing the efficiency of a lithography process for manufacturing a semiconductor chip.

Abstract

The present invention relates to a non-spherical amphiphilic polymer nanoparticles having interfacial properties which can be reversibly controlled by temperature at the aqueous solution-to-oil and aqueous solution-to-solid interfaces, a method for producing the non-spherical amphiphilic polymer nanoparticles, and an emulsion composition or a nanopattern-forming composition comprising same, the hydrophilic and hydrophobic properties of the particle surface of the non-spherical amphiphilic polymer nanoparticles according to the present invention reversibly changing with temperature, thus allowing the interfacial properties between liquid-to-liquid or liquid-to-solid to be reversibly controlled by temperature. Accordingly, the emulsion composition comprising the non-spherical amphiphilic polymer nanoparticles according to the present invention can maximize the delivery of drugs, cosmetics and the like in the medical and cosmetic fields by controlling the size of the emulsion by means of temperature-based control of the interfacial properties. Additionally, the effectiveness of the lithographic process for semiconductor chip production can be maximized in the electronics industry as the wettability of the liquid for a solid substrate can be controlled by using the characteristic in which the interfacial properties can be reversibly controlled by temperature. Furthermore, the present invention can be used as a printer ink composition and the like in the printer ink and paint industries to maximize the coating effectiveness on the surface of printer paper and painting surfaces having diverse surface characteristics.

