WO2016002701A1 - Near-infrared-absorbent composition, near-infrared cut filter, method for manufacturing near-infrared cut filter, solid-state imaging element, and camera module - Google Patents

Near-infrared-absorbent composition, near-infrared cut filter, method for manufacturing near-infrared cut filter, solid-state imaging element, and camera module Download PDF

Info

Publication number
WO2016002701A1
WO2016002701A1 PCT/JP2015/068641 JP2015068641W WO2016002701A1 WO 2016002701 A1 WO2016002701 A1 WO 2016002701A1 JP 2015068641 W JP2015068641 W JP 2015068641W WO 2016002701 A1 WO2016002701 A1 WO 2016002701A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
infrared
coordinated
atom
copper
Prior art date
Application number
PCT/JP2015/068641
Other languages
French (fr)
Japanese (ja)
Inventor
敬史 川島
晃逸 佐々木
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2016531356A priority Critical patent/JP6340078B2/en
Priority to KR1020167034410A priority patent/KR101958696B1/en
Publication of WO2016002701A1 publication Critical patent/WO2016002701A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/42Introducing metal atoms or metal-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation

Definitions

  • the present invention relates to a near-infrared absorbing composition, a near-infrared cut filter, a method for producing a near-infrared cut filter, a solid-state imaging device, and a camera module.
  • a CCD or CMOS image sensor which is a solid-state imaging device, is used in a video camera, a digital still camera, a mobile phone with a camera function, and the like. Since the solid-state imaging device uses a silicon photodiode having sensitivity to near infrared rays in the light receiving portion thereof, it is necessary to perform visibility correction, and a near infrared cut filter is often used.
  • Patent Document 1 discloses a metal compound as a copolymer of a reaction product of (meth) acrylamide and phosphoric acid or a hydrolyzate thereof and a compound having an ethylenically unsaturated bond.
  • Patent Document 2 discloses a near-infrared absorbing composition using a copper sulfonate complex.
  • Patent Document 3 discloses an adhesive containing a polyester-based resin having a hydroxyl group and / or carboxyl group in the side chain and a reactive compound capable of reacting with the hydroxyl group and / or carboxyl group in the polyester-based resin. .
  • the infrared ray shielding resin disclosed in Patent Document 1 has an acid group containing phosphorus, it is considered that the heat resistance is insufficient.
  • the near-infrared absorptive composition disclosed by patent document 2 is making the monomer and the copper which have an ethylenically unsaturated bond react, the polymerization reaction of the monomer which has an ethylenically unsaturated bond is the presence of copper. It is difficult to proceed below, and it tends to be difficult to polymerize. For this reason, it is thought that heat resistance may be insufficient.
  • An object of the present invention is to provide a method for manufacturing a near-infrared cut filter, a solid-state imaging device, and a camera module.
  • a near-infrared absorptive composition containing a compound obtained by a reaction between a copper component and a polymer containing a coordinating atom that coordinates with the copper component by an unshared electron pair It was found that the product has good heat resistance and can form a film having high near-infrared shielding properties, and the present invention has been completed.
  • the present invention provides the following. ⁇ 1> A near-infrared absorptive composition containing a compound obtained by a reaction between a copper component and a polymer containing a coordination atom that coordinates with the copper component by an unshared electron pair.
  • ⁇ 2> The near-infrared absorbing composition according to ⁇ 1>, wherein the coordination atom is one or more selected from an oxygen atom, a nitrogen atom, a sulfur atom, and a phosphorus atom.
  • the coordination atom is one or more selected from an oxygen atom, a nitrogen atom, a sulfur atom, and a phosphorus atom.
  • the polymer further has a coordination site coordinated by an anion.
  • ⁇ 4> The near-infrared absorbing composition according to ⁇ 3>, wherein the anion is one or more selected from an oxygen anion, a nitrogen anion, and a sulfur anion.
  • ⁇ 5> The near-infrared absorbing composition according to any one of ⁇ 1> to ⁇ 4>, wherein the polymer contains a group represented by the following formula (1) in a side chain; * -L 1 -Y 1 (1)
  • L 1 represents a single bond or a linking group
  • Y 1 is a group having one or more coordination atoms coordinated by an unshared electron pair or a coordination coordinated by an unshared electron pair.
  • a group having at least one coordination site that coordinates with one or more atoms and an anion is represented, and * represents a bond with a polymer.
  • the near-infrared absorbing composition according to any one of ⁇ 1> to ⁇ 5>, wherein the polymer includes a structural unit represented by the following formula (A1-1);
  • R 1 represents a hydrogen atom or a hydrocarbon group
  • L 1 represents a single bond or a linking group
  • Y 1 represents one or more coordination atoms coordinated by a lone pair of electrons. Or a group having at least one coordination atom coordinated by an unshared electron pair and at least one coordination site coordinated by an anion.
  • ⁇ 7> The polymer according to any one of ⁇ 1> to ⁇ 6>, wherein the polymer includes at least one structural unit selected from the following formulas (A1-1-1) to (A1-1-4): An infrared absorbing composition;
  • R 1 represents a hydrogen atom or a hydrocarbon group
  • L 2 represents a single bond or a linking group
  • Y 1 represents a lone pair of electrons.
  • ⁇ 8> A near-infrared cut filter obtained using the near-infrared absorbing composition according to any one of ⁇ 1> to ⁇ 7>.
  • ⁇ 9> A method for producing a near-infrared cut filter comprising a step of applying the near-infrared absorbing composition according to any one of ⁇ 1> to ⁇ 7> on the light-receiving side of the solid-state imaging device.
  • ⁇ 10> A solid-state imaging device having a near-infrared cut filter obtained by using the near-infrared absorbing composition according to any one of ⁇ 1> to ⁇ 7>.
  • a camera module that includes a solid-state imaging device and a near-infrared cut filter disposed on a light-receiving side of the solid-state imaging device, and the near-infrared cut filter is the near-infrared cut filter according to ⁇ 8>.
  • a near-infrared absorbing composition capable of forming a cured film having excellent heat resistance while maintaining high near-infrared shielding properties.
  • a near-infrared cut filter using such a near-infrared absorptive composition, a method for producing a near-infrared cut filter, a solid-state imaging device, and a camera module.
  • a monomer is distinguished from an oligomer and a polymer, and refers to a compound having a weight average molecular weight of 2,000 or less.
  • the polymerizable compound refers to a compound having a polymerizable group.
  • the polymerizable group refers to a group that participates in a polymerization reaction.
  • the notation which does not describe substitution and non-substitution includes a group (atomic group) having a substituent as well as a group (atomic group) having no substituent. is there.
  • Me in the chemical formula represents a methyl group
  • Et represents an ethyl group
  • Pr represents a propyl group
  • Bu represents a butyl group
  • Ph represents a phenyl group.
  • near-infrared light refers to light (electromagnetic wave) having a wavelength region of 700 to 2500 nm.
  • the total solid content refers to the total mass of the components excluding the solvent from the total composition of the composition.
  • solid content means solid content in 25 degreeC.
  • a weight average molecular weight and a number average molecular weight are defined as a polystyrene conversion value by GPC measurement.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) are, for example, HLC-8220 (manufactured by Tosoh Corporation), and TSKgel Super AWM-H (manufactured by Tosoh Corporation, 6) as a column.
  • 0.0 mm ID ⁇ 15.0 cm can be determined by using a 10 mmol / L lithium bromide NMP (N-methylpyrrolidinone) solution as the eluent.
  • the near-infrared absorptive composition of the present invention comprises a compound (also referred to as a polymer copper compound) obtained by a reaction between a copper component and a polymer containing a coordination atom that coordinates with the copper component by an unshared electron pair. contains.
  • a compound also referred to as a polymer copper compound
  • a cured film having a high near-infrared shielding property can be obtained.
  • the heat resistance of the cured film can be increased. The reason why such an effect is obtained is not clear, but is estimated as follows.
  • a polymer containing a coordination atom that coordinates with a copper component by an unshared electron pair acts as a ligand for the copper component. That is, the coordination atom (unshared electron pair) of the polymer (A) is coordinated with copper of the copper component, whereby the structure of the polymer copper compound is distorted, and high transparency in the visible light region is obtained. It is considered that the near-infrared light absorbing ability is improved and the color value is also improved. Moreover, it is thought that a crosslinked structure is formed between the side chains of a polymer (A) from a polymer copper compound, and a film
  • the polymer copper compound is preferably a copper complex having the polymer (A) as a ligand.
  • the polymer copper compound preferably has a mass increase rate of 60% or less based on the condition before standing for 5 hours at 25 ° C. and a relative humidity of 95%.
  • a test that is allowed to stand at 25 ° C. and a relative humidity of 95% may be simply referred to as a water absorption test.
  • the polymer copper compound preferably has a mass increase rate of 60% or less, more preferably 25% or less, still more preferably 10% or less, and particularly preferably 3% or less.
  • the time of a water absorption rate test may be set long, 10 hours may be sufficient, and 20 hours may be sufficient. Even in this case, the mass increase rate of the compound preferably satisfies the above range.
  • the near-infrared cut filter with higher moisture resistance can be obtained as the mass increase rate when the test time of the water absorption rate test is set to be long.
  • the lower limit of the mass increase rate of the above compound is 0%, and it is preferable that the mass does not increase even after the water absorption test.
  • the content of the polymer copper compound is preferably 30% by mass or more, more preferably 50% by mass or more, further preferably 70 to 100% by mass, more preferably 80 to 100%, based on the total solid content. Mass% is particularly preferred. Near-infrared shielding can be improved by increasing the content of the polymer copper compound.
  • the polymer (A) is not particularly limited as long as it contains a coordinating atom coordinated by a lone pair with respect to the copper component.
  • the coordination atom coordinated by the lone pair is preferably one or more selected from an oxygen atom, a nitrogen atom, a sulfur atom and a phosphorus atom, and selected from an oxygen atom, a nitrogen atom and a sulfur atom. 1 or more types are more preferable, and a nitrogen atom is still more preferable.
  • the coordinating atom coordinated by a lone pair is a nitrogen atom
  • the atom adjacent to this nitrogen atom is a carbon atom
  • this carbon atom has a substituent.
  • the substituent is synonymous with the substituent that may be included in the ring containing a coordinating atom coordinated by an unshared electron pair described later, and is an alkyl group having 1 to 10 carbon atoms or aryl having 6 to 12 carbon atoms.
  • the coordinating atom coordinated by the lone pair may be contained in the ring, or may be contained in at least one partial structure selected from the following group (UE).
  • each R 1 independently represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group
  • each R 2 independently represents a hydrogen atom, an alkyl group, or an alkenyl group.
  • the alkyl group represented by R 1 may be linear, branched or cyclic, but is preferably linear.
  • the alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and still more preferably 1 to 4 carbon atoms. Examples of the alkyl group include a methyl group.
  • the alkyl group may have a substituent, and examples of the substituent include a halogen atom, a carboxyl group, and a heterocyclic group.
  • the heterocyclic group as a substituent may be monocyclic or polycyclic, and may be aromatic or non-aromatic.
  • the number of heteroatoms constituting the heterocycle is preferably 1 to 3, and preferably 1 or 2.
  • the hetero atom constituting the hetero ring is preferably a nitrogen atom.
  • the alkyl group may further have a substituent.
  • the alkenyl group and alkynyl group represented by R 1 preferably have 2 to 10 carbon atoms, and more preferably 2 to 6 carbon atoms.
  • the aryl group represented by R 1 may be monocyclic or polycyclic, but is preferably monocyclic.
  • the aryl group preferably has 6 to 18 carbon atoms, more preferably 6 to 12 carbon atoms, and still more preferably 6 carbon atoms.
  • the heteroaryl group represented by R 1 may be monocyclic or polycyclic.
  • the number of heteroatoms constituting the ring of the heteroaryl group is preferably 1 to 3.
  • the hetero atom constituting the ring of the heteroaryl group is preferably a nitrogen atom, an oxygen atom or a sulfur atom.
  • the number of carbon atoms in the ring of the heteroaryl group is preferably 6-18, and more preferably 6-12.
  • the alkyl group represented by R 2 has the same meaning as the alkyl group described for R 1 , and the preferred range is also the same.
  • the alkenyl group represented by R 2 preferably has 2 to 10 carbon atoms, and more preferably 2 to 6 carbon atoms.
  • the alkynyl group represented by R 2 preferably has 2 to 10 carbon atoms, and more preferably 2 to 6 carbon atoms.
  • the aryl group represented by R 2 has the same meaning as the aryl group described in the above group (UE), and the preferred range is also the same.
  • the heteroaryl group represented by R 2 has the same meaning as the heteroaryl group described for R 1 , and the preferred range is also the same.
  • the number of carbon atoms of the alkoxy group represented by R 2 is preferably 1-12.
  • the number of carbon atoms of the aryloxy group represented by R 2 is preferably 6-18.
  • the heteroaryloxy group represented by R 2 may be monocyclic or polycyclic. Heteroaryl group constituting the heteroaryl group has the same meaning as the heteroaryl group described for R 1, preferred ranges are also the same.
  • the alkylthio group represented by R 2 preferably has 1 to 12 carbon atoms.
  • the arylthio group represented by R 2 preferably has 6 to 18 carbon atoms.
  • the heteroarylthio group represented by R 2 may be monocyclic or polycyclic. Heteroaryl group constituting the heteroarylthio group has the same meaning as the heteroaryl group described for R 1, preferred ranges are also the same.
  • the number of carbon atoms of the acyl group represented by R 2 is preferably 2-12.
  • the ring containing the coordination atom may be monocyclic or polycyclic, and may be aromatic or non-aromatic. It may be a tribe.
  • a 5- to 12-membered ring is preferred, a 5- to 7-membered ring is more preferred, and a 5-membered or 6-membered ring is still more preferred.
  • the ring containing a coordinating atom coordinated by a lone pair may have a substituent.
  • substituents examples include a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 12 carbon atoms, a halogen atom, a silicon atom, an alkoxy group having 1 to 12 carbon atoms, and 1 carbon atom. ⁇ 12 acyl groups, C 1-12 alkylthio groups, carboxyl groups, and the like.
  • the above substituent may further have a substituent. Examples of such a substituent include a group comprising a ring containing a coordinating atom coordinated by a lone pair, a group containing at least one partial structure selected from the group (UE) described above, and the number of carbon atoms. Examples thereof include an alkyl group having 1 to 12, an acyl group having 1 to 12 carbon atoms, and a hydroxy group.
  • the polymer (A) may further have a coordination site coordinated by an anion.
  • part coordinated with an anion contains the anion which can be coordinated to the copper atom in a copper component, for example, the thing containing an oxygen anion, a nitrogen anion, or a sulfur anion is mentioned.
  • the coordination site coordinated with an anion is preferably at least one selected from the following group (AN).
  • Group (AN) is preferably at least one selected from the following group (AN).
  • X represents N or CR, and each R preferably independently represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group.
  • the alkyl group, alkenyl group, alkynyl group, aryl group and heteroaryl group represented by R in the group (AN) are the same as the alkyl group, alkenyl group, alkynyl group, aryl group and heteroaryl represented by R 1 in the above group (UE). It is synonymous and the preferable range is also the same.
  • a polymer (A) contains group represented by following formula (1) in a side chain.
  • * -L 1 -Y 1 (1)
  • L 1 represents a single bond or a linking group
  • Y 1 is a group having one or more coordination atoms coordinated by an unshared electron pair or a coordination coordinated by an unshared electron pair.
  • a group having at least one coordination site that coordinates with one or more atoms and an anion is represented, and * represents a bond with a polymer.
  • Y 1 represents a group having two or more coordination atoms coordinated by an unshared electron pair, or 1 coordination site coordinated by one or more coordination atoms coordinated by an unshared electron pair and an anion.
  • a group having at least one group is preferable, and a group having at least one coordination atom coordinated by an unshared electron pair and one or more coordination sites coordinated by an anion is more preferable.
  • the divalent linking group includes an alkylene group, an arylene group, a heteroarylene group, —O—, —S—, —CO—, —COO—, —OCO—, —SO 2 —, —NR 10 —
  • R 10 represents a hydrogen atom or an alkyl group, preferably a hydrogen atom
  • R 10 represents a hydrogen atom or an alkyl group, preferably a hydrogen atom
  • R 10 represents a hydrogen atom or an alkyl group, preferably a hydrogen atom
  • R 10 represents a hydrogen atom or an alkyl group, preferably a hydrogen atom
  • R 10 represents a group consisting of a combination thereof, including an alkylene group, an arylene group, — A group consisting of CO—, —COO—, —NR 10 — and combinations thereof is preferable, and includes an alkylene group, an arylene group, —CO—, —COO—, —NR 10 —, a combination
  • the alkylene group preferably has 1 to 30 carbon atoms, more preferably 1 to 15 carbon atoms, and still more preferably 1 to 10 carbon atoms.
  • the alkylene group may have a substituent, but is preferably unsubstituted.
  • the alkylene group may be linear, branched or cyclic. Further, the cyclic alkylene group may be monocyclic or polycyclic.
  • the carbon number of the arylene group is preferably 6 to 18, more preferably 6 to 14, still more preferably 6 to 10, and particularly preferably a phenylene group.
  • heteroarylene group A 5-membered ring or a 6-membered ring is preferable.
  • the hetero atom include an oxygen atom, a nitrogen atom, and a sulfur atom.
  • the number of heteroatoms is preferably 1 to 3.
  • the heteroarylene group may be a single ring or a condensed ring, and is preferably a single ring or a condensed ring having 2 to 8 condensations, and more preferably a single ring or a condensed ring having 2 to 4 condensations.
  • L 1 represents a trivalent or higher linking group
  • a group in which one or more hydrogen atoms have been removed from the above-described examples of the divalent linking group can be given.
  • Examples of the group represented by Y 1 having one or more coordination atoms coordinated by a lone pair include groups represented by the following formula (1a1) or (1a2). Can be mentioned. * -L 11 - (Y 11) p ⁇ (1a1) * -L 11 - (Y 11a -L 12 -Y 11) p ⁇ (1a2) “*” Represents a joint with L 1 in the formula (1).
  • L 11 represents a single bond or a (p + 1) -valent linking group.
  • L 11 represents a divalent linking group
  • R 10 represents a hydrogen atom or an alkyl group, preferably a hydrogen atom
  • L 12 represents a single bond or a divalent linking group.
  • Preferred examples of the divalent linking group include the divalent linking group described in L 11 .
  • L 12 is more preferably a single bond, an alkylene group, or a group consisting of a combination of —NH— and —CO—.
  • Y 11 represents a ring containing a coordination atom coordinated by an unshared electron pair or a partial structure represented by the group (UE) described above. When p represents an integer of 2 or more, the plurality of Y 11 may be the same or different.
  • Y 11a represents a ring containing a coordinating atom coordinated by an unshared electron pair, or at least one selected from the following group (UE-1).
  • R 1 in group (UE-1) has the same meaning as R 1 group (UE).
  • p represents an integer of 2 or more, the plurality of Y 11a may be the same or different.
  • L 21 represents a single bond or a (q + 1) -valent linking group.
  • L 21 has the same meaning as L 11 in formula (1a), and the preferred range is also the same.
  • L 22 represents a single bond or a (q + r + 1) -valent linking group.
  • L 22 has the same meaning as L 11 in formula (1a), and the preferred range is also the same.
  • L 23 represents a single bond or a divalent linking group. Preferred examples of the divalent linking group include the divalent linking group described for L 11 in formula (1a).
  • L 23 is more preferably a single bond, an alkylene group, or a group consisting of a combination of —NH— and —CO—.
  • Y 21 represents a ring containing a coordination atom coordinated by an unshared electron pair or a partial structure represented by the group (UE) described above. When q and r represent an integer of 2 or more, the plurality of Y 21 may be the same or different.
  • Y 21a represents at least one selected from a ring containing a coordinating atom coordinated by an unshared electron pair, or the group (UE-1) described above. When q and r represent an integer of 2 or more, the plurality of Y 21a may be the same or different.
  • Y 22 represents a partial structure represented by the group (AN) described above. When q and r represent an integer of 2 or more, the plurality of Y 22 may be the same or different.
  • Y 22a represents at least one selected from the following group (AN-1).
  • X in group (AN-1) represents N or CR, and R has the same meaning as R described above for CR in group (AN).
  • R has the same meaning as R described above for CR in group (AN).
  • q and r represent an integer of 2 or more, the plurality of Y 22a may be the same or different.
  • Group (AN-1) q represents an integer of 1 or more, preferably 1 to 5, and particularly preferably 1 to 3.
  • r represents an integer of 1 or more, preferably 1 to 5, and particularly preferably 1 to 3.
  • q + r represents 2 or more, preferably 2 to 5, and particularly preferably 2 to 3.
  • the polymer (A) preferably contains a structural unit represented by the following formula (A1-1).
  • R 1 represents a hydrogen atom or a hydrocarbon group
  • L 1 represents a single bond or a linking group
  • Y 1 represents one or more coordination atoms coordinated by a lone pair of electrons. Or a group having at least one coordination atom coordinated by an unshared electron pair and at least one coordination site coordinated by an anion.
  • R 1 represents a hydrogen atom or a hydrocarbon group.
  • the hydrocarbon group include a linear, branched or cyclic aliphatic hydrocarbon group, and an aromatic hydrocarbon group.
  • the hydrocarbon group may have a substituent, but is preferably unsubstituted.
  • the hydrocarbon group has preferably 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, and still more preferably 1 to 3 carbon atoms.
  • the hydrocarbon group is preferably a methyl group.
  • R 1 is preferably a hydrogen atom or a methyl group.
  • L 1 and Y 1 in formula (A1-1) has the same meaning as L 1 and Y 1 in formula (1) above, and preferred ranges are also the same.
  • Examples of the structural unit represented by formula (A1-1) include the structural units represented by the following (A1-1-1) to (A1-1-4). The following (A1-1-1) and (A1-1-2) are preferred.
  • R 1 represents a hydrogen atom or a hydrocarbon group
  • L 2 represents a single bond or a linking group
  • Y 1 represents a lone pair of electrons.
  • R 1 of formula (A1-1-1) ⁇ (A1-1-4) has the same meaning as R 1 in formula (A1-1), and preferred ranges are also the same.
  • Y 1 of the formula (A1-1-1) ⁇ (A1-1-4) has the same meaning as Y 1 in the formula (A1-1), and preferred ranges are also the same.
  • L 2 in formula (A1-1-2) represents a single bond or a linking group.
  • Preferred examples of the linking group include the linking groups described for L 1 in formula (A1-1), and an alkylene group or a group consisting of a combination of an alkylene group and —COO— is more preferred.
  • the polymer (A) may contain other structural units in addition to the structural unit represented by the formula (A1-1).
  • components constituting other structural units those disclosed in JP-A 2010-106268, paragraph numbers 0068 to 0075 (corresponding to US Patent Application Publication No. 2011/0124824 [0112] to [0118]).
  • the description of the copolymerization component can be taken into account, the contents of which are incorporated herein.
  • Preferable other structural units include structural units represented by the following formula (A2-1).
  • R 5 represents a hydrogen atom or a hydrocarbon group
  • L 4 represents a single bond or a linking group
  • R 10 represents an alkyl group or an aryl group.
  • R 5 in formula (A2-1) has the same meaning as R 1 in formula (A1-1), and the preferred range is also the same.
  • L 4 in formula (A2-1) represents a single bond or a linking group.
  • Examples of the linking group include the linking groups described for L 1 in formula (A1-1), such as an alkylene group, —O—, —CO—, —COO—, —NR 10 — (R 10 represents a hydrogen atom or an alkyl group).
  • the alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, or a combination thereof.
  • the alkyl group represented by R 10 in formula (A2-1) may be linear, branched or cyclic.
  • the alkyl group preferably has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and still more preferably 1 to 10 carbon atoms.
  • the alkyl group may have a substituent, and examples of the substituent include those described above.
  • the aryl group represented by R 10 in formula (A2-1) may be monocyclic or polycyclic, but is preferably monocyclic.
  • the aryl group preferably has 6 to 18 carbon atoms, more preferably 6 to 12 carbon atoms, and still more preferably 6 carbon atoms.
  • the polymer (A) contains another structural unit (preferably the structural unit represented by the formula (A2-1)), the mole of the structural unit represented by the formula (A1-1) and the other structural unit The ratio is preferably 95: 5 to 20:80, and more preferably 90:10 to 40:60.
  • the weight average molecular weight of the polymer (A) is preferably 2000 or more, more preferably 2000 to 2 million, and further preferably 6000 to 200,000. By making the weight average molecular weight of a polymer (A) into such a range, it exists in the tendency for the moisture resistance of the cured film obtained to improve more.
  • Specific examples of the polymer (A) include, but are not limited to, the following compounds and salts thereof.
  • a metal atom is preferable and an alkali metal atom or an alkaline-earth metal atom is more preferable.
  • the alkali metal atom include sodium and potassium.
  • alkaline earth metal atoms include calcium and magnesium.
  • the polymer (A) can be obtained by polymerizing the monomers constituting the structural units described above.
  • the polymerization reaction can be carried out using a known polymerization initiator.
  • an azo polymerization initiator can be used, and specific examples include a water-soluble azo polymerization initiator, an oil-soluble azo polymerization initiator, and a polymer polymerization initiator. Only one polymerization initiator may be used, or two or more polymerization initiators may be used in combination.
  • Examples of the monomer include those shown below.
  • Examples of the water-soluble azo polymerization initiator include commercially available products VA-044, VA-046B, V-50, VA-057, VA-061, VA-067, VA-086, etc. Koyo Pure Chemical Industries, Ltd.) can be used.
  • Examples of the oil-soluble azo polymerization initiator include commercially available products V-60, V-70, V-65, V-601, V-59, V-40, VF-096, VAm-110, etc. (trade names) : Wako Pure Chemical Industries, Ltd.) can be used.
  • As the polymer polymerization initiator for example, commercially available products such as VPS-1001 and VPE-0201 (trade names: all manufactured by Wako Pure Chemical Industries, Ltd.) can be used.
  • Copper component copper or a compound containing copper can be used, and a compound containing divalent copper is preferable. By increasing the copper content, the near-infrared shielding properties are improved. Therefore, the total solid content of the near-infrared absorbing composition is preferably 10% or more on an element basis, and 20% or more. Is preferable, and 30% or more is more preferable. Although there is no upper limit in particular, 70% or less is preferable and 60% or less is more preferable. A copper component may use only 1 type and may use 2 or more types. As the copper component, for example, copper oxide or copper salt can be used.
  • Copper salts include, for example, copper carboxylate (eg, copper acetate, ethyl acetoacetate, copper formate, copper benzoate, copper stearate, copper naphthenate, copper citrate, copper 2-ethylhexanoate), copper sulfonate (for example, copper methanesulfonate), copper phosphate, phosphate ester copper, phosphonate copper, phosphonate ester copper, phosphinate copper, amide copper, sulfonamide copper, imide copper, acylsulfonimide copper, bissulfonimide copper , Methide copper, alkoxy copper, phenoxy copper, copper hydroxide, copper carbonate, copper sulfate, copper nitrate, copper perchlorate, copper chloride, copper bromide, carboxylate copper, sulfonate copper, sulfonamide copper, imide Copper, acylsulfonimide copper, bissulfon
  • the polymer copper compound can be produced by reacting the above-described polymer (A) with a copper component.
  • the amount of the copper component to be reacted with the polymer (A) is the total coordination part of the polymer (A) (the sum of the coordination atom coordinated by the lone pair and the coordination site coordinated by the anion).
  • the copper compound in a molar ratio, the total coordination part of the polymer (A): the copper compound is preferably 1: 0.05 to 2 mol, more preferably 1: 0.1 to 1.4 mol, A ratio of 1: 0.2 to 1.0 mol is more preferable.
  • the reaction conditions for reacting the copper component with the polymer (A) are preferably 20 to 70 ° C. and 0.5 hours or longer, for example.
  • part coordinated with a lone pair You may make it react with 1 or more types chosen from the compound which has this. According to this aspect, the near infrared shielding property and heat resistance can be further improved.
  • the low molecular compound is preferably a compound having a coordination site coordinated by an anion.
  • the near-infrared absorptive composition of this invention should just contain the compound (polymer copper compound) obtained by reaction with a copper component and a polymer (A), an unreacted copper component and a polymer (A ) And the like. Moreover, you may contain copper compounds other than the said copper component, a solvent, a sclerosing
  • the near-infrared absorbing composition of the present invention contains a near-infrared absorbing compound other than the above-described polymer copper compound (hereinafter also referred to as other near-infrared absorbing compound) for the purpose of further improving the near-infrared shielding property. May be.
  • the near-infrared absorbing compound used in the present invention is not particularly limited as long as it has a maximum absorption wavelength region in the range of 700 to 2500 nm, preferably 700 to 1000 nm (near infrared region).
  • the other near infrared absorbing compound is preferably a copper compound, and more preferably a copper complex.
  • the ratio (mass ratio) of the polymer copper compound and the other near infrared absorbing compounds is preferably 10:90 to 95: 5, and 20:80 to 90:10. More preferred is 20:80 to 80:20.
  • Other near-infrared absorbing compounds include a copper compound obtained by a reaction between a low-molecular compound having a coordination site coordinated by an anion (for example, a molecular weight of 1000 or less) and a copper component, or coordination with an unshared electron pair.
  • a copper compound obtained by a reaction between a low molecular compound having a coordination atom (for example, a molecular weight of 1000 or less) and a copper component can be used.
  • a copper complex represented by the following formula (B) can be used.
  • L represents a ligand coordinated to copper, and X does not exist or is a halogen atom, H 2 O, NO 3 , ClO 4 , SO 4 , CN, SCN, or BF 4.
  • PF 6 , BPh 4 Ph represents a phenyl group
  • n1 and n2 each independently represents an integer of 1 to 4.
  • the ligand L is a group having one or more selected from a coordination site coordinated with copper by an anion and a coordination atom coordinated with copper by a lone pair.
  • the coordination site coordinated by an anion may be dissociated or non-dissociated. In the case of non-dissociation, X is not present.
  • the copper complex is a copper compound in which a ligand is coordinated to copper as a central metal, and copper is usually divalent copper. For example, it can be obtained by mixing and reacting a compound serving as a ligand or a salt thereof with a copper component.
  • R 100- (X 100 ) n3 (i) (In general formula (i), X 100 represents a coordination site, n3 represents an integer of 1 to 6, and R 100 represents a single bond or an n-valent group.)
  • X 100 is preferably at least one selected from a coordination site coordinated by an anion and a coordination atom coordinated by a lone pair, and a coordination coordinated by an anion It is more preferable to include one or more sites.
  • the said anion should just be coordinated to the copper atom in a copper component, and an oxygen anion, a nitrogen anion, or a sulfur anion is preferable.
  • the coordination site coordinated by an anion is preferably at least one selected from the above-described group (AN), for example.
  • Examples of coordination sites coordinated by anions also include monoanionic coordination sites.
  • part represents the site
  • an acid group having an acid dissociation constant (pKa) of 12 or less can be mentioned.
  • Specific examples include acid groups containing phosphorous atoms (phosphoric acid diester groups, phosphonic acid monoester groups, phosphinic acid groups, etc.), sulfo groups, carboxyl groups, imido acid groups, and the like.
  • a carboxyl group is more preferable.
  • the coordination atom coordinated by the lone pair preferably contains an oxygen atom, a nitrogen atom, a sulfur atom or a phosphorus atom, more preferably contains an oxygen atom, a nitrogen atom or a sulfur atom, and contains a nitrogen atom. Is more preferable.
  • the aspect in which the coordinating atom coordinated by a lone pair is a nitrogen atom, and the atom adjacent to this nitrogen atom is a carbon atom, and it is also preferable that this carbon atom has a substituent.
  • the substituent is synonymous with the substituent that may be included in the ring containing a coordinating atom coordinated by an unshared electron pair described later, and is an alkyl group having 1 to 10 carbon atoms or aryl having 6 to 12 carbon atoms. Group, carboxyl group, alkoxy group having 1 to 12 carbon atoms, acyl group having 2 to 12 carbon atoms, alkylthio group having 1 to 12 carbon atoms, and halogen atom are preferable.
  • the coordinating atom coordinated by the lone pair may be contained in the ring or in at least one partial structure selected from the group (UE) described above.
  • the ring containing the coordination atom may be monocyclic or polycyclic, and may be aromatic or non-aromatic. It may be a tribe.
  • a 5- to 12-membered ring is preferred, a 5- to 7-membered ring is more preferred, and a 5-membered or 6-membered ring is still more preferred.
  • the ring containing a coordinating atom coordinated by a lone pair may have a substituent.
  • substituents examples include a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 12 carbon atoms, a halogen atom, a silicon atom, an alkoxy group having 1 to 12 carbon atoms, and 1 carbon atom. ⁇ 12 acyl groups, C 1-12 alkylthio groups, carboxyl groups, and the like.
  • the above substituent may further have a substituent. Examples of such a substituent include a group comprising a ring containing a coordinating atom coordinated by a lone pair, a group containing at least one partial structure selected from the group (UE) described above, and the number of carbon atoms. Examples thereof include an alkyl group having 1 to 12, an acyl group having 1 to 12 carbon atoms, and a hydroxy group.
  • n3 represents an integer of 1 to 6, preferably 1 to 3, more preferably 2 or 3, and still more preferably 3.
  • R 100 represents a single bond or n-valent group.
  • an n-valent group an n-valent organic group or a combination of an n-valent organic group and —O—, —SO—, —SO 2 —, —NR N1 —, —CO—, or —CS—
  • the group consisting of Examples of the n-valent organic group include a hydrocarbon group, an oxyalkylene group, and a heterocyclic group.
  • the n-valent group is a group containing at least one selected from the above group (AN-1), a ring containing a coordination atom coordinated by an unshared electron pair, or the above group (UE- It may be a group containing at least one selected from 1).
  • the hydrocarbon group is preferably an aliphatic hydrocarbon group or an aromatic hydrocarbon group.
  • the hydrocarbon group may have a substituent.
  • substituents examples include an alkyl group, a halogen atom (preferably a fluorine atom), a polymerizable group (for example, a vinyl group, a (meth) acryloyl group, an epoxy group, Oxetane group, etc.), sulfo group, carboxyl group, acid group containing phosphorus atom, carboxylic ester group (eg —CO 2 CH 3 ), hydroxyl group, alkoxy group (eg methoxy group), amino group, carbamoyl group, carbamoyl Examples thereof include an oxy group, a halogenated alkyl group (for example, a fluoroalkyl group and a chloroalkyl group), and a (meth) acryloyloxy group.
  • a halogen atom preferably a fluorine atom
  • a polymerizable group for example, a vinyl group, a (meth) acryloyl group, an epoxy group, Oxetan
  • the hydrocarbon group may further have a substituent, and examples of the substituent include an alkyl group, the polymerizable group, and a halogen atom.
  • the hydrocarbon group is monovalent, an alkyl group, an alkenyl group or an aryl group is preferable, and an aryl group is more preferable.
  • the hydrocarbon group is divalent, an alkylene group, an arylene group, or an oxyalkylene group is preferable, and an arylene group is more preferable.
  • the hydrocarbon group is trivalent or higher, those corresponding to the monovalent hydrocarbon group or divalent hydrocarbon group are preferred.
  • the alkyl group and the alkylene group may be linear, branched or cyclic.
  • the carbon number of the linear alkyl group and alkylene group is preferably 1-20, more preferably 1-12, and even more preferably 1-8.
  • the branched alkyl group and alkylene group preferably have 3 to 20 carbon atoms, more preferably 3 to 12 carbon atoms, and still more preferably 3 to 8 carbon atoms.
  • the cyclic alkyl group and alkylene group may be monocyclic or polycyclic.
  • the number of carbon atoms in the cyclic alkyl group and the alkylene group is preferably 3 to 20, more preferably 4 to 10, and still more preferably 6 to 10.
