WO2016002899A1 - Multifunctional belt - Google Patents

Multifunctional belt Download PDF

Info

Publication number
WO2016002899A1
WO2016002899A1 PCT/JP2015/069182 JP2015069182W WO2016002899A1 WO 2016002899 A1 WO2016002899 A1 WO 2016002899A1 JP 2015069182 W JP2015069182 W JP 2015069182W WO 2016002899 A1 WO2016002899 A1 WO 2016002899A1
Authority
WO
WIPO (PCT)
Prior art keywords
belt
conductor
multifunction
core wire
conductor core
Prior art date
Application number
PCT/JP2015/069182
Other languages
French (fr)
Japanese (ja)
Inventor
龍起 井上
中村 晴彦
Original Assignee
ゲイツ・ユニッタ・アジア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ゲイツ・ユニッタ・アジア株式会社 filed Critical ゲイツ・ユニッタ・アジア株式会社
Priority to CN201580034166.8A priority Critical patent/CN106536384B/en
Priority to JP2015541721A priority patent/JP6085034B2/en
Publication of WO2016002899A1 publication Critical patent/WO2016002899A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G1/00Driving-belts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G1/00Driving-belts
    • F16G1/06Driving-belts made of rubber
    • F16G1/08Driving-belts made of rubber with reinforcement bonded by the rubber

