WO2016002844A1 - 膵がん細胞浸潤転移阻害剤 - Google Patents

膵がん細胞浸潤転移阻害剤 Download PDF

Info

Publication number
WO2016002844A1
WO2016002844A1 PCT/JP2015/069013 JP2015069013W WO2016002844A1 WO 2016002844 A1 WO2016002844 A1 WO 2016002844A1 JP 2015069013 W JP2015069013 W JP 2015069013W WO 2016002844 A1 WO2016002844 A1 WO 2016002844A1
Authority
WO
WIPO (PCT)
Prior art keywords
rna
cells
igf2bp3
pancreatic cancer
sirna
Prior art date
Application number
PCT/JP2015/069013
Other languages
English (en)
French (fr)
Inventor
恵介 谷内
Original Assignee
国立大学法人高知大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人高知大学 filed Critical 国立大学法人高知大学
Priority to JP2016531421A priority Critical patent/JP6663149B2/ja
Publication of WO2016002844A1 publication Critical patent/WO2016002844A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology

Definitions

  • the present invention encodes a pancreatic cancer cell invasion and metastasis inhibitor that can effectively suppress invasion and metastasis of pancreatic cancer cells using RNA interference, and RNA that is an active ingredient of the pancreatic cancer cell invasion and metastasis inhibitor.
  • the present invention relates to DNA and a vector that contains the DNA and that can be used to suppress invasion or metastasis of pancreatic cancer cells.
  • Pancreatic cancer is said to have the worst prognosis among cancers. This is because the pancreas is a retroperitoneal organ and is difficult to detect at an early stage, and the pancreatic cancer cells have extremely high motility. Invasion into the digestive tract, nerves, etc., metastasis to nearby lymph nodes, and distant metastasis to the liver.
  • cancer is a malignant tumor
  • it infiltrates and metastasizes to other tissues in particular and it is thought that the prognosis will be good if there is no invasion and metastasis.
  • Patent Document 3 discloses an invention for suppressing tissue infiltration of leukemia cells by inhibiting the expression of CD43, which is a cell surface antigen, and a gene involved in the expression of a selectin ligand sugar chain expressed on CD43 by RNA interference. Has been.
  • Patent Documents 4 and 5 disclose siRNAs that inhibit ARF6 and AMAP1 / PAG2 / ASAP1, which are proteins related to motility and invasiveness of cancer cells, respectively.
  • insulin-like growth factor 2 mRNA binding protein 3 (Insulin-like Growth Factor 2 mRNA-Binding Protein 3, hereinafter sometimes abbreviated as “IGF2BP3”) is usually present in nucleolus and is an insulin-like growth factor. It binds to the 5 ′ UTR of the 5 ′ untranslated region 3 of the RNA of II and inhibits the translation of insulin-like growth factor II.
  • IGF2BP3 insulin-like growth factor 2 mRNA binding protein 3
  • a gene encoding IGF2BP3 is listed as one of genes whose overexpression is used for detection of cancer.
  • the present invention provides a pancreatic cancer cell invasion and metastasis inhibitor capable of particularly effectively suppressing invasion and metastasis of pancreatic cancer cells, a DNA encoding RNA that is an active ingredient of the pancreatic cancer cell invasion and metastasis inhibitor, and It aims at providing the vector which contains the said DNA and can be used for suppression of invasion and metastasis of pancreatic cancer cells.
  • a pancreatic cancer cell invasion metastasis inhibitor comprising RNA (1) having one or more base sequences selected from SEQ ID NOs: 1 to 92.
  • pancreatic cancer cell invasion and metastasis inhibitor according to [1] or [2], further comprising RNA (2) having a sequence that hybridizes with the RNA (1) under stringent conditions.
  • DNA comprising a base sequence encoding RNA (1) having one or more sequences selected from SEQ ID NOs: 1 to 92.
  • RNA (1) having one or more base sequences selected from SEQ ID NOs: 1 to 92 for inhibiting invasive metastasis of pancreatic cancer cells.
  • a method for inhibiting invasion and metastasis of pancreatic cancer cells comprising a step of administering siRNA containing RNA (1) having one or more base sequences selected from SEQ ID NOs: 1 to 92.
  • the human insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) according to the present invention is usually found in the nucleolus, whereas in pancreatic cancer cells, it exists in cell membrane processes, and various mRNAs are present in this IGF2BP3. It binds and accumulates in cell membrane processes. It is considered that mRNA in such cell membrane processes is translated and then involved in the enhancement of motor invasion of pancreatic cancer cells through the formation of cell membrane processes, and as a result, plays an important role in invasive metastasis. Therefore, if the mRNA binding to IGF2BP3 in the plasma membrane process of pancreatic cancer cells is inhibited by RNA interference, invasion and metastasis of pancreatic cancer cells can be effectively suppressed.
  • RNA interference according to the present invention inhibits the action of mRNA accumulated in cell membrane protrusions of pancreatic cancer cells, and thus is considered to be harmless and safe for normal cells. Therefore, the pancreatic cancer cell invasion and metastasis inhibitor, DNA and vector according to the present invention are very useful as those capable of safely suppressing invasion and metastasis of pancreatic cancer cells.
  • FIG. 1 is an immunocytochemical fluorescence-labeled photograph of human pancreatic ductal adenocarcinoma cells S2-013 and PANC-1 which have been promoted to form cell membrane protrusions by culturing on fibronectin.
  • the green part shows the part labeled with the anti-IGF2BP3 antibody, and the red part shows the actin filaments labeled with phalloidin.
  • the arrow indicates the part where IGF2BP3 is localized in the cell membrane projection, and the length of the bar is 10 ⁇ m.
  • FIG. 4 shows IGF2BP3-RNAi S2-013 cell line (siIGF-1 and siIGF-2) into which siRNA targeting IGF2BP3 mRNA was introduced, and control RNAi S2-013 cell line (Scr-1 and Scr-2). It is a photograph which shows the result of having analyzed the protein expressed in ⁇ 3> by Western blot.
  • FIG. 5 is a photograph showing the results of a motility assay of the IGF2BP3-RNAi S2-013 cell line and the control RNAi S2-013 cell line into the wound area.
  • FIG. 6 is a graph showing the number of cells migrated to the wound area in the motility assay of the IGF2BP3-RNAi S2-013 cell line and the control RNAi S2-013 cell line to the wound area. “*” Indicates that there is a significant difference at p ⁇ 0.001 with respect to the control in the t-test.
  • FIG. 7 shows that a wound region is formed by removing a part of the S2-013 cell line grown confluently in a monolayer with a pipette tip, and an advanced site of pancreatic cancer cells that begin to migrate toward the wound region is immunized. It is a dyed photograph. The green part shows the part dye
  • FIG. 8 is a graph showing the number of cells migrated from the upper chamber to the lower chamber in the Matrigel invasion assay of IGF2BP3-RNAi S2-013 cell line and control RNAi S2-013 cell line. “*” Indicates that there is a significant difference at p ⁇ 0.001 with respect to the control in the t-test.
  • FIG. 10 is a graph showing the number of cells that have migrated from the upper chamber to the lower chamber after introducing a myc-tagged IGF2BP3 recovery construct or mock control vector into control RNAi cells or IGF2BP3-RNAi cells and then performing a bilayer chamber invasion assay. is there.
  • FIG. 11 is a photograph of a tumor formed in the pancreas stained with hematoxylin-eosin in a nude mouse transplanted with control RNAi S2-013 cell line or IGF2BP3-RNAi S2-013 cell line into the pancreas. “R” indicates luminal peritoneal tissue, “P” indicates muscle tissue, and “N” indicates normal tissue. FIG.
  • FIG. 18 is an immunofluorescence photograph of IGF2BP3 in cell membrane processes, ARF6 and ARGGEF4 among mRNAs bound to the IGF2BP3, and ubiquitin C mRNA as a control. The length of the bar is 10 ⁇ m.
  • FIG. 19 shows photographs of control RNAi S2-013 and IGF2BP3-RNAi S2-013 cells stimulated with fibronectin stained with anti-ARF6 antibody (green) or anti-ARHGEF4 antibody (green), and actin filaments as phalloidin (red).
  • FIG. 21 shows a photograph in which a myc-tagged IGF2BP3 recovery construct or mock control vector was introduced into IGF2BP3-RNAi cells for 48 hours and then stained with anti-myc antibody (green) or anti-ARHGEF4 antibody (purple), and actin filaments were treated with phalloidin (red). ) And a photograph in which nuclei are stained with DAPI (blue) and the results are integrated. Arrows indicate localization at cell membrane processes. The length of the bar is 10 ⁇ m.
  • FIG. 25 is a confocal photomicrograph of cells in which ARGGEF4-mRNA was knocked down by RNA interference and control cells. Green indicates a labeled portion with an anti-ARHGEF4 antibody, red indicates an actin filament stained with phalloidin, and blue indicates a nucleus stained with DAPI. The length of the bar is 10 ⁇ m.
  • FIG. 25 is a confocal photomicrograph of cells in which ARGGEF4-mRNA was knocked down by RNA interference and control cells. Green indicates a labeled portion with an anti-ARHGEF4 antibody, red indicates an actin filament stained with phalloidin, and blue indicates a nucleus stained with DAPI. The length of the bar is 10 ⁇ m.
  • FIG. 25 is a confocal photomicrograph of cells in which ARGGEF4-mRNA was knocked down by RNA interference and control cells. Green indicates a labeled portion with an anti-ARHGEF4 antibody, red indicates an actin filament stained with
  • FIG. 26 shows ARF6-RNAi S2-013 cell, ARF6-RNAi PANC-1 cell, ARHGEF4-RNAi S2-013 cell, ARGGEF4-RNAi PANC-1 cell, control RNAi S2-013 cell, and control It is a graph which shows the cell number which moved to the wound area
  • FIG. 28 shows a photograph of a folic acid chitosan nanoparticle alone and a folate chitosan nanoparticle-added control siRNA labeled with FITC fluorescence (green), added to the culture medium of S2-013 cells, and the cell nucleus stained with DAPI (blue). Then, the photographs are taken using a confocal fluorescence microscope, and these results are integrated. It can be seen that the folate chitosan nanoparticle-added siRNA is taken into the cells in the same manner as the folate chitosan nanoparticle alone.
  • FIG. 29 shows the result of analysis of mRNA expressed in S2-013 cells incorporating CCDC88A siRNA and WASF2 siRNA according to the present invention to which folate chitosan nanoparticles were added and control siRNA by semi-quantitative RT-PCR
  • A A photograph showing the results (B) of analyzing the lysate of the cells by Western blotting. In any method, the knockdown effect on the mRNA of CCDC88A siRNA and WASF2 siRNA according to the present invention could be confirmed.
  • FIG. 30 shows the results of a Matrigel invasion assay using CCDC88A siRNA and WASF2 siRNA according to the present invention to which folate chitosan nanoparticles are added, and a control siRNA.
  • FIG. 31 shows that when a control siRNA, CCDC88A siRNA or WASF2 siRNA added with folate chitosan nanoparticles was administered to a human pancreatic cancer infiltrating / metastasized mouse model in which S2-013 cells were transplanted into the pancreas, the S2-013 tumor It is a photograph which shows siRNA accumulation
  • FIG. 32 is a photograph of the primary S2-013 tumor that was removed from the mouse after the photography of FIG. 31 and stained with hematoxylin and eosin.
  • the pancreatic cancer cell invasion and metastasis inhibitor according to the present invention comprises RNA (1) having one or more base sequences selected from SEQ ID NOs: 1 to 92.
  • the pancreatic cancer cell invasion and metastasis inhibitor according to the present invention contains siRNA or shRNA as an active ingredient, part of the siRNA or shRNA is RNA (1), and the base sequence of the RNA (1) is a sequence. It is one or more selected from the numbers 1 to 92.
  • the base sequences of SEQ ID NOs: 1 to 92 are part of the base sequence of mRNA bound to human insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) that is localized in the plasma membrane process of pancreatic cancer cells. If RNAs having these base sequences are used for RNA interference, it is possible to degrade the mRNA and inhibit its translation.
  • IGF2BP3 insulin-like growth factor 2 mRNA binding protein 3
  • RNA (1) can be used as a sense RNA for RNA interference.
  • IGF Insulin-like growth factor
  • IGF-2 is believed to be the first growth factor required for early development, secreted by the brain, kidneys, pancreas and muscle in mammals and acts more specifically than IGF-1 and in adults by insulin It can be seen at a concentration 600 times that of.
  • the function of IGF is regulated by a family of genes known as IGF binding proteins, but IGF gene expression is regulated by proteins that bind to its mRNA.
  • siRNA or shRNA is used. Even if these RNAs are introduced into cells, they are safe because they are not integrated into chromosomes and do not cause mutation. Moreover, siRNA is relatively easy to synthesize chemically and is stable in a double-stranded state.
  • siRNA is a double-stranded RNA in which a sense RNA that is homologous to a partial base sequence of a target mRNA and an antisense RNA that can hybridize with the sense RNA are hybridized.
  • the 3 ′ end remains OH.
  • the 5 ′ end may be phosphorylated, and the 3 ′ end side may protrude from 1 base to 4 bases.
  • a specific protein binds to the siRNA to form a complex called RISC (RNA-Induced-Silencing-Complex).
  • RISC RNA-Induced-Silencing-Complex
  • RISC recognizes and binds to mRNA having a sequence homologous to the base sequence of the sense RNA, and cleaves the mRNA by RNaseIII-like enzyme activity.
  • shRNA is composed of single-stranded RNA, and a sense RNA region that is homologous to the partial base sequence of the target mRNA and an antisense RNA region that can hybridize with the sense RNA are linked by a linker RNA that exhibits a circular structure, and is a hairpin as a whole.
  • the structure has a shape.
  • the shRNA may have a 3 ′ end protruding from 1 to 4 bases, and the 3 ′ protruding end may be composed of DNA.
  • shRNA is degraded in the cell and causes RNA interference in the same way as siRNA.
  • RNA (1) contained in the pancreatic cancer cell invasion and metastasis inhibitor according to the present invention has one or more base sequences selected from SEQ ID NOs: 1 to 92.
  • the base sequences of SEQ ID NOs: 1 to 92 are part of the base sequences of 19 types of mRNA contained in the cell membrane protrusion of pancreatic cancer cells.
  • a part of siRNA or shRNA used as an active ingredient in the present invention corresponds to RNA (1).
  • RNA having a base sequence containing a single base deletion, substitution, or addition in the above sequence may similarly exhibit RNA interference. Such equivalent inventions are also included in the scope of the present invention.
  • RNA has only a predetermined base sequence, or may have other base sequences in addition to the predetermined base sequence.
  • the base sequence of the RNA is substantially the same as the predetermined base sequence except for the modification of the 5 ′ end as described above and the protruding RNA or protruding DNA at the 3 ′ end.
  • the nucleotide sequence of RNA (1) is particularly preferably at least one selected from SEQ ID NOs: 57 to 60 or at least one selected from SEQ ID NOs: 73 to 76.
  • the base sequences of SEQ ID NOs: 57 to 60 are a part of the base sequence of CCDC88A, and the base sequences of SEQ ID NOs: 73 to 76 are a part of the base sequence of WASF2.