  • the alkenyl group and alkenylene group preferably have 2 to 10 carbon atoms, more preferably 2 to 8 carbon atoms, and still more preferably 2 to 4 carbon atoms.
  • the number of carbon atoms in the aryl group and arylene group is preferably 6 to 18, more preferably 6 to 14, and still more preferably 6 to 10.
  • the heterocyclic group includes an alicyclic group having a hetero atom or an aromatic heterocyclic group.
  • the heterocyclic group is preferably a 5-membered ring or a 6-membered ring.
  • the heterocyclic group is a single ring or a condensed ring, preferably a single ring or a condensed ring having 2 to 8 condensations, and more preferably a single ring or a condensed ring having 2 to 4 condensations.
  • the heterocyclic group may have a substituent, and the substituent is synonymous with the substituent that the hydrocarbon group described above may have.
  • R N1 represents a hydrogen atom, an alkyl group, an aryl group or an aralkyl group.
  • the alkyl group in R N1 may be any of a chain, a branch, and a ring.
  • the linear or branched alkyl group preferably has 1 to 20 carbon atoms, and more preferably 1 to 12 carbon atoms.
  • the cyclic alkyl group may be monocyclic or polycyclic.
  • the cyclic alkyl group preferably has 3 to 20 carbon atoms, and more preferably 4 to 14 carbon atoms.
  • the carbon number of the aryl group in R N1 is preferably 6 to 18, and more preferably 6 to 14. Specific examples include a phenyl group and a naphthyl group.
  • the aralkyl group in R N1 an aralkyl group having 7 to 20 carbon atoms is preferable, and an unsubstituted aralkyl group having 7 to 15 carbon atoms is more preferable.
  • a compound having at least two coordination sites is preferable.
  • a compound containing at least one coordination site coordinated by an anion and at least one coordination atom coordinated by an unshared electron pair hereinafter also referred to as compound (B1)
  • compound (B2) non-covalent A compound having two or more coordination atoms coordinated by an electron pair
  • compound (B3)) a compound containing two coordination sites coordinated by an anion
  • compound (B3)) etc.
  • these compounds can be used independently or in combination of two or more.
  • the compound used as a ligand can also use the compound which has only one coordination site
  • the total number of coordination atoms coordinated by an anion in one molecule and coordination atoms coordinated by a lone pair may be two or more, or three. There may be four.
  • a compound represented by the following formula (i-1) is preferable.
  • X 11 -L 11 -Y 11 (i-1) X 11 represents a coordination site represented by the group (AN) described above.
  • Y 11 represents a ring containing a coordination atom coordinated by the above-mentioned lone pair or a partial structure represented by a group (UE).
  • L 11 represents a single bond or a divalent linking group.
  • an alkylene group having 1 to 12 carbon atoms an arylene group having 6 to 12 carbon atoms, —SO—, —SO 2 —, —O—, or a group consisting of a combination thereof is preferable.
  • More detailed examples of the compound (B1) include compounds represented by the following general formulas (i-2) to (i-9).
  • X 12 -L 12 -Y 12 -L 13 -X 13 (i-2) Y 13 -L 14 -Y 14 -L 15 -X 14 (i-3) Y 15 -L 16 -X 15 -L 17 -X 16 (i-4) Y 16 -L 18 -X 17 -L 19 -Y 17 (i-5)
  • X 15 , X 17 and X 20 to X 22 each independently represent a coordination site represented by the group (AN-1) described above.
  • L 12 to L 31 each independently represents a single bond or a divalent linking group.
  • the divalent linking group is synonymous with the case where L 1 in formula (i-1) represents a divalent linking group.
  • X 2 represents a group containing a coordination site coordinated by an anion.
  • Y 2 represents an oxygen atom, a nitrogen atom, a sulfur atom or a phosphorus atom.
  • a 1 and A 5 each independently represent a carbon atom, a nitrogen atom or a phosphorus atom.
  • a 2 to A 4 each independently represents a carbon atom, an oxygen atom, a nitrogen atom, a sulfur atom or a phosphorus atom.
  • R 1 represents a substituent.
  • R X2 represents a substituent.
  • n2 represents an integer of 0 to 3.
  • X 2 may consist only of a group containing a coordination site coordinated with the anion, or the group containing a coordination site coordinated with the anion may have a substituent. You may do it.
  • substituents that the group containing a coordination site coordinated by an anion may have include a halogen atom, a carboxyl group, and a heterocyclic group.
  • the heterocyclic group as a substituent may be monocyclic or polycyclic, and may be aromatic or non-aromatic.
  • the number of heteroatoms constituting the heterocycle is preferably 1 to 3.
  • the hetero atom constituting the hetero ring is preferably a nitrogen atom.
  • Y 2 is preferably an oxygen atom, a nitrogen atom or a sulfur atom, more preferably an oxygen atom or a nitrogen atom, and further preferably a nitrogen atom.
  • a 1 and A 5 are preferably carbon atoms.
  • a 2 and A 3 preferably represent carbon atoms.
  • a 4 preferably represents a carbon atom or a nitrogen atom.
  • R 1 has the same meaning as the substituent that the ring containing the coordinating atom coordinated by the above-mentioned lone pair may have.
  • R X2 has the same meaning as the substituent that the ring containing the coordinating atom coordinated by the lone pair described above may have, and the preferred range is also the same.
  • n2 represents an integer of 0 to 3, preferably 0 or 1, and more preferably 0.
  • the heterocycle containing Y 2 may be a monocyclic structure or a polycyclic structure. Specific examples when the heterocycle containing Y 2 has a monocyclic structure include a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, a triazine ring, a pyran ring, and the like. Specific examples when the heterocycle containing Y 2 has a polycyclic structure include a quinoline ring, an isoquinoline ring, a quinoxaline ring, an acridine ring and the like.
  • X 3 represents a group containing a coordination site coordinated with the anion.
  • Y 3 represents an oxygen atom, a nitrogen atom, a sulfur atom or a phosphorus atom.
  • a 6 and A 9 each independently represents a carbon atom, a nitrogen atom or a phosphorus atom.
  • a 7 and A 8 each independently represent a carbon atom, an oxygen atom, a nitrogen atom, a sulfur atom or a phosphorus atom.
  • R 2 represents a substituent.
  • R X3 represents a substituent.
  • n3 represents an integer of 0-2.
  • X 3 has the same meaning as X 2 in formula (i-10), and the preferred range is also the same.
  • Y 3 is preferably an oxygen atom, a nitrogen atom or a sulfur atom, more preferably an oxygen atom or a nitrogen atom.
  • a 6 is preferably a carbon atom or a nitrogen atom.
  • a 9 is preferably a carbon atom.
  • a 7 is preferably a carbon atom.
  • a 8 is preferably a carbon atom, a nitrogen atom or a sulfur atom.
  • R 2 is preferably a hydrophobic substituent, more preferably a hydrocarbon group having 1 to 30 carbon atoms, an alkyl group having 3 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms.
  • R X3 has the same meaning as R X2 in formula (i-10), and the preferred range is also the same.
  • n3 is preferably 0 or 1, more preferably 0.
  • the heterocycle containing Y 3 may have a monocyclic structure or a polycyclic structure. Specific examples when the heterocycle containing Y 3 has a monocyclic structure include a pyrazole ring, an imidazole ring, a triazole ring, an oxazole ring, a thiazole ring, an isothiazole ring, and the like.
  • the heterocycle containing Y 3 has a polycyclic structure
  • examples when the heterocycle containing Y 3 has a polycyclic structure include an indole ring, an isoindole ring, a benzofuran ring, an isobenzofuran ring, and the like.
  • the compound represented by the formula (i-11) is a compound containing a pyrazole ring, and preferably has a secondary or tertiary alkyl group at the 5-position of the pyrazole ring.
  • the 5-position of the pyrazole ring means that Y 3 and A 6 in the above (i-3) are nitrogen This represents an atom, and the substitution position of R 2 when A 7 to A 9 represent a carbon atom.
  • the carbon number of the secondary or tertiary alkyl group at the 5-position of the pyrazole ring is preferably 3 to 15, more preferably 3 to 12.
  • the molecular weight of the compound (B1) is preferably 1000 or less, more preferably 750 or less, and even more preferably 600 or less. Moreover, 50 or more are preferable and, as for the molecular weight of a compound (B1), 80 or more are more preferable.
  • Specific examples of the compound (B1) include the following compounds and salts thereof.
  • Examples of the atoms constituting the salt include metal atoms and tetrabutylammonium.
  • the metal atom an alkali metal atom or an alkaline earth metal atom is more preferable.
  • Examples of the alkali metal atom include sodium and potassium.
  • Examples of alkaline earth metal atoms include calcium and magnesium.
  • the compound (B2) may have two or more coordination atoms coordinated by a lone pair in one molecule, may have three or more, and has two to four. Preferably it is.
  • the compound (B2) is preferably, for example, a compound represented by the following general formula (ii-1).
  • Y 40 -L 40 -Y 41 (ii-1) In general formula (ii-1), Y 40 and Y 41 each independently represent a ring containing a coordination atom coordinated by an unshared electron pair or a partial structure represented by group (UE).
  • L 40 represents a single bond or a divalent linking group.
  • L 1 represents a divalent linking group
  • An alkylene group having 1 to 3 carbon atoms, a phenylene group, or —SO 2 — is preferable.
  • More detailed examples of the compound (B2) include compounds represented by the following general formula (ii-2) or (ii-3).
  • Y 42 -L 41 -Y 43 -L 42 -Y 44 (ii-2) Y 45 -L 43 -Y 46 -L 44 -Y 47 -L 45 -Y 48 (ii-3)
  • Y 42 , Y 44 , Y 45 and Y 48 are each independently a ring or group containing a coordinating atom coordinated by a lone pair of electrons.
  • the partial structure represented by (UE) is represented.
  • Y 43 , Y 46 , and Y 47 are each independently a ring containing a coordinating atom coordinated by an unshared electron pair, or a partial structure represented by the group (UE-1) described above.
  • L 41 to L 48 each independently represents a single bond or a divalent linking group.
  • the divalent linking group is synonymous with the case where L 40 in the general formula (ii-1) represents a divalent linking group, and the preferred range is also the same.
  • the molecular weight of the compound (B2) is preferably 1000 or less, more preferably 750 or less, and even more preferably 600 or less. Moreover, 50 or more are preferable and, as for the molecular weight of a compound (B2), 80 or more are more preferable.
  • Specific examples of the compound (B2) include the following.
  • the compound (B3) has two coordination sites coordinated by an anion.
  • part coordinated with an anion is synonymous with the coordination site
  • a compound represented by the following general formula (iii-1) is preferable.
  • X 50 and X 51 each independently represent a coordination site coordinated with an anion, which is synonymous with the coordination site coordinated with an anion described above, and has a monoanionic configuration.
  • a position site is preferred.
  • L 50 represents a single bond or a divalent linking group.
  • Examples of the divalent linking group include an alkylene group having 1 to 20 carbon atoms, an alkenylene group having 2 to 10 carbon atoms, an arylene group having 6 to 18 carbon atoms, a heterocyclic group, —O—, —S—, and —NR N1.
  • a group consisting of —, —CO—, —CS—, —SO 2 —, or a combination thereof is preferred.
  • R N1 is preferably a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 18 carbon atoms, or an aralkyl group having 7 to 20 carbon atoms.
  • the compound (B3) preferably contains one or more selected from a sulfo group and a carboxyl group, and more preferably contains a sulfo group and a carboxyl group.
  • the molecular weight of the compound (B3) is preferably 1000 or less, more preferably 750 or less, and even more preferably 600 or less. Moreover, 50 or more are preferable and, as for the molecular weight of a compound (B3), 80 or more are more preferable.
  • the compound (B3) include the following compounds and salts thereof.
  • an atom which comprises a salt it is synonymous with what was mentioned above, and its preferable range is also the same.
  • the near-infrared absorbing composition of the present invention includes pyrrolopyrrole compounds, cyanine compounds, phthalocyanine compounds, naphthalocyanine compounds, iminium compounds, thiol complex compounds, transition metal oxides as other near infrared absorbing compounds. It may further contain a physical compound, a squarylium compound, a quatarylene compound, a dithiol metal complex compound, a croconium compound, and the like.
  • the pyrrolopyrrole compound may be a pigment or a dye, but a pigment is preferred because it is easy to obtain a colored composition capable of forming a film having excellent heat resistance.
  • Examples of the pyrrolopyrrole compound include pyrrolopyrrole compounds described in paragraphs 0016 to 0058 of JP-A-2009-263614.
  • the cyanine compound the phthalocyanine compound, the iminium compound, the squarylium compound, and the croconium compound, the compounds described in paragraphs 0010 to 0081 of JP 2010-1111750 A may be used. Incorporated into.
  • the cyanine compound for example, “functional pigment, Shin Okawara / Ken Matsuoka / Keijiro Kitao / Kensuke Hirashima, Kodansha Scientific” can be referred to, the contents of which are incorporated herein. It is.
  • the description in paragraphs 0013 to 0029 of JP2013-195480A can be referred to, and the contents thereof are incorporated in the present specification.
  • the near-infrared absorbing composition of the present invention may contain inorganic fine particles. Only one type of inorganic fine particles may be used, or two or more types may be used.
  • the inorganic fine particles are particles that mainly play a role of shielding (absorbing) infrared rays.
  • the inorganic fine particles are preferably metal oxide fine particles or metal fine particles from the viewpoint of better infrared shielding properties. Examples of the metal oxide particles include indium tin oxide (ITO) particles, antimony tin oxide (ATO) particles, zinc oxide (ZnO) particles, Al-doped zinc oxide (Al-doped ZnO) particles, and fluorine-doped tin dioxide (F-doped).
  • the metal fine particles include silver (Ag) particles, gold (Au) particles, copper (Cu) particles, and nickel (Ni) particles.
  • the transmittance at the exposure wavelength (365-405 nm) is high, and indium tin oxide (ITO) particles or antimony tin oxide (ATO) particles are preferable.
  • the shape of the inorganic fine particles is not particularly limited, and may be a sheet shape, a wire shape, or a tube shape regardless of spherical or non-spherical.
  • a tungsten oxide compound As the inorganic fine particles, a tungsten oxide compound can be used. Specifically, a tungsten oxide compound represented by the following general formula (composition formula) (I) is more preferable. M x W y O z (I) M represents a metal, W represents tungsten, and O represents oxygen.
  • alkali metal alkaline earth metal, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al , Ga, In, Tl, Sn, Pb, Ti, Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, alkali metals are preferable, Rb or Cs is more preferable, and Cs is particularly preferable. .
  • the metal of M may be one type or two or more types.
  • infrared rays can be sufficiently shielded, and when 1.1 or less, the generation of an impurity phase in the tungsten oxide compound is more reliably avoided. Can do.
  • z / y is 2.2 or more, chemical stability as a material can be further improved, and when it is 3.0 or less, infrared rays can be sufficiently shielded.
  • tungsten oxide compound represented by the general formula (I) examples include Cs 0.33 WO 3 , Rb 0.33 WO 3 , K 0.33 WO 3 , Ba 0.33 WO 3 and the like, and Cs 0.33 WO 3 Alternatively, Rb 0.33 WO 3 is preferable, and Cs 0.33 WO 3 is more preferable.
  • the tungsten oxide compound is available as a dispersion of tungsten fine particles such as YMF-02 manufactured by Sumitomo Metal Mining Co., Ltd., for example.
  • the average particle size of the inorganic fine particles is preferably 800 nm or less, more preferably 400 nm or less, and even more preferably 200 nm or less. When the average particle diameter of the inorganic fine particles is within such a range, the translucency in the visible light region can be further ensured. From the viewpoint of avoiding photoacid disturbance, the average particle size is preferably as small as possible, but for reasons such as ease of handling during production, the average particle size of the inorganic fine particles is usually 1 nm or more.
  • the content of the inorganic fine particles is preferably 0.01 to 30% by mass with respect to the total solid content of the near-infrared absorbing composition.
  • the lower limit is preferably 0.1% by mass or more, and more preferably 1% by mass or more.
  • the upper limit is preferably 20% by mass or less, and more preferably 10% by mass or less.
  • the near infrared ray absorbing composition of the present invention may contain a solvent.
  • the solvent is not particularly limited and may be appropriately selected depending on the purpose as long as each component can be uniformly dissolved or dispersed.
  • water or an organic solvent can be used.
  • the organic solvent include alcohols, ketones, esters, aromatic hydrocarbons, halogenated hydrocarbons, dimethylformamide, dimethylacetamide, dimethylsulfoxide, sulfolane and the like. These may be used alone or in combination of two or more.
  • Specific examples of alcohols, aromatic hydrocarbons, and halogenated hydrocarbons include those described in paragraph 0136 of JP2012-194534A, the contents of which are incorporated herein.
  • esters, ketones and ethers include those described in paragraph 0497 of JP2012-208494A (corresponding to [0609] of the corresponding US Patent Application Publication No. 2012/0235099). Furthermore, acetic acid-n-amyl, ethyl propionate, dimethyl phthalate, ethyl benzoate, methyl sulfate, acetone, methyl isobutyl ketone, diethyl ether, ethylene glycol monobutyl ether acetate and the like can be mentioned.
  • the solvent at least one selected from 1-methoxy-2-propanol, cyclopentanone, cyclohexanone, propylene glycol monomethyl ether acetate, N-methyl-2-pyrrolidone, butyl acetate, ethyl lactate and propylene glycol monomethyl ether Is preferably used.
  • the content of the solvent is preferably such that the total solid content of the near-infrared absorbing composition of the present invention is 5 to 60% by mass.
  • the lower limit is more preferably 10% by mass or more.
  • the upper limit is more preferably 40% by mass or less. Only one type of solvent may be used, or two or more types may be used, and in the case of two or more types, the total amount is preferably within the above range.
  • the near infrared ray absorbing composition of the present invention may contain a curable compound.
  • the curable compound may be a compound having a polymerizable group (hereinafter sometimes referred to as “polymerizable compound”) or a non-polymerizable compound such as a binder.
  • the curable compound may be in any chemical form such as a monomer, an oligomer, a prepolymer, or a polymer. Examples of the curable compound include paragraphs 0070 to 0191 of JP-A-2014-41318 (paragraphs 0071 to 0192 of the corresponding international publication WO 2014/017669), paragraphs 0045 to 0216 of JP-A-2014-32380, and the like.
  • a polymerizable compound is preferable.
  • a polymeric compound the compound containing polymeric groups, such as an ethylenically unsaturated bond and cyclic ether (epoxy, oxetane), is mentioned, for example.
  • a vinyl group, a styryl group, a (meth) acryloyl group, and an allyl group are preferable.
  • the polymerizable compound may be a monofunctional compound having one polymerizable group or a polyfunctional compound having two or more polymerizable groups, but is preferably a polyfunctional compound.
  • Heat resistance can be improved more because a near-infrared absorptive composition contains a polyfunctional compound.
  • the curable compound include monofunctional (meth) acrylates, polyfunctional (meth) acrylates (preferably 3 to 6 functional (meth) acrylates), polybasic acid-modified acrylic oligomers, epoxy resins, and polyfunctional epoxy resins. Etc.
  • a compound containing an ethylenically unsaturated bond can be used as the curable compound.
  • the description in paragraphs 0033 to 0034 of JP2013-253224A can be referred to, the contents of which are incorporated herein.
  • ethyleneoxy-modified pentaerythritol tetraacrylate (commercially available, NK ester ATM-35E; manufactured by Shin-Nakamura Chemical Co., Ltd.), dipentaerythritol triacrylate (commercially available, KAYARAD D -330; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol tetraacrylate (as a commercial product, KAYARAD D-320; manufactured by Nippon Kayaku Co., Ltd.) dipentaerythritol penta (meth) acrylate (as a commercial product, KAYARAD D- 310; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol hexa (meth) acrylate (commercially available products include KAYARAD DPHA; manufactured by Nippon Kayaku Co., Ltd., A-DPH-12E; manufactured
  • Pentaerythritol tetraacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., A-TMMT) and 1,6-hexanediol diacrylate (manufactured by Nippon Kayaku Co., Ltd., KAYARAD HDDA) are also preferable. These oligomer types can also be used. Examples thereof include RP-1040 (manufactured by Nippon Kayaku Co., Ltd.).
  • the compound containing an ethylenically unsaturated bond may have an acid group such as a carboxyl group, a sulfo group, or a phosphate group.
  • Examples of the compound containing an acid group and an ethylenically unsaturated bond include esters of aliphatic polyhydroxy compounds and unsaturated carboxylic acids.
  • a compound in which an unreacted hydroxyl group of an aliphatic polyhydroxy compound is reacted with a non-aromatic carboxylic acid anhydride to give an acid group is preferred, and in this ester, the aliphatic polyhydroxy compound is preferably pentaerythritol. And / or dipentaerythritol.
  • Examples of commercially available products include Aronix series M-305, M-510, and M-520 as polybasic acid-modified acrylic oligomers manufactured by Toagosei Co., Ltd.
  • the acid value of the compound containing an acid group and an ethylenically unsaturated bond is preferably 0.1 to 40 mgKOH / g.
  • the lower limit is preferably 5 mgKOH / g or more.
  • the upper limit is preferably 30 mgKOH / g or less.
  • a compound having an epoxy group or an oxetanyl group can be used as the curable compound.
  • the compound having an epoxy group or oxetanyl group include a polymer having an epoxy group in the side chain, and a monomer or oligomer having two or more epoxy groups in the molecule.
  • bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, aliphatic epoxy resin, and the like can be given.
  • a monofunctional or polyfunctional glycidyl ether compound is also mentioned, and a polyfunctional aliphatic glycidyl ether compound is preferable.
  • the weight average molecular weight is preferably 500 to 5000000, and more preferably 1000 to 500000.
  • commercially available products may be used, or those obtained by introducing an epoxy group into the side chain of the polymer may be used.
  • JP 2012-155288 A paragraph 0191 can be referred to, and the contents thereof are incorporated in the present specification.
  • polyfunctional aliphatic glycidyl ether compounds such as Denacol EX-212L, EX-214L, EX-216L, EX-321L, and EX-850L (above, manufactured by Nagase ChemteX Corporation) can be used. These are low-chlorine products but are not low-chlorine products, and EX-212, EX-214, EX-216, EX-321, EX-850, and the like can be used as well.
  • ADEKA RESIN EP-4000S, EP-4003S, EP-4010S, EP-4010S, EP-4011S (above, manufactured by ADEKA Corporation), NC-2000, NC-3000, NC-7300, XD-1000, EPPN-501, EPPN-502 (above, manufactured by ADEKA Corporation), JER1031S, Celoxide 2021P, Celoxide 2081, Celoxide 2083, Celoxide 2085, EHPE3150, EPOLEEAD PB 3600, PB 4700 (above, manufactured by Daicel Chemical Industries, Ltd.) ), Cyclo-P ACA 200M, ACA 230AA, ACA Z250, ACA Z251, ACA Z300, ACA Z320 (above, manufactured by Daicel Chemical Industries, Ltd.) and the like.
  • phenol novolac type epoxy resins include JER-157S65, JER-152, JER-154, JER-157S70 (above, manufactured by Mitsubishi Chemical Corporation) and the like.
  • Specific examples of the polymer having an oxetanyl group in the side chain and the polymerizable monomer or oligomer having two or more oxetanyl groups in the molecule include Aron oxetane OXT-121, OXT-221, OX-SQ, PNOX (and more Toagosei Co., Ltd.) can be used.
  • the compound having an epoxy group those having a glycidyl group as an epoxy group such as glycidyl (meth) acrylate and allyl glycidyl ether can be used, but preferred are unsaturated compounds having an alicyclic epoxy group.
  • description of Unexamined-Japanese-Patent No. 2009-265518 Paragraph 0045 etc. can be considered, and these content is integrated in this-application specification.
  • the compound containing an epoxy group or oxetanyl group may contain a polymer having an epoxy group or oxetanyl group as a repeating unit. Specific examples include polymers (copolymers) having the following repeating units.
  • a polymerizable compound having a caprolactone-modified structure can be used.
  • the description in paragraphs 0042 to 0045 of JP2013-253224A can be referred to, and the contents thereof are incorporated herein.
  • Polymerizable compounds having a caprolactone-modified structure are, for example, DPCA-20, DPCA-30, DPCA-60, DPCA-120, etc., commercially available from Nippon Kayaku Co., Ltd. as KAYARAD DPCA series.
  • SR-494 which is a tetrafunctional acrylate having 4 oxy chains
  • TPA-330 which is a trifunctional acrylate having 3 isobutylene oxy chains.
  • the content of the curable compound is preferably 1 to 90% by mass with respect to the total solid content of the near-infrared absorbing composition.
  • the lower limit is preferably 5% by mass or more, more preferably 10% by mass or more, and still more preferably 20% by mass or more.
  • the upper limit is preferably 80% by mass or less, and more preferably 75% by mass or less.
  • the content of the curable compound is preferably 10 to 75% by mass with respect to the total solid content of the near-infrared absorbing composition.
  • the lower limit is preferably 20% by mass or more.
  • the upper limit is preferably 65% by mass or less, and more preferably 60% by mass or less. Only one type of curable compound may be used, or two or more types may be used. In the case of two or more types, the total amount is preferably within the above range.
  • the near-infrared absorbing composition of the present invention can contain a binder polymer for the purpose of improving film properties.
  • a binder polymer for the purpose of improving film properties.
  • an alkali-soluble resin is preferably used.
  • an alkali-soluble resin there is an effect in improving heat resistance and fine adjustment of coating properness.
  • description in paragraphs 0558 to 0571 of JP2012-208494A (corresponding to [0685] to [0700] of the corresponding US Patent Application Publication No. 2012/0235099) can be referred to, and the contents thereof are as follows. It is incorporated herein.
  • the content of the binder polymer is preferably 1 to 80% by mass with respect to the total solid content of the near-infrared absorbing composition.
  • the lower limit is preferably 5% by mass or more, and more preferably 7% by mass or more.
  • the upper limit is preferably 50% by mass or less, and more preferably 30% by mass or less.
  • the near infrared ray absorbing composition of the present invention may contain a surfactant. Only one type of surfactant may be used, or two or more types may be combined.
  • the content of the surfactant is preferably 0.0001 to 2% by mass with respect to the total solid content of the near-infrared absorbing composition.
  • the lower limit is preferably 0.005% by mass or more, and more preferably 0.01% by mass or more.
  • the upper limit is preferably 1.0% by mass or less, and more preferably 0.1% by mass or less.
  • the surfactant various surfactants such as a fluorine-based surfactant, a nonionic surfactant, a cationic surfactant, an anionic surfactant, and a silicone-based surfactant can be used.
  • the near-infrared absorbing composition of the present invention preferably contains at least one of a fluorine-based surfactant and a silicone-based surfactant. According to this, the interfacial tension between the coated surface and the coating liquid is lowered, and the wettability to the coated surface is improved. For this reason, the liquid characteristic (especially fluidity
  • the fluorine content of the fluorosurfactant is preferably 3 to 40% by mass.
  • the lower limit is preferably 5% by mass or more, and more preferably 7% by mass or more.
  • the upper limit is preferably 30% by mass or less, and more preferably 25% by mass or less.
  • fluorine-based surfactant examples include surfactants described in paragraphs 0060 to 0064 of JP 2014-41318 A (paragraphs 0060 to 0064 of the corresponding international publication WO 2014/17669 pamphlet) and the like. These contents are incorporated herein.
  • Nonionic surfactants include polyoxyethylene alkyl ether, polyoxyethylene alkyl allyl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene alkylamine, glycerin fatty acid ester, oxyethylene Examples thereof include oxypropylene block copolymers, acetylene glycol surfactants, and acetylene polyoxyethylene oxide. These can be used alone or in combination of two or more.
  • Specific product names include Surfinol 61, 82, 104, 104E, 104H, 104A, 104BC, 104DPM, 104PA, 104PG-50, 104S, 420, 440, 465, 485, 504, CT-111, CT- 121, CT-131, CT-136, CT-141, CT-151, CT-171, CT-324, DF-37, DF-58, DF-75, DF-110D, DF-210, GA, OP- 340, PSA-204, PSA-216, PSA-336, SE, SE-F, TG, GA, Dinol 604 (Nippon Chemical Co., Ltd.
  • cationic surfactant examples include a cationic surfactant described in paragraph 0554 of JP2012-208494A (corresponding to [0680] of the corresponding US Patent Application Publication No. 2012/0235099). The contents of which are incorporated herein by reference.
  • anionic surfactant examples include W004, W005, W017 (manufactured by Yusho Co., Ltd.) and the like.
  • silicone surfactant examples include silicone surfactants described in JP 2012-208494 A, paragraph 0556 (corresponding to US Patent Application Publication No. 2012/0235099, [0682]). The contents of which are incorporated herein by reference.
  • Toray Silicone SF8410 “Same SF8427”, “Shi8400”, “ST80PA”, “ST83PA”, “ST86PA” manufactured by Toray Dow Corning Co., Ltd.
  • TSF-400 manufactured by Momentive Performance Materials, Inc.
  • TEZ-401 Momentive Performance Materials, Inc.
  • TEZ-410 Spin-410
  • TEZ4446 manufactured by Shin-Etsu Silicone Co., Ltd.
  • Shin-Etsu Silicone Co., Ltd. are also exemplified.
  • the near infrared ray absorbing composition of the present invention may contain a polymerization initiator.
  • the polymerization initiator is not particularly limited as long as it has the ability to initiate polymerization of the polymerizable compound by light, heat, or both, but a photopolymerizable compound (photopolymerization initiator) is preferable.
  • photopolymerizable compound photopolymerization initiator
  • When polymerization is initiated by light those having photosensitivity to visible light from the ultraviolet region are preferred.
  • a polymerization initiator that decomposes at 150 to 250 ° C. is preferable.
  • a compound having an aromatic group is preferable.
  • the description in paragraphs 0217 to 0228 of JP2013-253224A can be referred to, and the contents thereof are incorporated herein.
  • the polymerization initiator is preferably an oxime compound, an acetophenone compound or an acylphosphine compound.
  • oxime compounds include IRGACURE-OXE01 (manufactured by BASF), IRGACURE-OXE02 (manufactured by BASF), TR-PBG-304 (manufactured by Changzhou Power Electronics New Materials Co., Ltd.), Adeka Arcles NCI-831 ( ADEKA), ADEKA ARKLES NCI-930 (ADEKA) and the like can be used.
  • Examples of commercially available acetophenone compounds include IRGACURE-907, IRGACURE-369, IRGACURE-379 (trade names: all manufactured by BASF).
  • acylphosphine compounds IRGACURE-819, DAROCUR-TPO (trade names: all manufactured by BASF) and the like can be used.
  • the content of the polymerization initiator is preferably 0.01 to 30% by mass with respect to the total solid content of the near-infrared absorbing composition.
  • the lower limit is preferably 0.1% by mass or more.
  • the upper limit is preferably 20% by mass or less, and more preferably 15% by mass or less. Only one type of polymerization initiator may be used, or two or more types may be used. In the case of two or more types, the total amount is preferably within the above range.
  • Examples of other components that can be used in combination with the near-infrared absorbing composition of the present invention include a dispersant, a sensitizer, a crosslinking agent, a curing accelerator, a filler, a thermosetting accelerator, a thermal polymerization inhibitor, and a plasticizer. Furthermore, adhesion promoters to the substrate surface and other auxiliaries (for example, conductive particles, fillers, antifoaming agents, flame retardants, leveling agents, peeling accelerators, antioxidants, perfumes, surfaces You may use together a tension adjuster, a chain transfer agent, etc.). By appropriately containing these components, properties such as stability and film physical properties of the target near-infrared absorption filter can be adjusted.
  • the near-infrared absorbing composition of the present invention can be made into a liquid, for example, a near-infrared cut filter can be easily produced by applying the near-infrared absorbing composition of the present invention to a substrate and drying it. it can.
  • the near-infrared absorbing composition of the present invention preferably has a viscosity of 1 to 3000 mPa ⁇ s when a near-infrared cut filter is formed by coating.
  • the lower limit is preferably 10 mPa ⁇ s or more, and more preferably 100 mPa ⁇ s or more.
  • the upper limit is preferably 2000 mPa ⁇ s or less, and more preferably 1500 mPa ⁇ s or less.
  • the total solid content of the near-infrared absorbing composition of the present invention varies depending on the coating method, but is preferably 1 to 50% by mass, for example.
  • the lower limit is more preferably 10% by mass or more.
  • the upper limit is more preferably 30% by mass or less.
  • the use of the near-infrared absorptive composition of this invention is not specifically limited, It can use preferably for formation of a near-infrared cut filter etc.
  • a near-infrared cut filter for example, for a near-infrared cut filter for a wafer level lens
  • it can be preferably used as a near-infrared cut filter on the light receiving side of the solid-state imaging device.
  • the near-infrared cut filter which can implement
  • the near-infrared cut filter of the present invention is formed by curing the above-described near-infrared absorbing composition of the present invention.
  • the near-infrared cut filter of the present invention preferably has a light transmittance that satisfies at least one of the following conditions (1) to (9), and satisfies all the following conditions (1) to (8): It is more preferable that all the conditions (1) to (9) are satisfied.
  • the light transmittance at a wavelength of 400 nm is preferably 80% or more, more preferably 90% or more, still more preferably 92% or more, and particularly preferably 95% or more.
  • the light transmittance at a wavelength of 450 nm is preferably 80% or more, more preferably 90% or more, still more preferably 92% or more, and particularly preferably 95% or more.
  • the light transmittance at a wavelength of 500 nm is preferably 80% or more, more preferably 90% or more, still more preferably 92% or more, and particularly preferably 95% or more.
  • the light transmittance at a wavelength of 550 nm is preferably 80% or more, more preferably 90% or more, still more preferably 92% or more, and particularly preferably 95% or more.
  • the light transmittance at a wavelength of 700 nm is preferably 20% or less, more preferably 15% or less, further preferably 10% or less, and particularly preferably 5% or less.
  • the light transmittance at a wavelength of 750 nm is preferably 20% or less, more preferably 15% or less, further preferably 10% or less, and particularly preferably 5% or less.
  • the light transmittance at a wavelength of 800 nm is preferably 20% or less, more preferably 15% or less, further preferably 10% or less, and particularly preferably 5% or less.
  • the light transmittance at a wavelength of 850 nm is preferably 20% or less, more preferably 15% or less, still more preferably 10% or less, and particularly preferably 5% or less.
  • the light transmittance at a wavelength of 900 nm is preferably 20% or less, more preferably 15% or less, further preferably 10% or less, and particularly preferably 5% or less.
  • the near-infrared cut filter preferably has a light transmittance of 85% or more and more preferably 90% or more in the entire wavelength range of 400 to 550 nm. The higher the transmittance in the visible region, the better.
  • the transmittance is preferably high at a wavelength of 400 to 550 nm. Further, the light transmittance at at least one point in the wavelength range of 700 to 800 nm is preferably 20% or less, and the light transmittance in the entire range of wavelength 700 to 800 nm is more preferably 20% or less. .
  • the film thickness of the near infrared cut filter can be appropriately selected according to the purpose.
  • the film thickness of a near-infrared cut filter can be made thin.
  • the change rate of the absorbance ratio obtained by the following formula is preferably 7% or less before and after being left for 1 hour at a high temperature and high humidity of 85 ° C./85% relative humidity. It is more preferably 4% or less, and further preferably 2% or less. If the change rate of the absorbance ratio is in the above range, the moisture resistance is excellent.
  • Change rate of absorbance ratio (%)
  • the absorbance ratio is a value represented by the following formula.