Definitions

  • the present invention relates to a multifunction belt that can be used to move a movable rack in, for example, an automatic warehouse.
  • a cable such as a power supply cable for connecting a drive motor mounted on the movable rack and a power source provided outside the movable rack is used.
  • the one inserted through the cable bear is known (Patent Document 1).
  • the cable bearer is constructed by flexibly connecting a large number of top members formed with spaces for the insertion of cables, can accommodate multiple cables, and deforms following the movement of the movable rack. Protect the cable.
  • a multifunction belt includes a long belt body made of an elastomer, a plurality of high-strength core wires embedded in the belt body, extending in the longitudinal direction of the belt body, and arranged in parallel to each other, and a belt And a conductor provided in the main body and extending in the longitudinal direction of the belt main body.
  • the conductor is a plurality of conductor core wires embedded in the belt body, and the high-strength core wires and the conductor core wires are alternately arranged in the width direction of the belt body.
  • the high-strength core wire and the conductor core wire are arranged so as to contact a straight line parallel to the surface of the belt body in the cross section of the belt body.
  • a plurality of conductor core wires may be provided between the high strength core wires.
  • high-strength cores may be disposed at both ends in the cross section of the belt body. Further, the conductor core wire may be covered with an insulator.
  • the conductor may be a conductor core wire embedded in the belt body, and a plurality of high-strength core wires may be disposed so as to cover the outer peripheral surface of one conductor core wire.
  • the conductor may be a conductor core wire embedded in the belt body, and a plurality of conductor core wires may be disposed so as to cover the outer peripheral surface of one high-strength core wire.
  • the conductor may be a wiring formed on a flexible printed wiring board.
  • the flexible printed wiring board is attached to the surface of the belt body.
  • the conductor is a plurality of conductor core wires embedded in the belt body, and the conductor core wires have a conductor resistance value lower than that of the high-strength core wires.
  • the conductor core wire preferably has an annealed copper wire or a copper alloy wire.
  • the conductor core wire is covered with a coating material that does not adhere to the elastomer of the belt body.
  • a coating material that does not adhere to the elastomer of the belt body.
  • the coating material is preferably made of a material having a melting point higher than that of the belt body elastomer.
  • the coating material is made of, for example, a fluororesin.
  • the conductor core wire has, for example, a single wire, a twisted wire (collective twist, a rope twist), a shielded wire, a cable, and a shielded cable. More preferably, a conductive material is added to the elastomer of the belt body. According to this, complicated signal communication is enabled by the conductor core wire, and noise countermeasures in signal communication are taken.
  • the high-strength core of the multi-function belt has a belt elongation change rate of 0.2% in the load control region of the belt in which a plurality of high-strength cores and conductor cores are alternately arranged in the belt body made of elastomer. It is preferable that the design is as follows.
  • the hardness of the elastomer of the belt body is, for example, in the range of A80 to A95.
  • the belt body is formed, for example, as a toothed belt or a flat belt.
  • a multifunction belt capable of mechanically moving a movable device such as a movable rack and feeding and communicating with the movable device without using a protective member such as a cable bear.
  • FIG. 1 shows the schematic structure of the automatic warehouse where the multifunction belt of 1st Embodiment of this invention is used. It is a perspective view which shows the conductor core wire which protrudes from the both ends of a belt main body. It is a figure which shows the electric circuit containing a conductor core wire. It is a cross-sectional view of the multifunction belt according to the first embodiment. It is an expanded sectional view of a conductor core wire. It is a cross-sectional view of a multifunction belt according to the second embodiment. It is sectional drawing of a hybrid core wire. It is a cross-sectional view of a multifunction belt according to a third embodiment. It is sectional drawing which shows the 1st example of a conductor core wire.
  • Multifunctional belt 70 Belt body 71 High-strength core wire 72, 73 Conductor core wire
  • FIG. 1 shows a schematic configuration of an automatic warehouse as an example of use of the multifunction belt 50 according to the first embodiment of the present invention.
  • the movable rack 51 is moved up and down by the multifunction belt 50.
  • the movable rack 51 can be stopped at the stages S1 to S5 provided from the first floor to the fifth floor, and the container C is exchanged with each of the stages S1 to S5.
  • the movable rack 51 is provided with an electromagnet 52, and a connecting member 53 that is attracted to the electromagnet 52 is provided at the end of the floor of each of the stages S1 to S5. That is, the movable rack 51 can be fixed by attracting the electromagnet 52 and the connecting member 53 in each of the stages S1 to S5.
  • Each stage S1 to S5 is provided with a roller conveyor 54 for moving the container C, and a motor 55 for rotating the roller conveyor 54.
  • the movable rack 51 is also provided with a roller conveyor 56 and a motor 57 for moving the container C.
  • a barcode 58 is attached to the outer wall surface of the container C to identify the container C, and a barcode reader 59 for reading the barcode 58 is provided on the movable rack 51.
  • a strain gauge type weigh scale 61 is provided in part of the roller conveyor 56 of the movable rack 51 in order to measure the weight of the container C placed on the roller conveyor 56.
  • the movable rack 51 is connected to one end of the multi-function belt 50 by a clamp 62, and the other end of the multi-function belt 50 is connected to a clamp 63 fixed to the floor surface of the automatic warehouse.
  • the multi-function belt 50 is wound around a driving pulley 64, fixed pulleys 65 and 66, and moving pulleys 67 and 68.
  • the multifunction belt 50 is a toothed belt. That is, the driving pulley 64 and the constant pulleys 65 and 66 are toothed pulleys, and the moving pulleys 67 and 68 are flat pulleys.
  • a high-strength core wire 71 and conductor core wires 72 and 73 are embedded in the multifunction belt 50, and the conductor core wires 72 and 73 protrude from the end portion on the clamp 63 side.
  • the control unit 74 is connected to a power source 75 and performs power feeding and signal communication via conductor core wires 72 and 73 as will be described later.
  • the control unit 74 is also connected to a motor 76 for driving the driving pulley 64, and supplies and controls the motor 76.
  • the material of the belt main body 70 of the multi-function belt 50 is an elastomer, and as shown in FIG. 2, both ends thereof are removed to expose the power conductor core wire 72 and the signal conductor core wire 73. Every other high-strength core wire 71 is provided. That is, the power conductor core wire 72 or the signal conductor core wire 73 is provided between two adjacent high-strength core wires 71.
  • the power conductor core wire 72 is connected to the electromagnet 52 and the motors 55 and 57, and the signal conductor core wire 73 is connected to the bar code reader 59 and the weigh scale 61. All the conductor core wires 72 and 73 are connected to the power source 75 via the control unit 74. That is, power is supplied to the motors 55 and 57 via the power conductor core wire 72, whereby the container C is delivered between the stages S1 to S5 and the movable rack 51, and is fixed on the conveyors 54 and 56.
  • the Power supply to the electromagnet 52 is also performed through the power conductor core wire 72, and the movable rack 51 is fixed at the height positions of the stages S1 to S5.
  • Power supply to the barcode reader 59 and signal communication are performed via the signal conductor core wire 73, and the container C is identified by the control unit 74.
  • Power feeding and signal communication for the weighing scale 61 are also performed by the signal conductor core wire 73, and the weight of the container C is measured by the control unit 74.
  • FIG. 4 is a cross-sectional view of the multifunction belt 50 according to the first embodiment.
  • the multifunction belt 50 has a long belt body 70 made of an elastomer (thermoplastic resin).
  • elastomer thermoplastic resin
  • thermoplastic elastomer constituting the belt body 70
  • urethane elastomer, polyester elastomer, polyolefin elastomer, silicon elastomer, polyamide elastomer, polystyrene elastomer, and the like can be used.
  • Urethane elastomer and polyester elastomer are suitable materials.
  • a high-strength core wire 71 and conductor core wires 72 and 73 are embedded in a portion of the belt body 70 that is close to the bottom surface 78 of the belt teeth 77. For reasons of manufacturing the multifunction belt 50, a part of each of the high-strength core wire 71 and the conductor core wires 72 and 73 is exposed at the bottom surface 78. That is, in this specification, “embedding” does not mean that the high-strength core wire 71 and the conductor core wires 72 and 73 are completely embedded in the belt body 70, but may be partially exposed from the belt body 70. Including.
  • the high-strength core wire 71 is, for example, a steel wire, but high-strength and high-elasticity core wires such as an aramid core wire, a carbon core wire, a PBO core wire, and a high-strength glass core wire can be used.
  • the conductor core wires 72 and 73 are, for example, annealed copper wires or copper alloy wires.
  • a plurality of high-strength core wires 71 and conductor core wires 72 and 73 are both provided and arranged in parallel to each other.
  • the high-strength core wires 71 and the conductor core wires 72 and 73 are alternately arranged at equal intervals in the width direction of the belt body 70, and the conductor core wires 72 or 73 are disposed between two adjacent high-strength core wires 71. Is placed. High-strength core wires 71 are disposed at both ends in the cross section of the belt body 70.
  • the surface on the bottom surface 78 side of the belt teeth 77 of the high strength core wire 71 and the conductor core wires 72 and 73 is on a common surface, that is, in the cross section of the belt body 70, the high strength core wire 71 and the conductor core wires 72, 73 are arranged so as to be in contact with a straight line parallel to the bottom surface (surface) 78 of the belt main body 70.
  • the high-strength core wire 71 and the conductor core wires 72 and 73 extend in the longitudinal direction of the belt body 70 and reach both ends of the belt body 70.
  • the thermoplastic resin is removed at both ends of the belt main body 70, and the conductor core wires 72 and 73 are exposed and connected to electrical components provided on the clamps 62 and 63.
  • the high-strength core wire 71 does not protrude from both end faces of the belt body 70.
  • the material, outer diameter and number of the conductor core wires 72 and 73 are determined in consideration of the power supplied to the driving motor 55 of the roller conveyor 54 and the driving motor 57 of the roller conveyor 56 via the control unit 74, etc. It is selected so as to have the following electrical characteristics (conductor resistance value, etc.).
  • FIG. 5 is an enlarged cross-sectional view of the conductor core wires 72 and 73.
  • the conductors 21 of the conductor core wires 72 and 73 are formed by twisting a large number of strands in a certain direction, and the outer peripheral surface thereof is covered with the insulator layer 22 (see FIG. 9). That is, the conductor core wires 72 and 73 have a configuration called aggregate twist.
  • the conductor core wires 72 and 73 are protected by the insulator layer 22 to improve insulation, but the insulator layer 22 can be omitted.
  • a power transmission function for mechanically driving the movable rack 51 up and down and a power supply function to a motor or the like for rotationally driving a roller conveyor for moving the container C are provided.
  • the functional belt 50 can be provided. That is, a protective member such as a cable bear for protecting the power feeding cable is not required, and a movable device such as the movable rack 51 is mechanically moved, and a structure for feeding and communicating with the movable device is simplified and reduced in size. can do.
  • FIG. 6 is a cross-sectional view of the multifunction belt 50 according to the second embodiment.
  • a hybrid core wire 31 formed by combining a high-strength core wire and a conductor core wire is embedded in the belt body 70.
  • the hybrid core wire 31 is formed by covering the outer peripheral surface of a stranded wire (collective stranded) conductor core wire 32 with an insulator layer 33, and further providing a high-strength core of a plurality of stranded wires (collective stranded). Covered by line 34.
  • the hybrid core wires 31 are arranged at equal intervals in the width direction of the belt body 70.
  • the same effect as that of the first embodiment can be obtained.
  • the hybrid core wires 31 are uniformly distributed in the width direction of the belt main body 70, the multifunction belt 70 is more than the first embodiment. Strength performance can be improved.
  • a high-strength core wire may be disposed on the center side, and a plurality of conductor core wires may be provided so as to cover the outer peripheral surface of the high-strength core wire.
  • FIG. 8 is a cross-sectional view of the multifunction belt 50 according to the third embodiment.
  • the conductor core wire is not embedded in the belt main body 70, and the flexible printed wiring board 41 having a conductor is attached to the back surface (surface) 80 of the belt main body 70. Is a point. That is, the wiring 42 formed on the flexible printed wiring board 41 is a conductor extending in the longitudinal direction of the belt main body 70, and the electrical power of the multifunction belt 50 is the same as the conductor core wires 72 and 73 in the first and second embodiments.
  • the flexible printed wiring board 41 is affixed to the back surface 80 of the belt main body 70, the change in the tensile force and the compressive force acting on the flexible printed wiring board 41 is shown in FIG. More severely than the form, the flexible printed wiring board 41 needs to be flexible enough to follow the change.
  • the belt body 70 is formed as a toothed belt, but the present invention is not limited to the toothed belt, and the belt body is formed as a flat belt. It can also be applied to things.
  • FIG. 9 is a cross-sectional view showing a first example of the conductor core wires 72 and 73 used in the first embodiment.
  • This example is a twisted wire (aggregate twist) of an insulating film in which the outer peripheral surface of a conductor 81 is covered with an insulator 82.
  • the conductor 81 is composed of a large number of soft copper wires or copper alloy wires as shown in Table 1. Molded by twisting in a certain direction. That is, in the case of an annealed copper wire, for example, 19 strands having a diameter of 0.08 mm are twisted to form a conductor core wire having a diameter of 0.40 mm.
  • the conductor resistance value of the annealed copper wire and the copper alloy wire based on JISC3005 is about 1/10 of the steel core wire when the diameter is 0.4 mm, for example. Therefore, according to the conductor core wire formed using the annealed copper wire or the copper alloy wire, it is possible to supply high power, and particularly advantageous in the conductor core wire 72 for power.
  • the steel core wire is shown for comparison of the conductor resistance value between the annealed copper wire and the copper alloy wire.
  • the steel core wire is composed of three strands of three strands of 0.08 mm diameter twisted together and seven strands of strands of three strands of 0.06 mm diameter twisted.
  • the figure shows a twisted wire twisted by combining seven strands twisted together and three strands of three strands having a diameter of 0.08 mm. That is, all the steel core wires shown in Table 1 are formed by twisted wires (rope twists).
  • the insulator 82 is a fluororesin (ETFE or the like) that does not melt into the urethane resin that is an elastomer of the belt main body 70 and does not adhere to the urethane resin during belt molding. That is, the insulator 82 which is a coating material is made of a material having a melting point higher than that of the urethane resin.
  • EFE fluororesin
  • the conductor core wires 72 and 73 are exposed from the belt body 70, the conductor core wires 72 and 73 are not short-circuited. Further, since the insulator 82 does not adhere to the belt main body 70, the conductor core wires 72 and 73 can be displaced relative to the belt main body 70.
  • noise countermeasures are necessary so that the transmitted signal does not include noise. Therefore, a conductive material such as carbon is added to the elastomer of the belt main body 70, and the belt main body 70 is given conductivity. Therefore, according to the multifunction belt 50 of the present embodiment, no error occurs in reading of the bar code reader 59, measurement of the weighing scale 61, and the like.
  • fluororesin is a suitable material for the insulator 82, but other usable materials include silicon rubber and polyimide resin.
  • fluororesin is a suitable material for the insulator 82, but other usable materials include silicon rubber and polyimide resin.
  • ETFE ETFE
  • PTFE PFA
  • FEP FEP
  • PVDF PVDF
  • FIG. 10 is a cross-sectional view showing a rope twisted stranded wire as a second example of the conductor core wires 72 and 73.
  • the conductor 81 in this example has, for example, a stranded wire (rope stranded) in which seven strands 83 formed by twisting seven strands having a diameter of 0.08 mm are twisted, and the outer surface of the conductor 81 is an insulator 82. It is covered.
  • FIG. 11 is a cross-sectional view showing a shield wire as a third example of the conductor core wires 72 and 73.
  • the outer peripheral surface of a conductor 81 made of an annealed copper wire or a copper alloy wire as shown in Table 1 is covered with an insulator 82, the outside of the insulator 82 is covered with a metal shield 84, and the outside is covered with an insulating material.
  • the sheath 85 is covered. That is, the conductor 81 is covered with an insulator 82 and a sheath 85, and the sheath 85 has a melting point higher than that of the elastomer of the belt body 70 and does not adhere to the elastomer of the belt body.
  • noise countermeasures in signal communication become more complete.
  • FIG. 12 is a cross-sectional view showing a cable as a third example of the conductor core wires 72 and 73.
  • This example has a configuration in which three stranded wires (aggregate twist) 86 having the same configuration as in FIG. 9 are twisted together, and the outside is covered with a paper tape 87 and the outer peripheral surface is covered with a sheath 88 of an insulating material. Even with such a cable, noise countermeasures can be improved in the same manner as shielded wires.
  • FIG. 13 is a cross-sectional view showing a cable that is a fourth example of the conductor core wires 72 and 73.
  • three stranded wires (collective twist) 86 having the same configuration as in FIG. 9 are twisted together, and the outside is covered with a paper tape 87, the outside is covered with a metal shield 84, and the outer peripheral surface is further covered with an insulating material.
  • the sheath 88 is covered. Even with such a cable, noise countermeasures can be improved in the same manner as shielded wires.
  • the multifunction belt 50 has the conductor core wires 72 and 73 or the wirings 42 as conductors, and therefore supplies power to various drive mechanisms via the multifunction belt 50.
  • an electric signal can be transmitted to the control device.
  • a protective member such as a cable bear can be omitted, and the device provided with the multifunction belt 50 can be downsized.
  • the conductor core wires 72 and 73 are formed using an annealed copper wire or a copper alloy wire, high power feeding is possible. Therefore, in particular, the motor 57 mounted on the movable rack 51 can have a high output and a high-speed reaction, and the time required for putting the container C into and out of the warehouse (first to fifth stages S1 to S5) can be shortened. be able to.
  • the high-power electromagnet 52 of the movable rack 51 can be used, the movable rack 51 can be fixed, the container C can be fixed, and the container C can be conveyed using electromagnetic force. Furthermore, various functions such as opening and closing of lighting fixtures and doors, and movement of arms can be employed.
  • the control of the operation of the movable rack 51 can be miniaturized, and the reading accuracy of the barcode reader 59 and the measurement accuracy of the weighing scale 61 can be improved.
  • the conductor core wires 72 and 73 are covered with an insulator, it is possible to prevent the occurrence of accidents such as short circuit, electric shock, fire, etc., improve safety, and improve equipment maintenance.
  • the insulation work in the terminal processing of the conductor core wires 72 and 73 can be simplified.
  • An endless multi-functional belt having basically the same configuration as the multi-functional belt 50 of the first embodiment was created and attached to a pair of pulleys to perform a durability test.
  • the driving pulley and the driven pulley are toothed pulleys having a trapezoidal tooth profile with 18 teeth and a tooth pitch of 5 mm.
  • the rotational speed of the driving pulley was set to 4000 rpm.
  • the sample belt is a toothed belt having trapezoidal teeth with a tooth pitch of 5 mm, a circumferential length of 600 mm, a width of 15 mm, and an endless shape formed by joint processing.
  • the mounting tension is set to 100 N. .
  • the conductor core wire is made of a copper alloy wire and formed by twisting 28 strands having a diameter of 0.05 mm, and the outer peripheral surface thereof is covered with an insulator.
  • an isocyanate adhesion treatment is performed for adhesion of the belt body with urethane. That is, the sample belt 1 is not included in the present invention and is a comparative example.
  • the conductor core wire of the sample belt 2 is made of annealed copper wire, formed by twisting 19 strands having a diameter of 0.08 mm, and the outer peripheral surface thereof is covered with an insulator made of ETFE.
  • the conductor core wire of the sample belt 3 is the same as that of the sample belt 2, but the urethane resin, which is the material of the belt body, has a lower hardness than the sample belt 2.
  • the conductor of the sample belt 4 is made of a copper alloy wire, formed by twisting 28 strands having a diameter of 0.05 mm, and its outer peripheral surface is covered with an insulator made of ETFE. Is the same as the sample belt 3. That is, the sample belts 2, 3, and 4 are embodiments of the present invention.
  • the belt body elastomer has a hardness measured by a test based on the JISK6253 standard in the range of A80 to A95.
  • the number of times of bending of the sample belt in this detection of cutting is a numerical value obtained by counting once every time the sample belt rotates once and bends half a turn (180 °) at each of the driving pulley and the driven pulley.
  • the sample belt 1 was cut by bending less than 10,000 times. That is, the conductor core wire was confirmed to be cut at the pip portion and the tooth root portion, which is presumed to be due to stress concentration.
  • Sample belt 2 was cut by bending less than 2 to 5 million times. This is probably because the stress concentration was alleviated due to slippage between the ETFE insulator and the belt body, and the durability was improved as compared with the sample belt 1.
  • Sample belt 3 was cut by bending 8 to 15 million times. This is presumably because the stress acting on the conductor core wire was further relaxed by making the hardness of the urethane of the belt body softer than that of the sample belt 2.
  • the sample belt 4 was not cut even when bent up to 20 million times. This is probably because the bending fatigue resistance was improved because the conductor core wire was made of a copper alloy wire.
  • a load bearing test was performed on the multifunctional belt, and an attempt was made to design a high-strength core wire in which the rate of change in elongation of the sample belt was 0.2% or less with respect to the load generated on the sample belt.
  • the configuration of the sample belt used in the load bearing test is as follows.
  • the belt body is made of urethane resin, the belt width is 15 mm, and the distance between the belt markings is 100 mm.
  • the configuration of the high-strength core wire was a steel core wire of 7 ⁇ 3 ⁇ 0.08 mm, and four S-strand core wires and four Z-strand wires were alternately arranged in a width of 15 mm.
  • One of the following two types of conductor core wires was used, and seven conductor core wires and seven high-strength core wires were alternately arranged.
  • Conductor core wire 1 ETFE coated copper alloy core wire. Twisted strands of 28 strands with a diameter of 0.05mm.
  • Conductor core wire 2 ETFE-coated annealed copper core wire. 19 twisted strands of 0.08mm diameter strand.
  • the results of the load bearing test of the multifunction belt will be described.
  • the load control region was 700N to 20N
  • the elongation percentage of the sample belt B was 0.60 to 0.70%, as indicated by reference numeral F1.
  • the cutting of the conductor core wire 1 was detected in about 100,000 to 200,000 cycles, but in the sample belt B having the conductor core wire 2, the conductor core was detected in 7,000 to 350,000 cycles. Line 2 break was detected.
  • the load control region was 475N to 20N, the elongation percentage of the sample belt B was 0.40 to 0.50%, as indicated by reference numeral F2.
  • the elongation percentage of the sample belt B was 0.30 to 0.40%, as indicated by reference numeral F3.
  • the cutting of the conductor core wire 2 was detected in about 250,000 to 800,000 cycles.
  • the conductor core wire 1 was cut in 3 million cycles. Some cuts were detected, or some did not cut even after exceeding 15 million cycles.
  • the elongation percentage of the sample belt B was 0.10 to 0.20% as indicated by reference numeral F4.
  • the cutting of the conductor core wire 1 is not detected even if the sample belt B having the conductor core wire 1 exceeds 15 million cycles, and the cutting is detected in the sample belt B having the conductor core wire 2 exceeding 10 million cycles. There wasn't.
  • the belt elongation change rate in the load control region of the belt formed by alternately arranging a plurality of high-strength core wires and conductor core wires in the belt body made of elastomer is 0.2. It has been confirmed that designing a high-strength core wire of a multifunctional belt so as to be less than or equal to% is effective in improving durability under use conditions.