  • CCDC88A and WASF2 are mRNAs contained in cell membrane protrusions of pancreatic cancer cells, but their functions in pancreatic cancer cells were unknown.
  • the inventor has experimentally found that, among mRNAs contained in cell membrane protrusions of pancreatic cancer cells, CCDC88A and WASF2 have the highest ability to enhance invasion and metastasis of pancreatic cancer cells.
  • the preferred RNA (1) suppresses the functions of CCDC88A and WASF2 and can most effectively inhibit invasion and metastasis of pancreatic cancer cells.
  • the pancreatic cancer cell invasion and metastasis inhibitor according to the present invention preferably contains RNA (2) having a base sequence that hybridizes with RNA (1) under stringent conditions in addition to RNA (1).
  • RNA (1) can be further stabilized by RNA (2).
  • RNA (2) is preferably completely complementary to the base sequence of RNA (1), but may not be completely complementary as long as it hybridizes under stringent conditions.
  • stringent conditions means a sodium chloride concentration of 150 mM or more and 900 mM or less, a sodium citrate concentration of 15 mM or more and 90 mM or less, that is, 1 to 6 ⁇ SSC, 0.1 mass% or more, 0. This refers to the condition of washing once or twice in an aqueous solution of 5% by mass or less of SSD at a temperature of 42 ° C. or more and 55 ° C. or less for 5 minutes or more and 15 minutes or less.
  • RNA (1) and RNA (2) are independently contained, and these form double-stranded RNA, ie, siRNA. .
  • single-stranded RNA in which RNA (1) and RNA (2) are bound via a linker RNA is contained as an active ingredient
  • the single-stranded RNA, ie, shRNA has a hairpin structure
  • RNA (1) and RNA (2) are hybridized
  • linker RNA has a circular structure
  • the pancreatic cancer cell invasion and metastasis inhibitor according to the present invention may contain only one kind of RNA (1), the above siRNA or the above shRNA as an active ingredient, or may contain two or more kinds. Be good.
  • the number of the two or more types is preferably 2 or more and 8 or less, more preferably 3 or more and 5 or less.
  • the dosage form of the pancreatic cancer cell invasion and metastasis inhibitor according to the present invention is not particularly limited as long as the active ingredient is delivered to the target site, and can be, for example, an injection, a liquid, or a sustained release agent. .
  • a solvent for these preparations water is preferable, but it is preferable to use physiological saline, PBS, serum albumin solution or the like so that the preparation finally becomes an isotonic solution or a substantially isotonic solution.
  • the RNA according to the present invention may be bound directly or indirectly to folic acid. Since the folate receptor is highly expressed on the surface of the pancreatic cancer cell membrane, such an RNA-folate complex may be selectively delivered and bound to pancreatic cancer cells.
  • RNA according to the present invention may be bound to chitosan nanoparticles.
  • Chitosan nanoparticles have an action of suppressing enzymatic degradation of siRNA intravenously administered into the body.
  • the target site of the pancreatic cancer cell invasion and metastasis inhibitor according to the present invention may be not only the pancreas but also a lymph node or other organ to which pancreatic cancer cells have metastasized. Moreover, in order to deliver an active ingredient more reliably to a target site, an injection is preferable as a dosage form. Moreover, you may use well-known drug delivery techniques, such as a liposome and a polymer micelle.
  • RNA (2) may be encoded at another site, or RNA (1), linker RNA and RNA (2) may be encoded sequentially.
  • the DNA according to the present invention may further contain regulatory regions such as a promoter, an enhancer, a silencer, a splicing donor, an acceptor, and poly A so that the base sequence (gene) encoding the RNA (1) is expressed. Good.
  • a promoter is present on the 5 'end side of the coding region and a terminator for terminating transcription is linked on the 3' end side.
  • RNA (1) and the like are produced in the cell by being introduced into the cell, and the target mRNA is caused by RNA interference. Is disassembled. Therefore, the vector in which the DNA according to the present invention is inserted can be an active ingredient of an inhibitor of pancreatic cancer cell invasion and metastasis.
  • the vector used in the present invention may be appropriately selected from known vectors such as plasmid vectors, detoxified virus vectors, and liposome vectors.
  • mRNA accumulated in combination with IGF2BP3 is present in cell membrane processes. It was experimentally confirmed that this mRNA enhances invasion and metastasis of pancreatic cancer cells by being translated locally in cell membrane processes. In the present invention, it is possible to suppress the invasion and metastasis of pancreatic cancer cells by inhibiting the translation of the mRNA in the cell membrane process by RNA interference.
  • the dose and administration frequency of DNA or vector, such as RNA (1) according to the present invention may be appropriately adjusted depending on the dosage form, patient severity, age, sex, weight, and the like.
  • Example 1 Confirmation of location of IGF2BP3 in metastatic pancreatic cancer cells The location of IGF2BP in pancreatic ductal adenocarcinoma (PDAC) cells was confirmed using an immunocytochemical technique. Two types of PDAC cells were used: S2-013 strain cells, which are moderately differentiated PDAC cells, and PANC-1 strain cells, which are undifferentiated PDAC cells.
  • the S2-013 strain a sub-line of the human PDAC cell SUIT-2 strain, was obtained from Professor Takeshi Iwamura of Miyazaki University.
  • the PDAC cell PANC-1 strain was purchased from the American Type Culture Collection. These cells were cultured in a Dulbecco's modified Eagle medium (DMEM, manufactured by Gibco-BRL) containing 10% of fetal calf serum (FCS) inactivated by heating in a humid atmosphere containing 5% CO 2 .
  • DMEM Dulbecco's modified Eagle medium
  • FCS fetal calf serum
  • fluorescent dyes Alexa488-, Alexa546-, Alexa594- or Alexa647-conjugated secondary antibody were used in the presence or absence of rhodamine-conjugated phalloidin (Cytoskeleton).
  • Some primary antibodies were coupled with green or red fluorophores using commercially available antibody labeling technology ("Zenon (R)" from Life technologies). It was visualized with a microscope ("Zeiss LSM 510 META microscope” manufactured by Carl Zeiss), and photographs of the obtained microscopic images are shown in Fig. 1 and 2.
  • IGF2BP3 is labeled with a green dye, and is an actin filament. Is stained in red with phalloidin, and the arrow indicates IGF2BP3 present in the cell membrane process.
  • Example 2 IGF2BP3 knockdown test in metastatic pancreatic cancer cells (1) IGF2BP3-RNA interference To elucidate the effect of IGF2BP3 on invasion and metastasis of pancreatic cancer cells, an siRNA specific for IGF2BP3 is expressed Using the vector, a clonal cell in which the production of IGF2BP3 in the S2-013 cell line was constantly suppressed was established.
  • the rapidly growing GP2-293 packaging cells incorporate scrambled negative controls (OriGene Technologies "TR30013") or IGF2BP3 mRNA targeting siRNAs (OriGeneTechnG3Technology3)
  • a pGFP-V-RS vector produced by OriGene Technologies
  • a replication defective virus was obtained and infected with the S2-013 cell line.
  • the infected S2-013 cell line is transferred to a flask 48 hours after infection, and then cultured in DMEM medium containing 0.5 ⁇ g / mL puromycin to stably express siRNA targeting IGF2BP3 mRNA.
  • DMEM medium containing 0.5 ⁇ g / mL puromycin to stably express siRNA targeting IGF2BP3 mRNA.
  • a clonal cell derived from the S2-013 cell line was established. These cells were further cultured for 10 days after becoming confluent. During the culture, the medium was replaced with a new one every two days. Only cells in which suppression of IGF2BP3 was recognized by Western blot analysis were used.
  • IGF2BP3-RNAi clones (siIGF-1 and siIGF-2) and control RNAi clones (Scr-1 and Scr-2) of S2-013 cell line infected with siRNA targeting IGF2BP3 were used for anti-IGF2BP3 antibody
  • the results of analysis by Western blotting are shown in FIG. As shown in FIG. 4, knockdown of IGF2BP3 was confirmed by immunoblotting.
  • Matrigel Invasion Assay 4.0 ⁇ 10 4 cells suspended in serum-free medium were seeded in the upper chamber of Matrigel Invasion Chamber (24 well plate, pore size: 8 ⁇ m, manufactured by Becton Dickinson). A solvent containing 5% chemoattractant was added to the lower chamber. Cells were incubated for 20 hours in the upper chamber. Three independent areas were then observed with a microscope and cells invading into the lower chamber were counted. The same experiment was repeated three times, and the S2-013 control clone (Scr-1 and Scr-2) constitutively expressing scrambled negative control siRNA and IGF2BP3-specific siRNA constitutively expressed to suppress IGF2BP3 expression.
  • IGF2BP3-pCMV6 pCMV6-Entry vector (produced by Origen) that generates a myc-DDK tag at the C-terminus.
  • IGF2BP3-pCMV6 the obtained vector is referred to as “IGF2BP3-pCMV6”.
  • IGF2BP3-pCMV6 was introduced into siIGF-1 and siIGF-2 clone cells using X-tremeGEN HP DNA Transfection Reagent (Roche). It was. 48 hours later, Western blot analysis using anti-IGF2BP3 antibody was performed. The results are shown in FIG. As shown in FIG. 9, the expression of exogenous IGF2BP that was forcibly expressed was confirmed.
  • FIG. 9 shows the results of Western blot analysis using anti-IGF2BP3 antibody.
  • the black arrow indicates endogenous IGF2BP3, and the white arrow indicates exogenous IGF2BP3.
  • GPDH is glyceraldehyde-3-phosphate dehydrogenase as an internal control indicating that an equal amount of each sample is used in Western blot analysis.
  • FIG. 10 shows the number of cells infiltrating the lower chamber. “*” In FIG. 10 indicates that the number of cells transfected with IGF2BP3-pCMV6 is significantly higher at the risk of p ⁇ 0.005 in the t-test compared to the cells transfected with the mock vector. Show.
  • transfection of IGF2BP3-pCMV6 into IGF2BP3-RNAi S2-013 cell line abolishes the suppression of cell invasion caused by IGF2BP3-RNAi by restoring IGF2BP3 expression. It was found.
  • mice and tumor cells Six-week-old sterile female athymic nude mice (BALB / cSlc-nu / nu) were purchased from Japan SLC Co., Ltd., according to the Kochi University Research Institute Animal Care and Use Guidelines Handled.
  • S2-013 control clones (Scr-1 and Scr-2) constitutively expressing scrambled negative control siRNA
  • mice were sacrificed, stained with hematoxylin-eosin, and examined for the presence of invasion of the retroperitoneum from the tumor formed in the pancreas of the mice and the presence of metastasis to the lung and liver.
  • tumors formed in the mouse pancreas were weighed.
  • Table 1 shows the measurement results and the presence or absence of infiltration into the retroperitoneum and distant metastasis
  • FIG. 11 shows a stained photograph.
  • “R” indicates a cavity peritoneum tissue
  • P indicates a muscle tissue
  • N indicates a normal tissue.
  • pancreatic cancer tissue derived from the control clone cells invaded the entire pancreatic tissue of the mouse.
  • the boundary between tumor tissue and normal tissue was not clear in the control sample.
  • most of the clonal cell-derived pancreatic cancer tissue in which IGF2BP3 expression was suppressed was encased in mouse stromal cells and clearly separated from mouse normal pancreatic tissue.
  • the surface of the peritoneum is covered with a relatively thick cancer cell layer seeded from pancreatic cancer tissue derived from control clone cells, and the cancer cells infiltrate to the muscle layer. It was.
  • Example 5 Using the cells of Example 5 (5), Matrigel invasion assay was performed in the same manner as in Example 2 (4) above, and cells infiltrating from the upper chamber to the lower chamber were counted. The same experiment was repeated 4 times, and the average value was calculated. The results are shown in FIG. In FIG. 27, “*” indicates a case where there is a significant difference in the risk rate of p ⁇ 0.001 in the t-test.
  • Example 6 In vitro experiment using siRNA with folate chitosan nanoparticles added to confirm the effect of the present invention (1) Confirmation of uptake of siRNA into cells Using pancreatic cancer cell line S2-013, folic acid was used. It was examined whether or not chitosan nanoparticle-added siRNA was taken up into cells. Chitosan nanoparticles suppress enzymatic degradation of siRNA administered intravenously into the body, and folic acid enables siRNA to bind to a folate receptor that is highly expressed on the surface of pancreatic cancer cell membranes.
  • CCDC88A siRNA comprises the nucleotide sequence of SEQ ID NO: 57.
  • WASF2 siRNA comprises the base sequence of SEQ ID NO: 73.
  • S2-013 cells incorporated with CCDC88A siRNA or WASF2 siRNA significantly suppressed cell infiltration compared to S2-013 cells incorporated with control siRNA.
  • Example 7 In vivo experiment using folic acid chitosan nanoparticle-added siRNA to confirm the effect of the present invention
  • Pancreatic cancer invasion and metastasis model in which human pancreatic cancer cell line S2-013 was transplanted into the pancreas of a 6-week-old nude mouse was used. Specifically, 12 nude mice were anesthetized by inhalation anesthesia using isoflurane on the first day, and the abdomen was opened to expose the pancreas.
  • One million human pancreatic cancer cells S2-013 were suspended in 0.1 mL of PBS and transplanted into the pancreas of each mouse.
  • control siRNA As shown in the results shown in FIG. 31, it was confirmed that all of control siRNA, CCDC88A siRNA and WASF2 siRNA were accumulated in the S2-013 cell tumor formed in the mouse pancreas. Importantly, the accumulation of the control siRNA in the S2-013 tumor was significantly increased 24 hours later, compared to 3 hours after administration of the labeled folate chitosan nanoparticle-added control siRNA. Each siRNA did not accumulate in the isolated mouse heart and accumulated specifically in the S2-013 tumor. Mice administered with control siRNA tended to have frequent peritoneal seeding, and specific accumulation of control siRNA in peritoneal seeding tissue was observed. In addition, the fluorescent color development of the primary pancreatic cancer in mice administered with CCDC88A siRNA or WASF2 siRNA was weaker than that in mice administered with control siRNA. The reason will be discussed with reference to FIG.
  • mice in the group of mice administered with the control siRNA had a solid tumor with few necrotic parts, whereas S2 of the group of mice administered with the CCDC88A siRNA and WASF2 siRNA. -013 Many tumors were necrotic.
  • the fluorescence development of the primary pancreatic cancer lesion in the mice administered with CCDC88A siRNA or WASF2 siRNA was weaker than that in the mice administered with control siRNA. The reason for this is considered to be that there were many necrotic portions in the S2-013 tumor of mice administered with CCDC88A siRNA or WASF2 siRNA, and the present invention was administered once / week. This is considered to be an effect of siRNA added with folate chitosan nanoparticles.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