  • Absorbance ratio (maximum absorbance of near-infrared cut filter at wavelength 700 to 1400 nm / minimum absorbance of near-infrared cut filter at wavelength 400 to 700 nm)
  • the change rate of absorbance at a wavelength of 400 nm and the change rate of absorbance at a wavelength of 800 nm before and after heating at 200 ° C. for 5 minutes are both preferably 7% or less, and 5% or less. It is particularly preferred.
  • the absorbance change rate is within the above range, the heat resistance is excellent.
  • the near-infrared cut filter of the present invention has a lens that absorbs and cuts near-infrared rays (camera lenses for digital cameras, mobile phones, vehicle-mounted cameras, etc., optical lenses such as f- ⁇ lenses, pickup lenses), and semiconductor light receiving Optical filters for elements, near-infrared absorbing films and near-infrared absorbing plates that block heat rays for energy saving, agricultural coating agents for selective use of sunlight, recording media that use near-infrared absorbing heat, Used for electronic devices and photographic near infrared filters, protective glasses, sunglasses, heat ray blocking films, optical character reading and recording, confidential document copy prevention, electrophotographic photoreceptors, laser welding, and the like. It is also useful as a noise cut filter for CCD cameras and a filter for CMOS image sensors.
  • the near-infrared cut filter of this invention can be manufactured through the process of forming a film
  • a dropping method drop cast
  • the dropping method (drop casting) it is preferable to form a dropping region of the near-infrared absorbing composition having a photoresist as a partition on the support so that a uniform film can be obtained with a predetermined film thickness.
  • a desired film thickness can be obtained by adjusting the dropping amount and solid content concentration of the near-infrared absorbing composition and the area of the dropping region.
  • the thickness of the film is, for example, preferably 1 to 500 ⁇ m, more preferably 1 to 300 ⁇ m, and particularly preferably 1 to 200 ⁇ m.
  • the support may be a transparent substrate made of glass or the like.
  • a solid-state image sensor may be sufficient.
  • substrate provided in the light-receiving side of the solid-state image sensor may be sufficient. Further, it may be a layer such as a flattening layer provided on the light receiving side of the solid-state imaging device.
  • the drying conditions vary depending on each component, the type of solvent, the use ratio, and the like. For example, the temperature is preferably 60 to 150 ° C. and preferably 30 seconds to 15 minutes.
  • a pattern forming step for example, a step of applying the near infrared absorbing composition of the present invention on a support to form a film-like composition layer, a step of exposing the composition layer in a pattern, And a method including a step of forming a pattern by developing and removing an unexposed portion.
  • a pattern may be formed by a photolithography method, or a pattern may be formed by a dry etching method.
  • other steps may be included.
  • the surface treatment process of a base material a pre-heating process (pre-baking process), a hardening process, a post-heating process (post-baking process), etc. are mentioned.
  • ⁇ Pre-heating process / Post-heating process The heating temperature in the preheating step and the postheating step is preferably 80 to 200 ° C.
  • the upper limit is preferably 150 ° C. or lower.
  • the lower limit is preferably 90 ° C. or higher.
  • the heating time in the preheating step and the postheating step is preferably 30 to 240 seconds.
  • the upper limit is preferably 180 seconds or less.
  • the lower limit is preferably 60 seconds or more.
  • Curing treatment process The curing process is a process of curing the formed film as necessary, and the mechanical strength of the near-infrared cut filter is improved by performing this process. There is no restriction
  • exposure is used to include not only light of various wavelengths but also irradiation of radiation such as electron beams and X-rays.
  • the exposure is preferably performed by irradiation of radiation, and as the radiation that can be used for the exposure, ultraviolet rays such as electron beams, KrF, ArF, g rays, h rays, i rays and visible light are particularly preferably used.
  • the exposure method include stepper exposure and exposure with a high-pressure mercury lamp.
  • the exposure amount is preferably 5 to 3000 mJ / cm 2 .
  • the upper limit is preferably 2000 mJ / cm 2 or less, and more preferably 1000 mJ / cm 2 or less.
  • the lower limit is preferably 10 mJ / cm 2 or more, and more preferably 50 mJ / cm 2 or more.
  • Examples of the entire surface exposure processing method include a method of exposing the entire surface of the formed film. When the near-infrared absorbing composition contains a polymerizable compound, the entire surface exposure accelerates the curing of the polymerizable compound, the film is further cured, and the mechanical strength and durability are improved.
  • a method of heating the entire surface of the formed film can be given.
  • the heating temperature in the entire surface heating is preferably 120 to 250 ° C.
  • the lower limit is preferably 160 ° C. or higher.
  • the upper limit is preferably 220 ° C. or higher.
  • the heating time in the entire surface heating is preferably 3 to 180 minutes.
  • the lower limit is preferably 5 minutes or more.
  • the upper limit is preferably 120 minutes or less.
  • the camera module of the present invention has a solid-state image sensor and a near-infrared cut filter arranged on the light receiving side of the solid-state image sensor.
  • the manufacturing method of the camera module of this invention has the process of apply
  • FIG. 1 is a schematic cross-sectional view showing the configuration of a camera module having a near-infrared cut filter according to an embodiment of the present invention.
  • the camera module 10 is disposed, for example, above the solid-state image sensor 11, the flattening layer 12 provided on the main surface side (light-receiving side) of the solid-state image sensor, the near-infrared cut filter 13, and the near-infrared cut filter.
  • a lens holder 15 having an imaging lens 14 in the internal space.
  • incident light h ⁇ from the outside passes through the imaging lens 14, the near-infrared cut filter 13, and the planarizing layer 12 in order, and then reaches the imaging device portion of the solid-state imaging device 11.
  • the solid-state imaging device 11 has, for example, a photodiode, an interlayer insulating film (not shown), a base layer (not shown), a color filter 17 and an overcoat (not shown) on the main surface of a silicon substrate 16 as a base.
  • the microlens 18 is provided in this order.
  • the color filter 17 (red color filter, green color filter, blue color filter) and the microlens 18 are respectively disposed so as to correspond to the solid-state imaging device 11. Further, instead of providing the near-infrared cut filter 13 on the surface of the flattening layer 12, the surface of the microlens 18, between the base layer and the color filter 17, or between the color filter 17 and the overcoat, The form in which the infrared cut filter 13 is provided may be sufficient.
  • the near-infrared cut filter 13 may be provided at a position within 2 mm (more preferably within 1 mm) from the surface of the microlens. If it is provided at this position, the process of forming the near infrared cut filter can be simplified, and unnecessary near infrared rays to the microlens can be sufficiently cut, so that the near infrared shielding property can be further improved.
  • the near-infrared cut filter of the present invention can be subjected to a solder reflow process. By manufacturing the camera module through the solder reflow process, it is possible to automatically mount electronic component mounting boards, etc. that need to be soldered, making the productivity significantly higher than when not using the solder reflow process. Can be improved.
  • the near-infrared cut filter is also referred to as heat resistance that can withstand the solder reflow process (hereinafter also referred to as “solder reflow resistance”). ).
  • solder reflow resistance means that the characteristics as a near-infrared cut filter are maintained before and after heating at 200 ° C. for 10 minutes. More preferably, the characteristics are maintained before and after heating at 230 ° C. for 10 minutes. More preferably, the characteristics are maintained before and after heating at 250 ° C. for 3 minutes.
  • the present invention also relates to a method for manufacturing a camera module, including a reflow process.
  • the near-infrared cut filter of the present invention maintains the near-infrared shielding property even if there is a reflow process, and thus does not impair the characteristics of a small, lightweight and high-performance camera module.
  • the camera module includes a solid-state imaging device 11, a planarization layer 12, an ultraviolet / infrared light reflection film 19, a transparent base material 20, and a near infrared absorption layer (near infrared cut filter) 21. And an antireflection layer 22 in this order.
  • the ultraviolet / infrared light reflection film 19 has an effect of imparting or enhancing the function of a near-infrared cut filter. Incorporated in the description.
  • the transparent substrate 20 transmits light having a wavelength in the visible region.
  • the near-infrared absorbing layer 21 can be formed by applying the above-described near-infrared absorbing composition of the present invention.
  • the antireflection layer 22 has a function of improving the transmittance by preventing reflection of light incident on the near-infrared cut filter and efficiently using incident light.
  • Japanese Patent Application Laid-Open No. 2013-68688 Paragraph 0040 which is incorporated herein by reference.
  • the camera module includes a solid-state imaging device 11, a near infrared absorption layer (near infrared cut filter) 21, an antireflection layer 22, a planarization layer 12, an antireflection layer 22, and a transparent substrate.
  • the material 20 and the ultraviolet / infrared light reflection film 19 may be provided in this order.
  • the camera module includes a solid-state imaging device 11, a near infrared absorption layer (near infrared cut filter) 21, an ultraviolet / infrared light reflection film 19, a planarization layer 12, and an antireflection layer 22. And you may have the transparent base material 20 and the reflection preventing layer 22 in this order.
  • the weight average molecular weight of the polymer (P-1) was 20,000.
  • Polymers (P-2) to (P-10) were also obtained in the same manner as for polymer (P-1).
  • the weight average molecular weights of the polymers (P-2) to (P-9) were 20,000.
  • the weight average molecular weight of the polymer (P-10) was 30,000.
  • Example 1 In an eggplant flask, 2,6-pyridinedicarboxylic acid (17.82 g) and methanol (50 g) were added and dissolved at room temperature. A solution in which copper acetate (19.37 g) was dissolved in methanol (50 g) and water (20 g) was added, and the mixture was stirred at room temperature for 30 minutes to confirm the formation of a precipitate. Thereto was added a 1-methoxy-2-propanol solution (100 g, 30% by mass) of the polymer (P-1) and stirred at room temperature for 1 hour to obtain a polymer copper compound, and a near-infrared absorbing composition was obtained. Prepared.
  • Example 2 A polymer copper compound was obtained in the same manner as in Example 1 except that the polymers (P-2) to (P-6) were used in place of the polymer (P-1) in Example 1.
  • An infrared absorbing composition was prepared.
  • the solid content concentration (content of polymer copper compound) of each near-infrared absorbing composition was 21% by mass.
  • the molar ratio of the total coordination part of the polymer the total of coordination atoms coordinated by lone pairs and coordination sites coordinated by anions
  • Example 7 In Example 6, except that itaconic acid was used instead of 2,6-pyridinedicarboxylic acid, a polymer copper compound was obtained in the same manner as in Example 6 to prepare a near-infrared absorbing composition. The solid content concentration (polymer copper compound content) of the near-infrared absorbing composition was 21% by mass.
  • Example 8 In Example 6, except that 2,6-pyridinedicarboxylic acid was not used and copper 2-ethylhexanoate was used instead of copper acetate, a polymer copper compound was obtained, and a near infrared ray was obtained. An absorbent composition was prepared. The solid content concentration (polymer copper compound content) of the near-infrared absorbing composition was 21% by mass.
  • Example 9 In Example 6, except that 2,6-pyridinedicarboxylic acid was not used and copper methanesulfonate was used instead of copper acetate, a polymer copper compound was obtained, and the near infrared absorptivity was obtained. A composition was prepared. The solid content concentration (polymer copper compound content) of the near-infrared absorbing composition was 21% by mass.
  • Example 10 A polymer copper compound was obtained in the same manner as in Example 1 except that the polymer (P-7) was used instead of the polymer (P-1) in Example 1, and a near-infrared absorbing composition was obtained. Prepared. The solid content concentration (polymer copper compound content) of the near-infrared absorbing composition was 21% by mass.
  • Example 11 In Example 1, (no 2,6-pyridinedicarboxylic acid is used, polymer (P-8) is used instead of polymer (P-1), and copper methanesulfonate is used instead of copper acetate. Except for the above, a polymer copper compound was obtained and a near-infrared absorbing composition was prepared in the same manner as in Example 1.
  • the solid content concentration (polymer copper compound content) of the near-infrared absorbing composition was 21% by mass.
  • the molar ratio of the total coordination part of the polymer (the total of coordination atoms coordinated by unshared electron pairs and coordination sites coordinated by anions) and copper
  • the total coordination part: copper 1: 1
  • the amount of methanol was adjusted so that the solid content concentration was 21% by mass.
  • Example 12 In Example 1, except that 2,6-pyridinedicarboxylic acid is not used and the polymer (P-9) is used instead of the polymer (P-1), the polymer copper compound is the same as in Example 1. And a near infrared ray absorbing composition was prepared.
  • the solid content concentration (polymer copper compound content) of the near-infrared absorbing composition was 21% by mass.
  • the quantity of methanol was adjusted so that solid content concentration might be 21 mass%.
  • Example 13 In Example 1, 2,6-pyridinedicarboxylic acid is not used, polymer (P-10) is used instead of polymer (P-1), and copper methanesulfonate is used instead of copper acetate.
  • Example 13 a polymer copper compound was obtained in the same manner as in Example 1 to prepare a near infrared absorbing composition.
  • the solid content concentration (polymer copper compound content) of the near-infrared absorbing composition was 21% by mass.
  • the molar ratio of the total coordination part of the polymer (the sum of the coordination atoms coordinated by the lone pair and the coordination site coordinated by the anion) and copper is the total coordination.
  • Position: Copper 1: 1.
  • the quantity of methanol was adjusted so that solid content concentration might be 21 mass%.
  • a near-infrared cut filter was produced using each near-infrared absorbing composition.
  • a photoresist was applied on a glass substrate and patterned by lithography to form a partition wall of the photoresist to form a dripping region of the near infrared absorbing composition.
  • 3 ml of each near-infrared absorbing composition was dropped on the dropping region on the glass substrate and dried by standing at room temperature for 24 hours. When the film thickness of the coating film after drying was evaluated, the film thickness was 200 ⁇ m.
  • a spectrophotometer U-4100 (manufactured by Hitachi High-Technologies Corporation) was used for measuring the absorbance.
  • the near-infrared absorbing composition of the present invention was able to form a cured film excellent in heat resistance while maintaining high near-infrared shielding properties. Moreover, the cured film excellent also in moisture resistance was able to be formed. Further, the light transmittance in the wavelength range of 450 to 550 nm may be 85% or more, and the light transmittance in the wavelength range of 800 to 900 nm may be 20% or less. On the other hand, Comparative Example 1 was inferior in heat resistance.
  • Example 20 In the near-infrared absorbing composition of Example 1, the low molecular copper complex A shown below was further added so that the ratio of the polymer copper compound to the low molecular copper complex A was 7: 3 on the basis of the solid content.
  • a near-infrared absorbing composition of Example 20 was obtained in the same manner as Example 1 except that.
  • Examples 21 to 24 In the near-infrared absorbing composition of Example 20, Examples 21 to 24 are the same as Example 20 except that the low molecular copper complex A is changed to low molecular copper complex B, C, D or E, respectively.
  • a near infrared ray absorbing composition was obtained.
  • Example 25 to 28 In the near-infrared absorptive composition of Example 20, except that the ratio of the polymer copper compound and the low-molecular copper complex A was changed to 5: 5, 6: 4, and 8: 2 on the basis of solid content, respectively. In the same manner as in Example 20, the near-infrared absorbing compositions of Examples 25 to 28 were obtained. It was confirmed that even a mixed type of the polymer copper compound and the low-molecular copper complex can achieve higher near-infrared shielding properties.
  • Low molecular copper complex A Low molecular copper complex A: a copper complex having the following (M-1) as a ligand. The synthesis method will be described later.
  • Low molecular copper complex B a copper complex having the following compound (B1-21) as a ligand. The synthesis method will be described later.
  • Low molecular copper complex C Monobutyl copper phthalate, Tokyo Chemical Industry Co., Ltd.
  • Low molecular copper complex D Copper complex having the following compound (B2-1) as a ligand. The synthesis method will be described later.
  • Low molecular copper complex E a copper complex having the following compound (B3-18) as a ligand. The synthesis method will be described later.

Abstract

 Provided are a near-infrared-absorbent composition capable of forming a cured film having excellent heat resistance while maintaining high near-infrared shielding properties, a near-infrared cut filter which uses the near-infrared-absorbent composition, a method for manufacturing a near-infrared cut filter, a solid-state imaging element, and a camera module. The near-infrared-absorbent composition includes a compound obtained by reacting a copper component and a polymer containing a coordinating atom coordinated with the copper component by an unshared electron pair. The coordinating atom is preferably at least one species selected from oxygen, nitrogen, sulfur, and phosphorus. A near-infrared cut filter and a camera module are manufactured using the near-infrared-absorbent composition.

Description

近赤外線吸収性組成物、近赤外線カットフィルタ、近赤外線カットフィルタの製造方法、固体撮像素子、カメラモジュールNear-infrared absorbing composition, near-infrared cut filter, method for producing near-infrared cut filter, solid-state imaging device, camera module
 本発明は、近赤外線吸収性組成物、近赤外線カットフィルタ、近赤外線カットフィルタの製造方法、固体撮像素子、カメラモジュールに関する。 The present invention relates to a near-infrared absorbing composition, a near-infrared cut filter, a method for producing a near-infrared cut filter, a solid-state imaging device, and a camera module.
 ビデオカメラ、デジタルスチルカメラ、カメラ機能付き携帯電話などには固体撮像素子であるCCDやCMOSイメージセンサが用いられている。固体撮像素子はその受光部において近赤外線に感度を有するシリコンフォトダイオードを使用しているために、視感度補正を行うことが必要であり、近赤外線カットフィルタを用いることが多い。
 近赤外線カットフィルタの材料として、特許文献1には、(メタ)アクリルアミドとリン酸との反応物またはその加水分解物と、エチレン性不飽和結合を有する化合物との共重合体に、金属化合物を添加してなる赤外線遮断性樹脂を含む赤外線遮断性フィルムが開示されている。
 特許文献2には、スルホン酸銅錯体を用いた近赤外線吸収性組成物が開示されている。
 特許文献3には、側鎖に水酸基及び/又はカルボキシル基を有するポリエステル系樹脂と、このポリエステル系樹脂中の水酸基及び/又はカルボキシル基と反応し得る反応性化合物を含む接着剤が開示されている。
A CCD or CMOS image sensor, which is a solid-state imaging device, is used in a video camera, a digital still camera, a mobile phone with a camera function, and the like. Since the solid-state imaging device uses a silicon photodiode having sensitivity to near infrared rays in the light receiving portion thereof, it is necessary to perform visibility correction, and a near infrared cut filter is often used.
As a material for a near-infrared cut filter, Patent Document 1 discloses a metal compound as a copolymer of a reaction product of (meth) acrylamide and phosphoric acid or a hydrolyzate thereof and a compound having an ethylenically unsaturated bond. An infrared shielding film containing an added infrared shielding resin is disclosed.
Patent Document 2 discloses a near-infrared absorbing composition using a copper sulfonate complex.
Patent Document 3 discloses an adhesive containing a polyester-based resin having a hydroxyl group and / or carboxyl group in the side chain and a reactive compound capable of reacting with the hydroxyl group and / or carboxyl group in the polyester-based resin. .
特開2010-134457号公報JP 2010-134457 A 特開2001-213918号公報JP 2001-213918 A 特開2009-13200号公報JP 2009-13200 A
 しかしながら、上記特許文献1に開示された赤外線遮断性樹脂は、リンを含有する酸基を有することから耐熱性が不十分であると考えられる。
 また、特許文献2に開示された近赤外線吸収性組成物は、エチレン性不飽和結合を有するモノマーと銅を反応させているが、エチレン性不飽和結合を有するモノマーの重合反応は、銅の存在下では進行しにくく、高分子化が困難な傾向にある。このため、耐熱性が不十分な場合があると考えられる。
 また、特許文献3の実施例では、反応性化合物として、トルエンジイソシアネートのトリメチロールプロパンアダクト体を使用しているが、耐熱性は不十分であった。
 本発明は、かかる課題を解決するものであって、高い近赤外線遮蔽性を維持しつつ、耐熱性に優れた硬化膜を形成可能な近赤外線吸収性組成物、これを用いた近赤外線カットフィルタ、近赤外線カットフィルタの製造方法、固体撮像素子およびカメラモジュールを提供することを目的とする。
However, since the infrared ray shielding resin disclosed in Patent Document 1 has an acid group containing phosphorus, it is considered that the heat resistance is insufficient.
Moreover, although the near-infrared absorptive composition disclosed by patent document 2 is making the monomer and the copper which have an ethylenically unsaturated bond react, the polymerization reaction of the monomer which has an ethylenically unsaturated bond is the presence of copper. It is difficult to proceed below, and it tends to be difficult to polymerize. For this reason, it is thought that heat resistance may be insufficient.
Moreover, in the Example of patent document 3, although the trimethylol propane adduct body of toluene diisocyanate is used as a reactive compound, heat resistance was inadequate.
The present invention solves such a problem, and maintains a high near-infrared shielding property while being capable of forming a cured film excellent in heat resistance, and a near-infrared cut filter using the same An object of the present invention is to provide a method for manufacturing a near-infrared cut filter, a solid-state imaging device, and a camera module.
 本発明者らが鋭意検討を行った結果、銅成分と、銅成分に対し非共有電子対で配位する配位原子を含有する重合体との反応で得られる化合物を含む近赤外線吸収性組成物は、耐熱性が良好で、高い近赤外線遮蔽性を有する膜を形成できることを見出し、本発明を完成するに至った。本発明は、以下を提供する。
<1> 銅成分と、銅成分に対し非共有電子対で配位する配位原子を含有する重合体との反応で得られる化合物を含む、近赤外線吸収性組成物。
<2> 配位原子が、酸素原子、窒素原子、硫黄原子およびリン原子から選ばれる1種以上である、<1>に記載の近赤外線吸収性組成物。
<3> 重合体は、さらに、アニオンで配位する配位部位を有する、<1>または<2>に記載の近赤外線吸収性組成物。
<4> アニオンが、酸素アニオン、窒素アニオンおよび硫黄アニオンから選ばれる1種以上である、<3>に記載の近赤外線吸収性組成物。
<5> 重合体は、下記式(1)で表される基を側鎖に含む、<1>~<4>のいずれかに記載の近赤外線吸収性組成物;
*-L1-Y1     ・・・(1)
 一般式(1)において、L1は単結合または連結基を表し、Y1は、非共有電子対で配位する配位原子を1個以上有する基または非共有電子対で配位する配位原子を1個以上とアニオンで配位する配位部位を1個以上有する基を表し、*は、重合体との連結手を表す。
<6> 重合体は、下記式(A1-1)で表される構成単位を含む、<1>~<5>のいずれかに記載の近赤外線吸収性組成物;
Figure JPOXMLDOC01-appb-C000003
 式(A1-1)中、R1は水素原子または炭化水素基を表し、L1は単結合または連結基を表し、Y1は、非共有電子対で配位する配位原子を1個以上有する基または非共有電子対で配位する配位原子を1個以上とアニオンで配位する配位部位を1個以上有する基を表す。
<7> 重合体は、下記式(A1-1-1)~(A1-1-4)から選ばれる少なくとも1種の構成単位を含む、<1>~<6>のいずれかに記載の近赤外線吸収性組成物;
Figure JPOXMLDOC01-appb-C000004
 式(A1-1-1)~(A1-1-4)中、R1は水素原子または炭化水素基を表し、L2は単結合または連結基を表し、Y1は、非共有電子対で配位する配位原子を1個以上有する基または非共有電子対で配位する配位原子を1個以上とアニオンで配位する配位部位を1個以上有する基を表す。
<8> <1>~<7>のいずれかに記載の近赤外線吸収性組成物を用いて得られた近赤外線カットフィルタ。
<9> 固体撮像素子の受光側において、<1>~<7>のいずれかに記載の近赤外線吸収性組成物を塗布する工程を含む、近赤外線カットフィルタの製造方法。
<10> <1>~<7>のいずれかに記載の近赤外線吸収性組成物を用いて得られた近赤外線カットフィルタを有する固体撮像素子。
<11> 固体撮像素子と、固体撮像素子の受光側に配置された近赤外線カットフィルタとを有し、近赤外線カットフィルタが<8>に記載の近赤外線カットフィルタである、カメラモジュール。
As a result of intensive studies by the present inventors, a near-infrared absorptive composition containing a compound obtained by a reaction between a copper component and a polymer containing a coordinating atom that coordinates with the copper component by an unshared electron pair It was found that the product has good heat resistance and can form a film having high near-infrared shielding properties, and the present invention has been completed. The present invention provides the following.
<1> A near-infrared absorptive composition containing a compound obtained by a reaction between a copper component and a polymer containing a coordination atom that coordinates with the copper component by an unshared electron pair.
<2> The near-infrared absorbing composition according to <1>, wherein the coordination atom is one or more selected from an oxygen atom, a nitrogen atom, a sulfur atom, and a phosphorus atom.
<3> The near-infrared absorbing composition according to <1> or <2>, wherein the polymer further has a coordination site coordinated by an anion.
<4> The near-infrared absorbing composition according to <3>, wherein the anion is one or more selected from an oxygen anion, a nitrogen anion, and a sulfur anion.
<5> The near-infrared absorbing composition according to any one of <1> to <4>, wherein the polymer contains a group represented by the following formula (1) in a side chain;
* -L 1 -Y 1 (1)
In the general formula (1), L 1 represents a single bond or a linking group, and Y 1 is a group having one or more coordination atoms coordinated by an unshared electron pair or a coordination coordinated by an unshared electron pair. A group having at least one coordination site that coordinates with one or more atoms and an anion is represented, and * represents a bond with a polymer.
<6> The near-infrared absorbing composition according to any one of <1> to <5>, wherein the polymer includes a structural unit represented by the following formula (A1-1);
Figure JPOXMLDOC01-appb-C000003
In formula (A1-1), R 1 represents a hydrogen atom or a hydrocarbon group, L 1 represents a single bond or a linking group, and Y 1 represents one or more coordination atoms coordinated by a lone pair of electrons. Or a group having at least one coordination atom coordinated by an unshared electron pair and at least one coordination site coordinated by an anion.
<7> The polymer according to any one of <1> to <6>, wherein the polymer includes at least one structural unit selected from the following formulas (A1-1-1) to (A1-1-4): An infrared absorbing composition;
Figure JPOXMLDOC01-appb-C000004
In formulas (A1-1-1) to (A1-1-4), R 1 represents a hydrogen atom or a hydrocarbon group, L 2 represents a single bond or a linking group, and Y 1 represents a lone pair of electrons. A group having one or more coordination atoms to be coordinated or a group having one or more coordination atoms coordinated by an lone pair and one or more coordination sites coordinated by an anion.
<8> A near-infrared cut filter obtained using the near-infrared absorbing composition according to any one of <1> to <7>.
<9> A method for producing a near-infrared cut filter comprising a step of applying the near-infrared absorbing composition according to any one of <1> to <7> on the light-receiving side of the solid-state imaging device.
<10> A solid-state imaging device having a near-infrared cut filter obtained by using the near-infrared absorbing composition according to any one of <1> to <7>.
<11> A camera module that includes a solid-state imaging device and a near-infrared cut filter disposed on a light-receiving side of the solid-state imaging device, and the near-infrared cut filter is the near-infrared cut filter according to <8>.
 本発明によれば、高い近赤外線遮蔽性を維持しつつ、耐熱性に優れた硬化膜を形成可能な近赤外線吸収性組成物を提供することが可能となった。また、かかる近赤外線吸収性組成物を用いた近赤外線カットフィルタ、近赤外線カットフィルタの製造方法、固体撮像素子およびカメラモジュールを提供することが可能となった。 According to the present invention, it has become possible to provide a near-infrared absorbing composition capable of forming a cured film having excellent heat resistance while maintaining high near-infrared shielding properties. Moreover, it has become possible to provide a near-infrared cut filter using such a near-infrared absorptive composition, a method for producing a near-infrared cut filter, a solid-state imaging device, and a camera module.
本発明の実施形態に係る、近赤外線カットフィルタを有するカメラモジュールの構成を示す概略断面図であるIt is a schematic sectional drawing which shows the structure of the camera module which has a near-infrared cut off filter based on embodiment of this invention. カメラモジュールにおける近赤外線カットフィルタ周辺部分の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the near-infrared cut filter periphery part in a camera module. カメラモジュールにおける近赤外線カットフィルタ周辺部分の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the near-infrared cut filter periphery part in a camera module. カメラモジュールにおける近赤外線カットフィルタ周辺部分の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the near-infrared cut filter periphery part in a camera module.
 以下において、本発明の内容について詳細に説明する。尚、本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
 本明細書において、「(メタ)アクリレート」は、アクリレートおよびメタクリレートを表し、「(メタ)アクリル」は、アクリルおよびメタクリルを表し、「(メタ)アクリロイル」は、アクリロイルおよびメタクリロイルを表す。
 本明細書において、モノマーは、オリゴマーおよびポリマーと区別され、重量平均分子量が2,000以下の化合物をいう。
 本明細書において、重合性化合物とは、重合性基を有する化合物のことをいう。重合性基とは、重合反応に関与する基をいう。
 本明細書における基(原子団)の表記において、置換および無置換を記していない表記は置換基を有さない基(原子団)と共に置換基を有する基(原子団)をも包含するものである。
 本明細書において、化学式中のMeはメチル基を、Etはエチル基を、Prはプロピル基を、Buはブチル基を、Phはフェニル基をそれぞれ示す。
 本明細書において、近赤外線とは、波長領域が700~2500nmの光(電磁波)をいう。
 本明細書において、全固形分とは、組成物の全組成から溶剤を除いた成分の総質量をいう。
 本明細書において、固形分とは、25℃における固形分をいう。
 本明細書において、重量平均分子量および数平均分子量は、GPC測定によるポリスチレン換算値として定義される。本明細書において、重量平均分子量(Mw)及び数平均分子量(Mn)は、例えば、HLC-8220(東ソー(株)製)を用い、カラムとしてTSKgel Super AWM―H(東ソー(株)製、6.0mmID×15.0cmを、溶離液として10mmol/L リチウムブロミドNMP(N-メチルピロリジノン)溶液を用いることによって求めることができる。
Hereinafter, the contents of the present invention will be described in detail. In this specification, “to” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
In the present specification, “(meth) acrylate” represents acrylate and methacrylate, “(meth) acryl” represents acryl and methacryl, and “(meth) acryloyl” represents acryloyl and methacryloyl.
In this specification, a monomer is distinguished from an oligomer and a polymer, and refers to a compound having a weight average molecular weight of 2,000 or less.
In the present specification, the polymerizable compound refers to a compound having a polymerizable group. The polymerizable group refers to a group that participates in a polymerization reaction.
In the notation of a group (atomic group) in this specification, the notation which does not describe substitution and non-substitution includes a group (atomic group) having a substituent as well as a group (atomic group) having no substituent. is there.
In the present specification, Me in the chemical formula represents a methyl group, Et represents an ethyl group, Pr represents a propyl group, Bu represents a butyl group, and Ph represents a phenyl group.
In this specification, near-infrared light refers to light (electromagnetic wave) having a wavelength region of 700 to 2500 nm.
In this specification, the total solid content refers to the total mass of the components excluding the solvent from the total composition of the composition.
In this specification, solid content means solid content in 25 degreeC.
In this specification, a weight average molecular weight and a number average molecular weight are defined as a polystyrene conversion value by GPC measurement. In this specification, the weight average molecular weight (Mw) and the number average molecular weight (Mn) are, for example, HLC-8220 (manufactured by Tosoh Corporation), and TSKgel Super AWM-H (manufactured by Tosoh Corporation, 6) as a column. 0.0 mm ID × 15.0 cm can be determined by using a 10 mmol / L lithium bromide NMP (N-methylpyrrolidinone) solution as the eluent.
<近赤外線吸収性組成物>
 本発明の近赤外線吸収性組成物は、銅成分と、銅成分に対し非共有電子対で配位する配位原子を含有する重合体との反応で得られる化合物(ポリマー銅化合物ともいう)を含有する。
 本発明の近赤外線吸収性組成物を用いることにより、近赤外線遮蔽性の高い硬化膜(近赤外線カットフィルタ)が得られる。また、硬化膜の耐熱性を高くすることもできる。
 このような効果が得られる理由は定かではないが、以下のように推定される。
 銅成分に対し非共有電子対で配位する配位原子を含有する重合体(以下、重合体(A)ともいう)は、銅成分に対して配位子として働く。すなわち、重合体(A)の配位原子(非共有電子対)が、銅成分の銅と配位することにより、ポリマー銅化合物の構造が歪んで、可視光領域の高い透過性が得られ、近赤外線の吸光能力が向上し、更には、色価も向上すると考えられる。また、ポリマー銅化合物は、銅を起点として、重合体(A)の側鎖間に架橋構造が形成されると考えられ、耐熱性に優れた膜が得られる。また、吸水率が低く、耐湿性が良好なポリマー銅化合物とすることができる。
 ポリマー銅化合物は、重合体(A)を配位子とする銅錯体であることが好ましい。
 ポリマー銅化合物は、25℃、相対湿度95%の条件に5時間放置する前を基準とする質量増加率が60%以下であることが好ましい。以下、25℃、相対湿度95%の条件に放置する試験を単に吸水率試験ということがある。
 ポリマー銅化合物は、上記質量増加率が60%以下であることが好ましく、25%以下であることがより好ましく、10%以下であることがさらに好ましく、3%以下であることが特に好ましい。また、吸水率試験の時間は長く設定してもよく、10時間であってもよく、20時間であってもよい。この場合でも、上記化合物の質量増加率は、上記範囲を満たすことが好ましい。吸水率試験の試験時間を長時間に設定した場合の質量増加率が小さいほど、耐湿性の高い近赤外線カットフィルタが得られる。また、上記化合物の質量増加率の下限は0%であり、吸水率試験後も質量が増加しないことが好ましい。
<Near-infrared absorbing composition>
The near-infrared absorptive composition of the present invention comprises a compound (also referred to as a polymer copper compound) obtained by a reaction between a copper component and a polymer containing a coordination atom that coordinates with the copper component by an unshared electron pair. contains.
By using the near-infrared absorbing composition of the present invention, a cured film (near-infrared cut filter) having a high near-infrared shielding property can be obtained. In addition, the heat resistance of the cured film can be increased.
The reason why such an effect is obtained is not clear, but is estimated as follows.
A polymer containing a coordination atom that coordinates with a copper component by an unshared electron pair (hereinafter, also referred to as polymer (A)) acts as a ligand for the copper component. That is, the coordination atom (unshared electron pair) of the polymer (A) is coordinated with copper of the copper component, whereby the structure of the polymer copper compound is distorted, and high transparency in the visible light region is obtained. It is considered that the near-infrared light absorbing ability is improved and the color value is also improved. Moreover, it is thought that a crosslinked structure is formed between the side chains of a polymer (A) from a polymer copper compound, and a film | membrane excellent in heat resistance is obtained for a polymer copper compound. Moreover, it can be set as the polymer copper compound with a low water absorption rate and favorable moisture resistance.
The polymer copper compound is preferably a copper complex having the polymer (A) as a ligand.
The polymer copper compound preferably has a mass increase rate of 60% or less based on the condition before standing for 5 hours at 25 ° C. and a relative humidity of 95%. Hereinafter, a test that is allowed to stand at 25 ° C. and a relative humidity of 95% may be simply referred to as a water absorption test.
The polymer copper compound preferably has a mass increase rate of 60% or less, more preferably 25% or less, still more preferably 10% or less, and particularly preferably 3% or less. Moreover, the time of a water absorption rate test may be set long, 10 hours may be sufficient, and 20 hours may be sufficient. Even in this case, the mass increase rate of the compound preferably satisfies the above range. The near-infrared cut filter with higher moisture resistance can be obtained as the mass increase rate when the test time of the water absorption rate test is set to be long. The lower limit of the mass increase rate of the above compound is 0%, and it is preferable that the mass does not increase even after the water absorption test.