Abstract

A long belt body (70) comprises an elastomer. A plurality of high-strength core wires (71) are embedded in the belt body (70) so as to extend in the longitudinal direction of the belt body (70) and be arranged parallel to each other. Conductor core wires (72, 73) are embedded in the belt body (70) so as to extend in the longitudinal direction of the belt body (70), the high-strength core wires (71) and the conductor core wires (72, 73) being alternately arranged in the width direction of the belt body (70).

Description

多機能ベルトMultifunctional belt
 本発明は、例えば自動倉庫等において可動式ラックを移動させるために利用可能な多機能ベルトに関する。 The present invention relates to a multifunction belt that can be used to move a movable rack in, for example, an automatic warehouse.
 従来、自動倉庫等に設けられる可動式ラックを駆動するための構成として、可動式ラックに搭載された駆動モータと、可動式ラックの外部に設けられた電源とを接続する給電ケーブル等のケーブルを、ケーブルベアに挿通させたものが知られている(特許文献1)。ケーブルベアは、ケーブルを挿通させるための空間が形成された多数のコマ部材を屈曲可能に連結させて構成され、複数本のケーブルを収容可能であり、可動式ラックの移動に追従して変形し、ケーブルを保護する。 Conventionally, as a configuration for driving a movable rack provided in an automatic warehouse or the like, a cable such as a power supply cable for connecting a drive motor mounted on the movable rack and a power source provided outside the movable rack is used. In addition, the one inserted through the cable bear is known (Patent Document 1). The cable bearer is constructed by flexibly connecting a large number of top members formed with spaces for the insertion of cables, can accommodate multiple cables, and deforms following the movement of the movable rack. Protect the cable.
特開2011-241070号公報JP 2011-241070 A
 可動式ラックを動力伝達ベルトにより駆動する構成を採用することも可能である。しかし、可動式ラックへの給電・通信は、ケーブルベアに電線やケーブルを挿通させることが必要となり、ベルトおよびケーブルベアの双方を使用することによって、可動式ラックを駆動する装置が大きくなるという問題を生じる。 It is also possible to adopt a configuration in which the movable rack is driven by a power transmission belt. However, power supply / communication to the movable rack requires that the cable bearer be inserted with an electric wire or cable, and the use of both the belt and the cable bear increases the device for driving the movable rack. Produce.
 本発明は、ケーブルベア等の保護部材を用いることなく、可動式ラック等の可動装置を機械的に移動させ、かつ可動装置に給電・通信することができる多機能ベルトを提供することを目的としている。 It is an object of the present invention to provide a multifunction belt that can mechanically move a movable device such as a movable rack without using a protection member such as a cable bear, and can supply power to and communicate with the movable device. Yes.
 本発明に係る多機能ベルトは、エラストマーから成る長尺のベルト本体と、ベルト本体内に埋設され、ベルト本体の長手方向に延び、相互に平行に配列された複数の高強度心線と、ベルト本体に設けられ、ベルト本体の長手方向に延びる導電体とを備えることを特徴としている。 A multifunction belt according to the present invention includes a long belt body made of an elastomer, a plurality of high-strength core wires embedded in the belt body, extending in the longitudinal direction of the belt body, and arranged in parallel to each other, and a belt And a conductor provided in the main body and extending in the longitudinal direction of the belt main body.
 好ましくは、導電体はベルト本体内に埋設された複数の導体心線であり、高強度心線と導体心線はベルト本体の幅方向に交互に配列される。この場合、高強度心線と導体心線がベルト本体の横断面において、ベルト本体の表面に平行な直線に接するように配列されることが好ましい。また、高強度心線の間に複数の導体心線が設けられてもよい。さらに、ベルト本体の横断面において、両端に高強度心線が配置されてもよい。また、導体心線が絶縁体によって被覆されてもよい。 Preferably, the conductor is a plurality of conductor core wires embedded in the belt body, and the high-strength core wires and the conductor core wires are alternately arranged in the width direction of the belt body. In this case, it is preferable that the high-strength core wire and the conductor core wire are arranged so as to contact a straight line parallel to the surface of the belt body in the cross section of the belt body. A plurality of conductor core wires may be provided between the high strength core wires. Furthermore, high-strength cores may be disposed at both ends in the cross section of the belt body. Further, the conductor core wire may be covered with an insulator.
 導電体がベルト本体に埋設された導体心線であり、複数本の高強度心線が1本の導体心線の外周面を覆うように配設されてもよい。あるいは、導電体がベルト本体に埋設された導体心線であり、複数本の導体心線が1本の高強度心線の外周面を覆うように配設されてもよい。 The conductor may be a conductor core wire embedded in the belt body, and a plurality of high-strength core wires may be disposed so as to cover the outer peripheral surface of one conductor core wire. Alternatively, the conductor may be a conductor core wire embedded in the belt body, and a plurality of conductor core wires may be disposed so as to cover the outer peripheral surface of one high-strength core wire.
 導電体はフレキシブルプリント配線板に形成された配線であってもよく、この場合、フレキシブルプリント配線板はベルト本体の表面に貼付される。 The conductor may be a wiring formed on a flexible printed wiring board. In this case, the flexible printed wiring board is attached to the surface of the belt body.
 好ましくは、導電体はベルト本体に埋設された複数の導体心線であり、導体心線は高強度心線よりも低い導体抵抗値を有する。これにより高電力の給電が可能になる。導体心線は軟銅線または銅合金線を有することが好ましい。 Preferably, the conductor is a plurality of conductor core wires embedded in the belt body, and the conductor core wires have a conductor resistance value lower than that of the high-strength core wires. As a result, high power can be supplied. The conductor core wire preferably has an annealed copper wire or a copper alloy wire.
 また、好ましくは、導体心線はベルト本体のエラストマーに接着しない被膜材により被覆される。この構成によれば、多機能ベルトが屈曲しても、ベルト本体のエラストマーと導体心線の間に相対的な位置ずれが生じるので、導体心線が損傷し難くなり、多機能ベルトの耐久性が向上する。この場合、被膜材はベルト本体のエラストマーよりも融点が高い材質から成ることが好ましい。被膜材は例えばフッ素樹脂から成る。 Also preferably, the conductor core wire is covered with a coating material that does not adhere to the elastomer of the belt body. According to this configuration, even if the multifunction belt is bent, a relative displacement occurs between the elastomer of the belt body and the conductor core wire, so that the conductor core wire is hardly damaged, and the durability of the multifunction belt is improved. Will improve. In this case, the coating material is preferably made of a material having a melting point higher than that of the belt body elastomer. The coating material is made of, for example, a fluororesin.
 導体心線は例えば、単線、撚線(集合撚り、ロープ撚り)、シールド線、ケーブル、およびシールド付きケーブルのいずれかの構成を有する。より好ましくは、ベルト本体のエラストマーには導電材が付加される。これによれば、導体心線によって複雑な信号通信が可能になり、また信号通信におけるノイズ対策が施されることとなる。 The conductor core wire has, for example, a single wire, a twisted wire (collective twist, a rope twist), a shielded wire, a cable, and a shielded cable. More preferably, a conductive material is added to the elastomer of the belt body. According to this, complicated signal communication is enabled by the conductor core wire, and noise countermeasures in signal communication are taken.
 多機能ベルトの高強度心線は、エラストマーから成るベルト本体内に高強度心線と導体心線を複数本ずつ交互に配置して成るベルトの荷重制御領域におけるベルト伸び変化率が0.2%以下になるようにして設計されることが好ましい。 The high-strength core of the multi-function belt has a belt elongation change rate of 0.2% in the load control region of the belt in which a plurality of high-strength cores and conductor cores are alternately arranged in the belt body made of elastomer. It is preferable that the design is as follows.
 ベルト本体のエラストマーの硬さは例えばA80~A95の範囲である。 The hardness of the elastomer of the belt body is, for example, in the range of A80 to A95.
 ベルト本体は例えば歯付きベルト、または平ベルトとして成形される。 The belt body is formed, for example, as a toothed belt or a flat belt.
 本発明によれば、ケーブルベア等の保護部材を用いることなく、可動式ラック等の可動装置を機械的に移動させ、かつ可動装置に給電・通信することができる多機能ベルトを得ることができる。 According to the present invention, it is possible to obtain a multifunction belt capable of mechanically moving a movable device such as a movable rack and feeding and communicating with the movable device without using a protective member such as a cable bear. .
本発明の第1実施形態の多機能ベルトが使用される自動倉庫の概略的な構成を示す図である。It is a figure which shows the schematic structure of the automatic warehouse where the multifunction belt of 1st Embodiment of this invention is used. ベルト本体の両端から突出する導体心線を示す斜視図である。It is a perspective view which shows the conductor core wire which protrudes from the both ends of a belt main body. 導体心線を含む電気回路を示す図である。It is a figure which shows the electric circuit containing a conductor core wire. 第1実施形態に係る多機能ベルトの横断面図である。It is a cross-sectional view of the multifunction belt according to the first embodiment. 導体心線の拡大断面図である。It is an expanded sectional view of a conductor core wire. 第2実施形態に係る多機能ベルトの横断面図である。It is a cross-sectional view of a multifunction belt according to the second embodiment. ハイブリッド心線の断面図である。It is sectional drawing of a hybrid core wire. 第3実施形態に係る多機能ベルトの横断面図である。It is a cross-sectional view of a multifunction belt according to a third embodiment. 導体心線の第1の例を示す断面図である。It is sectional drawing which shows the 1st example of a conductor core wire. 導体心線の第2の例を示す断面図である。It is sectional drawing which shows the 2nd example of a conductor core wire. 導体心線の第3の例を示す断面図である。It is sectional drawing which shows the 3rd example of a conductor core wire. 導体心線の第4の例を示す断面図である。It is sectional drawing which shows the 4th example of a conductor core wire. 導体心線の第5の例を示す断面図である。It is sectional drawing which shows the 5th example of a conductor core wire. 多機能ベルトの耐荷重試験の方法を示す図である。It is a figure which shows the method of the load bearing test of a multifunction belt. 多機能ベルトの耐荷重試験の結果を示す図である。It is a figure which shows the result of the load bearing test of a multifunction belt.
 50 多機能ベルト
 70 ベルト本体
 71 高強度心線
 72、73 導体心線
50 Multifunctional belt 70 Belt body 71 High- strength core wire 72, 73 Conductor core wire
 以下、図示された実施形態を参照して、本発明の多機能ベルトを説明する。図1は本発明の第1実施形態の多機能ベルト50の使用例である自動倉庫の概略的な構成を示している。 Hereinafter, the multifunction belt of the present invention will be described with reference to the illustrated embodiment. FIG. 1 shows a schematic configuration of an automatic warehouse as an example of use of the multifunction belt 50 according to the first embodiment of the present invention.
 可動式ラック51は多機能ベルト50によって昇降する。可動式ラック51は、1階から5階まで設けられたステージS1~S5において停止可能であり、各ステージS1~S5との間においてコンテナCの授受を行う。可動式ラック51には電磁石52が設けられ、各ステージS1~S5の床の端部には、電磁石52に吸着する連結部材53が設けられる。すなわち可動式ラック51は各ステージS1~S5において、電磁石52と連結部材53が吸着することにより固定可能である。 The movable rack 51 is moved up and down by the multifunction belt 50. The movable rack 51 can be stopped at the stages S1 to S5 provided from the first floor to the fifth floor, and the container C is exchanged with each of the stages S1 to S5. The movable rack 51 is provided with an electromagnet 52, and a connecting member 53 that is attracted to the electromagnet 52 is provided at the end of the floor of each of the stages S1 to S5. That is, the movable rack 51 can be fixed by attracting the electromagnet 52 and the connecting member 53 in each of the stages S1 to S5.
 各ステージS1~S5には、コンテナCを移動させるためのローラコンベヤ54が設けられ、またローラコンベヤ54を回転駆動するためのモータ55が設けられる。同様に、可動式ラック51にも、コンテナCを移動させるためのローラコンベヤ56とモータ57が設けられる。コンテナCの外壁面には、コンテナCを識別するためにバーコード58が貼付されており、可動式ラック51にはバーコード58を読み取るためのバーコードリーダ59が設けられる。また、可動式ラック51のローラコンベヤ56の一部には、ローラコンベヤ56に載置されたコンテナCの重量を計測するために歪みゲージ式の重量計61が設けられる。 Each stage S1 to S5 is provided with a roller conveyor 54 for moving the container C, and a motor 55 for rotating the roller conveyor 54. Similarly, the movable rack 51 is also provided with a roller conveyor 56 and a motor 57 for moving the container C. A barcode 58 is attached to the outer wall surface of the container C to identify the container C, and a barcode reader 59 for reading the barcode 58 is provided on the movable rack 51. In addition, a strain gauge type weigh scale 61 is provided in part of the roller conveyor 56 of the movable rack 51 in order to measure the weight of the container C placed on the roller conveyor 56.