 膵がん細胞の浸潤や転移を特に有効に抑制できる膵がん細胞浸潤転移阻害剤、当該膵がん細胞浸潤転移阻害剤の有効成分であるRNAをコードするDNA、および、当該DNAを含み、膵がん細胞の浸潤や転移の抑制に用いることができるベクターを提供することを目的とする。本発明に係る膵がん細胞浸潤転移阻害剤は、配列番号1~92から選択される1以上の塩基配列を有するRNA(1)を含むことを特徴とする。

Description

膵がん細胞浸潤転移阻害剤
 本発明は、RNA干渉を利用して膵がん細胞の浸潤や転移を有効に抑制できる膵がん細胞浸潤転移阻害剤、当該膵がん細胞浸潤転移阻害剤の有効成分であるRNAをコードするDNA、および、当該DNAを含み、膵がん細胞の浸潤や転移の抑制に用いることができるベクターに関するものである。
 「腫瘍」とは異常に増殖した細胞を指し、その異常増殖の原因が消失あるいは取り除かれても細胞の増殖が持続する状態をいう。腫瘍の中でも良性腫瘍は腫瘍の増殖が遅く、転移はしない。よって、一般的には切除すれば問題は無く、たとえ切除せずに放置しておいても命に別状はないといえる。一方、悪性腫瘍、即ちがんは、良性腫瘍とは異なり急速に増殖する上に、リンパ節や他の臓器に転移して増殖する。よって、例えば外科的手術により除去しても、僅かにでも残留したがん細胞や、既にリンパ節や他の臓器に転移していたがん細胞が再び増殖を開始することがある。よって、がんはいったん治療が終了した後の予後が悪く、各がんにおいては5年後生存率が調査されており、一般的に、治療により癌が消失したとされてから5年経過後までに再発がない場合がようやく治癒と見なされる。
 膵がんは、がんの中で最も予後が悪いといわれている。その原因としては、膵臓が後腹膜臓器であるために早期発見が困難であることに加え、膵がん細胞の運動性がきわめて高いため、例えば2cm以下の小さながんであっても、周囲の血管、消化管、神経などへすぐに浸潤し、また、近くのリンパ節に転移したり、肝臓などへ遠隔転移したりすることが挙げられる。
 上記のとおり、がんが悪性の腫瘍である所以は、特に他組織へ浸潤や転移することにあり、浸潤転移さえしなければ予後も良好なものになると考えられる。
 近年、標的mRNAに特異性を有する二本鎖RNAが標的mRNAを分解することにより、その翻訳を阻害するというRNA干渉という現象が見出された。そこで、がん細胞の浸潤転移に関係する分子群に対してRNA干渉を用い、mRNAの段階でノックダウンすることにより、がん細胞の浸潤転移を抑制できる可能性がある。
 例えば特許文献1には、乳がん細胞などのがん細胞の浸潤転移がアンジオポエチン様因子2(ANGPTL2)の過剰発現により亢進されることから、RNA干渉を起こすsiRNAやshRNAによりANGPTL2の発現を抑制する発明が開示されている。
 特許文献2には、ADPリボシル化因子を特異的に活性化するタンパク質に関するmRNAをRNA干渉で切断することにより、乳がん細胞などの浸潤転移を抑制する発明が記載されている。
 特許文献3には、細胞表面抗原であるCD43、およびCD43上に発現するセレクチンリガンド糖鎖の発現に関わる遺伝子の発現をRNA干渉で阻害することにより、白血病細胞の組織浸潤を抑制する発明が開示されている。
 特許文献4,5には、それぞれがん細胞の運動性や浸潤性に関係するタンパク質であるARF6とAMAP1/PAG2/ASAP1を阻害するsiRNAが開示されている。
 ところで、インスリン様成長因子2mRNA結合タンパク質3(Insulin-like Growth Factor 2 mRNA-Binding Protein 3,以下、「IGF2BP3」と略記することがある)は、通常は核小体に存在し、インスリン様成長因子IIのRNAの5’非翻訳領域3の5’UTRに結合してインスリン様成長因子IIの翻訳を阻害する。IGF2BP3をコードする遺伝子は、特許文献6に記載の発明において、その過剰発現ががんの検出に用いられる遺伝子の一つとして挙げられている。
特開2011-93896号公報 特開2007-97421号公報 特開2006-304716号公報 特開2005-46064号公報 特開2005-224149号公報 特表2011-516077号公報
 上述したように、がん細胞の浸潤や転移を抑制するための技術は種々検討されている。しかし、特に膵がん細胞がなぜ浸潤転移し易いのかという理由が示されているものはなく、膵がん細胞の浸潤転移の抑制に必ずしも有効なものではなかった。
 そこで本発明は、膵がん細胞の浸潤や転移を特に有効に抑制できる膵がん細胞浸潤転移阻害剤、当該膵がん細胞浸潤転移阻害剤の有効成分であるRNAをコードするDNA、および、当該DNAを含み、膵がん細胞の浸潤や転移の抑制に用いることができるベクターを提供することを目的とする。
 本発明者は、上記課題を解決するために鋭意研究を重ねた。その結果、通常は核小体で見出されるヒトインスリン様成長因子2mRNA結合タンパク質3が、膵がん細胞では、浸潤転移する上で必須の細胞内構造物である細胞膜突起中に局在していることを示す実験データを得た。また、細胞膜突起中のヒトインスリン様成長因子2mRNA結合タンパク質3は、特定のmRNAと結合することにより、細胞膜突起におけるそれらmRNAの局所翻訳を調節していた。そこで、細胞膜突起中の当該mRNAの翻訳をRNA干渉で阻害することにより、膵がん細胞の浸潤転移を抑制できることを実験的に証明して、本発明を完成した。
 以下、本発明を示す。
 [1] 配列番号1~92から選択される1以上の塩基配列を有するRNA(1)を含むことを特徴とする膵がん細胞浸潤転移阻害剤。
 [2] 上記RNA(1)が、配列番号57~60から選択される1以上または配列番号73~76から選択される1以上の少なくともいずれかの塩基配列を有する上記[1]に記載の膵がん細胞浸潤転移阻害剤。
 [3] さらに、上記RNA(1)とストリンジェントな条件でハイブリダイズする配列を有するRNA(2)を含む上記[1]または[2]に記載の膵がん細胞浸潤転移阻害剤。
 [4] 上記RNA(1)と上記RNA(2)がハイブリダイズしている二本鎖RNAを含む上記[3]に記載の膵がん細胞浸潤転移阻害剤。
 [5] 上記RNA(1)、上記RNA(2)、および、当該RNA(1)と当該RNA(2)とを結合するリンカーRNAを含み、当該RNA(1)と当該RNA(2)がハイブリダイズしており、且つ当該リンカーRNAが環状構造を有する一本鎖RNAを含む上記[3]に記載の膵がん細胞浸潤転移阻害剤。
 [6] 配列番号1~92から選択される1以上の配列を有するRNA(1)をコードする塩基配列を有することを特徴とするDNA。
 [7] 上記[6]に記載のDNAを含むことを特徴とするベクター。
 [8] 膵がん細胞の浸潤転移を阻害するための、配列番号1~92から選択される1以上の塩基配列を有するRNA(1)の使用。
 [9] 配列番号1~92から選択される1以上の塩基配列を有するRNA(1)を含むsiRNAを投与する工程を含むことを特徴とする膵がん細胞の浸潤転移阻害方法。
 本発明に係るヒトインスリン様成長因子2mRNA結合タンパク質3(IGF2BP3)は、通常は核小体で見出されるのに対して、膵がん細胞では細胞膜突起中に存在し、このIGF2BP3に様々なmRNAが結合し、細胞膜突起中に集積している。かかる細胞膜突起中のmRNAは、翻訳された後、細胞膜突起の形成を通して膵がん細胞の運動浸潤の亢進に関与し、その結果、浸潤転移に大きな役割を果たしていると考えられる。よって、膵がん細胞の細胞膜突起中のIGF2BP3に結合しているmRNAをRNA干渉により阻害すれば、膵がん細胞の浸潤転移が有効に抑制され得る。一方、本発明に係るRNA干渉は、膵がん細胞の細胞膜突起に集積しているmRNAの働きを阻害するものであるため、正常細胞には無害で安全なものであると考えられる。従って本発明に係る膵がん細胞浸潤転移阻害剤、DNAおよびベクターは、膵がん細胞の浸潤転移を安全に抑制できるものとして、非常に有用なものである。
図1は、フィブロネクチン上で培養することにより細胞膜突起の形成を促進したヒト膵管腺がん細胞であるS2-013株とPANC-1株を、免疫細胞化学的に蛍光標識した写真である。緑色部分は抗IGF2BP3抗体で標識された部分を示し、赤色部分はファロイジンで標識されたアクチンフィラメントを示す。矢印はIGF2BP3が細胞膜突起に局在している部分を示し、バーの長さは10μmである。 図2は、S2-013株細胞をフィブロネクチン上で培養し、抗IGF2BP3抗体(緑色)または抗G3BP抗体(赤色)で染色した写真と、アクチンフィラメントをファロイジン(紫色)で標識した写真、および、核をDAPIで染色してこれら結果を統合した写真である。矢印は細胞膜突起中に局在しているIGF2BP3を指す。 図3は、フィブロネクチン上で培養したS2-013株細胞の抽出液からIGF2BP3またはG3BPを免疫沈降させ、抗IGF2BP3抗体および抗G3BP抗体を使ったウェスタンブロットにより解析した結果を示す写真である。アイソタイプコントロールとしては、ウサギまたはマウスの抗IgGアイソタイプコントロール抗体を使った。 図4は、IGF2BP3のmRNAを標的とするsiRNAを導入したIGF2BP3-RNAi S2-013株細胞(siIGF-1とsiIGF-2)と、コントロールRNAi S2-013株細胞(Scr-1とScr-2)で発現しているタンパク質をウェスタンブロットで解析した結果を示す写真である。 図5は、IGF2BP3-RNAi S2-013株細胞とコントロールRNAi S2-013株細胞の創傷領域への運動性アッセイの結果を示す写真である。 図6は、IGF2BP3-RNAi S2-013株細胞とコントロールRNAi S2-013株細胞の創傷領域への運動性アッセイにおいて創傷領域に移動した細胞数を示すグラフである。「*」は、t-テストにおいてコントロールに対してp<0.001で有意差があることを示す。 図7は、単層でコンフルエントに増殖したS2-013株細胞の一部分をピペットチップで除去することにより創傷領域を形成し、当該創傷領域へ向けて遊走しはじめる膵がん細胞の先進部位を免疫染色した写真である。緑色部分は抗IGF2BP3抗体で染色した部分を示す。矢印は、遊走しはじめたS2-013株細胞の先進部位に形成された細胞膜突起に存在するIGF2BP3を示す。バーの長さは10μmである。 図8は、IGF2BP3-RNAi S2-013株細胞とコントロールRNAi S2-013株細胞のマトリゲル浸潤アッセイにおいて、上部チャンバーから下部チャンバーへ移動した細胞の数を示すグラフである。「*」は、t-テストにおいてコントロールに対してp<0.001で有意差があることを示す。 図9は、mycタグIGF2BP3回復コンストラクトまたはモックコントロールベクターをコントロールRNAi細胞またはIGF2BP3-RNAi細胞に48時間導入した後、抗IGF2BP3抗体を使ったウェスタンブロットにより解析した結果を示す写真である。黒色矢印は内因性IGF2BP3を示し、白色矢印は外因性IGF2BP3を示す。 図10は、mycタグIGF2BP3回復コンストラクトまたはモックコントロールベクターをコントロールRNAi細胞またはIGF2BP3-RNAi細胞に導入した後、二層チャンバー浸潤アッセイを行い、上部チャンバーから下部チャンバーへ移動した細胞の数を示すグラフである。「*」は、モックベクターをトランスフェクションした細胞に対して、IGF2BP3-pCMV6をトランスフェクションした細胞の数が、t-テストにおいてp<0.005で有意に多いことを示す。 図11は、コントロールRNAi S2-013株細胞、またはIGF2BP3-RNAi S2-013株細胞を膵臓に移植されたヌードマウスの、ヘマトキシリン-エオシン染色した、膵臓内に形成された腫瘍の写真である。「R」は腔腹膜組織を示し、「P」は筋肉組織を示し、「N」は正常組織を示す。 図12は、フィブロネクチンで刺激したコントロールRNAi S2-013株細胞、IGF2BP3-RNAi S2-013株細胞、およびIGF2BP3発現を回復させたIGF2BP3-RNAi S2-013株細胞の、共焦点免疫蛍光顕微鏡試験におけるZ-stack(多層取り込み)写真である。青色部分はDAPIで染色した核を示し、赤色部分はファロイジンで標識されたアクチンフィラメントを示す。矢印は細胞膜突起中に存在するアクチンフィラメントを示す。下側と右側のパネルは、それぞれ黄色線部分の断面を示す。バーの長さは10μmである。 図13は、フィブロネクチンで刺激したコントロールRNAi S2-013株細胞、IGF2BP3-RNAi S2-013株細胞、およびIGF2BP3発現を回復させたIGF2BP3-RNAi S2-013株細胞の、全細胞数に対する細胞膜突起を有する細胞の割合を示すグラフである。「*」は、t-テストにおいてコントロールRNAi S2-013株細胞またはIGF2BP3発現を回復させたIGF2BP3-RNAi S2-013株細胞に対してp<0.001で有意差があることを示す。 図14は、フィブロネクチンで刺激したコントロールRNAi S2-013株細胞およびIGF2BP3-RNAi S2-013株細胞の形態を、位相差顕微鏡を用いて撮影した写真である。 図15は、フィブロネクチン上で培養したS2-013株細胞の抽出液由来のIGF2BP3免疫沈降試料またはコントロールIgG免疫沈降試料に含まれるmRNAの濃度の散布プロットを示す。 図16は、フィブロネクチン上で培養したS2-013株細胞の抽出液由来のIGF2BP3免疫沈降試料またはコントロールIgG免疫沈降試料との間で、リボソームRNA((1),rRNA)および核内低分子RNA((2),snRNA)の数の線形回帰図を示す。図16中、点線はx=yの直線を示す。 図17は、細胞膜突起中のIGF2BP3に結合しているmRNAのうちARF6とARHGEF4を選択し、フィブロネクチン上で培養したS2-013株細胞の抽出液から抗IGF2BP3抗体、アイソタイプコントロールIgG、またはネガティブコントロールCD63抗体を用いた免疫沈降試料からRNAを精製し、ARF6、ARHGEF4、および内部定量コントロールであるユビキチンC mRNAの発現量を調べた写真である。 図18は、細胞膜突起中のIGF2BP3と、当該IGF2BP3に結合しているmRNAのうちARF6およびARHGEF4、並びにコントロールとしてのユビキチンC mRNAの免疫蛍光写真である。バーの長さは10μmである。 図19は、フィブロネクチンで刺激したコントロールRNAi S2-013株細胞およびIGF2BP3-RNAi S2-013株細胞を抗ARF6抗体(緑色)または抗ARHGEF4抗体(緑色)で染色した写真と、アクチンフィラメントをファロイジン(赤色)で標識した写真、および、核をDAPI(青色)で染色してこれら結果を統合した写真である。矢印は細胞膜突起での局在を指す。バーの長さは10μmである。 図20は、mycタグIGF2BP3回復コンストラクトまたはモックコントロールベクターをIGF2BP3-RNAi細胞に48時間導入した後、抗myc抗体(緑色)または抗ARF6抗体(紫色)で染色した写真と、アクチンフィラメントをファロイジン(赤色)で標識した写真、および、核をDAPI(青色)で染色してこれら結果を統合した写真である。矢印は細胞膜突起での局在を指す。バーの長さは10μmである。 図21は、mycタグIGF2BP3回復コンストラクトまたはモックコントロールベクターをIGF2BP3-RNAi細胞に48時間導入した後、抗myc抗体(緑色)または抗ARHGEF4抗体(紫色)で染色した写真と、アクチンフィラメントをファロイジン(赤色)で標識した写真、および、核をDAPI(青色)で染色してこれら結果を統合した写真である。矢印は細胞膜突起での局在を指す。バーの長さは10μmである。 図22は、コントロールベクター、または、ARF6-RNAiもしくはARHGEF4-RNAiを生成するベクターを導入したS2-013株細胞におけるARF6もしくはARHGEF4の生成量を解析したウェスタンブロット結果を示す写真である。 図23は、ARF6-mRNAまたはARHGEF4-mRNAをRNA干渉によりノックダウンした細胞とコントロール細胞における細胞膜突起が形成された細胞の割合を示すグラフである。 図24は、ARF6-mRNAをRNA干渉によりノックダウンした細胞とコントロール細胞の共焦点顕微鏡写真である。緑色は抗ARF6抗体での標識部分を示し、赤色はファロイジンで染色したアクチンフィラメントを示し、青色はDAPIで染色した核を示す。