 本発明の近赤外線吸収性組成物における、ポリマー銅化合物の含有量は、全固形分の30質量%以上が好ましく、50質量%以上がより好ましく、70~100質量%がさらに好ましく、80~100質量%が特に好ましい。ポリマー銅化合物の含有量を増やすことで、近赤外線遮蔽性を向上させることができる。 In the near-infrared absorbing composition of the present invention, the content of the polymer copper compound is preferably 30% by mass or more, more preferably 50% by mass or more, further preferably 70 to 100% by mass, more preferably 80 to 100%, based on the total solid content. Mass% is particularly preferred. Near-infrared shielding can be improved by increasing the content of the polymer copper compound.
<<重合体(A)>>
 重合体(A)は、銅成分に対し非共有電子対で配位する配位原子を含有するものであれば、特に限定されない。
 重合体(A)において、非共有電子対で配位する配位原子は、酸素原子、窒素原子、硫黄原子およびリン原子から選ばれる1種以上が好ましく、酸素原子、窒素原子および硫黄原子から選ばれる1種以上がより好ましく、窒素原子がさらに好ましい。また、非共有電子対で配位する配位原子が窒素原子であり、かかる窒素原子に隣接する原子が炭素原子である態様が好ましく、かかる炭素原子が置換基を有することも好ましい。このような構成とすることにより、銅錯体の構造がより歪みやすくなるため、色価をより向上させることができる。置換基は、後述する非共有電子対で配位する配位原子を含む環が有していてもよい置換基と同義であり、炭素数1~10のアルキル基、炭素数6~12のアリール基、カルボキシル基、炭素数1~12のアルコキシ基、炭素数2~12のアシル基、炭素数1~12のアルキルチオ基、ハロゲン原子が好ましい。
 非共有電子対で配位する配位原子は、環に含まれていてもよいし、以下の群(UE)から選択される少なくとも1種の部分構造に含まれていてもよい。
<< Polymer (A) >>
The polymer (A) is not particularly limited as long as it contains a coordinating atom coordinated by a lone pair with respect to the copper component.
In the polymer (A), the coordination atom coordinated by the lone pair is preferably one or more selected from an oxygen atom, a nitrogen atom, a sulfur atom and a phosphorus atom, and selected from an oxygen atom, a nitrogen atom and a sulfur atom. 1 or more types are more preferable, and a nitrogen atom is still more preferable. Moreover, the aspect in which the coordinating atom coordinated by a lone pair is a nitrogen atom, and the atom adjacent to this nitrogen atom is a carbon atom, and it is also preferable that this carbon atom has a substituent. By setting it as such a structure, since the structure of a copper complex becomes easier to distort, color value can be improved more. The substituent is synonymous with the substituent that may be included in the ring containing a coordinating atom coordinated by an unshared electron pair described later, and is an alkyl group having 1 to 10 carbon atoms or aryl having 6 to 12 carbon atoms. Group, carboxyl group, alkoxy group having 1 to 12 carbon atoms, acyl group having 2 to 12 carbon atoms, alkylthio group having 1 to 12 carbon atoms, and halogen atom are preferable.
The coordinating atom coordinated by the lone pair may be contained in the ring, or may be contained in at least one partial structure selected from the following group (UE).
群(UE)
Figure JPOXMLDOC01-appb-C000005
Group (UE)
Figure JPOXMLDOC01-appb-C000005
 群(UE)中、R1は、それぞれ独立して水素原子、アルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基を表し、R2は、それぞれ独立して水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アルコキシ基、アリールオキシ基、ヘテロアリールオキシ基、アルキルチオ基、アリールチオ基、ヘテロアリールチオ基、アミノ基またはアシル基を表す。 In the group (UE), each R 1 independently represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group, and each R 2 independently represents a hydrogen atom, an alkyl group, or an alkenyl group. Represents a group, alkynyl group, aryl group, heteroaryl group, alkoxy group, aryloxy group, heteroaryloxy group, alkylthio group, arylthio group, heteroarylthio group, amino group or acyl group.
 R1が表すアルキル基は、直鎖状、分岐状または環状であってもよいが、直鎖状が好ましい。アルキル基の炭素数は、1~10が好ましく、1~6がより好ましく、1~4がさらに好ましい。アルキル基の例としては、メチル基が挙げられる。アルキル基は置換基を有していてもよく、置換基としてはハロゲン原子、カルボキシル基、ヘテロ環基が挙げられる。置換基としてのヘテロ環基は、単環であっても多環であってもよく、また、芳香族であっても非芳香族であってもよい。ヘテロ環を構成するヘテロ原子の数は1~3が好ましく1または2が好ましい。ヘテロ環を構成するヘテロ原子は、窒素原子が好ましい。アルキル基が置換基を有している場合、さらに置換基を有していてもよい。
 R1が表すアルケニル基およびアルキニル基の炭素数は、2~10が好ましく、2~6がより好ましい。
 R1が表すアリール基は、単環であっても多環であってもよいが単環が好ましい。アリール基の炭素数は6~18が好ましく、6~12がより好ましく、6がさらに好ましい。
 R1が表すヘテロアリール基は、単環であっても多環であってもよい。ヘテロアリール基の環を構成するヘテロ原子の数は1~3が好ましい。ヘテロアリール基の環を構成するヘテロ原子は、窒素原子、酸素原子または硫黄原子が好ましい。ヘテロアリール基の環の炭素数は6~18が好ましく、6~12がより好ましい。
The alkyl group represented by R 1 may be linear, branched or cyclic, but is preferably linear. The alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and still more preferably 1 to 4 carbon atoms. Examples of the alkyl group include a methyl group. The alkyl group may have a substituent, and examples of the substituent include a halogen atom, a carboxyl group, and a heterocyclic group. The heterocyclic group as a substituent may be monocyclic or polycyclic, and may be aromatic or non-aromatic. The number of heteroatoms constituting the heterocycle is preferably 1 to 3, and preferably 1 or 2. The hetero atom constituting the hetero ring is preferably a nitrogen atom. When the alkyl group has a substituent, it may further have a substituent.
The alkenyl group and alkynyl group represented by R 1 preferably have 2 to 10 carbon atoms, and more preferably 2 to 6 carbon atoms.
The aryl group represented by R 1 may be monocyclic or polycyclic, but is preferably monocyclic. The aryl group preferably has 6 to 18 carbon atoms, more preferably 6 to 12 carbon atoms, and still more preferably 6 carbon atoms.
The heteroaryl group represented by R 1 may be monocyclic or polycyclic. The number of heteroatoms constituting the ring of the heteroaryl group is preferably 1 to 3. The hetero atom constituting the ring of the heteroaryl group is preferably a nitrogen atom, an oxygen atom or a sulfur atom. The number of carbon atoms in the ring of the heteroaryl group is preferably 6-18, and more preferably 6-12.
 R2が表すアルキル基は、R1で説明したアルキル基と同義であり、好ましい範囲も同様である。
 R2が表すアルケニル基の炭素数は、2~10が好ましく、2~6がより好ましい。
 R2が表すアルキニル基の炭素数は、2~10が好ましく、2~6がより好ましい。
 R2が表すアリール基は、上記群(UE)で説明したアリール基と同義であり、好ましい範囲も同様である。
 R2が表すヘテロアリール基は、R1で説明したヘテロアリール基と同義であり、好ましい範囲も同様である。
 R2が表すアルコキシ基の炭素数は、1~12が好ましい。
 R2が表すアリールオキシ基の炭素数は、6~18が好ましい。
 R2が表すヘテロアリールオキシ基は、単環であっても多環であってもよい。ヘテロアリールオキシ基を構成するヘテロアリール基は、R1で説明したヘテロアリール基と同義であり、好ましい範囲も同様である。
 R2が表すアルキルチオ基の炭素数は、1~12が好ましい。
 R2が表すアリールチオ基の炭素数は、6~18が好ましい。
 R2が表すヘテロアリールチオ基は、単環であっても多環であってもよい。ヘテロアリールチオ基を構成するヘテロアリール基は、R1で説明したヘテロアリール基と同義であり、好ましい範囲も同様である。
 R2が表すアシル基の炭素数は、2~12が好ましい。
The alkyl group represented by R 2 has the same meaning as the alkyl group described for R 1 , and the preferred range is also the same.
The alkenyl group represented by R 2 preferably has 2 to 10 carbon atoms, and more preferably 2 to 6 carbon atoms.
The alkynyl group represented by R 2 preferably has 2 to 10 carbon atoms, and more preferably 2 to 6 carbon atoms.
The aryl group represented by R 2 has the same meaning as the aryl group described in the above group (UE), and the preferred range is also the same.
The heteroaryl group represented by R 2 has the same meaning as the heteroaryl group described for R 1 , and the preferred range is also the same.
The number of carbon atoms of the alkoxy group represented by R 2 is preferably 1-12.
The number of carbon atoms of the aryloxy group represented by R 2 is preferably 6-18.
The heteroaryloxy group represented by R 2 may be monocyclic or polycyclic. Heteroaryl group constituting the heteroaryl group has the same meaning as the heteroaryl group described for R 1, preferred ranges are also the same.
The alkylthio group represented by R 2 preferably has 1 to 12 carbon atoms.
The arylthio group represented by R 2 preferably has 6 to 18 carbon atoms.
The heteroarylthio group represented by R 2 may be monocyclic or polycyclic. Heteroaryl group constituting the heteroarylthio group has the same meaning as the heteroaryl group described for R 1, preferred ranges are also the same.
The number of carbon atoms of the acyl group represented by R 2 is preferably 2-12.
 非共有電子対で配位する配位原子が環に含まれる場合、配位原子を含む環は、単環であっても多環であってもよく、また、芳香族であっても非芳香族であってもよい。好ましくは、5~12員環であり、より好ましくは5~7員環であり、更に好ましくは5員環または6員環である。
 非共有電子対で配位する配位原子を含む環は、置換基を有していてもよい。置換基としては、炭素数1~10の直鎖状、分岐状または環状のアルキル基、炭素数6~12のアリール基、ハロゲン原子、ケイ素原子、炭素数1~12のアルコキシ基、炭素数1~12のアシル基、炭素数1~12のアルキルチオ基、カルボキシル基等が挙げられる。
 上記置換基は、さらに置換基を有していてもよい。このような置換基としては、例えば、非共有電子対で配位する配位原子を含む環からなる基、上述した群(UE)から選択される少なくとも1種の部分構造を含む基、炭素数1~12のアルキル基、炭素数1~12のアシル基、ヒドロキシ基などが挙げられる。
When a coordination atom coordinated by a lone pair is included in the ring, the ring containing the coordination atom may be monocyclic or polycyclic, and may be aromatic or non-aromatic. It may be a tribe. A 5- to 12-membered ring is preferred, a 5- to 7-membered ring is more preferred, and a 5-membered or 6-membered ring is still more preferred.
The ring containing a coordinating atom coordinated by a lone pair may have a substituent. Examples of the substituent include a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 12 carbon atoms, a halogen atom, a silicon atom, an alkoxy group having 1 to 12 carbon atoms, and 1 carbon atom. ˜12 acyl groups, C 1-12 alkylthio groups, carboxyl groups, and the like.
The above substituent may further have a substituent. Examples of such a substituent include a group comprising a ring containing a coordinating atom coordinated by a lone pair, a group containing at least one partial structure selected from the group (UE) described above, and the number of carbon atoms. Examples thereof include an alkyl group having 1 to 12, an acyl group having 1 to 12 carbon atoms, and a hydroxy group.
 重合体(A)は、さらに、アニオンで配位する配位部位を有していてもよい。ここで、アニオンで配位する配位部位とは、銅成分中の銅原子に配位可能なアニオンを含むものであり、例えば、酸素アニオン、窒素アニオンまたは硫黄アニオンを含むものが挙げられる。
 アニオンで配位する配位部位は、以下の群(AN)から選択される少なくとも1種であることが好ましい。
群(AN)
Figure JPOXMLDOC01-appb-C000006
The polymer (A) may further have a coordination site coordinated by an anion. Here, the coordination site | part coordinated with an anion contains the anion which can be coordinated to the copper atom in a copper component, for example, the thing containing an oxygen anion, a nitrogen anion, or a sulfur anion is mentioned.
The coordination site coordinated with an anion is preferably at least one selected from the following group (AN).
Group (AN)
Figure JPOXMLDOC01-appb-C000006
 上記の群(AN)において、Xは、NまたはCRを表し、Rは、それぞれ独立して水素原子、アルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基を表すことが好ましい。
 群(AN)におけるRが表すアルキル基、アルケニル基、アルキニル基、アリール基およびヘテロアリール基は、上記群(UE)におけるR1が表すアルキル基、アルケニル基、アルキニル基、アリール基およびヘテロアリールと同義であり、好ましい範囲も同様である。
In the above group (AN), X represents N or CR, and each R preferably independently represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group.
The alkyl group, alkenyl group, alkynyl group, aryl group and heteroaryl group represented by R in the group (AN) are the same as the alkyl group, alkenyl group, alkynyl group, aryl group and heteroaryl represented by R 1 in the above group (UE). It is synonymous and the preferable range is also the same.
 重合体(A)は、下記式(1)で表される基を側鎖に含むことが好ましい。
*-L1-Y1     ・・・(1)
 一般式(1)において、L1は単結合または連結基を表し、Y1は、非共有電子対で配位する配位原子を1個以上有する基または非共有電子対で配位する配位原子を1個以上とアニオンで配位する配位部位を1個以上有する基を表し、*は、重合体との連結手を表す。
 Y1は、非共有電子対で配位する配位原子を2個以上有する基、または、非共有電子対で配位する配位原子を1個以上とアニオンで配位する配位部位を1個以上有する基が好ましく、非共有電子対で配位する配位原子を1個以上とアニオンで配位する配位部位を1個以上有する基がより好ましい。
It is preferable that a polymer (A) contains group represented by following formula (1) in a side chain.
* -L 1 -Y 1 (1)
In the general formula (1), L 1 represents a single bond or a linking group, and Y 1 is a group having one or more coordination atoms coordinated by an unshared electron pair or a coordination coordinated by an unshared electron pair. A group having at least one coordination site that coordinates with one or more atoms and an anion is represented, and * represents a bond with a polymer.
Y 1 represents a group having two or more coordination atoms coordinated by an unshared electron pair, or 1 coordination site coordinated by one or more coordination atoms coordinated by an unshared electron pair and an anion. A group having at least one group is preferable, and a group having at least one coordination atom coordinated by an unshared electron pair and one or more coordination sites coordinated by an anion is more preferable.
 一般式(1)において、L1が連結基を表す場合、2価の連結基としては、アルキレン基、アリーレン基、ヘテロアリーレン基、-O-、-S-、-CO-、-COO-、-OCO-、-SO2-、-NR10-(R10は水素原子あるいはアルキル基を表し、水素原子が好ましい)、または、これらの組み合わせからなる基が挙げられ、アルキレン基、アリーレン基、-CO-、-COO-、-NR10-及びこれらの組み合わせからなる基が好ましく、アルキレン基、アリーレン基、-CO-、-COO-、-NR10-、アルキレン基と-COO-との組み合わせからなる基、-CO-と-NR10-との組み合わせからなる基、または、アルキレン基と-CO-と-NR10-との組み合わせからなる基がより好ましい。
 アルキレン基の炭素数は、1~30が好ましく、1~15より好ましく、1~10がさらに好ましい。アルキレン基は、置換基を有していてもよいが、無置換が好ましい。アルキレン基は、直鎖、分岐、環状のいずれであってもよい。また、環状のアルキレン基は、単環、多環のいずれであってもよい。
 アリーレン基の炭素数は、6~18が好ましく、6~14がより好ましく、6~10がさらに好ましく、フェニレン基が特に好ましい。
 ヘテロアリーレン基としては、特に限定されないが、5員環または6員環が好ましい。ヘテロ原子としては、酸素原子、窒素原子、硫黄原子が挙げられる。ヘテロ原子の数は、1~3が好ましい。ヘテロアリーレン基は、単環でも縮合環であってもよく、単環または縮合数が2~8の縮合環が好ましく、単環または縮合数が2~4の縮合環がより好ましい。
 L1が3価以上の連結基を表す場合は、上述した2価の連結基の例として挙げた基のうち、1個以上の水素原子を取り除いた基が挙げられる。
In the general formula (1), when L 1 represents a linking group, the divalent linking group includes an alkylene group, an arylene group, a heteroarylene group, —O—, —S—, —CO—, —COO—, —OCO—, —SO 2 —, —NR 10 — (R 10 represents a hydrogen atom or an alkyl group, preferably a hydrogen atom), or a group consisting of a combination thereof, including an alkylene group, an arylene group, — A group consisting of CO—, —COO—, —NR 10 — and combinations thereof is preferable, and includes an alkylene group, an arylene group, —CO—, —COO—, —NR 10 —, a combination of an alkylene group and —COO—. And a group consisting of a combination of —CO— and —NR 10 —, or a group consisting of a combination of an alkylene group, —CO— and —NR 10 —.
The alkylene group preferably has 1 to 30 carbon atoms, more preferably 1 to 15 carbon atoms, and still more preferably 1 to 10 carbon atoms. The alkylene group may have a substituent, but is preferably unsubstituted. The alkylene group may be linear, branched or cyclic. Further, the cyclic alkylene group may be monocyclic or polycyclic.
The carbon number of the arylene group is preferably 6 to 18, more preferably 6 to 14, still more preferably 6 to 10, and particularly preferably a phenylene group.
Although it does not specifically limit as a heteroarylene group, A 5-membered ring or a 6-membered ring is preferable. Examples of the hetero atom include an oxygen atom, a nitrogen atom, and a sulfur atom. The number of heteroatoms is preferably 1 to 3. The heteroarylene group may be a single ring or a condensed ring, and is preferably a single ring or a condensed ring having 2 to 8 condensations, and more preferably a single ring or a condensed ring having 2 to 4 condensations.
In the case where L 1 represents a trivalent or higher linking group, a group in which one or more hydrogen atoms have been removed from the above-described examples of the divalent linking group can be given.
<<<非共有電子対で配位する配位原子を1個以上有する基>>>
 上記一般式(1)において、Y1が表す、非共有電子対で配位する配位原子を1個以上有する基としては、例えば、下記式(1a1)または(1a2)で表される基が挙げられる。
*-L11-(Y11p   ・・・(1a1)
*-L11-(Y11a-L12-Y11p   ・・・(1a2)
 「*」は式(1)のL1との連結手を表す。
 L11は、単結合または(p+1)価の連結基を表す。L11が2価の連結基を表す場合、炭素数1~12のアルキレン基、炭素数6~12のアリーレン基、-CO-、-COO-、-OCO-、-SO2-、-O-、-NR10-(R10は水素原子あるいはアルキル基を表し、水素原子が好ましい)、または、これらの組み合わせからなる基が好ましい。
11が3価以上の連結基を表す場合は、上述した2価の連結基の例として挙げた基のうち、1個以上の水素原子を取り除いた基が挙げられる。
 L12は、単結合または2価の連結基を表す。2価の連結基としては、L11で説明した2価の連結基が好ましく挙げられる。L12は、単結合、アルキレン基、または、-NH-と-CO-との組み合わせからなる基がより好ましい。
 Y11は、非共有電子対で配位する配位原子を含む環、または、上述した群(UE)で表される部分構造を表す。pが2以上の整数を表す場合、複数のY11は同一であってもよく、異なっていてもよい。
 Y11aは、非共有電子対で配位する配位原子を含む環、または、以下の群(UE-1)から選択される少なくとも1種を表す。群(UE-1)中のR1は、群(UE)のR1と同義である。pが2以上の整数を表す場合、複数のY11aは同一であってもよく、異なっていてもよい。
群(UE-1)
Figure JPOXMLDOC01-appb-C000007
 式(1a1)および(1a2)において、pは、1以上の整数を表し、2以上が好ましい。上限は、例えば、5以下が好ましく、3以下がより好ましい。
<<< Group having at least one coordination atom coordinated by an unshared electron pair >>>
In the above general formula (1), examples of the group represented by Y 1 having one or more coordination atoms coordinated by a lone pair include groups represented by the following formula (1a1) or (1a2). Can be mentioned.
* -L 11 - (Y 11) p ··· (1a1)
* -L 11 - (Y 11a -L 12 -Y 11) p ··· (1a2)
“*” Represents a joint with L 1 in the formula (1).
L 11 represents a single bond or a (p + 1) -valent linking group. When L 11 represents a divalent linking group, an alkylene group having 1 to 12 carbon atoms, an arylene group having 6 to 12 carbon atoms, —CO—, —COO—, —OCO—, —SO 2 —, —O— —NR 10 — (R 10 represents a hydrogen atom or an alkyl group, preferably a hydrogen atom), or a group consisting of a combination thereof.
When L 11 represents a trivalent or higher linking group, a group in which one or more hydrogen atoms have been removed among the groups listed as examples of the divalent linking group described above can be given.
L 12 represents a single bond or a divalent linking group. Preferred examples of the divalent linking group include the divalent linking group described in L 11 . L 12 is more preferably a single bond, an alkylene group, or a group consisting of a combination of —NH— and —CO—.
Y 11 represents a ring containing a coordination atom coordinated by an unshared electron pair or a partial structure represented by the group (UE) described above. When p represents an integer of 2 or more, the plurality of Y 11 may be the same or different.
Y 11a represents a ring containing a coordinating atom coordinated by an unshared electron pair, or at least one selected from the following group (UE-1). R 1 in group (UE-1) has the same meaning as R 1 group (UE). When p represents an integer of 2 or more, the plurality of Y 11a may be the same or different.
Group (UE-1)
Figure JPOXMLDOC01-appb-C000007
In formulas (1a1) and (1a2), p represents an integer of 1 or more, and preferably 2 or more. For example, the upper limit is preferably 5 or less, and more preferably 3 or less.
<<<非共有電子対で配位する配位原子を1個以上とアニオンで配位する配位部位を1個以上有する基>>>
 上記一般式(1)において、Y1が表す、非共有電子対で配位する配位原子を1個以上とアニオンで配位する配位部位を1個以上有する基は、例えば、下記式で表される基が挙げられる。
*-L21-(Y21a-L23-Y22q   ・・・(1b1)
*-L21-(Y22a-L23-Y21q   ・・・(1b2)
*-L22-(Y21q(Y22r   ・・・(1b3)
*-L22-(Y21a-L23-Y22q(Y21r   ・・・(1b4)
*-L22-(Y22a-L23-Y21q(Y21r   ・・・(1b5)
*-L22-(Y21a-L23-Y22q(Y22r   ・・・(1b6)
*-L22-(Y22a-L23-Y21q(Y22r   ・・・(1b7)
 「*」は式(1)のL1との連結手を表す。
 L21は、単結合または(q+1)価の連結基を表す。L21は、式(1a)のL11と同義であり、好ましい範囲も同様である。
 L22は、単結合または(q+r+1)価の連結基を表す。L22は、式(1a)のL11と同義であり、好ましい範囲も同様である。
 L23は、単結合または2価の連結基を表す。2価の連結基としては、式(1a)のL11で説明した2価の連結基が好ましく挙げられる。L23は、単結合、アルキレン基、または、-NH-と-CO-との組み合わせからなる基がより好ましい。
 Y21は、非共有電子対で配位する配位原子を含む環、または、上述した群(UE)で表される部分構造を表す。q、rが、2以上の整数を表す場合、複数のY21は同一であってもよく、異なっていてもよい。
 Y21aは、非共有電子対で配位する配位原子を含む環、または、上述した群(UE-1)から選択される少なくとも1種を表す。q、rが、2以上の整数を表す場合、複数のY21aは同一であってもよく、異なっていてもよい。
 Y22は、上述した群(AN)で表される部分構造を表す。q、rが、2以上の整数を表す場合、複数のY22は同一であってもよく、異なっていてもよい。
 Y22aは、以下の群(AN-1)から選択される少なくとも1種を表す。群(AN-1)中のXは、NまたはCRを表し、Rは、上述した群(AN)中のCRで説明したRと同義である。q、rが、2以上の整数を表す場合、複数のY22aは同一であってもよく、異なっていてもよい。
群(AN-1)
Figure JPOXMLDOC01-appb-C000008
 qは、1以上の整数を表し、1~5が好ましく、1~3が特に好ましい。
 rは、1以上の整数を表し、1~5が好ましく、1~3が特に好ましい。
 q+rは、2以上を表し、2~5が好ましく、2~3が特に好ましい。
<<< Group having at least one coordination atom coordinated by an unshared electron pair and at least one coordination site coordinated by an anion >>>
In the general formula (1), the group represented by Y 1 and having one or more coordination atoms coordinated by an unshared electron pair and one or more coordination sites coordinated by an anion is represented by the following formula, for example. And the group represented.
* -L 21 - (Y 21a -L 23 -Y 22) q ··· (1b1)
* -L 21 - (Y 22a -L 23 -Y 21) q ··· (1b2)
* -L 22 - (Y 21) q (Y 22) r ··· (1b3)
* -L 22 - (Y 21a -L 23 -Y 22) q (Y 21) r ··· (1b4)
* -L 22 - (Y 22a -L 23 -Y 21) q (Y 21) r ··· (1b5)
* -L 22 - (Y 21a -L 23 -Y 22) q (Y 22) r ··· (1b6)
* -L 22 - (Y 22a -L 23 -Y 21) q (Y 22) r ··· (1b7)
“*” Represents a joint with L 1 in the formula (1).
L 21 represents a single bond or a (q + 1) -valent linking group. L 21 has the same meaning as L 11 in formula (1a), and the preferred range is also the same.
L 22 represents a single bond or a (q + r + 1) -valent linking group. L 22 has the same meaning as L 11 in formula (1a), and the preferred range is also the same.
L 23 represents a single bond or a divalent linking group. Preferred examples of the divalent linking group include the divalent linking group described for L 11 in formula (1a). L 23 is more preferably a single bond, an alkylene group, or a group consisting of a combination of —NH— and —CO—.
Y 21 represents a ring containing a coordination atom coordinated by an unshared electron pair or a partial structure represented by the group (UE) described above. When q and r represent an integer of 2 or more, the plurality of Y 21 may be the same or different.
Y 21a represents at least one selected from a ring containing a coordinating atom coordinated by an unshared electron pair, or the group (UE-1) described above. When q and r represent an integer of 2 or more, the plurality of Y 21a may be the same or different.
Y 22 represents a partial structure represented by the group (AN) described above. When q and r represent an integer of 2 or more, the plurality of Y 22 may be the same or different.
Y 22a represents at least one selected from the following group (AN-1). X in group (AN-1) represents N or CR, and R has the same meaning as R described above for CR in group (AN). When q and r represent an integer of 2 or more, the plurality of Y 22a may be the same or different.
Group (AN-1)
Figure JPOXMLDOC01-appb-C000008
q represents an integer of 1 or more, preferably 1 to 5, and particularly preferably 1 to 3.
r represents an integer of 1 or more, preferably 1 to 5, and particularly preferably 1 to 3.
q + r represents 2 or more, preferably 2 to 5, and particularly preferably 2 to 3.
 重合体(A)は、下記式(A1-1)で表される構成単位を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000009
 式(A1-1)中、R1は水素原子または炭化水素基を表し、L1は単結合または連結基を表し、Y1は、非共有電子対で配位する配位原子を1個以上有する基または非共有電子対で配位する配位原子を1個以上とアニオンで配位する配位部位を1個以上有する基を表す。
The polymer (A) preferably contains a structural unit represented by the following formula (A1-1).
Figure JPOXMLDOC01-appb-C000009
In formula (A1-1), R 1 represents a hydrogen atom or a hydrocarbon group, L 1 represents a single bond or a linking group, and Y 1 represents one or more coordination atoms coordinated by a lone pair of electrons. Or a group having at least one coordination atom coordinated by an unshared electron pair and at least one coordination site coordinated by an anion.
 式(A1-1)において、R1は、水素原子または炭化水素基を表す。炭化水素基としては、直鎖状、分岐状または環状の脂肪族炭化水素基や、芳香族炭化水素基が挙げられる。炭化水素基は、置換基を有していてもよいが、無置換が好ましい。炭化水素基の炭素数は、1~10が好ましく、1~5がより好ましく、1~3がさらに好ましい。炭化水素基はメチル基が好ましい。R1は水素原子またはメチル基が好ましい。
 式(A1-1)のL1およびY1は、上述した式(1)のL1およびY1と同義であり、好ましい範囲も同様である。
In the formula (A1-1), R 1 represents a hydrogen atom or a hydrocarbon group. Examples of the hydrocarbon group include a linear, branched or cyclic aliphatic hydrocarbon group, and an aromatic hydrocarbon group. The hydrocarbon group may have a substituent, but is preferably unsubstituted. The hydrocarbon group has preferably 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, and still more preferably 1 to 3 carbon atoms. The hydrocarbon group is preferably a methyl group. R 1 is preferably a hydrogen atom or a methyl group.
L 1 and Y 1 in formula (A1-1) has the same meaning as L 1 and Y 1 in formula (1) above, and preferred ranges are also the same.
 式(A1-1)で表される構成単位としては、例えば、以下の(A1-1-1)~(A1-1-4)で表される構成単位が挙げられる。以下の(A1-1-1)、(A1-1-2)が好ましい。
Figure JPOXMLDOC01-appb-C000010
Examples of the structural unit represented by formula (A1-1) include the structural units represented by the following (A1-1-1) to (A1-1-4). The following (A1-1-1) and (A1-1-2) are preferred.
Figure JPOXMLDOC01-appb-C000010
 式(A1-1-1)~(A1-1-4)中、R1は水素原子または炭化水素基を表し、L2は単結合または連結基を表し、Y1は、非共有電子対で配位する配位原子を1個以上有する基または非共有電子対で配位する配位原子を1個以上とアニオンで配位する配位部位を1個以上有する基を表す。 In formulas (A1-1-1) to (A1-1-4), R 1 represents a hydrogen atom or a hydrocarbon group, L 2 represents a single bond or a linking group, and Y 1 represents a lone pair of electrons. A group having one or more coordination atoms to be coordinated or a group having one or more coordination atoms coordinated by an lone pair and one or more coordination sites coordinated by an anion.
 式(A1-1-1)~(A1-1-4)のR1は、式(A1-1)のR1と同義であり、好ましい範囲も同様である。
 式(A1-1-1)~(A1-1-4)のY1は、式(A1-1)のY1と同義であり、好ましい範囲も同様である。
 式(A1-1-2)のL2は、単結合または連結基を表す。連結基としては、式(A1-1)のL1で説明した連結基が好ましく挙げられ、アルキレン基、または、アルキレン基と-COO-との組み合わせからなる基がより好ましい。
R 1 of formula (A1-1-1) ~ (A1-1-4) has the same meaning as R 1 in formula (A1-1), and preferred ranges are also the same.
Y 1 of the formula (A1-1-1) ~ (A1-1-4) has the same meaning as Y 1 in the formula (A1-1), and preferred ranges are also the same.
L 2 in formula (A1-1-2) represents a single bond or a linking group. Preferred examples of the linking group include the linking groups described for L 1 in formula (A1-1), and an alkylene group or a group consisting of a combination of an alkylene group and —COO— is more preferred.
 重合体(A)は、式(A1-1)で表される構成単位の他に、他の構成単位を含有していてもよい。
 他の構成単位を構成する成分としては、特開2010-106268号公報の段落番号0068~0075(対応する米国特許出願公開第2011/0124824号明細書の[0112]~[0118])に開示の共重合成分の記載を参酌でき、これらの内容は本願明細書に組み込まれる。
 好ましい他の構成単位としては、下記式(A2-1)で表される構成単位が挙げられる。
The polymer (A) may contain other structural units in addition to the structural unit represented by the formula (A1-1).
As components constituting other structural units, those disclosed in JP-A 2010-106268, paragraph numbers 0068 to 0075 (corresponding to US Patent Application Publication No. 2011/0124824 [0112] to [0118]). The description of the copolymerization component can be taken into account, the contents of which are incorporated herein.
Preferable other structural units include structural units represented by the following formula (A2-1).
Figure JPOXMLDOC01-appb-C000011
 式(A2-1)中、R5は水素原子または炭化水素基を表し、L4は単結合または連結基を表し、R10は、アルキル基またはアリール基を表す。
 式(A2-1)のR5は、式(A1-1)のR1と同義であり、好ましい範囲も同様である。
 式(A2-1)のL4は、単結合または連結基を表す。連結基としては、式(A1-1)のL1で説明した連結基が挙げられ、アルキレン基、-O-、-CO-、-COO-、-NR10-(R10は水素原子あるいはアルキル基を表す。アルキル基の炭素数は1~10が好ましく、1~5がより好ましい)、または、これらの組み合わせからなる基が好ましい。
 式(A2-1)のR10で表されるアルキル基は、直鎖状、分岐状または環状のいずれでもよい。アルキル基の炭素数は、1~30が好ましく、1~20がより好ましく、1~10がさらに好ましい。アルキル基は置換基を有していてもよく、置換基としては、上述したものが挙げられる。
 式(A2-1)のR10で表されるアリール基は、単環であっても多環であってもよいが単環が好ましい。アリール基の炭素数は6~18が好ましく、6~12がより好ましく、6がさらに好ましい。
 重合体(A)が、他の構成単位(好ましくは式(A2-1)で表される構成単位)を含む場合、式(A1-1)で表される構成単位と他の構成単位のモル比は、95:5~20:80であることが好ましく、90:10~40:60であることがより好ましい。
Figure JPOXMLDOC01-appb-C000011
In formula (A2-1), R 5 represents a hydrogen atom or a hydrocarbon group, L 4 represents a single bond or a linking group, and R 10 represents an alkyl group or an aryl group.
R 5 in formula (A2-1) has the same meaning as R 1 in formula (A1-1), and the preferred range is also the same.
L 4 in formula (A2-1) represents a single bond or a linking group. Examples of the linking group include the linking groups described for L 1 in formula (A1-1), such as an alkylene group, —O—, —CO—, —COO—, —NR 10 — (R 10 represents a hydrogen atom or an alkyl group). The alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, or a combination thereof.
The alkyl group represented by R 10 in formula (A2-1) may be linear, branched or cyclic. The alkyl group preferably has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and still more preferably 1 to 10 carbon atoms. The alkyl group may have a substituent, and examples of the substituent include those described above.
The aryl group represented by R 10 in formula (A2-1) may be monocyclic or polycyclic, but is preferably monocyclic. The aryl group preferably has 6 to 18 carbon atoms, more preferably 6 to 12 carbon atoms, and still more preferably 6 carbon atoms.
When the polymer (A) contains another structural unit (preferably the structural unit represented by the formula (A2-1)), the mole of the structural unit represented by the formula (A1-1) and the other structural unit The ratio is preferably 95: 5 to 20:80, and more preferably 90:10 to 40:60.
 重合体(A)の重量平均分子量は、2000以上が好ましく、2000~200万がより好ましく、6000~200,000がさらに好ましい。重合体(A)の重量平均分子量をこのような範囲とすることにより、得られる硬化膜の耐湿性がより向上する傾向にある。
 重合体(A)の具体例としては、下記の化合物およびその塩が挙げられるが、これらに限定されるものではない。なお、塩を構成する原子としては、金属原子が好ましく、アルカリ金属原子またはアルカリ土類金属原子がより好ましい。アルカリ金属原子としては、ナトリウム、カリウム等が挙げられる。アルカリ土類金属原子としては、カルシウム、マグネシウム等が挙げられる。
The weight average molecular weight of the polymer (A) is preferably 2000 or more, more preferably 2000 to 2 million, and further preferably 6000 to 200,000. By making the weight average molecular weight of a polymer (A) into such a range, it exists in the tendency for the moisture resistance of the cured film obtained to improve more.