 可動式ラック51はクランプ62によって多機能ベルト50の一端に連結され、多機能ベルト50の他端は自動倉庫の床面に固定されたクランプ63に連結される。多機能ベルト50は、原動プーリ64と定滑車65、66と動滑車67、68に掛け回される。多機能ベルト50は歯付きベルトである。すなわち原動プーリ64と定滑車65、66は歯付きプーリであり、動滑車67、68は平プーリである。 The movable rack 51 is connected to one end of the multi-function belt 50 by a clamp 62, and the other end of the multi-function belt 50 is connected to a clamp 63 fixed to the floor surface of the automatic warehouse. The multi-function belt 50 is wound around a driving pulley 64, fixed pulleys 65 and 66, and moving pulleys 67 and 68. The multifunction belt 50 is a toothed belt. That is, the driving pulley 64 and the constant pulleys 65 and 66 are toothed pulleys, and the moving pulleys 67 and 68 are flat pulleys.
 多機能ベルト50には、後述するように高強度心線71と導体心線72、73(図2、3)が埋設され、導体心線72、73は、クランプ63側の端部から突出して制御ユニット74に接続される。制御ユニット74は電源75に接続され、後述するように、導体心線72、73を介して給電と信号通信を行う。また制御ユニット74は原動プーリ64を駆動するためのモータ76にも接続され、モータ76に対して給電・制御する。 As will be described later, a high-strength core wire 71 and conductor core wires 72 and 73 (FIGS. 2 and 3) are embedded in the multifunction belt 50, and the conductor core wires 72 and 73 protrude from the end portion on the clamp 63 side. Connected to the control unit 74. The control unit 74 is connected to a power source 75 and performs power feeding and signal communication via conductor core wires 72 and 73 as will be described later. The control unit 74 is also connected to a motor 76 for driving the driving pulley 64, and supplies and controls the motor 76.
 多機能ベルト50のベルト本体70の素材はエラストマーであり、図2に示すように、その両端は除去されて電力用導体心線72と信号用導体心線73が露出している。高強度心線71は1本おきに設けられる。すなわち隣り合う2本の高強度心線71の間には電力用導体心線72または信号用導体心線73が設けられる。 The material of the belt main body 70 of the multi-function belt 50 is an elastomer, and as shown in FIG. 2, both ends thereof are removed to expose the power conductor core wire 72 and the signal conductor core wire 73. Every other high-strength core wire 71 is provided. That is, the power conductor core wire 72 or the signal conductor core wire 73 is provided between two adjacent high-strength core wires 71.
 図3に示すように電力用導体心線72は電磁石52とモータ55、57に接続され、信号用導体心線73はバーコードリーダ59と重量計61に接続される。また全ての導体心線72、73は制御ユニット74を介して電源75に接続される。すなわちモータ55、57へは電力用導体心線72を介して給電され、これによりコンテナCが各ステージS1~S5と可動式ラック51の間で受け渡され、またコンベヤ54、56上において固定される。電磁石52への給電も電力用導体心線72を介して行われ、可動式ラック51は各ステージS1~S5の高さ位置において固定される。バーコードリーダ59への給電と信号通信は信号用導体心線73を介して行われ、制御ユニット74によりコンテナCが識別される。重量計61に対する給電と信号通信も信号用導体心線73によって行われ、制御ユニット74によりコンテナCの重量が測定される。 3, the power conductor core wire 72 is connected to the electromagnet 52 and the motors 55 and 57, and the signal conductor core wire 73 is connected to the bar code reader 59 and the weigh scale 61. All the conductor core wires 72 and 73 are connected to the power source 75 via the control unit 74. That is, power is supplied to the motors 55 and 57 via the power conductor core wire 72, whereby the container C is delivered between the stages S1 to S5 and the movable rack 51, and is fixed on the conveyors 54 and 56. The Power supply to the electromagnet 52 is also performed through the power conductor core wire 72, and the movable rack 51 is fixed at the height positions of the stages S1 to S5. Power supply to the barcode reader 59 and signal communication are performed via the signal conductor core wire 73, and the container C is identified by the control unit 74. Power feeding and signal communication for the weighing scale 61 are also performed by the signal conductor core wire 73, and the weight of the container C is measured by the control unit 74.
 図4は第1実施形態に係る多機能ベルト50の横断面図である。多機能ベルト50は、エラストマー(熱可塑性樹脂)から成る長尺のベルト本体70を有する。ベルト本体70を構成する熱可塑性エラストマーとしては、ウレタンエラストマー、ポリエステルエラストマー、ポリオレフィンエラストマー、シリコンエラストマー、ポリアミドエラストマー、ポリスチレンエラストマー等が利用可能であるが、ウレタンエラストマーとポリエステルエラストマーが適材である。 FIG. 4 is a cross-sectional view of the multifunction belt 50 according to the first embodiment. The multifunction belt 50 has a long belt body 70 made of an elastomer (thermoplastic resin). As the thermoplastic elastomer constituting the belt body 70, urethane elastomer, polyester elastomer, polyolefin elastomer, silicon elastomer, polyamide elastomer, polystyrene elastomer, and the like can be used. Urethane elastomer and polyester elastomer are suitable materials.
 ベルト本体70内であってベルト歯77の底面78に近接した部位には、高強度心線71と導体心線72、73が埋設される。なお、多機能ベルト50の製造上の理由により、高強度心線71と導体心線72、73のそれぞれにおいて、一部は底面78において露出する。すなわち、この明細書において「埋設」とは、高強度心線71と導体心線72、73がベルト本体70内に完全に埋め込まれるという意味ではなく、部分的にベルト本体70から露出する場合も含む。 A high-strength core wire 71 and conductor core wires 72 and 73 are embedded in a portion of the belt body 70 that is close to the bottom surface 78 of the belt teeth 77. For reasons of manufacturing the multifunction belt 50, a part of each of the high-strength core wire 71 and the conductor core wires 72 and 73 is exposed at the bottom surface 78. That is, in this specification, “embedding” does not mean that the high-strength core wire 71 and the conductor core wires 72 and 73 are completely embedded in the belt body 70, but may be partially exposed from the belt body 70. Including.
 高強度心線71は例えばスチール線であるが、アラミド心線、カーボン心線、PBO心線、高強度ガラス心線等の高強度・高弾性心線が利用可能である。導体心線72、73は例えば軟銅線あるいは銅合金線である。高強度心線71と導体心線72、73は共に、複数本設けられ、相互に平行に配列される。高強度心線71と導体心線72、73はベルト本体70の幅方向に、等間隔をあけて交互に配列され、隣り合う2本の高強度心線71の間に導体心線72または73が配置される。ベルト本体70の横断面における両端には高強度心線71が配置される。 The high-strength core wire 71 is, for example, a steel wire, but high-strength and high-elasticity core wires such as an aramid core wire, a carbon core wire, a PBO core wire, and a high-strength glass core wire can be used. The conductor core wires 72 and 73 are, for example, annealed copper wires or copper alloy wires. A plurality of high-strength core wires 71 and conductor core wires 72 and 73 are both provided and arranged in parallel to each other. The high-strength core wires 71 and the conductor core wires 72 and 73 are alternately arranged at equal intervals in the width direction of the belt body 70, and the conductor core wires 72 or 73 are disposed between two adjacent high-strength core wires 71. Is placed. High-strength core wires 71 are disposed at both ends in the cross section of the belt body 70.
 高強度心線71と導体心線72、73のベルト歯77の底面78側の面は共通の面上にあり、つまりベルト本体70の横断面において、高強度心線71と導体心線72、73は、ベルト本体70の底面(表面)78に平行な直線に接するように配列される。高強度心線71と導体心線72、73は、ベルト本体70の長手方向に延びてベルト本体70の両端に達している。ベルト本体70の両端は熱可塑性樹脂が除去され、導体心線72、73が露出して、クランプ62、63に設けられた電気部品に接続される。高強度心線71はベルト本体70の両端面から突出していない。 The surface on the bottom surface 78 side of the belt teeth 77 of the high strength core wire 71 and the conductor core wires 72 and 73 is on a common surface, that is, in the cross section of the belt body 70, the high strength core wire 71 and the conductor core wires 72, 73 are arranged so as to be in contact with a straight line parallel to the bottom surface (surface) 78 of the belt main body 70. The high-strength core wire 71 and the conductor core wires 72 and 73 extend in the longitudinal direction of the belt body 70 and reach both ends of the belt body 70. The thermoplastic resin is removed at both ends of the belt main body 70, and the conductor core wires 72 and 73 are exposed and connected to electrical components provided on the clamps 62 and 63. The high-strength core wire 71 does not protrude from both end faces of the belt body 70.
 導体心線72、73の素材、外径および本数は、ローラコンベヤ54の駆動用モータ55やローラコンベヤ56の駆動用モータ57に、制御ユニット74を介して供給される電力等を考慮し、所定の電気的特性(導体抵抗値等)を有するように選定される。 The material, outer diameter and number of the conductor core wires 72 and 73 are determined in consideration of the power supplied to the driving motor 55 of the roller conveyor 54 and the driving motor 57 of the roller conveyor 56 via the control unit 74, etc. It is selected so as to have the following electrical characteristics (conductor resistance value, etc.).
 図5は導体心線72、73の拡大断面図である。この導体心線72、73の導体21は後述するように、多数の素線を一定方向に撚ることにより成形され、その外周面は絶縁体層22により被覆されている(図9参照)。すなわち導体心線72、73は集合撚りと呼ばれる構成を有する。導体心線72、73は、絶縁体層22により保護されることにより絶縁性が向上するが、絶縁体層22は省略可能である。 FIG. 5 is an enlarged cross-sectional view of the conductor core wires 72 and 73. As will be described later, the conductors 21 of the conductor core wires 72 and 73 are formed by twisting a large number of strands in a certain direction, and the outer peripheral surface thereof is covered with the insulator layer 22 (see FIG. 9). That is, the conductor core wires 72 and 73 have a configuration called aggregate twist. The conductor core wires 72 and 73 are protected by the insulator layer 22 to improve insulation, but the insulator layer 22 can be omitted.
 本実施形態によれば、可動式ラック51を機械的に昇降駆動するための動力伝達機能と、コンテナCを移動させるためのローラコンベヤを回転駆動するためのモータ等への電力供給機能とを多機能ベルト50に持たせることができる。すなわち給電ケーブルを保護するためのケーブルベア等の保護部材は不要であり、可動式ラック51等の可動装置を機械的に移動させ、かつ可動装置に給電・通信するための構造を簡単かつ小型化することができる。 According to this embodiment, a power transmission function for mechanically driving the movable rack 51 up and down and a power supply function to a motor or the like for rotationally driving a roller conveyor for moving the container C are provided. The functional belt 50 can be provided. That is, a protective member such as a cable bear for protecting the power feeding cable is not required, and a movable device such as the movable rack 51 is mechanically moved, and a structure for feeding and communicating with the movable device is simplified and reduced in size. can do.
 図6は第2実施形態に係る多機能ベルト50の横断面図である。第1実施形態との違いは、高強度心線と導体心線を組み合わせてなるハイブリッド心線31がベルト本体70に埋設されていることである。ハイブリッド心線31は、図7に示されるように撚線(集合撚り)の導体心線32の外周面が絶縁体層33により被覆され、さらに複数本の撚線(集合撚り)の高強度心線34により覆われている。ハイブリッド心線31は、ベルト本体70の幅方向に等間隔毎に配置される。 FIG. 6 is a cross-sectional view of the multifunction belt 50 according to the second embodiment. A difference from the first embodiment is that a hybrid core wire 31 formed by combining a high-strength core wire and a conductor core wire is embedded in the belt body 70. As shown in FIG. 7, the hybrid core wire 31 is formed by covering the outer peripheral surface of a stranded wire (collective stranded) conductor core wire 32 with an insulator layer 33, and further providing a high-strength core of a plurality of stranded wires (collective stranded). Covered by line 34. The hybrid core wires 31 are arranged at equal intervals in the width direction of the belt body 70.
 第2実施形態によれば、第1実施形態と同様な効果が得られるが、ハイブリッド心線31がベルト本体70の幅方向に均一に分布されるので、第1実施形態よりも多機能ベルト70の強度性能を向上させることができる。 According to the second embodiment, the same effect as that of the first embodiment can be obtained. However, since the hybrid core wires 31 are uniformly distributed in the width direction of the belt main body 70, the multifunction belt 70 is more than the first embodiment. Strength performance can be improved.
 なおハイブリッド心線31の構成として、中心側に高強度心線を配置し、複数本の導体心線を高強度心線の外周面を覆うように設けてもよい。 As a configuration of the hybrid core wire 31, a high-strength core wire may be disposed on the center side, and a plurality of conductor core wires may be provided so as to cover the outer peripheral surface of the high-strength core wire.