Description

온도에 따라 가역적으로 계면특성 조절이 가능한 비구형 양친성 이량체 나노입자, 이의 제조방법 및 이를 포함하는 조성물Non-spherical amphiphilic dimer nanoparticles capable of reversibly controlling interfacial properties according to temperature, preparation method thereof and composition comprising same
본 발명은 비구형 양친성 이량체 나노입자, 이의 제조방법 및 이를 포함하는 조성물에 관한 것으로서, 더욱 상세하게는 수용액-오일, 수용액-고체 계면에서 온도에 따라 계면특성을 가역적으로 조절할 수 있는 비구형 양친성 이량체 나노입자, 이의 제조방법 및 이를 포함하는 에멀젼 조성물 또는 나노패턴 형성용 조성물에 관한 것이다.The present invention relates to non-spherical amphiphilic dimer nanoparticles, a method for preparing the same, and a composition comprising the same. More specifically, the present invention relates to a non-spherical shape capable of reversibly adjusting interfacial properties according to temperature at an aqueous solution-oil and an aqueous-solid interface. Amphiphilic dimer nanoparticles, a method for preparing the same and an emulsion composition or composition for forming a nanopattern comprising the same.
의약, 화장품 분야에서 물-오일을 조성으로 하는 에멀젼 시스템의 오일 조성을 수상에 안정하게 분산시키고자 다양한 계면활성제를 사용하고 있다. 에멀전 시스템을 피부에 도포시 오일은 피부계면에 도포되어 피부에 존재하는 물의 증발을 막는 밀폐 효과(occlusive effect)를 가짐과 동시에 오일성분에 섞여있는 생리활성 성분 및 약물을 피부에 전달시키는 역할을 한다. 계면활성제는 오일을 안정하게 수분에 전달시키는 목적 이외에 물과-오일의 계면에너지 조절을 통하여 오일 입자의 크기를 조절하고 오일의 피부 흡수정도를 조절하게 된다. 그러나, 과도한 양의 계면활성제를 사용할 경우에 계면활성제도 피부에 전달되어 피부자극 및 손상의 원인이 된다. 이를 해결하기 위해 고분자 입자로 이루어진 계면활성제가 도입되었으나, 단일화학성분으로 이루어진 고분자 계면활성제는 소수성 혹은 친수성이 강하여 물과 오일의 계면을 안정화시키기에 부족하고 온도에 따라서 비가역성을 가지므로 온도변화로 인한 입자 응집 등의 변성이 되면 더 이상 계면활성제로서의 역할을 할 수 없으므로 관리가 까다로운 문제점이 있다. 따라서, 이러한 문제를 해결하기 위해 많은 기술들이 제안되어 왔지만 더 많은 연구들이 필요한 실정이다.In the field of medicine and cosmetics, various surfactants are used to stably disperse the oil composition of an emulsion system having a water-oil composition in an aqueous phase. When the emulsion system is applied to the skin, the oil is applied to the skin interface to have an occlusive effect that prevents the evaporation of water present in the skin and at the same time serves to deliver the bioactive ingredients and drugs mixed in the oil to the skin. . In addition to the purpose of delivering the oil stably to the water, the surfactant controls the size of the oil particles and the skin absorption of the oil by controlling the interfacial energy of the water and the oil. However, when an excessive amount of surfactant is used, the surfactant is also delivered to the skin, causing skin irritation and damage. In order to solve this problem, a surfactant made of polymer particles has been introduced, but a polymer surfactant made of a single chemical component has a high hydrophobicity or hydrophilicity, which is insufficient to stabilize the interface between water and oil, and is irreversible depending on temperature. If the denaturation of the particles, such as aggregation can no longer act as a surfactant there is a difficult management problem. Therefore, many techniques have been proposed to solve this problem, but more research is needed.
또한, 전자산업 중에서 반도체 칩을 제조하기 위한 최초의 단계인 리소그라피(lithography) 공정은 현재 자외선 등의 광 자극에 반응할 수 있는 감광제(photosensitizer)를 기반으로 하는 포토리소그라피(photolithography) 기술이 활용되고 있다. 최근에는 다양한 방법을 활용하여 기판을 패턴하는 방법들이 적용되고 있는데, 이에는 소프트 리소그라피(soft lithography), 블록공중합체 또는 나노입자를 이용한 패턴 등이 있으며, 이를 위해서 기판의 표면을 다양하게 하여 제조하고 있다. 그러나, 수용액을 사용하여 기판을 패턴하는 경우 표면성질이 소수성일 경우 젖음성(wetting)이 확보되지 않아 공정에 어려움이 있다.In addition, the lithography process, which is the first step in the manufacture of semiconductor chips in the electronics industry, is currently using photolithography technology based on photosensitizers capable of reacting to light stimuli such as ultraviolet rays. . Recently, a method of patterning a substrate using various methods has been applied, including soft lithography, a pattern using a block copolymer or nanoparticles, and for this purpose, various surfaces of the substrate are manufactured. have. However, when the substrate is patterned using an aqueous solution, when the surface property is hydrophobic, wetting is not secured, thus making it difficult to process.
따라서, 수용액과 소수성 기판과의 계면에너지를 조절하면서 수용액에 분산되어 있는 나노입자를 기판에 전달할 수 있는 나노입자의 개발이 필요하다. 아울러 프린터용 잉크 및 페인트 산업에 있어서 다양한 표면성질을 가지고 있는 도장 표면 및 프린트 용지 표면에 효과적으로 코팅할 수 있는 기술이 필요하고, 나아가 온도에 따라 물과 기판의 표면성질을 가역적으로 조절할 수 있는 입자와 그 성질을 이용하여 젖음성을 조절하는 기술 개발이 절실히 필요한 실정이다.Accordingly, there is a need for the development of nanoparticles that can deliver nanoparticles dispersed in an aqueous solution to a substrate while controlling the interfacial energy between the aqueous solution and the hydrophobic substrate. In addition, in the ink and paint industry for printers, there is a need for a technology that can effectively coat coating surfaces and print paper surfaces having various surface properties, and furthermore, particles and particles capable of reversibly controlling the surface properties of water and substrates according to temperature. It is an urgent need to develop a technology for controlling the wettability using the properties.
종래 선행기술로서, 비특허문헌 1(Jin-Woong Kim, Ryan J. Larsen, and David A. Weitz, J. Am. Chem. Soc., 2006, 128 (44), pp 1437414377)은 스티렌을 반응물질로 하여 중합 형성된 시드 입자에 스티렌과 상이 다른 글리시딜 메타크릴레이드(GMA)를 첨가하여 상분리를 통해 형성되는 비구형 입자에 관한 것이며, 비특허문헌 2(Jin-Woong Kim, Ryan J. Larsen, and David A. Weitz, Chem. Commun., 2012, 48, 90569058)는 비구형 입자의 양친성을 이용하여 일부분에만 금 나노 입자를 코팅시켜 기능화한 비구형 입자에 관한 것이다. 이러한 비구형 입자들은 집합체를 형성하며 액체-액체간이나 액체-고체간의 계면 에너지 또는 계면 장력을 조절하는데 이용되고 있으나, 온도에 따라 집합체 입자의 크기를 조절할 수 없어 이용에 한계가 있다.As a prior art, Non-Patent Document 1 (Jin-Woong Kim, Ryan J. Larsen, and David A. Weitz, J. Am. Chem. Soc., 2006, 128 (44), pp 1437414377) reacts with styrene. The present invention relates to non-spherical particles formed by phase separation by adding glycidyl methacrylate (GMA) different from styrene to polymerized seed particles. Non-Patent Document 2 (Jin-Woong Kim, Ryan J. Larsen, and David A. Weitz, Chem. Commun., 2012, 48, 90569058) relate to non-spherical particles functionalized by coating gold nanoparticles on only part of them using the amphiphilic affinities. These non-spherical particles form aggregates and are used to control interfacial energy or interfacial tension between liquid-liquid and liquid-solids, but there is a limit to use because the size of aggregated particles cannot be adjusted according to temperature.
따라서, 온도에 따라 가역적으로, 물-오일상에 작용하는 계면특성을 조절하여 에멀젼의 크기를 조절할 수 있으며, 다양한 표면성질을 가진 고체기판과 액체간의 계면특성을 조절하여 고체 기판에 대한 액체의 습윤성(wettability)을 조절할 수 있는 비구형 입자에 대한 개발이 필요하다.Therefore, depending on the temperature, the size of the emulsion can be controlled by controlling the interfacial properties acting on the water-oil, and the wettability of the liquid on the solid substrate by controlling the interfacial properties between the solid substrate and the liquid having various surface properties. There is a need for the development of non-spherical particles that can control wettability.
따라서, 본 발명은 온도에 따라 가역적으로 계면특성을 조절할 수 있는 비구형 양친성 이량체 나노입자를 제공하고자 한다.Accordingly, the present invention is to provide a non-spherical amphiphilic dimer nanoparticles that can reversibly adjust the interface properties according to the temperature.
또한, 본 발명은 온도에 따라 가역적으로 계면특성을 조절할 수 있는 비구형 양친성 이량체 나노입자의 제조방법을 제공하고자 한다.In addition, the present invention is to provide a method for producing non-spherical amphiphilic dimer nanoparticles that can reversibly adjust the interface properties according to the temperature.
또한, 본 발명은 상기 비구형 양친성 이량체 나노입자를 포함하는 에멀젼 조성물 및 나노패턴 형성용 조성물을 제공하고자 한다.In addition, the present invention is to provide an emulsion composition and a composition for forming a nanopattern comprising the non-spherical amphiphilic dimer nanoparticles.
따라서, 본 발명은 상기 과제를 해결하기 위하여, 제1 입자 및 제2 입자로 이루어지고, 온도에 따라 가역적으로 물과의 계면에너지 조절이 가능한 것을 특징으로 하는 비구형 양친성 이량체 나노입자를 제공하고, 상기 제1 입자는 표면 특성이 친수성이고, 상기 제2 입자는 표면특성이 소수성인 것을 특징으로 한다.Accordingly, the present invention provides a non-spherical amphiphilic dimer nanoparticles consisting of the first particles and the second particles, and reversibly adjust the interfacial energy with water according to the temperature in order to solve the above problems. The first particles may be hydrophilic in surface characteristics, and the second particles may be hydrophobic in surface characteristics.
또한, 본 발명에 따른 비구형 양친성 이량체 나노입자는 상기 제1 입자 표면과 물과의 계면에너지가 온도에 따라 가역적으로 높아지거나 낮아지는 것을 특징으로 한다.In addition, the non-spherical amphiphilic dimer nanoparticles according to the present invention is characterized in that the interfacial energy between the surface of the first particle and water is reversibly increased or decreased with temperature.
또한, 본 발명에 따른 비구형 양친성 이량체 나노입자에서, 상기 제1 입자는 소수성 고분자로 이루어진 코어와, 상기 코어를 둘러싸는 친수성 고분자로 이루어진 쉘을 포함하는 코어-쉘 구조인 것을 특징으로 하고, 상기 제2 입자는 상기 제1 입자의 일점으로부터 상기 코어를 이루는 소수성 고분자가 돌출되어 형성된 것을 특징으로 하며, 상기 제2 입자는 제 1입자와 상기 일점에서 부분적으로 접해 있는 것을 특징으로 한다.In addition, in the non-spherical amphiphilic dimer nanoparticles according to the present invention, the first particle is characterized in that the core-shell structure comprising a core made of a hydrophobic polymer, and a shell made of a hydrophilic polymer surrounding the core The second particle may be formed by protruding a hydrophobic polymer constituting the core from one point of the first particle, and the second particle is partially in contact with the first particle.
본 발명의 일 실시예에 의하면, 상기 소수성 고분자는 스티렌, 메틸아크릴레이트, 에틸아크릴레이트, 에틸메타크릴레이트, 부틸아크릴레이트, 부틸베타크릴레이트, 펜틸아크릴레이트, 펜틸메타크릴레이트, 글리시딜메타크릴레이트 및 이들의 중합체 중에서 선택될 수 있다.According to one embodiment of the invention, the hydrophobic polymer is styrene, methyl acrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, pentyl acrylate, pentyl methacrylate, glycidyl methacrylate Acrylates and polymers thereof.
본 발명의 다른 일 실시예에 의하면, 상기 친수성 고분자는 N-아이소프로필아크릴아마이드, 메타크릴릭산, 메타크릴레이트, 알릴아민, 에틸렌글리콜 메타크릴레이트 및 이들의 중합체 중에서 선택될 수 있다.According to another embodiment of the present invention, the hydrophilic polymer may be selected from N-isopropyl acrylamide, methacrylic acid, methacrylate, allylamine, ethylene glycol methacrylate, and polymers thereof.
또한, 본 발명은 (a) 사이클로덱스트린이 포함된 수용액에 소수성 단량체, 이온성 개시제 및 가교제를 첨가하여 시드 입자가 형성된 용액을 제조하는 단계;In addition, the present invention comprises the steps of (a) adding a hydrophobic monomer, an ionic initiator and a crosslinking agent to an aqueous solution containing cyclodextrin to prepare a solution in which seed particles are formed;
(b) 친수성 단량체가 포함된 수용액에 상기 시드 입자가 형성된 용액 및 이온성 개시제를 첨가하여 코어-쉘 구조의 제1 입자가 형성된 용액을 제조하는 단계;(b) adding a solution in which the seed particles are formed and an ionic initiator to an aqueous solution containing a hydrophilic monomer to prepare a solution in which the first particles having a core-shell structure are formed;
(c) 상기 제1 입자가 형성된 용액에 소수성 단량체를 더 첨가 후 교반하여 상기 제1 입자를 팽윤시키는 단계;(c) further adding a hydrophobic monomer to the solution in which the first particles are formed, followed by stirring to swell the first particles;
(d) 상기 (c) 단계 후 25 내지 100 ℃로 가열 및 재교반하여 상기 제1 입자를 재팽윤시키는 단계; 및(d) reswelling the first particles by heating and restirring to 25 to 100 ° C. after step (c); And
(e) 상기 재팽윤 후 라디칼 개시제를 첨가하여 상기 (c) 단계에서 첨가된 소수성 단량체를 중합시키는 단계;를 포함하고, (e) adding a radical initiator after the reswelling to polymerize the hydrophobic monomer added in step (c); and
상기 소수성 단량체가 중합되면서 상기 제1 입자의 일점으로부터 돌출된 제2 입자를 형성하는 것을 특징으로 하는 온도에 따라 가역적으로 물과의 계면에너지 조절이 가능한 비구형 양친성 이량체 나노입자의 제조방법을 제공한다.Method for producing non-spherical amphiphilic dimer nanoparticles reversibly controlled interfacial energy with water according to the temperature characterized in that the hydrophobic monomer is polymerized to form second particles protruding from one point of the first particles. to provide.
또한, 상기 코어-쉘 구조의 제1 입자는 소수성 고분자로 이루어진 코어와 상기 코어를 둘러싸는 친수성 고분자를 포함하고, 상기 제1 입자의 표면 특성은 친수성이고, 상기 제2 입자의 표면 특성은 소수성인 것을 특징으로 한다. 또한, 상기 제1 입자 표면과 물과의 계면에너지가 온도에 따라 가역적으로 높아지거나 낮아지는 것을 특징으로 한다.In addition, the first particle of the core-shell structure includes a core made of a hydrophobic polymer and a hydrophilic polymer surrounding the core, the surface property of the first particle is hydrophilic, and the surface property of the second particle is hydrophobic. It is characterized by. In addition, the interfacial energy between the surface of the first particle and water is reversibly increased or decreased depending on the temperature.
본 발명의 일 실시예에 의하면, 상기 (c) 단계는 10 내지 40 ℃에서 10 내지 30시간 동안 수행될 수 있다.According to an embodiment of the present invention, step (c) may be performed at 10 to 40 ° C. for 10 to 30 hours.
본 발명의 다른 일 실시예에 의하면, 상기 (d) 단계의 재팽윤 시간이 증가할수록 상기 제1 입자의 크기가 증가하고, 상기 제2 입자의 크기가 감소하는 것을 특징으로 한다.According to another embodiment of the present invention, the size of the first particles increases and the size of the second particles decreases as the reswelling time of step (d) increases.
본 발명의 또 다른 일 실시예에 의하면, 상기 소수성 단량체는 스티렌, 메틸아크릴레이트, 에틸아크릴레이트, 에틸메타크릴레이트, 부틸아크릴레이트, 부틸베타크릴레이트, 펜틸아크릴레이트, 펜틸메타크릴레이트, 글리시딜메타크릴레이트 중에서 선택되는 1종 이상일 수 있다.According to another embodiment of the present invention, the hydrophobic monomer is styrene, methyl acrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, pentyl acrylate, pentyl methacrylate, glycy It may be at least one selected from dimethyl methacrylate.
본 발명의 또 다른 일 실시예에 의하면, 상기 친수성 단량체는 N-아이소프로필아크릴아마이드, 메타크릴릭산, 메타크릴레이트, 알릴아민, 에틸렌글리콜 메타크릴레이트 중에서 선택되는 1종 이상일 수 있다.According to another embodiment of the present invention, the hydrophilic monomer may be at least one selected from N-isopropyl acrylamide, methacrylic acid, methacrylate, allylamine, ethylene glycol methacrylate.
본 발명의 또 다른 일 실시예에 의하면, 상기 사이클로덱스트린은 메틸-β-사이클로덱스트린(methyl-β-cyclo dextrin), β-사이클로덱스트린(β-cyclodextrin), 2,6-디메틸-β-사이클로덱스트린 (2,6-dimethyl-β-cyclodextrin) 및 설포부틸에테르-β-사이클로덱스트린나트륨(sodium sulphobutyl ether-β-cyclodextrin) 중에서 선택되는 1종 이상일 수 있다.According to another embodiment of the present invention, the cyclodextrin is methyl-β-cyclodextrin (methyl-β-cyclo dextrin), β-cyclodextrin (β-cyclodextrin), 2,6-dimethyl-β-cyclodextrin (2,6-dimethyl-β-cyclodextrin) and sulfobutyl ether-β-cyclodextrin may be one or more selected from sodium sulphobutyl ether-β-cyclodextrin.
본 발명의 또 다른 일 실시예에 의하면, 상기 이온성 개시제는 페록소 이황산칼륨(KPS), 암모늄퍼설페이트(APS) 및 나트륨퍼설페이트(SPS) 중에서 선택되는 1종 이상일 수 있다.According to another embodiment of the present invention, the ionic initiator may be at least one selected from potassium peroxodisulfate (KPS), ammonium persulfate (APS) and sodium persulfate (SPS).
본 발명의 또 다른 일 실시예에 의하면, 상기 라디칼 개시제는 2,2-아조비스이소부티로니트릴(AIBN), 2,2-아조비스(2-메틸이소부티로니트릴), 2,2-아조비스(2,4-디메틸발레로니트릴), 벤조일퍼옥사이드, 라우릴퍼옥사이드, 큐멘하이드로퍼옥사이드, 메틸에틸케톤퍼옥사이드, t-부틸하이드로퍼옥사이드, o-클로로벤조일퍼옥사이드, o-메톡시벤조일퍼옥사이드, t-부틸퍼옥시-2-에틸헥사노에이트, t-부틸퍼옥시이소부티레이트 및 이들의 혼합물 중에서 선택되는 1종 이상일 수 있다.According to another embodiment of the present invention, the radical initiator is 2,2-azobisisobutyronitrile (AIBN), 2,2-azobis (2-methylisobutyronitrile), 2,2-azo Bis (2,4-dimethylvaleronitrile), benzoyl peroxide, lauryl peroxide, cumene hydroperoxide, methyl ethyl ketone peroxide, t-butyl hydroperoxide, o-chlorobenzoyl peroxide, o-methoxy Benzoyl peroxide, t-butylperoxy-2-ethylhexanoate, t-butylperoxyisobutyrate and mixtures thereof.
또한, 본 발명은 상기 비구형 양친성 이량체 나노입자를 포함하는 에멀젼 조성물을 제공한다.In addition, the present invention provides an emulsion composition comprising the non-spherical amphiphilic dimer nanoparticles.
본 발명에 따른 에멀젼 조성물은 조성물 내의 비구형 양친성 이량체 나노입자가 수용액-오일 계면 상에 배열하여 에멀젼을 형성하고, 비구형 양친성 이량체 나노입자를 이루는 제1 입자 표면과 물과의 계면에너지가 온도에 따라 가역적으로 변화되는 것을 특징으로 한다.In the emulsion composition according to the present invention, the non-spherical amphiphilic dimer nanoparticles in the composition are arranged on an aqueous solution-oil interface to form an emulsion, and the interface between water and the first particle surface forming the non-spherical amphiphilic dimer nanoparticles The energy is reversibly changed with temperature.
또한, 상기 제1 입자 표면과 물과의 계면에너지가 온도에 따라 가역적으로 변화되어, 에멀젼의 크기가 온도에 따라 가역적으로 조절되는 것을 특징으로 한다.In addition, the interfacial energy between the surface of the first particle and water is reversibly changed with temperature, so that the size of the emulsion is reversibly adjusted with temperature.
본 발명의 일 실시예에 의하면, 상기 에멀젼의 크기는 1 내지 50 ㎛일 수 있다.According to an embodiment of the present invention, the size of the emulsion may be 1 to 50 ㎛.
또한, 본 발명은 상기 비구형 양친성 이량체 나노입자를 포함하는 나노패턴 형성용 조성물을 제공한다.In addition, the present invention provides a composition for forming a nanopattern comprising the non-spherical amphiphilic dimer nanoparticles.
본 발명에 따른 나노패턴 형성용 조성물은 조성물 내의 비구형 양친성 이량체 나노입자가 나노패턴 형성 고체 기판의 계면 상에 배열하고, 비구형 양친성 이량체 나노입자를 이루는 제1 입자 표면과 물과의 계면에너지가 온도에 따라 가역적으로 변화되는 것을 특징으로 한다.The composition for forming a nanopattern according to the present invention is characterized in that the non-spherical amphiphilic dimer nanoparticles in the composition are arranged on the interface of the nanopattern-forming solid substrate, and the surface of the first particle and the water forming the non-spherical amphiphilic dimer nanoparticle Is characterized in that the interfacial energy of reversibly changes with temperature.
또한, 상기 제1 입자 표면과 물과의 계면에너지가 온도에 따라 가역적으로 변화됨에 따라, 상기 나노입자를 포함한 수분산액과 나노패턴 형성을 위한 고체 기판과의 계면에너지가 가역적으로 조절되는 것을 특징으로 한다.In addition, as the interfacial energy between the surface of the first particle and water is reversibly changed with temperature, the interfacial energy between the aqueous dispersion including the nanoparticles and the solid substrate for forming the nanopattern is reversibly controlled. do.
본 발명에 따른 양친성 비구형 이량체 나노입자는 입자 표면의 친수성 및 소수성 특성이 온도에 의해 가역적으로 변화함에 따라 액체-액체 또는 액체-고체 간의 계면 특성을 온도에 따라 가역적으로 조절할 수 있다. 따라서, 본 발명에 따른 양친성 비구형 이량체를 포함하는 에멀젼 조성물은 의약, 화장품 분야에서 온도에 따른 계면 특성 조절을 통해 에멀젼의 크기를 조절함으로써, 약물화장품 등의 전달을 극대화할 수 있다.Amphiphilic non-spherical dimer nanoparticles according to the present invention can reversibly adjust the liquid-liquid or liquid-solid interface characteristics with temperature as the hydrophilic and hydrophobic properties of the particle surface reversibly change with temperature. Therefore, the emulsion composition comprising an amphiphilic non-spherical dimer according to the present invention can maximize the delivery of drug cosmetics, such as by adjusting the size of the emulsion by adjusting the interfacial properties according to the temperature in the field of medicine, cosmetics.
또한, 전자산업에서 온도에 따라 가역적으로 계면 특성을 조절할 수 있는 성질을 이용하여 고체 기판에 대한 액체의 습윤성(wettability)을 조절할 수 있는바, 반도체 칩 제조를 위한 리소그래피 공정의 효율을 극대화할 수 있다. 아울러 프린터용 잉크 및 페인트 산업에서 프린터용 잉크액 조성물 등으로 이용되어 다양한 표면성질을 가지는 도장표면 및 프린트 용지의 표면으로의 코팅효율을 극대화할 수 있다.In addition, in the electronics industry, the wettability of a liquid on a solid substrate may be controlled by using a property of reversibly adjusting interface characteristics according to temperature, thereby maximizing the efficiency of a lithography process for manufacturing a semiconductor chip. . In addition, it is possible to maximize the coating efficiency of the coating surface and the surface of the print paper having a variety of surface properties used in the printer ink and paint industry, such as the ink liquid composition for the printer.
