WO2016003167A1 - Polybenzoxazine precursor and method for preparing same - Google Patents

Polybenzoxazine precursor and method for preparing same Download PDF

Info

Publication number
WO2016003167A1
WO2016003167A1 PCT/KR2015/006715 KR2015006715W WO2016003167A1 WO 2016003167 A1 WO2016003167 A1 WO 2016003167A1 KR 2015006715 W KR2015006715 W KR 2015006715W WO 2016003167 A1 WO2016003167 A1 WO 2016003167A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
polybenzoxazine
precursor
mol
Prior art date
Application number
PCT/KR2015/006715
Other languages
French (fr)
Korean (ko)
Inventor
조희진
성도경
박기현
박상훈
강현수
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Priority to CN201580036014.1A priority Critical patent/CN106661208B/en
Priority to US15/322,946 priority patent/US10266504B2/en
Priority claimed from KR1020150092996A external-priority patent/KR101782807B1/en
Publication of WO2016003167A1 publication Critical patent/WO2016003167A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D265/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one oxygen atom as the only ring hetero atoms
    • C07D265/041,3-Oxazines; Hydrogenated 1,3-oxazines
    • C07D265/121,3-Oxazines; Hydrogenated 1,3-oxazines condensed with carbocyclic rings or ring systems
    • C07D265/141,3-Oxazines; Hydrogenated 1,3-oxazines condensed with carbocyclic rings or ring systems condensed with one six-membered ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a polybenzoxazine precursor and a method for producing the same.
  • thermosetting resins such as phenol resins, melamine resins, epoxy resins, unsaturated polyester resins, and bismaleimide resins are based on the properties of thermosetting, and are excellent in water resistance, chemical resistance, heat resistance, mechanical strength, reliability, and the like. It is used in various fields.
  • phenol resins and melamine resins have disadvantages such as volatile by-products upon curing, epoxy resins and unsaturated polyester resins are poor in flame retardancy, and bismaleimide resins are very expensive.
  • polybenzoxazine has been studied in which the Benzoxazine ring is ring-opening-polymerized and thermally cured without the occurrence of problematic volatiles.
  • Thermosetting resins having a benzoxazine ring in the molecular structure are subject to encapsulation, impregnation, laminates, adhesives, paints, coatings, friction materials, FRP, and molding materials since the oxazine ring is opened by heating and polymerization proceeds without generation of byproducts. It is attracting attention as a thermosetting resin used for etc.
  • the benzoxazine ring has a complex structure of a benzene ring and an oxazine ring.
  • Such polybenzoxazines are well-balanced cured polymers, including mechanical, electrical and chemical properties, including high glass transition temperature (Tg), low dielectric properties, high tension, low coefficient of thermal expansion, excellent elasticity, low hygroscopicity, and the like.
  • Korean Unexamined Patent Publication No. 10-2012-0058566 relates to a "polybenzoxazine composition," wherein a curable composition comprising a benzoxazine compound and a pentafluoroantimonic acid catalyst is heated for a sufficient temperature and time to polymerize.
  • a method for producing a polybenzoxazine having good thermal stability is disclosed.
  • Republic of Korea Patent Publication No. 10-0818254 relates to "polybenzoxazine-based compound, an electrolyte membrane including the same and a fuel cell employing the same", the acid trapping ability, mechanical and chemical stability, the ability to retain phosphoric acid at high temperature
  • the improved novel polybenzoxazine compound, an electrolyte membrane using the same, and a method of manufacturing the same are disclosed.
  • Epoxy resins are commonly used in coatings, insulation, building materials and adhesives for easy processing, high stability and good mechanical and chemical properties.
  • the epoxy resin composition requires heat resistance and flame retardancy for lead-free application, and in particular, in the case of a copper clad laminate sheet (CCLS) epoxy resin composition, V-0 certification of the UL-94 standard is essential.
  • CCLS copper clad laminate sheet
  • halogenated resins such as brominated epoxy resins, antimony oxide, and the like have been used to impart such flame retardancy.
  • halogen-based flame retardants have adverse effects on the environment, such as gas generation during injection and dioxin generation during incineration.
  • the electrical and electronics and semiconductor industries are the major industries in Korea, and they account for a large portion of the industry in Korea.
  • technologies for flame retardancy of semiconductor encapsulants and adhesive parts related to the semiconductor industry and interest in technology development of raw materials to replace flame retardants harmful to the conventional environment is increasing.
  • polybenzoxazine is a thermosetting polymer in which a benzoxazine-based monomer is polymerized by opening a ring in a molecule by heat, and is capable of self-curing without a by-product, and does not generate a volatile substance upon curing and does not have a volume change. Excellent dimensional stability.
  • it is a high heat resistant polymer having a high glass transition temperature and having a decomposition property of pyrolysis temperature of less than 1% up to 350 ° C. It also serves as a flame retardant in that it is a nitrogen-containing compound suitable for non-halogen products.
  • polybenzoxazines also do not exhibit sufficient flame retardant effects, and additives such as bromine, phosphorus, or chlorine compounds are added to the polybenzoxazine-containing flame retardants. Since these additives do not dissolve in the solvent, they may cause problems during processing, and provide a cured resin having poor oxidation stability and often poor physical properties at high temperatures.
  • Copper Clad Laminate refers to a laminated plate coated with a thin copper foil on an insulating material.
  • PCBs printed circuit boards
  • Heat resistance and low dielectric properties are required.
  • Resin is used as the base material of copper foil laminated board and plays the role of an insulator in the printed circuit board. To be a good insulator, the permittivity must be low.
  • Dielectric constant refers to the degree of polarization of molecules in an insulator against external electrical signals. The smaller the value, the better the insulation. In the operation of a printed circuit board, the smaller the dielectric constant of the insulator, the faster the signal processing speed and the lower the transmission loss.
  • polybenzoxazine As an alternative for satisfying the heat resistance and low dielectric properties of the copper-clad laminate, the use of polybenzoxazine, a phenol-based curing agent, has been highlighted.
  • polybenzoxazine is a thermosetting polymer in which a benzoxazine-based monomer is polymerized by opening a ring in a molecule by heat, and is capable of self-curing without a by-product, and does not generate a volatile substance upon curing and does not have a volume change. Excellent dimensional stability.
  • Patent Document 1 Korean Unexamined Patent Publication No. 10-2012-0058566
  • Patent Document 2 Republic of Korea Patent Publication No. 10-0818254
  • Another object of the present invention is to provide a polybenzoxazine precursor capable of preparing a cured product having significantly improved thermal and flame retardant properties while maintaining electrical properties as compared to conventional polybenzoxazine precursors.
  • the present invention also provides a polybenzoxazine precursor capable of producing a cured product having significantly improved thermal and electrical properties as compared to existing polybenzoxazine precursors.
  • the present invention also provides a method for preparing such polybenzoxazine precursor.
  • the present invention also seeks to provide a cured product of such a polybenzoxazine precursor.
  • the present invention includes a benzoxazine compound represented by the following formula (1),
  • n 0 to 2
  • R 1 is or to be.
  • the precursor according to the embodiment may include a hardened product polymerized while the oxazine ring of the benzoxazine compound represented by Formula 1 is opened.
  • the hardened product of the benzoxazine compound may include a compound represented by the following formula (2).
  • R is And R 1 is or N is an integer of 0-2, n2 is an integer of 1-5.
  • the precursor according to the embodiment may have a weight average molecular weight of 500 to 5000g / mol.
  • n is an integer of 0 to 2.
  • the step (1) is used with respect to 1mol of the phenolic compound, the aldehyde compound is 0.05 to 0.3mol, the step (2) with respect to 1mol of the phenol novolak resin, 1 to 3mol amine compound And 1 to 5 mol of an aldehyde compound.
  • the cured product is R 1 in the benzoxazine-based compound represented by Formula 1 It includes a hardened product of the polybenzoxazine precursor containing the benzoxazine compound, the glass transition temperature may be 190 °C or more.
  • the cured product is R 1 in the benzoxazine-based compound represented by Formula 1 It includes a hardened product of the polybenzoxazine precursor containing the benzoxazine compound, the glass transition temperature may be 250 °C or more.
  • Polybenzoxazine precursor according to the present invention can provide a cured product with improved thermal properties compared to the existing polybenzoxazine precursor,
  • a cured product exhibiting high thermal and electrical properties, and ultimately, it may be usefully used for copper clad laminates, semiconductor encapsulants, printed circuit boards, adhesives, paints, and mold applications.
  • Figure 1a is a 1 H-NMR spectrum of the phenol novolak resin prepared in Example 1 of the present invention.
  • 1B is a 1 H-NMR spectrum of the polybenzoxazine precursor prepared in Example 1 of the present invention.
  • Figure 1c is a result of GPC analysis of the polybenzoxazine precursor prepared in Example 1 of the present invention.
  • Figure 2 shows the infrared spectroscopy (IR) spectrum of the polybenzoxazine precursor prepared in Example 2 of the present invention, compared with the phenol novolak resin as a raw material.
  • IR infrared spectroscopy
  • Example 3 is a 1 H-NMR spectrum of the polybenzoxazine precursor prepared in Example 3 of the present invention.
  • Figure 4 shows the infrared spectroscopy (IR) spectrum of the polybenzoxazine precursor prepared in Example 4 of the present invention as compared to the phenol novolak resin as a raw material.
  • IR infrared spectroscopy
  • the present invention includes a benzoxazine compound represented by the following formula (1),
  • n 0 to 2
  • R 1 is or to be.
  • polybenzoxazine precursor refers to a compound or a group of compounds in which an oxazine ring plays a precursor role of forming a thermosetting resin called a polybenzoxazine by ring-opening reaction. It includes a benzoxazine-based monomer of only, including an oligomer having the same repeating unit structure as the monomer in the main chain, or a combination of a group containing a part of a polymerized autocuring product when the oxazine ring of such monomer or oligomer is ring-opened. define.
  • the self-curing product is produced by the polymerization of the benzoxazine monomer or oligomer while the oxazine ring is ring-opened in the formula (1).
  • the hardened product included in the polybenzoxazine precursor satisfying the above conditions may include a compound represented by the following Formula 2.
  • R is And R 1 is or N is an integer of 0-2, n2 is an integer of 1-5.
  • Representative examples of the compound according to R 1 which is a functional group derived from the amine compound in Formula 1 and its self-curing compound may be represented by the following Formulas 4 and 5, and 6 and 7, respectively.
  • n is an integer of 0 to 2.
  • R is N is an integer of 0-2, n2 is an integer of 1-5.
  • n is an integer of 0 to 2.
  • R is N is an integer of 0-2, n2 is an integer of 1-5.
  • the polybenzoxazine precursor has a weight average molecular weight of 500 to 5000 g / mol, more preferably 900 to 1800 g / mol can prevent the delay of curing or crystallization during curing, the viscosity of the precursor It may be preferable in view of being raised or gelled to prevent deterioration in workability and deterioration in compatibility with other resins.
  • the weight average molecular weight may be defined in terms of polystyrene equivalents determined by gel permeation chromatography (GPC).
  • the polybenzoxazine precursor according to the present invention may provide a cured product having improved thermal properties as compared to the existing polybenzoxazine precursor.
  • R 1 The polybenzoxazine precursor including when (Formula 4) can significantly improve thermal and flame retardant properties while maintaining excellent electrical properties.
  • R 1 is The polybenzoxazine precursor including the case of Formula 6 may provide a cured product having greatly improved thermal and electrical properties.
  • Polybenzoxazine precursor of the present invention may be prepared by using a phenol novolak resin represented by the following formula (3) as a raw material.
  • n is an integer of 0 to 2.
  • the phenol novolak resin may be condensed with an aldehyde compound and an amine compound in the presence of a solvent to prepare a polybenzoxazine precursor maximizing the aromatic content of benzoxazine.
  • the water and the solvent generated in the reaction process can be removed by a known method such as distillation.
  • the phenolic compound may be phenol or cresol.
  • aldehyde compounds are not particularly limited, but specific examples thereof include benzaldehyde, anisaldehyde, 4-methylbenzaldehyde, 2-methoxybenzaldehyde and 2-Methoxybenzaldehyde.
  • 4-methoxybenzaldehyde, 3,4-methylenedioxybenzaldehyde, 3,4-dimethoxy-benzaldehyde and 3-isopro Foxy-benzaldehyde (3-Isopropoxybenzaldehyde) may be one or more selected from the group consisting of.
  • the acid catalyst used in step (1) is para-toluene solfonic acid, methyl sulfonic acid, boron trifluorid, aluminum chloride and sulfo Nickel acid (Sulfuric acid) may be one or more selected from the group consisting of.
  • the amine compound may be added in an amount of 1 to 3 mol, preferably 1.5 to 2.5 mol, with respect to 1 mol of the phenol novolak resin, and the aldehyde compound is 1 to 5 mol, preferably 1 mol relative to 1 mol of the phenol novolak resin. Preferably from 2.5 to 4.5 mol .
  • the amount of the amine is aniline
  • the ring close reaction does not occur and the benzoxazine reaction cannot be sufficiently formed (the benzoxazine ring cannot be formed sufficiently).
  • the amount of mind bridges may be excessively generated, resulting in deterioration of heat resistance and flame retardant properties, gelation by secondary amines in the molecule, or increase in molecular weight, thereby lowering resin compatibility.
  • the amine is allylamine and the addition amount is less than 1 mol with respect to 1 mol of the phenol novolak resin, the ring close reaction does not occur and the benzoxazine reaction cannot be sufficiently satisfied (benzoxazine ring). If not more than 3 mol), the amount of the mind bridge is excessively generated, the heat resistance and electrical properties are reduced, the gelation by the secondary amine in the molecule or the molecular weight is increased to decrease the compatibility with the resin Can be generated.
  • the aldehyde compound when added to less than 1 mol with respect to 1 mol of the phenol novolak resin, it does not induce a sufficient reaction with the amine compound so that no oxazine ring is formed, and the heat resistance is lowered. Excess unreacted raw material may remain in the product.
  • the solvent used in the reaction is an aromatic hydrocarbon solvent such as toluene, xylene, trimethylbenzene; Halogen solvents such as chloroform, dichloroform and dichloromethane; Ether solvents such as THF, dioxane and the like can be used.
  • the solvent is preferably used in an amount of 25 to 100 parts by weight and aniline as an amine based on 100 parts by weight of the phenol novolak resin, the aldehyde compound and the amine compound, and preferably 50 to 80 parts by weight.
  • the content of the solvent when the content of the solvent is too small, the viscosity of the reactant becomes high, the stirring stress increases, and the workability decreases. When the content is excessively high, the cost of removing the solvent after the reaction increases. It can be economical. In addition, when the selection of the appropriate solvent and the mixing reaction is not made properly, the raw materials do not participate in the reaction, the yield may be lowered.
  • such a cured product can be improved in thermal properties compared with the cured product derived from the existing benzoxazine compound.
  • cured product does not mean only a hardened product of the polybenzoxazine precursor alone, but also encompasses a cured product that is mixed with another resin-based composition in addition to the polybenzoxazine precursor resin. Can be.
  • the obtained phenol novolak resin was confirmed by the structure of nuclear magnetic resonance analysis ( 1 H-NMR) as a result of Figure 1a, which has a -OH peak in the vicinity of 8.0ppm.
  • the NMR apparatus used in the NMR analysis is a Bruance Avance 500 product.
  • the yield (relative to the theoretical yield according to the equivalence ratio of the reaction solution) is 99%.
  • the percentage is the peak area ratio (ratio of monomer and polymer component) of gel permeation chromatography (GPC) (Waters: Waters707).
  • Example 1-1 The polybenzoxazine precursor obtained in Example 1-1 was introduced into an aluminum dish having a diameter of 30 mm, and hardened at 220 ° C. for 2 hours to prepare a cured product having a sheet thickness of 1.5 mm.
  • the yield (relative to the theoretical yield according to the equivalence ratio of the reaction solution) is 99%.
  • the percentage is the peak area ratio (ratio of monomer and polymer component) of gel permeation chromatography (GPC) (Waters: Waters707).
  • the hydrogen atom peak of the oxazine ring (CH out of plane bending) was confirmed.
  • the infrared spectroscopy instrument is a spectrum 100 product of Perkin Elmer.
  • the raw material is a phenol novolak resin of Formula 3, in contrast to the polybenzoxazine precursor represented by Benzoxazine, -OH stretching peak due to -OH group disappears and a characteristic peak of Benzoxazine can be confirmed.
  • the molecular weight data of the polybenzoxazine precursor obtained by using GPC was analyzed (not shown), which also showed broad peaks of high molecular weight near retention time 30min. As a result, it was determined that the hardened product of the compound of Formula 4, that is, the compound of Formula 5, was produced.
  • the polybenzoxazine precursor obtained in Example 2-1 was introduced into an aluminum dish having a diameter of 30 mm, and cured for 2 hours at 1220 ° C. for 2 hours to prepare a cured product having a sheet thickness of 1.5 mm.
  • the obtained benzoxazine-based compound is 54.26% (GPC Area%) of the benzoxazine monomer, and the yield (relative to the theoretical yield according to the equivalence ratio of the reaction solution) is 92%.
  • the percentage is the peak area ratio (ratio of monomer and polymer component) of gel permeation chromatography (GPC) (Waters: Waters707).
  • the polybenzoxazine precursor obtained in Comparative Example 11 was put in an aluminum dish having a diameter of 30 mm, and hardened at 220 ° C. for 3 hours to prepare a cured product having a sheet thickness of 1.5 mm.
  • the obtained polybenzoxazine precursor is 22.58% (GPC Area%) of the benzoxazine monomer, and the yield (relative to the theoretical yield according to the equivalence ratio of the reaction solution) is 93%.
  • the percentage is the peak area ratio (ratio of monomer and polymer component) of gel permeation chromatography (GPC) (Waters: Waters707).
  • the polybenzoxazine precursor obtained in Comparative Example 2-1 was put in an aluminum dish having a diameter of 30 mm, and hardened at 220 ° C. for 2 hours to prepare a cured product having a sheet thickness of 1.5 mm.
  • the polybenzoxazine obtained in Comparative Example 1-1 was put in an aluminum dish having a diameter of 30 mm, and hardened at 220 ° C. for 3 hours to prepare a cured product having a sheet thickness of 1.5 mm.
  • Polystyrene reduced weight average molecular weight (Mw) and number average molecular weight (Mn) were determined by gel permeation chromatography (GPC) (Waters: Waters707).
  • the sample to be measured was dissolved in tetrahydrofuran to have a concentration of 4000 ppm, and 100 ⁇ l was injected into GPC.
  • the mobile phase of GPC used tetrahydrofuran and was introduced at a flow rate of 1.0 mL / min, and the analysis was performed at 35 ° C.
  • the column connected four Waters HR-05,1,2,4E in series. The detector was measured at 35 ° C using RI and PAD Detecter.
  • Agilent's impedance analyzer (Agilent E4991A 1 MHz to 3 GHz) was used to measure the dielectric constant (Dk) and dielectric loss tangent (Df) of the cured product under the following conditions.
  • Measurement sample Thickness 1.5 mm (1.3 to 1.7 mm)
  • the yield (relative to the theoretical yield according to the equivalence ratio of the reaction solution) is 99%.
  • the percentage is the peak area ratio (ratio of monomer and polymer component) of gel permeation chromatography (GPC) (Waters: Waters707).
  • the obtained benzoxazine was confirmed by the structure of nuclear magnetic resonance analysis ( 1 H-NMR). The results are shown in FIG. 3. When compared with NMR of the phenol novolak resin of FIG. The peak disappears and it can be confirmed that the peak is generated due to the oxazine around 4.0 ⁇ 6.0ppm.
  • the NMR apparatus used in the NMR analysis is a Bruance Avance 500 product.
  • the molecular weight data of the polybenzoxazine precursor obtained by using GPC was analyzed (not shown), which also showed broad peaks of high molecular weight near retention time 30min. As a result, it was determined that the hardened product of the compound of Formula 5, that is, the compound of Formula 7 was produced.
  • the polybenzoxazine precursor obtained in Example 3-1 was put into an aluminum dish having a diameter of 30 mm, and cured at 220 ° C. for 2 hours to prepare a cured product having a thickness of 1.5 mm.
  • Phenol Novolac is a phenol novolak resin of Formula 3
  • Benzoxazine is a polybenzoxazine precursor obtained.
  • characteristic peaks of Benzoxazine can be confirmed (926 cm-1 (the out-of-plane bending vibration of CH) and 1234 cm-1 (COC asymmetric stretching modes) ).
  • the infrared spectroscopy instrument is a spectrum 100 product of Perkin Elmer.
  • the molecular weight data of the polybenzoxazine precursor obtained by using GPC was analyzed (not shown), which also showed broad peaks of high molecular weight near retention time 30min. As a result, it was determined that the hardened product of the compound of Formula 5, that is, the compound of Formula 7 was produced.
  • Example 4-1 The polybenzoxazine obtained in Example 4-1 was put in an aluminum dish having a diameter of 30 mm, and hardened at 1220 ° C. for 2 hours to prepare a cured product having a sheet thickness of 1.5 mm.
  • the cured products prepared in Examples 3 and 4 were difficult to identify Tg by DSC in structure and were measured by DMA (Dynamic Mechanical Analysis; Dynamic Mechanical Analysis).
  • the cured products prepared in Examples 3 and 4 and Comparative Examples 1 and 2 were measured at a temperature increase rate of 3 ° C. per minute from 30 ° C. to 350 ° C. using TA Instruments DMA Q800.
  • Examples 3 and 4 when compared with Comparative Examples 1 and 2, exhibits excellent thermal properties by showing high Tg and Td values, in particular dielectric constant (Dk) and dielectric loss tangent (Df). This low measurement indicates that the electrical properties are quite good.
  • Dk dielectric constant
  • Df dielectric loss tangent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Abstract