 図8は第3実施形態に係る多機能ベルト50の横断面図である。第1および第2実施形態との違いは、導体心線がベルト本体70に埋設されておらず、導電体を有するフレキシブルプリント配線板41がベルト本体70の背面(表面)80に貼付されている点である。すなわちフレキシブルプリント配線板41に形成された配線42はベルト本体70の長手方向に延びる導電体であり、第1および第2実施形態における導体心線72、73と同様に、多機能ベルト50の電気的な作用を果たすが、フレキシブルプリント配線板41はベルト本体70の背面80に貼付されているので、フレキシブルプリント配線板41に作用する引張力と圧縮力の変化は、図2に示す第1実施形態よりも激しく、フレキシブルプリント配線板41には、その変化に追随するだけの柔軟性が必要である。 FIG. 8 is a cross-sectional view of the multifunction belt 50 according to the third embodiment. The difference from the first and second embodiments is that the conductor core wire is not embedded in the belt main body 70, and the flexible printed wiring board 41 having a conductor is attached to the back surface (surface) 80 of the belt main body 70. Is a point. That is, the wiring 42 formed on the flexible printed wiring board 41 is a conductor extending in the longitudinal direction of the belt main body 70, and the electrical power of the multifunction belt 50 is the same as the conductor core wires 72 and 73 in the first and second embodiments. Although the flexible printed wiring board 41 is affixed to the back surface 80 of the belt main body 70, the change in the tensile force and the compressive force acting on the flexible printed wiring board 41 is shown in FIG. More severely than the form, the flexible printed wiring board 41 needs to be flexible enough to follow the change.
 第1~第3実施形態の多機能ベルト50は、ベルト本体70が歯付きベルトとして成形されていたが、本発明は歯付きベルトに限定されるものではなく、ベルト本体が平ベルトとして成形されるものにも適用できる。 In the multifunction belt 50 of the first to third embodiments, the belt body 70 is formed as a toothed belt, but the present invention is not limited to the toothed belt, and the belt body is formed as a flat belt. It can also be applied to things.
 図9~13は導体心線の例を示している。
 図9は第1実施形態において用いられる導体心線72、73の第1の例を示す断面図である。この例は、導体81の外周面を絶縁体82で被覆した絶縁被膜の撚線(集合撚り)であり、導体81は、表1に示すような軟銅線あるいは銅合金線の多数の素線を一定方向に撚ることにより成形される。すなわち、軟銅線の場合、例えば直径0.08mmの素線を19本撚り合わせることによって直径0.40mmの導体心線に成形される。銅合金線の場合、例えば直径0.05mmの素線を28本または44本撚り合わせることによって直径0.31mmまたは0.39mmの導体心線に成形される。この軟銅線と銅合金線のJISC3005に基づく導体抵抗値は表1に示すように、例えば直径0.4mmの場合、スチール心線と比べて約10分の1である。したがって軟銅線または銅合金線を用いて成形した導体心線によれば、高電力の給電が可能であり、特に電力用導体心線72において有利である。
9 to 13 show examples of conductor core wires.
FIG. 9 is a cross-sectional view showing a first example of the conductor core wires 72 and 73 used in the first embodiment. This example is a twisted wire (aggregate twist) of an insulating film in which the outer peripheral surface of a conductor 81 is covered with an insulator 82. The conductor 81 is composed of a large number of soft copper wires or copper alloy wires as shown in Table 1. Molded by twisting in a certain direction. That is, in the case of an annealed copper wire, for example, 19 strands having a diameter of 0.08 mm are twisted to form a conductor core wire having a diameter of 0.40 mm. In the case of a copper alloy wire, for example, 28 or 44 strands having a diameter of 0.05 mm are twisted to form a conductor core wire having a diameter of 0.31 mm or 0.39 mm. As shown in Table 1, the conductor resistance value of the annealed copper wire and the copper alloy wire based on JISC3005 is about 1/10 of the steel core wire when the diameter is 0.4 mm, for example. Therefore, according to the conductor core wire formed using the annealed copper wire or the copper alloy wire, it is possible to supply high power, and particularly advantageous in the conductor core wire 72 for power.
 なお表1において、スチール心線は軟銅線および銅合金線との導体抵抗値の比較のために示している。スチール心線の構成としては、直径0.08mmの素線を3本撚ったストランドを3本合わせて撚る撚線と、直径0.06mmの素線を3本撚ったストランドを7本合わせて撚る撚線と、直径0.08mmの素線を3本撚ったストランドを7本合わせて撚る撚線を示している。すなわち、表1に示すスチール心線は全て撚線(ロープ撚り)により形成される。 In Table 1, the steel core wire is shown for comparison of the conductor resistance value between the annealed copper wire and the copper alloy wire. The steel core wire is composed of three strands of three strands of 0.08 mm diameter twisted together and seven strands of strands of three strands of 0.06 mm diameter twisted. The figure shows a twisted wire twisted by combining seven strands twisted together and three strands of three strands having a diameter of 0.08 mm. That is, all the steel core wires shown in Table 1 are formed by twisted wires (rope twists).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 絶縁体82は、ベルト成型時にベルト本体70のエラストマーであるウレタン樹脂に溶融せず、かつ、このウレタン樹脂に接着しないフッ素樹脂(ETFE等)である。すなわち被膜材である絶縁体82は、ウレタン樹脂よりも融点が高い材質から成る。このような絶縁体82を用いることにより、導体心線72、73がベルト本体70から露出した状態であっても、これらの導体心線72、73が短絡することはない。また、絶縁体82がベルト本体70に接着しないので、導体心線72、73はベルト本体70に対して相対的に変位可能である。したがって多機能ベルト50が原動プーリ64、定滑車65、66、動滑車67、68によって屈曲を繰り返しても、導体心線72、73に作用する荷重を抑えることができ、多機能ベルト50の耐久性が向上する。 The insulator 82 is a fluororesin (ETFE or the like) that does not melt into the urethane resin that is an elastomer of the belt main body 70 and does not adhere to the urethane resin during belt molding. That is, the insulator 82 which is a coating material is made of a material having a melting point higher than that of the urethane resin. By using such an insulator 82, even if the conductor core wires 72 and 73 are exposed from the belt body 70, the conductor core wires 72 and 73 are not short-circuited. Further, since the insulator 82 does not adhere to the belt main body 70, the conductor core wires 72 and 73 can be displaced relative to the belt main body 70. Therefore, even if the multifunction belt 50 is repeatedly bent by the driving pulley 64, the fixed pulleys 65 and 66, and the moving pulleys 67 and 68, the load acting on the conductor core wires 72 and 73 can be suppressed. Improves.
 信号用導体心線73では、伝送される信号にノイズが含まれないようにするためノイズ対策が必要である。そこでベルト本体70のエラストマーにはカーボン等の導電材が付加され、ベルト本体70は導電性を付与されている。したがって本実施形態の多機能ベルト50によれば、バーコードリーダ59の読取りや重量計61の測定等において誤差が生じることはない。 In the signal conductor core wire 73, noise countermeasures are necessary so that the transmitted signal does not include noise. Therefore, a conductive material such as carbon is added to the elastomer of the belt main body 70, and the belt main body 70 is given conductivity. Therefore, according to the multifunction belt 50 of the present embodiment, no error occurs in reading of the bar code reader 59, measurement of the weighing scale 61, and the like.
 なお絶縁体82の材料としてはフッ素樹脂が適材であるが、その他の利用可能な材料として、シリコンゴムやポリイミド樹脂が挙げられる。またフッ素樹脂としてはETFE以外にPTFE、PFA、FEP、PVDF等が利用可能である。 Note that fluororesin is a suitable material for the insulator 82, but other usable materials include silicon rubber and polyimide resin. In addition to ETFE, PTFE, PFA, FEP, PVDF, etc. can be used as the fluororesin.
 図10は導体心線72、73の第2の例であるロープ撚りの撚線を示す断面図である。この例における導体81は、例えば直径0.08mmの素線を7本撚ったストランド83を7本合わせて撚る撚線(ロープ撚り)を有し、導体81の外周面を絶縁体82で被覆している。 FIG. 10 is a cross-sectional view showing a rope twisted stranded wire as a second example of the conductor core wires 72 and 73. The conductor 81 in this example has, for example, a stranded wire (rope stranded) in which seven strands 83 formed by twisting seven strands having a diameter of 0.08 mm are twisted, and the outer surface of the conductor 81 is an insulator 82. It is covered.
 図11は導体心線72、73の第3の例であるシールド線を示す断面図である。この例は、表1に示すような軟銅線あるいは銅合金線から成る導体81の外周面を絶縁体82で被覆し、さらに絶縁体82の外側を金属のシールド84で覆い、その外側に絶縁材料のシース85で被覆した構成を有する。すなわち導体81は絶縁体82とシース85によって被覆され、シース85はベルト本体70のエラストマーより融点が高く、ベルト本体のエラストマーに接着しない。このようなシールド線を用いることにより、信号通信におけるノイズ対策がより完全になる。 FIG. 11 is a cross-sectional view showing a shield wire as a third example of the conductor core wires 72 and 73. In this example, the outer peripheral surface of a conductor 81 made of an annealed copper wire or a copper alloy wire as shown in Table 1 is covered with an insulator 82, the outside of the insulator 82 is covered with a metal shield 84, and the outside is covered with an insulating material. The sheath 85 is covered. That is, the conductor 81 is covered with an insulator 82 and a sheath 85, and the sheath 85 has a melting point higher than that of the elastomer of the belt body 70 and does not adhere to the elastomer of the belt body. By using such a shield wire, noise countermeasures in signal communication become more complete.
 図12は導体心線72、73の第3の例であるケーブルを示す断面図である。この例は、図9と同じ構成を有する撚線(集合撚り)86を3本撚り合わせ、その外側を紙テープ87で覆うとともに、さらにその外周面を絶縁材料のシース88で覆った構成を有する。このようなケーブルによっても、シールド線と同様に、ノイズ対策を改善できる。 FIG. 12 is a cross-sectional view showing a cable as a third example of the conductor core wires 72 and 73. This example has a configuration in which three stranded wires (aggregate twist) 86 having the same configuration as in FIG. 9 are twisted together, and the outside is covered with a paper tape 87 and the outer peripheral surface is covered with a sheath 88 of an insulating material. Even with such a cable, noise countermeasures can be improved in the same manner as shielded wires.
 図13は導体心線72、73の第4の例であるケーブルを示す断面図である。この例は、図9と同じ構成を有する撚線(集合撚り)86を3本撚り合わせ、その外側を紙テープ87で覆うとともに、その外側を金属のシールド84で覆い、さらにその外周面を絶縁材料のシース88で覆った構成を有する。このようなケーブルによっても、シールド線と同様に、ノイズ対策を改善できる。 FIG. 13 is a cross-sectional view showing a cable that is a fourth example of the conductor core wires 72 and 73. In this example, three stranded wires (collective twist) 86 having the same configuration as in FIG. 9 are twisted together, and the outside is covered with a paper tape 87, the outside is covered with a metal shield 84, and the outer peripheral surface is further covered with an insulating material. The sheath 88 is covered. Even with such a cable, noise countermeasures can be improved in the same manner as shielded wires.
 以上のように第1~第3実施形態の多機能ベルト50は、導電体としての導体心線72、73あるいは配線42を有するので、多機能ベルト50を介して、種々の駆動機構に給電し、また制御装置に電気信号を伝送することができる。また、ケーブルベア等の保護部材を省略することができ、多機能ベルト50が設けられる装置の小型化を図ることができる。 As described above, the multifunction belt 50 according to the first to third embodiments has the conductor core wires 72 and 73 or the wirings 42 as conductors, and therefore supplies power to various drive mechanisms via the multifunction belt 50. In addition, an electric signal can be transmitted to the control device. Further, a protective member such as a cable bear can be omitted, and the device provided with the multifunction belt 50 can be downsized.
 導体心線72、73が軟銅線または銅合金線を用いて成形されるので、高電力の給電が可能である。したがって、特に可動式ラック51に搭載されるモータ57の高出力化や高速反応が可能になり、倉庫(第1~第5ステージS1~S5)内へのコンテナCの出し入れに要する時間を短縮することができる。また、可動式ラック51の電磁石52として高出力のものを用いることができるので、可動式ラック51の固定、コンテナCの固定、電磁力を利用したコンテナCの搬送が可能になる。さらに、照明具やドアの開閉、アーム等の可動等、多彩な機能を採用することができる。 Since the conductor core wires 72 and 73 are formed using an annealed copper wire or a copper alloy wire, high power feeding is possible. Therefore, in particular, the motor 57 mounted on the movable rack 51 can have a high output and a high-speed reaction, and the time required for putting the container C into and out of the warehouse (first to fifth stages S1 to S5) can be shortened. be able to. In addition, since the high-power electromagnet 52 of the movable rack 51 can be used, the movable rack 51 can be fixed, the container C can be fixed, and the container C can be conveyed using electromagnetic force. Furthermore, various functions such as opening and closing of lighting fixtures and doors, and movement of arms can be employed.