도 1a는 본 발명에 따라 제조된 비구형 양친성 이량체 나노입자의 단면도이다.1A is a cross-sectional view of non-spherical amphiphilic dimer nanoparticles prepared according to the present invention.
도 1b는 본 발명의 실시예 1에 따른 비구형 양친성 이량체 나노입자의 제조방법과 비구형 양친성 이량체 나노입자의 특성을 나타낸 모식도이다.Figure 1b is a schematic diagram showing the characteristics of the production method and non-spherical amphiphilic dimer nanoparticles according to Example 1 of the present invention.
도 1c는 본 발명의 실시예 2에 따른 비구형 양친성 이량체 나노입자의 제조방법과 비구형 양친성 이량체 나노입자의 특성을 나타낸 모식도이다.Figure 1c is a schematic diagram showing the characteristics of the production method and non-spherical amphiphilic dimeric nanoparticles according to Example 2 of the present invention.
도 2a는 폴리스티렌 시드 입자(PS)의 SEM 이미지이고, 도 2b는 Pnipaam-co-MA가 코팅된 폴리스티렌 나노입자(Core-shell)의 SEM 이미지이다.FIG. 2A is a SEM image of polystyrene seed particles (PS), and FIG. 2B is a SEM image of Pnipaam-co-MA coated polystyrene nanoparticles (Core-shell).
도 3a는 폴리스티렌 나노입자(PS)와 친수성 고분자가 코팅된 폴리스티렌 나노입자(Core-shell)의 온도 변화에 따른 입자의 직경(hydrodynamic diameter)의 변화를 나타내는 그래프이고, 도 3b는 온도 변화에 따른 제타포텐셜(zeta potential)의 변화를 나타낸 그래프이다.FIG. 3A is a graph illustrating a change in hydrodynamic diameter of particles according to temperature change of polystyrene nanoparticles (PS) and polystyrene nanoparticles (core-shell) coated with a hydrophilic polymer, and FIG. 3B is zeta according to temperature change. It is a graph showing the change in potential (zeta potential).
도 4는 본 발명의 실시예 2에 따라 친수성 고분자가 코팅된 폴리스티렌 나노입자(Core-shell)가 형성된 용액에 폴리스티렌 단량체를 첨가 후 교반하여 피커링 에멀젼(Pickering emulsion)을 형성시키는 과정을 광학현미경(Optical microscope)으로 촬영한 이미지이다.FIG. 4 is an optical microscope illustrating a process of forming a pickling emulsion by adding a polystyrene monomer to a solution in which polystyrene nanoparticles (core-shell) coated with a hydrophilic polymer are formed and stirred according to Example 2 of the present invention. Image taken with microscope.
도 5는 본 발명의 실시예 2에 따라 피커링 에멀젼(Pickering emulsion) 형성되는 과정 및 교반 시간에 따른 피커링 에멀젼의 크기변화를 개략적으로 나타낸 단면도이다.FIG. 5 is a cross-sectional view schematically illustrating a process of forming a pickling emulsion according to Example 2 of the present invention and a change in size of the pickling emulsion according to agitation time.
도 6은 본 발명의 실시예 2에 따라 형성된 피커링 에멀젼의 교반 시간에 따른 크기변화를 나타낸 그래프이다.Figure 6 is a graph showing the size change with stirring time of the pickling emulsion formed according to Example 2 of the present invention.
도 7은 본 발명의 실시예 2에 따른 비구형 양친성 이량체 나노입자의 형성 메커니즘을 확인하기 위하여 광학현미경(Optical microscope)으로 촬영한 이미지로, a-c는 친수성 고분자가 코팅된 폴리스티렌 나노입자(Core-shell) 분산 용액에 스티렌 단량체를 주입한 후의 에멀젼 변화를 나타내며(a: 상온에서 11시간 교반 후, b: 80 ℃로 가열, 재교반 및 AIBN 투입 후 10분, c: 80 ℃로 가열, 재교반 및 AIBN 투입 후 20분 후의 결과), d-g는 스티렌 단량체를 증류수에 주입 및 균질화 후의 에멀젼 변화를 나타낸다(d: 상온에서 균질화 직후, e: 80 ℃로 가열 후, f: 80 ℃로 가열, 재교반 및 AIBN 투입 후 20분, g: 80 ℃로 가열, 재교반 및 AIBN 투입 후 4시간 후의 결과).7 is an image taken with an optical microscope to confirm the formation mechanism of the non-spherical amphiphilic dimer nanoparticles according to Example 2 of the present invention, ac is a polystyrene nanoparticles coated with a hydrophilic polymer (Core (shell) shows the emulsion change after injecting styrene monomer into the dispersion solution (a: after stirring for 11 hours at room temperature, b: heating to 80 ℃, re-stirring and 10 minutes after AIBN addition, c: heating to 80 ℃, re 20 minutes after stirring and AIBN addition), dg shows the emulsion change after injection of styrene monomer into distilled water and homogenization (d: immediately after homogenization at room temperature, e: after heating to 80 ° C, f: heating to 80 ° C, re 20 min after stirring and AIBN addition, g: heating to 80 ° C., restirring and 4 hours after AIBN addition).
도 8은 본 발명에 따라 제조된 비구형 양친성 이량체 나노입자의 SEM 이미지이다.8 is an SEM image of non-spherical amphiphilic dimer nanoparticles prepared according to the present invention.
도 9는 본 발명의 실시예 2에 따라 80 ℃에서 재교반하여 상기 제1 입자를 재팽윤시키는 과정에서 팽윤시간(a:0h, b:1h, c:2h, d:6h, e:18h, h:24h)에 따른 입자의 크기 및 형태의 변화를 나타낸 SEM 이미지이다.9 is a swelling time (a: 0h, b: 1h, c: 2h, d: 6h, e: 18h, h in the process of re-swelling the first particles by re-stirring at 80 ℃ according to Example 2 of the present invention) SEM image showing changes in particle size and shape according to: 24h).
도 10은 본 발명의 실시예 2에 따라 80 ℃에서 재교반하여 상기 제1 입자를 재팽윤시키는 과정에서 팽윤시간(a:0h, b:1h, c:2h, d:6h, e:18h, h:24h)에 따른 입자의 크기 변화를 나타낸 그래프이다.10 is a swelling time (a: 0h, b: 1h, c: 2h, d: 6h, e: 18h, h in the process of re-swelling the first particles by re-stirring at 80 ℃ according to Example 2 of the present invention) A graph showing the change in particle size according to: 24h).
도 11은 본 발명의 실시예 2에 따라 제조된 비구형 양친성 이량체 나노입자가 양친성 특성을 가짐을 증명하기 위하여 코어-쉘 구조의 제1 입자에 형광 염료를 흡착시킨 후 합성된 비구형 양친성 이량체 나노입자의 SEM 이미지, 공초점 현미경(Confocal microscope)으로 촬영한 이미지 및 합성 후 형광 염료를 재흡착시킨 후 공초점 현미경으로 촬영한 이미지를 나타낸다.11 is a non-spherical compound synthesized after adsorbing a fluorescent dye to the first particles of the core-shell structure in order to prove that the non-spherical amphiphilic dimer nanoparticles prepared according to Example 2 have amphiphilic properties SEM images of amphiphilic dimer nanoparticles, images taken with a confocal microscope, and images taken with a confocal microscope after re-adsorption of a fluorescent dye after synthesis are shown.
도 12a는 폴리스티렌 나노입자(PS), 친수성 고분자가 코팅된 폴리스티렌 나노입자(Core-shell), 재팽윤 시간을 달리하여 제조한 본 발명의 실시예 2에 따른 비구형 양친성 이량체 나노입자(0h, 6h, 18h) 및 폴리 N-아이소프로필아크릴아마이드(Poly(N-isopropylacrylamide)) 수화젤 나노입자의 형광 강도(FL Intensity)를 측정한 그래프이다.Figure 12a is a polystyrene nanoparticles (PS), hydrophilic polymer-coated polystyrene nanoparticles (Core-shell), non-spherical amphiphilic dimer nanoparticles according to Example 2 of the present invention prepared by varying the reswelling time (0h , 6h, 18h) and poly fluoride intensities (FL Intensity) of poly (N-isopropylacrylamide) hydrogel nanoparticles.
도 12b는 폴리스티렌 나노입자(PS), 친수성 고분자가 코팅된 폴리스티렌 나노입자(Core-shell), 재팽윤 시간을 달리하여 제조한 본 발명의 실시예 2에 따른 비구형 양친성 이량체 나노입자(0h, 1h, 2h, 6h, 12h, 24h)의 온도 변화에 따른 입자의 직경(hydrodynamic diameter) 변화(상온(RT)에서의 직경 - 50 ℃에서의 직경)를 나타내는 그래프이다.Figure 12b is a polystyrene nanoparticles (PS), hydrophilic polymer-coated polystyrene nanoparticles (Core-shell), non-spherical amphiphilic dimer nanoparticles according to Example 2 of the present invention prepared by varying the reswelling time (0h , 1h, 2h, 6h, 12h, 24h) is a graph showing the change in the diameter of the particles (hydrodynamic diameter) with the temperature change (diameter at room temperature (RT)-diameter at 50 ° C).
도 12c는 폴리스티렌 나노입자(PS), 친수성 고분자가 코팅된 폴리스티렌 나노입자(Core-shell), 재팽윤 시간을 달리하여 제조한 본 발명의 실시예 2에 따른 비구형 양친성 이량체 나노입자(0h, 1h, 2h, 6h, 12h, 24h)의 온도 변화에 따른 제타포텐셜(zeta potential)의 변화(상온(RT)에서의 제타포텐셜 - 50 ℃에서의 제타포텐셜)를 나타낸 그래프이다.Figure 12c is a polystyrene nanoparticles (PS), polystyrene nanoparticles (Core-shell) coated with a hydrophilic polymer, non-spherical amphiphilic dimer nanoparticles according to Example 2 of the present invention prepared by varying the reswelling time (0h , 1h, 2h, 6h, 12h, 24h) is a graph showing the change in zeta potential (zeta potential at room temperature (RT)-zeta potential at 50 ° C.) with temperature changes.
도 13은 온도에 따라 형성되는 에멀젼의 크기 변화를 나타낸 모식도이다.Figure 13 is a schematic diagram showing the change in the size of the emulsion formed with temperature.
도 14는 온도에 따른 비구형 양친성 이량체 나노입자를 포함하는 수용액의 접촉각을 나타낸 모식도이다.14 is a schematic diagram showing the contact angle of an aqueous solution containing non-spherical amphiphilic dimer nanoparticles with temperature.
도 15a 내지 도 15d는 본 발명의 실시예 1에 따라 제조된 비구형 양친성 이량체 나노입자 분산 용액과 코코넛 오일을 혼합한 용액의 온도에 따른 에멀젼 크기 변화를 광학 현미경을 이용하여 나타낸 이미지(도 15a는 상온, 도 15b는 50 ℃, 도 15c는 상온으로 다시 냉각한 경우) 및 그래프(도 15d)이다.15a to 15d is an image showing the change in emulsion size according to the temperature of the non-spherical amphiphilic dimer nanoparticle dispersion solution and coconut oil solution prepared according to Example 1 of the present invention using an optical microscope (Fig. 15A is room temperature, FIG. 15B is 50 ° C., and FIG. 15C is cooled again to room temperature) and a graph (FIG. 15D).
도 16a 내지 도 16c는 폴리스티렌 분산용액과 코코넛 오일을 혼합한 용액의 온도에 따른 입자 크기 변화를 광학 현미경을 이용하여 나타낸 이미지(도 16a는 상온, 도 16b는 50 ℃, 도 16c는 상온으로 다시 냉각한 경우)이다.16A to 16C are images showing particle size changes according to the temperature of a solution of a polystyrene dispersion solution and coconut oil using an optical microscope (FIG. 16A is room temperature, FIG. 16B is 50 ° C, and FIG. 16C is again cooled to room temperature). In one case).
도 17은 본 발명의 실시예 2에 따라 제조된 비구형 양친성 이량체 나노입자 분산 용액과 실리콘 오일(DC 200)을 혼합한 용액의 온도에 따른 에멀젼의 크기 변화(a: 상온(RT), b: 30 ℃, c: 35 ℃, d: 40 ℃, e: 45 ℃ f: 50 ℃)를 광학현미경(Optical microscope)으로 촬영한 이미지이다.17 is a change in the size of the emulsion according to the temperature of the non-spherical amphiphilic dimer nanoparticle dispersion solution and silicon oil (DC 200) solution prepared according to Example 2 of the present invention (a: room temperature (RT), b: 30 ° C., c: 35 ° C., d: 40 ° C., e: 45 ° C., f: 50 ° C.) is an image taken with an optical microscope.
도 18는 본 발명의 실시예 2에 따라 제조된 비구형 양친성 이량체 나노입자 분산 용액과 실리콘 오일(DC 200)을 혼합한 용액의 온도에 따른 에멀젼 크기 변화(a: 상온(RT), b: 30 ℃, c: 35 ℃, d: 40 ℃, e: 45 ℃ f: 50 ℃)를 나타낸 그래프이다.18 is a change in emulsion size according to the temperature of the non-spherical amphiphilic dimer nanoparticle dispersion solution prepared according to Example 2 of the present invention and a silicone oil (DC 200) solution (a: room temperature (RT), b : 30 degreeC, c: 35 degreeC, d: 40 degreeC, e: 45 degreeC f: 50 degreeC).
도 19는 본 발명의 실시예 2에 따라 제조된 비구형 양친성 이량체 나노입자 분산 용액과 실리콘 오일(DC 200)을 혼합한 용액을 상온으로 냉각 및 50 ℃로 가열하는 것을 반복하면서 에멀젼의 크기 변화를 광학현미경으로 촬영한 이미지이다.Figure 19 is the size of the emulsion while repeating cooling to room temperature and heating to 50 ° C solution of a non-spherical amphiphilic dimer nanoparticle dispersion solution prepared in Example 2 of the present invention and a silicone oil (DC 200) The change was taken with an optical microscope.
도 20은 본 발명의 실시예 2에 따라 제조된 비구형 양친성 이량체 나노입자 분산 용액과 실리콘 오일(DC 200)을 혼합한 용액을 상온으로 냉각 및 50 ℃로 가열하는 것을 반복하면서 에멀젼의 크기 변화를 나타낸 그래프이다.20 is the size of the emulsion while repeating cooling to room temperature and heating to 50 ℃ the solution of the non-spherical amphiphilic dimer nanoparticle dispersion solution prepared in Example 2 of the present invention and silicon oil (DC 200) It is a graph showing the change.
도 21a는 상온(25 ℃) 및 50 ℃에서의 물(water), 폴리스티렌 분산용액(PS) 및 본 발명의 실시예 1에 따라 제조된 비구형 양친성 이량체(Dimer) 분산 용액의 폴리스티렌 필름 표면에 대한 접촉각을 나타낸 이미지이다.FIG. 21A is a surface of polystyrene film of water, polystyrene dispersion (PS) at room temperature (25 ° C.) and 50 ° C., and a non-spherical amphiphilic dimer dispersion solution prepared according to Example 1 of the present invention. Image showing contact angle for.
도 21b는 상온(25 ℃) 및 50 ℃에서의 물(water), 폴리스티렌 분산용액(PS) 및 본 발명의 실시예 1에 따라 제조된 비구형 양친성 이량체(Dimer) 분산 용액의 폴리다이메틸실록산 필름 표면에 대한 접촉각을 나타낸 이미지이다.Figure 21b is a polydimethyl of water (water), polystyrene dispersion (PS) at room temperature (25 ℃) and 50 ℃ and non-spherical amphiphilic dimer (dimer) dispersion solution prepared according to Example 1 of the present invention Image showing contact angle with respect to siloxane film surface.
도 21c는 상온(25 ℃) 및 50 ℃에서의 물(water), 폴리스티렌 분산용액(PS) 및 본 발명의 실시예 1에 따라 제조된 비구형 양친성 이량체(Dimer) 분산용액의 폴리스티렌 필름 표면 및 폴리다이메틸실록산 필름 표면에 대한 접촉각을 각각 나타낸 그래프이다.FIG. 21C is a surface of polystyrene film of water, polystyrene dispersion (PS) at room temperature (25 ° C.) and 50 ° C., and a non-spherical amphiphilic dimer dispersion solution prepared according to Example 1 of the present invention. And a contact angle with respect to the polydimethylsiloxane film surface, respectively.
도 22a는 상온(25 ℃) 및 50 ℃에서의 물(water), 본 발명의 실시예 2에 따라 제조된 비구형 양친성 이량체 나노입자(Dimer) 분산 용액의 폴리스티렌 필름 표면에 대한 접촉각을 나타낸 이미지이다.Figure 22a shows the contact angle to the surface of the polystyrene film of water at room temperature (25 ℃) and 50 ℃, non-spherical amphiphilic dimer nanoparticles (Dimer) dispersion solution prepared according to Example 2 of the present invention Image.
도 22b는 상온(25 ℃) 및 50 ℃에서의 물(water), 폴리스티렌 나노입자(PS), 친수성 고분자가 코팅된 폴리스티렌 나노입자(Core-shell, CS) 및 본 발명의 실시예 2에 따라 제조된 비구형 양친성 이량체 나노입자(Dimer) 분산 용액의 폴리스티렌 필름 표면에 대한 접촉각을 나타낸 그래프이다.22b is water prepared at room temperature (25 ° C.) and 50 ° C., polystyrene nanoparticles (PS), hydrophilic polymer-coated polystyrene nanoparticles (Core-shell, CS), and prepared according to Example 2 of the present invention. Is a graph showing the contact angle to the surface of the polystyrene film of the non-spherical amphiphilic dimer nanoparticles (Dimer) dispersion solution.
도 23a는 상온(25 ℃) 및 50 ℃에서의 물(water), 본 발명의 실시예 2에 따라 제조된 비구형 양친성 이량체 나노입자(Dimer) 분산 용액의 폴리다이메틸실록산(PDMS) 필름 표면에 대한 접촉각을 나타낸 이미지이다.FIG. 23A is a polydimethylsiloxane (PDMS) film of water at room temperature (25 ° C.) and 50 ° C., a non-spherical amphiphilic dimer nanoparticle (Dimer) dispersion solution prepared according to Example 2 of the present invention. This image shows the contact angle to the surface.
도 23b는 상온(25 ℃) 및 50 ℃에서의 물(water), 폴리스티렌 나노입자(PS), 친수성 고분자가 코팅된 폴리스티렌 나노입자(Core-shell, CS) 및 본 발명의 실시예 2에 따라 제조된 비구형 양친성 이량체 나노입자(Dimer) 분산 용액의 폴리다이메틸실록산(PDMS) 필름 표면에 대한 접촉각을 나타낸 그래프이다.23b is prepared according to Example 2 of the present invention and water, polystyrene nanoparticles (PS), hydrophilic polymer-coated polystyrene nanoparticles (Core-shell, CS) at room temperature (25 ° C.) and 50 ° C. Is a graph showing the contact angle of polydimethylsiloxane (PDMS) film surface of the prepared non-spherical amphiphilic dimer nanoparticle (Dimer) dispersion solution.
이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.
물-오일을 조성으로 하는 에멀젼 시스템에서 계면활성제 사용에 따라 발생할 수 있는 여러 가지 문제점을 극복하기 위하여 고분자 입자를 활용하여 에멀젼을 제조하는 시도가 있으나, 대부분의 고분자 입자는 소수성을 가지고 있어 물과 오일의 계면활성력이 현저히 저하되는 문제점이 있다.In order to overcome various problems caused by the use of surfactants in emulsion systems with water-oil composition, attempts have been made to prepare emulsions using polymer particles. However, most polymer particles have hydrophobic properties so that water and oil There is a problem that the interfacial activity of is significantly lowered.
따라서, 최근에 이량체 입자를 제조하여 한쪽 입자에는 친수성, 한쪽 입자에는 소수성을 부여하여 계면활성력을 증가시키는 연구가 최근 수행되고 있다. 그러나, 물과 오일간의 계면활성력을 온도에 따라 가역적으로 조절하여 물에 분산되어 있는 오일의 크기 및 오일의 기능을 조절할 수 있는 입자의 제조는 개발되지 않고 있으며, 아울러 다양한 표면성질을 가지고 있는 기판 위에 온도에 따라 물과 기판의 표면성질을 가역적으로 조절할 수 있는 입자와 그 성질을 이용하여 기판의 젖음성을 조절하거나 입자를 기판에 패턴하는 모양을 조절하는 것에 대한 기술 역시 개발되고 있지 않다.Therefore, recently, studies have been conducted to increase the interfacial force by preparing dimer particles and giving hydrophilicity to one particle and hydrophobicity to one particle. However, the production of particles that can control the size and function of the oil dispersed in water by reversibly controlling the interfacial force between water and oil according to the temperature has not been developed, and also has a variety of surface properties Above, the technology for controlling the wettability of the substrate or the pattern of patterning the particles on the substrate using the particles and the properties that can reversibly control the surface properties of the water and the substrate according to the temperature has not been developed.
이에, 본 발명자는 액체-액체간이나 액체-고체간의 계면 에너지 또는 계면 장력 등의 계면특성을 유효하게 조절할 수 있고, 특히 물과 오일간의 계면특성을 온도에 따라 가역적으로 조절하여 물에 분산되어 있는 오일의 크기 및 오일의 기능 조절이 가능하고, 온도에 따라 물과 기판의 계면특성을 가역적으로 조절할 수 있어 기판의 젖음성을 조절하거나 입자를 기판에 패턴하는 모양을 조절할 수 있는 것을 특징으로 하는 비구형 양친성 이량체 나노입자, 및 그 제조방법을 제공하고자 한다.Accordingly, the present inventors can effectively control the interface characteristics such as interfacial energy or interfacial tension between liquid-liquid and liquid-solid, and in particular, the interfacial characteristics between water and oil are reversibly adjusted according to temperature and dispersed in water. It is possible to control the size of the oil and the function of the oil, non-spherical, characterized in that it is possible to adjust the interface properties of the water and the substrate reversibly according to the temperature to control the wettability of the substrate or pattern of particles patterned on the substrate Amphiphilic dimeric nanoparticles, and methods for their preparation are provided.
하기 도 1a는 본 발명에 따라 제조된 비구형 양친성 이량체 나노입자의 단면도이다.Figure 1a is a cross-sectional view of the non-spherical amphiphilic dimer nanoparticles prepared in accordance with the present invention.
본 발명에 따른 비구형 양친성 이량체 나노입자는 제1 입자 및 제2 입자로 이루어지고, 온도에 따라 가역적으로 물과의 계면에너지 조절이 가능한 것을 특징으로 한다. 또한, 본 발명에 따른 비구형 양친성 이량체 나노입자에서, 상기 제1 입자는 소수성 고분자로 이루어진 코어와, 상기 코어를 둘러싸는 친수성 고분자로 이루어진 쉘을 포함하는 코어-쉘 구조인 것을 특징으로 하고, 상기 제2 입자는 상기 제1 입자의 일점으로부터 상기 코어를 이루는 소수성 고분자가 돌출되어 형성된 것을 특징으로 하며, 상기 제2 입자는 제 1입자와 상기 일점에서 부분적으로 접해 있는 것을 특징으로 한다. 또한, 접하고 있는 제1 입자 제2 입자는 서로 섞이지 않고 상분리 되어 있는 것을 특징으로 한다.Non-spherical amphiphilic dimer nanoparticles according to the present invention is composed of the first particles and the second particles, it is characterized in that the reversible energy control with the water depending on the temperature. In addition, in the non-spherical amphiphilic dimer nanoparticles according to the present invention, the first particle is characterized in that the core-shell structure comprising a core made of a hydrophobic polymer, and a shell made of a hydrophilic polymer surrounding the core The second particle may be formed by protruding a hydrophobic polymer constituting the core from one point of the first particle, and the second particle is partially in contact with the first particle. In addition, the first particles in contact with the second particles are characterized in that the phase separation without mixing with each other.
본 발명에 따른 비구형 양친성 이량체 나노입자에서, 상기 제1 입자는 표면 특성이 친수성이고, 상기 제2 입자는 표면특성이 소수성이어서 양친성 특성이 구현된다. 여기에서 상기 제1 입자의 표면은 친수성을 가지나, 온도가 증가함에 따라 소수성으로 변화하는 특징이 있으며 특히, 이러한 표면 친수성 및 소수성 특성의 변화는 온도 변화에 따라 가역적인 것을 특징으로 한다.In the non-spherical amphiphilic dimer nanoparticles according to the present invention, the first particle has a hydrophilic surface property, and the second particle has a hydrophobic surface property, thereby implementing amphiphilic properties. Here, the surface of the first particle has a hydrophilic property, but it is characterized by a change in hydrophobicity as the temperature increases, in particular, the change of the surface hydrophilicity and hydrophobic properties is characterized in that it is reversible with temperature changes.