Specific examples of the polymer (A) include, but are not limited to, the following compounds and salts thereof. In addition, as an atom which comprises a salt, a metal atom is preferable and an alkali metal atom or an alkaline-earth metal atom is more preferable. Examples of the alkali metal atom include sodium and potassium. Examples of alkaline earth metal atoms include calcium and magnesium.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 重合体(A)は、上述した構成単位を構成するモノマーを重合反応させることで得られる。重合反応は、公知の重合開始剤を用いて反応させることができる。重合開始剤としては、アゾ重合開始剤を使用することができ、具体的には、水溶性アゾ重合開始剤、油溶性アゾ重合開始剤、高分子重合開始剤が挙げられる。重合開始剤は1種のみでもよく、2種以上を併用してもよい。 The polymer (A) can be obtained by polymerizing the monomers constituting the structural units described above. The polymerization reaction can be carried out using a known polymerization initiator. As the polymerization initiator, an azo polymerization initiator can be used, and specific examples include a water-soluble azo polymerization initiator, an oil-soluble azo polymerization initiator, and a polymer polymerization initiator. Only one polymerization initiator may be used, or two or more polymerization initiators may be used in combination.
 モノマーとしては、例えば以下に示すものが挙げられる。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Examples of the monomer include those shown below.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
 水溶性アゾ重合開始剤としては、例えば、市販品であるVA-044、VA-046B、V-50、VA-057、VA-061、VA-067、VA-086等(商品名:いずれも和光純薬工業株式会社製)を用いることができる。油溶性アゾ重合開始剤としては、例えば、市販品であるV-60、V-70、V-65、V-601、V-59、V-40、VF-096、VAm-110等(商品名:いずれも和光純薬工業株式会社製)を用いることができる。高分子重合開始剤としては、例えば、市販品であるVPS-1001、VPE-0201等(商品名:いずれも和光純薬工業株式会社製)を用いることができる。 Examples of the water-soluble azo polymerization initiator include commercially available products VA-044, VA-046B, V-50, VA-057, VA-061, VA-067, VA-086, etc. Koyo Pure Chemical Industries, Ltd.) can be used. Examples of the oil-soluble azo polymerization initiator include commercially available products V-60, V-70, V-65, V-601, V-59, V-40, VF-096, VAm-110, etc. (trade names) : Wako Pure Chemical Industries, Ltd.) can be used. As the polymer polymerization initiator, for example, commercially available products such as VPS-1001 and VPE-0201 (trade names: all manufactured by Wako Pure Chemical Industries, Ltd.) can be used.
<<銅成分>>
 銅成分は、銅または銅を含む化合物を用いることができ、2価の銅を含む化合物が好ましい。銅の含有量を増やすことで、近赤外線遮蔽性が向上することから、近赤外線吸収性組成物の全固形分に対して、銅を元素基準で10%以上含有することが好ましく、20%以上が好ましく、30%以上がさらに好ましい。上限は特にないが、70%以下が好ましく、60%以下がさらに好ましい。銅成分は、1種のみを用いてもよいし、2種以上を用いてもよい。
 銅成分としては、例えば、酸化銅や銅塩を用いることができる。銅塩は、例えば、カルボン酸銅(例えば、酢酸銅、エチルアセト酢酸、ギ酸銅、安息香酸銅、ステアリン酸銅、ナフテン酸銅、クエン酸銅、2-エチルヘキサン酸銅など)、スルホン酸銅(例えば、メタンスルホン酸銅など)、リン酸銅、リン酸エステル銅、ホスホン酸銅、ホスホン酸エステル銅、ホスフィン酸銅、アミド銅、スルホンアミド銅、イミド銅、アシルスルホンイミド銅、ビススルホンイミド銅、メチド銅、アルコキシ銅、フェノキシ銅、水酸化銅、炭酸銅、硫酸銅、硝酸銅、過塩素酸銅、塩化銅、臭化銅が好ましく、カルボン酸銅、スルホン酸銅、スルホンアミド銅、イミド銅、アシルスルホンイミド銅、ビススルホンイミド銅、アルコキシ銅、フェノキシ銅、水酸化銅、炭酸銅、塩化銅、硫酸銅がより好ましく、カルボン酸銅、アシルスルホンイミド銅、フェノキシ銅、塩化銅が更に好ましく、カルボン酸銅、アシルスルホンイミド銅が特に好ましい。
<< Copper component >>
As the copper component, copper or a compound containing copper can be used, and a compound containing divalent copper is preferable. By increasing the copper content, the near-infrared shielding properties are improved. Therefore, the total solid content of the near-infrared absorbing composition is preferably 10% or more on an element basis, and 20% or more. Is preferable, and 30% or more is more preferable. Although there is no upper limit in particular, 70% or less is preferable and 60% or less is more preferable. A copper component may use only 1 type and may use 2 or more types.
As the copper component, for example, copper oxide or copper salt can be used. Copper salts include, for example, copper carboxylate (eg, copper acetate, ethyl acetoacetate, copper formate, copper benzoate, copper stearate, copper naphthenate, copper citrate, copper 2-ethylhexanoate), copper sulfonate ( For example, copper methanesulfonate), copper phosphate, phosphate ester copper, phosphonate copper, phosphonate ester copper, phosphinate copper, amide copper, sulfonamide copper, imide copper, acylsulfonimide copper, bissulfonimide copper , Methide copper, alkoxy copper, phenoxy copper, copper hydroxide, copper carbonate, copper sulfate, copper nitrate, copper perchlorate, copper chloride, copper bromide, carboxylate copper, sulfonate copper, sulfonamide copper, imide Copper, acylsulfonimide copper, bissulfonimide copper, alkoxy copper, phenoxy copper, copper hydroxide, copper carbonate, copper chloride, copper sulfate are more preferable, carboxylic acid , Acyl sulfonimide copper, phenoxy copper, more preferably copper chloride, copper carboxylate, acyl sulfonimide copper is particularly preferred.
<ポリマー銅化合物の製造方法>
 ポリマー銅化合物は、上述した重合体(A)と銅成分とを反応させて製造することができる。
 重合体(A)と反応させる銅成分の量は、重合体(A)の全配位部(非共有電子対で配位する配位原子と、アニオンで配位する配位部位との合計)と、銅化合物とを、モル比で、重合体(A)の全配位部:銅化合物=1:0.05~2モルが好ましく、1:0.1~1.4モルがより好ましく、1:0.2~1.0モルがさらに好ましい。このような範囲とすることにより、より高い近赤外線遮蔽性を有する硬化膜が得られる傾向にある。
 また、銅成分と重合体(A)とを反応させる際の反応条件は、例えば、20~70℃で、0.5時間以上とすることが好ましい。
 また、銅成分は、重合体(A)と反応させる前に、後述する低分子化合物である、アニオンで配位する配位部位を有する化合物、および、非共有電子対で配位する配位部位を有する化合物から選ばれる1種以上と反応させてもよい。この態様によれば、近赤外線遮蔽性、耐熱性をさらに向上させることができる。低分子化合物は、アニオンで配位する配位部位を有する化合物が好ましい。
 銅成分と反応させる上記低分子化合物の量は、銅成分と低分子化合物とを、モル比で低分子成分:銅成分=1:0.05~2が好ましく、1:0.2~1.4がより好ましい。
<Method for producing polymer copper compound>
The polymer copper compound can be produced by reacting the above-described polymer (A) with a copper component.
The amount of the copper component to be reacted with the polymer (A) is the total coordination part of the polymer (A) (the sum of the coordination atom coordinated by the lone pair and the coordination site coordinated by the anion). And the copper compound in a molar ratio, the total coordination part of the polymer (A): the copper compound is preferably 1: 0.05 to 2 mol, more preferably 1: 0.1 to 1.4 mol, A ratio of 1: 0.2 to 1.0 mol is more preferable. By setting it as such a range, it exists in the tendency for the cured film which has higher near-infrared shielding property to be obtained.
The reaction conditions for reacting the copper component with the polymer (A) are preferably 20 to 70 ° C. and 0.5 hours or longer, for example.
Moreover, before making a copper component react with a polymer (A), it is a low molecular compound mentioned later, the compound which has a coordination site | part coordinated with an anion, and the coordination site | part coordinated with a lone pair You may make it react with 1 or more types chosen from the compound which has this. According to this aspect, the near infrared shielding property and heat resistance can be further improved. The low molecular compound is preferably a compound having a coordination site coordinated by an anion.
The amount of the low molecular compound to be reacted with the copper component is preferably low molecular component: copper component = 1: 0.05 to 2, and 1: 0.2 to 1. 4 is more preferable.
 本発明の近赤外線吸収性組成物は、銅成分と重合体(A)との反応で得られる化合物(ポリマー銅化合物)を含有していれば良いが、未反応の銅成分や重合体(A)などを含有してもよい。また、上記銅成分以外の銅化合物、溶剤、硬化性化合物、バインダーポリマー、界面活性剤、重合開始剤、その他の成分を含有してもよい。 Although the near-infrared absorptive composition of this invention should just contain the compound (polymer copper compound) obtained by reaction with a copper component and a polymer (A), an unreacted copper component and a polymer (A ) And the like. Moreover, you may contain copper compounds other than the said copper component, a solvent, a sclerosing | hardenable compound, a binder polymer, surfactant, a polymerization initiator, and other components.
<<他の近赤外線吸収性化合物>>
 本発明の近赤外線吸収性組成物は、近赤外線遮蔽性をさらに向上させる目的で、上述したポリマー銅化合物以外の近赤外線吸収性化合物(以下、他の近赤外線吸収性化合物ともいう)を配合してもよい。
 本発明で用いる近赤外線吸収性化合物は、極大吸収波長領域が700~2500nm、好ましくは700~1000nmの範囲内(近赤外線領域)に有するものであれば、特に制限されるものではない。
 他の近赤外線吸収性化合物は、銅化合物が好ましく、銅錯体がより好ましい。
 他の近赤外線吸収性化合物を配合する場合、ポリマー銅化合物と、他の近赤外線吸収性化合物の比(質量比)は、10:90~95:5が好ましく、20:80~90:10がより好ましく、20:80~80:20がさらに好ましい。
 他の近赤外線吸収性化合物としては、アニオンで配位する配位部位を有する低分子化合物(例えば、分子量1000以下)と銅成分との反応で得られる銅化合物、非共有電子対で配位する配位原子を有する低分子化合物(例えば、分子量1000以下)と銅成分との反応で得られる銅化合物などを用いることができる。
<< Other near-infrared absorbing compounds >>
The near-infrared absorbing composition of the present invention contains a near-infrared absorbing compound other than the above-described polymer copper compound (hereinafter also referred to as other near-infrared absorbing compound) for the purpose of further improving the near-infrared shielding property. May be.
The near-infrared absorbing compound used in the present invention is not particularly limited as long as it has a maximum absorption wavelength region in the range of 700 to 2500 nm, preferably 700 to 1000 nm (near infrared region).
The other near infrared absorbing compound is preferably a copper compound, and more preferably a copper complex.
When other near infrared absorbing compounds are blended, the ratio (mass ratio) of the polymer copper compound and the other near infrared absorbing compounds is preferably 10:90 to 95: 5, and 20:80 to 90:10. More preferred is 20:80 to 80:20.
Other near-infrared absorbing compounds include a copper compound obtained by a reaction between a low-molecular compound having a coordination site coordinated by an anion (for example, a molecular weight of 1000 or less) and a copper component, or coordination with an unshared electron pair. A copper compound obtained by a reaction between a low molecular compound having a coordination atom (for example, a molecular weight of 1000 or less) and a copper component can be used.
 銅化合物としては、例えば、下式(B)で表される銅錯体を用いることができる。
 Cu(L)n1・(X)n2   式(B)
 上記式(B)中、Lは、銅に配位する配位子を表し、Xは、存在しないか、ハロゲン原子、H2O、NO3、ClO4、SO4、CN、SCN、BF4、PF6、BPh4(Phはフェニル基を表す)またはアルコールを表す。n1、n2は、各々独立に1~4の整数を表す。
 配位子Lは、銅に対しアニオンで配位する配位部位、および、銅に対し非共有電子対で配位する配位原子から選ばれる1種以上を有する基である。アニオンで配位する配位部位は、解離していてもよく、非解離でも良い。非解離の場合、Xは存在しない。
 上記銅錯体は、中心金属の銅に配位子が配位した銅化合物であり、銅は、通常2価の銅である。例えば銅成分に対して、配位子となる化合物またはその塩を混合・反応等させて得ることができる。
As the copper compound, for example, a copper complex represented by the following formula (B) can be used.
Cu (L) n1・ (X) n2 Formula (B)
In the above formula (B), L represents a ligand coordinated to copper, and X does not exist or is a halogen atom, H 2 O, NO 3 , ClO 4 , SO 4 , CN, SCN, or BF 4. , PF 6 , BPh 4 (Ph represents a phenyl group) or alcohol. n1 and n2 each independently represents an integer of 1 to 4.
The ligand L is a group having one or more selected from a coordination site coordinated with copper by an anion and a coordination atom coordinated with copper by a lone pair. The coordination site coordinated by an anion may be dissociated or non-dissociated. In the case of non-dissociation, X is not present.
The copper complex is a copper compound in which a ligand is coordinated to copper as a central metal, and copper is usually divalent copper. For example, it can be obtained by mixing and reacting a compound serving as a ligand or a salt thereof with a copper component.
 配位子となる化合物またはその塩としては、特に限定されないが、下記一般式(i)で表される化合物が好ましい。
100-(X100n3   ・・・(i)
(一般式(i)中、X100は配位部位を表し、n3は1~6の整数を表し、R100は単結合またはn価の基を表す。)
 一般式(i)中、X100は、アニオンで配位する配位部位および非共有電子対で配位する配位原子から選ばれる1種以上であることが好ましく、アニオンで配位する配位部位を1種以上含むことがより好ましい。
Although it does not specifically limit as a compound used as a ligand or its salt, The compound represented with the following general formula (i) is preferable.
R 100- (X 100 ) n3 (i)
(In general formula (i), X 100 represents a coordination site, n3 represents an integer of 1 to 6, and R 100 represents a single bond or an n-valent group.)
In general formula (i), X 100 is preferably at least one selected from a coordination site coordinated by an anion and a coordination atom coordinated by a lone pair, and a coordination coordinated by an anion It is more preferable to include one or more sites.
 上記アニオンは、銅成分中の銅原子に配位可能なものであればよく、酸素アニオン、窒素アニオンまたは硫黄アニオンが好ましい。
 アニオンで配位する配位部位は、例えば、上述した群(AN)から選択される少なくとも1種であることが好ましい。
The said anion should just be coordinated to the copper atom in a copper component, and an oxygen anion, a nitrogen anion, or a sulfur anion is preferable.
The coordination site coordinated by an anion is preferably at least one selected from the above-described group (AN), for example.
 アニオンで配位する配位部位の例として、モノアニオン性配位部位も挙げられる。モノアニオン性配位部位は、1つの負電荷を有する官能基を介して銅原子と配位する部位を表す。例えば、酸解離定数(pKa)が12以下の酸基が挙げられる。具体的には、リン原子を含有する酸基(リン酸ジエステル基、ホスホン酸モノエステル基、ホスフィン酸基等)、スルホ基、カルボキシル基、イミド酸基等が挙げられ、スルホ基、カルボキシル基が好ましく、カルボキシル基がより好ましい。 Examples of coordination sites coordinated by anions also include monoanionic coordination sites. A monoanionic coordination site | part represents the site | part coordinated with a copper atom through the functional group which has one negative charge. For example, an acid group having an acid dissociation constant (pKa) of 12 or less can be mentioned. Specific examples include acid groups containing phosphorous atoms (phosphoric acid diester groups, phosphonic acid monoester groups, phosphinic acid groups, etc.), sulfo groups, carboxyl groups, imido acid groups, and the like. Preferably, a carboxyl group is more preferable.
 非共有電子対で配位する配位原子は、酸素原子、窒素原子、硫黄原子またはリン原子を含むことが好ましく、酸素原子、窒素原子または硫黄原子を含むことがより好ましく、窒素原子を含むことがさらに好ましい。また、非共有電子対で配位する配位原子が窒素原子であり、かかる窒素原子に隣接する原子が炭素原子である態様が好ましく、かかる炭素原子が置換基を有することも好ましい。このような構成とすることにより、銅錯体の構造がより歪みやすくなるため、色価をより向上させることができる。置換基は、後述する非共有電子対で配位する配位原子を含む環が有していてもよい置換基と同義であり、炭素数1~10のアルキル基、炭素数6~12のアリール基、カルボキシル基、炭素数1~12のアルコキシ基、炭素数2~12のアシル基、炭素数1~12のアルキルチオ基、ハロゲン原子が好ましい。
 非共有電子対で配位する配位原子は、環に含まれていてもよいし、上述した群(UE)から選択される少なくとも1種の部分構造に含まれていてもよい。
The coordination atom coordinated by the lone pair preferably contains an oxygen atom, a nitrogen atom, a sulfur atom or a phosphorus atom, more preferably contains an oxygen atom, a nitrogen atom or a sulfur atom, and contains a nitrogen atom. Is more preferable. Moreover, the aspect in which the coordinating atom coordinated by a lone pair is a nitrogen atom, and the atom adjacent to this nitrogen atom is a carbon atom, and it is also preferable that this carbon atom has a substituent. By setting it as such a structure, since the structure of a copper complex becomes easier to distort, color value can be improved more. The substituent is synonymous with the substituent that may be included in the ring containing a coordinating atom coordinated by an unshared electron pair described later, and is an alkyl group having 1 to 10 carbon atoms or aryl having 6 to 12 carbon atoms. Group, carboxyl group, alkoxy group having 1 to 12 carbon atoms, acyl group having 2 to 12 carbon atoms, alkylthio group having 1 to 12 carbon atoms, and halogen atom are preferable.
The coordinating atom coordinated by the lone pair may be contained in the ring or in at least one partial structure selected from the group (UE) described above.
 非共有電子対で配位する配位原子が環に含まれる場合、配位原子を含む環は、単環であっても多環であってもよく、また、芳香族であっても非芳香族であってもよい。好ましくは、5~12員環であり、より好ましくは5~7員環であり、更に好ましくは5員環または6員環である。
 非共有電子対で配位する配位原子を含む環は、置換基を有していてもよい。置換基としては、炭素数1~10の直鎖状、分岐状または環状のアルキル基、炭素数6~12のアリール基、ハロゲン原子、ケイ素原子、炭素数1~12のアルコキシ基、炭素数1~12のアシル基、炭素数1~12のアルキルチオ基、カルボキシル基等が挙げられる。
 上記置換基は、さらに置換基を有していてもよい。このような置換基としては、例えば、非共有電子対で配位する配位原子を含む環からなる基、上述した群(UE)から選択される少なくとも1種の部分構造を含む基、炭素数1~12のアルキル基、炭素数1~12のアシル基、ヒドロキシ基などが挙げられる。
When a coordination atom coordinated by a lone pair is included in the ring, the ring containing the coordination atom may be monocyclic or polycyclic, and may be aromatic or non-aromatic. It may be a tribe. A 5- to 12-membered ring is preferred, a 5- to 7-membered ring is more preferred, and a 5-membered or 6-membered ring is still more preferred.
The ring containing a coordinating atom coordinated by a lone pair may have a substituent. Examples of the substituent include a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 12 carbon atoms, a halogen atom, a silicon atom, an alkoxy group having 1 to 12 carbon atoms, and 1 carbon atom. ˜12 acyl groups, C 1-12 alkylthio groups, carboxyl groups, and the like.
The above substituent may further have a substituent. Examples of such a substituent include a group comprising a ring containing a coordinating atom coordinated by a lone pair, a group containing at least one partial structure selected from the group (UE) described above, and the number of carbon atoms. Examples thereof include an alkyl group having 1 to 12, an acyl group having 1 to 12 carbon atoms, and a hydroxy group.
 一般式(i)中、n3は1~6の整数を表し、1~3が好ましく、2または3がより好ましく、3がさらに好ましい。
 一般式(i)中、R100は単結合またはn価の基を表す。n価の基としては、n価の有機基、または、n価の有機基と、-O-、-SO-、-SO2-、-NRN1-、-CO-、-CS-との組み合わせからなる基が好ましい。n価の有機基は、炭化水素基、オキシアルキレン基、ヘテロ環基等が挙げられる。また、n価の基は、上述した群(AN-1)から選択される少なくとも1種を含む基、非共有電子対で配位する配位原子を含む環、または、上述した群(UE-1)から選択される少なくとも1種を含む基であってもよい。
 炭化水素基は、脂肪族炭化水素基または芳香族炭化水素基が好ましい。炭化水素基は、置換基を有していてもよく、置換基としては、アルキル基、ハロゲン原子(好ましくはフッ素原子)、重合性基(例えば、ビニル基、(メタ)アクリロイル基、エポキシ基、オキセタン基など)、スルホ基、カルボキシル基、リン原子を含有する酸基、カルボン酸エステル基(例えば-CO2CH3)、ヒドロキシル基、アルコキシ基(例えばメトキシ基)、アミノ基、カルバモイル基、カルバモイルオキシ基、ハロゲン化アルキル基(例えばフルオロアルキル基、クロロアルキル基)、(メタ)アクリロイルオキシ基等が挙げられる。炭化水素基が置換基を有する場合、さらに置換基を有していてもよく、置換基としてはアルキル基、上記重合性基、ハロゲン原子等が挙げられる。
 上記炭化水素基が1価の場合、アルキル基、アルケニル基またはアリール基が好ましく、アリール基がより好ましい。炭化水素基が2価の場合、アルキレン基、アリーレン基、オキシアルキレン基が好ましく、アリーレン基がより好ましい。炭化水素基が3価以上の場合には、上記1価の炭化水素基または2価の炭化水素基に対応するものが好ましい。
 アルキル基及びアルキレン基は、直鎖状、分岐状または環状のいずれであってもよい。直鎖状のアルキル基及びアルキレン基の炭素数は、1~20が好ましく、1~12がより好ましく、1~8がさらに好ましい。分岐状のアルキル基及びアルキレン基の炭素数は、3~20が好ましく、3~12がより好ましく、3~8がさらに好ましい。環状のアルキル基及びアルキレン基は、単環、多環のいずれであってもよい。環状のアルキル基及びアルキレン基の炭素数は、3~20が好ましく、4~10がより好ましく、6~10がさらに好ましい。
 アルケニル基及びアルケニレン基の炭素数は、2~10が好ましく、2~8がより好ましく、2~4がさらに好ましい。
 アリール基及びアリーレン基の炭素数は、6~18が好ましく、6~14がより好ましく、6~10がさらに好ましい。
 ヘテロ環基は、脂環基の中にヘテロ原子があるものまたは芳香族ヘテロ環基が挙げられる。ヘテロ環基としては、5員環または6員環が好ましい。また、ヘテロ環基は、単環または縮合環であり、単環または縮合数が2~8の縮合環が好ましく、単環または縮合数が2~4の縮合環がより好ましい。ヘテロ環基は、置換基を有していてもよく、置換基としては、上述した炭化水素基が有していてもよい置換基と同義である。
 -NRN1-において、RN1は、水素原子、アルキル基、アリール基またはアラルキル基を表す。RN1におけるアルキル基としては、鎖状、分枝状、環状のいずれであってもよい。直鎖状または分岐状のアルキル基の炭素数は、1~20が好ましく、1~12がより好ましい。環状のアルキル基は、単環、多環のいずれであってもよい。環状のアルキル基の炭素数は、3~20が好ましく、4~14がより好ましい。
 RN1におけるアリール基の炭素数は、6~18が好ましく、6~14がより好ましい。具体的には、フェニル基、ナフチル基などが例示される。RN1におけるアラルキル基としては、炭素数7~20のアラルキル基が好ましく、無置換の炭素数7~15のアラルキル基がより好ましい。
In general formula (i), n3 represents an integer of 1 to 6, preferably 1 to 3, more preferably 2 or 3, and still more preferably 3.
In the general formula (i), R 100 represents a single bond or n-valent group. As an n-valent group, an n-valent organic group or a combination of an n-valent organic group and —O—, —SO—, —SO 2 —, —NR N1 —, —CO—, or —CS— The group consisting of Examples of the n-valent organic group include a hydrocarbon group, an oxyalkylene group, and a heterocyclic group. Further, the n-valent group is a group containing at least one selected from the above group (AN-1), a ring containing a coordination atom coordinated by an unshared electron pair, or the above group (UE- It may be a group containing at least one selected from 1).
The hydrocarbon group is preferably an aliphatic hydrocarbon group or an aromatic hydrocarbon group. The hydrocarbon group may have a substituent. Examples of the substituent include an alkyl group, a halogen atom (preferably a fluorine atom), a polymerizable group (for example, a vinyl group, a (meth) acryloyl group, an epoxy group, Oxetane group, etc.), sulfo group, carboxyl group, acid group containing phosphorus atom, carboxylic ester group (eg —CO 2 CH 3 ), hydroxyl group, alkoxy group (eg methoxy group), amino group, carbamoyl group, carbamoyl Examples thereof include an oxy group, a halogenated alkyl group (for example, a fluoroalkyl group and a chloroalkyl group), and a (meth) acryloyloxy group. When the hydrocarbon group has a substituent, the hydrocarbon group may further have a substituent, and examples of the substituent include an alkyl group, the polymerizable group, and a halogen atom.
When the hydrocarbon group is monovalent, an alkyl group, an alkenyl group or an aryl group is preferable, and an aryl group is more preferable. When the hydrocarbon group is divalent, an alkylene group, an arylene group, or an oxyalkylene group is preferable, and an arylene group is more preferable. When the hydrocarbon group is trivalent or higher, those corresponding to the monovalent hydrocarbon group or divalent hydrocarbon group are preferred.
The alkyl group and the alkylene group may be linear, branched or cyclic. The carbon number of the linear alkyl group and alkylene group is preferably 1-20, more preferably 1-12, and even more preferably 1-8. The branched alkyl group and alkylene group preferably have 3 to 20 carbon atoms, more preferably 3 to 12 carbon atoms, and still more preferably 3 to 8 carbon atoms. The cyclic alkyl group and alkylene group may be monocyclic or polycyclic. The number of carbon atoms in the cyclic alkyl group and the alkylene group is preferably 3 to 20, more preferably 4 to 10, and still more preferably 6 to 10.
The alkenyl group and alkenylene group preferably have 2 to 10 carbon atoms, more preferably 2 to 8 carbon atoms, and still more preferably 2 to 4 carbon atoms.
The number of carbon atoms in the aryl group and arylene group is preferably 6 to 18, more preferably 6 to 14, and still more preferably 6 to 10.
The heterocyclic group includes an alicyclic group having a hetero atom or an aromatic heterocyclic group. The heterocyclic group is preferably a 5-membered ring or a 6-membered ring. The heterocyclic group is a single ring or a condensed ring, preferably a single ring or a condensed ring having 2 to 8 condensations, and more preferably a single ring or a condensed ring having 2 to 4 condensations. The heterocyclic group may have a substituent, and the substituent is synonymous with the substituent that the hydrocarbon group described above may have.
In —NR N1 —, R N1 represents a hydrogen atom, an alkyl group, an aryl group or an aralkyl group. The alkyl group in R N1 may be any of a chain, a branch, and a ring. The linear or branched alkyl group preferably has 1 to 20 carbon atoms, and more preferably 1 to 12 carbon atoms. The cyclic alkyl group may be monocyclic or polycyclic. The cyclic alkyl group preferably has 3 to 20 carbon atoms, and more preferably 4 to 14 carbon atoms.
The carbon number of the aryl group in R N1 is preferably 6 to 18, and more preferably 6 to 14. Specific examples include a phenyl group and a naphthyl group. As the aralkyl group in R N1, an aralkyl group having 7 to 20 carbon atoms is preferable, and an unsubstituted aralkyl group having 7 to 15 carbon atoms is more preferable.
 配位子となる化合物の具体的な形態としては、少なくとも2箇所の配位部位を有する化合物が好ましい。具体的には、アニオンで配位する配位部位を1つ以上と非共有電子対で配位する配位原子を1つ以上とを含む化合物(以下、化合物(B1)ともいう)、非共有電子対で配位する配位原子を2つ以上有する化合物(以下、化合物(B2)ともいう)、アニオンで配位する配位部位を2つ含む化合物(以下、化合物(B3)ともいう)等が挙げられる。これらの化合物は、それぞれ独立に、1種または2種以上を組み合わせて用いることができる。
 また、配位子となる化合物は、配位部位を1つのみ有する化合物を用いることもできる。
As a specific form of the compound to be a ligand, a compound having at least two coordination sites is preferable. Specifically, a compound containing at least one coordination site coordinated by an anion and at least one coordination atom coordinated by an unshared electron pair (hereinafter also referred to as compound (B1)), non-covalent A compound having two or more coordination atoms coordinated by an electron pair (hereinafter also referred to as compound (B2)), a compound containing two coordination sites coordinated by an anion (hereinafter also referred to as compound (B3)), etc. Is mentioned. These compounds can be used independently or in combination of two or more.
Moreover, the compound used as a ligand can also use the compound which has only one coordination site | part.
<<化合物(B1)>>
 化合物(B1)は、1分子内中のアニオンで配位する配位部位と非共有電子対で配位する配位原子の合計が2つ以上であればよく、3つであってもよいし、4つであってもよい。
 化合物(B1)としては、例えば、下記式(i-1)で表される化合物が好ましい。
11-L11-Y11   ・・・(i-1)
 X11は、上述した群(AN)で表される配位部位を表す。
 Y11は、上述した非共有電子対で配位する配位原子を含む環、または、群(UE)で表される部分構造を表す。
 L11は、単結合または2価の連結基を表す。2価の連結基としては、炭素数1~12のアルキレン基、炭素数6~12のアリーレン基、-SO-、-SO2-、-O-、または、これらの組み合わせからなる基が好ましい。
<< Compound (B1) >>
In the compound (B1), the total number of coordination atoms coordinated by an anion in one molecule and coordination atoms coordinated by a lone pair may be two or more, or three. There may be four.
As the compound (B1), for example, a compound represented by the following formula (i-1) is preferable.
X 11 -L 11 -Y 11 (i-1)
X 11 represents a coordination site represented by the group (AN) described above.
Y 11 represents a ring containing a coordination atom coordinated by the above-mentioned lone pair or a partial structure represented by a group (UE).
L 11 represents a single bond or a divalent linking group. As the divalent linking group, an alkylene group having 1 to 12 carbon atoms, an arylene group having 6 to 12 carbon atoms, —SO—, —SO 2 —, —O—, or a group consisting of a combination thereof is preferable.
 化合物(B1)のより詳細な例として、下記一般式(i-2)~(i-9)で表される化合物も挙げられる。
12-L12-Y12-L13-X13   ・・・(i-2)
13-L14-Y14-L15-X14   ・・・(i-3)
15-L16-X15-L17-X16   ・・・(i-4)
16-L18-X17-L19-Y17   ・・・(i-5)
18-L20-Y18-L21-Y19-L22-X19   ・・・(i-6)
19-L23-Y20-L24-Y21-L25-Y22   ・・・(i-7)
23-L26-X20-L27-X21-L28-Y24   ・・・(i-8)
25-L29-X22-L30-Y26-L31-Y27   ・・・(i-9)
 一般式(i-2)~(i-9)中、X12~X14、X18、X19はそれぞれ独立して、上述した群(AN)で表される配位部位を表す。また、X15、X17、X20~X22はそれぞれ独立して、上述した群(AN-1)で表される配位部位を表す。
 一般式(i-2)~(i-9)中、L12~L31はそれぞれ独立して単結合または2価の連結基を表す。2価の連結基は、一般式(i-1)中のL1が2価の連結基を表す場合と同義である。
More detailed examples of the compound (B1) include compounds represented by the following general formulas (i-2) to (i-9).
X 12 -L 12 -Y 12 -L 13 -X 13 (i-2)
Y 13 -L 14 -Y 14 -L 15 -X 14 (i-3)
Y 15 -L 16 -X 15 -L 17 -X 16 (i-4)
Y 16 -L 18 -X 17 -L 19 -Y 17 (i-5)
X 18 -L 20 -Y 18 -L 21 -Y 19 -L 22 -X 19 (i-6)
X 19 -L 23 -Y 20 -L 24 -Y 21 -L 25 -Y 22 (i-7)
Y 23 -L 26 -X 20 -L 27 -X 21 -L 28 -Y 24 (i-8)
Y 25 -L 29 -X 22 -L 30 -Y 26 -L 31 -Y 27 (i-9)
In the general formulas (i-2) to (i-9), X 12 to X 14 , X 18 and X 19 each independently represent a coordination site represented by the group (AN) described above. X 15 , X 17 and X 20 to X 22 each independently represent a coordination site represented by the group (AN-1) described above.
In general formulas (i-2) to (i-9), L 12 to L 31 each independently represents a single bond or a divalent linking group. The divalent linking group is synonymous with the case where L 1 in formula (i-1) represents a divalent linking group.
 化合物(B1)としては、式(i-10)または式(i-11)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000017
 式(i-10)中、X2は、アニオンで配位する配位部位を含む基を表す。Y2は、酸素原子、窒素原子、硫黄原子またはリン原子を表す。A1およびA5は、それぞれ独立して炭素原子、窒素原子またはリン原子を表す。A2~A4は、それぞれ独立して炭素原子、酸素原子、窒素原子、硫黄原子またはリン原子を表す。R1は、置換基を表す。RX2は、置換基を表す。n2は0~3の整数を表す。
 式(i-10)中、X2は、上記アニオンで配位する配位部位を含む基のみからなっていてもよいし、上記アニオンで配位する配位部位を含む基が置換基を有していてもよい。アニオンで配位する配位部位を含む基が有していてもよい置換基は、ハロゲン原子、カルボキシル基、ヘテロ環基が挙げられる。置換基としてのヘテロ環基は、単環であっても多環であってもよく、また、芳香族であっても非芳香族であってもよい。ヘテロ環を構成するヘテロ原子の数は1~3が好ましい。ヘテロ環を構成するヘテロ原子は、窒素原子が好ましい。
 式(i-10)中、Y2は、酸素原子、窒素原子または硫黄原子が好ましく、酸素原子または窒素原子がより好ましく、窒素原子がさらに好ましい。
 式(i-10)中、A1およびA5は、炭素原子が好ましい。
 式(i-10)中、A2およびA3は、炭素原子を表すことが好ましい。A4は、炭素原子または窒素原子を表すことが好ましい。
 式(i-10)中、R1は、上述した非共有電子対で配位する配位原子を含む環が有していてもよい置換基と同義である。
 式(i-10)中、RX2は、上述した非共有電子対で配位する配位原子を含む環が有していてもよい置換基と同義であり、好ましい範囲も同様である。
 式(i-10)中、n2は0~3の整数を表し、0または1が好ましく、0がより好ましい。
 式(i-10)で表される化合物は、Y2を含むヘテロ環が、単環構造であってもよいし、多環構造であってもよい。Y2を含むヘテロ環が単環構造である場合の具体例としては、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ピラン環等が挙げられる。Y2を含むヘテロ環が多環構造である場合の具体例としては、キノリン環、イソキノリン環、キノキサリン環、アクリジン環等が挙げられる。
As the compound (B1), a compound represented by the formula (i-10) or the formula (i-11) is preferable.
Figure JPOXMLDOC01-appb-C000017
In formula (i-10), X 2 represents a group containing a coordination site coordinated by an anion. Y 2 represents an oxygen atom, a nitrogen atom, a sulfur atom or a phosphorus atom. A 1 and A 5 each independently represent a carbon atom, a nitrogen atom or a phosphorus atom. A 2 to A 4 each independently represents a carbon atom, an oxygen atom, a nitrogen atom, a sulfur atom or a phosphorus atom. R 1 represents a substituent. R X2 represents a substituent. n2 represents an integer of 0 to 3.
In formula (i-10), X 2 may consist only of a group containing a coordination site coordinated with the anion, or the group containing a coordination site coordinated with the anion may have a substituent. You may do it. Examples of the substituent that the group containing a coordination site coordinated by an anion may have include a halogen atom, a carboxyl group, and a heterocyclic group. The heterocyclic group as a substituent may be monocyclic or polycyclic, and may be aromatic or non-aromatic. The number of heteroatoms constituting the heterocycle is preferably 1 to 3. The hetero atom constituting the hetero ring is preferably a nitrogen atom.