 さらに、複雑な信号通信が可能になることにより、可動式ラック51の動作の制御を微細化でき、またバーコードリーダ59の読取りや重量計61の測定の精度を向上させることができる。また導体心線72、73が絶縁体によって被覆されているので、短絡、感電、火災等の事故の発生を防ぎ、安全性を向上させるとともに、機器保全を改善することができる。また導体心線72、73の端末加工における絶縁作業を簡略することができる。 Furthermore, since complex signal communication becomes possible, the control of the operation of the movable rack 51 can be miniaturized, and the reading accuracy of the barcode reader 59 and the measurement accuracy of the weighing scale 61 can be improved. Moreover, since the conductor core wires 72 and 73 are covered with an insulator, it is possible to prevent the occurrence of accidents such as short circuit, electric shock, fire, etc., improve safety, and improve equipment maintenance. Moreover, the insulation work in the terminal processing of the conductor core wires 72 and 73 can be simplified.
(実施例)
 第1実施形態の多機能ベルト50と基本的に同じ構成を有する無端状の多機能ベルトを作成し、一対のプーリに取付けて耐久性試験を行った。原動プーリおよび従動プーリは、歯数が18で、歯ピッチが5mmの台形歯形を有する歯付きプーリである。原動プーリの回転数は4000rpmに定めた。サンプルベルトとしては、歯ピッチが5mmの台形歯を有する歯付きベルトで、周長が600mm、幅が15mmであり、ジョイント加工により無端状に成形されたものを用い、取付け張力は100Nに定めた。
(Example)
An endless multi-functional belt having basically the same configuration as the multi-functional belt 50 of the first embodiment was created and attached to a pair of pulleys to perform a durability test. The driving pulley and the driven pulley are toothed pulleys having a trapezoidal tooth profile with 18 teeth and a tooth pitch of 5 mm. The rotational speed of the driving pulley was set to 4000 rpm. The sample belt is a toothed belt having trapezoidal teeth with a tooth pitch of 5 mm, a circumferential length of 600 mm, a width of 15 mm, and an endless shape formed by joint processing. The mounting tension is set to 100 N. .
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、サンプルベルト1において導体心線は、銅合金線から成り、直径0.05mmの素線を28本撚り合わせて成形されたもので、その外周面は絶縁体によって被覆されず、ベルト本体のウレタンとの接着のためにイソシアネート接着処理されている。すなわちサンプルベルト1は本発明には含まれず、比較例である。 As shown in Table 2, in the sample belt 1, the conductor core wire is made of a copper alloy wire and formed by twisting 28 strands having a diameter of 0.05 mm, and the outer peripheral surface thereof is covered with an insulator. First, an isocyanate adhesion treatment is performed for adhesion of the belt body with urethane. That is, the sample belt 1 is not included in the present invention and is a comparative example.
 サンプルベルト2の導体心線は軟銅線から成り、直径0.08mmの素線を19本撚り合わせて成形され、その外周面はETFEから成る絶縁体によって被覆されている。サンプルベルト3の導体心線はサンプルベルト2と同じであるが、ベルト本体の材料であるウレタン樹脂がサンプルベルト2よりも低硬度のものである。サンプルベルト4の導体心線は銅合金線から成り、直径0.05mmの素線を28本撚り合わせて成形され、その外周面はETFEから成る絶縁体によって被覆されており、ベルト本体のウレタン樹脂はサンプルベルト3と同じである。すなわちサンプルベルト2、3、4は本発明の実施例である。なおサンプルベルト2~4において、ベルト本体のエラストマーは、JISK6253規格に準拠した試験により測定された硬さがA80~A95の範囲に含まれる。 The conductor core wire of the sample belt 2 is made of annealed copper wire, formed by twisting 19 strands having a diameter of 0.08 mm, and the outer peripheral surface thereof is covered with an insulator made of ETFE. The conductor core wire of the sample belt 3 is the same as that of the sample belt 2, but the urethane resin, which is the material of the belt body, has a lower hardness than the sample belt 2. The conductor of the sample belt 4 is made of a copper alloy wire, formed by twisting 28 strands having a diameter of 0.05 mm, and its outer peripheral surface is covered with an insulator made of ETFE. Is the same as the sample belt 3. That is, the sample belts 2, 3, and 4 are embodiments of the present invention. In the sample belts 2 to 4, the belt body elastomer has a hardness measured by a test based on the JISK6253 standard in the range of A80 to A95.
 耐久性試験では、導体心線に電流を流し、テスターにより導体心線の切断の有無を検出した。この切断の検出におけるサンプルベルトの屈曲回数は、サンプルベルトが1回転して、原動プーリと従動プーリにおいてそれぞれ半周(180°)ずつ屈曲する毎に1回カウントして得られる数値である。 In the durability test, an electric current was passed through the conductor core wire, and the presence or absence of cutting of the conductor core wire was detected by a tester. The number of times of bending of the sample belt in this detection of cutting is a numerical value obtained by counting once every time the sample belt rotates once and bends half a turn (180 °) at each of the driving pulley and the driven pulley.
 表2に示すように、サンプルベルト1は1万回未満の屈曲により切断した。すなわち、ピップ部と歯元部において導体心線の切断が確認されたが、これは応力集中のためと推測される。サンプルベルト2は200~500万回未満の屈曲により切断した。これは、ETFEの絶縁体とベルト本体の間において滑りが生じたために応力集中が緩和され、サンプルベルト1よりも耐久性が向上したと考えられる。サンプルベルト3は800~1500万回未満の屈曲により切断した。これは、サンプルベルト2よりもベルト本体のウレタンの硬度を柔らかくしたことにより、導体心線に作用する応力をさらに緩和したためと考えられる。サンプルベルト4は2000万回まで屈曲しても切断しなかった。これは導体心線を銅合金線にしたために屈曲疲労性が改善されたためと考えられる。 As shown in Table 2, the sample belt 1 was cut by bending less than 10,000 times. That is, the conductor core wire was confirmed to be cut at the pip portion and the tooth root portion, which is presumed to be due to stress concentration. Sample belt 2 was cut by bending less than 2 to 5 million times. This is probably because the stress concentration was alleviated due to slippage between the ETFE insulator and the belt body, and the durability was improved as compared with the sample belt 1. Sample belt 3 was cut by bending 8 to 15 million times. This is presumably because the stress acting on the conductor core wire was further relaxed by making the hardness of the urethane of the belt body softer than that of the sample belt 2. The sample belt 4 was not cut even when bent up to 20 million times. This is probably because the bending fatigue resistance was improved because the conductor core wire was made of a copper alloy wire.
 多機能ベルトの高強度心線の設計では、多機能ベルトが伸縮することによる導体心線の疲労破壊を回避するために、多機能ベルトの伸縮率を考慮することが好ましいと考えられる。そこで多機能ベルトの耐荷重試験を行い、サンプルベルトに発生する負荷に対してサンプルベルトの伸び変化率が0.2%以下になるような高強度心線を設計することを試みた。耐荷重試験において用いたサンプルベルトの構成は以下の通りである。
 ベルト本体はウレタン樹脂から成り、ベルト幅は15mmであり、ベルト標線間距離は100mmである。
 高強度心線の構成は、7本×3本×0.08mmのスチール心線であり、4本のS撚り心線と4本のZ撚りを15mmの幅の中に交互に配置した。
 導体心線は以下の2種類のいずれかを用い、導体心線と高強度心線を7本ずつ交互に配置した。
 導体心線1:ETFE被膜銅合金心線。直径0.05mmの素線を28本撚った撚線。
 導体心線2:ETFE被膜軟銅心線。直径0.08mmの素線を19本撚った撚線。
In designing a high-strength core wire of the multifunction belt, it is considered preferable to consider the expansion / contraction rate of the multifunction belt in order to avoid fatigue failure of the conductor core wire due to the expansion / contraction of the multifunction belt. Therefore, a load bearing test was performed on the multifunctional belt, and an attempt was made to design a high-strength core wire in which the rate of change in elongation of the sample belt was 0.2% or less with respect to the load generated on the sample belt. The configuration of the sample belt used in the load bearing test is as follows.
The belt body is made of urethane resin, the belt width is 15 mm, and the distance between the belt markings is 100 mm.
The configuration of the high-strength core wire was a steel core wire of 7 × 3 × 0.08 mm, and four S-strand core wires and four Z-strand wires were alternately arranged in a width of 15 mm.
One of the following two types of conductor core wires was used, and seven conductor core wires and seven high-strength core wires were alternately arranged.
Conductor core wire 1: ETFE coated copper alloy core wire. Twisted strands of 28 strands with a diameter of 0.05mm.
Conductor core wire 2: ETFE-coated annealed copper core wire. 19 twisted strands of 0.08mm diameter strand.
 図14を参照して多機能ベルトの耐荷重試験の方法を説明する。サンプルベルトBの両端をクランプ91、92により把持し、クランプ91、92を介してサンプルベルトBに引張荷重をかけた。引張荷重の周期は20Hzとした。一般的にベルト取付け張力は、ベルトに負荷が発生するときにベルト緩み側の張力が常に0N以上になるように設定される。したがって本耐荷重試験では、緩み側の張力が20Nになるように定めた。また荷重の振幅を100Nとし、後述するように荷重の大きさを種々変化させ、サンプルベルトBの両端における電位差をセンサ93によって検知することにより、導体心線が断線したか否かを判断した。 Referring to FIG. 14, a method for a load bearing test of the multifunction belt will be described. Both ends of the sample belt B were gripped by the clamps 91 and 92, and a tensile load was applied to the sample belt B through the clamps 91 and 92. The period of the tensile load was 20 Hz. Generally, the belt mounting tension is set so that the tension on the belt loosening side is always 0 N or more when a load is generated on the belt. Therefore, in this load resistance test, the tension on the loose side was determined to be 20N. Further, the load amplitude was set to 100 N, the load magnitude was variously changed as will be described later, and the potential difference at both ends of the sample belt B was detected by the sensor 93 to determine whether or not the conductor core wire was broken.
 図15を参照して多機能ベルトの耐荷重試験の結果を説明する。荷重制御領域を700N~20Nにした場合、符号F1で示すように、サンプルベルトBの伸び率は0.60~0.70%であった。また導体心線1を有するサンプルベルトBでは約10万~20万サイクルで導体心線1の切断が検出されたが、導体心線2を有するサンプルベルトBでは7千~35万サイクルで導体心線2の切断が検出された。荷重制御領域を475N~20Nにした場合、符号F2で示すように、サンプルベルトBの伸び率は0.40~0.50%であった。また導体心線1を有するサンプルベルトBでは90万~210万サイクルで導体心線1の切断が検出されたが、導体心線2を有するサンプルベルトBでは20万~50万サイクルで導体心線2の切断が検出された。 Referring to FIG. 15, the results of the load bearing test of the multifunction belt will be described. When the load control region was 700N to 20N, the elongation percentage of the sample belt B was 0.60 to 0.70%, as indicated by reference numeral F1. Further, in the sample belt B having the conductor core wire 1, the cutting of the conductor core wire 1 was detected in about 100,000 to 200,000 cycles, but in the sample belt B having the conductor core wire 2, the conductor core was detected in 7,000 to 350,000 cycles. Line 2 break was detected. When the load control region was 475N to 20N, the elongation percentage of the sample belt B was 0.40 to 0.50%, as indicated by reference numeral F2. In the sample belt B having the conductor core wire 1, cutting of the conductor core wire 1 was detected in 900,000 to 2.1 million cycles. In the sample belt B having the conductor core wire 2, the conductor core wire was detected in 200,000 to 500,000 cycles. Two breaks were detected.
 荷重制御領域を350N~20Nにした場合、符号F3で示すように、サンプルベルトBの伸び率は0.30~0.40%であった。また導体心線2を有するサンプルベルトBでは約25万~80万サイクルで導体心線2の切断が検出されたが、導体心線1を有するサンプルベルトBでは300万サイクルで導体心線1の切断が検出されるか、あるいは1500万サイクルを越えても切断しないものもあった。荷重制御領域を220N~20Nにした場合、符号F4で示すように、サンプルベルトBの伸び率は0.10~0.20%であった。また導体心線1を有するサンプルベルトBで1500万サイクルを越えても導体心線1の切断が検出されず、導体心線2を有するサンプルベルトBでは1000万サイクルを越えても切断が検出されなかった。 When the load control region was 350N to 20N, the elongation percentage of the sample belt B was 0.30 to 0.40%, as indicated by reference numeral F3. In the sample belt B having the conductor core wire 2, the cutting of the conductor core wire 2 was detected in about 250,000 to 800,000 cycles. In the sample belt B having the conductor core wire 1, the conductor core wire 1 was cut in 3 million cycles. Some cuts were detected, or some did not cut even after exceeding 15 million cycles. When the load control region was 220N to 20N, the elongation percentage of the sample belt B was 0.10 to 0.20% as indicated by reference numeral F4. In addition, the cutting of the conductor core wire 1 is not detected even if the sample belt B having the conductor core wire 1 exceeds 15 million cycles, and the cutting is detected in the sample belt B having the conductor core wire 2 exceeding 10 million cycles. There wasn't.
 以上のような耐荷重試験の結果から、エラストマーから成るベルト本体内に高強度心線と導体心線を複数本ずつ交互に配置して成るベルトの荷重制御領域におけるベルト伸び変化率が0.2%以下になるように多機能ベルトの高強度心線を設計することが使用条件における耐久性向上に有効であることが確認された。 From the results of the load resistance test as described above, the belt elongation change rate in the load control region of the belt formed by alternately arranging a plurality of high-strength core wires and conductor core wires in the belt body made of elastomer is 0.2. It has been confirmed that designing a high-strength core wire of a multifunctional belt so as to be less than or equal to% is effective in improving durability under use conditions.