The present invention relates to a polybenzoxazine precursor and a method for preparing the same and, more specifically, provides a polybenzoxazine precursor and a method for preparing the same, wherein the polybenzoxazine precursor makes it possible to prepare a hardened material which exhibits improved thermal characteristics; on the other hand, exhibits high thermal characteristics and flame retardant characteristics while maintaining excellent electrical characteristics intact; and, on the other other hand, exhibits high thermal characteristics and electrical characteristics, and ultimately, the polybenzoxazine precursor can be favorably used for a copper-clad laminate, a semiconductor encapsulant, a printed circuit board, an adhesive, a paint, and a mold.

Description

폴리벤족사진 전구체 및 그 제조방법Polybenzoxazine Precursor and Manufacturing Method Thereof
본 발명은 폴리벤족사진 전구체 및 그 제조방법에 관한 것이다. The present invention relates to a polybenzoxazine precursor and a method for producing the same.
종래부터 페놀 수지, 멜라민 수지, 에폭시 수지, 불포화 폴리에스테르 수지, 비스말레이미드 수지 등의 열경화성 수지는 열경화성이라는 성질에 기초하고, 내수성, 내약품성, 내열성, 기계 강도, 신뢰성 등이 우수하기 때문에 넓은 산업 분야에서 다양하게 사용되고 있다.Conventionally, thermosetting resins such as phenol resins, melamine resins, epoxy resins, unsaturated polyester resins, and bismaleimide resins are based on the properties of thermosetting, and are excellent in water resistance, chemical resistance, heat resistance, mechanical strength, reliability, and the like. It is used in various fields.
그러나, 페놀 수지 및 멜라민 수지는 경화 시에 휘발성의 부생성물이 발생하고, 에폭시 수지 및 불포화 폴리에스테르 수지는 난연성이 떨어지며, 비스말레이미드 수지는 매우 비싸다는 등의 결점이 있다.However, phenol resins and melamine resins have disadvantages such as volatile by-products upon curing, epoxy resins and unsaturated polyester resins are poor in flame retardancy, and bismaleimide resins are very expensive.
이들 결점을 해소하기 위해서, 벤족사진(Benzoxazine) 환(Ring)이 개환 중합 반응하여, 문제가 된 휘발분의 발생을 수반하지 않고서 열경화하는 폴리벤족사진(Polybenzoxazine)이 연구되어 왔다. In order to eliminate these drawbacks, polybenzoxazine has been studied in which the Benzoxazine ring is ring-opening-polymerized and thermally cured without the occurrence of problematic volatiles.
분자 구조 중에 벤족사진환을 갖는 열경화성 수지는 가열에 의해 옥사진환이 개환하고, 부생성물의 발생 없이 중합이 진행되는 것으로부터 봉지재, 함침, 적층판, 접착제, 도료, 코팅재, 마찰재, FRP 및 성형 재료 등에 사용되는 열경화성 수지로 주목받고 있다. 벤족사진환은 벤젠환과 옥사진환과의 복합구조를 갖는다.Thermosetting resins having a benzoxazine ring in the molecular structure are subject to encapsulation, impregnation, laminates, adhesives, paints, coatings, friction materials, FRP, and molding materials since the oxazine ring is opened by heating and polymerization proceeds without generation of byproducts. It is attracting attention as a thermosetting resin used for etc. The benzoxazine ring has a complex structure of a benzene ring and an oxazine ring.
이러한 폴리벤족사진은 높은 유리전이온도(Tg), 저 유전 특성, 높은 장력, 낮은 열팽창계수, 뛰어난 신축성, 저 흡습성 등을 포함하여 기계적 특성, 전기적 특성 및 화학적 특성의 균형이 잘 잡힌 경화 중합체이다.Such polybenzoxazines are well-balanced cured polymers, including mechanical, electrical and chemical properties, including high glass transition temperature (Tg), low dielectric properties, high tension, low coefficient of thermal expansion, excellent elasticity, low hygroscopicity, and the like.
이러한 폴리벤족사진의 특성을 더욱 강화시키기 위한 기술들이 지속적으로 개발되고 있다. 예를 들면, 대한민국 공개특허공보 제10-2012-0058566호는「폴리벤족사진 조성물」에 관한 것으로서, 벤족사진 화합물 및 펜타플루오로안티몬산 촉매를 포함하는 경화성 조성물을 충분한 온도 및 시간 동안 가열하여 중합함으로써 양호한 열안정성을 갖는 폴리벤족사진을 제조하는 방법이 개시되어 있다. Techniques for further enhancing the characteristics of these polybenzoxazines are constantly being developed. For example, Korean Unexamined Patent Publication No. 10-2012-0058566 relates to a "polybenzoxazine composition," wherein a curable composition comprising a benzoxazine compound and a pentafluoroantimonic acid catalyst is heated for a sufficient temperature and time to polymerize. By this, a method for producing a polybenzoxazine having good thermal stability is disclosed.
또한, 대한민국 등록특허공보 제10-0818254호는「폴리벤조옥사진계 화합물, 이를 포함한 전해질막 및 이를 채용한 연료전지」에 관한 것으로서, 산 트랩핑 능력, 기계적 및 화학적 안정성, 고온에서의 인산 보액 능력이 향상된 신규한 폴리벤조옥사진계 화합물과, 이를 이용한 전해질막 및 그 제조방법이 개시되어 있다.In addition, the Republic of Korea Patent Publication No. 10-0818254 relates to "polybenzoxazine-based compound, an electrolyte membrane including the same and a fuel cell employing the same", the acid trapping ability, mechanical and chemical stability, the ability to retain phosphoric acid at high temperature The improved novel polybenzoxazine compound, an electrolyte membrane using the same, and a method of manufacturing the same are disclosed.
한편, 최근 국내외로 환경에 관한 관심이 집중되면서 전자재료 업계에도 환경관련 문제가 이슈화되기 시작하였다. 유럽연합 및 선진국의 유해물질 사용 제한지침인 RoHS로 인하여 국내 전자회로기판 산업계도 Lead-Free에 대한 친환경 PCB 기술의 적용이 늘고 있는 추세이다. 친환경적인 무연 공정은 납을 사용하지 않아서 공정상에 작업 온도가 상승하게 됨에 따라 높은 온도를 견딜 수 있는 소재와 이에 적합한 설비까지 모두 개발되어야 하는 실정이다.On the other hand, with the recent focus on the environment at home and abroad, environmental issues have begun to emerge in the electronic materials industry. Due to RoHS, a restriction on the use of hazardous substances in the European Union and developed countries, the domestic electronic circuit board industry is also increasing the application of eco-friendly PCB technology to lead-free. Environmentally friendly lead-free processes do not use lead, and as the working temperature rises in the process, it is necessary to develop both a material capable of withstanding high temperatures and a suitable equipment.
코팅, 절연, 건축자재 및 접착제 분야에서는 손쉬운 처리 공정, 높은 안정성, 우수한 기계적 및 화학적 특성을 나타내기 위해 에폭시 수지가 많이 사용된다. 에폭시 수지 조성물은 Lead-Free의 적용을 위해 내열성 및 난연성이 요구되며, 특히 CCLS(Copper Clad Laminate Sheet) 에폭시 수지 조성물의 경우 UL-94 규격의 V-0 인증이 필수적이다. 종래에는 이러한 난연성을 부여하기 위해 브롬화 에폭시 수지와 같은 할로겐화 수지, 산화안티몬 등이 사용되었다.Epoxy resins are commonly used in coatings, insulation, building materials and adhesives for easy processing, high stability and good mechanical and chemical properties. The epoxy resin composition requires heat resistance and flame retardancy for lead-free application, and in particular, in the case of a copper clad laminate sheet (CCLS) epoxy resin composition, V-0 certification of the UL-94 standard is essential. Conventionally, halogenated resins such as brominated epoxy resins, antimony oxide, and the like have been used to impart such flame retardancy.
현재 할로겐계 난연제는 사출 시 가스 발생과 소각 시 다이옥신 발생 등 환경에 좋지 않은 영향을 끼친다. 전기 전자 및 반도체 산업은 우리나라의 주력산업으로서 한국의 산업에 차지하는 비중이 매우 크다. 특히 반도체 산업과 관련된 반도체용 봉지재, 접착제 부분의 난연성에 대한 기술이 많이 요구되고 있고, 종래 환경에 유해한 난연제를 대체할 원료의 기술 개발에 대한 관심이 고조되고 있다.Currently, halogen-based flame retardants have adverse effects on the environment, such as gas generation during injection and dioxin generation during incineration. The electrical and electronics and semiconductor industries are the major industries in Korea, and they account for a large portion of the industry in Korea. In particular, there is a great demand for technologies for flame retardancy of semiconductor encapsulants and adhesive parts related to the semiconductor industry, and interest in technology development of raw materials to replace flame retardants harmful to the conventional environment is increasing.
그 대안으로서 페놀계 경화제인 폴리벤족사진의 이용이 부각되고 있다. 앞서 설명된 바와 같이, 폴리벤족사진은 벤족사진계 모노머가 열에 의해 분자 내의 고리가 열리면서 중합이 이루어지는 열경화성 고분자로, 부생성물 없이 자체 경화가 가능하며, 경화 시 휘발성 물질을 발생시키지 않고, 부피 변화가 없어 치수 안정성이 우수하다. 또한, 높은 유리전이온도를 가지며 열분해 온도가 350℃까지 1% 이내의 분해특성을 가지는 고 내열성 고분자이다. 또한, 비할로겐 제품으로 적합한 질소 함유 화합물인 점에 있어서 난연제로서의 역할을 한다.As an alternative, the use of polybenzoxazine, a phenol-based curing agent, has emerged. As described above, polybenzoxazine is a thermosetting polymer in which a benzoxazine-based monomer is polymerized by opening a ring in a molecule by heat, and is capable of self-curing without a by-product, and does not generate a volatile substance upon curing and does not have a volume change. Excellent dimensional stability. In addition, it is a high heat resistant polymer having a high glass transition temperature and having a decomposition property of pyrolysis temperature of less than 1% up to 350 ° C. It also serves as a flame retardant in that it is a nitrogen-containing compound suitable for non-halogen products.
그러나, 종래 개발된 폴리벤족사진 역시 충분한 난연 효과를 발휘하지 못해 폴리벤족사진 함유 난연제에 브롬, 인 또는 염소 화합물 등과 같은 첨가물이 첨가되고 있다. 이러한 첨가물들은 용매에서 용해되지 않기 때문에 가공처리 과정에서 문제를 일으킬 수 있고, 높은 온도에서 산화안정성이 좋지 않으며, 종종 물성이 좋지 않은 경화수지를 제공하였다.However, conventionally developed polybenzoxazines also do not exhibit sufficient flame retardant effects, and additives such as bromine, phosphorus, or chlorine compounds are added to the polybenzoxazine-containing flame retardants. Since these additives do not dissolve in the solvent, they may cause problems during processing, and provide a cured resin having poor oxidation stability and often poor physical properties at high temperatures.
따라서 이런 단점을 드러내지 않으면서 고온 환경에서 쓰일 수 있는 고 난연성 폴리벤족사진을 제조하는 것이 요구되고 있다.Therefore, it is required to produce a high flame retardant polybenzoxazine that can be used in a high temperature environment without revealing these disadvantages.
한편, 동박적층판(Copper Clad Laminate; CCL)은 절연재에 얇은 동박을 입힌 적층판을 의미하는 것으로, 최근 스마트기기의 고성능화와 고집적화로 인하여 인쇄회로기판(Printed Circuit Board; PCB)에 사용되는 동박적층판은 우수한 내열성과 저유전 특성이 요구되고 있다. 동박적층판의 기초재료로는 수지(Resin)가 사용되는데 인쇄회로기판 내부에서 절연체의 역할을 담당한다. 우수한 절연체가 되기 위해서는 유전율(Permittivity)이 낮아야 한다. 유전율이란 외부의 전기적 신호에 대한 부도체내 분자들의 분극현상의 정도를 말하며 값이 작을수록 절연성이 우수한 것이다. 인쇄회로기판의 동작에 있어서 절연체의 유전율이 작을수록 신호의 처리속도가 빨라지고, 전송 손실이 줄어들게 된다. Meanwhile, Copper Clad Laminate (CCL) refers to a laminated plate coated with a thin copper foil on an insulating material. Recently, copper clad laminates used in printed circuit boards (PCBs) are excellent due to high performance and high integration of smart devices. Heat resistance and low dielectric properties are required. Resin is used as the base material of copper foil laminated board and plays the role of an insulator in the printed circuit board. To be a good insulator, the permittivity must be low. Dielectric constant refers to the degree of polarization of molecules in an insulator against external electrical signals. The smaller the value, the better the insulation. In the operation of a printed circuit board, the smaller the dielectric constant of the insulator, the faster the signal processing speed and the lower the transmission loss.
상기 동박적층판의 내열성과 저유전 특성을 만족시키기 위한 대안으로서, 페놀계 경화제인 폴리벤족사진의 이용이 부각되고 있다. 앞서 설명된 바와 같이, 폴리벤족사진은 벤족사진계 모노머가 열에 의해 분자 내의 고리가 열리면서 중합이 이루어지는 열경화성 고분자로, 부생성물 없이 자체 경화가 가능하며, 경화 시 휘발성 물질을 발생시키지 않고, 부피 변화가 없어 치수 안정성이 우수하다. As an alternative for satisfying the heat resistance and low dielectric properties of the copper-clad laminate, the use of polybenzoxazine, a phenol-based curing agent, has been highlighted. As described above, polybenzoxazine is a thermosetting polymer in which a benzoxazine-based monomer is polymerized by opening a ring in a molecule by heat, and is capable of self-curing without a by-product, and does not generate a volatile substance upon curing and does not have a volume change. Excellent dimensional stability.
(특허문헌 1) 대한민국 공개특허공보 제10-2012-0058566호(Patent Document 1) Korean Unexamined Patent Publication No. 10-2012-0058566
(특허문헌 2) 대한민국 등록특허공보 제10-0818254호(Patent Document 2) Republic of Korea Patent Publication No. 10-0818254
본 발명은 기존의 폴리벤족사진 전구체와 대비하여 열적 특성이 향상된 경화물을 제조할 수 있도록 하는 폴리벤족사진 전구체를 제공하고자 하는 데 있다. It is an object of the present invention to provide a polybenzoxazine precursor capable of producing a cured product having improved thermal properties as compared to a conventional polybenzoxazine precursor.
본 발명은 또한 기존의 폴리벤족사진 전구체와 대비하여 전기적 특성은 그대로 유지하면서 열적 특성 및 난연 특성이 크게 향상된 경화물을 제조할 수 있도록 하는 폴리벤족사진 전구체를 제공하고자 하는 데 있다. Another object of the present invention is to provide a polybenzoxazine precursor capable of preparing a cured product having significantly improved thermal and flame retardant properties while maintaining electrical properties as compared to conventional polybenzoxazine precursors.
본 발명은 또한 기존의 폴리벤족사진 전구체과 대비하여 열적 특성 및 전기적 특성이 크게 향상된 경화물을 제조할 수 있도록 하는 폴리벤족사진 전구체를 제공하고자 한다.The present invention also provides a polybenzoxazine precursor capable of producing a cured product having significantly improved thermal and electrical properties as compared to existing polybenzoxazine precursors.
본 발명은 또한 이와 같은 폴리벤족사진 전구체의 제조방법을 제공하고자 한다. The present invention also provides a method for preparing such polybenzoxazine precursor.
본 발명은 또한 이와 같은 폴리벤족사진 전구체의 경화물을 제공하고자 한다. The present invention also seeks to provide a cured product of such a polybenzoxazine precursor.
본 발명은 다음 화학식 1로 표시되는 벤족사진 화합물을 포함하고, The present invention includes a benzoxazine compound represented by the following formula (1),