In formula (i-10), Y 2 is preferably an oxygen atom, a nitrogen atom or a sulfur atom, more preferably an oxygen atom or a nitrogen atom, and further preferably a nitrogen atom.
In formula (i-10), A 1 and A 5 are preferably carbon atoms.
In formula (i-10), A 2 and A 3 preferably represent carbon atoms. A 4 preferably represents a carbon atom or a nitrogen atom.
In formula (i-10), R 1 has the same meaning as the substituent that the ring containing the coordinating atom coordinated by the above-mentioned lone pair may have.
In formula (i-10), R X2 has the same meaning as the substituent that the ring containing the coordinating atom coordinated by the lone pair described above may have, and the preferred range is also the same.
In formula (i-10), n2 represents an integer of 0 to 3, preferably 0 or 1, and more preferably 0.
In the compound represented by the formula (i-10), the heterocycle containing Y 2 may be a monocyclic structure or a polycyclic structure. Specific examples when the heterocycle containing Y 2 has a monocyclic structure include a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, a triazine ring, a pyran ring, and the like. Specific examples when the heterocycle containing Y 2 has a polycyclic structure include a quinoline ring, an isoquinoline ring, a quinoxaline ring, an acridine ring and the like.
 式(i-11)中、X3は、上記アニオンで配位する配位部位を含む基を表す。Y3は、酸素原子、窒素原子、硫黄原子またはリン原子を表す。A6およびA9は、それぞれ独立して炭素原子、窒素原子またはリン原子を表す。A7およびA8は、それぞれ独立して炭素原子、酸素原子、窒素原子、硫黄原子またはリン原子を表す。R2は、置換基を表す。RX3は、置換基を表す。n3は0~2の整数を表す。
 式(i-11)中、X3は、式(i-10)中のX2と同義であり、好ましい範囲も同様である。
 式(i-3)中、Y3は、酸素原子、窒素原子または硫黄原子が好ましく、酸素原子または窒素原子がより好ましい。
 式(i-11)中、A6は、炭素原子または窒素原子が好ましい。A9は、炭素原子が好ましい。
 式(i-11)中、A7は、炭素原子が好ましい。A8は、炭素原子、窒素原子または硫黄原子が好ましい。
 式(i-11)中、R2は、疎水的な置換基が好ましく、炭素数1~30の炭化水素基がより好ましく、炭素数3~30のアルキル基または炭素数6~30のアリール基がさらに好ましく、炭素数3~15のアルキル基が特に好ましい。
 式(i-11)中、RX3は、式(i-10)中のRX2と同義であり、好ましい範囲も同様である。
 式(i-11)中、n3は、0または1が好ましく、0がより好ましい。
 式(i-11)で表される化合物は、Y3を含むヘテロ環が、単環構造であってもよいし、多環構造であってもよい。Y3を含むヘテロ環が単環構造である場合の具体例としては、ピラゾール環、イミダゾール環、トリアゾール環、オキサゾール環、チアゾール環、イソチアゾール環等が挙げられる。Y3を含むヘテロ環が多環構造である場合の具体例としては、インドール環、イソインドール環、ベンゾフラン環、イソベンゾフラン環等が挙げられる。
 特に、式(i-11)で表される化合物は、ピラゾール環を含む化合物であってピラゾール環の5位に2級または3級のアルキル基を有することが好ましい。本願明細書において、式(i-11)で表される化合物が、ピラゾール環を含む化合物である場合のピラゾール環の5位とは、上記(i-3)中のY3およびA6が窒素原子を表し、A7~A9が炭素原子を表す場合のR2の置換位置をいう。ピラゾール環の5位における2級または3級のアルキル基の炭素数は、3~15が好ましく、3~12がより好ましい。
 化合物(B1)の分子量は、1000以下が好ましく、750以下がより好ましく、600以下がさらに好ましい。また、化合物(B1)の分子量は、50以上が好ましく、80以上がより好ましい。
In formula (i-11), X 3 represents a group containing a coordination site coordinated with the anion. Y 3 represents an oxygen atom, a nitrogen atom, a sulfur atom or a phosphorus atom. A 6 and A 9 each independently represents a carbon atom, a nitrogen atom or a phosphorus atom. A 7 and A 8 each independently represent a carbon atom, an oxygen atom, a nitrogen atom, a sulfur atom or a phosphorus atom. R 2 represents a substituent. R X3 represents a substituent. n3 represents an integer of 0-2.
In formula (i-11), X 3 has the same meaning as X 2 in formula (i-10), and the preferred range is also the same.
In formula (i-3), Y 3 is preferably an oxygen atom, a nitrogen atom or a sulfur atom, more preferably an oxygen atom or a nitrogen atom.
In formula (i-11), A 6 is preferably a carbon atom or a nitrogen atom. A 9 is preferably a carbon atom.
In formula (i-11), A 7 is preferably a carbon atom. A 8 is preferably a carbon atom, a nitrogen atom or a sulfur atom.
In formula (i-11), R 2 is preferably a hydrophobic substituent, more preferably a hydrocarbon group having 1 to 30 carbon atoms, an alkyl group having 3 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms. Is more preferable, and an alkyl group having 3 to 15 carbon atoms is particularly preferable.
In formula (i-11), R X3 has the same meaning as R X2 in formula (i-10), and the preferred range is also the same.
In formula (i-11), n3 is preferably 0 or 1, more preferably 0.
In the compound represented by the formula (i-11), the heterocycle containing Y 3 may have a monocyclic structure or a polycyclic structure. Specific examples when the heterocycle containing Y 3 has a monocyclic structure include a pyrazole ring, an imidazole ring, a triazole ring, an oxazole ring, a thiazole ring, an isothiazole ring, and the like. Specific examples when the heterocycle containing Y 3 has a polycyclic structure include an indole ring, an isoindole ring, a benzofuran ring, an isobenzofuran ring, and the like.
In particular, the compound represented by the formula (i-11) is a compound containing a pyrazole ring, and preferably has a secondary or tertiary alkyl group at the 5-position of the pyrazole ring. In this specification, when the compound represented by the formula (i-11) is a compound containing a pyrazole ring, the 5-position of the pyrazole ring means that Y 3 and A 6 in the above (i-3) are nitrogen This represents an atom, and the substitution position of R 2 when A 7 to A 9 represent a carbon atom. The carbon number of the secondary or tertiary alkyl group at the 5-position of the pyrazole ring is preferably 3 to 15, more preferably 3 to 12.
The molecular weight of the compound (B1) is preferably 1000 or less, more preferably 750 or less, and even more preferably 600 or less. Moreover, 50 or more are preferable and, as for the molecular weight of a compound (B1), 80 or more are more preferable.
 化合物(B1)の具体例としては、以下に示す化合物およびその塩が挙げられる。塩を構成する原子としては、金属原子、テトラブチルアンモニウムなどが挙げられる。金属原子としては、アルカリ金属原子またはアルカリ土類金属原子がより好ましい。アルカリ金属原子としては、ナトリウム、カリウム等が挙げられる。アルカリ土類金属原子としては、カルシウム、マグネシウム等が挙げられる。 Specific examples of the compound (B1) include the following compounds and salts thereof. Examples of the atoms constituting the salt include metal atoms and tetrabutylammonium. As the metal atom, an alkali metal atom or an alkaline earth metal atom is more preferable. Examples of the alkali metal atom include sodium and potassium. Examples of alkaline earth metal atoms include calcium and magnesium.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
<<化合物(B2)>>
 化合物(B2)は、1分子内に、非共有電子対で配位する配位原子を2つ以上有していればよく、3つ以上有していてもよく、2~4つ有していることが好ましい。
 化合物(B2)は、例えば、下記一般式(ii-1)で表される化合物が好ましい。
40-L40-Y41 ・・・(ii-1)
 一般式(ii-1)中、Y40およびY41はそれぞれ独立して、非共有電子対で配位する配位原子を含む環、または、群(UE)で表される部分構造を表す。
 一般式(ii-1)中、L40は、単結合または2価の連結基を表す。L1が2価の連結基を表す場合、炭素数1~12のアルキレン基、炭素数6~12のアリーレン基、-SO-、-O-、-SO2-または、これらの組み合わせからなる基が好ましく、炭素数1~3のアルキレン基、フェニレン基または-SO2-が好ましい。
<< Compound (B2) >>
The compound (B2) may have two or more coordination atoms coordinated by a lone pair in one molecule, may have three or more, and has two to four. Preferably it is.
The compound (B2) is preferably, for example, a compound represented by the following general formula (ii-1).
Y 40 -L 40 -Y 41 (ii-1)
In general formula (ii-1), Y 40 and Y 41 each independently represent a ring containing a coordination atom coordinated by an unshared electron pair or a partial structure represented by group (UE).
In general formula (ii-1), L 40 represents a single bond or a divalent linking group. When L 1 represents a divalent linking group, an alkylene group having 1 to 12 carbon atoms, an arylene group having 6 to 12 carbon atoms, —SO—, —O—, —SO 2 —, or a combination thereof An alkylene group having 1 to 3 carbon atoms, a phenylene group, or —SO 2 — is preferable.
 化合物(B2)のより詳細な例として、下記一般式(ii-2)または(ii-3)で表される化合物も挙げられる。
42-L41-Y43-L42-Y44   ・・・(ii-2)
45-L43-Y46-L44-Y47-L45-Y48   ・・・(ii-3)
 一般式(ii-2)および(ii-3)中、Y42、Y44、Y45およびY48はそれぞれ独立して、非共有電子対で配位する配位原子を含む環、または、群(UE)で表される部分構造を表す。
 また、Y43、Y46、Y47はそれぞれ独立して、非共有電子対で配位する配位原子を含む環、または、上述した群(UE-1)で表される部分構造である。
 一般式(ii-2)および(ii-3)中、L41~L48はそれぞれ独立して単結合または2価の連結基を表す。2価の連結基は、一般式(ii-1)中のL40が2価の連結基を表す場合と同義であり、好ましい範囲も同様である。
 化合物(B2)の分子量は、1000以下が好ましく、750以下がより好ましく、600以下がさらに好ましい。また、化合物(B2)の分子量は、50以上が好ましく、80以上がより好ましい。
More detailed examples of the compound (B2) include compounds represented by the following general formula (ii-2) or (ii-3).
Y 42 -L 41 -Y 43 -L 42 -Y 44 (ii-2)
Y 45 -L 43 -Y 46 -L 44 -Y 47 -L 45 -Y 48 (ii-3)
In the general formulas (ii-2) and (ii-3), Y 42 , Y 44 , Y 45 and Y 48 are each independently a ring or group containing a coordinating atom coordinated by a lone pair of electrons. The partial structure represented by (UE) is represented.
Y 43 , Y 46 , and Y 47 are each independently a ring containing a coordinating atom coordinated by an unshared electron pair, or a partial structure represented by the group (UE-1) described above.
In the general formulas (ii-2) and (ii-3), L 41 to L 48 each independently represents a single bond or a divalent linking group. The divalent linking group is synonymous with the case where L 40 in the general formula (ii-1) represents a divalent linking group, and the preferred range is also the same.
The molecular weight of the compound (B2) is preferably 1000 or less, more preferably 750 or less, and even more preferably 600 or less. Moreover, 50 or more are preferable and, as for the molecular weight of a compound (B2), 80 or more are more preferable.
 化合物(B2)の具体例としては、以下が挙げられる。
Figure JPOXMLDOC01-appb-C000019
Specific examples of the compound (B2) include the following.
Figure JPOXMLDOC01-appb-C000019
<<化合物(B3)>>
 化合物(B3)は、アニオンで配位する配位部位を2つ有する。アニオンで配位する配位部位は、上述したアニオンで配位する配位部位と同義である。
 化合物(B3)としては、下記一般式(iii-1)で表される化合物が好ましい。
50-L50-X51  (iii-1)
 一般式(iii-1)中、X50およびX51は、それぞれ独立に、アニオンで配位する配位部位を表し、上述したアニオンで配位する配位部位と同義であり、モノアニオン性配位部位が好ましい。
 一般式(iii-1)中、L50は、単結合または2価の連結基を表す。2価の連結基としては、炭素数1~20のアルキレン基、炭素数2~10のアルケニレン基、炭素数6~18のアリーレン基、ヘテロ環基、-O-、-S-、-NRN1-、-CO-、-CS-、-SO2-、または、これらの組み合わせからなる基が好ましい。RN1は、水素原子、炭素数1~12のアルキル基、炭素数6~18のアリール基または炭素数7~20のアラルキル基が好ましい。
 化合物(B3)は、スルホ基およびカルボキシル基から選ばれる1種以上を含むことが好ましく、スルホ基およびカルボキシル基を含むことが更に好ましい。スルホ基およびカルボキシル基から選ばれる少なくとも1種を有する化合物を用いることにより、色価をより向上させることができる。
 化合物(B3)の分子量は、1000以下が好ましく、750以下がより好ましく、600以下がさらに好ましい。また、化合物(B3)の分子量は、50以上が好ましく、80以上がより好ましい。
<< Compound (B3) >>
The compound (B3) has two coordination sites coordinated by an anion. The coordination site | part coordinated with an anion is synonymous with the coordination site | part coordinated with the anion mentioned above.
As the compound (B3), a compound represented by the following general formula (iii-1) is preferable.
X 50 -L 50 -X 51 (iii-1)
In the general formula (iii-1), X 50 and X 51 each independently represent a coordination site coordinated with an anion, which is synonymous with the coordination site coordinated with an anion described above, and has a monoanionic configuration. A position site is preferred.
In general formula (iii-1), L 50 represents a single bond or a divalent linking group. Examples of the divalent linking group include an alkylene group having 1 to 20 carbon atoms, an alkenylene group having 2 to 10 carbon atoms, an arylene group having 6 to 18 carbon atoms, a heterocyclic group, —O—, —S—, and —NR N1. A group consisting of —, —CO—, —CS—, —SO 2 —, or a combination thereof is preferred. R N1 is preferably a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 18 carbon atoms, or an aralkyl group having 7 to 20 carbon atoms.
The compound (B3) preferably contains one or more selected from a sulfo group and a carboxyl group, and more preferably contains a sulfo group and a carboxyl group. By using a compound having at least one selected from a sulfo group and a carboxyl group, the color value can be further improved.
The molecular weight of the compound (B3) is preferably 1000 or less, more preferably 750 or less, and even more preferably 600 or less. Moreover, 50 or more are preferable and, as for the molecular weight of a compound (B3), 80 or more are more preferable.
 化合物(B3)の具体例としては、以下に示す化合物およびその塩が挙げられる。塩を構成する原子としては、上述したもの同義であり、好ましい範囲も同様である。
Figure JPOXMLDOC01-appb-C000020
Specific examples of the compound (B3) include the following compounds and salts thereof. As an atom which comprises a salt, it is synonymous with what was mentioned above, and its preferable range is also the same.
Figure JPOXMLDOC01-appb-C000020
 本発明の近赤外線吸収性組成物は、他の近赤外線吸収性化合物として、ピロロピロール系化合物、シアニン系化合物、フタロシアニン系化合物、ナフタロシアニン系化合物、イミニウム系化合物、チオール錯体系化合物、遷移金属酸化物系化合物、スクアリリウム系化合物、クオタリレン系化合物、ジチオール金属錯体系化合物、クロコニウム系化合物等などをさらに含有することもできる。
 ピロロピロール系化合物は、顔料であってもよく、染料であってもよいが、耐熱性に優れた膜を形成できる着色組成物が得られやすいという理由から顔料が好ましい。ピロロピロール系化合物としては、例えば、特開2009-263614号公報の段落番号0016~0058に記載のピロロピロール化合物などが挙げられる。
 シアニン系化合物、フタロシアニン系化合物、イミニウム系化合物、スクアリリウム系化合物及びクロコニウム系化合物は、特開2010-111750号公報の段落0010~0081に記載の化合物を使用してもよく、この内容は本明細書に組み込まれる。また、シアニン系化合物は、例えば、「機能性色素、大河原信/松岡賢/北尾悌次郎/平嶋恒亮・著、講談社サイエンティフィック」を参酌することができ、この内容は本願明細書に組み込まれる。また、フタロシアニン系化合物は、特開2013-195480号公報の段落0013~0029の記載を参酌でき、この内容は本願明細書に組み込まれる。
The near-infrared absorbing composition of the present invention includes pyrrolopyrrole compounds, cyanine compounds, phthalocyanine compounds, naphthalocyanine compounds, iminium compounds, thiol complex compounds, transition metal oxides as other near infrared absorbing compounds. It may further contain a physical compound, a squarylium compound, a quatarylene compound, a dithiol metal complex compound, a croconium compound, and the like.
The pyrrolopyrrole compound may be a pigment or a dye, but a pigment is preferred because it is easy to obtain a colored composition capable of forming a film having excellent heat resistance. Examples of the pyrrolopyrrole compound include pyrrolopyrrole compounds described in paragraphs 0016 to 0058 of JP-A-2009-263614.
As the cyanine compound, the phthalocyanine compound, the iminium compound, the squarylium compound, and the croconium compound, the compounds described in paragraphs 0010 to 0081 of JP 2010-1111750 A may be used. Incorporated into. In addition, as for the cyanine compound, for example, “functional pigment, Shin Okawara / Ken Matsuoka / Keijiro Kitao / Kensuke Hirashima, Kodansha Scientific” can be referred to, the contents of which are incorporated herein. It is. As for the phthalocyanine compound, the description in paragraphs 0013 to 0029 of JP2013-195480A can be referred to, and the contents thereof are incorporated in the present specification.
<<無機微粒子>>
 本発明の近赤外線吸収性組成物は、無機微粒子を含んでいてもよい。無機微粒子は、1種のみを用いてもよいし、2種以上を用いてもよい。
 無機微粒子は、主に、赤外線を遮光(吸収)する役割を果たす粒子である。無機微粒子は、赤外線遮蔽性がより優れる点で、金属酸化物微粒子または金属微粒子が好ましい。
 金属酸化物粒子としては、例えば、酸化インジウムスズ(ITO)粒子、酸化アンチモンスズ(ATO)粒子、酸化亜鉛(ZnO)粒子、Alドープ酸化亜鉛(AlドープZnO)粒子、フッ素ドープ二酸化スズ(FドープSnO2)粒子、ニオブドープ二酸化チタン(NbドープTiO2)粒子などが挙げられる。
 金属微粒子としては、例えば、銀(Ag)粒子、金(Au)粒子、銅(Cu)粒子、ニッケル(Ni)粒子など挙げられる。なお、赤外線遮蔽性とフォトリソ性とを両立するためには、露光波長(365-405nm)の透過率が高い方が望ましく、酸化インジウムスズ(ITO)粒子または酸化アンチモンスズ(ATO)粒子が好ましい。
 無機微粒子の形状は特に制限されず、球状、非球状を問わず、シート状、ワイヤー状、チューブ状であってもよい。
<< Inorganic fine particles >>
The near-infrared absorbing composition of the present invention may contain inorganic fine particles. Only one type of inorganic fine particles may be used, or two or more types may be used.
The inorganic fine particles are particles that mainly play a role of shielding (absorbing) infrared rays. The inorganic fine particles are preferably metal oxide fine particles or metal fine particles from the viewpoint of better infrared shielding properties.
Examples of the metal oxide particles include indium tin oxide (ITO) particles, antimony tin oxide (ATO) particles, zinc oxide (ZnO) particles, Al-doped zinc oxide (Al-doped ZnO) particles, and fluorine-doped tin dioxide (F-doped). SnO 2 ) particles, niobium-doped titanium dioxide (Nb-doped TiO 2 ) particles, and the like.
Examples of the metal fine particles include silver (Ag) particles, gold (Au) particles, copper (Cu) particles, and nickel (Ni) particles. In order to achieve both infrared shielding properties and photolithographic properties, it is desirable that the transmittance at the exposure wavelength (365-405 nm) is high, and indium tin oxide (ITO) particles or antimony tin oxide (ATO) particles are preferable.
The shape of the inorganic fine particles is not particularly limited, and may be a sheet shape, a wire shape, or a tube shape regardless of spherical or non-spherical.
 また、無機微粒子としては酸化タングステン系化合物が使用できる、具体的には、下記一般式(組成式)(I)で表される酸化タングステン系化合物であることがより好ましい。
 Mxyz・・・(I)
 Mは金属、Wはタングステン、Oは酸素を表す。
 0.001≦x/y≦1.1
 2.2≦z/y≦3.0
 Mが表す金属としては、アルカリ金属、アルカリ土類金属、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Sn、Pb、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Biが挙げられ、アルカリ金属が好ましく、RbまたはCsがより好ましく、Csが特に好ましい。Mの金属は1種でも2種以上でも良い。
 x/yが0.001以上であることにより、赤外線を十分に遮蔽することができ、1.1以下であることにより、酸化タングステン系化合物中に不純物相が生成されることをより確実に回避することできる。
 z/yが2.2以上であることにより、材料としての化学的安定性をより向上させることができ、3.0以下であることにより赤外線を十分に遮蔽することができる。
 上記一般式(I)で表される酸化タングステン系化合物の具体例としては、Cs0.33WO3、Rb0.33WO3、K0.33WO3、Ba0.33WO3などを挙げることができ、Cs0.33WO3又はRb0.33WO3であることが好ましく、Cs0.33WO3であることが更に好ましい。
 酸化タングステン系化合物は、例えば、住友金属鉱山株式会社製のYMF-02などのタングステン微粒子の分散物として入手可能である。
As the inorganic fine particles, a tungsten oxide compound can be used. Specifically, a tungsten oxide compound represented by the following general formula (composition formula) (I) is more preferable.
M x W y O z (I)
M represents a metal, W represents tungsten, and O represents oxygen.
0.001 ≦ x / y ≦ 1.1
2.2 ≦ z / y ≦ 3.0
As the metal represented by M, alkali metal, alkaline earth metal, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al , Ga, In, Tl, Sn, Pb, Ti, Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, alkali metals are preferable, Rb or Cs is more preferable, and Cs is particularly preferable. . The metal of M may be one type or two or more types.
When x / y is 0.001 or more, infrared rays can be sufficiently shielded, and when 1.1 or less, the generation of an impurity phase in the tungsten oxide compound is more reliably avoided. Can do.
When z / y is 2.2 or more, chemical stability as a material can be further improved, and when it is 3.0 or less, infrared rays can be sufficiently shielded.
Specific examples of the tungsten oxide compound represented by the general formula (I) include Cs 0.33 WO 3 , Rb 0.33 WO 3 , K 0.33 WO 3 , Ba 0.33 WO 3 and the like, and Cs 0.33 WO 3 Alternatively, Rb 0.33 WO 3 is preferable, and Cs 0.33 WO 3 is more preferable.
The tungsten oxide compound is available as a dispersion of tungsten fine particles such as YMF-02 manufactured by Sumitomo Metal Mining Co., Ltd., for example.
 無機微粒子の平均粒子径は、800nm以下が好ましく、400nm以下がより好ましく、200nm以下が更に好ましい。無機微粒子の平均粒子径がこのような範囲であることによって、可視光領域における透光性をより確実にすることができる。光酸乱を回避する観点からは、平均粒子径は小さいほど好ましいが、製造時における取り扱い容易性などの理由から、無機微粒子の平均粒子径は、通常、1nm以上である。
 無機微粒子の含有量は、近赤外線吸収性組成物の全固形分に対して、0.01~30質量%が好ましい。下限は、0.1質量%以上が好ましく、1質量%以上がさらに好ましい。上限は、20質量%以下が好ましく、10質量%以下がさらに好ましい。
The average particle size of the inorganic fine particles is preferably 800 nm or less, more preferably 400 nm or less, and even more preferably 200 nm or less. When the average particle diameter of the inorganic fine particles is within such a range, the translucency in the visible light region can be further ensured. From the viewpoint of avoiding photoacid disturbance, the average particle size is preferably as small as possible, but for reasons such as ease of handling during production, the average particle size of the inorganic fine particles is usually 1 nm or more.
The content of the inorganic fine particles is preferably 0.01 to 30% by mass with respect to the total solid content of the near-infrared absorbing composition. The lower limit is preferably 0.1% by mass or more, and more preferably 1% by mass or more. The upper limit is preferably 20% by mass or less, and more preferably 10% by mass or less.
<<溶剤>>
 本発明の近赤外線吸収性組成物は、溶剤を含有していてもよい。溶剤は、特に制限はなく、各成分を均一に溶解或いは分散しうるものであれば、目的に応じて適宜選択することができる。例えば、水、有機溶剤を用いることができる。
 有機溶剤としては、例えば、アルコール類、ケトン類、エステル類、芳香族炭化水素類、ハロゲン化炭化水素類、およびジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホオキサイド、スルホラン等が好適に挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
 アルコール類、芳香族炭化水素類、ハロゲン化炭化水素類の具体例としては、特開2012-194534号公報段落0136等に記載のものが挙げられ、この内容は本願明細書に組み込まれる。
 エステル類、ケトン類、エーテル類の具体例としては、特開2012-208494号公報段落0497(対応する米国特許出願公開第2012/0235099号明細書の[0609])に記載のものが挙げられる。さらに、酢酸-n-アミル、プロピオン酸エチル、フタル酸ジメチル、安息香酸エチル、硫酸メチル、アセトン、メチルイソブチルケトン、ジエチルエーテル、エチレングリコールモノブチルエーテルアセテートなどが挙げられる。
 溶剤としては、1-メトキシ-2-プロパノール、シクロペンタノン、シクロヘキサノン、プロピレングリコールモノメチルエーテルアセテート、N-メチル-2-ピロリドン、酢酸ブチル、乳酸エチルおよびプロピレングリコールモノメチルエーテルから選択される少なくとも1種以上を用いることが好ましい。
 溶剤の含有量は、本発明の近赤外線吸収性組成物の全固形分が5~60質量%となる量が好ましい。下限は、10質量%以上がより好ましい。上限は、40質量%以下がより好ましい。
 溶剤は1種類のみでも、2種類以上でもよく、2種類以上の場合は、合計量が上記範囲となることが好ましい。
<< Solvent >>
The near infrared ray absorbing composition of the present invention may contain a solvent. The solvent is not particularly limited and may be appropriately selected depending on the purpose as long as each component can be uniformly dissolved or dispersed. For example, water or an organic solvent can be used.
Preferable examples of the organic solvent include alcohols, ketones, esters, aromatic hydrocarbons, halogenated hydrocarbons, dimethylformamide, dimethylacetamide, dimethylsulfoxide, sulfolane and the like. These may be used alone or in combination of two or more.
Specific examples of alcohols, aromatic hydrocarbons, and halogenated hydrocarbons include those described in paragraph 0136 of JP2012-194534A, the contents of which are incorporated herein.
Specific examples of the esters, ketones and ethers include those described in paragraph 0497 of JP2012-208494A (corresponding to [0609] of the corresponding US Patent Application Publication No. 2012/0235099). Furthermore, acetic acid-n-amyl, ethyl propionate, dimethyl phthalate, ethyl benzoate, methyl sulfate, acetone, methyl isobutyl ketone, diethyl ether, ethylene glycol monobutyl ether acetate and the like can be mentioned.
As the solvent, at least one selected from 1-methoxy-2-propanol, cyclopentanone, cyclohexanone, propylene glycol monomethyl ether acetate, N-methyl-2-pyrrolidone, butyl acetate, ethyl lactate and propylene glycol monomethyl ether Is preferably used.
The content of the solvent is preferably such that the total solid content of the near-infrared absorbing composition of the present invention is 5 to 60% by mass. The lower limit is more preferably 10% by mass or more. The upper limit is more preferably 40% by mass or less.
Only one type of solvent may be used, or two or more types may be used, and in the case of two or more types, the total amount is preferably within the above range.
<<硬化性化合物>>
 本発明の近赤外線吸収性組成物は、硬化性化合物を含有してもよい。硬化性化合物は、重合性基を有する化合物(以下、「重合性化合物」ということがある)であってもよいし、バインダー等の非重合性化合物であってもよい。硬化性化合物は、モノマー、オリゴマー、プレポリマー、ポリマーなどの化学的形態のいずれであってもよい。硬化性化合物としては、例えば、特開2014-41318号公報の段落0070~0191(対応する国際公開WO2014/017669号パンフレットの段落0071~0192)、特開2014-32380号公報の段落0045~0216等の記載を参酌でき、この内容は本願明細書に組み込まれる。
 硬化性化合物としては、重合性化合物が好ましい。重合性化合物としては、例えば、エチレン性不飽和結合、環状エーテル(エポキシ、オキセタン)等の重合性基を含む化合物が挙げられる。エチレン性不飽和結合としては、ビニル基、スチリル基、(メタ)アクリロイル基、アリル基が好ましい。重合性化合物は、重合性基を1個有する単官能化合物であってもよいし、重合性基を2個以上有する多官能化合物であってもよいが、多官能化合物であることが好ましい。近赤外線吸収性組成物が、多官能化合物を含有することにより、耐熱性をより向上させることができる。
 硬化性化合物としては、単官能の(メタ)アクリレート、多官能の(メタ)アクリレート(好ましくは3~6官能の(メタ)アクリレート)、多塩基酸変性アクリルオリゴマー、エポキシ樹脂、多官能のエポキシ樹脂などが挙げられる。
<< Curable compound >>
The near infrared ray absorbing composition of the present invention may contain a curable compound. The curable compound may be a compound having a polymerizable group (hereinafter sometimes referred to as “polymerizable compound”) or a non-polymerizable compound such as a binder. The curable compound may be in any chemical form such as a monomer, an oligomer, a prepolymer, or a polymer. Examples of the curable compound include paragraphs 0070 to 0191 of JP-A-2014-41318 (paragraphs 0071 to 0192 of the corresponding international publication WO 2014/017669), paragraphs 0045 to 0216 of JP-A-2014-32380, and the like. Which is incorporated herein by reference.
As the curable compound, a polymerizable compound is preferable. As a polymeric compound, the compound containing polymeric groups, such as an ethylenically unsaturated bond and cyclic ether (epoxy, oxetane), is mentioned, for example. As the ethylenically unsaturated bond, a vinyl group, a styryl group, a (meth) acryloyl group, and an allyl group are preferable. The polymerizable compound may be a monofunctional compound having one polymerizable group or a polyfunctional compound having two or more polymerizable groups, but is preferably a polyfunctional compound. Heat resistance can be improved more because a near-infrared absorptive composition contains a polyfunctional compound.
Examples of the curable compound include monofunctional (meth) acrylates, polyfunctional (meth) acrylates (preferably 3 to 6 functional (meth) acrylates), polybasic acid-modified acrylic oligomers, epoxy resins, and polyfunctional epoxy resins. Etc.
<<<エチレン性不飽和結合を含む化合物>>>
 本発明では、硬化性化合物として、エチレン性不飽和結合を含む化合物を用いることができる。エチレン性不飽和結合を含む化合物の例としては、特開2013-253224号公報の段落0033~0034の記載を参酌することができ、この内容は本明細書に組み込まれる。
 エチレン性不飽和結合を含む化合物としては、エチレンオキシ変性ペンタエリスリトールテトラアクリレート(市販品としては、NKエステルATM-35E;新中村化学社製)、ジペンタエリスリトールトリアクリレート(市販品としては、KAYARAD D-330;日本化薬株式会社製)、ジペンタエリスリトールテトラアクリレート(市販品としては、KAYARAD D-320;日本化薬株式会社製)ジペンタエリスリトールペンタ(メタ)アクリレート(市販品としては KAYARAD D-310;日本化薬株式会社製)、ジペンタエリスリトールヘキサ(メタ)アクリレート(市販品としては、KAYARAD DPHA;日本化薬株式会社製、A-DPH-12E;新中村化学工業社製)、およびこれらの(メタ)アクリロイル基がエチレングリコール、プロピレングリコール残基を介している構造が好ましい。またこれらのオリゴマータイプも使用できる。
 また、特開2013-253224号公報の段落0034~0038の重合性化合物の記載を参酌することができ、この内容は本明細書に組み込まれる。
 また、特開2012-208494号公報段落0477(対応する米国特許出願公開第2012/0235099号明細書の[0585])に記載の重合性モノマー等が挙げられ、これらの内容は本願明細書に組み込まれる。
 また、ジグリセリンEO(エチレンオキシド)変性(メタ)アクリレート(市販品としては M-460;東亜合成製)が好ましい。ペンタエリスリトールテトラアクリレート(新中村化学製、A-TMMT)、1,6-ヘキサンジオールジアクリレート(日本化薬社製、KAYARAD HDDA)も好ましい。これらのオリゴマータイプも使用できる。例えば、RP-1040(日本化薬株式会社製)などが挙げられる。
<<< Compound containing an ethylenically unsaturated bond >>>
In the present invention, a compound containing an ethylenically unsaturated bond can be used as the curable compound. As examples of the compound containing an ethylenically unsaturated bond, the description in paragraphs 0033 to 0034 of JP2013-253224A can be referred to, the contents of which are incorporated herein.
As the compound containing an ethylenically unsaturated bond, ethyleneoxy-modified pentaerythritol tetraacrylate (commercially available, NK ester ATM-35E; manufactured by Shin-Nakamura Chemical Co., Ltd.), dipentaerythritol triacrylate (commercially available, KAYARAD D -330; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol tetraacrylate (as a commercial product, KAYARAD D-320; manufactured by Nippon Kayaku Co., Ltd.) dipentaerythritol penta (meth) acrylate (as a commercial product, KAYARAD D- 310; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol hexa (meth) acrylate (commercially available products include KAYARAD DPHA; manufactured by Nippon Kayaku Co., Ltd., A-DPH-12E; manufactured by Shin-Nakamura Chemical Co., Ltd.), and these No (meta) acrylic Yl group ethylene glycol, structures through a propylene glycol residue are preferable. These oligomer types can also be used.
In addition, the description of the polymerizable compound in paragraphs 0034 to 0038 of JP2013-253224A can be referred to, and the contents thereof are incorporated in the present specification.
Examples thereof include polymerizable monomers described in paragraph 0477 of JP2012-208494A (corresponding [0585] of US Patent Application Publication No. 2012/0235099), the contents of which are incorporated herein. It is.
Further, diglycerin EO (ethylene oxide) modified (meth) acrylate (commercially available product is M-460; manufactured by Toa Gosei). Pentaerythritol tetraacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., A-TMMT) and 1,6-hexanediol diacrylate (manufactured by Nippon Kayaku Co., Ltd., KAYARAD HDDA) are also preferable. These oligomer types can also be used. Examples thereof include RP-1040 (manufactured by Nippon Kayaku Co., Ltd.).
 エチレン性不飽和結合を含む化合物は、カルボキシル基、スルホ基、リン酸基等の酸基を有していてもよい。
 酸基とエチレン性不飽和結合を含む化合物としては、脂肪族ポリヒドロキシ化合物と不飽和カルボン酸とのエステルなどが挙げられる。脂肪族ポリヒドロキシ化合物の未反応のヒドロキシル基に、非芳香族カルボン酸無水物を反応させて酸基を持たせた化合物が好ましく、特に好ましくは、このエステルにおいて、脂肪族ポリヒドロキシ化合物がペンタエリスリトールおよび/またはジペンタエリスリトールであるものである。市販品としては、例えば、東亞合成株式会社製の多塩基酸変性アクリルオリゴマーとして、アロニックスシリーズのM-305、M-510、M-520などが挙げられる。
 酸基とエチレン性不飽和結合を含む化合物の酸価は、0.1~40mgKOH/gが好ましい。下限は5mgKOH/g以上が好ましい。上限は、30mgKOH/g以下が好ましい。
The compound containing an ethylenically unsaturated bond may have an acid group such as a carboxyl group, a sulfo group, or a phosphate group.