하기 도 1b 및 도 1c에 나타낸 바와 같이, 본 발명에 따른 비구형 양친성 이량체 나노입자의 제1 입자 표면이 상온(RT)에서는 물과의 계면에너지(γsw 또는 γpw)가 낮으나, 50 ℃에서는 물과의 계면에너지(γsw 또는 γpw)가 높아지고, 이러한 특성은 온도를 다시 상온으로 내리면 물과의 계면에너지(γsw 또는 γpw)가 낮아지는 가역성을 갖는다. 즉, 본 발명에 따라 제조된 비구형 양친성 이량체 나노입자의 상기 제1 입자 표면과 물과의 계면에너지가 온도에 따라 가역적으로 높아지거나 낮아지는 것을 특징으로 한다.As shown in Figure 1b and Figure 1c, the surface of the first particle of the non-spherical amphiphilic dimer nanoparticles according to the present invention at room temperature (RT) interfacial energy (γ sw or γ pw is low, but the interface energy with water (γ sw or γ pw ) increases, and this characteristic is due to the interfacial energy with water (γ sw or γ pw ) has a low reversibility. That is, the interfacial energy between the surface of the first particle and the water of the non-spherical amphiphilic dimer nanoparticles prepared according to the present invention is reversibly increased or decreased depending on the temperature.
본 발명의 실시예에 의하면, 상기 소수성 고분자는 스티렌, 메틸아크릴레이트, 에틸아크릴레이트, 에틸메타크릴레이트, 부틸아크릴레이트, 부틸베타크릴레이트, 펜틸아크릴레이트, 펜틸메타크릴레이트, 글리시딜메타크릴레이트 및 이들의 중합체 중에서 선택될 수 있으며, 상기 친수성 고분자는 N-아이소프로필아크릴아마이드, 메타크릴릭산, 메타크릴레이트, 알릴아민, 에틸렌글리콜 메타크릴레이트 및 이들의 중합체 중에서 선택될 수 있다.According to an embodiment of the present invention, the hydrophobic polymer is styrene, methyl acrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, pentyl acrylate, pentyl methacrylate, glycidyl methacryl The hydrophilic polymer may be selected from N-isopropylacrylamide, methacrylic acid, methacrylate, allylamine, ethylene glycol methacrylate, and polymers thereof.
하기 도 1b는 본 발명의 실시예 1에 따른 비구형 양친성 이량체 나노입자의 제조방법 및 비구형 양친성 이량체 나노입자의 특성을 나타낸다.1B shows a method for preparing non-spherical amphiphilic dimer nanoparticles and a non-spherical amphiphilic dimer nanoparticle according to Example 1 of the present invention.
실시예 1에 따른 제조방법을 간략히 설명하면, 먼저 소수성 고분자 물질로 이루어진 시드 입자에 상이 다른 친수성 고분자 물질을 코팅하여 친수성 고분자로 표면 코팅된 시드 입자를 형성한다. 여기에 소수성 고분자의 단량체(제1 단량체)를 과량 첨가하면, 상기 단량체는 코팅된 시드 입자 내로 침투하고 코팅된 시드 입자는 팽윤(swelling)하게 된다. 시드 입자 내에서 단량체가 중합하여 제1 입자의 코어를 형성하면, 시드 입자 내 소수성 고분자가 많아지면서 시드 입자 표면 밖으로 돌출하면서 제2 입자를 형성하게 된다.Briefly describing the preparation method according to Example 1, first, the hydrophilic polymer material having different phases is coated on the seed particles made of the hydrophobic polymer material to form seed particles surface-coated with the hydrophilic polymer. When an excessive amount of the monomer (first monomer) of the hydrophobic polymer is added thereto, the monomer penetrates into the coated seed particles and the coated seed particles swell. When the monomers are polymerized in the seed particles to form the core of the first particles, the hydrophobic polymer in the seed particles increases and protrudes out of the seed particle surface to form second particles.
상기 제2 입자의 크기는 시드 입자를 팽윤시키기 위해 과량으로 가해주는 제1 단량체 양에 의해 조절될 수 있다. 가해주는 제1 단량체의 양은 시드 입자를 형성하기 위해 첨가한 제1 단량체의 양 보다 5 내지 15 배일 수 있으며, 바람직하게는 9 내지 11 배일 수 있다. 상기 하한치 미만이면 제2 입자를 형성하기에 부족하며, 상기 상한치 초과이면 제2 입자가 너무 성장하여 제1 입자를 덮어 이량체의 특성이 약해질 수 있다.The size of the second particles can be controlled by the amount of the first monomer added in excess to swell the seed particles. The amount of the first monomer to be added may be 5 to 15 times than the amount of the first monomer added to form the seed particles, and preferably 9 to 11 times. If it is less than the lower limit, it is insufficient to form the second particles, and if it is more than the upper limit, the second particles may grow too much to cover the first particles, thereby weakening the properties of the dimer.
이하에서는 본 발명의 실시예 1에 따른 제조방법을 보다 구체적으로 설명한다. 본 발명의 실시예 1에 따른 제조방법은 하기의 단계를 포함하는 것을 특징으로 한다.Hereinafter, the manufacturing method according to Example 1 of the present invention will be described in more detail. The manufacturing method according to Example 1 of the present invention is characterized by including the following steps.
(a) 사이클로덱스트린이 포함된 수용액에 소수성 단량체, 이온성 개시제 및 가교제를 첨가하여 시드 입자를 형성하는 단계,(a) adding a hydrophobic monomer, an ionic initiator and a crosslinking agent to an aqueous solution containing cyclodextrin to form seed particles,
(b) 친수성 단량체가 포함된 수용액을 첨가하여 시드 입자를 코팅하는 단계,(b) coating the seed particles by adding an aqueous solution containing a hydrophilic monomer,
(c) 소수성 단량체를 더 첨가하여 상기 코팅된 시드 입자를 팽윤시키는 단계,(c) further adding a hydrophobic monomer to swell the coated seed particles,
(d) 음이온성 계면활성제가 포함된 수용액 및 라디칼 개시제를 첨가하여, 상기 (c) 단계에서 첨가된 소수성 단량체를 중합하는 단계.(d) adding an aqueous solution containing an anionic surfactant and a radical initiator to polymerize the hydrophobic monomer added in step (c).
본 발명의 바람직한 실시예에 의하면, 상기 소수성 단량체는 스티렌, 메틸아크릴레이트, 에틸아크릴레이트, 에틸메타크릴레이트, 부틸아크릴레이트, 부틸베타크릴레이트, 펜틸아크릴레이트, 펜틸메타크릴레이트, 글리시딜메타크릴레이트 및 이들의 중합체 중에서 선택되는 1종 이상인 것이 바람직하다.According to a preferred embodiment of the present invention, the hydrophobic monomer is styrene, methyl acrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, pentyl acrylate, pentyl methacrylate, glycidyl methacrylate It is preferable that it is 1 or more types chosen from a acrylate and these polymers.
본 발명의 바람직한 실시예에 의하면, 상기 친수성 단량체는 N-아이소프로필아크릴아마이드, 메타크릴릭산, 메타크릴레이트, 알릴아민, 에틸렌글리콜 메타크릴레이트 및 이들의 중합체 중에서 선택되는 1종 이상인 것이 바람직하다.According to a preferred embodiment of the present invention, the hydrophilic monomer is preferably at least one selected from N-isopropyl acrylamide, methacrylic acid, methacrylate, allylamine, ethylene glycol methacrylate and polymers thereof.
본 발명의 바람직한 실시예에 의하면, 상기 사이클로덱스트린은 메틸-β-사이클로덱스트린(methyl-β-cyclo dextrin), β-사이클로덱스트린(β-cyclodextrin), 2,6-디메틸-β-사이클로덱스트린 (2,6-dimethyl-β-cyclodextrin) 및 설포부틸에테르-β-사이클로덱스트린나트륨(sodium sulphobutyl ether-β-cyclodextrin) 중에서 선택되는 1종 이상인 것이 바람직하다.According to a preferred embodiment of the present invention, the cyclodextrin is methyl-β-cyclodextrin (methyl-β-cyclo dextrin), β-cyclodextrin (β-cyclodextrin), 2,6-dimethyl-β-cyclodextrin (2 It is preferable that it is at least one selected from, 6-dimethyl-β-cyclodextrin) and sodium sulphobutyl ether-β-cyclodextrin.
본 발명의 바람직한 실시예에 의하면, 상기 이온성 개시제는 페록소 이황산칼륨(KPS), 암모늄퍼설페이트(APS) 및 나트륨퍼설페이트(SPS) 중에서 선택되는 1종 이상인 것이 바람직하다.According to a preferred embodiment of the present invention, the ionic initiator is preferably at least one selected from potassium peroxodisulfate (KPS), ammonium persulfate (APS) and sodium persulfate (SPS).
본 발명의 바람직한 실시예에 의하면, 상기 음이온성 계면활성제는 도데실황산나트륨(SDS), 다이아이소옥틸 소듐설포숙신산염(DSS), 소듐테트라데실황산염(sodiumtetradecylsulfate), 소듐헥사데실설페이트(sodiumhexadecylsulfate), 소듐도데실벤젠설폰산염(sodiumdodecylbenzenesulfonate), 크실렌설폰산염(Xylenesulfonate), 소듐올레산염(Sodiumoleate), 4-n-데실벤젠술폰산염(4-n-Decylbenzenesulfonate), 소듐라우르산염(sodiumlaurate), 4-도데실벤젠설폰산(4-dodecylbenzenesulfonicacid), 도데실아민하이드로클로라이드(dodecylaminehydrochloride), 도데실트리메틸암모늄클로라이드(dodecyltrimethylammoniumchloride), 4-n-옥틸벤젠설폰산염(4-n-Octylbenzenesulfonate), 에톡시레이티드설폰산염(Ethoxylatedsulfonate), 데실벤젠설폰산염(Decylbenzenesulfonate), 포타슘올레산염(Potassiumoleate), n-데실벤젠설폰산염(n-Decylbenzenesulfonate), 알킬트리메틸암모늄브로마이드(Alkyltrimethylammoniumbromide), 도데실아민(Dodecylamine), 테트라데실트리메틸암모늄클로라이드(Tetradecyltrimethylammoniumchloride), 도데실폴리사카라이드글리코시드(dodecylpolysaccharideglycoside), 사이클로덱스트린(Cyclodextrins), 글리코리피드(glycolipids), 리포프로테인-리포펩타이드(lipoproteinipopeptides), 포스포리피드(phospholipides), 파라-톨루엔설폰산(para-toluenesulfonicacid) 및 트리실옥세인(trisiloxane) 중에서 선택되는 1종 이상인 것이 바람직하다.According to a preferred embodiment of the present invention, the anionic surfactant is sodium dodecyl sulfate (SDS), diisooctyl sodium sulfosuccinate (DSS), sodium tetratradecylsulfate, sodium hexadecyl sulfate (sodiumhexadecylsulfate), sodium Dodecylbenzenesulfonate, xylenesulfonate, sodium oleate, 4-n-decylbenzenesulfonate, sodium laurate, 4-dode 4-benzene-sulfonic acid, dodecylamine hydrochloride, dodecyltrimethylammonium chloride, 4-n-octylbenzenesulfonate, ethoxylatedsulfonate (Ethoxylatedsulfonate), Decylbenzenesulfonate, Potassium oleate, n-decylbenzenesulfonate, alkyl tree Methylammonium bromide (Alkyltrimethylammonium bromide), Dodecylamine, Tedecyltrimethylammonium chloride, Dodecylpolysaccharideglycoside, Cyclodextrins, Glycolipidid-glycolipidin It is preferably at least one selected from peptides (lipoproteinipopeptides), phospholipids, para-toluenesulfonicacid and trisiloxane.
본 발명의 바람직한 실시예에 의하면, 상기 라디칼 개시제는 2,2-아조비스이소부티로니트릴(AIBN), 2,2-아조비스(2-메틸이소부티로니트릴), 2,2-아조비스(2,4-디메틸발레로니트릴), 벤조일퍼옥사이드, 라우릴퍼옥사이드, 큐멘하이드로퍼옥사이드, 메틸에틸케톤퍼옥사이드, t-부틸하이드로퍼옥사이드, o-클로로벤조일퍼옥사이드, o-메톡시벤조일퍼옥사이드, t-부틸퍼옥시-2-에틸헥사노에이트, t-부틸퍼옥시이소부티레이트 및 이들의 혼합물 중에서 선택되는 1종 이상인 것이 바람직하다.According to a preferred embodiment of the present invention, the radical initiator is 2,2-azobisisobutyronitrile (AIBN), 2,2-azobis (2-methylisobutyronitrile), 2,2-azobis ( 2,4-dimethylvaleronitrile), benzoyl peroxide, lauryl peroxide, cumene hydroperoxide, methyl ethyl ketone peroxide, t-butyl hydroperoxide, o-chlorobenzoyl peroxide, o-methoxybenzoyl per It is preferable that it is at least 1 sort (s) chosen from an oxide, t-butylperoxy-2-ethylhexanoate, t-butylperoxy isobutyrate, and mixtures thereof.
상기 (b) 단계에서 코팅된 시드 입자에 과량의 제1 단량체를 첨가하면, 시드 입자 내로 들어간 제1 단량체가 중합하면서 중합된 고분자가 시드 입자 밖으로 유출되어 제2 입자가 형성되고, 전체적으로 비구형 입자를 형성한다. 첨가되는 제1 단량체의 양은 (a) 단계에서 사용된 제1 단량체 기준 5 내지 15 배일 수 있고 바람직하게는 9 내지 11 배일 수 있다.When the excess first monomer is added to the coated seed particles in step (b), the polymerized polymer flows out of the seed particles while the first monomer polymerized into the seed particles is polymerized to form second particles, and the non-spherical particles as a whole. To form. The amount of the first monomer added may be 5 to 15 times based on the first monomer used in step (a), preferably 9 to 11 times.
본 발명의 바람직한 실시예에 의하면, 상기 (c) 단계는 10 내지 40 ℃에서, 10 내지 30 시간 동안 수행할 수 있다.According to a preferred embodiment of the present invention, step (c) may be carried out at 10 to 40 ℃, for 10 to 30 hours.
하기 도 1c는 본 발명의 실시예 2에 따른 비구형 양친성 이량체 나노입자의 제조방법과 비구형 양친성 이량체 나노입자의 특성을 나타내며, 본 발명의 실시예 2에 따른 비구형 양친성 이량체 나노입자의 제조방법은 하기의 단계를 포함한다.1C shows the method for preparing the non-spherical amphiphilic dimer nanoparticles according to Example 2 of the present invention and the characteristics of the non-spherical amphiphilic dimer nanoparticles, and the non-spherical amphiphilic dimer according to Example 2 of the present invention. The method for preparing sieve nanoparticles includes the following steps.
(a) 사이클로덱스트린이 포함된 수용액에 소수성 단량체, 이온성 개시제 및 가교제를 첨가하여 시드 입자가 형성된 용액을 제조하는 단계;(a) adding a hydrophobic monomer, an ionic initiator and a crosslinking agent to an aqueous solution containing cyclodextrin to prepare a solution in which seed particles are formed;
(b) 친수성 단량체가 포함된 수용액에 상기 시드 입자가 형성된 용액 및 이온성 개시제를 첨가하여 코어-쉘 구조의 제1 입자가 형성된 용액을 제조하는 단계;(b) adding a solution in which the seed particles are formed and an ionic initiator to an aqueous solution containing a hydrophilic monomer to prepare a solution in which the first particles having a core-shell structure are formed;
(c) 상기 제1 입자가 형성된 용액에 소수성 단량체를 더 첨가 후 교반하여 상기 제1 입자를 팽윤시키는 단계;(c) further adding a hydrophobic monomer to the solution in which the first particles are formed, followed by stirring to swell the first particles;
(d) 상기 (c) 단계 후 25 내지 100 ℃로 가열 및 재교반하여 상기 제1 입자를 재팽윤시키는 단계; 및(d) reswelling the first particles by heating and restirring to 25 to 100 ° C. after step (c); And
(e) 상기 재팽윤 후 라디칼 개시제를 첨가하여 상기 (c) 단계에서 첨가된 소수성 단량체를 중합시키는 단계.(e) adding a radical initiator after the reswelling to polymerize the hydrophobic monomer added in step (c).
이때, 상기 (c) 단계에서 첨가된 소수성 단량체가 중합되면서, 상기 제1 입자의 일점으로부터 돌출된 제2 입자를 형성되며, 전체적으로 비구형 입자를 형성하게 된다.At this time, while the hydrophobic monomer added in step (c) is polymerized, the second particles protruding from one point of the first particles are formed, thereby forming non-spherical particles as a whole.
먼저, (a) 단계에서는 사이클로덱스트린이 포함된 수용액에 소수성 단량체, 이온성 개시제 및 가교제를 첨가하여 시드 입자가 형성된 용액을 제조한다. 이후, (b) 단계에서 친수성 단량체가 포함된 수용액에 상기 시드 입자가 형성된 용액 및 이온성 개시제를 첨가하여 코어-쉘 구조의 제1 입자가 형성된 용액을 제조한다.First, in step (a), a hydrophobic monomer, an ionic initiator and a crosslinking agent are added to an aqueous solution containing cyclodextrin to prepare a solution in which seed particles are formed. Thereafter, in step (b), a solution in which the seed particles are formed and an ionic initiator are added to an aqueous solution containing a hydrophilic monomer to prepare a solution in which the first particles having a core-shell structure are formed.
상기 제조된 코어-쉘 구조의 제1 입자는 소수성 고분자로 이루어진 코어와 상기 코어를 둘러싸는 친수성 고분자를 포함하고, 상기 제1 입자의 표면 특성은 친수성이고, 상기 제2 입자의 표면 특성은 소수성인 것을 특징으로 한다. 도 2a는 본 발명의 실시예에 따라 상기 (a) 단계를 통해 제조한 폴리스티렌 시드 입자(PS)의 SEM 이미지이고, 도 2b는 상기 (b) 단계를 통해 제조한 Pnipaam-co-MA가 코팅된 폴리스티렌 나노입자(Core-shell)의 SEM 이미지를 나타낸다. 또한, 도 3a 및 3b를 통해 알 수 있는 바와 같이, 상기 (a) 단계를 통해 제조한 폴리스티렌 시드 입자(PS)는 온도 변화에 따른 입자의 직경 및 제타포텐셜의 변화가 거의 없는 반면, 상기 (b) 단계를 통해 제조한 Pnipaam-co-MA가 코팅된 폴리스티렌 나노입자(Core-shell)는 시드입자의 표면에 코팅된 Pnipaam-co-MA의 온도 감응성에 의해 온도가 높아지면 물과의 용해도가 떨어져 상분리가 일어나 수축을 통해 입자의 크기가 감소하게 되고, 제타포텐셜 또한 음(negative)의 성질이 더 높아지는 것을 확인할 수 있다.The prepared core-shell structured first particles include a core made of a hydrophobic polymer and a hydrophilic polymer surrounding the core, the surface properties of the first particles are hydrophilic, and the surface properties of the second particles are hydrophobic. It is characterized by. Figure 2a is a SEM image of the polystyrene seed particles (PS) prepared through the step (a) according to an embodiment of the present invention, Figure 2b is coated with Pnipaam-co-MA prepared through the step (b) SEM images of polystyrene nanoparticles (Core-shell) are shown. In addition, as can be seen through Figure 3a and 3b, the polystyrene seed particles (PS) prepared through the step (a) has little change in the diameter and zeta potential of the particles with temperature changes, the (b) Pnipaam-co-MA-coated polystyrene nanoparticles (Core-shell) prepared by the step) is reduced solubility with water when the temperature is increased due to the temperature sensitivity of Pnipaam-co-MA coated on the surface of the seed particles Phase separation occurs to reduce the particle size through shrinkage, zeta potential can also be seen that the negative (negative) properties are higher.
다음으로, 상기 (c) 단계에서는 상기 제1 입자가 형성된 용액에 소수성 단량체를 더 첨가 후 교반하여 상기 제1 입자를 팽윤시키는 과정을 수행한다. 이때, 본 발명의 바람직한 일 실시예에 의하면, 상기 (c) 단계는 10 내지 40 ℃에서 10 내지 30시간 동안 수행되는 것이 바람직하다. 하기 도 5에 도시된 바와 같이, 소수성 단량체를 첨가 후 교반하여 상기 제1 입자를 팽윤시키면, 상기 코어-쉘 구조의 제1 입자는 상기 첨가된 소수성 단량체를 둘러싸 피커링 에멀젼(pickering emulsion)을 형성하게 되며, 하기 도 4 및 도 6에 도시된 바와 같이, 교반 시간에 따라 상기 피커링 에멀젼의 크기가 점점 작아지는 것을 확인할 수 있는바, 이는 상기 제1 입자가 팽윤되면서 상기 첨가된 소수성 단량체가 제1 입자 내로 유입되거나, 상기 피커링 에멀젼이 쪼개져 보다 작은 크기의 피커링 에멀젼을 형성하는 것을 암시한다. 상기 첨가되는 소수성 단량체의 양은 상기 (a) 단계에서 사용된 소수성 단량체 기준 5 내지 15배일 수 있고, 바람직하게는 7 내지 11배일 수 있다.Next, in the step (c), the hydrophobic monomer is further added to the solution in which the first particles are formed, followed by stirring to swell the first particles. At this time, according to a preferred embodiment of the present invention, step (c) is preferably performed for 10 to 30 hours at 10 to 40 ℃. As shown in FIG. 5, when the hydrophobic monomer is added and stirred to swell the first particles, the core-shell structured first particles surround the added hydrophobic monomer to form a picking emulsion. As shown in Figure 4 and 6, it can be seen that the size of the pickling emulsion gradually decreases with the stirring time, which is the first hydrophobic monomer is added to the first hydrophobic monomer swelling It is implied that the pickling emulsion enters or breaks down to form a smaller size pickling emulsion. The amount of the hydrophobic monomer to be added may be 5 to 15 times based on the hydrophobic monomer used in step (a), preferably 7 to 11 times.
다음으로, 상기 (d) 단계에서는 상기 (c) 단계 후 25 내지 100 ℃로 가열 및 재교반하여 상기 제1 입자를 재팽윤시키는 단계를 수행한다. 이때, 상기 재교반을 통한 제1 입자의 재팽윤 시간이 증가할수록, 제조된 비구형 양친성 이량체 나노입자의 코어-쉘 구조의 제1 입자의 크기가 커지는 반면, 제2 입자의 크기는 감소하게 되어 전체적으로 구형에 가까운 형태가 되는 것을 확인할 수 있는바(도 9 및 도 10), 본 발명에서는 상기 (d) 단계의 팽윤 시간(swelling time)을 조절하여 입자의 크기 및 형태를 조절함으로써 입자 표면의 친수성 및 소수성 특성을 조절할 수 있다. 또한, 상술한 온도 범위 내에서 온도가 높을수록 짧은 시간 내에 코어-쉘 구조의 제1 입자의 크기가 더 빨리 커지게 되며, 이로 인하여 구형에 가까운 형태로 조절하기 위한 재팽윤 시간이 상대적으로 단축되는 반면, 온도가 낮을수록 코어-쉘 구조의 제1 입자의 크기가 천천히 커지게 되는바 구형에 가까운 형태로 조절하기 위한 재팽윤 시간이 상대적으로 많이 필요하다.Next, in the step (d), after the step (c), the step of reswelling the first particles is performed by heating and restirring at 25 to 100 ° C. In this case, as the reswelling time of the first particles through the restirring increases, the size of the first particles of the core-shell structure of the prepared non-spherical amphiphilic dimer nanoparticles increases, while the size of the second particles decreases. It can be seen that the overall shape is close to the spherical shape (Figs. 9 and 10), in the present invention by adjusting the swelling time of the step (d) by controlling the size and shape of the particle surface The hydrophilic and hydrophobic properties of can be controlled. In addition, the higher the temperature within the above-described temperature range, the larger the size of the first particle of the core-shell structure within a short time, thereby reducing the reswelling time for adjusting to a spherical shape relatively shorter On the other hand, as the temperature is lowered, the size of the first particles of the core-shell structure is gradually increased, so that the reswelling time for adjusting to a shape close to a spherical shape is required.
다음으로, 상기 (e) 단계에서는 라디칼 개시제를 첨가하여 상기 (c) 단계를 통해 첨가된 소수성 단량체를 중합시키는 과정을 수행하며, 이때 상기 첨가된 소수성 단량체가 중합되면서, 상기 제1 입자의 일점으로부터 돌출된 제2 입자가 형성되며, 전체적으로 본 발명에 따른 비구형 양친성 이량체 입자를 형성하게 된다.Next, in step (e), a radical initiator is added to polymerize the hydrophobic monomer added through step (c), wherein the added hydrophobic monomer is polymerized, from one point of the first particle. Protruding second particles are formed, which form the non-spherical amphiphilic dimer particles according to the invention as a whole.
본 발명의 바람직한 실시예에 의하면, 상기 소수성 단량체는 스티렌, 메틸아크릴레이트, 에틸아크릴레이트, 에틸메타크릴레이트, 부틸아크릴레이트, 부틸베타크릴레이트, 펜틸아크릴레이트, 펜틸메타크릴레이트, 글리시딜메타크릴레이트 중에서 선택되는 1종 이상인 것이 바람직하다.According to a preferred embodiment of the present invention, the hydrophobic monomer is styrene, methyl acrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, pentyl acrylate, pentyl methacrylate, glycidyl methacrylate It is preferable that it is at least 1 sort (s) chosen from a acrylate.
본 발명의 바람직한 실시예에 의하면, 상기 친수성 단량체는 N-아이소프로필아크릴아마이드, 메타크릴릭산, 메타크릴레이트, 알릴아민, 에틸렌글리콜 메타크릴레이트 중에서 선택되는 1종 이상인 것이 바람직하다.According to a preferred embodiment of the present invention, the hydrophilic monomer is preferably at least one selected from N-isopropyl acrylamide, methacrylic acid, methacrylate, allylamine, ethylene glycol methacrylate.
본 발명의 바람직한 실시예에 의하면, 상기 사이클로덱스트린은 메틸-β-사이클로덱스트린(methyl-β-cyclo dextrin), β-사이클로덱스트린(β-cyclodextrin), 2,6-디메틸-β-사이클로덱스트린 (2,6-dimethyl-β-cyclodextrin) 및 설포부틸에테르-β-사이클로덱스트린나트륨(sodium sulphobutyl ether-β-cyclodextrin) 중에서 선택되는 1종 이상인 것이 바람직하다.According to a preferred embodiment of the present invention, the cyclodextrin is methyl-β-cyclodextrin (methyl-β-cyclo dextrin), β-cyclodextrin (β-cyclodextrin), 2,6-dimethyl-β-cyclodextrin (2 It is preferable that it is at least one selected from, 6-dimethyl-β-cyclodextrin) and sodium sulphobutyl ether-β-cyclodextrin.