バーの長さは10μmである。 図25は、ARHGEF4-mRNAをRNA干渉によりノックダウンした細胞とコントロール細胞の共焦点顕微鏡写真である。緑色は抗ARHGEF4抗体での標識部分を示し、赤色はファロイジンで染色したアクチンフィラメントを示し、青色はDAPIで染色した核を示す。バーの長さは10μmである。 図26は、ARF6-RNAi S2-013株細胞、ARF6-RNAi PANC-1株細胞、ARHGEF4-RNAi S2-013株細胞、ARHGEF4-RNAi PANC-1株細胞、コントロールRNAi S2-013株細胞、およびコントロールRNAi PANC-1株細胞の創傷領域への運動性アッセイにおいて、創傷領域に移動した細胞数を示すグラフである。「*」は、t-テストにおいてコントロールに対してp<0.001で有意差があることを示す。 図27は、ARF6-RNAi S2-013株細胞、ARF6-RNAi PANC-1株細胞、ARHGEF4-RNAi S2-013株細胞、ARHGEF4-RNAi PANC-1株細胞、コントロールRNAi S2-013株細胞、およびコントロールRNAi PANC-1株細胞のマトリゲル浸潤アッセイにおいて、上部チャンバーから下部チャンバーへ移動した細胞の数を示すグラフである。「*」は、t-テストにおいてコントロールに対してp<0.001で有意差があることを示す。 図28は、葉酸キトサンナノ粒子単体と葉酸キトサンナノ粒子付加コントロールsiRNAをFITC蛍光標識(緑色)し、S2-013細胞の培養液に添加して撮影した写真と、細胞核をDAPI(青色)で染色して共焦点蛍光顕微鏡を用いて撮影し、これら結果を統合した写真である。葉酸キトサンナノ粒子付加siRNAは、葉酸キトサンナノ粒子単体と同様に細胞内に取り込まれていることが分かる。 図29は、葉酸キトサンナノ粒子を付加した本発明に係るCCDC88A siRNAおよびWASF2 siRNAと、コントロールsiRNAを取り込んだS2-013細胞で発現しているmRNAを半定量RT-PCR法で解析した結果と(A)、当該細胞のライセートをウェスタンブロットにより解析した結果(B)を示す写真である。いずれの方法においても、本発明に係るCCDC88A siRNAおよびWASF2 siRNAのmRNAに対するノックダウン効果を確認できた。 図30は、葉酸キトサンナノ粒子を付加した本発明に係るCCDC88A siRNAおよびWASF2 siRNAと、コントロールsiRNAを用いたマトリゲル浸潤アッセイの結果を示す。 図31は、膵臓にS2-013細胞を移植したヒト膵がん浸潤・転移マウスモデルに対し、葉酸キトサンナノ粒子を付加したコントロールsiRNA、CCDC88A siRNAまたはWASF2 siRNAを投与した場合において、S2-013腫瘍へのsiRNA集積を示す写真である。 図32は、図31の写真撮影後にマウスから取り出し、ヘマトキシリン・エオジン染色した原発S2-013腫瘍の写真である。
 本発明に係る膵がん細胞浸潤転移阻害剤は、配列番号1~92から選択される1以上の塩基配列を有するRNA(1)を含むことを特徴とする。また、本発明に係る膵がん細胞浸潤転移阻害剤は、siRNAまたはshRNAを有効成分として含み、当該siRNAまたはshRNAの一部がRNA(1)であり、当該RNA(1)の塩基配列が配列番号1~92から選択される1以上であることを特徴とする。
 配列番号1~92の塩基配列は、膵がん細胞の細胞膜突起中に局在しているヒトインスリン様成長因子2mRNA結合タンパク質3(IGF2BP3)に結合しているmRNAの塩基配列の一部であり、それら塩基配列を有するRNAをRNA干渉で用いれば、上記mRNAを分解してその翻訳を阻害することが可能になる。
 本発明者は、運動性の高い膵がん細胞において、通常は核小体に存在するIGF2BP3が細胞膜突起に集まり、細胞膜突起中で特定のmRNAがIGF2BP3に結合していることを見出し、さらに、当該mRNAをRNA干渉で阻害すれば、膵がん細胞の浸潤転移を非常に有効に抑制できることを実験的に証明した。配列番号1~92に示す塩基配列は、かかるmRNAの部分塩基配列に相当することから、RNA(1)はRNA干渉のsence RNAとして用いることができる。
 インスリン様成長因子(IGF)は、そのアミノ酸配列がインスリンと高度に類似したポリペプチドであり、細胞培養ではインスリンと同様に有糸分裂誘発などの反応を引き起こす。IGF-2は初期の発生に要求される第一の成長因子であると考えられ、哺乳類では脳、腎臓、膵臓および筋肉より分泌され、IGF-1よりも特異的な作用をし、大人ではインスリンの600倍の濃度でみられる。IGFの働きはIGF結合タンパク質として知られる遺伝子ファミリーにより調節されているが、IGF遺伝子の発現は、そのmRNAに結合するタンパク質によって調節されている。
 IGF2BP3はIGF遺伝子発現の調節因子の一つであり、通常は核小体に存在しているのに対して、本発明者は、膵がん細胞内ではその運動性に必須の部位である細胞膜突起に集積しており、膵がん細胞の浸潤転移に大きく関与していることを見出した。例えば、膵がん細胞においてIGF2BP3遺伝子をノックアウトすると、運動性を失って浸潤が有意に抑制され、転移を起こさなくなる。
 RNA干渉では、siRNAまたはshRNAが用いられる。これらRNAは、細胞内に導入されても染色体内に組み込まれず変異を起こさないことから安全である。また、siRNAは化学合成が比較的容易であり、二本鎖状態では安定である。
 siRNAは、標的mRNAの部分塩基配列と相同なsence RNAと、当該sence RNAとハイブリダイズ可能なantisense RNAがハイブリダイズした二本鎖RNAであり、通常、3’末端はOHのままである一方で5’末端がリン酸化され、3’末端側は1塩基以上、4塩基以下突出していてもよい。siRNAには特異的なタンパク質が結合し、RISC(RNA-Induced-Silencing-Complex)と呼ばれる複合体が形成される。RISCはsence RNAの塩基配列との相同配列を有するmRNAを認識して結合し、RNaseIII様の酵素活性によりmRNAを切断する。
 shRNAは一本鎖RNAからなり、標的mRNAの部分塩基配列と相同なsence RNA領域と、当該sence RNAとハイブリダイズ可能なantisense RNA領域が環状構造を示すリンカーRNAにより結合されており、全体としてヘアピン状の構造を有する。shRNAは3’末端が1塩基以上、4塩基以下突出していてもよく、また、当該3’突出末端はDNAで構成されていてもよい。shRNAは、細胞内で分解され、siRNAと同様にRNA干渉を引き起こす。
 本発明に係る膵がん細胞浸潤転移阻害剤が含むRNA(1)は、配列番号1~92から選択される1以上の塩基配列を有する。配列番号1~92の塩基配列は、膵がん細胞の細胞膜突起に含まれる19種のmRNAの塩基配列の一部である。本発明で有効成分として用いるsiRNAまたはshRNAの一部が、RNA(1)に相当する。但し、上記配列中に1塩基の欠失、置換もしくは付加を含む塩基配列を有するRNAであっても、同様にRNA干渉作用を示す場合がある。本発明の範囲には、このような均等発明も含まれるものとする。
 本発明において「(塩基配列を)有する」とは、RNAが所定の塩基配列のみを有するか、或いは、所定の塩基配列に加え、それ以外の塩基配列を有してもよいとの意味であるが、上述したような5’末端の修飾や、3’末端における突出RNAまたは突出DNA以外、RNAの塩基配列は実質的に所定の塩基配列と同一であることが好ましい。
 RNA(1)の塩基配列としては、配列番号57~60から選択される1以上または配列番号73~76から選択される1以上の少なくともいずれかの塩基配列が特に好ましい。配列番号57~60の塩基配列は、CCDC88Aの塩基配列の一部であり、配列番号73~76の塩基配列は、WASF2の塩基配列の一部である。CCDC88AとWASF2は、膵がん細胞の細胞膜突起に含まれるmRNAであるが、膵がん細胞における機能は未知であった。本発明者は、膵がん細胞の細胞膜突起に含まれるmRNAの中でも、CCDC88AとWASF2が、膵がん細胞の浸潤転移を亢進させる能力が最も高いことを実験的に見出している。よって、上記好適RNA(1)は、CCDC88AとWASF2の働きを抑制し、膵がん細胞の浸潤転移を最も有効に阻害することができる。
 本発明に係る膵がん細胞浸潤転移阻害剤は、RNA(1)に加え、RNA(1)とストリンジェントな条件でハイブリダイズする塩基配列を有するRNA(2)を含むことが好ましい。RNA(2)により、RNA(1)をより安定化することができる。
 RNA(2)の塩基配列は、RNA(1)の塩基配列と完全に相補的であることが好ましいが、ストリンジェントな条件でハイブリダイズする範囲で完全に相補的でなくてもよいものとする。本発明において「ストリンジェントな条件」とは、150mM以上、900mM以下の塩化ナトリウム濃度、15mM以上、90mM以下のクエン酸ナトリウム濃度、即ち、1~6×SSC、0.1質量%以上、0.5質量%以下のSSDの水溶液中、42℃以上、55℃以下の温度で、5分間以上、15分間以下、1回または2回洗浄する条件をいう。また、RNA(1)の塩基配列との完全相補配列に対するRNA(2)の塩基配列の相同性としては、90%以上が好ましく、92%以上がより好ましく、95%以上がさらに好ましい。なお、塩基配列の相同性は、当業者であれば市販の配列解析ソフトウェアを用いて容易に決定することができる。
 本発明に係る膵がん細胞浸潤転移阻害剤の一つの態様では、RNA(1)とRNA(2)がそれぞれ独立に含まれており、これらが二本鎖RNA、即ちsiRNAを形成している。
 また、本発明に係る膵がん細胞浸潤転移阻害剤の別の態様では、RNA(1)とRNA(2)がリンカーRNAを介して結合した一本鎖RNAが有効成分として含まれており、当該一本鎖RNA、即ちshRNAはヘアピン構造を有しており、RNA(1)とRNA(2)がハイブリダイズしており、且つリンカーRNAが環状構造を有する。
 RNA(1)とRNA(2)を含むsiRNA、並びに、RNA(1)、リンカーRNAおよびRNA(2)を含むshRNAは、化学合成してもよいし、T7RNAポリメラーゼを用いてインビトロ合成してもよい。
 本発明に係る膵がん細胞浸潤転移阻害剤は、RNA(1)、または、上記siRNAもしくは上記shRNAを有効成分として1種のみ含むものであってもよいし、或いは2種以上含んでいてもよいものとする。2種以上含む場合の数としては、2以上、8以下が好ましく、3以上、5以下がより好ましい。
 本発明に係る膵がん細胞浸潤転移阻害剤の剤形は、標的部位に有効成分が送達されるものであれば特に制限されず、例えば、注射剤、液剤、徐放剤とすることができる。これら製剤の溶媒としては水が好ましいが、生理食塩水、PBS、血清アルブミン溶液を用いるなどして製剤が最終的に等張液または略等張液となるようにすることが好ましい。その他、本発明に係るRNAを、直接的または間接的に葉酸へ結合させてもよい。膵がん細胞膜の表面には葉酸レセプターが高発現しているため、かかるRNA-葉酸複合体は、膵がん細胞へ選択的に送達および結合される可能性がある。また、本発明に係るRNAをキトサンナノ粒子に結合させてもよい。キトサンナノ粒子は、体内へ静注投与されたsiRNAの酵素分解を抑制する作用を有する。さらに、葉酸-キトサン複合ナノ粒子へ、本発明に係るRNAを結合させることが好ましい。
 本発明に係る膵がん細胞浸潤転移阻害剤の標的部位は、膵臓のみならず、膵がん細胞が転移したリンパ節や他の臓器であってもよい。また、標的部位へ有効成分をより確実に送達するために、剤形としては注射剤が好ましい。また、リポソームや高分子ミセルなど、公知の薬剤送達技術を用いてもよい。
 本発明に係るDNAは、RNA(1)をコードする塩基配列を有することを特徴とする。さらに、RNA(2)を別の部位でコードするものであってもよいし、RNA(1)、リンカーRNAおよびRNA(2)を連続してコードするものであってもよい。
 本発明に係るDNAは、上記のRNA(1)をコードする塩基配列(遺伝子)が発現するよう、さらに、プロモーター、エンハンサー、サイレンサー、スプライシングドナー、アクセプターおよびポリAなどの調節領域を含んでいてもよい。特に、上記コード領域の5’末端側にプロモーターが存在し、3’末端側に転写を終結させるためのターミネーターが連結されていることが好ましい。
 本発明に係るDNAは、上述したとおりRNA(1)をコードする塩基配列などを有するので、細胞内に導入されることにより、RNA(1)などが細胞内で産生され、RNA干渉により標的mRNAが分解される。よって、本発明に係るDNAが挿入されたベクターは、膵がん細胞浸潤転移阻害剤の有効成分となり得る。
 本発明で用いるベクターは、プラスミドベクターや、無毒化したウィルスベクター、また、リポソームベクターなど公知のベクターから適宜選択すればよい。
 本発明に係るベクターは、リポフェクトアミン法など脂質を媒体とする担体輸送法、リン酸カルシウムなどの化学物質を媒介する方法、マイクロインジェクション、遺伝子中による打ち込み法、電気穿孔法など、公知方法により標的細胞内へ送達することができる。
 運動性、浸潤性および転移性の高い膵がん細胞において、細胞膜突起中にはIGF2BP3と結合して集積しているmRNAが存在している。このmRNAは、細胞膜突起において局所翻訳されることにより膵がん細胞の浸潤転移を亢進させることが実験的に確認された。本発明においては、細胞膜突起中の当該mRNAの翻訳をRNA干渉で阻害することにより、膵がん細胞の浸潤転移を抑制することが可能となる。
 本発明に係るRNA(1)等、DNAまたはベクターの投与量や投与頻度は、それぞれの剤形や、患者の重篤度、年齢、性別、体重などにより適宜調整すればよい。
 本願は、2014年7月4日に出願された日本国特許出願第2014-138217号に基づく優先権の利益を主張するものである。2014年7月4日に出願された日本国特許出願第2014-138217号の明細書の全内容が、本願に参考のため援用される。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
 実施例1: IGF2BP3の転移性膵がん細胞における所在確認
 免疫細胞化学的手法を用い、膵管腺がん(PDAC)細胞内におけるIGF2BPの所在を確認した。PDAC細胞としては、中分化PDAC細胞であるS2-013株細胞と、未分化PDAC細胞であるPANC-1株細胞の2種を用いた。
 (1) 膵がん細胞の培養
 ヒトPDAC細胞SUIT-2株の亜系であるS2-013株を、宮崎大学の岩村威志先生より頂いた。また、PDAC細胞PANC-1株は、American Type Culture Collectionより購入した。これら細胞は、加熱により不活性化したウシ胎児血清(FCS)を10%含むダルベッコ改変イーグル培地(DMEM,Gibco-BRL製)中、5%CO2を含む湿潤雰囲気下で培養した。
 (2) 共焦点免疫蛍光顕微鏡試験
 ガラス製のカバースリップを、室温で1時間、10μg/mLのフィブロネクチン(Sigma-Aldrich製)でコートした。上記S2-013株細胞またはPANC-1株細胞を当該フィブロネクチンコートカバースリップ上に播き、5時間インキュベートした。次いで、当該細胞を4%パラホルムアルデヒドで固定し、0.1%Triton X-100で透過処理し、ブロッキング溶液(3%BSA/PBS)で被覆した後、抗IGF2BP3一次抗体等と1時間インキュベートした。さらに、ローダミンが結合したファロイジン(Cytoskeleton製)の存在下または不存在下、蛍光色素であるAlexa488-,Alexa546-,Alexa594-またはAlexa647-結合二次抗体(Cytoskeleton製)を用いた。いくつかの一次抗体には、市販の抗体標識技術(Life technologies製「Zenon(登録商標)」を用い、緑色または赤色の蛍光色素分子を結合させた。各試料は、共焦点レーザスキャン蛍光相関分光顕微鏡(Carl Zeiss製「Zeiss LSM 510 META microscope」)で可視化した。得られた顕微鏡像の写真を図1,2に示す。図1,2中、IGF2BP3は緑色色素で標識されており、アクチンフィラメントはファロイジンにより赤色で染色されている。また、矢印は、細胞膜突起中に存在しているIGF2BP3を示している。