다음 화학식 1에 있어서 n=0인 벤족사진 화합물을 20 내지 100%로 포함하는 폴리벤족사진 전구체를 제공한다.The following formula provides a polybenzoxazine precursor comprising 20 to 100% of a benzoxazine compound having n = 0.
[화학식 1][Formula 1]
Figure PCTKR2015006715-appb-I000001
Figure PCTKR2015006715-appb-I000001
상기 화학식 1에서, n=0 내지 2의 정수이고, R1
Figure PCTKR2015006715-appb-I000002
또는
Figure PCTKR2015006715-appb-I000003
이다.
In Chemical Formula 1, n = 0 to 2, and R 1 is
Figure PCTKR2015006715-appb-I000002
or
Figure PCTKR2015006715-appb-I000003
to be.
상기 일 구현예에 의한 전구체는 상기 화학식 1로 표시되는 벤족사진 화합물의 옥사진 환(oxazine ring)이 개환되면서 중합된 자경화물을 포함할 수 있다. The precursor according to the embodiment may include a hardened product polymerized while the oxazine ring of the benzoxazine compound represented by Formula 1 is opened.
상기 일 구현예에 있어서, 벤족사진 화합물의 자경화물은 다음 화학식 2로 표시되는 화합물을 포함하는 것일 수 있다. In one embodiment, the hardened product of the benzoxazine compound may include a compound represented by the following formula (2).
[화학식 2][Formula 2]
Figure PCTKR2015006715-appb-I000004
Figure PCTKR2015006715-appb-I000004
상기 화학식 2에서, R은 이고, R1
Figure PCTKR2015006715-appb-I000006
또는
Figure PCTKR2015006715-appb-I000007
이며, n은 0 내지 2의 정수이고, n2는 1 내지 5의 정수이다.
In Formula 2, R is And R 1 is
Figure PCTKR2015006715-appb-I000006
or
Figure PCTKR2015006715-appb-I000007
N is an integer of 0-2, n2 is an integer of 1-5.
상기 일 구현예에 의한 전구체는 중량평균분자량이 500 내지 5000g/mol인 것일 수 있다. The precursor according to the embodiment may have a weight average molecular weight of 500 to 5000g / mol.
본 발명의 다른 일 구현예에서는, (1) 산 촉매 존재 하에서 페놀계 화합물과 알데히드 화합물을 반응시켜 페놀 노볼락 수지를 수득하는 단계; 및In another embodiment of the present invention, (1) reacting a phenolic compound and an aldehyde compound in the presence of an acid catalyst to obtain a phenol novolak resin; And
(2) 상기 수득된 페놀 노볼락 수지에 알데히드 화합물 및 아민 화합물로서 알릴아민(Allylamine) 또는 아닐린(aniline)을 반응시키는 단계를 포함하는 폴리벤족사진 전구체의 제조방법을 제공한다. (2) It provides a method for producing a polybenzoxazine precursor comprising the step of reacting the phenol novolak resin obtained above with allylamine or aniline as an aldehyde compound and an amine compound.
상기 일 구현예에 있어서, 상기 페놀 노볼락 수지는 화학식 3으로 표시되며, 화학식 3에 있어서 n=0성분을 65%이상 함유하는 것일 수 있다. In one embodiment, the phenol novolak resin is represented by the formula (3), it may be one containing at least 65% n = 0 in the formula (3).
[화학식 3][Formula 3]
Figure PCTKR2015006715-appb-I000008
Figure PCTKR2015006715-appb-I000008
상기 화학식 3에서, n은 0~2의 정수이다. In Formula 3, n is an integer of 0 to 2.
상기 일 구현예에 있어서, 상기 (1) 단계는 페놀계 화합물 1mol에 대하여, 알데히드 화합물을 0.05 내지 0.3mol로 사용하고, 상기 (2) 단계는 페놀 노볼락 수지 1mol에 대하여, 아민 화합물 1 내지 3mol 및 알데히드 화합물 1 내지 5mol로 사용할 수 있다. In one embodiment, the step (1) is used with respect to 1mol of the phenolic compound, the aldehyde compound is 0.05 to 0.3mol, the step (2) with respect to 1mol of the phenol novolak resin, 1 to 3mol amine compound And 1 to 5 mol of an aldehyde compound.
본 발명의 다른 일 구현예에서는 상기 일 구현예들에 의한 폴리벤족사진 전구체의 경화물을 제공한다.In another embodiment of the present invention provides a cured product of the polybenzoxazine precursor according to the above embodiments.
상기 일 구현예에 있어서 경화물은 상기 화학식 1로 표시되는 벤족사진계 화합물에 있어서 R1
Figure PCTKR2015006715-appb-I000009
인 벤족사진 화합물을 포함하는 폴리벤족사진 전구체의 자경화물을 포함하며, 유리전이온도가 190℃ 이상인 것일 수 있다.
In the above embodiment, the cured product is R 1 in the benzoxazine-based compound represented by Formula 1
Figure PCTKR2015006715-appb-I000009
It includes a hardened product of the polybenzoxazine precursor containing the benzoxazine compound, the glass transition temperature may be 190 ℃ or more.
상기 일 구현예에 있어서 경화물은 상기 화학식 1로 표시되는 벤족사진계 화합물에 있어서 R1
Figure PCTKR2015006715-appb-I000010
인 벤족사진 화합물을 포함하는 폴리벤족사진 전구체의 자경화물을 포함하며, 유리전이온도가 250℃ 이상인 것일 수 있다.
In the above embodiment, the cured product is R 1 in the benzoxazine-based compound represented by Formula 1
Figure PCTKR2015006715-appb-I000010
It includes a hardened product of the polybenzoxazine precursor containing the benzoxazine compound, the glass transition temperature may be 250 ℃ or more.
본 발명에 따른 폴리벤족사진 전구체는 기존 폴리벤족사진 전구체와 대비하여 열적 특성이 향상된 경화물을 제공할 수 있고, Polybenzoxazine precursor according to the present invention can provide a cured product with improved thermal properties compared to the existing polybenzoxazine precursor,
특히 일 구현예에 따르면 전기적 특성은 그대로 유지하면서 높은 열적 특성 및 난연 특성을 나타내는 경화물을 제공할 수 있으며, In particular, according to one embodiment, it is possible to provide a cured product that exhibits high thermal and flame retardant properties while maintaining electrical properties.
다른 일 구현예에 따르면 높은 열적 특성 및 전기적 특성을 나타내는 경화물을 제공할 수 있어, 궁극적으로는 동박적층판, 반도체 봉지제, 인쇄 회로 기판, 접착, 도료, 주형 용도 등에 유용하게 사용할 수 있다.According to another embodiment, it is possible to provide a cured product exhibiting high thermal and electrical properties, and ultimately, it may be usefully used for copper clad laminates, semiconductor encapsulants, printed circuit boards, adhesives, paints, and mold applications.
도 1a는 본 발명의 실시예 1에서 제조된 페놀 노볼락 수지의 1H-NMR 스펙트럼. Figure 1a is a 1 H-NMR spectrum of the phenol novolak resin prepared in Example 1 of the present invention.
도 1b는 본 발명의 실시예 1에서 제조된 폴리벤족사진 전구체의 1H-NMR 스펙트럼.1B is a 1 H-NMR spectrum of the polybenzoxazine precursor prepared in Example 1 of the present invention.
도 1c는 본 발명의 실시예 1에서 제조된 폴리벤족사진 전구체의 GPC 분석 결과.Figure 1c is a result of GPC analysis of the polybenzoxazine precursor prepared in Example 1 of the present invention.
도 2는 본 발명의 실시예 2에서 제조된 폴리벤족사진 전구체의 적외선 분광(IR) 스펙트럼을, Raw material인 페놀 노볼락 수지와 대비하여 나타낸 것.Figure 2 shows the infrared spectroscopy (IR) spectrum of the polybenzoxazine precursor prepared in Example 2 of the present invention, compared with the phenol novolak resin as a raw material.
도 3은 본 발명의 실시예 3에서 제조된 폴리벤족사진 전구체의 1H-NMR 스펙트럼.3 is a 1 H-NMR spectrum of the polybenzoxazine precursor prepared in Example 3 of the present invention.
도 4는 본 발명의 실시예 4에서 제조된 폴리벤족사진 전구체의 적외선 분광(IR) 스펙트럼을 Raw material인 페놀 노볼락 수지와 대비하여 나타낸 것.Figure 4 shows the infrared spectroscopy (IR) spectrum of the polybenzoxazine precursor prepared in Example 4 of the present invention as compared to the phenol novolak resin as a raw material.
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein is well known and commonly used in the art.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. Throughout this specification, when a part is said to "include" a certain component, it means that it can further include other components, without excluding the other components unless otherwise stated.
본 명세서에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본 발명의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.As used herein, the terms "about", "substantially", and the like, are used at, or in close proximity to, numerical values when manufacturing and material tolerances inherent in the meanings indicated are intended to aid the understanding of the invention. Accurate or absolute figures are used to assist in the prevention of unfair use by unscrupulous infringers.
본 발명은 다음 화학식 1로 표시되는 벤족사진 화합물을 포함하고, The present invention includes a benzoxazine compound represented by the following formula (1),
다음 화학식 1에 있어서 n=0인 벤족사진 화합물을 20 내지 100%로 포함하는 폴리벤족사진 전구체를 제공한다.The following formula provides a polybenzoxazine precursor comprising 20 to 100% of a benzoxazine compound having n = 0.
[화학식 1][Formula 1]
Figure PCTKR2015006715-appb-I000011
Figure PCTKR2015006715-appb-I000011
상기 화학식 1에서, n=0 내지 2의 정수이고, R1
Figure PCTKR2015006715-appb-I000012
또는
Figure PCTKR2015006715-appb-I000013
이다.
In Chemical Formula 1, n = 0 to 2, and R 1 is
Figure PCTKR2015006715-appb-I000012
or
Figure PCTKR2015006715-appb-I000013
to be.
상기 및 이하의 기재에서, "폴리벤족사진 전구체"라는 용어는 옥사진환이 개환반응에 의해 폴리벤족사진으로 일컬어지는 열경화성 수지를 형성하는 전구체적 역할을 수행하는 화합물 또는 화합물군을 의미하는 것으로, 단일의 벤족사진계 모노머로만 이루어진 경우도 포함하고, 이러한 모노머와 동일한 반복단위 구조를 주쇄에 갖는 올리고머 또는 이러한 모노머 또는 올리고머의 옥사진 환이 개환되면서 중합된 자경화물을 일부 포함하는 일군의 조합까지를 포함하는 것으로 정의한다. In the above and the following description, the term "polybenzoxazine precursor" refers to a compound or a group of compounds in which an oxazine ring plays a precursor role of forming a thermosetting resin called a polybenzoxazine by ring-opening reaction. It includes a benzoxazine-based monomer of only, including an oligomer having the same repeating unit structure as the monomer in the main chain, or a combination of a group containing a part of a polymerized autocuring product when the oxazine ring of such monomer or oligomer is ring-opened. define.
본 발명의 일 구현예에 따른 폴리벤족사진 전구체가 상기 화학식 1에서 n=0인 화합물을 전체 조성 중 적어도 20%는 포함하는 것이 전기적 특성, 열적 특성 및 난연 특성을 향상시킬 수 있는 측면에서 바람직할 수 있다. At least 20% of the total composition of the polybenzoxazine precursor according to one embodiment of the present invention, in which n = 0 in Chemical Formula 1, may be preferable in terms of improving electrical properties, thermal properties, and flame retardant properties. Can be.
여기서의 %는 겔 투과 크로마토 그래피(GPC)(Waters: Waters707)의 피크 면적비를 기준한 것으로, 엄밀하게는 전구체 중 자경화물과 같은 폴리머가 포함된 경우 모노머와 폴리머 성분간의 피크 면적비를 의미한다. 이하 같다. % Is based on the peak area ratio of gel permeation chromatography (GPC) (Waters: Waters707), and strictly refers to the peak area ratio between the monomer and the polymer component when the precursor contains a polymer such as a hardened substance. Same as below.
본 발명의 일 구현예에 의한 폴리벤족사진 전구체는 화학식 1에서 n=0인 화합물 이외에 상기 화학식 1에서 n=1~2인 화합물을 포함하고, 상술한 것과 같이 자경화물을 포함할 수 있다. The polybenzoxazine precursor according to an embodiment of the present invention includes a compound having n = 1 to 2 in Formula 1 in addition to the compound having n = 0 in Formula 1, and may include a hardened product as described above.
자경화물은 상기 화학식 1에 있어서 옥사진환이 개환되면서 벤족사진계 모노머 또는 올리고머간 중합이 이루어져 생성되는 것이다. The self-curing product is produced by the polymerization of the benzoxazine monomer or oligomer while the oxazine ring is ring-opened in the formula (1).
상기한 조건을 충족하는 폴리벤족사진 전구체 중 포함되는 자경화물은 다음 화학식 2로 표시되는 화합물을 포함할 수 있다. The hardened product included in the polybenzoxazine precursor satisfying the above conditions may include a compound represented by the following Formula 2.
[화학식 2][Formula 2]
Figure PCTKR2015006715-appb-I000014
Figure PCTKR2015006715-appb-I000014
상기 화학식 2에서, R은
Figure PCTKR2015006715-appb-I000015
이고, R1
Figure PCTKR2015006715-appb-I000016
또는
Figure PCTKR2015006715-appb-I000017
이며, n은 0 내지 2의 정수이고, n2는 1 내지 5의 정수이다.
In Formula 2, R is
Figure PCTKR2015006715-appb-I000015
And R 1 is
Figure PCTKR2015006715-appb-I000016
or
Figure PCTKR2015006715-appb-I000017
N is an integer of 0-2, n2 is an integer of 1-5.
상기 화학식 1에 있어서 아민 화합물로부터 유래되는 작용기인 R1에 따른 화합물 및 이의 자경화물의 일예를 대응하여 나타내면 각각 다음 화학식 4와 5, 그리고 6과 7로 나타낼 수 있다. Representative examples of the compound according to R 1 which is a functional group derived from the amine compound in Formula 1 and its self-curing compound may be represented by the following Formulas 4 and 5, and 6 and 7, respectively.
[화학식 4] [Formula 4]
Figure PCTKR2015006715-appb-I000018
Figure PCTKR2015006715-appb-I000018
상기 화학식 4에서, n은 0 내지 2의 정수이다. In Formula 4, n is an integer of 0 to 2.
[화학식 5][Formula 5]
Figure PCTKR2015006715-appb-I000019
Figure PCTKR2015006715-appb-I000019
상기 화학식 5에서, R은
Figure PCTKR2015006715-appb-I000020
이고, n은 0 내지 2의 정수이고, n2는 1 내지 5의 정수이다.
In Formula 5, R is
Figure PCTKR2015006715-appb-I000020
N is an integer of 0-2, n2 is an integer of 1-5.
[화학식 6] [Formula 6]
Figure PCTKR2015006715-appb-I000021
Figure PCTKR2015006715-appb-I000021
상기 화학식 6에서, n은 0 내지 2의 정수이다.In Chemical Formula 6, n is an integer of 0 to 2.
[화학식 7] [Formula 7]
Figure PCTKR2015006715-appb-I000022
Figure PCTKR2015006715-appb-I000022
상기 화학식 7에서, R은
Figure PCTKR2015006715-appb-I000023
이고, n은 0 내지 2의 정수이고, n2는 1 내지 5의 정수이다.
In Formula 7, R is
Figure PCTKR2015006715-appb-I000023
N is an integer of 0-2, n2 is an integer of 1-5.
상기 폴리벤족사진 전구체는 중량평균분자량이 500 내지 5000g/mol이고, 더욱 바람직하게는 900 내지 1800g/mol인 것이 경화시 경화가 지연되거나 결정화되는 것을 방지할 수 있고, 전구체의 점도가 상승되거나 또는 겔화되어 작업성 저하 및 다른 수지와의 상용성이 저하되는 것을 방지할 수 있는 측면에서 바람직할 수 있다. The polybenzoxazine precursor has a weight average molecular weight of 500 to 5000 g / mol, more preferably 900 to 1800 g / mol can prevent the delay of curing or crystallization during curing, the viscosity of the precursor It may be preferable in view of being raised or gelled to prevent deterioration in workability and deterioration in compatibility with other resins.
상기 중량평균분자량은 겔투과크로마토그래피(gel permeation chromatograph; GPC)에 의해 결정되는 폴리스티렌 당량의 환산치로 정의될 수 있다.The weight average molecular weight may be defined in terms of polystyrene equivalents determined by gel permeation chromatography (GPC).
본 발명에 따른 폴리벤족사진 전구체는 기존 폴리벤족사진 전구체와 대비하여 열적 특성이 향상된 경화물을 제공할 수 있다. The polybenzoxazine precursor according to the present invention may provide a cured product having improved thermal properties as compared to the existing polybenzoxazine precursor.