본 발명의 바람직한 실시예에 의하면, 상기 이온성 개시제는 페록소 이황산칼륨(KPS), 암모늄퍼설페이트(APS) 및 나트륨퍼설페이트(SPS) 중에서 선택되는 1종 이상인 것이 바람직하다.According to a preferred embodiment of the present invention, the ionic initiator is preferably at least one selected from potassium peroxodisulfate (KPS), ammonium persulfate (APS) and sodium persulfate (SPS).
본 발명의 바람직한 실시예에 의하면, 상기 라디칼 개시제는 2,2-아조비스이소부티로니트릴(AIBN), 2,2-아조비스(2-메틸이소부티로니트릴), 2,2-아조비스(2,4-디메틸발레로니트릴), 벤조일퍼옥사이드, 라우릴퍼옥사이드, 큐멘하이드로퍼옥사이드, 메틸에틸케톤퍼옥사이드, t-부틸하이드로퍼옥사이드, o-클로로벤조일퍼옥사이드, o-메톡시벤조일퍼옥사이드, t-부틸퍼옥시-2-에틸헥사노에이트, t-부틸퍼옥시이소부티레이트 및 이들의 혼합물 중에서 선택되는 1종 이상인 것이 바람직하다.According to a preferred embodiment of the present invention, the radical initiator is 2,2-azobisisobutyronitrile (AIBN), 2,2-azobis (2-methylisobutyronitrile), 2,2-azobis ( 2,4-dimethylvaleronitrile), benzoyl peroxide, lauryl peroxide, cumene hydroperoxide, methyl ethyl ketone peroxide, t-butyl hydroperoxide, o-chlorobenzoyl peroxide, o-methoxybenzoyl per It is preferable that it is at least 1 sort (s) chosen from an oxide, t-butylperoxy-2-ethylhexanoate, t-butylperoxy isobutyrate, and mixtures thereof.
상기 실시예 1 및 2의 제조방법에 따라 제조된 본 발명에 따른 비구형 양친성 이량체 나노입자는 소수성 및 친수성을 모두 가지고 있어 액체-액체간 또는 고체-액체의 계면특성을 온도에 따라 가역적으로 조절할 수 있고, 특히 온도에 따라 고체 표면에 대한 젖음성을 조절할 수도 있다.The non-spherical amphiphilic dimer nanoparticles according to the present invention prepared according to the production method of Examples 1 and 2 have both hydrophobicity and hydrophilicity and thus reversibly change the interfacial characteristics of liquid-liquid or solid-liquid according to temperature. The wettability to the solid surface may be adjusted, in particular depending on the temperature.
특히, 본 발명의 실시예 2에 따른 제조방법을 따르면, 계면활성제의 사용 없이도 비구형 양친성 이량체 나노입자를 제조할 수 있어 인체자극 및 독성을 대폭 감소시킬 수 있을 뿐만 아니라, 팽윤 시간(swelling time)을 조절하여 입자의 크기 및 형태를 조절함으로써 입자 표면의 친수성 및 소수성 특성을 조절할 수 있다.In particular, according to the manufacturing method according to the second embodiment of the present invention, it is possible to prepare non-spherical amphiphilic dimer nanoparticles without the use of a surfactant, which can greatly reduce human stimulation and toxicity, as well as swelling time (swelling) by controlling the size and shape of the particles to control the hydrophilicity and hydrophobicity of the particle surface.
본 발명에 따른 비구형 양친성 이량체는 수용성 또는 지용성 용매 내에서 에멀젼을 형성할 수 있는데, 에멀젼의 크기는 온도에 따라 가역적으로 조절되는 계면특성에 의해 온도에 따라 가역적으로 변할 수 있다.The non-spherical amphiphilic dimer according to the present invention can form an emulsion in a water-soluble or fat-soluble solvent, the size of the emulsion can be reversibly changed with temperature by the interfacial properties that are reversibly controlled with temperature.
하기 도 13은 온도에 따른 에멀젼의 크기 변화를 나타낸 모식도이다.Figure 13 is a schematic diagram showing the size change of the emulsion with temperature.
상온(RT)에서 형성된 에멀젼은 본 발명의 비구형 양친성 이량체가 많이 모여 형성되어 크기가 크지만, 50 ℃에서는 적은 수의 이량체가 모여 작은 크기의 마이셀을 많이 형성한다. 온도에 따른 에멀젼의 크기 변화로 인해 본 발명의 비구형 양친성 이량체를 포함한 수용액과 표면과의 접촉각 역시 온도에 따라 달라진다.The emulsion formed at room temperature (RT) is large in size due to the large number of non-spherical amphiphilic dimers of the present invention is formed, but at 50 ℃ a small number of dimers gather to form a large number of micelles of small size. Due to the change in the size of the emulsion with temperature, the contact angle between the aqueous solution containing the non-spherical amphiphilic dimer of the present invention and the surface also varies with temperature.
하기 도 14는 소수성 기판 표면(hydrophobic surface)에서의 비구형 양친성 이량체 수용액의 접촉각을 나타낸 모식도이다.14 is a schematic view showing the contact angle of the non-spherical amphiphilic dimer aqueous solution on the hydrophobic surface.
상온(RT)에서는 접촉각이 크고, 50 ℃에서는 접촉각이 작으며 온도에 따라 접촉각의 크기는 가역적으로 변할 수 있다.The contact angle is large at room temperature (RT), the contact angle is small at 50 ℃ and the size of the contact angle can be reversibly changed depending on the temperature.
본 발명에 따른 비구형 양친성 이량체는 액체-액체 간의 계면특성을 조절할 수 있으므로 의약, 화장품 분야에서 물-오일을 조성으로 하는 에멀전 시스템에서 피부 자극을 최소화하고, 사용감을 극대화하며, 에멀젼에 포함된 약물의 피부 전달을 극대화시킬 수 있어 연고, 로션, 크림, 에센스 등의 의약 또는 화장료 조성물에 이용할 수 있다.Since the non-spherical amphiphilic dimer according to the present invention can control the interfacial properties between liquid and liquid, it minimizes skin irritation, maximizes the feeling of use, and is included in the emulsion system of water-oil composition in medicine, cosmetics It is possible to maximize the skin delivery of the drug can be used in pharmaceutical or cosmetic compositions, such as ointments, lotions, creams, essences.
또한, 본 발명에 따른 비구형 양친성 이량체는 액체-고체 간의 계면특성을 조절할 수 있고, 특히 전자 산업에서 수용액을 기반으로 하는 나노패턴이 필요로 하는 공정 중에서 소수성 표면과의 계면에너지를 줄여 젖음성(wetting)을 증가시키며, 물과 고체 표면과의 계면특성을 가역적으로 조절하여 나노패턴 형성시 나노패턴의 형태를 조절할 수 있으므로 프린터용 잉크액 조성물 또는 리소그라피 나노패턴 공정용 조성물 등에 이용할 수도 있으며, 구체적인 예로서, 수용액을 기반으로 하는 나노 패턴 형성 공정에서 템플릿으로 사용되어 소수성 표면과의 계면에너지를 감소시켜 젖음성(wetting)을 증가시킬 수 있다.In addition, the non-spherical amphiphilic dimer according to the present invention can control the interfacial properties between the liquid and solid, and in particular, in the electronic industry, the interfacial energy with the hydrophobic surface is reduced in the process requiring a nanopattern based on an aqueous solution. (wetting) can be increased, and the shape of the nanopattern can be controlled when the nanopattern is formed by reversibly controlling the interfacial property between water and the solid surface, and thus can also be used for an ink liquid composition for a printer or a composition for a lithography nanopattern process. For example, it can be used as a template in the nano-pattern forming process based on an aqueous solution to increase the wetting by reducing the interfacial energy with the hydrophobic surface.
이하에서는 바람직한 실시예 등을 들어 본 발명을 더욱 상세하게 설명한다. 그러나 이들 실시예 등은 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이에 의하여 제한되지 않는다는 것은 당업계의 통상의 지식을 가진 자에게 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to preferred embodiments. However, these examples and the like are intended to explain the present invention in more detail, and it will be apparent to those skilled in the art that the scope of the present invention is not limited thereto.
<실시예><Example>
실시예 1.Example 1.
(1) 폴리스티렌 시드 입자 분산 용액의 제조(1) Preparation of Polystyrene Seed Particle Dispersion Solution
250 ㎖ 플라스크를 80 ℃의 오일 반응 용기에 담그고 질소를 투입하면서 1 wt% 메틸-β-사이클리덱스트린(M-β-CD) 수용액을 넣어 80 ℃까지 되도록 가열한 후, 페록소이황산칼륨(KPS) 개시제를 첨가하였다. 가교제인 다이비닐벤젠(DVB) 0.1 g과 단량체인 스티렌(styrene) 9.9 g을 섞어 시린지 펌프를 통해 2 시간 동안 일정 속도로 플라스크에 첨가하면서 교반하였다. 가교제와 단량체를 다 투입한 후 1 시간 더 교반한 후 냉각시켜 폴리스티렌 시드 입자가 분산된 용액을 제조하였다.The 250 ml flask was immersed in an oil reaction vessel at 80 ° C. and nitrogen was added thereto, added with a 1 wt% methyl-β-cyclodextrin (M-β-CD) aqueous solution and heated to 80 ° C., followed by potassium peroxodisulfate (KPS ) An initiator was added. 0.1 g of divinylbenzene (DVB), a crosslinking agent, and 9.9 g of styrene, a monomer, were mixed and stirred while adding to the flask at a constant rate for 2 hours through a syringe pump. After adding the crosslinking agent and the monomer, the mixture was stirred for 1 hour and then cooled to prepare a solution in which the polystyrene seed particles were dispersed.
(2) NIPAAm-co-MA 공중합체 고분자 물질의 코팅(2) coating of NIPAAm-co-MA copolymer polymer material
250 ㎖ 플라스크를 80 ℃의 오일 반응 용기에 담그고 질소를 투입하면서 상기 시드 입자 분산용액 60 ㎖와 증류수 29 ㎖를 첨가하여 혼합한 후 80 ℃까지 가열한 후, 페록소이황산칼륨(KPS) 개시제를 첨가하였다. 미리 준비해 둔 증류수 1 에 N-아이소프로필아크릴아마이드(NIPAAm) 단량체와 메타크릴산(MA) 단량체가 90 : 10 ㏖%로 들어있는 용액을 플라스크에 첨가한 후 4 시간 동안 교반하여 NIPAAm와 MA로 이루어진 공중합체가 코팅된 폴리스티렌 시드 입자가 분산된 용액을 제조하였다.The 250 ml flask was immersed in an oil reaction vessel at 80 ° C., nitrogen was added, 60 ml of the seed particle dispersion solution and 29 ml of distilled water were added, mixed, and heated to 80 ° C., followed by the addition of a potassium peroxide disulfide (KPS) initiator. It was. A solution containing 90: 10 mol% of N-isopropylacrylamide (NIPAAm) monomer and methacrylic acid (MA) monomer in distilled water 1 prepared in advance was added to the flask, followed by stirring for 4 hours to form NIPAAm and MA. A solution in which the copolymer-coated polystyrene seed particles was dispersed was prepared.
(3) 본 발명에 따른 비구형 양친성 이량체 제조(3) Preparation of Non-Spherical Amphiphilic Dimers According to the Present Invention
코팅된 폴리스티렌 시드 입자 분산용액 25 ㎖를 비커에 넣고 스티렌 단량체 90 g을 첨가한 후 20 시간 동안 상온에서 반응시켰다. 상기 비이커를 80 ℃의 오일 반응 용기에 담그고 질소를 투입하면서 80 ℃까지 가열한 후, 도데실황산 나트륨(SDS) 수용액을 첨가하여 1 시간 동안 반응시켰다. 미리 준비해 둔 스티렌 단량체 분산용액에 아조비스이소부틸로니트트릴(AIBN) 개시제를 첨가한 후 4 시간 동안 반응시켜 비구형 양친성 이량체가 분산된 용액을 제조하였다.25 ml of the coated polystyrene seed particle dispersion solution was placed in a beaker and 90 g of styrene monomer was added thereto, followed by reaction at room temperature for 20 hours. The beaker was immersed in an oil reaction vessel at 80 ° C., heated to 80 ° C. while nitrogen was added thereto, and then reacted for 1 hour by adding sodium dodecyl sulfate (SDS). An azobisisobutylonitrile (AIBN) initiator was added to the styrene monomer dispersion solution prepared in advance, followed by reaction for 4 hours to prepare a solution in which the non-spherical amphiphilic dimer was dispersed.
실시예 2.Example 2.
(1) 폴리스티렌 시드 입자 분산 용액의 제조(1) Preparation of Polystyrene Seed Particle Dispersion Solution
250 ㎖ 플라스크를 80 ℃의 오일 반응 용기에 담그고 질소를 투입하면서 1 wt% 메틸-β-사이클리덱스트린(M-β-CD) 수용액을 넣어 80 ℃까지 되도록 가열한 후, 페록소이황산칼륨(KPS) 개시제를 첨가하였다. 가교제인 다이비닐벤젠(DVB) 0.4 g과 단량체인 스티렌(styrene) 5.6 g을 섞어 시린지 펌프를 통해 2 시간 동안 일정 속도로 플라스크에 첨가하면서 교반하였다. 가교제와 단량체를 다 투입한 후 1 시간 더 교반한 후 냉각시켜 폴리스티렌 시드 입자가 분산된 용액을 제조하였다.The 250 ml flask was immersed in an oil reaction vessel at 80 ° C. and nitrogen was added thereto, added with a 1 wt% methyl-β-cyclodextrin (M-β-CD) aqueous solution and heated to 80 ° C., followed by potassium peroxodisulfate (KPS ) An initiator was added. 0.4 g of divinylbenzene (DVB), a crosslinking agent, and 5.6 g of styrene, a monomer, were mixed and stirred with a syringe pump at a constant rate for 2 hours. After adding the crosslinking agent and the monomer, the mixture was stirred for 1 hour and then cooled to prepare a solution in which the polystyrene seed particles were dispersed.
(2) NIPAAm-co-MA 공중합체 고분자 물질의 코팅(2) coating of NIPAAm-co-MA copolymer polymer material
250 ㎖ 플라스크를 80 ℃의 오일 반응 용기에 담그고 질소를 투입하면서, 증류수 40 ㎖에 N-아이소프로필아크릴아마이드(NIPAAm) 단량체와 메타크릴산(MA) 단량체가 90 : 10 ㏖%로 들어있는 용액을 넣어주었다. 다음으로 상기 폴리스티렌 스디 입자가 분산된 용액 15 ㎖를 첨가하여 80 ℃까지 가열한 후, 페록소이황산칼륨(KPS) 개시제를 첨가하여 2시간 30분 동안 반응시켜 코어-쉘 구조를 가지는, NIPAAm와 MA로 이루어진 공중합체가 코팅된 폴리스티렌 시드 입자(제1 입자)가 분산된 용액을 제조하였다.A 250 ml flask was immersed in an oil reaction vessel at 80 ° C., and nitrogen was added thereto. A solution containing 90: 10 mol% of N-isopropylacrylamide (NIPAAm) monomer and methacrylic acid (MA) monomer was added to 40 ml of distilled water. Put it. Next, after adding 15 ml of the solution in which the polystyrene smooth particles were dispersed and heating to 80 ° C., NIPAAm and MA having a core-shell structure were reacted for 2 hours and 30 minutes by adding a potassium peroxodisulfate (KPS) initiator. A solution in which a copolymer consisting of polystyrene seed particles (first particles) was dispersed was prepared.
(3) 본 발명에 따른 비구형 양친성 이량체 나노입자의 제조(3) Preparation of Non-Spherical Amphiphilic Dimer Nanoparticles According to the Present Invention
상기 코어-쉘 구조의, NIPAAm와 MA로 이루어진 공중합체가 코팅된 폴리스티렌 시드 입자(제1 입자)가 분산된 용액 3.5 ㎖와 증류수 4 ㎖을 비이커에 넣고 스티렌 단량체 50.4 g을 첨가한 후 상온에서 12 시간 동안 교반하면서 상기 NIPAAm와 MA로 이루어진 공중합체가 코팅된 폴리스티렌 시드 입자를 팽윤시켰다. 상기 비이커를 80 ℃의 오일 반응 용기에 담그고 80 ℃까지 가열한 후, 0 시간, 1 시간, 2 시간, 6 시간, 18 시간, 24시간 동안 각각 재교반하면서 상기 NIPAAm와 MA로 이루어진 공중합체가 코팅된 폴리스티렌 시드 입자를 재팽윤시켰다. 이후, 아조비스이소부틸로니트트릴(AIBN) 개시제를 첨가한 후 4 시간 30분 동안 반응시켜 상기 스트렌 단량체를 중합시킴으로써 비구형 양친성 이량체가 분산된 용액을 제조하였다.3.5 ml of a solution in which the polystyrene seed particles (first particles) coated with a copolymer of NIPAAm and MA of the core-shell structure was dispersed and 4 ml of distilled water were added to a beaker, and 50.4 g of styrene monomer was added thereto. The polystyrene seed particles coated with the copolymer of NIPAAm and MA were swollen with stirring for an hour. The beaker was immersed in an oil reaction vessel at 80 ° C., heated to 80 ° C., and then coated with a copolymer of NIPAAm and MA while being restirred for 0 hours, 1 hour, 2 hours, 6 hours, 18 hours, and 24 hours, respectively. Polystyrene seed particles were reswelled. Thereafter, azobisisobutylonitrile (AIBN) initiator was added, followed by reaction for 4 hours and 30 minutes to polymerize the styrene monomer to prepare a solution in which the non-spherical amphiphilic dimer was dispersed.
<실험예>Experimental Example
실험예 1. 비구형 양친성 이량체 나노입자의 형성 메커니즘 확인Experimental Example 1. Confirmation of the formation mechanism of non-spherical amphiphilic dimer nanoparticles
본 발명의 실시예 2에 따라 제조된 비구형 양친성 이량체 나노입자의 형성 메커니즘을 확인하기 위한 실험을 진행하였다.Experiments were conducted to confirm the formation mechanism of the non-spherical amphiphilic dimer nanoparticles prepared according to Example 2 of the present invention.
먼저, 코어-쉘 구조의, NIPAAm와 MA로 이루어진 공중합체가 코팅된 폴리스티렌 시드 입자(제1 입자) 분산 용액에 스티렌 단량체를 주입한 후의 피커링 에멀젼의 변화를 광학현미경(Optical microscope)으로 관찰하였으며, 그 결과를 하기 도 7의 a-c에 나타내었다(a: 상온에서 11시간 교반 후, b: 80 ℃로 가열, 재교반 및 AIBN 투입 후 10분, c: 80 ℃로 가열, 재교반 및 AIBN 투입 후 20분 후의 결과). 도 7의 a-c를 살펴보면, 반응이 진행되면서 이는 투입된 스티렌 단량체가 팽윤된 코어-쉘 구조의 제1 입자 내로 들어가거나, 피커링 에멀젼이 쪼개져 더 작은 크기의 에멀젼이 형성되면서 에멀젼의 크기가 점점 작아지는 것을 확인할 수 있으며, 이에 따라 본 발명에 따른 비구형 양친성 이량체 나노입자가 형성되는 것을 의미하며, 이는 본 발명의 제조방법을 따르면 계면활성제의 사용 없이도 비구형 양친성 이량체 나노입자를 제조할 수 있음을 암시한다.First, a change in the pickling emulsion after injecting a styrene monomer into a polystyrene seed particle (first particle) dispersion solution coated with a copolymer of NIPAAm and MA having a core-shell structure was observed by an optical microscope. The results are shown in ac of FIG. 7 (a: after stirring at room temperature for 11 hours, b: heating at 80 ° C., re-stirring and 10 minutes after AIBN addition, c: heating at 80 ° C., re-stirring and AIBN addition After 20 minutes). Referring to ac of FIG. 7, as the reaction proceeds, the injected styrene monomer enters the first particle of the swollen core-shell structure, or the pickling emulsion is split to form an emulsion of smaller size. It can be confirmed, thereby means that the non-spherical amphiphilic dimer nanoparticles are formed according to the present invention, which can be prepared according to the production method of the present invention without the use of surfactants Imply that there is.
다음으로, 스티렌 단량체를 증류수에 주입 및 균질화 한 후에 에멀젼의 변화를 광학현미경으로 관찰하였으며, 그 결과를 하기 도 7의 d-g에 나타내었다(d: 상온에서 균질화 직후, e: 80 ℃로 가열 후, f: 80 ℃로 가열, 재교반 및 AIBN 투입 후 20분, g: 80 ℃로 가열, 재교반 및 AIBN 투입 후 4시간 후의 결과). 도 8의 d-g를 살펴보면 반응이 진행되면서 에멀젼의 크기가 점점 작아지는 것을 확인할 수 있는바, 이는 계면활성제 없이도 폴리스티렌 나노입자를 합성할 수 있음을 암시한다.Next, the styrene monomer was injected into distilled water and homogenized, and then the change of the emulsion was observed with an optical microscope, and the results are shown in dg of FIG. f: 20 minutes after heating to 80 ° C., restirring and adding AIBN, g: results after 4 hours after heating to 80 ° C., restirring and adding AIBN). Looking at the d-g of Figure 8 it can be seen that the size of the emulsion gradually decreases as the reaction proceeds, which suggests that the polystyrene nanoparticles can be synthesized without a surfactant.
실험예 2. 비구형 양친성 이량체 입자의 양친성 확인Experimental Example 2 Amphipathic Confirmation of Non-Spherical Amphiphilic Dimer Particles
본 발명의 실시예 2에 따라 제조된 비구형 양친성 이량체 나노입자의 양친성 특성을 확인하기 위해 코어-쉘 구조의, NIPAAm와 MA로 이루어진 공중합체가 코팅된 폴리스티렌 시드 입자(제1 입자)에 형광 염료를 흡착시킨 후, 스티렌 단량체를 투입하여 반응을 진행시켜 비구형 양친성 이량체 나노입자를 합성한 후 SEM 이미지, 공초점 현미경(Confocal microscope)으로 촬영한 이미지 및 합성 후 형광 염료를 재흡착시킨 후 공초점 현미경(Confocal microscope)으로 촬영한 이미지를 관찰하였으며, 그 결과를 하기 도 11에 나타내었다.Polystyrene seed particles (first particles) coated with a copolymer of NIPAAm and MA having a core-shell structure to confirm the amphiphilic properties of non-spherical amphiphilic dimer nanoparticles prepared according to Example 2 of the present invention. After adsorbing the fluorescent dye on the styrene monomer, the reaction was carried out by adding styrene monomer to synthesize the non-spherical amphiphilic dimer nanoparticles, and then the SEM image, the image taken by confocal microscope, and the fluorescent dye after synthesis After the adsorption, the image taken by a confocal microscope was observed, and the results are shown in FIG. 11.
도 11에 나타난 결과와 같이, 합성 후 SEM 이미지를 통해 비구형 양친성 이량체 나노입자가 형성되었음을 확인할 수 있다. 또한, 합성 직후 공초점 현미경 이미지는 원 모양의 형광이 관찰되는 반면, 형광 염료 재흡착 후에는 비구형의 형광이 관찰되었는바, 이는 코팅된 NIPAAm와 MA로 이루어진 공중합체가 제1 입자의 표면에만 존재하며, 제2 입자는 합성 과정에서 새로 형성되었음을 의미하며, 그 결과, 본 발명에 따른 이량체 나노입자는 친수성 표면 특성을 가지는 코어-쉘 구조의 제1 입자와, 소수성 표면 특성을 가지는 제2 입자 즉, 양친성 특성을 띈다는 것을 확인할 수 있다.As shown in FIG. 11, it can be confirmed that non-spherical amphiphilic dimer nanoparticles were formed through SEM image after synthesis. In addition, confocal microscopy images showed a circular fluorescence immediately after synthesis, whereas non-spherical fluorescence was observed after fluorescence dye resorption, indicating that the copolymer consisting of coated NIPAAm and MA was only present on the surface of the first particle. The second particle is newly formed during the synthesis process, and as a result, the dimer nanoparticle according to the present invention is a core-shell structured first particle having a hydrophilic surface property and a second particle having a hydrophobic surface property. It can be confirmed that the particles, that is, amphipathic properties are measured.
실험예 3. 재팽윤시간 조절에 따른 입자의 크기 및 형태 변화 관찰, 형광 강도 측정 및 입자의 크기와 제타포텐셜의 변화 측정Experimental Example 3. Observation of particle size and shape change by reswelling time control, fluorescence intensity measurement and change of particle size and zeta potential
(1) 재팽윤시간에 따른 입자의 크기 및 형태 변화 관찰(1) Observation of particle size and shape change with reswelling time
본 발명의 실시예 2에 따라 80 ℃에서 재교반하여 코어-쉘 구조의 제1 입자를 재팽윤시키는 과정에서 팽윤시간(a:0h, b:1h, c:2h, d:6h, e:18h, h:24h)에 따른 입자의 크기 및 형태의 변화를 측정하였으며, 그 결과를 하기 도 9(SEM) 및 도 10(그래프)에 나타내었다.Swelling time (a: 0h, b: 1h, c: 2h, d: 6h, e: 18h, in the process of reswelling the first particles of the core-shell structure by restirring at 80 ° C according to Example 2 of the present invention) h: 24h) according to the change in the size and shape of the particles were measured, the results are shown in Figure 9 (SEM) and Figure 10 (graph).
도 9 및 도 10에 나타난 결과와 같이, 재팽윤 시간이 증가할수록, 친수성 고분자로 코팅된 코어-쉘 구조의 제1 입자의 영역이 커지는 반면, 소수성 고분자로 구성된 제2 입자의 영역이 감소하면서 입자의 형태가 구형에 가까워지는 것을 확인할 수 있는바, 이는 팽윤시간의 조절을 통해 입자의 크기 및 형태를 조절함으로써 입자 표면의 친수성 및 소수성 특성, 즉 양친성을 조절할 수 있음을 의미한다.As shown in FIGS. 9 and 10, as the reswelling time increases, the area of the first particle of the core-shell structure coated with the hydrophilic polymer increases, while the area of the second particle composed of the hydrophobic polymer decreases. It can be seen that the shape of the near to the sphere, which means that by controlling the size and shape of the particles by controlling the swelling time can control the hydrophilic and hydrophobic properties of the particle surface, that is, amphipathy.