Claims (20)

  1.  エラストマーから成る長尺のベルト本体と、
     前記ベルト本体内に埋設され、前記ベルト本体の長手方向に延び、相互に平行に配列された複数の高強度心線と、
     前記ベルト本体に設けられ、前記ベルト本体の長手方向に延びる導電体と
     を備えることを特徴とする多機能ベルト。
    A long belt body made of elastomer,
    A plurality of high-strength core wires embedded in the belt body, extending in the longitudinal direction of the belt body, and arranged parallel to each other;
    A multifunctional belt comprising: a conductor provided on the belt body and extending in a longitudinal direction of the belt body.
  2.  前記導電体が前記ベルト本体内に埋設された複数の導体心線であり、前記高強度心線と前記導体心線が前記ベルト本体の幅方向に交互に配列されることを特徴とする請求項1に記載の多機能ベルト。 The conductor is a plurality of conductor core wires embedded in the belt main body, and the high-strength core wires and the conductor core wires are alternately arranged in the width direction of the belt main body. The multifunction belt according to 1.
  3.  前記高強度心線と前記導体心線が、前記ベルト本体の横断面において、前記ベルト本体の表面に平行な直線に接するように配列されることを特徴とする請求項2に記載の多機能ベルト。 3. The multifunction belt according to claim 2, wherein the high-strength core wire and the conductor core wire are arranged so as to be in contact with a straight line parallel to the surface of the belt main body in a cross section of the belt main body. .
  4.  前記高強度心線の間に複数の前記導体心線が設けられることを特徴とする請求項2に記載の多機能ベルト。 3. The multifunction belt according to claim 2, wherein a plurality of the conductor core wires are provided between the high strength core wires.
  5.  前記ベルト本体の横断面において、両端には前記高強度心線が配置されることを特徴とする請求項2に記載の多機能ベルト。 The multifunction belt according to claim 2, wherein the high-strength core wire is disposed at both ends in a cross section of the belt main body.
  6.  前記導体心線が絶縁体によって被覆されることを特徴とする請求項2に記載の多機能ベルト。 The multifunction belt according to claim 2, wherein the conductor core wire is covered with an insulator.
  7.  前記導電体が前記ベルト本体に埋設された導体心線であり、複数本の前記高強度心線が1本の前記導体心線の外周面を覆うように配設されることを特徴とする請求項1に記載の多機能ベルト。 The conductor is a conductor core wire embedded in the belt body, and a plurality of the high-strength core wires are disposed so as to cover an outer peripheral surface of one conductor core wire. Item 2. The multifunction belt according to item 1.
  8.  前記導電体が前記ベルト本体に埋設された導体心線であり、複数本の前記導体心線が1本の前記高強度心線の外周面を覆うように配設されることを特徴とする請求項1に記載の多機能ベルト。 The conductor is a conductor core wire embedded in the belt body, and a plurality of the conductor core wires are disposed so as to cover an outer peripheral surface of one high-strength core wire. Item 2. The multifunction belt according to item 1.
  9.  前記導電体がフレキシブルプリント配線板に形成された配線であり、前記フレキシブルプリント配線板が前記ベルト本体の表面に貼付されることを特徴とする請求項1に記載の多機能ベルト。 The multifunction belt according to claim 1, wherein the conductor is a wiring formed on a flexible printed wiring board, and the flexible printed wiring board is attached to a surface of the belt main body.
  10.  前記導電体が前記ベルト本体に埋設された複数の導体心線であり、前記導体心線は前記高強度心線よりも低い導体抵抗値を有することを特徴とする請求項1に記載の多機能ベルト。 The multifunction according to claim 1, wherein the conductor is a plurality of conductor core wires embedded in the belt body, and the conductor core wires have a conductor resistance value lower than that of the high-strength core wires. belt.
  11.  前記導体心線が軟銅線または銅合金線を有することを特徴とする請求項10に記載の多機能ベルト。 The multifunction belt according to claim 10, wherein the conductor core wire includes an annealed copper wire or a copper alloy wire.
  12.  前記導体心線が前記ベルト本体のエラストマーに接着しない被膜材により被覆されることを特徴とする請求項10に記載の多機能ベルト。 The multifunction belt according to claim 10, wherein the conductor core wire is covered with a coating material that does not adhere to the elastomer of the belt body.
  13.  前記被膜材が前記ベルト本体のエラストマーよりも融点が高い材質から成ることを特徴とする請求項12に記載の多機能ベルト。 The multifunction belt according to claim 12, wherein the coating material is made of a material having a melting point higher than that of the elastomer of the belt body.
  14.  前記被膜材がフッ素樹脂から成ることを特徴とする請求項13に記載の多機能ベルト。 The multifunction belt according to claim 13, wherein the coating material is made of a fluororesin.
  15.  前記導体心線が、単線、撚線(集合撚り)、撚線(ロープ撚り)、シールド線、ケーブルおよびシールド付きケーブルのいずれかの構成を有することを特徴とする請求項10に記載の多機能ベルト。 The multi-function according to claim 10, wherein the conductor core wire has any one of a single wire, a twisted wire (collective twist), a twisted wire (rope twist), a shielded wire, a cable, and a shielded cable. belt.
  16.  前記ベルト本体のエラストマーが導電材を付加されることを特徴とする請求項1に記載の多機能ベルト。 2. The multifunction belt according to claim 1, wherein a conductive material is added to the elastomer of the belt body.
  17.  エラストマーから成るベルト本体内に高強度心線と導体心線を複数本ずつ交互に配置して成るベルトの荷重制御領域におけるベルト伸び変化率が0.2%以下になるように設計された高強度心線を備えることを特徴とする請求項1に記載の多機能ベルト。 High strength designed to have a belt elongation change rate of 0.2% or less in the load control area of the belt in which a plurality of high-strength core wires and conductor core wires are alternately arranged in a belt body made of elastomer. The multifunction belt according to claim 1, further comprising a core wire.
  18.  前記ベルト本体のエラストマーの硬さがA80~A95であることを特徴とする請求項1に記載の多機能ベルト。 The multifunction belt according to claim 1, wherein the hardness of the elastomer of the belt body is A80 to A95.
  19.  前記ベルト本体が歯付きベルトとして成形されることを特徴とする請求項1に記載の多機能ベルト。 The multifunction belt according to claim 1, wherein the belt body is formed as a toothed belt.
  20.  前記ベルト本体が平ベルトとして成形されることを特徴とする請求項1に記載の多機能ベルト。 The multifunction belt according to claim 1, wherein the belt body is formed as a flat belt.
PCT/JP2015/069182 2014-07-04 2015-07-02 Multifunctional belt WO2016002899A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580034166.8A CN106536384B (en) 2014-07-04 2015-07-02 Multifunctional belt
JP2015541721A JP6085034B2 (en) 2014-07-04 2015-07-02 Multifunctional belt