특히 화학식 1에 있어서 R1
Figure PCTKR2015006715-appb-I000024
인 경우(화학식 4)를 포함하는 폴리벤족사진 전구체는 우수한 전기적 특성은 그대로 유지하면서 열적 특성 및 난연 특성을 크게 향상시킬 수 있다.
In particular, in Formula 1, R 1
Figure PCTKR2015006715-appb-I000024
The polybenzoxazine precursor including when (Formula 4) can significantly improve thermal and flame retardant properties while maintaining excellent electrical properties.
한편, 상기 화학식 1에 있어서 R1
Figure PCTKR2015006715-appb-I000025
인 경우(화학식 6)를 포함하는 폴리벤족사진 전구체는 열적 특성 및 전기적 특성이 크게 향상된 경화물을 제공할 수 있다.
Meanwhile, in Formula 1, R 1 is
Figure PCTKR2015006715-appb-I000025
The polybenzoxazine precursor including the case of Formula 6 may provide a cured product having greatly improved thermal and electrical properties.
본 발명의 폴리벤족사진 전구체는 다음 화학식 3으로 표시되는 페놀 노볼락 수지를 원료로 하여 제조된 것일 수 있다. Polybenzoxazine precursor of the present invention may be prepared by using a phenol novolak resin represented by the following formula (3) as a raw material.
[화학식 3] [Formula 3]
Figure PCTKR2015006715-appb-I000026
Figure PCTKR2015006715-appb-I000026
상기 화학식 3에서 n은 0 내지 2의 정수이다. In Formula 3 n is an integer of 0 to 2.
구체적으로는 상기 화학식 3에 있어서 n=0인 화합물을 65% 이상 포함하는 페놀 노볼락 수지를 원료로 하여 제조된 것일 수 있다. Specifically, in Formula 3, the compound may be prepared by using a phenol novolak resin containing 65% or more of a compound having n = 0.
좀더 구체적으로, (1) 산 촉매 존재하에서 페놀계 화합물과 알데히드 화합물을 반응시켜 페놀 노볼락 수지를 수득하는 단계; 및 (2) 상기 수득된 페놀 노볼락 수지에 알데히드 화합물 및 아민 화합물로서 아닐린 또는 알릴아민(Allylamine)을 반응시키는 단계를 포함하는 방법에 의해 제조될 수 있다. More specifically, (1) reacting a phenolic compound and an aldehyde compound in the presence of an acid catalyst to obtain a phenol novolak resin; And (2) reacting the obtained phenol novolak resin with aniline or allylamine as an aldehyde compound and an amine compound.
보다 구체적으로, 산 촉매 존재하에서 페놀계 화합물과 알데히드 화합물을 반응시켜 화학식 3으로 표시되는 화합물의 n=0 성분이 65% 이상(GPC Area%) 함유된 페놀 노볼락 수지를 수득한 다음, 상기 수득된 페놀 노볼락 수지에 알데히드 화합물 및 아민 화합물을 용매 존재하에 축합 반응시켜 벤족사진의 방향족(Aromatic) 함량을 최대화된 폴리벤족사진 전구체를 제조할 수 있다. More specifically, in the presence of an acid catalyst, a phenolic compound and an aldehyde compound are reacted to obtain a phenol novolak resin containing 65% or more (GPC Area%) of n = 0 components of the compound represented by Formula 3, and then obtaining the above. The phenol novolak resin may be condensed with an aldehyde compound and an amine compound in the presence of a solvent to prepare a polybenzoxazine precursor maximizing the aromatic content of benzoxazine.
상기한 바와 같이 산 촉매 존재하에서 페놀계 화합물과 알데히드 화합물을 반응시켜 화학식 3에 있어서 n=0인 화합물을 65% 이상(GPC Area%) 함유한 페놀 노볼락 수지를 수득할 수 있는데, 만일 화학식 3에 있어서 n=0인 화합물의 양이 65% 미만일 경우에는 후속되는 벤족사진 제조 반응 중 빠른 반응성 및 원료의 큰 분자량에 기인하여 점도가 상승되거나 또는 겔화되는 문제점이 있을 수 있다.As described above, the phenolic compound and the aldehyde compound may be reacted in the presence of an acid catalyst to obtain a phenol novolak resin containing 65% or more (GPC Area%) of a compound having n = 0 in Chemical Formula 3. When the amount of the compound of n = 0 in the case of less than 65%, the viscosity is due to the rapid reactivity in the subsequent benzoxazine production reaction and the large molecular weight of the raw material There may be a problem of elevated or gelling.
이때, 상기 반응 과정에서 생성된 물과 용매는 증류 등의 공지의 방법으로 제거할 수 있다. At this time, the water and the solvent generated in the reaction process can be removed by a known method such as distillation.
상기 (1) 단계에서, 알데히드 화합물은 페놀계 화합물 1mol에 대하여, 0.05 내지 0.3mol, 바람직하게는 0.1 내지 0.2 mol로 첨가시킬 수 있다. 만일, 알데히드 화합물이 페놀계 화합물 1몰에 대하여, 0.05 mol 미만으로 첨가될 경우에는 수율이 급격하게 저하될 수 있으며, 0.3 mol을 초과할 경우에는 화학식 3에서 n=0의 성분이 65% 미만인 페놀 노볼락 수지가 합성 될 수 있다In the step (1), the aldehyde compound may be added at 0.05 to 0.3 mol, preferably 0.1 to 0.2 mol with respect to 1 mol of the phenolic compound. If the aldehyde compound is added to less than 0.05 mol with respect to 1 mole of the phenolic compound, the yield may be drastically reduced. If the aldehyde compound exceeds 0.3 mol, the phenol having a component of n = 0 in Formula 3 is less than 65%. Novolak resin can be synthesized
상기 페놀계 화합물은 페놀 또는 크레졸 등일 수 있다.The phenolic compound may be phenol or cresol.
또한, 상기 및 이하의 알데히드 화합물은 특별히 한정되는 것은 아니지만, 구체적인 예로서, 벤즈알데히드(Benzaldehyde), 아니스알데히드(Anisaldehyde), 4-메틸벤즈알데히드(4-Methylbenzaldehyde), 2-메톡시벤즈알데히드(2-Methoxybenzaldehyde), 4-메톡시벤즈알데히드(4-Methoxybenzaldehyde), 3,4-메틸렌디옥시벤즈알데히드(3,4-Methylenedioxybenzaldehyde), 3,4-디메톡시-벤즈알데히드(3,4-Dimethoxy-benzaldehyde) 및 3-이소프로폭시-벤즈알데히드(3-Isopropoxybenzaldehyde)로 구성된 군에서 선택되는 1종 이상인 것일 수 있다.In addition, the above and below aldehyde compounds are not particularly limited, but specific examples thereof include benzaldehyde, anisaldehyde, 4-methylbenzaldehyde, 2-methoxybenzaldehyde and 2-Methoxybenzaldehyde. 4-methoxybenzaldehyde, 3,4-methylenedioxybenzaldehyde, 3,4-dimethoxy-benzaldehyde and 3-isopro Foxy-benzaldehyde (3-Isopropoxybenzaldehyde) may be one or more selected from the group consisting of.
상기 (1) 단계에서 사용되는 산 촉매는 파라-톨루엔설포닉산(Para-toluene solfonic acid), 메틸설포닉산(Methyl sulfonic acid), 보론트리플루오라이드(Boron trifluorid), 알루미늄클로라이드(Aluminum chloride) 및 설포닉산(Sulfuric acid)으로 구성된 군에서 선택되는 1종 이상인 것일 수 있다.The acid catalyst used in step (1) is para-toluene solfonic acid, methyl sulfonic acid, boron trifluorid, aluminum chloride and sulfo Nickel acid (Sulfuric acid) may be one or more selected from the group consisting of.
상기 (2) 단계에서, 아민 화합물은 페놀 노볼락 수지 1mol에 대하여, 1 내지 3mol, 바람직하게는 1.5 내지 2.5mol로 첨가시킬 수 있고, 알데히드 화합물은 페놀 노볼락 수지 1mol에 대하여 1 내지 5mol, 바람직하게는 2.5내지 4.5mol로 첨가시킬 수 있다. In step (2), the amine compound may be added in an amount of 1 to 3 mol, preferably 1.5 to 2.5 mol, with respect to 1 mol of the phenol novolak resin, and the aldehyde compound is 1 to 5 mol, preferably 1 mol relative to 1 mol of the phenol novolak resin. Preferably from 2.5 to 4.5 mol .
아민이 아닐린인 경우 그 첨가량이 페놀 노볼락 수지 1mol에 대하여, 1mol 미만으로 첨가될 경우, 폐환(Ring Close) 반응이 일어나지 않아 벤족사진 반응을 충분히 시킬 수 없으며(벤족사진링을 충분히 형성할 수 없으며), 3mol을 초과할 경우에는 마인드브릿지가 과량 생성되어 내열특성 및 난연 특성이 저하 되고 분자 내 이차 아민에 의해 겔화 되거나 분자량이 상승하여 수지 상용성이 저하되는 문제점이 발생될 수 있다.When the amount of the amine is aniline, when the added amount is less than 1 mol with respect to 1 mol of the phenol novolak resin, the ring close reaction does not occur and the benzoxazine reaction cannot be sufficiently formed (the benzoxazine ring cannot be formed sufficiently). In case of exceeding 3 mol, the amount of mind bridges may be excessively generated, resulting in deterioration of heat resistance and flame retardant properties, gelation by secondary amines in the molecule, or increase in molecular weight, thereby lowering resin compatibility.
한편 아민이 알릴아민(Allylamine)인 경우 또한 그 첨가량이 페놀 노볼락 수지 1mol에 대하여, 1mol 미만으로 첨가될 경우, 폐환(Ring Close) 반응이 일어나지 않아 벤족사진 반응을 충분히시킬 수 없으며(벤족사진링을 충분히 형성할 수 없으며), 3mol을 초과할 경우에는 마인드 브릿지가 과량 생성되어 내열 특성 및 전기적 특성이 저하되고 분자 내 이차 아민에 의해 겔화 되거나 분자량이 상승하여 수지와의 상용성이 저하되는 문제점이 발생될 수 있다.On the other hand, when the amine is allylamine and the addition amount is less than 1 mol with respect to 1 mol of the phenol novolak resin, the ring close reaction does not occur and the benzoxazine reaction cannot be sufficiently satisfied (benzoxazine ring). If not more than 3 mol), the amount of the mind bridge is excessively generated, the heat resistance and electrical properties are reduced, the gelation by the secondary amine in the molecule or the molecular weight is increased to decrease the compatibility with the resin Can be generated.
또한, 상기 알데히드 화합물이 페놀 노볼락 수지 1mol에 대하여, 1mol 미만으로 첨가될 경우에는 아민 화합물과의 충분한 반응을 유도하지 못해 옥사진링이 형성되지 않고, 내열 특성이 저하되며, 5mol를 초과할 경우에는 과량의 미반응 원료가 생성물에 잔여될 수 있다.In addition, when the aldehyde compound is added to less than 1 mol with respect to 1 mol of the phenol novolak resin, it does not induce a sufficient reaction with the amine compound so that no oxazine ring is formed, and the heat resistance is lowered. Excess unreacted raw material may remain in the product.
상기 반응에서 사용되는 용매는 톨루엔, 크실렌, 트리메틸벤젠 등의 방향족 탄화수소계 용매; 클로로포름, 디클로로포름, 디클로로메탄 등의 할로겐계 용매; THF, 디옥산 등의 에테르계 용매 등을 사용할 수 있다. 이때, 용매의 함량은 페놀 노볼락 수지, 알데히드 화합물 및 아민 화합물 100 중량부에 대하여, 25 내지 100 중량부, 아민으로 아닐린을 사용한 경우는 좋기로는 50 내지 80중량부를 사용하는 것이 바람직하다.The solvent used in the reaction is an aromatic hydrocarbon solvent such as toluene, xylene, trimethylbenzene; Halogen solvents such as chloroform, dichloroform and dichloromethane; Ether solvents such as THF, dioxane and the like can be used. At this time, the solvent is preferably used in an amount of 25 to 100 parts by weight and aniline as an amine based on 100 parts by weight of the phenol novolak resin, the aldehyde compound and the amine compound, and preferably 50 to 80 parts by weight.
상기 폴리벤족사진 전구체의 제조에 있어서, 전술된 용매의 함량이 지나치게 적으면 반응물의 점도가 높아져 교반 응력이 커지게 되어 작업성이 떨어지고, 과도하게 많으면 반응 후 용매제거에 드는 비용이 많아지게 되어 비경제적일 수 있다. 또한, 적절한 용매의 선택과 혼합반응이 제대로 이루어지지 않은 경우에는 원료들이 반응에 참여하지 못하므로 수율이 저하될 수 있다.In the preparation of the polybenzoxazine precursor, when the content of the solvent is too small, the viscosity of the reactant becomes high, the stirring stress increases, and the workability decreases. When the content is excessively high, the cost of removing the solvent after the reaction increases. It can be economical. In addition, when the selection of the appropriate solvent and the mixing reaction is not made properly, the raw materials do not participate in the reaction, the yield may be lowered.
전술된 바와 같이 제조된 폴리벤족사진 전구체는 화학식 1에 있어서 n=0성분이 20~100%로 함유된 것이 될 수 있다.The polybenzoxazine precursor prepared as described above may include 20% to 100% of n = 0 component in Chemical Formula 1.
본 발명의 일 구현예에서는 이와 같은 폴리벤족사진 전구체의 경화물을 제공하는바, 이러한 경화물은 열적 특성이 기존의 벤족사진 화합물 유래의 경화물과 대비하여 향상될 수 있다. In one embodiment of the present invention to provide a cured product of such a polybenzoxazine precursor, such a cured product can be improved in thermal properties compared with the cured product derived from the existing benzoxazine compound.
특히 상기 화학식 4로 표시되는 화합물에 있어서 n=0인 화합물을 20% 이상으로 함유하는 폴리벤족사진 전구체로부터 얻어진 경화물은, 우수한 전기적 특성은 그대로 유지하면서 높은 열적 특성 및 난연 특성을 나타내어 동박적층판, 반도체 봉지제, 인쇄 회로 기판, 접착, 도료, 주형 용도 등에 유용하게 사용할 수 있다.Particularly, in the compound represented by Formula 4, the cured product obtained from the polybenzoxazine precursor containing 20% or more of the compound having n = 0 exhibits high thermal and flame retardant properties while maintaining excellent electrical properties. It can be usefully used for semiconductor encapsulants, printed circuit boards, adhesives, paints, molding applications and the like.
한편, 상기 화학식 6으로 표시되는 화합물에 있어서 n=0인 화합물을 20% 이상으로 함유하는 폴리벤족사진 전구체로부터 얻어진 경화물은, 높은 열적 특성 및 전기적 특성을 나타내어 동박적층판, 반도체 봉지제, 인쇄 회로 기판, 접착, 도료, 주형 용도 등에 유용하게 사용할 수 있다.On the other hand, in the compound represented by the formula (6), the cured product obtained from the polybenzoxazine precursor containing 20% or more of the compound having n = 0 exhibits high thermal characteristics and electrical properties, thereby showing a copper-clad laminate, a semiconductor encapsulant, and a printed circuit. It can be usefully used for substrates, adhesives, paints, molds and the like.
상기 및 이하의 기재에서 "경화물"이라는 용어는, 폴리벤족사진 전구체 단독의 자경화물만을 의미하는 것이 아니라, 폴리벤족사진 전구체 수지 이외에 다른 수지계 조성물이 혼합되어 경화된 경화물까지를 포괄하는 의미일 수 있다. In the above and the following description, the term "cured product" does not mean only a hardened product of the polybenzoxazine precursor alone, but also encompasses a cured product that is mixed with another resin-based composition in addition to the polybenzoxazine precursor resin. Can be.
이하 본 발명의 내용을 실시예를 통하여 구체적으로 설명한다. 그러나, 이들은 본 발명을 보다 상세하게 설명하기 위한 것으로 본 발명의 권리범위가 이들에 의해 한정되는 것은 아니다.Hereinafter, the content of the present invention will be described in detail through examples. However, these are intended to explain the present invention in more detail, and the scope of the present invention is not limited thereto.
<실시예 1><Example 1>
1-1: 폴리벤족사진 전구체의 제조1-1: Preparation of Polybenzoxazine Precursor
40℃에서 벤즈알데히드 202.97g와 페놀 1200.0g를 투입하고, 산촉매인 para-toluenesolfonic acid 촉매하에서 130℃로 5시간 반응시켜 4,4-(페닐메틸렌)디페놀을 75.02 %(GPC Area%) 함유하고, 나머지 24.98%는 하기 화합물(화학식 3)에서 n=1~2인 화합물로 이루어진 페놀 노볼락 수지를 얻었다. 202.97 g of benzaldehyde and 1200.0 g of phenol were added at 40 ° C., and the reaction was carried out at 130 ° C. for 5 hours under an acid catalyst, para-toluenesolfonic acid catalyst, containing 75.02% (GPC Area%) of 4,4- (phenylmethylene) diphenol. The remaining 24.98% obtained a phenol novolak resin consisting of a compound of n = 1 to 2 in the following compound (Formula 3).