(2) 형광 강도(FL Intensity) 측정(2) FL Intensity Measurement
본 발명의 실시예 2에 따라 제조된 비구형 양친성 이량체 나노입자의 양친성 특성을 확인하기 위하여 폴리스티렌 나노입자(PS), 코어-쉘 구조의 제1 입자(Core-shell), 재팽윤 시간을 달리하여 제조한 본 발명에 따른 비구형 양친성 이량체 나노입자(0h, 6h, 18h) 및 폴리 N-아이소프로필아크릴아마이드(Poly(N-isopropylacrylamide)) 수화젤 나노입자에 메틸렌블루(MB)를 흡착시킨 후 665 nm의 여기 파장에서의 형광 강도(FL Intensity)를 측정하였으며, 그 결과를 하기 도 12a에 나타내었다.In order to confirm the amphiphilic properties of the non-spherical amphiphilic dimer nanoparticles prepared according to Example 2 of the present invention, polystyrene nanoparticles (PS), core-shell first particles (Core-shell), reswelling time Methylene blue (MB) to non-spherical amphiphilic dimer nanoparticles (0h, 6h, 18h) and poly N-isopropylacrylamide (Poly (N-isopropylacrylamide)) hydrogel nanoparticles prepared according to the present invention After the adsorption, the fluorescence intensity (FL Intensity) at an excitation wavelength of 665 nm was measured, and the results are shown in FIG. 12A.
도 12a에 나타난 결과와 같이, 폴리스티렌 나노입자의 피크가 가장 높고, 폴리 N-아이소프로필아크릴아마이드(Poly(N-isopropylacrylamide)) 수화젤 나노입자의 피크가 가장 낮은 것을 확인할 수 있다. 이는 폴리스티렌 나노입자와 폴리 N-아이소프로필아크릴아마이드(Poly(N-isopropylacrylamide))의 물리적 특성에 기인하는 것으로 폴리스티렌 나노입자가 상대적으로 단단한(hard) 성질을 가지고 있어 염료가 입자의 표면에 흡착되고, 대부분의 빛을 반사시켜 높은 피크가 나타나는 반면 폴리 N-아이소프로필아크릴아마이드(Poly(N-isopropylacrylamide))는 부드러운(soft) 성질을 가지고 있어 염료가 입자 내부에 흡착되고, 대부분의 빛이 통과되어 낮은 피크가 나타나게 되는 것이다. 본 발명에 따른 비구형 양친성 이량체 나노입자는 재팽윤 시간이 증가할수록 피크가 낮아지는 것을 관찰할 수 있는바, 이는 재팽윤 시간이 증가할수록 친수성 고분자로 코팅된 코어-쉘 구조의 제1 입자의 영역이 커지는 반면, 소수성 고분자로 구성된 제2 입자의 영역이 감소 입자 크기가 증가한다는 것을 의미한다. 결국 본 발명에 따른 비구형 양친성 이량체 나노입자는 양친성 특성을 가지며, 재팽윤 시간의 조절을 통해 입자의 크기 및 형태를 조절함으로써 입자 표면의 친수성 및 소수성 특성, 즉 양친성을 조절할 수 있음을 의미한다. 또한, 상기 양친성 조절을 통해 이량체의 표면 특성, 특히 유연도(softness)를 비롯한 입자의 물리화학적 특성을 조절할 수 있다는 것을 암시한다.As shown in FIG. 12A, the peaks of the polystyrene nanoparticles are the highest, and the peaks of the poly N-isopropylacrylamide hydrogel gel nanoparticles are the lowest. This is due to the physical properties of polystyrene nanoparticles and poly N-isopropylacrylamide (Poly (N-isopropylacrylamide)). Polystyrene nanoparticles have relatively hard properties, so that dyes are adsorbed on the surface of particles. Poly N-isopropylacrylamide (Poly (N-isopropylacrylamide)) has soft properties because most of the light is reflected and high peaks appear. The peak will appear. It can be observed that the non-spherical amphiphilic dimer nanoparticles according to the present invention have a lower peak as the reswelling time increases, which is the first particle of the core-shell structure coated with a hydrophilic polymer as the reswelling time increases. While the area of is increased, the area of the second particles composed of hydrophobic polymers means that the reduced particle size is increased. As a result, the non-spherical amphiphilic dimer nanoparticles according to the present invention have amphiphilic properties, and the hydrophilicity and hydrophobicity of the surface of the particles can be controlled by controlling the size and shape of the particles by controlling the reswelling time. Means. It also implies that the amphipathic control can control the physicochemical properties of the particles, including the surface properties of the dimers, in particular the softness.
(3) 온도 변화에 따른 입자의 직경 및 제타포텐셜의 변화 측정(3) Measurement of change in particle diameter and zeta potential with temperature change
본 발명의 실시예 2에 따라 제조된 비구형 양친성 이량체 나노입자의 양친성 특성을 확인하기 위하여 폴리스티렌 나노입자(PS), 코어-쉘 구조의 제1 입자(Core-shell), 재팽윤 시간을 달리하여 제조한 본 발명에 따른 비구형 양친성 이량체 나노입자(0h, 1h, 2h, 6h, 12h, 24h)의 온도 변화에 따른 입자의 직경(hydrodynamic diameter) 변화(상온(RT)에서의 직경 - 50 ℃에서의 직경) 및 제타포텐셜(zeta potential)의 변화(상온(RT)에서의 제타포텐셜 - 50 ℃에서의 제타포텐셜)를 측정하였으며, 그 결과를 하기 도 12b 및 도 12c에 나타내었다.In order to confirm the amphiphilic properties of the non-spherical amphiphilic dimer nanoparticles prepared according to Example 2 of the present invention, polystyrene nanoparticles (PS), core-shell first particles (Core-shell), reswelling time Changes in particle diameter (hydrodynamic diameter) of the non-spherical amphiphilic dimer nanoparticles (0h, 1h, 2h, 6h, 12h, 24h) according to the present invention prepared at different temperatures (at room temperature (RT) Diameter-diameter at 50 ° C.) and change in zeta potential (zeta potential at room temperature (RT) − zeta potential at 50 ° C.) were measured and the results are shown in FIGS. 12B and 12C below. .
도 12a에 나타난 결과와 같이, 폴리스티렌 나노입자는 온도 변화에 따른 입자의 직경 및 제타포텐셜의 차이가 거의 없는 반면, 코어-쉘 구조의 제1 입자(Core-shell)의 경우 온도 변화에 따른 입자의 직경 및 제타포텐셜의 차이가 매우 크게 나타났으며, 이는 코팅된 친수성 고분자인 NIPAAm와 MA로 이루어진 공중합체의 온도 감응성에 따른 결과임을 알 수 있다. 또한, 본 발명에 따른 비구형 양친성 이량체 나노입자는 폴리스티렌 나노입자와 코어-쉘의 중간 정도의 값을 가지는바, 이는 본 발명에 따른 비구형 양친성 이량체 나노입자가 양친성 특성을 가지고 있으며, 온도에 따라 크기 및 형태가 변화가 될 수 있고, 이에 따라 입자의 물리화학적 특성이 변화한다는 것을 의미한다.As shown in FIG. 12A, polystyrene nanoparticles have almost no difference in diameter and zeta potential of the particles according to temperature change, whereas core-shell particles of the core-shell structure have the same characteristics. The difference in diameter and zeta potential was very large, and it can be seen that this is a result of the temperature sensitivity of the copolymer consisting of NIPAAm and MA, which are coated hydrophilic polymers. In addition, the non-spherical amphiphilic dimer nanoparticles according to the present invention has a medium value between the polystyrene nanoparticles and the core-shell, which means that the non-spherical amphiphilic dimer nanoparticles according to the present invention have amphiphilic properties. In addition, the size and shape can be changed according to the temperature, which means that the physical and chemical properties of the particles change.
실험예 4. 비구형 양친성 이량체를 포함하는 에멀젼의 크기 측정 및 온도변화에 따른 가역성 확인Experimental Example 4. Determination of the size of the emulsion containing a non-spherical amphiphilic dimer and the reversibility of the temperature change
(1) 실시예 1에 따른 비구형 양친성 이량체 나노입자, 폴리스티렌 나노입자(1) Non-spherical amphiphilic dimer nanoparticles and polystyrene nanoparticles according to Example 1
하기 도 15a 내지 도 15d는 본 발명의 실시예 1에 따라 제조된 비구형 양친성 이량체 분산용액과 코코넛 오일을 97.5 : 2.5 부피비로 혼합한 용액의 25 ℃, 50 ℃ 및 다시 25 ℃로 냉각한 상태에서의 에멀젼 크기 변화를 광학 현미경을 이용하여 나타낸 이미지 및 그래프이다.15a to 15d is a non-spherical amphiphilic dimer dispersion prepared according to Example 1 of the present invention and coconut oil was cooled to 25 ℃, 50 ℃ and again 25 ℃ of a solution mixed in a 97.5: 2.5 volume ratio Emulsion size changes in the state are images and graphs shown using an optical microscope.
도 15a 내지 도 15d에서 나타난 바와 같이, 이량체 분산용액의 온도가 25 ℃의 실온(도 15a)인 경우, 에멀젼의 크기는 5 내지 25 ㎛인 것을 알 수 있다. 50 ℃에서 마이셀 크기는 25 ㎛보다 훨씬 줄어든 1 내지 10 ㎛인 것을 확인할 수 있다(도 15b). 이는 온도가 증가할수록 적은 수의 이량체가 에멀젼을 형성하므로 작은 크기의 에멀젼이 많이 만들어 지기 때문이다. 또한, 이량체 분산용액 온도를 50 ℃에서 다시 실온으로 냉각시킨 경우 에멀젼이 다시 가역적으로 커진 것을 확인할 수 있다(도 15c).As shown in Figure 15a to 15d, when the temperature of the dimer dispersion solution is 25 ℃ room temperature (Fig. 15a), it can be seen that the size of the emulsion is 5 to 25 ㎛. The micelle size at 50 ° C. can be seen to be 1-10 μm, much smaller than 25 μm (FIG. 15B). This is because as the temperature increases, a small number of dimers form an emulsion, which results in many emulsions of small size. In addition, when the dimer dispersion solution temperature was cooled again at 50 ° C. to room temperature, the emulsion was reversibly increased again (FIG. 15C).
하기 도 16a 내지 도 16c는 본 발명의 비교예로서, 상기 실시예 1의 (1)에서 제조된 폴리스티렌 분산용액과 코코넛 오일을 97.5 : 2.5 부피비로 혼합한 용액의 온도에 따른 입자 크기 변화를 광학 현미경을 이용하여 나타낸 이미지이다.16A to 16C are comparative examples of the present invention, in which the particle size change according to the temperature of the solution of the polystyrene dispersion solution prepared in Example 1 (1) and the coconut oil in a 97.5: 2.5 volume ratio The image shown using.
하기 도 16a 내지 도 16c에 나타난 바와 같이, 상온(RT)에서 폴리스티렌 고분자들이 많이 응집하여 입자를 형성하며(도 16a), 50 ℃까지 온도가 증가하면 입자 크기가 작아진다(도 16b). 그러나, 다시 상온으로 냉각하여도 작아진 입자는 다시 커지지 않는 것을 확인할 수 있다(도 16c). 이는 온도 증가에 따라 불안정한 입자들이 파괴되어 상분리가 일어나 더 이상 입자를 형성할 수 없기 때문이다.As shown in FIGS. 16A to 16C, polystyrene polymers aggregate to form particles at room temperature (RT) (FIG. 16A), and when the temperature increases to 50 ° C., the particle size decreases (FIG. 16B). However, even when cooled to room temperature again, it can be confirmed that the smaller particles do not grow again (FIG. 16C). This is because unstable particles are destroyed with increasing temperature and phase separation can no longer form the particles.
(2) 실시예 2에 따른 비구형 양친성 이량체 나노입자(2) Non-Spherical Amphiphilic Dimer Nanoparticles According to Example 2
하기 도 17 내지 도 20은 본 발명의 실시예 2(재팽윤 시간은 0 h)에 따라 제조된 비구형 양친성 이량체 나노입자 분산 용액과 실리콘 오일(DC 200)을 9.9 : 0.1의 부피비로 혼합한 용액의 온도에 따른 에멀젼 크기 변화를 광학현미경을 이용하여 나타낸 이미지 및 그래프이다.17 to 20 is a non-spherical amphiphilic dimer nanoparticle dispersion solution prepared according to Example 2 (reswelling time is 0 h) of the present invention and the silicone oil (DC 200) in a volume ratio of 9.9: 0.1 Changes in emulsion size with temperature of one solution are images and graphs using an optical microscope.
도 17 내지 도 18에 나타난 바와 같이, 온도가 상온에서 50 ℃로 증가할 경우 에멀젼의 크기가 대략 10 ㎛에서 4 ㎛로 작아지는 것을 확인할 수 있는바, 이는 온도가 증가할수록 적은 수의 이량체가 에멀젼을 형성하여 크기가 작은 에멀젼들이 많이 만들어진다는 것을 의미한다.As shown in Figure 17 to 18, when the temperature is increased from 50 ℃ to room temperature it can be seen that the size of the emulsion is reduced from approximately 10 ㎛ to 4 ㎛, which means that as the temperature increases the number of dimers This means that many small emulsions are made.
또한, 도 19 내지 도 20에 나타난 바와 같이 온도를 상온으로 냉각 및 50 ℃로 가열을 반복할 경우 에멀젼의 크기가 가역적으로 커졌다가 작아지는 것을 확인할 수 있으며, 이를 통해 본 발명에 따라 제조된 비구형 양친성 이량체 나노입자는 온도에 따라 물리화학적 특성이 변화하게 되고, 결국 온도에 따라 가역적으로 계면특성을 조절할 수 있는바, 온도에 따라 가역적으로 에멀젼의 크기를 변화시킬 수 있다는 것을 확인할 수 있다. In addition, as shown in FIGS. 19 to 20, when the temperature is cooled to room temperature and the heating is repeated at 50 ° C., the size of the emulsion may be reversibly increased and decreased, thereby making the non-spherical shape manufactured according to the present invention. Amphiphilic dimer nanoparticles change the physicochemical properties according to the temperature, and eventually can adjust the interface properties reversibly according to the temperature, it can be seen that the size of the emulsion can be reversibly changed according to the temperature.
실험예 5. 접촉각 측정Experimental Example 5 Contact Angle Measurement
(1) 실시예 1에 따른 비구형 양친성 이량체 나노입자(1) Non-Spherical Amphiphilic Dimer Nanoparticles According to Example 1
본 발명의 실시예 1에 따라 제조된 비구형 양친성 이량체(Dimer) 분산용액과실시예 1의 비교예로 증류수(water) 및 폴리스티렌(PS) 분산용액의 소수성 표면에서의 온도에 따른 접촉각을 각각 측정하였다.The contact angle according to the temperature at the hydrophobic surface of the non-spherical amphiphilic dimer dispersion solution prepared according to Example 1 of the present invention and the distilled water (poly) (PS) dispersion solution as a comparative example of Example 1 Each was measured.
도 21a는 25 ℃ 및 50 ℃에서의 물(water), 폴리스티렌 분산용액(PS) 및 본 발명의 실시예에 따라 제조된 비구형 양친성 이량체(Dimer) 분산용액의 폴리스티렌(Polystyrene, PS) 필름 표면에 대한 접촉각을 나타낸 이미지고, 도 21b는 25 ℃ 및 50 ℃에서의 각 용액의 폴리다이메틸실록산(Poly-dimethylsiloxane, PDMS) 필름 표면에 대한 접촉각을 나타낸 이미지이다. 또한, 하기 도 21c는 각 접촉각을 나타낸 그래프이다.Figure 21a is a polystyrene (PS) film of water (water), polystyrene dispersion (PS) and non-spherical amphiphilic dimer dispersion solution prepared according to an embodiment of the present invention at 25 ℃ and 50 ℃ Image showing the contact angle to the surface, Figure 21b is an image showing the contact angle to the surface of the poly-dimethylsiloxane (PDMS) film of each solution at 25 ℃ and 50 ℃. 21C is a graph showing each contact angle.
도 21a 내지 도 21c에서 알 수 있듯이, 온도에 따른 접촉각의 차이는 본 발명의 비구형 양친성 이량체 분산용액에서 가장 큰 것을 알 수 있다. 이는 증류수의 물 분자나 폴리스티렌 고분자 입자보다 본 발명의 이량체가 온도에 따라 크기가 다른 에멀젼을 형성하기 때문이다. 25 ℃에서는 많은 수의 이량체가 모여 에멀젼을 형성하므로 에멀젼의 크기가 커지면서 계면과의 접촉각이 크고, 이에 반해 50 ℃에서는 적은 수의 이량체가 모여 에멀젼을 형성하므로 에멀젼의 크기는 작아지고 계면과의 접촉각이 작아진다.As can be seen in Figure 21a to 21c, the difference in contact angle with temperature can be seen that the largest in the non-spherical amphiphilic dimer dispersion solution of the present invention. This is because the dimer of the present invention forms an emulsion having a different size depending on the temperature than water molecules or polystyrene polymer particles of distilled water. At 25 ° C, a large number of dimers gather to form an emulsion, which increases the size of the emulsion, resulting in a large contact angle with the interface. On the other hand, at 50 ° C, a small number of dimers gather to form an emulsion, resulting in a small emulsion and a contact angle with the interface. Becomes smaller.
(2) 실시예 2에 따른 비구형 양친성 이량체 나노이바(2) non-spherical amphiphilic dimer nanoiba according to Example 2
본 발명의 실시예 2(재팽윤 시간은 0 h)에 따라 제조된 비구형 양친성 이량체(Dimer) 나노입자 분산용액, 물(water), 폴리스티렌(PS) 분산용액, 코어-쉘 구조의 제1 입자(CS)의 소수성 표면에서의 온도에 따른 접촉각을 측정하였다.Preparation of non-spherical dimer nanoparticle dispersion solution, water, polystyrene (PS) dispersion solution, core-shell structure prepared according to Example 2 (re-swelling time is 0 h) of the present invention The contact angle with temperature at the hydrophobic surface of 1 particle (CS) was measured.
도 22a는 상온(25 ℃) 및 50 ℃에서의 물(water), 본 발명의 실시예에 따라 제조된 비구형 양친성 이량체 나노입자(Dimer) 분산 용액의 폴리스티렌 필름 표면에 대한 접촉각을 나타낸 이미지이고, 도 22b는 상온(25 ℃) 및 50 ℃에서의 물(water), 폴리스티렌 나노입자(PS), 친수성 고분자가 코팅된 폴리스티렌 나노입자(Core-shell, CS) 및 본 발명의 실시예 2에 따라 제조된 비구형 양친성 이량체 나노입자(Dimer) 분산 용액의 폴리스티렌 필름 표면에 대한 접촉각을 나타낸 그래프이다.22A is an image showing the contact angle to the surface of the polystyrene film of water at room temperature (25 ℃) and 50 ℃, non-spherical amphiphilic dimer nanoparticles (Dimer) dispersion solution prepared according to an embodiment of the present invention 22b shows water, polystyrene nanoparticles (PS), hydrophilic polymer-coated polystyrene nanoparticles (Core-shell, CS) at room temperature (25 ° C.) and 50 ° C., and Example 2 of the present invention. It is a graph showing the contact angle to the surface of the polystyrene film of the non-spherical amphiphilic dimer nanoparticles (Dimer) dispersion solution prepared according to.
도 23a는 상온(25 ℃) 및 50 ℃에서의 물(water), 본 발명의 실시예 2에 따라 제조된 비구형 양친성 이량체 나노입자(Dimer) 분산 용액의 폴리다이메틸실록산(PDMS) 필름 표면에 대한 접촉각을 나타낸 이미지이고, 도 23b는 상온(25 ℃) 및 50 ℃에서의 물(water), 폴리스티렌 나노입자(PS), 친수성 고분자가 코팅된 폴리스티렌 나노입자(Core-shell, CS) 및 본 발명의 실시예 2에 따라 제조된 비구형 양친성 이량체 나노입자(Dimer) 분산 용액의 폴리다이메틸실록산(PDMS) 필름 표면에 대한 접촉각을 나타낸 그래프이다.FIG. 23A is a polydimethylsiloxane (PDMS) film of water at room temperature (25 ° C.) and 50 ° C., a non-spherical amphiphilic dimer nanoparticle (Dimer) dispersion solution prepared according to Example 2 of the present invention. Figure 23b shows the contact angle to the surface, Figure 23b is water (poly) nanoparticles (PS), hydrophilic polymer coated polystyrene nanoparticles (Core-shell, CS) and water at room temperature (25 ℃) and 50 ℃ It is a graph showing the contact angle of the polydimethylsiloxane (PDMS) film surface of the non-spherical amphiphilic dimer nanoparticles (Dimer) dispersion solution prepared according to Example 2 of the present invention.
도 22a 내지 23b에 나타난 바와 같이, 온도에 따른 접촉각의 차이는 코어-쉘 구조의 제1 입자(CS) 및 본 발명에 따른 비구형 양친성 이량체 나노입자 분산용액 에서 크게 나타나는 것을 알 수 있다. 이는 물 분자, 폴리스티렌과 달리 코어-쉘 구조의 제1 입자(CS) 및 본 발명에 따른 비구형 양친성 이량체 나노입자가 온도에 감응하는 친수성 고분자 표면을 가지고 있기 때문이며, 본 발명의 이량체가 온도에 따라 크기가 다른 에멀젼을 형성하기 때문이다. 구체적으로, 상온(RT)에서는 많은 수의 이량체가 모여 에멀젼을 형성하므로 에멀젼의 크기가 커지면서 계면과의 접촉각이 크게 나타나고, 이에 반해 50 ℃에서는 적은 수의 이량체가 모여 에멀젼을 형성하므로 에멀젼의 크기는 작아지고 계면과의 접촉각이 작아지는 것을 알 수 있다.As shown in Figures 22a to 23b, it can be seen that the difference in contact angle with temperature is large in the first particle (CS) of the core-shell structure and the non-spherical amphiphilic dimer nanoparticle dispersion solution according to the present invention. This is because, unlike water molecules, polystyrene, the core-shell structured first particles (CS) and non-spherical amphiphilic dimer nanoparticles according to the present invention have a hydrophilic polymer surface which is temperature sensitive, and the dimer of the present invention has a temperature This is because they form emulsions of different sizes. Specifically, at room temperature (RT), since a large number of dimers gather to form an emulsion, the size of the emulsion increases, and the contact angle with the interface appears large. On the other hand, at 50 ° C., a small number of dimers gather to form an emulsion, so the size of the emulsion is It turns out that it becomes small and the contact angle with an interface becomes small.
이를 통해 본 발명에 따라 제조된 비구형 양친성 이량체 나노입자는 온도에 따라 물리화학적 특성이 변화하게 되고, 결국 온도에 따라 가역적으로 계면특성을 조절할 수 있는바, 온도에 따라 가역적으로 소수성 기판과의 계면에너지를 조절할 수 있다는 것을 확인할 수 있다.Through this, the non-spherical amphiphilic dimer nanoparticles prepared according to the present invention will change the physicochemical properties according to the temperature, and thus can reversibly adjust the interfacial properties according to the temperature. It can be seen that the interfacial energy of can be adjusted.
본 발명에 따른 양친성 비구형 이량체 나노입자는 입자 표면의 친수성 및 소수성 특성이 온도에 의해 가역적으로 변화함에 따라 액체-액체 또는 액체-고체 간의 계면 특성을 온도에 따라 가역적으로 조절할 수 있는바, 의약, 화장품 분야에서 온도에 따른 계면 특성 조절을 통해 에멀젼의 크기를 조절함으로써, 약물화장품 등의 전달을 극대화할 수 있다.Amphiphilic non-spherical dimer nanoparticles according to the present invention can reversibly adjust the interfacial properties between the liquid-liquid or liquid-solid as the hydrophilic and hydrophobic properties of the particle surface reversibly change with temperature, In the field of medicine and cosmetics, by controlling the size of the emulsion by adjusting the interfacial properties according to the temperature, it is possible to maximize the delivery of drug cosmetics.
또한, 전자산업에서 온도에 따라 가역적으로 계면 특성을 조절할 수 있는 성질을 이용하여 고체 기판에 대한 액체의 습윤성(wettability)을 조절할 수 있는바, 반도체 칩 제조를 위한 리소그래피 공정의 효율을 극대화할 수 있다. 아울러 프린터용 잉크 및 페인트 산업에서 프린터용 잉크액 조성물 등으로 이용되어 다양한 표면성질을 가지는 도장표면 및 프린트 용지의 표면으로의 코팅효율을 극대화할 수 있다.In addition, in the electronics industry, the wettability of a liquid on a solid substrate may be controlled by using a property of reversibly adjusting interface characteristics according to temperature, thereby maximizing the efficiency of a lithography process for manufacturing a semiconductor chip. . In addition, it is possible to maximize the coating efficiency of the coating surface and the surface of the print paper having a variety of surface properties used in the printer ink and paint industry, such as the ink liquid composition for the printer.