 (3) 免疫沈降
 上記S2-013株細胞をフィブロネクチン上で5時間インキュベートし、溶解用緩衝液(50mM Tris(pH7.4),150mM塩化ナトリウム,1mM塩化マグネシウム,0.5%NP-40,およびプロテアーゼインヒビターカクテル錠(Roche製))を使って溶解し、得られた溶解物を、2μg抗IGF2BP3抗体またはウサギIgGアイソタイプコントロール抗体およびダイナビーズプロテインG(Dynal製)で免疫沈降させた。内因性IGF2BP3とG3BPとの相互作用を試験するために、免疫複合体をウェスタンブロットで分析した。結果を図3に示す。
 (4) 結果と考察
 膵管腺がん細胞であるS2-013株またはPANC-1株をフィブロネクチン上で培養して細胞膜突起の形成を促進したところ、図1のとおり、IGF2BP3は、その内部にアクチンフィラメントが存在している細胞膜突起中に集積していた。また、図2のとおり、細胞膜突起に集積した顆粒中で、IGF2BP3は、ストレス顆粒のマーカータンパク質であるG3BPと共局在していることが分かった。さらに、図3のとおり、フィブロネクチン上で培養されたS2-013株細胞の抽出物を抗IGF2BP3抗体または抗G3BP抗体による免疫沈降実験に付したところ、IGF2BP3はG3BPと共沈降することが示された。
 ストレス顆粒は、40Sサブユニットリボソームタンパク質と種々の翻訳開始因子を内包しており、mRNAからタンパク質への翻訳調節に関わっている。また、ストレス顆粒は、いくつかのRNA結合タンパク質も含み、当該タンパク質は内包されているmRNAの安定化に関与している。よって、IGF2BP3は、ストレス顆粒中に局在するRNA結合タンパク質として、細胞膜突起中で特定のmRNAの翻訳を調節していることが考えられる。
 実施例2: 転移性膵がん細胞におけるIGF2BP3のノックダウン試験
 (1) IGF2BP3-RNA干渉
 膵がん細胞の浸潤転移に関するIGF2BP3の影響を明らかにするために、IGF2BP3に特異的なsiRNAを発現するベクターを用いて、S2-013株細胞におけるIGF2BP3の生成が恒常的に抑制されたクローン細胞を樹立した。
 具体的には、急激に増殖するGP2-293パッケージング細胞(Clontech製)に、scrambled negative control(OriGene Technologies製「TR30013」)またはIGF2BP3 mRNAを標的とするsiRNA(OriGene Technologies製「TG312221」)を組み込んだ複製欠損レンチウィルスを発生させるpGFP-V-RSベクター(OriGene Technologies製)を一時的に感染させた。パッケージング細胞へのベクターの一時的感染と共に、複製欠損性ウィルスを得て、S2-013株細胞に感染させた。感染S2-013株細胞を感染から48時間後にフラスコに移した後、0.5μg/mLのピューロマイシンを含むDMEM培地中で培養することにより、IGF2BP3 mRNAをターゲットとするsiRNAを安定的に発現するS2-013株細胞由来のクローン細胞を確立した。これら細胞は、コンフルエントの状態になってからさらに10日間培養した。培養中、培地は2日間に一度の割合で新しいものに交換した。細胞は、ウェスタンブロット解析によりIGF2BP3の抑制が認められたもののみを用いた。IGF2BP3を標的とするsiRNAを感染させたS2-013株細胞のIGF2BP3-RNAiクローン(siIGF-1およびsiIGF-2)と、コントロールRNAiクローン(Scr-1およびScr-2)を、抗IGF2BP3抗体を用いたウェスタンブロットにより解析した結果を図4に示す。図4に示す結果のとおり、免疫ブロットによりIGF2BP3のノックダウンが確認された。
 (2) 創傷領域運動性アッセイ
 各創傷治癒アッセイでは、プラスチック製のピペットチップを用い、コンフルエントの単層細胞に創傷領域として十字型の切れ込みを入れた。観測する創傷領域にいくつかマーキングした後に、位相差顕微鏡を使って写真撮影した。マークした創傷領域に遊走する細胞を1時間から8時間観察し、写真撮影を継続的に行った。細胞の写真を図5に示す。また、遊走した細胞による創傷領域の塞がりの度合いを、遊走した細胞を計数することにより定量化した。定量値を図6に示す。図6中、「*」は、Scr-1またはScr-2に対して、t-テストにおいてp<0.001の危険率で有意差がある場合を示す。
 図5に示す結果のとおり、IGF2BP3遺伝子の発現抑制により、コンフルエント培養されたS2-013株の創傷領域への細胞の移動が阻害された。また、図6のとおり、創傷領域に移動する細胞の数は、IGF2BP3遺伝子の発現をRNA干渉で阻害することにより、有意に減少した。
 (3) 細胞運動先進部の免疫細胞染色
 プラスチック製ピペットチップを用い、コンフルエントのS2-013株細胞に十字型の切れ込みを入れた後、創傷領域への細胞の遊走を促進させた。4時間後、細胞を一次抗体で免疫染色し、上記実施例1と同様にして蛍光体結合二次抗体とインキュベートした。創傷領域へ遊走しはじめた細胞の運動先進部を、共焦点レーザスキャン蛍光相関分光顕微鏡(Carl Zeiss製「Zeiss LSM 510 META microscope」)で観察した。結果を図7に示す。図7のとおり、遊走を開始したS2-013株細胞の細胞先進部に形成された細胞膜突起中にIGF2BP3が集積していた。
 (4) マトリゲル浸潤アッセイ
 無血清培地に懸濁した4.0×104個の細胞を、Matrigel Invasion Chamber(24ウェルプレート,孔径:8μm,Becton Dickinson製)の上部チャンバーに播種した。化学誘引物質を5%含む溶媒を下部チャンバーに添加した。細胞を上部チャンバー内で20時間インキュベートした。次いで、3つの独立した領域を顕微鏡で観察し、下部チャンバーへ浸潤した細胞を計数した。同様の実験を3回繰り返し、scrambled negative controlのsiRNAを恒常的に発現するS2-013コントロールクローン(Scr-1およびScr-2)とIGF2BP3特異的なsiRNAを恒常的に発現してIGF2BP3発現が抑制されたS2-013クローン(siIGF-1およびsiIGF-2)との間で比較した。結果を図8に示す。図8中、「*」は、Scr-1またはScr-2に対して、t-テストにおいてp<0.001の危険率で有意差がある場合を示す。
 図8に示す結果のとおり、Matrigel Invasion Chamberを使ったマトリゲル浸潤アッセイの結果、IGF2BP3の発現をRNA干渉により阻害したS2-013株(siIGF-1およびsiIGF-2)の浸潤性は、コントロール(Scr-1およびScr-2)に対して有意に抑制された。
 また、IGF2BP3全アミノ酸をコードするcDNAを増幅するために、S2-013株細胞のRNAを鋳型としてRT-PCRを行った。得られたPCR産物を、C-末端にmyc-DDKタグを生じるpCMV6-Entryベクター(Origene製)に挿入した。以下、得られたベクターを「IGF2BP3-pCMV6」という。siIGF-1およびsiIGF-2クローン細胞にIGF2BP発現を回復させるために、IGF2BP3-pCMV6をX-tremeGENE HP DNA Transfection Reagent(Roche製)を用いてsiIGF-1およびsiIGF-2クローン細胞に遺伝子導入を行った。48時間後に抗IGF2BP3抗体を用いたウェスタンブロット解析を施行した。結果を図9に示す。図9のとおり、強制発現させた外因性IGF2BPの発現を確認できた。
 モックコントロールベクターまたはIGF2BP3-pCMV6をコントロールRNAi細胞またはIGF2BP3-RNAi細胞に一時的に導入し、48時間後、上記と同様にしてマトリゲル浸潤アッセイを行った。抗IGF2BP3抗体を用いたウェスタンブロット解析の結果を図9に示す。図9中、黒矢印は内因性IGF2BP3を示し、白矢印は外因性IGF2BP3を示す。「GAPDH」はウェスタンブロット解析で各サンプルが等量用いられていることを示すインターナルコントロールとしてのグリセルアルデヒド-3-リン酸デヒドロゲナーゼである。また、下部チャンバーへ浸潤した細胞数を図10に示す。図10中の「*」は、モックベクターをトランスフェクションした細胞に対して、IGF2BP3-pCMV6をトランスフェクションした細胞の数が、t-テストにおいてp<0.005の危険率で有意に多いことを示す。
 図9と図10に示す結果のとおり、IGF2BP3-pCMV6のIGF2BP3-RNAi S2-013株細胞へのトランスフェクションは、IGF2BP3発現を回復することによりIGF2BP3-RNAiにより生じた細胞の浸潤抑制を無効にすることが見出された。
 (5) マウスと腫瘍細胞の同所移植
 6週齢の無菌雌性無胸腺ヌードマウス(BALB/cSlc-nu/nu)を日本エスエルシー株式会社から購入し、高知大学研究機関内動物管理使用ガイドラインに従って扱った。scrambled negative controlのsiRNAを恒常的に発現するS2-013コントロールクローン(Scr-1およびScr-2)とIGF2BP3特異的なsiRNAを恒常的に発現してIGF2BP3発現が抑制されたS2-013クローン(siIGF-1およびsiIGF-2)を、それぞれ8.0×105ずつ、各マウスの膵臓へ外科的かつ同所的に移植することにより、マウス膵臓内に腫瘍を形成させた。移植から42日後にマウスを屠殺し、ヘマトキシリン-エオシン染色を行い、マウスの膵臓内に形成された腫瘍から後腹膜への浸潤の有無と、肺および肝臓への転移の有無を調べた。また、マウス膵臓内に形成された腫瘍を計量した。計量結果、および後腹膜への浸潤と遠隔転移の有無を表1に、染色写真を図11に示す。なお、図11中、「R」は腔腹膜組織を示し、「P」は筋肉組織を示し、「N」は正常組織を示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果のとおり、マウス膵臓内に形成された腫瘍から後腹膜への浸潤は、コントロールクローン細胞(Scr-1およびScr-2)に比べ、IGF2BP3発現が抑制されたクローン細胞(siIGF-1およびsiIGF-2)の方が有意に低かった。また、コントロールクローン細胞由来の膵がん組織は肝臓や肺へ転移したのに対して、IGF2BP3発現が抑制されたクローン細胞由来の膵がん組織は転移しなかった。
 また、図11に示す結果のとおり、コントロールクローン細胞由来の膵がん組織は、マウスの膵臓組織全体へ浸潤していた。特に、腫瘍組織と正常組織との間の境界は、コントロール試料では明確でなかった。それに対して、IGF2BP3発現が抑制されたクローン細胞由来の膵がん組織は、その大部分がマウスの間質細胞により包まれ、マウス正常膵臓組織から明確に分離されていた。コントロールクローン細胞を移植されたマウスでは、腹膜の表面は、コントロールクローン細胞由来の膵がん組織から播種された比較的厚いがん細胞層で覆われており、がん細胞は筋層まで浸潤していた。一方、IGF2BP3発現が抑制されたクローン細胞を移植されたマウスでは、腹膜の大部分においてがん細胞は認められなかった。さらに、コントロールクローン細胞を移植されたマウスでは、肺と肝臓に転移巣が認められたが、IGF2BP3発現が抑制されたクローン細胞を移植されたマウスでは、肺および肝臓への転移巣は皆無であった。以上の結果より、膵がん細胞でIGF2BP3の発現を抑制することにより肺や肝などへの転移を完全に防ぐことができ、また、IGF2BP3は膵がんの新規治療標的分子になり得るといえる。
 (6) 考察
 以上の結果は、IGF2BP3が膵がん細胞の浸潤転移を特に促進し、また、生体内における膵臓の腫瘍形成において、IGF2BP3の発現量の低減が、1)膵臓内における腫瘍の増加と、2)膵臓の隣接組織への浸潤と、3)他の組織への転移に影響を及ぼすことを示している。
 実施例3: 膵がん細胞の細胞膜突起の形成におけるIGF2BP3の役割
 共焦点顕微鏡を用い、フィブロネクチンで刺激したS2-013株細胞におけるアクチンフィラメントの重合と細胞膜突起の三次元構造を調べた。共焦点顕微鏡の詳しい条件は、上記実施例1と同様とした。結果を図12~14に示す。
 図12は、細胞膜直下に形成されたアクチンフィラメントの写真である。図12のとおり、scrambled negative controlのsiRNAを恒常的に発現するS2-013コントロールクローン(Scr-1)に比べ、IGF2BP3特異的なsiRNAを恒常的に発現してIGF2BP3発現が抑制されたS2-013クローン(siIGF-1)における重合アクチンフィラメントの量は少ない。かかる結果は、IGF2BP3-RNAi S2-013株細胞へのIGF2BP3-pCMV6のトランスフェクションによって、IGF2BP3の発現が回復し、細胞膜直下のアクチンフィラメントの重合が復活することを示している。
 図13は、全細胞中、細胞膜突起を有する細胞の割合である。図13のとおり、IGF2BP3発現が抑制されたクローン(siIGF-1)における細胞膜突起を有する細胞の割合は、コントロールクローン(Scr-1)に比べて有意に少ない。さらに、IGF2BP3-RNAi S2-013株細胞へのIGF2BP3-pCMV6の導入によって、IGF2BP3の発現が回復し、細胞膜直下のアクチンフィラメントが復活した。
 図14は、コントロールクローン細胞(Scr-1)とIGF2BP3発現が抑制されたクローン細胞(siIGF-1)の位相差顕微鏡を用いた写真である。図14のとおり、コントロールクローン細胞は紡錘形であり線維芽細胞様の形態を示す一方で、IGF2BP3発現が抑制されたクローン細胞は丸状であり上皮細胞様の形態を示した。線維芽細胞様形態は上皮細胞様形態に比べて浸潤転移傾向の強いことが多いので、かかる結果は、IGF2BP3発現が抑制されたクローン細胞が、IGF2BP3発現が抑制されていないコントロールクローン細胞よりも浸潤転移能が低いことを示す。
 実施例4: IGF2BP3に結合した転写産物の同定
 (1) RNA免疫沈降、配列決定およびバイオインフォマティクス解析
 S2-013株細胞をフィブロネクチン上に播種し、5時間インキュベートした。細胞をPBSで2回洗浄した後、50mM Tris(pH7.4),150mM塩化ナトリウム,1mM塩化マグネシウム,0.5%NP-40,およびRNaseインヒビター(Roche製)を含むNP2緩衝液で溶解した。抽出液を、ダイナビーズプロテインG(Dynal製)および抗IGF2BP3抗体またはウサギIgGアイソタイプコントロール抗体で4℃で2時間処理することにより、免疫沈降させた。ビーズをマグネチックラック(Dynal製)上でペレット化した。沈降複合体をプロテイナーゼKで処理し、フェノール-クロロホルム混合溶媒で抽出した後、エタノールで核酸を沈殿させた。次に、沈殿した核酸をDNaseI(Promega製)で処理し、RNeasy kit(Qiagen製)を使ってRNAを精製した。次世代シークエンサーによる得られたRNA試料の同定を北海道システム・サイエンス社に委託し、さらに、得られたデータのバイオインフォマティクス解析をWorld Fusion社に委託した。IGF2BP3免疫沈降試料またはコントロールIgG免疫沈降試料に含まれるmRNAの濃度の散布プロットを図15に示す。また、IGF2BP3免疫沈降試料とコントロールIgG免疫沈降試料との間で、リボソームRNA(rRNA)および核内低分子RNA(snRNA)の数の線形回帰図を、それぞれ図16(1)と図16(2)に示す。図16中、点線はx=yの直線を示す。
 図15と図16のとおり、IGF2BP3免疫沈降試料とコントロールIgG免疫沈降試料それぞれが精製されたRNAサンプルを用いたシークエンサー解析の妥当性が客観的に示された。
 上記実験では、RPKM値をサロゲート処理後にユニーク化処理を行うことにより発現比を算出した。具体的には、RPKM値をlog2[(IGF2BP3試料のRPKM値)/(アイソタイプコントロール試料のRPKM値)]比に変換し、1.0超(発現比として2倍超)のRNAを、IGF2BP3に結合している転写産物であるとみなした。その結果、ウサギIgGアイソタイプコントロール免疫沈降物に比べ、抗IGF2BP3免疫沈降物中の濃度が有意に高い2,826種類のRNAを特定した。
 (2) RT-PCR