상기 수득된 페놀 노볼락 수지를 핵자기공명분석법(1H-NMR)를 이용하여 구조를 확인한 결과는 도 1a와 같으며, 이는 8.0ppm 부근에 -OH Peak가 존재한다.The obtained phenol novolak resin was confirmed by the structure of nuclear magnetic resonance analysis ( 1 H-NMR) as a result of Figure 1a, which has a -OH peak in the vicinity of 8.0ppm.
이때, NMR 분석시 사용된 NMR기기는 Bruker사의 Avance 500 제품이다.In this case, the NMR apparatus used in the NMR analysis is a Bruance Avance 500 product.
[화학식 3][Formula 3]
Figure PCTKR2015006715-appb-I000027
Figure PCTKR2015006715-appb-I000027
다음으로, 질소로 퍼징한 3L 3구 플라스크에 상기 합성된 페놀 노볼락 수지 500g(1.8094mol)과 톨루엔 222.8g을 투입하고, 여기에 아닐린 168.51g(1.8094 mol)과 포름알데히드 수용액(40%) 271.69g(3.6189mol)을 첨가하였다. 투입이 완료되면 반응용액을 승온속도 1.3℃/min로 100℃까지 승온시키고 5시간동안 교반하였다. 이후, 120℃까지 승온시킨 다음, 10 torr의 압력하에서 60분 동안 용매를 완전히 제거하여 중량평균분자량이 652g/mol인 폴리벤족사진 전구체 708g(화학식 4의 n=0성분을 45.9% 포함, n=0~2)을 제조하였다. 이때, 수율(반응용액의 당량비에 따른 이론 수율 대비)은 99%이다. 상기 %는 겔 투과 크로마토그래피(GPC)(Waters: Waters707)의 Peak 면적비(모노머와 폴리머 성분의 비)이다.Next, 500 g (1.8094 mol) and 222.8 g of the phenol novolac resin synthesized above and 222.8 g of toluene were added to a 3 L three-neck flask purged with nitrogen, and 168.51 g (1.8094 mol) of aniline and an aqueous solution of formaldehyde (40%) 271.69 g (3.6189 mol) was added. When the addition was completed, the reaction solution was heated up to 100 ° C. at a rate 1.3 ° C./min and stirred for 5 hours. Then, after heating up to 120 ℃, the solvent was completely removed for 60 minutes under a pressure of 10 torr 708g of polybenzoxazine precursor having a weight average molecular weight of 652g / mol (including 45.9% of n = 0 component of Formula 4, n = 0-2) were prepared. In this case, the yield (relative to the theoretical yield according to the equivalence ratio of the reaction solution) is 99%. The percentage is the peak area ratio (ratio of monomer and polymer component) of gel permeation chromatography (GPC) (Waters: Waters707).
상기 수득된 폴리벤족사진 전구체를 핵자기공명분석법(1H-NMR)를 이용하여 구조를 확인한 결과는 도 1b와 같으며, 도 1a에서 나타난 8.0-9.0ppm 부근의 -OH Peak 사라지고 4.0~6.0ppm 부근의 Oxazine에서 기인한 Peak가 생성됨을 확인할 수 있었다. The result of confirming the structure of the obtained polybenzoxazine precursor by nuclear magnetic resonance analysis ( 1 H-NMR) is the same as in Figure 1b, disappears -OH Peak in the vicinity of 8.0-9.0ppm shown in Figure 1a 4.0 to 6.0ppm It can be seen that the peak generated from the oxazine was generated.
한편, GPC(Gel Permeation Chromatography, Waters: Waters707)를 이용하여 수득된 폴리벤족사진 전구체의 분자량 데이터를 분석하여 그 결과를 도 1c로 나타내었다. On the other hand, the molecular weight data of the polybenzoxazine precursor obtained by using GPC (Gel Permeation Chromatography, Waters: Waters707) was analyzed and the results are shown in Figure 1c.
도 1c의 결과로부터, retention time 30min 부근에서 고분자량 물질에 대한 broad한 피크가 확인되었는바, 이는 화학식 4 화합물의 자경화물, 즉 화학식 5의 화합물이 생성된 결과로 해석된다. From the results of FIG. 1C, a broad peak was observed for the high molecular weight material near retention time 30min, which translates to the result of the formation of a hardened product of the compound of Formula 4, that is, the compound of Formula 5.
1-2: 경화물 제조1-2: hardened material manufacturing
실시예 1-1에서 수득된 폴리벤족사진 전구체를 지름 30mm의 알루미늄 접시에 투입하고, 220℃에서 각각 2시간 동안 자경화시켜 두께가 1.5mm인 시트 형태의 경화물을 제조하였다.The polybenzoxazine precursor obtained in Example 1-1 was introduced into an aluminum dish having a diameter of 30 mm, and hardened at 220 ° C. for 2 hours to prepare a cured product having a sheet thickness of 1.5 mm.
<실시예 2><Example 2>
2-1: 폴리벤족사진 전구체의 제조2-1: Preparation of Polybenzoxazine Precursor
40℃에서 벤즈알데히드 197.33g와 페놀 1250g를 투입하고, 산촉매인 para-toluenesolfonic acid 촉매하에서 130℃로 4시간 반응시켜, 4,4-(페닐메틸렌)디페놀을 75.27%(GPC Area%) 함유하고 나머지 24.73%는 화학식 3의 n=1~2인 화합물로 이루어진 페놀 노볼락 수지를 얻었다. 197.33 g of benzaldehyde and 1250 g of phenol were added at 40 ° C., and reacted at 130 ° C. for 4 hours under an acid catalyst, para-toluenesolfonic acid catalyst, containing 75.27% (GPC Area%) of 4,4- (phenylmethylene) diphenol. 24.73% obtained the phenol novolak resin which consists of a compound of n = 1-2 of General formula (3).
다음으로, 질소로 퍼징한 3L 3구 플라스크에 상기 합성된 페놀 노볼락 수지 500g(3.5262mol)과 톨루엔 276.1g을 투입하고, 여기에 아닐린 328.39g(3.5262mol)과 포름알데히드 수용액(40%) 529.46g(7.0524mol)을 첨가시켰다. 투입이 완료되면 반응용액을 승온속도 1.3℃/min로 100℃까지 승온시키고 5시간동안 교반하였다. 이후, 130℃까지 승온시킨 다음, 10 torr의 압력하에서 60분 동안 용매를 완전히 제거하여 중량평균분자량이 889g/mol인 폴리벤족사진 전구체 905g(화학식 4의 n=0성분을 34.57% 포함, n=0~2)을 제조하였다. 이때, 수율(반응용액의 당량비에 따른 이론 수율 대비)은 99%이다. 상기 %는 겔 투과 크로마토그래피(GPC)(Waters: Waters707)의 Peak 면적비(모노머와 폴리머 성분의 비)이다.Next, 500 g (3.5262 mol) of the phenol novolac resin and 276.1 g of toluene synthesized above were added to a 3 L three-neck flask purged with nitrogen, and 328.39 g (3.5262 mol) of aniline and an aqueous formaldehyde solution (40%) 529.46 g (7.0524 mol) was added. When the addition was completed, the reaction solution was heated up to 100 ° C. at a rate 1.3 ° C./min and stirred for 5 hours. Then, after heating up to 130 ℃, the solvent was completely removed for 60 minutes under a pressure of 10 torr 905g of polybenzoxazine precursor having a weight average molecular weight of 889g / mol (34.57% of n = 0 component of Formula 4, n = 0-2) were prepared. In this case, the yield (relative to the theoretical yield according to the equivalence ratio of the reaction solution) is 99%. The percentage is the peak area ratio (ratio of monomer and polymer component) of gel permeation chromatography (GPC) (Waters: Waters707).
상기 수득된 폴리벤족사진 전구체를 적외선 분광분석를 이용하여 구조를 확인한 결과는 도 2와 같으며, 옥사진링의 수소원자 피크(CH out of plane bending)를 확인할 수 있었다. 이때, 적외선 분광분석기기는 퍼킨엘머사의 스펙트럼 100 제품이다.As a result of confirming the structure of the obtained polybenzoxazine precursor by using infrared spectroscopy, the hydrogen atom peak of the oxazine ring (CH out of plane bending) was confirmed. At this time, the infrared spectroscopy instrument is a spectrum 100 product of Perkin Elmer.
도 2의 기재에서 Raw Material은 화학식 3의 페놀 노볼락 수지로, 이와 대비하여 Benzoxazine으로 표기한 폴리벤족사진 전구체의 경우 -OH group에서 기인한 -OH stretching Peak가 사라지고 Benzoxazine의 특징적인 Peak를 확인할 수 있다(926 cm-1(the out-of-plane bending vibration of C-H)와 1234 cm-1(C-O-C asymmetric stretching modes))In the base material of FIG. 2, the raw material is a phenol novolak resin of Formula 3, in contrast to the polybenzoxazine precursor represented by Benzoxazine, -OH stretching peak due to -OH group disappears and a characteristic peak of Benzoxazine can be confirmed. (The out-of-plane bending vibration of CH) and 1234 cm-1 (COC asymmetric stretching modes)
한편, GPC(Gel Permeation Chromatography, Waters: Waters707)를 이용하여 수득된 폴리벤족사진 전구체의 분자량 데이터를 분석하였는 바(도시하지 않음), 이 또한 retention time 30min 부근에서 고분자량의 broad한 피크가 나타났으며, 이로써 화학식 4 화합물의 자경화물, 즉 화학식 5의 화합물이 생성된 것으로 판단하였다. On the other hand, the molecular weight data of the polybenzoxazine precursor obtained by using GPC (Gel Permeation Chromatography, Waters: Waters707) was analyzed (not shown), which also showed broad peaks of high molecular weight near retention time 30min. As a result, it was determined that the hardened product of the compound of Formula 4, that is, the compound of Formula 5, was produced.
2-2: 경화물 제조2-2: hardened product manufacture
실시예 2-1에서 수득된 폴리벤족사진 전구체를 지름 30mm의 알루미늄 접시에 투입하고, 1220℃에서 각각 2시간 동안 자경화시켜 두께가 1.5mm인 시트 형태의 경화물을 제조하였다. The polybenzoxazine precursor obtained in Example 2-1 was introduced into an aluminum dish having a diameter of 30 mm, and cured for 2 hours at 1220 ° C. for 2 hours to prepare a cured product having a sheet thickness of 1.5 mm.
<비교예 1>Comparative Example 1
1-1: 폴리벤족사진 전구체의 제조1-1: Preparation of Polybenzoxazine Precursor
질소로 퍼징한 3L 3구 플라스크에 톨루엔 484.2g을 투입하고, 여기에 아닐린(aniline) 652.71g(2.0mol)과 비스페놀 A 800g(1mol)을 첨가시켰다. 투입이 완료되면 반응용액을 승온속도 1.3℃/min로 100℃까지 승온시키고 5시간동안 교반하였다. 이후, 120℃까지 승온시킨 다음, 10torr의 압력하에서 60분 동안 용매를 완전히 제거하여 중량평균분자량이 698g/mol인 폴리벤족사진 전구체 1500g을 제조하였다. 상기 수득된 벤족사진계 화합물은 벤족사진 모노머가 54.26%(GPC Area%)이고, 수율(반응용액의 당량비에 따른 이론 수율 대비)은 92%이다. 상기 %는 겔 투과 크로마토그래피(GPC)(Waters: Waters707)의 Peak 면적비(모노머와 폴리머 성분의 비)이다.484.2 g of toluene was added to a 3 L three-necked flask purged with nitrogen, and 652.71 g (2.0 mol) of aniline and 800 g (1 mol) of bisphenol A were added thereto. When the addition was completed, the reaction solution was heated up to 100 ° C. at a rate 1.3 ° C./min and stirred for 5 hours. Then, after heating up to 120 ℃, the solvent was completely removed for 60 minutes under a pressure of 10torr to prepare a 1500g polybenzoxazine precursor having a weight average molecular weight of 698g / mol. The obtained benzoxazine-based compound is 54.26% (GPC Area%) of the benzoxazine monomer, and the yield (relative to the theoretical yield according to the equivalence ratio of the reaction solution) is 92%. The percentage is the peak area ratio (ratio of monomer and polymer component) of gel permeation chromatography (GPC) (Waters: Waters707).
1-2: 경화물 제조1-2: hardened material manufacturing
비교예 11에서 수득된 폴리벤족사진 전구체를 지름 30mm의 알루미늄 접시에 투입하고, 220℃에서 각각 3시간 동안 자경화시켜 두께가 1.5mm인 시트 형태의 경화물을 제조하였다. The polybenzoxazine precursor obtained in Comparative Example 11 was put in an aluminum dish having a diameter of 30 mm, and hardened at 220 ° C. for 3 hours to prepare a cured product having a sheet thickness of 1.5 mm.
<비교예 2>Comparative Example 2
2-1: 폴리벤족사진 전구체의 제조 2- 1: Preparation of polybenzoxazine precursor
질소로 퍼징한 3L 3구 플라스크에 톨루엔 514.7g을 투입하고, 여기에 아닐린(aniline) 744.18g(2.0mol)(2.0mol)과 비스페놀 F 800g(1mol)을 첨가시켰다. 투입이 완료되면 반응용액을 승온속도 1.3℃/min로 100℃까지 승온시키고 5시간동안 교반하였다. 이후, 120℃까지 승온시킨 다음, 10torr의 압력하에서 60분 동안 용매를 완전히 제거하여 중량평균분자량이 1240g/mol인 폴리벤족사진 전구체 945g을 제조하였다. 상기 수득된 폴리벤족사진 전구체는 벤족사진 모노머가 22.58%(GPC Area%)이고, 수율(반응용액의 당량비에 따른 이론 수율 대비)은 93%이다. 상기 %는 겔 투과 크로마토그래피(GPC)(Waters: Waters707)의 Peak 면적비(모노머와 폴리머 성분의 비)이다.514.7 g of toluene was added to a 3 L three-necked flask purged with nitrogen, and 744.18 g (2.0 mol) (2.0 mol) of aniline and 800 g (1 mol) of bisphenol F were added thereto. When the addition was completed, the reaction solution was heated up to 100 ° C. at a rate 1.3 ° C./min and stirred for 5 hours. Thereafter, after heating up to 120 ° C., the solvent was completely removed under a pressure of 10 torr for 60 minutes to prepare 945 g of a polybenzoxazine precursor having a weight average molecular weight of 1240 g / mol. The obtained polybenzoxazine precursor is 22.58% (GPC Area%) of the benzoxazine monomer, and the yield (relative to the theoretical yield according to the equivalence ratio of the reaction solution) is 93%. The percentage is the peak area ratio (ratio of monomer and polymer component) of gel permeation chromatography (GPC) (Waters: Waters707).
2-2: 경화물 제조2-2: hardened product manufacture
비교예 2-1에서 수득된 폴리벤족사진 전구체를 지름 30mm의 알루미늄 접시에 투입하고, 220℃에서 각각 2시간 동안 자경화시켜 두께가 1.5mm인 시트 형태의 경화물을 제조하였다. The polybenzoxazine precursor obtained in Comparative Example 2-1 was put in an aluminum dish having a diameter of 30 mm, and hardened at 220 ° C. for 2 hours to prepare a cured product having a sheet thickness of 1.5 mm.
1-2: 경화물 제조1-2: hardened material manufacturing
비교예 1-1에서 수득된 폴리벤족사진을 지름 30mm의 알루미늄 접시에 투입하고, 220℃에서 각각 3시간 동안 자경화시켜 두께가 1.5mm인 시트 형태의 경화물을 제조하였다. The polybenzoxazine obtained in Comparative Example 1-1 was put in an aluminum dish having a diameter of 30 mm, and hardened at 220 ° C. for 3 hours to prepare a cured product having a sheet thickness of 1.5 mm.
상기 실시예 1 및 2와 비교예 1 및 2에서 제조한 폴리벤족사진 전구체의 분자량을 다음의 방법으로 측정하여 그 결과를 다음 표 1에 나타내었다. The molecular weights of the polybenzoxazine precursors prepared in Examples 1 and 2 and Comparative Examples 1 and 2 were measured by the following method, and the results are shown in Table 1 below.
<분자량 측정><Molecular weight measurement>
겔 투과 크로마토그래피(GPC)(Waters: Waters707)에 의해 폴리스티렌 환산 중량평균분자량(Mw) 및 수평균분자량(Mn)을 구하였다. 측정하는 시료는 4000ppm의 농도가 되도록 테트라히드로푸란에 용해시켜 GPC에 100㎕를 주입하였다. GPC의 이동상은 테트라히드로푸란을 사용하고, 1.0mL/분의 유속으로 유입하였으며, 분석은 35℃에서 수행하였다. 컬럼은 Waters HR-05,1,2,4E 4개를 직렬로 연결하였다. 검출기로는 RI and PAD Detecter를 이용하여 35℃에서 측정하였다. Polystyrene reduced weight average molecular weight (Mw) and number average molecular weight (Mn) were determined by gel permeation chromatography (GPC) (Waters: Waters707). The sample to be measured was dissolved in tetrahydrofuran to have a concentration of 4000 ppm, and 100 µl was injected into GPC. The mobile phase of GPC used tetrahydrofuran and was introduced at a flow rate of 1.0 mL / min, and the analysis was performed at 35 ° C. The column connected four Waters HR-05,1,2,4E in series. The detector was measured at 35 ° C using RI and PAD Detecter.
한편, 상기 실시예 1 및 2와 비교예 1 및 2에서 제조한 경화물의 유리전이온도, 열분해온도(Td), 난연성 및 유전율을 아래 방법으로 측정하여 그 결과를 하기 표 1에 나타내었다.On the other hand, the glass transition temperature, thermal decomposition temperature (Td), flame retardancy and dielectric constant of the cured product prepared in Examples 1 and 2 and Comparative Examples 1 and 2 were measured by the following method and the results are shown in Table 1 below.