Claims (23)

  1. 제1 입자 및 제2 입자로 이루어지고, 온도에 따라 가역적으로 물과의 계면에너지 조절이 가능한 것을 특징으로 하는 비구형 양친성 이량체 나노입자.Non-spherical amphiphilic dimer nanoparticles consisting of the first particles and the second particles, it is possible to control the interfacial energy with water reversibly according to the temperature.
  2. 제1항에 있어서,The method of claim 1,
    상기 제1 입자는 표면 특성이 친수성이고, 상기 제2 입자는 표면특성이 소수성인 것을 특징으로 하는 비구형 양친성 이량체 나노입자.Non-spherical amphiphilic dimer nanoparticles, characterized in that the first particles are hydrophilic in surface properties, the second particles are hydrophobic in surface properties.
  3. 제1항에 있어서,The method of claim 1,
    상기 제1 입자 표면과 물과의 계면에너지가 온도에 따라 가역적으로 높아지거나 낮아지는 것을 특징으로 하는 비구형 양친성 이량체 나노입자.Non-spherical amphiphilic dimer nanoparticles, characterized in that the interfacial energy between the surface of the first particle and water is reversibly increased or lowered with temperature.
  4. 제1항에 있어서,The method of claim 1,
    상기 제1 입자는 소수성 고분자로 이루어진 코어와, 상기 코어를 둘러싸는 친수성 고분자로 이루어진 쉘을 포함하는 코어-쉘 구조이고,The first particle has a core-shell structure including a core made of a hydrophobic polymer and a shell made of a hydrophilic polymer surrounding the core.
    상기 제2 입자는 상기 제1 입자의 일점으로부터 상기 코어를 이루는 소수성 고분자가 돌출되어 형성되며,The second particles are formed by protruding a hydrophobic polymer forming the core from one point of the first particles,
    상기 제2 입자는 제 1입자와 상기 일점에서 부분적으로 접해 있는 것을 특징으로 하는 비구형 양친성 이량체 나노입자.Non-spherical amphiphilic dimer nanoparticles, characterized in that the second particles are partially in contact with the first particle at the one point.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 소수성 고분자는 스티렌, 메틸아크릴레이트, 에틸아크릴레이트, 에틸메타크릴레이트, 부틸아크릴레이트, 부틸베타크릴레이트, 펜틸아크릴레이트, 펜틸메타크릴레이트, 글리시딜메타크릴레이트 및 이들의 중합체 중에서 선택되는 것을 특징으로 하는 비구형 양친성 이량체 나노입자.The hydrophobic polymer is selected from styrene, methyl acrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, pentyl acrylate, pentyl methacrylate, glycidyl methacrylate and polymers thereof Non-spherical amphiphilic dimer nanoparticles, characterized in that.
  6. 제4항에 있어서,The method of claim 4, wherein
    상기 친수성 고분자는 N-아이소프로필아크릴아마이드, 메타크릴릭산, 메타크릴레이트, 알릴아민, 에틸렌글리콜 메타크릴레이트 및 이들의 중합체 중에서 선택되는 것을 특징으로 하는 비구형 양친성 이량체 나노입자.The hydrophilic polymer is a non-spherical amphiphilic dimer nanoparticles, characterized in that selected from N-isopropyl acrylamide, methacrylic acid, methacrylate, allylamine, ethylene glycol methacrylate and polymers thereof.
  7. (a) 사이클로덱스트린이 포함된 수용액에 소수성 단량체, 이온성 개시제 및 가교제를 첨가하여 시드 입자가 형성된 용액을 제조하는 단계;(a) adding a hydrophobic monomer, an ionic initiator and a crosslinking agent to an aqueous solution containing cyclodextrin to prepare a solution in which seed particles are formed;
    (b) 친수성 단량체가 포함된 수용액에 상기 시드 입자가 형성된 용액 및 이온성 개시제를 첨가하여 코어-쉘 구조의 제1 입자가 형성된 용액을 제조하는 단계;(b) adding a solution in which the seed particles are formed and an ionic initiator to an aqueous solution containing a hydrophilic monomer to prepare a solution in which the first particles having a core-shell structure are formed;
    (c) 상기 제1 입자가 형성된 용액에 소수성 단량체를 더 첨가 후 교반하여 상기 제1 입자를 팽윤시키는 단계;(c) further adding a hydrophobic monomer to the solution in which the first particles are formed, followed by stirring to swell the first particles;
    (d) 상기 (c) 단계 후 25 내지 100 ℃로 가열 및 재교반하여 상기 제1 입자를 재팽윤시키는 단계; 및(d) reswelling the first particles by heating and restirring to 25 to 100 ° C. after step (c); And
    (e) 상기 재팽윤 후 라디칼 개시제를 첨가하여 상기 (c) 단계에서 첨가된 소수성 단량체를 중합시키는 단계;를 포함하고, (e) adding a radical initiator after the reswelling to polymerize the hydrophobic monomer added in step (c); and
    상기 소수성 단량체가 중합되면서 상기 제1 입자의 일점으로부터 돌출된 제2 입자를 형성하는 것을 특징으로 하는 온도에 따라 가역적으로 물과의 계면에너지 조절이 가능한 비구형 양친성 이량체 나노입자의 제조방법. Method for producing non-spherical amphiphilic dimer nanoparticles reversibly controlled interfacial energy with water according to the temperature, characterized in that the hydrophobic monomer is polymerized to form second particles protruding from one point of the first particles.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 코어-쉘 구조의 제1 입자는 소수성 고분자로 이루어진 코어와 상기 코어를 둘러싸는 친수성 고분자를 포함하고,The first particle of the core-shell structure includes a core made of hydrophobic polymer and a hydrophilic polymer surrounding the core,
    상기 제1 입자의 표면 특성은 친수성이고, 상기 제2 입자의 표면 특성은 소수성인 것을 특징으로 하는 비구형 양친성 이량체 나노입자의 제조방법.The surface properties of the first particles are hydrophilic, the surface properties of the second particles is a method for producing non-spherical amphiphilic dimer nanoparticles, characterized in that hydrophobic.
  9. 제7항에 있어서,The method of claim 7, wherein
    상기 제1 입자 표면과 물과의 계면에너지가 온도에 따라 가역적으로 높아지거나 낮아지는 것을 특징으로 하는 비구형 양친성 이량체 나노입자의 제조방법.Method for producing a non-spherical amphiphilic dimer nanoparticles characterized in that the interfacial energy between the surface of the first particle and water is reversibly increased or lowered with temperature.
  10. 제7항에 있어서,The method of claim 7, wherein
    상기 (c) 단계는 10 내지 40 ℃에서 10 내지 30시간 동안 수행되는 것을 특징으로 하는 비구형 양친성 이량체 나노입자의 제조방법.The step (c) is a method for producing non-spherical amphiphilic dimer nanoparticles, characterized in that carried out for 10 to 30 hours at 10 to 40 ℃.
  11. 제7항에 있어서,The method of claim 7, wherein
    상기 (d) 단계의 재팽윤 시간이 증가할수록 상기 제1 입자의 크기가 증가하고, 상기 제2 입자의 크기가 감소하는 것을 특징으로 하는 비구형 양친성 이량체 나노입자의 제조방법.The method of manufacturing the non-spherical amphiphilic dimer nanoparticles characterized in that the size of the first particle increases, and the size of the second particle decreases as the reswelling time of step (d) increases.
  12. 제7항에 있어서,The method of claim 7, wherein
    상기 소수성 단량체는 스티렌, 메틸아크릴레이트, 에틸아크릴레이트, 에틸메타크릴레이트, 부틸아크릴레이트, 부틸베타크릴레이트, 펜틸아크릴레이트, 펜틸메타크릴레이트, 글리시딜메타크릴레이트 중에서 선택되는 1종 이상인 것을 특징으로 하는 비구형 양친성 이량체 나노입자의 제조방법.The hydrophobic monomer may be at least one selected from styrene, methyl acrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, pentyl acrylate, pentyl methacrylate and glycidyl methacrylate. Method for producing a non-spherical amphiphilic dimer nanoparticles characterized in.
  13. 제7항에 있어서,The method of claim 7, wherein
    상기 친수성 단량체는 N-아이소프로필아크릴아마이드, 메타크릴릭산, 메타크릴레이트, 알릴아민, 에틸렌글리콜 메타크릴레이트 중에서 선택되는 1종 이상인 것을 특징으로 하는 비구형 양친성 이량체 나노입자의 제조방법.The hydrophilic monomer is N-isopropyl acrylamide, methacrylic acid, methacrylate, allylamine, ethylene glycol methacrylate production method of non-spherical amphiphilic dimer nanoparticles, characterized in that at least one.
  14. 제7항에 있어서,The method of claim 7, wherein
    상기 사이클로덱스트린은 메틸-β-사이클로덱스트린(methyl-β-cyclo dextrin), β-사이클로덱스트린(β-cyclodextrin), 2,6-디메틸-β-사이클로덱스트린 (2,6-dimethyl-β-cyclodextrin) 및 설포부틸에테르-β-사이클로덱스트린나트륨(sodium sulphobutyl ether-β-cyclodextrin) 중에서 선택되는 1종 이상인 것을 특징으로 하는 비구형 양친성 이량체 나노입자의 제조방법.The cyclodextrin is methyl-β-cyclodextrin, β-cyclodextrin, 2,6-dimethyl-β-cyclodextrin (2,6-dimethyl-β-cyclodextrin). And sodium sulphobutyl ether-β-cyclodextrin. The method for producing non-spherical amphiphilic dimer nanoparticles, characterized in that at least one selected from the group consisting of sodium sulphobutyl ether-β-cyclodextrin.
  15. 제7항에 있어서,The method of claim 7, wherein
    상기 이온성 개시제는 페록소 이황산칼륨(KPS), 암모늄퍼설페이트(APS) 및 나트륨퍼설페이트(SPS) 중에서 선택되는 1종 이상인 것을 특징으로 하는 비구형 양친성 이량체 나노입자의 제조방법.The ionic initiator is a method for producing non-spherical amphiphilic dimer nanoparticles, characterized in that at least one selected from potassium peroxulfate (KPS), ammonium persulfate (APS) and sodium persulfate (SPS).
  16. 제7항에 있어서,The method of claim 7, wherein
    상기 라디칼 개시제는 2,2-아조비스이소부티로니트릴(AIBN), 2,2-아조비스(2-메틸이소부티로니트릴), 2,2-아조비스(2,4-디메틸발레로니트릴), 벤조일퍼옥사이드, 라우릴퍼옥사이드, 큐멘하이드로퍼옥사이드, 메틸에틸케톤퍼옥사이드, t-부틸하이드로퍼옥사이드, o-클로로벤조일퍼옥사이드, o-메톡시벤조일퍼옥사이드, t-부틸퍼옥시-2-에틸헥사노에이트, t-부틸퍼옥시이소부티레이트 및 이들의 혼합물 중에서 선택되는 1종 이상인 것을 특징으로 하는 비구형 양친성 이량체 나노입자의 제조방법.The radical initiator is 2,2-azobisisobutyronitrile (AIBN), 2,2-azobis (2-methylisobutyronitrile), 2,2-azobis (2,4-dimethylvaleronitrile) , Benzoyl peroxide, lauryl peroxide, cumene hydroperoxide, methyl ethyl ketone peroxide, t-butyl hydroperoxide, o-chlorobenzoyl peroxide, o-methoxybenzoyl peroxide, t-butylperoxy-2 -A method for producing non-spherical amphiphilic dimer nanoparticles, characterized in that it is at least one selected from ethylhexanoate, t-butylperoxyisobutyrate and mixtures thereof.
  17. 제1항에 따른 비구형 양친성 이량체 나노입자를 포함하는 에멀젼 조성물.An emulsion composition comprising the non-spherical amphiphilic dimer nanoparticles of claim 1.
  18. 제17항에 있어서,The method of claim 17,
    상기 비구형 양친성 이량체 나노입자가 수용액-오일 계면 상에 배열하여 에멀젼을 형성하고,The non-spherical amphiphilic dimer nanoparticles are arranged on an aqueous solution-oil interface to form an emulsion,
    제1 입자 표면과 물과의 계면에너지가 온도에 따라 가역적으로 변화되는 것을 특징으로 하는 에멀젼 조성물.Emulsion composition, characterized in that the interfacial energy between the surface of the first particle and water is reversibly changed with temperature.
  19. 제18항에 있어서,The method of claim 18,
    상기 제1 입자 표면과 물과의 계면에너지가 온도에 따라 가역적으로 변화되어, 에멀젼의 크기가 온도에 따라 가역적으로 조절되는 것을 특징으로 하는 에멀젼 조성물.The interfacial energy between the surface of the first particle and water is reversibly changed with temperature, so that the size of the emulsion is reversibly adjusted with temperature.
  20. 제17항에 있어서,The method of claim 17,
    상기 에멀젼의 크기는 1 내지 50 ㎛인 것을 특징으로 하는 에멀젼 조성물.The emulsion composition is characterized in that the size of 1 to 50 ㎛.
  21. 제1항에 따른 비구형 양친성 이량체 나노입자를 포함하는 나노패턴 형성용 조성물.Composition for forming a nanopattern comprising the non-spherical amphiphilic dimer nanoparticles according to claim 1.
  22. 제21항에 있어서,The method of claim 21,
    상기 비구형 양친성 이량체 나노입자가 나노패턴 형성 고체 기판의 계면 상에 배열하고,The non-spherical amphiphilic dimer nanoparticles are arranged on the interface of the nanopattern-forming solid substrate,
    제1 입자 표면과 물과의 계면에너지가 온도에 따라 가역적으로 변화되는 것을 특징으로 하는 나노패턴 형성용 조성물.The interfacial energy between the surface of the first particle and water is reversibly changed in accordance with the temperature, the composition for forming a nanopattern.
  23. 제22항에 있어서,The method of claim 22,
    상기 제1 입자 표면과 물과의 계면에너지가 온도에 따라 가역적으로 변화되어, 상기 나노패턴 형성용 고체 기판과의 계면에너지가 가역적으로 조절되는 것을 특징으로 하는 나노패턴 형성용 조성물.The interfacial energy between the surface of the first particle and water is reversibly changed with temperature, so that the interfacial energy with the solid substrate for nanopattern forming is reversibly controlled.
PCT/KR2015/006806 2014-07-02 2015-07-02 Non-spherical amphiphilic polymer nanoparticles having interfacial properties which can be reversibly controlled by temperature, method for producing same, and composition comprising same WO2016003212A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020140082315A KR101621148B1 (en) 2014-07-02 2014-07-02 Non-spherical amphiphilic dimeric nanoparticles which can reversibly change the interfacial properties with temperatures
KR10-2014-0082315 2014-07-02
KR1020150094438A KR101766958B1 (en) 2015-07-02 2015-07-02 Method for pickering emulsion-based manufacture of non-spherical amphiphilic dimeric nanoparticles reversibly changing the interfacial properties with temperatures
KR10-2015-0094438 2015-07-02