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-138897 2014-07-04
JP2014138897 2014-07-04

Publications (1)

Publication Number Publication Date
WO2016002899A1 true WO2016002899A1 (en) 2016-01-07

Family

ID=55019425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069182 WO2016002899A1 (en) 2014-07-04 2015-07-02 Multifunctional belt

Country Status (4)

Country Link
JP (1) JP6085034B2 (en)
CN (1) CN106536384B (en)
TW (1) TWI652418B (en)
WO (1) WO2016002899A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106536384A (en) * 2014-07-04 2017-03-22 盖茨优霓塔亚洲有限公司 Multifunctional belt
JP2019029211A (en) * 2017-07-31 2019-02-21 ゲイツ・ユニッタ・アジア株式会社 Energization belt and production method thereof
JP2020088995A (en) * 2018-11-21 2020-06-04 ゲイツ・ユニッタ・アジア株式会社 Wiring structure between rotating members
JP2020143772A (en) * 2019-03-08 2020-09-10 ニッタ株式会社 Multifunctional belt
JP2021028256A (en) * 2019-08-09 2021-02-25 バンドー化学株式会社 Toothed belt
JP2021073648A (en) * 2021-01-14 2021-05-13 ゲイツ・ユニッタ・アジア株式会社 Energization belt and production method thereof
WO2023090185A1 (en) * 2021-11-16 2023-05-25 バンドー化学株式会社 Belt
WO2023219064A1 (en) * 2022-05-12 2023-11-16 バンドー化学株式会社 Belt

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5559607A (en) * 1978-03-17 1980-05-06 Kabel Metallwerke Ghh Plastic insulated moisture proof electric energy cable
JPS63258389A (en) * 1987-04-14 1988-10-25 株式会社ダイフク Carrying truck with hanging elevator
JPS63190194U (en) * 1987-05-22 1988-12-07
JPH06103831A (en) * 1992-09-24 1994-04-15 Sumitomo Electric Ind Ltd Electric cable coated with insulator and manufacture thereof
JPH0945146A (en) * 1995-08-01 1997-02-14 Showa Electric Wire & Cable Co Ltd Dc cable
JP2003065393A (en) * 2001-08-24 2003-03-05 Bando Chem Ind Ltd Conductive transmission belt

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1111497C (en) * 1996-08-23 2003-06-18 固特异轮胎和橡胶公司 The method of splicing seams position in a kind of endless apron and the definite load-transfer device
JP4228172B2 (en) * 2001-10-25 2009-02-25 住友電気工業株式会社 Signal transmission cable, terminal device, and data transmission method using the same
JP5703525B2 (en) * 2011-08-23 2015-04-22 住友電工プリントサーキット株式会社 Flexible printed wiring board and method for manufacturing the flexible printed wiring board
CN203104815U (en) * 2013-02-26 2013-07-31 北京市光翌实业有限责任公司 Electric heating cloth
CN103400644B (en) * 2013-08-22 2015-12-23 湖南华菱线缆股份有限公司 A kind of winning equipment towing warp resistance metallic shield flexible cable
WO2016002899A1 (en) * 2014-07-04 2016-01-07 ゲイツ・ユニッタ・アジア株式会社 Multifunctional belt

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5559607A (en) * 1978-03-17 1980-05-06 Kabel Metallwerke Ghh Plastic insulated moisture proof electric energy cable
JPS63258389A (en) * 1987-04-14 1988-10-25 株式会社ダイフク Carrying truck with hanging elevator
JPS63190194U (en) * 1987-05-22 1988-12-07
JPH06103831A (en) * 1992-09-24 1994-04-15 Sumitomo Electric Ind Ltd Electric cable coated with insulator and manufacture thereof
JPH0945146A (en) * 1995-08-01 1997-02-14 Showa Electric Wire & Cable Co Ltd Dc cable
JP2003065393A (en) * 2001-08-24 2003-03-05 Bando Chem Ind Ltd Conductive transmission belt

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106536384A (en) * 2014-07-04 2017-03-22 盖茨优霓塔亚洲有限公司 Multifunctional belt
CN106536384B (en) * 2014-07-04 2019-12-20 盖茨优霓塔亚洲有限公司 Multifunctional belt
JP2019029211A (en) * 2017-07-31 2019-02-21 ゲイツ・ユニッタ・アジア株式会社 Energization belt and production method thereof
JP2020088995A (en) * 2018-11-21 2020-06-04 ゲイツ・ユニッタ・アジア株式会社 Wiring structure between rotating members
JP2020143772A (en) * 2019-03-08 2020-09-10 ニッタ株式会社 Multifunctional belt
JP7349800B2 (en) 2019-03-08 2023-09-25 ニッタ株式会社 multifunctional belt
JP2021028256A (en) * 2019-08-09 2021-02-25 バンドー化学株式会社 Toothed belt
JP7442928B2 (en) 2019-08-09 2024-03-05 バンドー化学株式会社 toothed belt
JP2021073648A (en) * 2021-01-14 2021-05-13 ゲイツ・ユニッタ・アジア株式会社 Energization belt and production method thereof
WO2023090185A1 (en) * 2021-11-16 2023-05-25 バンドー化学株式会社 Belt
WO2023219064A1 (en) * 2022-05-12 2023-11-16 バンドー化学株式会社 Belt

Also Published As

Publication number Publication date
CN106536384B (en) 2019-12-20
JP6085034B2 (en) 2017-02-22
JPWO2016002899A1 (en) 2017-04-27
CN106536384A (en) 2017-03-22
TWI652418B (en) 2019-03-01
TW201608148A (en) 2016-03-01

Similar Documents

Publication Publication Date Title
JP6085034B2 (en) Multifunctional belt
JP6015542B2 (en) Photoelectric composite cable
CN108538488B (en) Coaxial cable and cable with braided shield
CN109841314B (en) Cable with braided shield
KR20090023121A (en) Flexible electric line
KR101120703B1 (en) Rope
CA2500437A1 (en) Belt with integrated monitoring
US20150083458A1 (en) Multi-core cable
EP3107855B1 (en) Connector for inspection system of elevator tension member
JP2010257701A (en) Cable
JP6893496B2 (en) coaxial cable
US10269468B1 (en) Cable with braided shield
US9251928B2 (en) Flexible cable
JP5962576B2 (en) Photoelectric composite cable
KR20110006881A (en) Electric cable for application of a wind farm
CN107406227A (en) Lift facility
JP6003787B2 (en) Photoelectric composite cable
JP6136039B2 (en) cable
WO2016002812A1 (en) Multiple-circuit cable
JP5934687B2 (en) Twist-resistant cable
JP2022158408A (en) cable
CN110753672A (en) Rope for use as elevator traction rope
CN214588110U (en) Cable with a protective layer
JP2007253678A (en) Composite wiring material
RU59316U1 (en) FLEXIBLE WIRE FOR PORTABLE EARTHING

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015541721

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15815807

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15815807

Country of ref document: EP

Kind code of ref document: A1