 上記(1)で特定されたIGF2BP3結合mRNAの中で、ADP-ribosylation factor 6(ARF6)とRho guanine nucleotide exchange factor 4(ARHGEF4)の2つのmRNAにつき、IGF2BP3との結合性を確認した。具体的には、StrataScript reverse transcriptase(Agilent製)とオリゴd(T)12-18プライマーを用い、細胞膜突起の形成を誘導したS2-013細胞ライセートから抗IGF2BP3抗体、ウサギIgGアイソタイプコントロール抗体またはネガティブコントロール抗CD63抗体により免疫沈降したRNAを精製して、RT-PCRを行った。内部定量コントロールとしてユビキチンC mRNAを用いた。結果を図17に示す。図17のとおり、上記2つの転写産物は、抗IGF2BP3抗体と免疫沈降複合体を形成したが、アイソタイプコントロール抗体および抗CD63抗体とは形成しなかった。
 (3) 免疫蛍光
 細胞膜突起の形成を誘導したS2-013細胞内に存在する内在性ARF6 mRNAおよびARHGEF4 mRNAにそれぞれの配列特異的な蛍光プローブをin situハイブリダイゼーションさせるために、QuantiGene ViewRNA plate-based assay kit(Panomics製)を用いた。フィブロネクチンで刺激したS2-013株細胞を8%ホルムアルデヒドで固定化し、50%、70%および100%エタノールを使って脱水し、4℃で一晩静置した。次いで、細胞を再度脱水し、透過処理し、蛍光プローブとハイブリダイゼーションさせた。標的となるmRNAはARF6およびARHGEF4であり、対照RNAはユビキチンC mRNAとした。in situハイブリダイゼーションの後、断面をPBSで洗浄し、ヤギ血清の4%PBS溶液であるブロッキングバッファーにより1時間ブロッキングし、ブロッキングバッファー中で抗IGF2BP3抗体と3時間インキュベートした。ブロッキングバッファー中、二次抗体を室温で30分間作用させ、核をDAPIで3分間染色し、Aqua Polymount(Polysciences製)に埋め込んだ。共焦点レーザスキャン蛍光相関分光顕微鏡(Carl Zeiss製「Zeiss LSM 510 META microscope」)を用い、共焦点蛍光像を得た。結果を図18に示す。
 図18のとおり、ARF6 mRNAおよびARHGEF4 mRNAは細胞質中に存在する顆粒中でIGF2BP3と共局在化しており、これらは細胞質突起中に集合していた。一方、対照ユビキチンC mRNAは、IGF2BP3と共局在化していなかった。IGF2BP3顆粒は、核の周囲にも集積していた。これら顆粒は、おそらくARF6 mRNAやARHGEF4 mRNAと共に、核周辺から細胞膜突起へと運搬されたものと考えられる。
 (4) 結論
 以上の実験結果は、IGF2BP3とIGF2BP3結合mRNAを含むストレス顆粒は、細胞膜突起中に集積していることを示している。
 実施例5: 細胞膜突起中mRNAの局所翻訳と膵がん細胞の運動浸潤との関係確認
 (1)
 S2-013株のコントロールRNAi細胞(Scr-1)とIGF2BP3-RNAi細胞(siIGF-1)をフィブロネクチン上でインキュベートし、抗ARF6抗体(緑色)または抗ARHGEF4抗体(緑色)で染色した。アクチンフィラメントは、ファロイジンを使って赤色で標識した。また、核をDAPIで青色に染色した。結果を図19に示す。
 図19のとおり、IGF2BP3-RNAi細胞では、IGF2BP3の発現抑制に伴って、ARF6とARHGEF4の生成は、細胞膜突起においてのみ低下した。
 (2)
 mycタグIGF2BP3発現回復コンストラクトベクターを、IGF2BP3-RNAi細胞(siIGF-1)に導入した。48時間後、細胞をフィブロネクチン上でインキュベートした。細胞を抗myc抗体(緑色)または抗ARF6抗体(紫色)で染色した。アクチンフィラメントは、ファロイジンを使って赤色で標識した。また、核をDAPIで青色に染色した。結果を図20に示す。
 図20のとおり、IGF2BP3-RNAi細胞(siIGF-1)でIGF2BP3遺伝子の発現を回復させることにより、ARF6タンパク質が細胞膜突起で再び生成した。
 (3)
 抗ARF6抗体の代わりに抗ARHGEF4抗体(紫色)を用いた以外は上記(2)と同様にして実験を行った。結果を図21に示す。
 図21のとおり、ARF6タンパク質の生成と同様に、IGF2BP3-RNAi細胞(siIGF-1)でIGF2BP3遺伝子の発現を回復させることにより、ARHGEF4タンパク質が細胞膜突起で再び生成した。
 (4)
 膵がん細胞におけるARF6タンパク質とARHGEF4タンパク質の機能解析を行った。それぞれARF6 RNAおよびARHGEF4 RNAの部分塩基配列に相当する配列番号1および配列番号5の塩基配列を有するRNAと、その相補的RNAからなる二本鎖RNA(以下、それぞれ「siARF6」と「siARHGEF4」という)、またはコントロールのsiRNAオリゴを、S2-013株細胞に導入した。これらの細胞をフィブロネクチン上で培養し、細胞膜突起における末梢アクチンフィラメントを解析した。ベクターを導入してから48時間後、ARF6タンパク質とARHGEF4タンパク質の生成をウェスタンブロットにより解析した。結果を図22に示す。図22中、「Scr」、「siARF6」および「siARHGEF4」は、それぞれコントロールsiRNAオリゴ、配列番号1の塩基配列を有するsiRNA、配列番号5の塩基配列を有するsiRNAを導入した細胞の結果を示す。
 図22に示す結果のとおり、コントロール細胞に比べ、ARF6-RNAi細胞またはARHGEF4-RNAi細胞におけるARF6タンパク質またはARHGEF4タンパク質の生成は明確に抑制されていた。
 また、ARF6-mRNAまたはARHGEF4-mRNAの翻訳をRNA干渉により阻害した細胞(siARF6またはsiARHGEF4)とコントロール細胞(Scr)における細胞膜突起が形成された細胞の割合を算出した。結果を図23に示す。図23中、「*」はt-テストにおいてp<0.001で有意差があることを示す。
 図23のとおり、ARF6-mRNAおよびARHGEF4-mRNAの翻訳を阻害することにより、フィブロネクチンを介した細胞膜突起の形成が有意に阻害された。
 さらに、ARF6-mRNAまたはARHGEF4-mRNAの翻訳をRNA干渉により阻害した細胞(siARF6またはsiARHGEF4)とコントロール細胞(Scr)の共焦点顕微鏡写真を、それぞれ図24と図25に示す。
 図24と図25のとおり、ARF6-mRNAおよびARHGEF4-mRNAの翻訳が阻害された膵がん細胞では、細胞膜突起の形成を示す末梢アクチンフィラメントの形成が明確に抑制された。
 (5)
 上記(4)と同様に、ARF6とARHGEF4のそれぞれのmRNAに特異的なsiRNAオリゴとコントロールsiRNAオリゴをS2-013株細胞とPANC-1細胞株へ一過性導入することにより、コントロールRNAi細胞、ARF6-RNAi細胞、およびARHGEF4-RNAi細胞を得た。
 各細胞を用い、上記実施例2(2)と同様の条件で創傷領域運動性アッセイを行い、創傷領域に遊走した細胞数を計数した。結果を図26に示す。なお、図26は4例の平均値を示し、「*」はt-テストにおいてp<0.001で有意差があることを示す。
 図26に示す結果のとおり、ARF6 mRNAおよびARHGEF4 mRNAの翻訳を阻害した場合には、膵がん細胞の運動性が有意に抑制されることが明らかとなった。
 (6) 
 上記実施例5(5)の細胞を用い、上記実施例2(4)と同様にしてマトリゲル浸潤アッセイを行い、上部チャンバーから下部チャンバーへ浸潤した細胞を計数した。同様の実験を4回繰り返し、その平均値を算出した。結果を図27に示す。図27中、「*」はt-テストにおいてp<0.001の危険率で有意差がある場合を示す。
 図27に示す結果のとおり、ARF6 mRNAおよびARHGEF4 mRNAの翻訳を阻害した場合は、浸潤性はコントロール(Scr)に対して有意に抑制された。
 (7) 結論
 以上の実験結果により、IGF2BP3に結合しているmRNAは、細胞膜突起部で選択的に局所翻訳されてタンパク質を生成し、これらのタンパク質は、細胞膜突起形成を促進することを通して膵がん細胞の運動浸潤に関わっていることが考えられる。
 実施例6: 本発明の効果を確認するための葉酸キトサンナノ粒子付加siRNAを用いたIn vitro実験
 (1) siRNAの細胞内への取り込み確認実験
 膵がん細胞株S2-013を用いて、葉酸キトサンナノ粒子付加siRNAが細胞内に取り込まれているか否かを検討した。なお、キトサンナノ粒子は体内へ静注投与されたsiRNAの酵素分解を抑制し、葉酸はsiRNAを膵がん細胞膜表面に高発現している葉酸レセプターに結合できるようにする。
 膵がん細胞膜突起中のmRNAではないコントロールとしてscrambled siRNAに葉酸キトサンナノ粒子を付加し、さらにFITCで蛍光標識した。膵がん細胞株S2-013の培養液中に、当該コントロールsiRNAを添加した。48時間後にS2-013細胞内への取り込みを共焦点顕微鏡により観察した。結果を図28に示す。
 図28に示す結果のとおり、葉酸キトサンナノ粒子を付加したコントロールsiRNAがS2-013細胞に取り込まれ、細胞質内に顆粒状に局在していることを確認できた。
 (2) 本発明に係る葉酸キトサンナノ粒子付加siRNAによるノックダウン効果の確認実験
 次に、CCDC88Aに対するsiRNAと、WASF2に対するsiRNAのノックダウン効果を検討した。本発明者は、最近、CCDC88AとWASF2がコードするタンパク質は、それぞれ異なるアクチン結合タンパク質と複合体を形成することにより、細胞の形態変化、運動または浸潤に関与することを明らかにしている。CCDC88A siRNAは配列番号57の塩基配列を含む。WASF2 siRNAは、配列番号73の塩基配列を含む。
 葉酸キトサンナノ粒子を付加したコントロールsiRNA、CCDC88A siRNA、WASF2 siRNAのそれぞれをS2-013株の培養液中に添加し、48時間後に細胞を回収した。回収した細胞のRNAを用いて半定量RT-PCR法を行った。また、細胞ライセートを用いてウェスタンブロットを行った。半定量RT-PCR法の結果を図29Aに、ウェスタンブロットの結果を図29Bに示す。図29に示す結果のとおり、半定量RT-PCR法とウェスタンブロットのいずれにおいても、CCDC88A siRNAとWASF2 siRNAのそれぞれのmRNAに対するノックダウン効果を確認できた。
 (3) 本発明に係る葉酸キトサンナノ粒子付加siRNAによる細胞運動性阻害効果の確認実験
 葉酸キトサンナノ粒子を付加したコントロールsiRNA、CCDC88A siRNA、WASF2 siRNAのそれぞれをS2-013の培養液中に添加し、48時間後にマトリゲル浸潤アッセイを行った。マトリゲル浸潤アッセイにおいて、上部チャンバーから下部チャンバーへ移動した細胞の数を示すグラフを図30に示す。図30において、「*」はt-テストでコントロールに対してp=0.00073で有意差があったことを示し、「**」はp=0.00852で有意差があったことを示す。
 図30に示す結果のとおり、CCDC88A siRNAまたはWASF2 siRNAが取り込まれたS2-013細胞では、コントロールsiRNAが取り込まれたS2-013細胞に比べて有意に細胞浸潤が抑制された。
 以上の結果より、培養細胞の培地に添加された本発明に係る葉酸キトサンナノ粒子付加siRNAは、S2-013細胞内に取り込まれて細胞の運動性に関与するmRNAの発現を阻害していることを確認できた。
 実施例7: 本発明の効果を確認するための葉酸キトサンナノ粒子付加siRNAを用いたIn vivo実験
 6週齢のヌードマウスの膵臓にヒト膵癌細胞株S2-013を移植した膵がん浸潤転移モデルを用いた。具体的には、第1日目にイソフルランを用いた吸入麻酔により12匹のヌードマウスを麻酔し、開腹して膵臓を露出した。100万個のヒト膵癌細胞S2-013を0.1mLのPBSに懸濁し、各マウスの膵臓内に移植した。上記実施例6のIn vitro実験と同様に、siRNAはCCDC88AとWASF2に対するものと、コントロールとしてscrambled siRNAを用いた。合成した各siRNAを葉酸キトサンナノ粒子に付加した。ヒト膵癌細胞を移植した各群4匹のマウスにそれぞれの葉酸キトサンナノ粒子付加siRNAを1回/週の頻度で尾静脈へ静注投与した。マウスに全身投与されたsiRNAは、キトサンナノ粒子によりヒト膵がん組織まで受動的に送達され、葉酸が膵がん細胞上の葉酸受容体を介して効率的なエンドサイトーシスを促すことを期待できる。合計5回のsiRNA静注投与を行い、この間、第1日目にマウス膵臓内に移植したS2-013細胞は腫瘍を形成し、肝臓と肺に遠隔転移する。また、膵臓から露出した腫瘍は、腹膜播種と後腹膜浸潤を引き起こす。
 マウス膵臓内のS2-013腫瘍に静注投与した葉酸キトサンナノ粒子付加siRNAが集積しているかを確認するため、合計5回のsiRNA静注投与を行った1週間後に、各群1匹に対してAlexa546により標識した葉酸キトサンナノ粒子付加siRNAを静注投与した。標識siRNAの投与から3時間後または24時間後に、吸入麻酔下でインビボイメージングシステム(Caliper Life Science社製「IVIS spectrum imaging system」)を用いて腫瘍内への集積を観察した。マウスにおけるsiRNAの集積結果を図31Aに、摘出された腫瘍におけるsiRNAの集積結果を図31Bに示す。
 図31に示す結果のとおり、マウス膵臓に形成されたS2-013細胞腫瘍に、コントロールsiRNA、CCDC88A siRNA、WASF2 siRNAのすべてが集積していることを確認できた。重要な点として、標識した葉酸キトサンナノ粒子付加コントロールsiRNAの投与から3時間後に比べ、24時間後にコントロールsiRNAのS2-013腫瘍への集積が著増していたことがある。各siRNAはマウスの摘出心臓への蓄積はなく、S2-013腫瘍に特異的に集積していた。コントロールsiRNAを投与したマウスには腹膜播種が多発する傾向があり、腹膜播種組織へのコントロールsiRNAの特異的な集積が認められた。また、CCDC88A siRNAまたはWASF2 siRNAを投与したマウスにおける膵がん原発巣の蛍光発色は、コントロールsiRNAを投与されたマウスに比べて弱かった。その理由は、以下の図32も参照して考察する。
 インビボイメージングシステムで撮影後、マウスを解剖した。マウス腹腔内の腹膜播種の有無を確認し、原発腫瘍、肝臓および肺をホルマリン固定した。各試料をヘマトキシリン・エオジンで染色し、膵がん原発巣からの後腹膜浸潤と肺・肝臓への転移の有無をコントロールsiRNAの投与されたマウス群と比較した。原発腫瘍組織の拡大写真を図32に示し、各試料において腫瘍を確認した結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示す結果のとおり、本発明に係るCCDC88A siRNAおよびWASF2 siRNAを投与したマウス群においては、後腹膜浸潤が有意に抑制された。腹膜播種も、CCDC88A siRNAおよびWASF2 siRNAを投与したマウス群において少ない傾向が認められた。特記すべきこととして、CCDC88A siRNAを投与したマウス群においては、肝臓と肺への転移が全く認められなかった。WASF2 siRNAを投与したマウス群においては、肺転移はコントロールと差がなかったが、肝転移は全く認められなかった。また、図32に示す結果のとおり、コントロールsiRNAを投与されたマウス群の腫瘍内部では壊死部分は少なく充実性の腫瘍であったのに対して、CCDC88A siRNAおよびWASF2 siRNAを投与したマウス群のS2-013腫瘍内は壊死している部分が多かった。また、図31において、CCDC88A siRNAまたはWASF2 siRNAを投与したマウスにおける膵がん原発巣の蛍光発色は、コントロールsiRNAを投与されたマウスに比べて弱かった。その理由としては、CCDC88A siRNAまたはWASF2 siRNAを投与したマウスのS2-013腫瘍内は壊死している部分が多かったことが原因と考えられ、1回/週の頻度で投与された本発明に係る葉酸キトサンナノ粒子付加siRNAの効果と考えられる。