Publications (1)

Publication Number Publication Date
WO2016003212A1 true WO2016003212A1 (en) 2016-01-07

Family

ID=55019656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/006806 WO2016003212A1 (en) 2014-07-02 2015-07-02 Non-spherical amphiphilic polymer nanoparticles having interfacial properties which can be reversibly controlled by temperature, method for producing same, and composition comprising same

Country Status (1)

Country Link
WO (1) WO2016003212A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110702258A (en) * 2019-11-04 2020-01-17 长春职业技术学院 Preparation method of temperature-sensitive emulsion indicator for food cold chain safety monitoring
CN111892686A (en) * 2020-08-10 2020-11-06 四川大学 Method for continuously and controllably preparing amphiphilic snowman-shaped microparticles
CN115975131A (en) * 2023-02-13 2023-04-18 江南大学 Core-shell polymer microsphere and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070009449A (en) * 2005-07-14 2007-01-18 내쇼날 스타치 앤드 케미칼 인베스트멘트 홀딩 코포레이션 Activatable compositions
WO2012158610A1 (en) * 2011-05-13 2012-11-22 William Marsh Rice University Temperature-assisted migration of amphiphilic nanoparticles through liquid interfaces

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070009449A (en) * 2005-07-14 2007-01-18 내쇼날 스타치 앤드 케미칼 인베스트멘트 홀딩 코포레이션 Activatable compositions
WO2012158610A1 (en) * 2011-05-13 2012-11-22 William Marsh Rice University Temperature-assisted migration of amphiphilic nanoparticles through liquid interfaces

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BAO LIU ET AL.: "Robust Anisotropic Composite Particles with Tunable Janus Balance", MACROMOLECULES, vol. 45, no. 12, 2012, pages 5176 - 5184, XP055250075, ISSN: 0024-9297 *
TOMOE YAMAGAMI ET AL.: "Preparation of Stimuli-Responsive ''Mushnxim-Like'' Janus Polymer Particles as Particulate Surfactant by Site-Selective Surface-Initiated AGET ATRP in Aqueous Dispersed Systems", LANGMUIR, vol. 30, 2014, pages 7823 - 7832, XP055250074 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110702258A (en) * 2019-11-04 2020-01-17 长春职业技术学院 Preparation method of temperature-sensitive emulsion indicator for food cold chain safety monitoring
CN111892686A (en) * 2020-08-10 2020-11-06 四川大学 Method for continuously and controllably preparing amphiphilic snowman-shaped microparticles
CN111892686B (en) * 2020-08-10 2022-11-11 四川大川合颐生物科技有限公司 Method for continuously and controllably preparing amphiphilic snowman-shaped microparticles
CN115975131A (en) * 2023-02-13 2023-04-18 江南大学 Core-shell polymer microsphere and application thereof

Similar Documents

Publication Publication Date Title
KR101214395B1 (en) Polymer particles and encapsulated compositions using organoborane amine complexes
Tan et al. Room temperature synthesis of self-assembled AB/B and ABC/BC blends by photoinitiated polymerization-induced self-assembly (photo-PISA) in water
KR101452207B1 (en) Resin particles and process for producing same, antiglare film, light-diffusing resin composition, and external preparation
WO2016003212A1 (en) Non-spherical amphiphilic polymer nanoparticles having interfacial properties which can be reversibly controlled by temperature, method for producing same, and composition comprising same
KR100684490B1 (en) Improved polymethacrylate plastisols and method for producing the same
TW200534918A (en) Nanoparticles
WO2015183042A1 (en) Cosmetic composition containing amphiphilic anisotropic powder and method for preparing same
KR20070089129A (en) Core-shell particles
TW200540191A (en) Use of random copolymers
CN113939544B (en) non-core-shell polymer particles
TWI627190B (en) Hollow particle and use thereof
TW201124432A (en) Resin grain and method for producing the same
JPWO2017056529A1 (en) Polymer particles and uses thereof
Liras et al. QDs decorated with thiol-monomer ligands as new multicrosslinkers for the synthesis of smart luminescent nanogels and hydrogels
CN106068282A (en) Solidification compound, solidfied material, optical material and electronic material containing semi-conductor nano particles
WO2016132993A1 (en) Composition for polymerization, method for producing same, coating composition containing same, method for producing coating composition containing said compositions, and method for producing coating
WO2017090974A1 (en) Emulsion cosmetic composition containing inorganic uv blocker and method for preparing same
JP2010229219A (en) Method for producing vinyl polymer particle, and vinyl polymer particle
JPH0625369A (en) Aqueous silicone-modified resin
WO2011014198A1 (en) Electrically chargeable encapsulated particles
WO2017204372A1 (en) Self-assembly type janus microparticle and preparation method therefor
WO2018169309A2 (en) Emulsion, production method therefor, and method for forming coating layer using same
WO2017090983A1 (en) Emulsion cosmetic composition containing fine wax particles and preparation method therefor
JP7061756B2 (en) Photochromic dye-containing nanocapsules and their manufacturing method
WO2017090999A1 (en) Emulsion cosmetic composition containing ceramide and method for preparing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15814057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15814057

Country of ref document: EP

Kind code of ref document: A1