Examples of the compound containing an acid group and an ethylenically unsaturated bond include esters of aliphatic polyhydroxy compounds and unsaturated carboxylic acids. A compound in which an unreacted hydroxyl group of an aliphatic polyhydroxy compound is reacted with a non-aromatic carboxylic acid anhydride to give an acid group is preferred, and in this ester, the aliphatic polyhydroxy compound is preferably pentaerythritol. And / or dipentaerythritol. Examples of commercially available products include Aronix series M-305, M-510, and M-520 as polybasic acid-modified acrylic oligomers manufactured by Toagosei Co., Ltd.
The acid value of the compound containing an acid group and an ethylenically unsaturated bond is preferably 0.1 to 40 mgKOH / g. The lower limit is preferably 5 mgKOH / g or more. The upper limit is preferably 30 mgKOH / g or less.
<<<エポキシ基またはオキセタニル基を有する化合物>>>
 本発明では、硬化性化合物として、エポキシ基またはオキセタニル基を有する化合物を用いることができる。エポキシ基またはオキセタニル基を有する化合物としては、側鎖にエポキシ基を有するポリマー、分子内に2個以上のエポキシ基を有するモノマーまたはオリゴマーなどが挙げられる。例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、脂肪族エポキシ樹脂等を挙げることができる。また単官能または多官能グリシジルエーテル化合物も挙げられ、多官能脂肪族グリシジルエーテル化合物が好ましい。
 重量平均分子量は、500~5000000が好ましく、1000~500000がより好ましい。
 これらの化合物は、市販品を用いてもよいし、ポリマーの側鎖へエポキシ基を導入することによっても得られるものを用いてもよい。
<<< Compound having epoxy group or oxetanyl group >>>
In the present invention, a compound having an epoxy group or an oxetanyl group can be used as the curable compound. Examples of the compound having an epoxy group or oxetanyl group include a polymer having an epoxy group in the side chain, and a monomer or oligomer having two or more epoxy groups in the molecule. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, aliphatic epoxy resin, and the like can be given. Moreover, a monofunctional or polyfunctional glycidyl ether compound is also mentioned, and a polyfunctional aliphatic glycidyl ether compound is preferable.
The weight average molecular weight is preferably 500 to 5000000, and more preferably 1000 to 500000.
As these compounds, commercially available products may be used, or those obtained by introducing an epoxy group into the side chain of the polymer may be used.
 市販品としては、例えば、特開2012-155288号公報段落0191等の記載を参酌でき、これらの内容は本願明細書に組み込まれる。
 また、デナコール EX-212L、EX-214L、EX-216L、EX-321L、EX-850L(以上、ナガセケムテックス(株)製)等の多官能脂肪族グリシジルエーテル化合物が挙げられる。これらは、低塩素品であるが、低塩素品ではない、EX-212、EX-214、EX-216、EX-321、EX-850なども同様に使用できる。
 その他にも、ADEKA RESIN EP-4000S、同EP-4003S、同EP-4010S、同EP-4011S(以上、(株)ADEKA製)、NC-2000、NC-3000、NC-7300、XD-1000、EPPN-501、EPPN-502(以上、(株)ADEKA製)、JER1031S、セロキサイド2021P、セロキサイド2081、セロキサイド2083、セロキサイド2085、EHPE3150、EPOLEAD PB 3600、同PB 4700(以上、ダイセル化学工業(株)製)、サイクロマ―P ACA 200M、同ACA 230AA、同ACA Z250、同ACA Z251、同ACA Z300、同ACA Z320(以上、ダイセル化学工業(株)製)等も挙げられる。
 さらに、フェノールノボラック型エポキシ樹脂の市販品として、JER-157S65、JER-152、JER-154、JER-157S70(以上、三菱化学(株)製)等が挙げられる。
 また、側鎖にオキセタニル基を有するポリマー、分子内に2個以上のオキセタニル基を有する重合性モノマーまたはオリゴマーの具体例としては、アロンオキセタンOXT-121、OXT-221、OX-SQ、PNOX(以上、東亞合成(株)製)を用いることができる。
 エポキシ基を有する化合物としては、グリシジル(メタ)アクリレートやアリルグリシジルエーテル等のエポキシ基としてグリシジル基を有するものも使用可能であるが、好ましいものは脂環式エポキシ基を有する不飽和化合物である。このようなものとしては例えば特開2009-265518号公報段落0045等の記載を参酌でき、これらの内容は本願明細書に組み込まれる。
 エポキシ基またはオキセタニル基を含む化合物は、エポキシ基またはオキセタニル基を繰り返し単位として有する重合体を含んでいてもよい。具体的には、下記の繰り返し単位を有する重合体(共重合体)が挙げられる。
As commercial products, for example, the description in JP 2012-155288 A paragraph 0191 can be referred to, and the contents thereof are incorporated in the present specification.
In addition, polyfunctional aliphatic glycidyl ether compounds such as Denacol EX-212L, EX-214L, EX-216L, EX-321L, and EX-850L (above, manufactured by Nagase ChemteX Corporation) can be used. These are low-chlorine products but are not low-chlorine products, and EX-212, EX-214, EX-216, EX-321, EX-850, and the like can be used as well.
In addition, ADEKA RESIN EP-4000S, EP-4003S, EP-4010S, EP-4010S, EP-4011S (above, manufactured by ADEKA Corporation), NC-2000, NC-3000, NC-7300, XD-1000, EPPN-501, EPPN-502 (above, manufactured by ADEKA Corporation), JER1031S, Celoxide 2021P, Celoxide 2081, Celoxide 2083, Celoxide 2085, EHPE3150, EPOLEEAD PB 3600, PB 4700 (above, manufactured by Daicel Chemical Industries, Ltd.) ), Cyclo-P ACA 200M, ACA 230AA, ACA Z250, ACA Z251, ACA Z300, ACA Z320 (above, manufactured by Daicel Chemical Industries, Ltd.) and the like.
Further, commercially available phenol novolac type epoxy resins include JER-157S65, JER-152, JER-154, JER-157S70 (above, manufactured by Mitsubishi Chemical Corporation) and the like.
Specific examples of the polymer having an oxetanyl group in the side chain and the polymerizable monomer or oligomer having two or more oxetanyl groups in the molecule include Aron oxetane OXT-121, OXT-221, OX-SQ, PNOX (and more Toagosei Co., Ltd.) can be used.
As the compound having an epoxy group, those having a glycidyl group as an epoxy group such as glycidyl (meth) acrylate and allyl glycidyl ether can be used, but preferred are unsaturated compounds having an alicyclic epoxy group. As such a thing, description of Unexamined-Japanese-Patent No. 2009-265518 Paragraph 0045 etc. can be considered, and these content is integrated in this-application specification.
The compound containing an epoxy group or oxetanyl group may contain a polymer having an epoxy group or oxetanyl group as a repeating unit. Specific examples include polymers (copolymers) having the following repeating units.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
<<<その他の硬化性化合物>>>
 硬化性化合物として、カプロラクトン変性構造を有する重合性化合物を用いることができる。
 カプロラクトン変性構造を有する重合性化合物としては、特開2013-253224号公報の段落0042~0045の記載を参酌することができ、この内容は本明細書に組み込まれる。
 カプロラクトン変性構造を有する重合性化合物は、例えば、日本化薬(株)からKAYARAD DPCAシリーズとして市販されている、DPCA-20、DPCA-30、DPCA-60、DPCA-120等、サートマー社製のエチレンオキシ鎖を4個有する4官能アクリレートであるSR-494、イソブチレンオキシ鎖を3個有する3官能アクリレートであるTPA-330などが挙げられる。
<<< Other curable compounds >>>
As the curable compound, a polymerizable compound having a caprolactone-modified structure can be used.
As the polymerizable compound having a caprolactone-modified structure, the description in paragraphs 0042 to 0045 of JP2013-253224A can be referred to, and the contents thereof are incorporated herein.
Polymerizable compounds having a caprolactone-modified structure are, for example, DPCA-20, DPCA-30, DPCA-60, DPCA-120, etc., commercially available from Nippon Kayaku Co., Ltd. as KAYARAD DPCA series. SR-494, which is a tetrafunctional acrylate having 4 oxy chains, and TPA-330, which is a trifunctional acrylate having 3 isobutylene oxy chains.
 硬化性化合物の含有量は、近赤外線吸収性組成物の全固形分に対して、1~90質量%が好ましい。下限は、5質量%以上が好ましく、10質量%以上がより好ましく、20質量%以上が更に好ましい。上限は、80質量%以下が好ましく、75質量%以下がより好ましい。
 また、硬化性化合物として、重合性基を有する繰り返し単位を含む重合体を用いる場合、硬化性化合物の含有量は、近赤外線吸収性組成物の全固形分に対して10~75質量%が好ましい。下限は20質量%以上が好まし。上限は65質量%以下が好ましく、60質量%以下がさらに好ましい。
 硬化性化合物は、1種類のみでもよく、2種類以上でもよい。2種類以上の場合は、合計量が上記範囲となることが好ましい。
The content of the curable compound is preferably 1 to 90% by mass with respect to the total solid content of the near-infrared absorbing composition. The lower limit is preferably 5% by mass or more, more preferably 10% by mass or more, and still more preferably 20% by mass or more. The upper limit is preferably 80% by mass or less, and more preferably 75% by mass or less.
When a polymer containing a repeating unit having a polymerizable group is used as the curable compound, the content of the curable compound is preferably 10 to 75% by mass with respect to the total solid content of the near-infrared absorbing composition. . The lower limit is preferably 20% by mass or more. The upper limit is preferably 65% by mass or less, and more preferably 60% by mass or less.
Only one type of curable compound may be used, or two or more types may be used. In the case of two or more types, the total amount is preferably within the above range.
<<バインダーポリマー>>
 本発明の近赤外線吸収性組成物は、膜特性向上などの目的で、バインダーポリマーを含むことができる。バインダーポリマーとしては、アルカリ可溶性樹脂が好ましく用いられる。アルカリ可溶性樹脂を含有することにより、耐熱性などの向上や、塗布適正の微調整に効果がある。アルカリ可溶性樹脂としては、特開2012-208494号公報段落0558~0571(対応する米国特許出願公開第2012/0235099号明細書の[0685]~[0700])の記載を参酌でき、これらの内容は本願明細書に組み込まれる。
 バインダーポリマーの含有量は、近赤外線吸収性組成物の全固形分に対して、1~80質量%が好ましい。下限は5質量%以上が好ましく、7質量%以上がより好ましい。上限は50質量%以下が好ましく、30質量%以下がより好ましい。
<< Binder polymer >>
The near-infrared absorbing composition of the present invention can contain a binder polymer for the purpose of improving film properties. As the binder polymer, an alkali-soluble resin is preferably used. By containing an alkali-soluble resin, there is an effect in improving heat resistance and fine adjustment of coating properness. As the alkali-soluble resin, description in paragraphs 0558 to 0571 of JP2012-208494A (corresponding to [0685] to [0700] of the corresponding US Patent Application Publication No. 2012/0235099) can be referred to, and the contents thereof are as follows. It is incorporated herein.
The content of the binder polymer is preferably 1 to 80% by mass with respect to the total solid content of the near-infrared absorbing composition. The lower limit is preferably 5% by mass or more, and more preferably 7% by mass or more. The upper limit is preferably 50% by mass or less, and more preferably 30% by mass or less.
<<界面活性剤>>
 本発明の近赤外線吸収性組成物は、界面活性剤を含んでいてもよい。界面活性剤は、1種のみを用いてもよいし、2種類以上を組み合わせてもよい。界面活性剤の含有量は、近赤外線吸収性組成物の全固形分に対して、0.0001~2質量%が好ましい。下限は、0.005質量%以上が好ましく、0.01質量%以上が更に好ましい。上限は、1.0質量%以下が好ましく、0.1質量%以下が更に好ましい。
 界面活性剤としては、フッ素系界面活性剤、ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、シリコーン系界面活性剤などの各種界面活性剤を使用できる。本発明の近赤外線吸収性組成物は、フッ素系界面活性剤およびシリコーン系界面活性剤の少なくとも一方を含有することが好ましい。これによれば、被塗布面と塗布液との界面張力が低下して、被塗布面への濡れ性が改善される。このため、近赤外線吸収性組成物の液特性(特に、流動性)が向上し、塗布厚の均一性や省液性がより改善する。その結果、少量の液量で数μm程度の薄膜を形成した場合であっても、厚みムラの小さい均一厚の膜形成をより好適に行える。
 フッ素系界面活性剤のフッ素含有率は、3~40質量%が好ましい。下限は、5質量%以上が好ましく、7質量%以上が更に好ましい。上限は、30質量以下%が好ましく、25質量%以下が更に好ましい。フッ素含有率が上述した範囲内である場合は、塗布膜の厚さの均一性や省液性の点で効果的であり、近赤外線吸収性組成物中における溶解性も良好である。
 フッ素系界面活性剤として具体的には、特開2014-41318号公報の段落0060~0064(対応する国際公開WO2014/17669号パンフレットの段落0060~0064)等に記載の界面活性剤が挙げられ、これらの内容は本願明細書に組み込まれる。
<< Surfactant >>
The near infrared ray absorbing composition of the present invention may contain a surfactant. Only one type of surfactant may be used, or two or more types may be combined. The content of the surfactant is preferably 0.0001 to 2% by mass with respect to the total solid content of the near-infrared absorbing composition. The lower limit is preferably 0.005% by mass or more, and more preferably 0.01% by mass or more. The upper limit is preferably 1.0% by mass or less, and more preferably 0.1% by mass or less.
As the surfactant, various surfactants such as a fluorine-based surfactant, a nonionic surfactant, a cationic surfactant, an anionic surfactant, and a silicone-based surfactant can be used. The near-infrared absorbing composition of the present invention preferably contains at least one of a fluorine-based surfactant and a silicone-based surfactant. According to this, the interfacial tension between the coated surface and the coating liquid is lowered, and the wettability to the coated surface is improved. For this reason, the liquid characteristic (especially fluidity | liquidity) of a near-infrared absorptive composition improves, and the uniformity of coating thickness and liquid-saving property improve more. As a result, even when a thin film of about several μm is formed with a small amount of liquid, it is possible to more suitably form a film having a uniform thickness with small thickness unevenness.
The fluorine content of the fluorosurfactant is preferably 3 to 40% by mass. The lower limit is preferably 5% by mass or more, and more preferably 7% by mass or more. The upper limit is preferably 30% by mass or less, and more preferably 25% by mass or less. When the fluorine content is within the above-described range, it is effective in terms of uniformity of coating film thickness and liquid-saving properties, and solubility in the near-infrared absorbing composition is also good.
Specific examples of the fluorine-based surfactant include surfactants described in paragraphs 0060 to 0064 of JP 2014-41318 A (paragraphs 0060 to 0064 of the corresponding international publication WO 2014/17669 pamphlet) and the like. These contents are incorporated herein.
 ノニオン系界面活性剤としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリルエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンアルキルアミン、グリセリン脂肪酸エステル、オキシエチレンオキシプロピレンブロックコポリマー、アセチレングリコール系界面活性剤、アセチレン系ポリオキシエチレンオキシド等が挙げられる。これらは単独あるいは2種以上を用いることができる。
 具体的な商品名としては、サーフィノール61,82,104,104E、104H、104A、104BC、104DPM、104PA、104PG-50、104S、420,440,465,485,504、CT-111,CT-121,CT-131,CT-136,CT-141,CT-151,CT-171,CT-324,DF-37,DF-58,DF-75,DF-110D,DF-210,GA,OP-340,PSA-204,PSA-216,PSA-336,SE,SE-F,TG、GA、ダイノール604(以上、日信化学(株)及びAirProducts&Chemicals社)、オルフィンA,B,AK-02,CT-151W,E1004,E1010,P,SPC,STG,Y,32W、PD-001、PD-002W、PD-003、PD-004、EXP.4001、EXP.4036、EXP.4051、AF-103、AF-104、SK-14、AE-3(以上、日信化学(株))アセチレノールE00、E13T、E40、E60、E81、E100、E200(以上全て商品名、川研ファインケミカル(株)社製)等を挙げることができる。なかでも、オルフィンE1010が好適である。
 その他、ノニオン系界面活性剤として具体的には、特開2012-208494号公報段落0553(対応する米国特許出願公開第2012/0235099号明細書の[0679])等に記載のノニオン系界面活性剤が挙げられ、これらの内容は本願明細書に組み込まれる。
Nonionic surfactants include polyoxyethylene alkyl ether, polyoxyethylene alkyl allyl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene alkylamine, glycerin fatty acid ester, oxyethylene Examples thereof include oxypropylene block copolymers, acetylene glycol surfactants, and acetylene polyoxyethylene oxide. These can be used alone or in combination of two or more.
Specific product names include Surfinol 61, 82, 104, 104E, 104H, 104A, 104BC, 104DPM, 104PA, 104PG-50, 104S, 420, 440, 465, 485, 504, CT-111, CT- 121, CT-131, CT-136, CT-141, CT-151, CT-171, CT-324, DF-37, DF-58, DF-75, DF-110D, DF-210, GA, OP- 340, PSA-204, PSA-216, PSA-336, SE, SE-F, TG, GA, Dinol 604 (Nippon Chemical Co., Ltd. and Air Products & Chemicals), Orphine A, B, AK-02, CT -151W, E1004, E1010, P, SPC, STG, Y, 32W, PD- 01, PD-002W, PD-003, PD-004, EXP. 4001, EXP. 4036, EXP. 4051, AF-103, AF-104, SK-14, AE-3 (Nisshin Chemical Co., Ltd.) Acetylenol E00, E13T, E40, E60, E81, E100, E200 (all trade names, Kawaken Fine Chemical) (Manufactured by Co., Ltd.). Of these, Olfine E1010 is preferable.
In addition, specific examples of nonionic surfactants include nonionic surfactants described in paragraph 0553 of JP2012-208494A (corresponding to [0679] of US 2012/0235099 corresponding). The contents of which are incorporated herein by reference.
 カチオン系界面活性剤として具体的には、特開2012-208494号公報段落0554(対応する米国特許出願公開第2012/0235099号明細書の[0680])に記載のカチオン系界面活性剤が挙げられ、これらの内容は本願明細書に組み込まれる。
 アニオン系界面活性剤として具体的には、W004、W005、W017(裕商(株)社製)等が挙げられる。
Specific examples of the cationic surfactant include a cationic surfactant described in paragraph 0554 of JP2012-208494A (corresponding to [0680] of the corresponding US Patent Application Publication No. 2012/0235099). The contents of which are incorporated herein by reference.
Specific examples of the anionic surfactant include W004, W005, W017 (manufactured by Yusho Co., Ltd.) and the like.
 シリコーン系界面活性剤としては、例えば、特開2012-208494号公報段落0556(対応する米国特許出願公開第2012/0235099号明細書の[0682])等に記載のシリコーン系界面活性剤が挙げられ、これらの内容は本願明細書に組み込まれる。また、東レ・ダウコーニング(株)製「トーレシリコーンSF8410」、「同SF8427」、「同SH8400」、「ST80PA」、「ST83PA」、「ST86PA」、モメンティブ・パフォーマンス・マテリアルズ社製「TSF-400」、「TSF-401」、「TSF-410」、「TSF-4446」信越シリコーン株式会社製「KP321」、「KP323」、「KP324」、「KP340」等も例示される。 Examples of the silicone surfactant include silicone surfactants described in JP 2012-208494 A, paragraph 0556 (corresponding to US Patent Application Publication No. 2012/0235099, [0682]). The contents of which are incorporated herein by reference. Also, “Toray Silicone SF8410”, “Same SF8427”, “Shi8400”, “ST80PA”, “ST83PA”, “ST86PA” manufactured by Toray Dow Corning Co., Ltd. “TSF-400” manufactured by Momentive Performance Materials, Inc. "TSF-401", "TSF-410", "TSF-4446" "KP321", "KP323", "KP324", "KP340", etc. manufactured by Shin-Etsu Silicone Co., Ltd. are also exemplified.
<<重合開始剤>>
 本発明の近赤外線吸収性組成物は、重合開始剤を含んでいてもよい。重合開始剤としては、光、熱のいずれか或いはその双方により重合性化合物の重合を開始する能力を有する限り、特に制限はないが、光重合性化合物(光重合開始剤)が好ましい。光で重合を開始させる場合、紫外線領域から可視の光線に対して感光性を有するものが好ましい。また、熱で重合を開始させる場合には、150~250℃で分解する重合開始剤が好ましい。
<< Polymerization initiator >>
The near infrared ray absorbing composition of the present invention may contain a polymerization initiator. The polymerization initiator is not particularly limited as long as it has the ability to initiate polymerization of the polymerizable compound by light, heat, or both, but a photopolymerizable compound (photopolymerization initiator) is preferable. When polymerization is initiated by light, those having photosensitivity to visible light from the ultraviolet region are preferred. In addition, when the polymerization is initiated by heat, a polymerization initiator that decomposes at 150 to 250 ° C. is preferable.
 重合開始剤としては、芳香族基を有する化合物が好ましい。例えば、アシルホスフィン化合物、アセトフェノン化合物、α-アミノケトン化合物、ベンゾフェノン化合物、ベンゾインエーテル化合物、ケタール誘導体化合物、チオキサントン化合物、オキシム化合物、ヘキサアリールビイミダゾール化合物、トリハロメチル化合物、アゾ化合物、有機過酸化物、ジアゾニウム化合物、ヨードニウム化合物、スルホニウム化合物、アジニウム化合物、メタロセン化合物等のオニウム塩化合物、有機硼素塩化合物、ジスルホン化合物、チオール化合物などが挙げられる。
 重合開始剤は、特開2013-253224号公報の段落0217~0228の記載を参酌することができ、この内容は本明細書に組み込まれる。
As the polymerization initiator, a compound having an aromatic group is preferable. For example, acylphosphine compounds, acetophenone compounds, α-aminoketone compounds, benzophenone compounds, benzoin ether compounds, ketal derivative compounds, thioxanthone compounds, oxime compounds, hexaarylbiimidazole compounds, trihalomethyl compounds, azo compounds, organic peroxides, diazonium Examples thereof include onium salt compounds such as compounds, iodonium compounds, sulfonium compounds, azinium compounds, and metallocene compounds, organic boron salt compounds, disulfone compounds, and thiol compounds.
As for the polymerization initiator, the description in paragraphs 0217 to 0228 of JP2013-253224A can be referred to, and the contents thereof are incorporated herein.
 重合開始剤は、オキシム化合物、アセトフェノン化合物またはアシルホスフィン化合物が好ましい。
 オキシム化合物の市販品としては、IRGACURE-OXE01(BASF社製)、IRGACURE-OXE02(BASF社製)、TR-PBG-304(常州強力電子新材料有限公司社製)、アデカアークルズNCI-831(ADEKA社製)、アデカアークルズNCI-930(ADEKA社製)等を用いることができる。
 アセトフェノン化合物の市販品としては、IRGACURE-907、IRGACURE-369、IRGACURE-379(商品名:いずれもBASF社製)等を用いることができる。
 アシルホスフィン化合物の市販品としては、IRGACURE-819、DAROCUR-TPO(商品名:いずれもBASF社製)等を用いることができる。
 重合開始剤の含有量は、近赤外線吸収性組成物の全固形分に対して、0.01~30質量%が好ましい。下限は、0.1質量%以上が好ましい。上限は、20質量%以下が好ましく、15質量%以下がより好ましい。
 重合開始剤は1種類のみでも、2種類以上でもよく、2種類以上の場合は、合計量が上記範囲となることが好ましい。
The polymerization initiator is preferably an oxime compound, an acetophenone compound or an acylphosphine compound.
Commercially available oxime compounds include IRGACURE-OXE01 (manufactured by BASF), IRGACURE-OXE02 (manufactured by BASF), TR-PBG-304 (manufactured by Changzhou Power Electronics New Materials Co., Ltd.), Adeka Arcles NCI-831 ( ADEKA), ADEKA ARKLES NCI-930 (ADEKA) and the like can be used.
Examples of commercially available acetophenone compounds include IRGACURE-907, IRGACURE-369, IRGACURE-379 (trade names: all manufactured by BASF).
As commercially available acylphosphine compounds, IRGACURE-819, DAROCUR-TPO (trade names: all manufactured by BASF) and the like can be used.
The content of the polymerization initiator is preferably 0.01 to 30% by mass with respect to the total solid content of the near-infrared absorbing composition. The lower limit is preferably 0.1% by mass or more. The upper limit is preferably 20% by mass or less, and more preferably 15% by mass or less.
Only one type of polymerization initiator may be used, or two or more types may be used. In the case of two or more types, the total amount is preferably within the above range.
 <<その他の成分>>
 本発明の近赤外線吸収性組成物で併用可能なその他の成分としては、例えば、分散剤、増感剤、架橋剤、硬化促進剤、フィラー、熱硬化促進剤、熱重合禁止剤、可塑剤などが挙げられ、更に基材表面への密着促進剤及びその他の助剤類(例えば、導電性粒子、充填剤、消泡剤、難燃剤、レベリング剤、剥離促進剤、酸化防止剤、香料、表面張力調整剤、連鎖移動剤など)を併用してもよい。
 これらの成分を適宜含有させることにより、目的とする近赤外線吸収フィルタの安定性、膜物性などの性質を調整することができる。
 これらの成分は、例えば、特開2012-003225号公報の段落番号0183以降(対応する米国特許出願公開第2013/0034812号明細書の[0237]以降)の記載、特開2008-250074号公報の段落番号0101~0104、0107~0109等の記載を参酌でき、これらの内容は本願明細書に組み込まれる。
<< Other ingredients >>
Examples of other components that can be used in combination with the near-infrared absorbing composition of the present invention include a dispersant, a sensitizer, a crosslinking agent, a curing accelerator, a filler, a thermosetting accelerator, a thermal polymerization inhibitor, and a plasticizer. Furthermore, adhesion promoters to the substrate surface and other auxiliaries (for example, conductive particles, fillers, antifoaming agents, flame retardants, leveling agents, peeling accelerators, antioxidants, perfumes, surfaces You may use together a tension adjuster, a chain transfer agent, etc.).
By appropriately containing these components, properties such as stability and film physical properties of the target near-infrared absorption filter can be adjusted.
These components are described, for example, in paragraph No. 0183 and later of JP2012-003225A (corresponding to [0237] and later of US Patent Application Publication No. 2013/0034812), JP2008-250074A, and the like. The description of paragraph numbers 0101 to 0104, 0107 to 0109, and the like can be referred to, and the contents thereof are incorporated in the present specification.
<近赤外線吸収性組成物の調製、用途>
 本発明の近赤外線吸収性組成物は、液状とすることができるため、例えば、本発明の近赤外線吸収性組成物を基材などに適用し、乾燥させることにより近赤外線カットフィルタを容易に製造できる。
 本発明の近赤外線吸収性組成物の粘度は、塗布により近赤外線カットフィルタを形成する場合は、1~3000mPa・sであることが好ましい。下限は、10mPa・s以上が好ましく、100mPa・s以上が更に好ましい。上限は、2000mPa・s以下が好ましく、1500mPa・s以下が更に好ましい。
 本発明の近赤外線吸収性組成物の全固形分は、塗布方法により変更されるが、例えば、1~50質量%であることが好ましい。下限は10質量%以上がより好ましい。上限は30質量%以下がより好ましい。
<Preparation and use of near-infrared absorbing composition>
Since the near-infrared absorbing composition of the present invention can be made into a liquid, for example, a near-infrared cut filter can be easily produced by applying the near-infrared absorbing composition of the present invention to a substrate and drying it. it can.
The near-infrared absorbing composition of the present invention preferably has a viscosity of 1 to 3000 mPa · s when a near-infrared cut filter is formed by coating. The lower limit is preferably 10 mPa · s or more, and more preferably 100 mPa · s or more. The upper limit is preferably 2000 mPa · s or less, and more preferably 1500 mPa · s or less.
The total solid content of the near-infrared absorbing composition of the present invention varies depending on the coating method, but is preferably 1 to 50% by mass, for example. The lower limit is more preferably 10% by mass or more. The upper limit is more preferably 30% by mass or less.
 本発明の近赤外線吸収性組成物の用途は、特に限定されないが、近赤外線カットフィルタ等の形成に好ましく用いることができる。例えば、固体撮像素子の受光側における近赤外線カットフィルタ(例えば、ウエハーレベルレンズに対する近赤外線カットフィルタ用など)、固体撮像素子の裏面側(受光側とは反対側)における近赤外線カットフィルタなどに好ましく用いることができる。特に、固体撮像素子の受光側における近赤外線カットフィルタとして好ましく用いることができる。
 また、本発明の近赤外線吸収性組成物によれば、可視領域では高い透過率を維持しつつ、高い近赤外線遮蔽性を実現できる近赤外線カットフィルタが得られる。さらには、近赤外線カットフィルタの膜厚を薄くでき、カメラモジュールの低背化に寄与できる。
Although the use of the near-infrared absorptive composition of this invention is not specifically limited, It can use preferably for formation of a near-infrared cut filter etc. For example, it is preferable for a near-infrared cut filter (for example, for a near-infrared cut filter for a wafer level lens) on the light-receiving side of a solid-state image sensor, a near-infrared cut filter on the back side (the side opposite to the light-receiving side) of the solid-state image sensor, etc. Can be used. In particular, it can be preferably used as a near-infrared cut filter on the light receiving side of the solid-state imaging device.
Moreover, according to the near-infrared absorptive composition of this invention, the near-infrared cut filter which can implement | achieve high near-infrared shielding property is obtained, maintaining a high transmittance | permeability in visible region. Furthermore, the film thickness of the near-infrared cut filter can be reduced, which can contribute to a reduction in the height of the camera module.
<近赤外線カットフィルタ>
 次に、本発明の近赤外線カットフィルタについて説明する。
 本発明の近赤外線カットフィルタは、上述した本発明の近赤外線吸収性組成物を硬化してなるものである。
 本発明の近赤外線カットフィルタは、光透過率が以下の(1)~(9)のうちの少なくとも1つの条件を満たすことが好ましく、以下の(1)~(8)のすべての条件を満たすことがより好ましく、(1)~(9)のすべての条件を満たすことがさらに好ましい。
(1)波長400nmでの光透過率は80%以上が好ましく、90%以上がより好ましく、92%以上がさらに好ましく、95%以上が特に好ましい。
(2)波長450nmでの光透過率は80%以上が好ましく、90%以上がより好ましく、92%以上がさらに好ましく、95%以上が特に好ましい。
(3)波長500nmでの光透過率は80%以上が好ましく、90%以上がより好ましく、92%以上がさらに好ましく、95%以上が特に好ましい。
(4)波長550nmでの光透過率は80%以上が好ましく、90%以上がより好ましく、92%以上がさらに好ましく、95%以上が特に好ましい。
(5)波長700nmでの光透過率は20%以下が好ましく、15%以下がより好ましく、10%以下がさらに好ましく、5%以下が特に好ましい。
(6)波長750nmでの光透過率は20%以下が好ましく、15%以下がより好ましく、10%以下がさらに好ましく、5%以下が特に好ましい。
(7)波長800nmでの光透過率は20%以下が好ましく、15%以下がより好ましく、10%以下がさらに好ましく、5%以下が特に好ましい。
(8)波長850nmでの光透過率は20%以下が好ましく、15%以下がより好ましく、10%以下がさらに好ましく、5%以下が特に好ましい。
(9)波長900nmでの光透過率は20%以下が好ましく、15%以下がより好ましく、10%以下がさらに好ましく、5%以下が特に好ましい。
<Near-infrared cut filter>
Next, the near infrared cut filter of the present invention will be described.
The near-infrared cut filter of the present invention is formed by curing the above-described near-infrared absorbing composition of the present invention.
The near-infrared cut filter of the present invention preferably has a light transmittance that satisfies at least one of the following conditions (1) to (9), and satisfies all the following conditions (1) to (8): It is more preferable that all the conditions (1) to (9) are satisfied.
(1) The light transmittance at a wavelength of 400 nm is preferably 80% or more, more preferably 90% or more, still more preferably 92% or more, and particularly preferably 95% or more.
(2) The light transmittance at a wavelength of 450 nm is preferably 80% or more, more preferably 90% or more, still more preferably 92% or more, and particularly preferably 95% or more.
(3) The light transmittance at a wavelength of 500 nm is preferably 80% or more, more preferably 90% or more, still more preferably 92% or more, and particularly preferably 95% or more.
(4) The light transmittance at a wavelength of 550 nm is preferably 80% or more, more preferably 90% or more, still more preferably 92% or more, and particularly preferably 95% or more.
(5) The light transmittance at a wavelength of 700 nm is preferably 20% or less, more preferably 15% or less, further preferably 10% or less, and particularly preferably 5% or less.
(6) The light transmittance at a wavelength of 750 nm is preferably 20% or less, more preferably 15% or less, further preferably 10% or less, and particularly preferably 5% or less.
(7) The light transmittance at a wavelength of 800 nm is preferably 20% or less, more preferably 15% or less, further preferably 10% or less, and particularly preferably 5% or less.
(8) The light transmittance at a wavelength of 850 nm is preferably 20% or less, more preferably 15% or less, still more preferably 10% or less, and particularly preferably 5% or less.
(9) The light transmittance at a wavelength of 900 nm is preferably 20% or less, more preferably 15% or less, further preferably 10% or less, and particularly preferably 5% or less.
 近赤外線カットフィルタは、波長400~550nmの全ての範囲での光透過率が85%以上であることが好ましく、90%以上であることがより好ましい。可視領域での透過率は高いほど好ましく、波長400~550nmで高透過率となることが好ましい。また、波長700~800nmの範囲の少なくとも1点での光透過率が20%以下であることが好ましく、波長700~800nmの全ての範囲での光透過率が20%以下であることがさらに好ましい。
 近赤外線カットフィルタの膜厚は、目的に応じて適宜選択することができる。例えば、500μm以下が好ましく、300μm以下がより好ましく、250μm以下がさらに好ましく、200μm以下が特に好ましい。膜厚の下限は、例えば、0.1μm以上が好ましく、0.2μm以上がより好ましく、0.5μm以上がより好ましい。
 本発明の近赤外線吸収性組成物によれば、高い近赤外線遮蔽性を有することから、近赤外線カットフィルタの膜厚を薄くすることができる。
The near-infrared cut filter preferably has a light transmittance of 85% or more and more preferably 90% or more in the entire wavelength range of 400 to 550 nm. The higher the transmittance in the visible region, the better. The transmittance is preferably high at a wavelength of 400 to 550 nm. Further, the light transmittance at at least one point in the wavelength range of 700 to 800 nm is preferably 20% or less, and the light transmittance in the entire range of wavelength 700 to 800 nm is more preferably 20% or less. .
The film thickness of the near infrared cut filter can be appropriately selected according to the purpose. For example, 500 μm or less is preferable, 300 μm or less is more preferable, 250 μm or less is further preferable, and 200 μm or less is particularly preferable. The lower limit of the film thickness is, for example, preferably 0.1 μm or more, more preferably 0.2 μm or more, and more preferably 0.5 μm or more.
According to the near-infrared absorptive composition of this invention, since it has high near-infrared shielding, the film thickness of a near-infrared cut filter can be made thin.