Claims (9)

  1.  配列番号1~92から選択される1以上の塩基配列を有するRNA(1)を含むことを特徴とする膵がん細胞浸潤転移阻害剤。
  2.  上記RNA(1)が、配列番号57~60から選択される1以上または配列番号73~76から選択される1以上の少なくともいずれかの塩基配列を有する請求項1に記載の膵がん細胞浸潤転移阻害剤。
  3.  さらに、上記RNA(1)とストリンジェントな条件でハイブリダイズする配列を有するRNA(2)を含む請求項1または2に記載の膵がん細胞浸潤転移阻害剤。
  4.  上記RNA(1)と上記RNA(2)がハイブリダイズしている二本鎖RNAを含む請求項3に記載の膵がん細胞浸潤転移阻害剤。
  5.  上記RNA(1)、上記RNA(2)、および、当該RNA(1)と当該RNA(2)とを結合するリンカーRNAを含み、当該RNA(1)と当該RNA(2)がハイブリダイズしており、且つ当該リンカーRNAが環状構造を有する一本鎖RNAを含む請求項3に記載の膵がん細胞浸潤転移阻害剤。
  6.  配列番号1~92から選択される1以上の配列を有するRNA(1)をコードする塩基配列を有することを特徴とするDNA。
  7.  請求項6に記載のDNAを含むことを特徴とするベクター。
  8.  膵がん細胞の浸潤転移を阻害するための、配列番号1~92から選択される1以上の塩基配列を有するRNA(1)の使用。
  9.  配列番号1~92から選択される1以上の塩基配列を有するRNA(1)を含むRNAを投与する工程を含むことを特徴とする膵がん細胞の浸潤転移阻害方法。
PCT/JP2015/069013 2014-07-04 2015-07-01 膵がん細胞浸潤転移阻害剤 WO2016002844A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016531421A JP6663149B2 (ja) 2014-07-04 2015-07-01 膵がん細胞浸潤転移阻害剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014138217 2014-07-04
JP2014-138217 2014-07-04