<유리전이온도(Tg) 측정><Glass Transition Temperature (Tg) Measurement>
실시예 1 및 2와 비교예 1 및 2에서 제조한 경화물 10mg을 DSC(Differential Scanning Calorimeters; 시차주사열량계) 측정 TA Instruments DSC Q2000을 이용하여 30℃에서 350℃까지 분당 20℃의 승온 속도로 측정하였다. 10 mg of the cured product prepared in Examples 1 and 2 and Comparative Examples 1 and 2 was measured at a temperature rising rate of 20 ° C. per minute from 30 ° C. to 350 ° C. using a TA Instruments DSC Q2000. It was.
<난연성 측정><Flame Retardant Measurement>
실시예 1 및 2와 비교예 1 및 2에서 제조한 경화물을 UL-94 방법에 의해 난연성을 평가하였다. The hardened | cured material manufactured in Examples 1 and 2 and Comparative Examples 1 and 2 was evaluated for flame retardancy by the UL-94 method.
<유전율 측정>Dielectric constant measurement
Agilent사의 임피던스 분석기(Agilent E4991A 1MHz ~ 3GHz)를 이용하여 하기 조건에서 경화물의 유전율(Dk) 및 유전 정접(Df)을 측정하였다.Agilent's impedance analyzer (Agilent E4991A 1 MHz to 3 GHz) was used to measure the dielectric constant (Dk) and dielectric loss tangent (Df) of the cured product under the following conditions.
측정 주파수:1GHzMeasuring frequency: 1 GHz
측정 온도: 25-27℃Measuring temperature: 25-27 ℃
측정 습도:45-55%Measuring Humidity: 45-55%
측정 시료: 두께1.5mm(1.3 ~ 1.7mm) Measurement sample: Thickness 1.5 mm (1.3 to 1.7 mm)
표 1
구분 Mn/Mw(g/mol) Tg(℃) 난연성(UL94-V0) 유전율(Dk)/유전정접(Df)
실시예 1 514/652 203 V0 3.28/0.01
실시예 2 757/889 205 V0 3.22/0.01
비교예 1 520/698 170.48 측정불가(burns) 3/0.01
비교예 2 571/1240 173.7 V1 3.45/0.015
Table 1
division Mn / Mw (g / mol) Tg (℃) Flame retardant (UL94-V0) Dielectric constant (Dk) / dielectric loss tangent (Df)
Example 1 514/652 203 V0 3.28 / 0.01
Example 2 757/889 205 V0 3.22 / 0.01
Comparative Example 1 520/698 170.48 Burns 3 / 0.01
Comparative Example 2 571/1240 173.7 V1 3.45 / 0.015
상기 표 1에 나타난 바와 같이, 실시예 1 및 2와 비교예 1 및 2의 유전율 수치는 유사하나, 실시예 1 및 2는 비교예 1 및 2에 비해 유리전이온도와 난연성이 높게 나타남에 따라, 열적 특성과 난연 특성이 우수함을 알 수 있었고, 특히, 비교예 1의 경우에는 측정과정에서 연소되어 측정할 수 없었다.As shown in Table 1, the dielectric constant values of Examples 1 and 2 and Comparative Examples 1 and 2 are similar, but Examples 1 and 2 show higher glass transition temperature and flame retardancy than Comparative Examples 1 and 2, It was found that the thermal and flame retardant properties were excellent, and in particular, in Comparative Example 1, it could not be measured by burning during the measurement process.
<실시예 3><Example 3>
3-1: 폴리벤족사진 전구체의 제조3-1: Preparation of Polybenzoxazine Precursor
40℃에서 벤즈알데히드 202.97g와 페놀 1200.0g를 투입하고, 산촉매인 파라-톨루엔설포닉산(Para-toluene solfonic acid) 촉매하에서 130℃로 5시간 반응시켜, 하기 화학식 3에서 n=0의 성분을 77.14%(GPC Area%) 함유하고 나머지 22.86%는 화학식 3에서 n=1~2인 화합물로 이루어진 페놀 노볼락 수지를 얻었다. 202.97 g of benzaldehyde and 1200.0 g of phenol were added at 40 ° C., and the reaction was carried out at 130 ° C. for 5 hours under a catalyst of para-toluene solfonic acid as an acid catalyst. (GPC Area%) and the remaining 22.86% of the formula (3) to obtain a phenol novolak resin consisting of a compound of n = 1 ~ 2.
다음으로, 질소로 퍼징한 3L 3구 플라스크에 상기 합성된 페놀 노볼락 수지 500g(1.7665mol)과 톨루엔 609.3g을 투입하고, 여기에 알릴아민(Allylamine) 201.70g(3.533 1mol)과 포름알데히드 수용액(40%) 530.49g(7.0661mol)을 첨가시켰다. 투입이 완료되면 반응용액을 승온속도 1.3℃/min로 100℃까지 승온시키고 5시간동안 교반하였다. 이후, 120℃까지 승온시킨 다음, 10 torr의 압력하에서 60분 동안 용매를 완전히 제거하여 중량평균분자량이 1420g/mol인 폴리벤족사진 전구체 787g (화학식 6의 n=0성분을 30.7% 포함, n=0~2)을 제조하였다. 이때, 수율(반응용액의 당량비에 따른 이론 수율 대비)은 99%이다. 상기 %는 겔 투과 크로마토그래피(GPC)(Waters: Waters707)의 Peak 면적비(모노머와 폴리머 성분의 비)이다.Next, 500 g (1.7665 mol) of the synthesized phenol novolak resin and 609.3 g of toluene were added to a 3 L three-neck flask purged with nitrogen, and 201.70 g (3.533 1 mol) of allylamine and an aqueous formaldehyde solution ( 40%) 530.49 g (7.0661 mol) was added. When the addition was completed, the reaction solution was heated up to 100 ° C. at a rate 1.3 ° C./min and stirred for 5 hours. Then, after heating up to 120 ℃, the solvent was completely removed for 60 minutes under a pressure of 10 torr 787g of polybenzoxazine precursor having a weight average molecular weight of 1420g / mol (including 30.7% of n = 0 component of Formula 6, n = 0-2) were prepared. In this case, the yield (relative to the theoretical yield according to the equivalence ratio of the reaction solution) is 99%. The percentage is the peak area ratio (ratio of monomer and polymer component) of gel permeation chromatography (GPC) (Waters: Waters707).
상기 수득된 벤족사진을 핵자기공명분석법(1H-NMR)를 이용하여 구조를 확인한 결과는 도 3과 같으며, 도면1a의 페놀 노볼락 수지의 NMR과 비교하였을 때 8.0-9.0부근의 -OH Peak는 사라지고 4.0~6.0ppm 부근의 Oxazine에서 기인한 Peak 생성됨을 확인할 수 있다. 이때, NMR 분석시 사용된 NMR기기는 Bruker사의 Avance 500 제품이다.The obtained benzoxazine was confirmed by the structure of nuclear magnetic resonance analysis ( 1 H-NMR). The results are shown in FIG. 3. When compared with NMR of the phenol novolak resin of FIG. The peak disappears and it can be confirmed that the peak is generated due to the oxazine around 4.0 ~ 6.0ppm. In this case, the NMR apparatus used in the NMR analysis is a Bruance Avance 500 product.
한편, GPC(Gel Permeation Chromatography, Waters: Waters707)를 이용하여 수득된 폴리벤족사진 전구체의 분자량 데이터를 분석하였는 바(도시하지 않음), 이 또한 retention time 30min 부근에서 고분자량의 broad한 피크가 나타났으며, 이로써 화학식 5 화합물의 자경화물, 즉 화학식 7의 화합물이 생성된 것으로 판단하였다. On the other hand, the molecular weight data of the polybenzoxazine precursor obtained by using GPC (Gel Permeation Chromatography, Waters: Waters707) was analyzed (not shown), which also showed broad peaks of high molecular weight near retention time 30min. As a result, it was determined that the hardened product of the compound of Formula 5, that is, the compound of Formula 7 was produced.
3-2: 경화물 제조3-2: Cured Product Preparation
실시예 3-1에서 수득된 폴리벤족사진 전구체를 지름 30mm의 알루미늄 접시에 투입하고, 220℃에서 각각 2시간 동안 자경화시켜 두께가 1.5mm인 시트 형태의 경화물을 제조하였다.The polybenzoxazine precursor obtained in Example 3-1 was put into an aluminum dish having a diameter of 30 mm, and cured at 220 ° C. for 2 hours to prepare a cured product having a thickness of 1.5 mm.
<실시예 4><Example 4>
4-1: 폴리벤족사진 전구체의 제조4-1: Preparation of Polybenzoxazine Precursor
40℃에서 벤즈알데히드 197.33g와 페놀 1250g를 투입하고, 산촉매인 파라-톨루엔설포닉산(Para-toluene solfonic acid) 촉매하에서 130℃로 4시간 반응시켜, 화학식 3에서 n=0의 성분을 75.27%(GPC Area%) 함유하고 나머지 24.73%는 화학식 3에서 n=1~2인 화합물로 이루어진 페놀 노볼락 수지를 얻었다. 197.33 g of benzaldehyde and 1250 g of phenol were added at 40 ° C., and the reaction was carried out at 130 ° C. for 4 hours under an acid catalyst, Para-toluene solfonic acid, to give 75.27% of a component of n = 0 in Chemical Formula 3 (GPC). Area%) and the remaining 24.73% in the formula (3) to obtain a phenol novolak resin consisting of a compound of n = 1 ~ 2.
다음으로, 질소로 퍼징한 3L 3구 플라스크에 상기 합성된 페놀 노볼락 수지 500g(1.7665mol)과 톨루엔 609.3g을 투입하고, 여기에 알릴아민(Allylamine) 201.70g(3.533 1mol)과 포름알데히드 수용액(40%) 530.49g(7.0661mol)을 첨가시켰다. 투입이 완료되면 반응용액을 승온속도 1.3℃/min로 100℃까지 승온시키고 5시간동안 교반하였다. 이후, 120℃까지 승온시킨 다음, 10 torr의 압력하에서 60분 동안 용매를 완전히 제거하여 중량평균분자량이 1264g/mol인 폴리벤족사진 전구체 781g (화학식 6의 n=0성분을 32.7% 포함, n=0~2)을 제조하였다. 이때, 수율(반응용액의 당량비에 따른 이론 수율 대비)은 99%이다. 상기 %는 겔 투과 크로마토그래피(GPC)(Waters: Waters707)의 Peak 면적비(모노머와 폴리머 성분의 비)이다.Next, 500 g (1.7665 mol) of the synthesized phenol novolak resin and 609.3 g of toluene were added to a 3 L three-neck flask purged with nitrogen, and 201.70 g (3.533 1 mol) of allylamine and an aqueous formaldehyde solution ( 40%) 530.49 g (7.0661 mol) was added. When the addition was completed, the reaction solution was heated up to 100 ° C. at a rate 1.3 ° C./min and stirred for 5 hours. Then, after heating up to 120 ℃, the solvent was completely removed for 60 minutes under a pressure of 10 torr 781 g of a polybenzoxazine precursor having a weight average molecular weight of 1264 g / mol (containing 32.7% of n = 0 in the formula 6, n = 0-2) were prepared. In this case, the yield (relative to the theoretical yield according to the equivalence ratio of the reaction solution) is 99%. The percentage is the peak area ratio (ratio of monomer and polymer component) of gel permeation chromatography (GPC) (Waters: Waters707).
상기 수득된 벤족사진 모노머를 적외선 분광분석를 이용하여 구조를 확인한 결과는 도 4와 같은바, 도 4에 있어서 Phenol Novolac은 화학식 3의 페놀 노볼락 수지이고, Benzoxazine은 수득된 폴리벤족사진 전구체인바, Benzoxazine의 경우 -OH group에서 기인한 -OH stretching Peak 사라지고 Benzoxazine의 특징적인 Peak를 확인할 수 있다(926 cm-1(the out-of-plane bending vibration of C-H)와 1234 cm-1 (C-O-C asymmetric stretching modes)). 이때, 적외선 분광분석기기는 퍼킨엘머사의 스펙트럼 100 제품이다.As a result of confirming the structure of the obtained benzoxazine monomer using infrared spectroscopy, as shown in FIG. 4, in FIG. 4, Phenol Novolac is a phenol novolak resin of Formula 3, and Benzoxazine is a polybenzoxazine precursor obtained. In the case of -OH stretching peak due to -OH group disappears, and characteristic peaks of Benzoxazine can be confirmed (926 cm-1 (the out-of-plane bending vibration of CH) and 1234 cm-1 (COC asymmetric stretching modes) ). At this time, the infrared spectroscopy instrument is a spectrum 100 product of Perkin Elmer.
한편, GPC(Gel Permeation Chromatography, Waters: Waters707)를 이용하여 수득된 폴리벤족사진 전구체의 분자량 데이터를 분석하였는 바(도시하지 않음), 이 또한 retention time 30min 부근에서 고분자량의 broad한 피크가 나타났으며, 이로써 화학식 5 화합물의 자경화물, 즉 화학식 7의 화합물이 생성된 것으로 판단하였다. On the other hand, the molecular weight data of the polybenzoxazine precursor obtained by using GPC (Gel Permeation Chromatography, Waters: Waters707) was analyzed (not shown), which also showed broad peaks of high molecular weight near retention time 30min. As a result, it was determined that the hardened product of the compound of Formula 5, that is, the compound of Formula 7 was produced.
4-2: 경화물 제조4-2: hardened product manufacture
실시예 4-1에서 수득된 폴리벤족사진을 지름 30mm의 알루미늄 접시에 투입하고, 1220℃에서 각각 2시간 동안 자경화시켜 두께가 1.5mm인 시트 형태의 경화물을 제조하였다. The polybenzoxazine obtained in Example 4-1 was put in an aluminum dish having a diameter of 30 mm, and hardened at 1220 ° C. for 2 hours to prepare a cured product having a sheet thickness of 1.5 mm.
상기 실시예 3 및 4의 폴리벤족사진 전구체의 분자량을 상술한 방법으로 측정하여 그 결과를 상기 비교예 1 및 2와 대비하여 다음 표 2에 나타내었다. The molecular weights of the polybenzoxazine precursors of Examples 3 and 4 were measured by the above-described method, and the results are shown in Table 2 below in comparison with Comparative Examples 1 and 2.
한편, 상기 실시예 3 및 4에서 제조한 경화물의 난연성 및 유전율을 상술한 방법으로 측정하여 그 결과를 상기 비교예 1 및 2와 대비하여 하기 표 2에 나타내었다.On the other hand, the flame retardancy and dielectric constant of the cured product prepared in Examples 3 and 4 was measured by the above-described method and the results are shown in Table 2 below in comparison with Comparative Examples 1 and 2.
다만, 유리전이온도는 다음과 같은 방법으로 측정하여 그 결과를 하기 표 2에 나타내었다. However, the glass transition temperature was measured by the following method and the results are shown in Table 2 below.
<유리전이온도(Tg) 측정><Glass Transition Temperature (Tg) Measurement>
실시예 3 및 4에서 제조한 경화물은 구조상 DSC로 Tg를 확인하기 어려워 DMA(Dynamic Mechanical Analysis ; 동적기계분석)로 측정하였다.The cured products prepared in Examples 3 and 4 were difficult to identify Tg by DSC in structure and were measured by DMA (Dynamic Mechanical Analysis; Dynamic Mechanical Analysis).
따라서, 상기 실시예 3 및 4와 상기 비교예 1 및 2에서 제조한 경화물을 TA Instruments DMA Q800을 이용하여 30℃에서 350℃까지 분당 3℃의 승온 속도로 측정하였다.  Therefore, the cured products prepared in Examples 3 and 4 and Comparative Examples 1 and 2 were measured at a temperature increase rate of 3 ° C. per minute from 30 ° C. to 350 ° C. using TA Instruments DMA Q800.
표 2
구분 Mn/Mw(g/mol) Tg(℃) Td 5 (℃) 유전율(Dk) 유전정접(Df)
실시예 3 668/1420 302 351.7 2.95 0.0020
실시예 4 638/1264 298 349.4 2.98 0.0025
비교예 1 520/698 198.7 314.6 3.00 0.0100
비교예 2 571/1240 195.9 318.2 3.45 0.0150
TABLE 2
division Mn / Mw (g / mol) Tg (℃) Td 5 (℃) Permittivity (Dk) Dielectric loss factor (Df)
Example 3 668/1420 302 351.7 2.95 0.0020
Example 4 638/1264 298 349.4 2.98 0.0025
Comparative Example 1 520/698 198.7 314.6 3.00 0.0100
Comparative Example 2 571/1240 195.9 318.2 3.45 0.0150
상기 표 2에 나타난 바와 같이, 실시예 3 및 4는 비교예 1 및 2과 비교하였을 경우, 높은 Tg와 Td 값을 나타내어 뛰어난 열적 특성을 발현하고 있으며, 특히 유전율(Dk), 유전정접(Df)이 낮게 측정되어 전기적 특성이 상당히 우수함을 알 수 있다. As shown in Table 2, Examples 3 and 4, when compared with Comparative Examples 1 and 2, exhibits excellent thermal properties by showing high Tg and Td values, in particular dielectric constant (Dk) and dielectric loss tangent (Df). This low measurement indicates that the electrical properties are quite good.
본 발명의 단순한 변형 또는 변경은 모두 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다. All simple modifications or changes of the present invention can be easily carried out by those skilled in the art, and all such modifications or changes can be seen to be included in the scope of the present invention.