Publications (1)

Publication Number Publication Date
WO2016002844A1 true WO2016002844A1 (ja) 2016-01-07

Family

ID=55019374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069013 WO2016002844A1 (ja) 2014-07-04 2015-07-01 膵がん細胞浸潤転移阻害剤

Country Status (2)

Country Link
JP (2) JP6663149B2 (ja)
WO (1) WO2016002844A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019525903A (ja) * 2016-06-14 2019-09-12 エントス ファーマシューティカルズ インコーポレイテッド 転移性癌の診断及び治療の方法
JP2019206516A (ja) * 2018-05-23 2019-12-05 国立大学法人高知大学 膵癌細胞の浸潤転移抑制剤
JP2021003136A (ja) * 2015-05-15 2021-01-14 国立大学法人高知大学 膵がん診断キット
WO2021080020A1 (ja) 2019-10-25 2021-04-29 国立大学法人高知大学 核酸送達促進剤
WO2021221179A1 (ja) * 2020-04-28 2021-11-04 国立大学法人高知大学 ヒト膵癌オルガノイドを用いたマウスモデルの樹立

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050272080A1 (en) * 2004-05-03 2005-12-08 Affymetrix, Inc. Methods of analysis of degraded nucleic acid samples
WO2008043561A2 (en) * 2006-10-11 2008-04-17 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Influenza targets

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050244851A1 (en) * 2004-01-13 2005-11-03 Affymetrix, Inc. Methods of analysis of alternative splicing in human
WO2007060899A1 (ja) * 2005-11-22 2007-05-31 National University Corporation Nagoya University アクチン結合タンパク質の細胞運動関連疾患への利用
US7901882B2 (en) * 2006-03-31 2011-03-08 Affymetrix, Inc. Analysis of methylation using nucleic acid arrays

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050272080A1 (en) * 2004-05-03 2005-12-08 Affymetrix, Inc. Methods of analysis of degraded nucleic acid samples
WO2008043561A2 (en) * 2006-10-11 2008-04-17 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Influenza targets

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KEISUKE TANIUCHI: "Suigan ni Taisuru Peptide Vaccine Ryoho no Bunshi Hyoteki de aru kinesin family member 20(KIF20A) no Suigan Shinjun Ten'i Koshin eno Kan'yo", DAI 20 KAI PANCREAS RESEARCH FOUNDATION OF JAPAN ANNUAL REPORT, 20 December 2013 (2013-12-20), pages 1 - 5 *
PASILIAO C. ET AL.: "Regulation of adhesion, motility, and invasion by insulin-like growth factor-2 binding protein 3 in pancreatic cancer cells.", CANCER RESEARCH, vol. 71, 15 April 2011 (2011-04-15), XP055249734 *
TANIUCHI K. ET AL.: "IGF2BP3-mediated translation in cell protrusions promotes cell invasiveness and metastasis of pancreatic cancer.", ONCOTARGET, vol. 5, no. 16, 25 July 2014 (2014-07-25), pages 6832 - 6845, XP055249730 *
TANIUCHI K. ET AL.: "KIF20A-mediated RNA granule transport system promotes the invasiveness of pancreatic cancer cells.", NEOPLASIA, vol. 16, no. 12, 16 December 2014 (2014-12-16), pages 1082 - 1093, XP055249732 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021003136A (ja) * 2015-05-15 2021-01-14 国立大学法人高知大学 膵がん診断キット
JP7085235B2 (ja) 2015-05-15 2022-06-16 国立大学法人高知大学 膵がん診断キット
JP2019525903A (ja) * 2016-06-14 2019-09-12 エントス ファーマシューティカルズ インコーポレイテッド 転移性癌の診断及び治療の方法
US11236331B2 (en) 2016-06-14 2022-02-01 Entos Pharmaceuticals Inc. Methods for diagnosing and treating metastatic cancer
JP7306829B2 (ja) 2016-06-14 2023-07-11 エントス ファーマシューティカルズ インコーポレイテッド 転移性癌の診断及び治療の方法
JP2019206516A (ja) * 2018-05-23 2019-12-05 国立大学法人高知大学 膵癌細胞の浸潤転移抑制剤
JP7502832B2 (ja) 2018-05-23 2024-06-19 国立大学法人高知大学 膵癌細胞の浸潤転移抑制剤
WO2021080020A1 (ja) 2019-10-25 2021-04-29 国立大学法人高知大学 核酸送達促進剤
CN114599375A (zh) * 2019-10-25 2022-06-07 国立大学法人高知大学 核酸递送促进剂
EP4049664A4 (en) * 2019-10-25 2024-01-24 National University Corporation Kochi University AMPLIFIER OF NUCLEIC ACID DELIVERY
WO2021221179A1 (ja) * 2020-04-28 2021-11-04 国立大学法人高知大学 ヒト膵癌オルガノイドを用いたマウスモデルの樹立

Also Published As

Publication number Publication date
JP6663149B2 (ja) 2020-03-11
JPWO2016002844A1 (ja) 2017-04-27
JP2020079280A (ja) 2020-05-28
JP7224652B2 (ja) 2023-02-20

Similar Documents

Publication Publication Date Title
JP7224652B2 (ja) 膵がん細胞浸潤転移阻害剤
JP6482582B2 (ja) 肝再生および肝不全の治療のための薬剤
Dimitrova et al. Stromal expression of miR-143/145 promotes neoangiogenesis in lung cancer development
US9301981B2 (en) Methods and compositions for the treatment of insulin-associated medical conditions
US10894989B2 (en) Treatment of angiogenesis disorders
WO2018193902A1 (ja) マイクロrnaによるb型肝炎ウイルスに対する抗ウイルス効果
Li et al. Exosomes from PYCR1 knockdown bone marrow mesenchymal stem inhibits aerobic glycolysis and the growth of bladder cancer cells via regulation of the EGFR/PI3K/AKT pathway
US9745578B2 (en) Targeting microRNA miR-409-3P to treat prostate cancer
Ishihara et al. Tumor-suppressive effects of atelocollagen-conjugated hsa-miR-520d-5p on un-differentiated cancer cells in a mouse xenograft model
JP7454207B2 (ja) 膵癌細胞浸潤転移阻害剤
JP2021534799A (ja) 肥満細胞のアポトーシスを誘導するためにスプライススイッチングオリゴヌクレオチドを用いてKitを標的とする方法
JP2015227292A (ja) 膵がん細胞浸潤転移抑制ワクチン
JP2010168368A (ja) Psma7、nedd1およびrae1遺伝子発現抑制剤の用途
KR20230069219A (ko) HER2를 표적화하여 합성된 miRNA를 함유하는 엑소좀 및 약물 조성물
WO2023230562A2 (en) Rna compositions and therapeutic methods thereof
Hu Characterization of the EWS-FLI1 fusion protein in the tumorigenesis of Ewing's family of tumors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15814476

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2016531421

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15814476

Country of ref document: EP

Kind code of ref document: A1