Claims (10)

  1. 다음 화학식 1로 표시되는 벤족사진 화합물을 포함하고, To include a benzoxazine compound represented by the formula (1),
    다음 화학식 1에 있어서 n=0인 벤족사진 화합물을 20 내지 100%로 포함하는 폴리벤족사진 전구체.A polybenzoxazine precursor comprising 20 to 100% of a benzoxazine compound having n = 0 in Formula 1 below.
    [화학식 1][Formula 1]
    Figure PCTKR2015006715-appb-I000028
    Figure PCTKR2015006715-appb-I000028
    상기 화학식 1에서, n=0 내지 2의 정수이고, R1
    Figure PCTKR2015006715-appb-I000029
    또는
    Figure PCTKR2015006715-appb-I000030
    이다.
    In Chemical Formula 1, n = 0 to 2, and R 1 is
    Figure PCTKR2015006715-appb-I000029
    or
    Figure PCTKR2015006715-appb-I000030
    to be.
  2. 제 1항에 있어서, 상기 전구체는 상기 화학식 1로 표시되는 벤족사진 화합물의 옥사진 환(oxazine ring)이 개환되면서 중합된 자경화물을 포함하는 것을 특징으로 하는 폴리벤족사진 전구체. The polybenzoxazine precursor of claim 1, wherein the precursor comprises a hardened product polymerized while the oxazine ring of the benzoxazine compound represented by Chemical Formula 1 is ring-opened.
  3. 제 2항에 있어서, 상기 벤족사진 화합물의 자경화물은 다음 화학식 2로 표시되는 화합물을 포함하는 것을 특징으로 하는 폴리벤족사진 전구체. 3. The polybenzoxazine precursor of claim 2, wherein the hardened product of the benzoxazine compound comprises a compound represented by the following Chemical Formula 2.
    [화학식 2][Formula 2]
    Figure PCTKR2015006715-appb-I000031
    Figure PCTKR2015006715-appb-I000031
    상기 화학식 2에서, R은
    Figure PCTKR2015006715-appb-I000032
    이고, R1
    Figure PCTKR2015006715-appb-I000033
    또는
    Figure PCTKR2015006715-appb-I000034
    이며, n은 0 내지 2의 정수이고, n2는 1 내지 5의 정수이다.
    In Formula 2, R is
    Figure PCTKR2015006715-appb-I000032
    And R 1 is
    Figure PCTKR2015006715-appb-I000033
    or
    Figure PCTKR2015006715-appb-I000034
    N is an integer of 0-2, n2 is an integer of 1-5.
  4. 제 1항에 있어서, 상기 전구체는 중량평균분자량이 500 내지 5000g/mol인 것을 특징으로 하는 폴리벤족사진 전구체. The polybenzoxazine precursor according to claim 1, wherein the precursor has a weight average molecular weight of 500 to 5000 g / mol.
  5. (1) 산 촉매 존재 하에서 페놀계 화합물과 알데히드 화합물을 반응시켜 페놀 노볼락 수지를 수득하는 단계; 및(1) reacting a phenolic compound with an aldehyde compound in the presence of an acid catalyst to obtain a phenol novolak resin; And
    (2) 상기 수득된 페놀 노볼락 수지에 알데히드 화합물 및 아민 화합물로서 알릴아민(Allylamine) 또는 아닐린(aniline)을 반응시키는 단계를 포함하는 것을 특징으로 하는 폴리벤족사진 전구체의 제조방법. (2) a method for producing a polybenzoxazine precursor, comprising the step of reacting the obtained phenol novolak resin with allylamine or aniline as an aldehyde compound and an amine compound.
  6. 제 5항에 있어서, 상기 페놀 노볼락 수지는 화학식 3으로 표시되며, 화학식 3에 있어서 n=0성분을 65%이상 함유하는 것임을 특징으로 하는 폴리벤족사진 전구체의 제조방법. 6. The method according to claim 5, wherein the phenol novolak resin is represented by the formula (3), wherein the phenol novolac resin contains at least 65% of n = 0 components in the formula (3).
    [화학식 3][Formula 3]
    Figure PCTKR2015006715-appb-I000035
    Figure PCTKR2015006715-appb-I000035
    상기 화학식 3에서, n은 0~2의 정수이다. In Formula 3, n is an integer of 0 to 2.
  7. 제 5항에 있어서, 상기 (1) 단계는 페놀계 화합물 1mol에 대하여, 알데히드 화합물을 0.05 내지 0.3mol로 사용하고, 상기 (2) 단계는 페놀 노볼락 수지 1mol에 대하여, 아민 화합물 1 내지 3mol 및 알데히드 화합물 1 내지 5mol로 사용하는 것을 특징으로 하는 폴리벤족사진 전구체의 제조방법. The method of claim 5, wherein step (1) uses an aldehyde compound in an amount of 0.05 to 0.3 mol with respect to 1 mol of the phenolic compound, and step (2) comprises 1 to 3 mol and an amine compound for 1 mol of a phenol novolak resin; Method for producing a polybenzoxazine precursor, characterized in that used as an aldehyde compound 1 to 5mol.
  8. 제 1항 내지 제 4항 중 어느 한 항의 폴리벤족사진 전구체의 경화물.Hardened | cured material of the polybenzoxazine precursor of any one of Claims 1-4.
  9. 제 8 항에 있어서, 상기 경화물은 화학식 1로 표시되는 벤족사진계 화합물에 있어서 R1
    Figure PCTKR2015006715-appb-I000036
    인 벤족사진 화합물을 포함하는 폴리벤족사진 전구체의 자경화물을 포함하며, 유리전이온도가 190℃ 이상인 것을 특징으로 하는 경화물.
    According to claim 8, wherein the cured product is R 1 in the benzoxazine-based compound represented by the formula (1)
    Figure PCTKR2015006715-appb-I000036
    Hardened | cured material containing the hardened | cured material of the polybenzoxazine precursor containing an benzoxazine compound, and whose glass transition temperature is 190 degreeC or more.
  10. 제 8 항에 있어서, 상기 경화물은 화학식 1로 표시되는 벤족사진계 화합물에 있어서 R1
    Figure PCTKR2015006715-appb-I000037
    인 벤족사진 화합물을 포함하는 폴리벤족사진 전구체의 자경화물을 포함하며, 유리전이온도가 250℃ 이상인 것을 특징으로 하는 경화물.
    According to claim 8, wherein the cured product is R 1 in the benzoxazine-based compound represented by the formula (1)
    Figure PCTKR2015006715-appb-I000037
    Hardened | cured material containing the hardened | cured material of the polybenzoxazine precursor containing a phosphorus benzoxazine compound, and whose glass transition temperature is 250 degreeC or more.
PCT/KR2015/006715 2014-06-30 2015-06-30 Polybenzoxazine precursor and method for preparing same WO2016003167A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580036014.1A CN106661208B (en) 2014-06-30 2015-06-30 Polybenzoxazine precursors and methods of making same
US15/322,946 US10266504B2 (en) 2014-06-30 2015-06-30 Polybenzoxazine precursor and method for preparing same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR10-2014-0081402 2014-06-30
KR20140081402 2014-06-30
KR10-2014-0094203 2014-07-24
KR20140094203 2014-07-24
KR20140174117 2014-12-05
KR10-2014-0174117 2014-12-05
KR10-2015-0092996 2015-06-30
KR1020150092996A KR101782807B1 (en) 2014-06-30 2015-06-30 Polybenzoxazine precursor and Preparing Method thereof

Publications (1)

Publication Number Publication Date
WO2016003167A1 true WO2016003167A1 (en) 2016-01-07

Family

ID=55019622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/006715 WO2016003167A1 (en) 2014-06-30 2015-06-30 Polybenzoxazine precursor and method for preparing same

Country Status (1)

Country Link
WO (1) WO2016003167A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5543516A (en) * 1994-05-18 1996-08-06 Edison Polymer Innovation Corporation Process for preparation of benzoxazine compounds in solventless systems
JP2003064155A (en) * 2001-08-23 2003-03-05 Nippon Steel Chem Co Ltd Thermosetting resin composition
JP2003286320A (en) * 2002-03-28 2003-10-10 Nippon Steel Chem Co Ltd Allyl group-containing thermosetting resin and cured matter
KR20140007856A (en) * 2011-01-25 2014-01-20 사이텍 테크놀러지 코포레이션 Benzoxazine resins
KR20140067006A (en) * 2011-10-18 2014-06-03 셍기 테크놀로지 코. 엘티디. Benzoxazine intermediate and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5543516A (en) * 1994-05-18 1996-08-06 Edison Polymer Innovation Corporation Process for preparation of benzoxazine compounds in solventless systems
JP2003064155A (en) * 2001-08-23 2003-03-05 Nippon Steel Chem Co Ltd Thermosetting resin composition
JP2003286320A (en) * 2002-03-28 2003-10-10 Nippon Steel Chem Co Ltd Allyl group-containing thermosetting resin and cured matter
KR20140007856A (en) * 2011-01-25 2014-01-20 사이텍 테크놀러지 코포레이션 Benzoxazine resins
KR20140067006A (en) * 2011-10-18 2014-06-03 셍기 테크놀로지 코. 엘티디. Benzoxazine intermediate and preparation method thereof

Similar Documents

Publication Publication Date Title
Tao et al. Synthesis and properties of novel fluorinated epoxy resins based on 1, 1-bis (4-glycidylesterphenyl)-1-(3′-trifluoromethylphenyl)-2, 2, 2-trifluoroethane
WO2017095174A1 (en) Polymeric composition
WO2017209413A1 (en) High-strength transparent polyamidimide and method for preparing same
WO2017188630A1 (en) High-strength transparent polyamide-imide and method for manufacturing same
WO2018004273A1 (en) Thermosetting resin composition, and prepreg and substrate using same
WO2017209414A1 (en) High-strength transparent polyamidimide and method for preparing same
KR101766427B1 (en) Polybenzoxazine Precursor and Preparing Method thereof
KR20090025156A (en) Heat-curable polyimide silicone composition and a cured film therefrom
WO2018030552A1 (en) Polymerizable composition
Hwang et al. Low dielectric epoxy resins from dicyclopentadiene-containing poly (phenylene oxide) novolac cured with dicyclopentadiene containing epoxy
WO2016140459A1 (en) Phosphorus-based epoxy compound, preparation method therefor, and epoxy composition containing same
WO2016167449A1 (en) Phosphonium-based compound, epoxy resin composition containing same, semiconductor device manufactured using same
WO2016003167A1 (en) Polybenzoxazine precursor and method for preparing same
WO2022239955A1 (en) Flame-retardant curing agent composition for epoxy, and flame-retardant curing agent for epoxy, comprising same
KR101782807B1 (en) Polybenzoxazine precursor and Preparing Method thereof
WO2020130261A1 (en) Crosslinking agent compound, photosensitive composition including same, and photosensitive material using same
WO2016089182A9 (en) Polybenzoxazine precursor and method for preparing same
WO2018004289A2 (en) Benzoxazine-based mixture and use thereof
JP6844850B2 (en) Polyimide compound, polyamic acid and molded article containing the polyimide compound
WO2024049140A1 (en) Reprocessable or recyclable cured liquid crystalline epoxy resin, re-cured product thereof, and method for producing same
WO2022145749A1 (en) Resin containing unsaturated group, method for preparing same, and composition comprising same
WO2015076626A1 (en) Novolac resin, curing agent containing same, and epoxy resin composition, and novolac epoxy resin, preparation method therefor, and epoxy resin composition containing novolac epoxy resin
WO2019132176A1 (en) Thermoplastic resin composition for sealing semiconductor device and semiconductor device sealed using same
WO2020045897A1 (en) Phthalonitrile-based resin having improved impact strength
WO2023167513A1 (en) Epoxy resin composition derived from non-sugar alcohol composition and preparation method therefor, and curable epoxy resin composition including same and cured product thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15815914

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15322946

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15815914

Country of ref document: EP

Kind code of ref document: A1