 本発明の近赤外線カットフィルタは、85℃/相対湿度85%の高温高湿下で1時間放置する前後での、下記式で求められる吸光度比の変化率がそれぞれ7%以下であることが好ましく、4%以下であることがより好ましく、2%以下であることがさらに好ましい。吸光度比の変化率が上記範囲であれば、耐湿性に優れる。
 吸光度比の変化率(%)=|(試験前における吸光度比-試験後における吸光度比)/試験前における吸光度比|×100(%)
 ここで、吸光度比とは、下記式で表される値である。
 吸光度比=(近赤外線カットフィルタの波長700~1400nmにおける最大吸光度/近赤外線カットフィルタの波長400~700nmにおける最小吸光度)
 本発明の近赤外線カットフィルタは、200℃で5分間加熱した前後における、波長400nmの吸光度の変化率および波長800nmの吸光度の変化率がいずれも7%以下であることが好ましく、5%以下であることが特に好ましい。吸光度の変化率が上記範囲であれば、耐熱性に優れる。
In the near-infrared cut filter of the present invention, the change rate of the absorbance ratio obtained by the following formula is preferably 7% or less before and after being left for 1 hour at a high temperature and high humidity of 85 ° C./85% relative humidity. It is more preferably 4% or less, and further preferably 2% or less. If the change rate of the absorbance ratio is in the above range, the moisture resistance is excellent.
Change rate of absorbance ratio (%) = | (absorbance ratio before test−absorbance ratio after test) / absorbance ratio before test | × 100 (%)
Here, the absorbance ratio is a value represented by the following formula.
Absorbance ratio = (maximum absorbance of near-infrared cut filter at wavelength 700 to 1400 nm / minimum absorbance of near-infrared cut filter at wavelength 400 to 700 nm)
In the near-infrared cut filter of the present invention, the change rate of absorbance at a wavelength of 400 nm and the change rate of absorbance at a wavelength of 800 nm before and after heating at 200 ° C. for 5 minutes are both preferably 7% or less, and 5% or less. It is particularly preferred. When the absorbance change rate is within the above range, the heat resistance is excellent.
 本発明の近赤外線カットフィルタは、近赤外線を吸収・カットする機能を有するレンズ(デジタルカメラや携帯電話や車載カメラ等のカメラ用レンズ、f-θレンズ、ピックアップレンズ等の光学レンズ)および半導体受光素子用の光学フィルター、省エネルギー用に熱線を遮断する近赤外線吸収フィルムや近赤外線吸収板、太陽光の選択的な利用を目的とする農業用コーティング剤、近赤外線の吸収熱を利用する記録媒体、電子機器用や写真用近赤外線フィルター、保護めがね、サングラス、熱線遮断フィルム、光学文字読み取り記録、機密文書複写防止用、電子写真感光体、レーザー溶着、などに用いられる。またCCDカメラ用ノイズカットフィルター、CMOSイメージセンサ用フィルターとしても有用である。 The near-infrared cut filter of the present invention has a lens that absorbs and cuts near-infrared rays (camera lenses for digital cameras, mobile phones, vehicle-mounted cameras, etc., optical lenses such as f-θ lenses, pickup lenses), and semiconductor light receiving Optical filters for elements, near-infrared absorbing films and near-infrared absorbing plates that block heat rays for energy saving, agricultural coating agents for selective use of sunlight, recording media that use near-infrared absorbing heat, Used for electronic devices and photographic near infrared filters, protective glasses, sunglasses, heat ray blocking films, optical character reading and recording, confidential document copy prevention, electrophotographic photoreceptors, laser welding, and the like. It is also useful as a noise cut filter for CCD cameras and a filter for CMOS image sensors.
<近赤外線カットフィルタの製造方法>
 本発明の近赤外線カットフィルタは、本発明の近赤外線吸収性組成物を支持体に適用することにより膜を形成する工程、膜を乾燥する工程を経て製造できる。膜厚、積層構造などについては、目的に応じて適宜選択することができる。また、更にパターンを形成する工程を行ってもよい。
 膜を形成する工程は、例えば、本発明の近赤外線吸収性組成物を、支持体に滴下法(ドロップキャスト)、スピンコーター、スリットスピンコーター、スリットコーター、スクリーン印刷、アプリケータ塗布等を用いることにより実施できる。滴下法(ドロップキャスト)の場合、所定の膜厚で、均一な膜が得られるように、支持体上にフォトレジストを隔壁とする近赤外線吸収性組成物の滴下領域を形成することが好ましい。近赤外線吸収性組成物の滴下量および固形分濃度、滴下領域の面積を調整することで、所望の膜厚が得られる。乾燥後の膜の厚みとしては、特に制限はなく、目的に応じて適宜選択することができる。膜の厚みとしては、例えば、1~500μmが好ましく、1~300μmがより好ましく、1~200μmが特に好ましい。本発明では、このような薄い膜とした場合でも、近赤外線遮蔽性を維持することができる。
 支持体は、ガラスなどからなる透明基板であってもよい。また、固体撮像素子であってもよい。また、固体撮像素子の受光側に設けられた別の基板であってもよい。また、固体撮像素子の受光側に設けられた平坦化層等の層であっても良い。
 膜を乾燥する工程において、乾燥条件としては、各成分、溶剤の種類、使用割合等によっても異なる。例えば、60~150℃の温度で、30秒間~15分間が好ましい。
 パターンを形成工程としては、例えば、本発明の近赤外線吸収性組成物を支持体上に適用して膜状の組成物層を形成する工程と、組成物層をパターン状に露光する工程と、未露光部を現像除去してパターンを形成する工程とを含む方法などが挙げられる。パターンを形成する工程としては、フォトリソグラフィ法でパターン形成してもよいし、ドライエッチング法でパターンを形成してもよい。
 近赤外線カットフィルタの製造方法において、その他の工程を含んでいても良い。その他の工程としては、特に制限はなく、目的に応じて適宜選択することができる。例えば、基材の表面処理工程、前加熱工程(プリベーク工程)、硬化処理工程、後加熱工程(ポストベーク工程)などが挙げられる。
<Method for manufacturing near-infrared cut filter>
The near-infrared cut filter of this invention can be manufactured through the process of forming a film | membrane by applying the near-infrared absorptive composition of this invention to a support body, and the process of drying a film | membrane. About a film thickness, laminated structure, etc., it can select suitably according to the objective. Further, a step of forming a pattern may be performed.
In the step of forming a film, for example, the near-infrared absorbing composition of the present invention is applied to a support using a dropping method (drop cast), a spin coater, a slit spin coater, a slit coater, screen printing, applicator application, etc. Can be implemented. In the case of the dropping method (drop casting), it is preferable to form a dropping region of the near-infrared absorbing composition having a photoresist as a partition on the support so that a uniform film can be obtained with a predetermined film thickness. A desired film thickness can be obtained by adjusting the dropping amount and solid content concentration of the near-infrared absorbing composition and the area of the dropping region. There is no restriction | limiting in particular as thickness of the film | membrane after drying, According to the objective, it can select suitably. The thickness of the film is, for example, preferably 1 to 500 μm, more preferably 1 to 300 μm, and particularly preferably 1 to 200 μm. In the present invention, even when such a thin film is used, the near-infrared shielding property can be maintained.
The support may be a transparent substrate made of glass or the like. Moreover, a solid-state image sensor may be sufficient. Moreover, another board | substrate provided in the light-receiving side of the solid-state image sensor may be sufficient. Further, it may be a layer such as a flattening layer provided on the light receiving side of the solid-state imaging device.
In the step of drying the membrane, the drying conditions vary depending on each component, the type of solvent, the use ratio, and the like. For example, the temperature is preferably 60 to 150 ° C. and preferably 30 seconds to 15 minutes.
As a pattern forming step, for example, a step of applying the near infrared absorbing composition of the present invention on a support to form a film-like composition layer, a step of exposing the composition layer in a pattern, And a method including a step of forming a pattern by developing and removing an unexposed portion. As a pattern forming step, a pattern may be formed by a photolithography method, or a pattern may be formed by a dry etching method.
In the manufacturing method of the near-infrared cut filter, other steps may be included. There is no restriction | limiting in particular as another process, According to the objective, it can select suitably. For example, the surface treatment process of a base material, a pre-heating process (pre-baking process), a hardening process, a post-heating process (post-baking process), etc. are mentioned.
<<前加熱工程・後加熱工程>>
 前加熱工程および後加熱工程における加熱温度は、80~200℃が好ましい。上限は150℃以下が好ましい。下限は90℃以上が好ましい。
 前加熱工程および後加熱工程における加熱時間は、30~240秒が好ましい。上限は180秒以下が好ましい。下限は60秒以上が好ましい。
<<硬化処理工程>>
 硬化処理工程は、必要に応じ、形成された上記膜に対して硬化処理を行う工程であり、この処理を行うことにより、近赤外線カットフィルタの機械的強度が向上する。
 硬化処理工程としては、特に制限はなく、目的に応じて適宜選択することができる。例えば、全面露光処理、全面加熱処理などが好適に挙げられる。ここで、本発明において「露光」とは、各種波長の光のみならず、電子線、X線などの放射線照射をも包含する意味で用いられる。
 露光は放射線の照射により行うことが好ましく、露光に際して用いることができる放射線としては、特に、電子線、KrF、ArF、g線、h線、i線等の紫外線や可視光が好ましく用いられる。
 露光方式としては、ステッパー露光や、高圧水銀灯による露光などが挙げられる。
 露光量は5~3000mJ/cm2が好ましい。上限は、2000mJ/cm2以下が好ましく、1000mJ/cm2以下がより好ましい。下限は、10mJ/cm2以上が好ましく、50mJ/cm2以上がより好ましい。
 全面露光処理の方法としては、例えば、形成された膜の全面を露光する方法が挙げられる。近赤外線吸収性組成物が重合性化合物を含有する場合、全面露光により、重合性化合物の硬化が促進され、膜の硬化が更に進行し、機械的強度、耐久性が改良される。
 全面露光を行う装置としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、超高圧水銀灯などのUV露光機が好適に挙げられる。
 また、全面加熱処理の方法としては、形成された上記膜の全面を加熱する方法が挙げられる。全面加熱により、パターンの膜強度が高められる。
 全面加熱における加熱温度は、120~250℃が好ましい。下限は160℃以上が好ましい。上限は220℃以上が好ましい。加熱温度が上記範囲であれば、強度に優れた膜が得られやすい。
 全面加熱における加熱時間は、3~180分が好ましい。下限は5分以上が好ましい。上限は120分以下が好ましい。
 全面加熱を行う装置としては、特に制限はなく、公知の装置の中から、目的に応じて適宜選択することができ、例えば、ドライオーブン、ホットプレート、IRヒーターなどが挙げられる。
<< Pre-heating process / Post-heating process >>
The heating temperature in the preheating step and the postheating step is preferably 80 to 200 ° C. The upper limit is preferably 150 ° C. or lower. The lower limit is preferably 90 ° C. or higher.
The heating time in the preheating step and the postheating step is preferably 30 to 240 seconds. The upper limit is preferably 180 seconds or less. The lower limit is preferably 60 seconds or more.
<< Curing treatment process >>
The curing process is a process of curing the formed film as necessary, and the mechanical strength of the near-infrared cut filter is improved by performing this process.
There is no restriction | limiting in particular as a hardening process, According to the objective, it can select suitably. For example, a whole surface exposure process, a whole surface heat treatment, etc. are mentioned suitably. Here, in the present invention, “exposure” is used to include not only light of various wavelengths but also irradiation of radiation such as electron beams and X-rays.
The exposure is preferably performed by irradiation of radiation, and as the radiation that can be used for the exposure, ultraviolet rays such as electron beams, KrF, ArF, g rays, h rays, i rays and visible light are particularly preferably used.
Examples of the exposure method include stepper exposure and exposure with a high-pressure mercury lamp.
The exposure amount is preferably 5 to 3000 mJ / cm 2 . The upper limit is preferably 2000 mJ / cm 2 or less, and more preferably 1000 mJ / cm 2 or less. The lower limit is preferably 10 mJ / cm 2 or more, and more preferably 50 mJ / cm 2 or more.
Examples of the entire surface exposure processing method include a method of exposing the entire surface of the formed film. When the near-infrared absorbing composition contains a polymerizable compound, the entire surface exposure accelerates the curing of the polymerizable compound, the film is further cured, and the mechanical strength and durability are improved.
There is no restriction | limiting in particular as an apparatus which performs whole surface exposure, Although it can select suitably according to the objective, For example, UV exposure machines, such as an ultrahigh pressure mercury lamp, are mentioned suitably.
Moreover, as a method of the whole surface heat treatment, a method of heating the entire surface of the formed film can be given. By heating the entire surface, the film strength of the pattern is increased.
The heating temperature in the entire surface heating is preferably 120 to 250 ° C. The lower limit is preferably 160 ° C. or higher. The upper limit is preferably 220 ° C. or higher. When the heating temperature is in the above range, a film having excellent strength is easily obtained.
The heating time in the entire surface heating is preferably 3 to 180 minutes. The lower limit is preferably 5 minutes or more. The upper limit is preferably 120 minutes or less.
There is no restriction | limiting in particular as an apparatus which performs whole surface heating, According to the objective, it can select suitably from well-known apparatuses, For example, a dry oven, a hot plate, IR heater etc. are mentioned.
<カメラモジュール、カメラモジュールの製造方法>
 本発明のカメラモジュールは、固体撮像素子と、固体撮像素子の受光側に配置された近赤外線カットフィルタとを有する。
 また、本発明のカメラモジュールの製造方法は、固体撮像素子の受光側において、上述した本発明の近赤外線吸収性組成物を塗布する工程を有する。
<Camera module and camera module manufacturing method>
The camera module of the present invention has a solid-state image sensor and a near-infrared cut filter arranged on the light receiving side of the solid-state image sensor.
Moreover, the manufacturing method of the camera module of this invention has the process of apply | coating the near-infrared absorptive composition of this invention mentioned above in the light-receiving side of a solid-state image sensor.
 図1は、本発明の実施形態に係る近赤外線カットフィルタを有するカメラモジュールの構成を示す概略断面図である。
 カメラモジュール10は、例えば、固体撮像素子11と、固体撮像素子の主面側(受光側)に設けられた平坦化層12と、近赤外線カットフィルタ13と、近赤外線カットフィルタの上方に配置され内部空間に撮像レンズ14を有するレンズホルダー15と、を備える。
 カメラモジュール10では、外部からの入射光hνが、撮像レンズ14、近赤外線カットフィルタ13、平坦化層12を順次透過した後、固体撮像素子11の撮像素子部に到達するようになっている。
 固体撮像素子11は、例えば、基体であるシリコン基板16の主面に、フォトダイオード、層間絶縁膜(図示せず)、ベース層(図示せず)、カラーフィルタ17、オーバーコート(図示せず)、マイクロレンズ18をこの順に備えている。カラーフィルタ17(赤色のカラーフィルタ、緑色のカラーフィルタ、青色のカラーフィルタ)やマイクロレンズ18は、固体撮像素子11に対応するように、それぞれ配置されている。
 また、平坦化層12の表面に近赤外線カットフィルタ13が設けられる代わりに、マイクロレンズ18の表面、ベース層とカラーフィルタ17との間、または、カラーフィルタ17とオーバーコートとの間に、近赤外線カットフィルタ13が設けられる形態であってもよい。例えば、近赤外線カットフィルタ13は、マイクロレンズ表面から2mm以内(より好ましくは1mm以内)の位置に設けられていてもよい。この位置に設けると、近赤外線カットフィルタを形成する工程が簡略化でき、マイクロレンズへの不要な近赤外線を十分にカットすることができるので、近赤外線遮蔽性をより高めることができる。
 本発明の近赤外線カットフィルタは、半田リフロー工程に供することができる。半田リフロー工程によりカメラモジュールを製造することによって、半田付けを行うことが必要な電子部品実装基板等の自動実装化が可能となり、半田リフロー工程を用いない場合と比較して、生産性を格段に向上することができる。更に、自動で行うことができるため、低コスト化を図ることもできる。半田リフロー工程に供される場合、250~270℃程度の温度にさらされることとなるため、近赤外線カットフィルタは、半田リフロー工程に耐え得る耐熱性(以下、「耐半田リフロー性」ともいう。)を有することが好ましい。
 本明細書中で、「耐半田リフロー性を有する」とは、200℃で10分間の加熱を行う前後で近赤外線カットフィルタとしての特性を保持することをいう。より好ましくは、230℃で10分間の加熱を行う前後で特性を保持することである。更に好ましくは、250℃で3分間の加熱を行う前後で特性を保持することである。耐半田リフロー性を有しない場合には、上記条件で保持した場合に、近赤外線カットフィルタの近赤外線遮蔽性が低下したり、膜としての機能が不十分となる場合がある。
 また本発明は、リフロー処理する工程を含む、カメラモジュールの製造方法にも関する。本発明の近赤外線カットフィルタは、リフロー工程があっても、近赤外線遮蔽性が維持されるので、小型軽量・高性能化されたカメラモジュールの特性を損なうことがない。
FIG. 1 is a schematic cross-sectional view showing the configuration of a camera module having a near-infrared cut filter according to an embodiment of the present invention.
The camera module 10 is disposed, for example, above the solid-state image sensor 11, the flattening layer 12 provided on the main surface side (light-receiving side) of the solid-state image sensor, the near-infrared cut filter 13, and the near-infrared cut filter. A lens holder 15 having an imaging lens 14 in the internal space.
In the camera module 10, incident light hν from the outside passes through the imaging lens 14, the near-infrared cut filter 13, and the planarizing layer 12 in order, and then reaches the imaging device portion of the solid-state imaging device 11.
The solid-state imaging device 11 has, for example, a photodiode, an interlayer insulating film (not shown), a base layer (not shown), a color filter 17 and an overcoat (not shown) on the main surface of a silicon substrate 16 as a base. The microlens 18 is provided in this order. The color filter 17 (red color filter, green color filter, blue color filter) and the microlens 18 are respectively disposed so as to correspond to the solid-state imaging device 11.
Further, instead of providing the near-infrared cut filter 13 on the surface of the flattening layer 12, the surface of the microlens 18, between the base layer and the color filter 17, or between the color filter 17 and the overcoat, The form in which the infrared cut filter 13 is provided may be sufficient. For example, the near-infrared cut filter 13 may be provided at a position within 2 mm (more preferably within 1 mm) from the surface of the microlens. If it is provided at this position, the process of forming the near infrared cut filter can be simplified, and unnecessary near infrared rays to the microlens can be sufficiently cut, so that the near infrared shielding property can be further improved.
The near-infrared cut filter of the present invention can be subjected to a solder reflow process. By manufacturing the camera module through the solder reflow process, it is possible to automatically mount electronic component mounting boards, etc. that need to be soldered, making the productivity significantly higher than when not using the solder reflow process. Can be improved. Furthermore, since it can be performed automatically, the cost can be reduced. When subjected to the solder reflow process, the near-infrared cut filter is exposed to a temperature of about 250 to 270 ° C. Therefore, the near-infrared cut filter is also referred to as heat resistance that can withstand the solder reflow process (hereinafter also referred to as “solder reflow resistance”). ).
In this specification, “having solder reflow resistance” means that the characteristics as a near-infrared cut filter are maintained before and after heating at 200 ° C. for 10 minutes. More preferably, the characteristics are maintained before and after heating at 230 ° C. for 10 minutes. More preferably, the characteristics are maintained before and after heating at 250 ° C. for 3 minutes. When it does not have solder reflow resistance, the near-infrared shielding property of the near-infrared cut filter may be deteriorated or the function as a film may be insufficient when held under the above conditions.
The present invention also relates to a method for manufacturing a camera module, including a reflow process. The near-infrared cut filter of the present invention maintains the near-infrared shielding property even if there is a reflow process, and thus does not impair the characteristics of a small, lightweight and high-performance camera module.
 図2~4は、カメラモジュールにおける近赤外線カットフィルタ周辺部分の一例を示す概略断面図である。
 図2に示すように、カメラモジュールは、固体撮像素子11と、平坦化層12と、紫外・赤外光反射膜19と、透明基材20と、近赤外線吸収層(近赤外線カットフィルタ)21と、反射防止層22とをこの順に有していてもよい。
 紫外・赤外光反射膜19は、近赤外線カットフィルタの機能を付与または高める効果を有し、例えば、特開2013-68688号公報の段落0033~0039を参酌することができ、この内容は本願明細書に組み込まれる。
 透明基材20は、可視領域の波長の光を透過するものであり、例えば、特開2013-68688号公報の段落0026~0032を参酌することができ、この内容は本願明細書に組み込まれる。
 近赤外線吸収層21は、上述した本発明の近赤外線吸収性組成物を塗布することにより形成することができる。
 反射防止層22は、近赤外線カットフィルタに入射する光の反射を防止することにより透過率を向上させ、効率よく入射光を利用する機能を有するものであり、例えば、特開2013-68688号公報の段落0040を参酌することができ、この内容は本願明細書に組み込まれる。
2 to 4 are schematic sectional views showing an example of the vicinity of the near-infrared cut filter in the camera module.
As shown in FIG. 2, the camera module includes a solid-state imaging device 11, a planarization layer 12, an ultraviolet / infrared light reflection film 19, a transparent base material 20, and a near infrared absorption layer (near infrared cut filter) 21. And an antireflection layer 22 in this order.
The ultraviolet / infrared light reflection film 19 has an effect of imparting or enhancing the function of a near-infrared cut filter. Incorporated in the description.
The transparent substrate 20 transmits light having a wavelength in the visible region. For example, paragraphs 0026 to 0032 of JP2013-68688A can be referred to, and the contents thereof are incorporated in the present specification.
The near-infrared absorbing layer 21 can be formed by applying the above-described near-infrared absorbing composition of the present invention.
The antireflection layer 22 has a function of improving the transmittance by preventing reflection of light incident on the near-infrared cut filter and efficiently using incident light. For example, Japanese Patent Application Laid-Open No. 2013-68688 Paragraph 0040, which is incorporated herein by reference.
 図3に示すように、カメラモジュールは、固体撮像素子11と、近赤外線吸収層(近赤外線カットフィルタ)21と、反射防止層22と、平坦化層12と、反射防止層22と、透明基材20と、紫外・赤外光反射膜19とをこの順に有していてもよい。
 図4に示すように、カメラモジュールは、固体撮像素子11と、近赤外線吸収層(近赤外線カットフィルタ)21と、紫外・赤外光反射膜19と、平坦化層12と、反射防止層22と、透明基材20と、反射防止層22とをこの順に有していてもよい。
As shown in FIG. 3, the camera module includes a solid-state imaging device 11, a near infrared absorption layer (near infrared cut filter) 21, an antireflection layer 22, a planarization layer 12, an antireflection layer 22, and a transparent substrate. The material 20 and the ultraviolet / infrared light reflection film 19 may be provided in this order.
As shown in FIG. 4, the camera module includes a solid-state imaging device 11, a near infrared absorption layer (near infrared cut filter) 21, an ultraviolet / infrared light reflection film 19, a planarization layer 12, and an antireflection layer 22. And you may have the transparent base material 20 and the reflection preventing layer 22 in this order.
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。 The present invention will be described more specifically with reference to the following examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention is not limited to the specific examples shown below.
<合成例1>(重合体(P-1)~(P-10)の合成)
 3つ口フラスコに、1-メトキシ-2-プロパノール(21g)を入れ、窒素雰囲気下において85℃に昇温した。
 次に、4-ビニルピリジン(11.21g)、メタクリル酸ベンジル(18.79g)、およびV-601(和光純薬工業株式会社製アゾ系重合開始剤、1.06g)を、1-メトキシ-2-プロパノール(49g)に溶解させた溶液を2時間かけて滴下した。
 滴下終了後4時間攪拌し、反応を終了させることで重合体(P-1)を得た。重合体(P-1)の重量平均分子量は20,000であった。
 重合体(P-2)~(P-10)についても、重合体(P-1)と同様の方法で得た。重合体(P-2)~(P-9)の重量平均分子量は20,000であった。また、重合体(P-10)の重量平均分子量は30,000であった。
<Synthesis Example 1> (Synthesis of Polymers (P-1) to (P-10))
1-Methoxy-2-propanol (21 g) was placed in a three-necked flask and heated to 85 ° C. in a nitrogen atmosphere.
Next, 4-vinylpyridine (11.21 g), benzyl methacrylate (18.79 g), and V-601 (azo polymerization initiator manufactured by Wako Pure Chemical Industries, Ltd., 1.06 g) were mixed with 1-methoxy- A solution dissolved in 2-propanol (49 g) was added dropwise over 2 hours.
After completion of the dropwise addition, the mixture was stirred for 4 hours to complete the reaction to obtain a polymer (P-1). The weight average molecular weight of the polymer (P-1) was 20,000.
Polymers (P-2) to (P-10) were also obtained in the same manner as for polymer (P-1). The weight average molecular weights of the polymers (P-2) to (P-9) were 20,000. Further, the weight average molecular weight of the polymer (P-10) was 30,000.
<近赤外線吸収性組成物>
(実施例1)
 ナスフラスコに、2,6-ピリジンジカルボン酸(17.82g)、メタノール(50g)を入れて室温で溶解させた。酢酸銅(19.37g)をメタノール(50g)および水(20g)に溶解させた溶液を加え、室温で30分間攪拌することで沈殿の生成を確認した。そこに、重合体(P-1)の1-メトキシ-2-プロパノール溶液(100g、30質量%)を加え室温で1時間攪拌させることでポリマー銅化合物を得て、近赤外線吸収性組成物を調製した。固形分濃度(ポリマー銅化合物の含有量)は21質量%であった。
 なお、重合体(P-1)の全配位部(非共有電子対で配位する配位原子と、アニオンで配位する配位部位との合計)と、銅とのモル比は、全配位部:銅=1:1であった。
<Near-infrared absorbing composition>
(Example 1)
In an eggplant flask, 2,6-pyridinedicarboxylic acid (17.82 g) and methanol (50 g) were added and dissolved at room temperature. A solution in which copper acetate (19.37 g) was dissolved in methanol (50 g) and water (20 g) was added, and the mixture was stirred at room temperature for 30 minutes to confirm the formation of a precipitate. Thereto was added a 1-methoxy-2-propanol solution (100 g, 30% by mass) of the polymer (P-1) and stirred at room temperature for 1 hour to obtain a polymer copper compound, and a near-infrared absorbing composition was obtained. Prepared. The solid content concentration (polymer copper compound content) was 21% by mass.
Note that the molar ratio of the total coordination part of the polymer (P-1) (the total of coordination atoms coordinated by the lone pair and coordination site coordinated by the anion) and copper is Coordination part: Copper = 1: 1.
(実施例2~6)
 実施例1において、重合体(P-1)の代わりに、重合体(P-2)~(P-6)を用いた以外は、実施例1にならって、ポリマー銅化合物を得て、近赤外線吸収性組成物を調製した。各近赤外線吸収性組成物の固形分濃度(ポリマー銅化合物の含有量)は21質量%であった。
 なお、実施例2~5においては、重合体の全配位部(非共有電子対で配位する配位原子と、アニオンで配位する配位部位との合計)と、銅とのモル比は、全配位部:銅=1:1であった。また、実施例6においては、重合体の全配位部(非共有電子対で配位する配位原子と、アニオンで配位する配位部位との合計)と、銅とのモル比は、全配位部:銅=2:1であった。また、固形分濃度が21質量%になるようにメタノールの量を調整した。
(実施例7)
 実施例6において、2,6-ピリジンジカルボン酸の代わりにイタコン酸を用いた以外は、実施例6にならって、ポリマー銅化合物を得て、近赤外線吸収性組成物を調製した。近赤外線吸収性組成物の固形分濃度(ポリマー銅化合物の含有量)は21質量%であった。実施例7においては、重合体の全配位部(非共有電子対で配位する配位原子と、アニオンで配位する配位部位との合計)と、銅とのモル比は、全配位部:銅=2:1であった。また、固形分濃度が21質量%になるようにメタノールの量を調整した。
(実施例8)
 実施例6において、2,6-ピリジンジカルボン酸を用いないこと、酢酸銅の代わりに2-エチルヘキサン酸銅を用いること以外は、実施例6にならって、ポリマー銅化合物を得て、近赤外線吸収性組成物を調製した。近赤外線吸収性組成物の固形分濃度(ポリマー銅化合物の含有量)は21質量%であった。実施例8においては、重合体の全配位部(非共有電子対で配位する配位原子と、アニオンで配位する配位部位との合計)と、銅とのモル比は、全配位部:銅=2:1であった。また、固形分濃度が21質量%になるようにメタノールの量を調整した。
(実施例9)
 実施例6において、2,6-ピリジンジカルボン酸を用いないこと、酢酸銅の代わりにメタンスルホン酸銅を用いること以外は、実施例6にならって、ポリマー銅化合物を得て、近赤外線吸収性組成物を調製した。近赤外線吸収性組成物の固形分濃度(ポリマー銅化合物の含有量)は21質量%であった。実施例9においては、重合体の全配位部(非共有電子対で配位する配位原子と、アニオンで配位する配位部位との合計)と、銅とのモル比は、全配位部:銅=2:1であった。また、固形分濃度が21質量%になるようにメタノールの量を調整した。
(実施例10)
 実施例1において、重合体(P-1)の代わりに、重合体(P-7)を用いた以外は、実施例1にならって、ポリマー銅化合物を得て、近赤外線吸収性組成物を調製した。近赤外線吸収性組成物の固形分濃度(ポリマー銅化合物の含有量)は21質量%であった。実施例10においては、重合体の全配位部(非共有電子対で配位する配位原子と、アニオンで配位する配位部位との合計)と、銅とのモル比は、全配位部:銅=2:1であった。また、固形分濃度が21質量%になるようにメタノールの量を調整した。
(実施例11)
 実施例1において、(2,6-ピリジンジカルボン酸を用いないこと、重合体(P-1)の代わりに重合体(P-8)を用いること、酢酸銅の代わりにメタンスルホン酸銅を用いること以外は、実施例1にならって、ポリマー銅化合物を得て、近赤外線吸収性組成物を調製した。近赤外線吸収性組成物の固形分濃度(ポリマー銅化合物の含有量)は21質量%であった。実施例11においては、重合体の全配位部(非共有電子対で配位する配位原子と、アニオンで配位する配位部位との合計)と、銅とのモル比は、全配位部:銅=1:1であった。また、固形分濃度が21質量%になるようにメタノールの量を調整した。
(実施例12)
 実施例1において、2,6-ピリジンジカルボン酸を用いないこと、重合体(P-1)の代わりに重合体(P-9)を用いること以外は、実施例1にならって、ポリマー銅化合物を得て、近赤外線吸収性組成物を調製した。近赤外線吸収性組成物の固形分濃度(ポリマー銅化合物の含有量)は21質量%であった。実施例12においては、重合体の全配位部(非共有電子対で配位する配位原子と、アニオンで配位する配位部位との合計)と、銅とのモル比は、全配位部:銅=2:1であった。また、固形分濃度が21質量%になるようにメタノールの量を調整した。
(実施例13)
 実施例1において、2,6-ピリジンジカルボン酸を用いないこと、重合体(P-1)の代わりに重合体(P-10)を用いること、酢酸銅の代わりにメタンスルホン酸銅を用いること以外は、実施例1にならって、ポリマー銅化合物を得て、近赤外線吸収性組成物を調製した。近赤外線吸収性組成物の固形分濃度(ポリマー銅化合物の含有量)は21質量%であった。実施例13においては、重合体の全配位部(非共有電子対で配位する配位原子と、アニオンで配位する配位部位との合計)と、銅とのモル比は、全配位部:銅=1:1であった。また、固形分濃度が21質量%になるようにメタノールの量を調整した。
(Examples 2 to 6)
A polymer copper compound was obtained in the same manner as in Example 1 except that the polymers (P-2) to (P-6) were used in place of the polymer (P-1) in Example 1. An infrared absorbing composition was prepared. The solid content concentration (content of polymer copper compound) of each near-infrared absorbing composition was 21% by mass.
In Examples 2 to 5, the molar ratio of the total coordination part of the polymer (the total of coordination atoms coordinated by lone pairs and coordination sites coordinated by anions) and copper The total coordination part: copper = 1: 1. In Example 6, the molar ratio of the total coordination part of the polymer (the total of coordination atoms coordinated by an unshared electron pair and coordination sites coordinated by anions) and copper is as follows: Total coordination part: copper = 2: 1. Moreover, the quantity of methanol was adjusted so that solid content concentration might be 21 mass%.
(Example 7)
In Example 6, except that itaconic acid was used instead of 2,6-pyridinedicarboxylic acid, a polymer copper compound was obtained in the same manner as in Example 6 to prepare a near-infrared absorbing composition. The solid content concentration (polymer copper compound content) of the near-infrared absorbing composition was 21% by mass. In Example 7, the molar ratio of all coordination parts of the polymer (the total of coordination atoms coordinated by unshared electron pairs and coordination sites coordinated by anions) and copper is Position: Copper = 2: 1. Moreover, the quantity of methanol was adjusted so that solid content concentration might be 21 mass%.
(Example 8)
In Example 6, except that 2,6-pyridinedicarboxylic acid was not used and copper 2-ethylhexanoate was used instead of copper acetate, a polymer copper compound was obtained, and a near infrared ray was obtained. An absorbent composition was prepared. The solid content concentration (polymer copper compound content) of the near-infrared absorbing composition was 21% by mass. In Example 8, the molar ratio of all coordination parts of the polymer (the total of coordination atoms coordinated by unshared electron pairs and coordination sites coordinated by anions) and copper is Position: Copper = 2: 1. Moreover, the quantity of methanol was adjusted so that solid content concentration might be 21 mass%.
Example 9
In Example 6, except that 2,6-pyridinedicarboxylic acid was not used and copper methanesulfonate was used instead of copper acetate, a polymer copper compound was obtained, and the near infrared absorptivity was obtained. A composition was prepared. The solid content concentration (polymer copper compound content) of the near-infrared absorbing composition was 21% by mass. In Example 9, the molar ratio of the total coordination part of the polymer (the total of the coordination atoms coordinated by the lone pair and the coordination site coordinated by the anion) and copper is Position: Copper = 2: 1. Moreover, the quantity of methanol was adjusted so that solid content concentration might be 21 mass%.
(Example 10)
A polymer copper compound was obtained in the same manner as in Example 1 except that the polymer (P-7) was used instead of the polymer (P-1) in Example 1, and a near-infrared absorbing composition was obtained. Prepared. The solid content concentration (polymer copper compound content) of the near-infrared absorbing composition was 21% by mass. In Example 10, the molar ratio of the total coordination part of the polymer (the total of the coordination atom coordinated by the lone pair and the coordination site coordinated by the anion) and copper is Position: Copper = 2: 1. Moreover, the quantity of methanol was adjusted so that solid content concentration might be 21 mass%.
(Example 11)
In Example 1, (no 2,6-pyridinedicarboxylic acid is used, polymer (P-8) is used instead of polymer (P-1), and copper methanesulfonate is used instead of copper acetate. Except for the above, a polymer copper compound was obtained and a near-infrared absorbing composition was prepared in the same manner as in Example 1. The solid content concentration (polymer copper compound content) of the near-infrared absorbing composition was 21% by mass. In Example 11, the molar ratio of the total coordination part of the polymer (the total of coordination atoms coordinated by unshared electron pairs and coordination sites coordinated by anions) and copper The total coordination part: copper = 1: 1, and the amount of methanol was adjusted so that the solid content concentration was 21% by mass.
Example 12
In Example 1, except that 2,6-pyridinedicarboxylic acid is not used and the polymer (P-9) is used instead of the polymer (P-1), the polymer copper compound is the same as in Example 1. And a near infrared ray absorbing composition was prepared. The solid content concentration (polymer copper compound content) of the near-infrared absorbing composition was 21% by mass. In Example 12, the molar ratio of the total coordination part of the polymer (the total of coordination atoms coordinated by lone pairs and coordination sites coordinated by anions) and copper is Position: Copper = 2: 1. Moreover, the quantity of methanol was adjusted so that solid content concentration might be 21 mass%.
(Example 13)
In Example 1, 2,6-pyridinedicarboxylic acid is not used, polymer (P-10) is used instead of polymer (P-1), and copper methanesulfonate is used instead of copper acetate. Except for the above, a polymer copper compound was obtained in the same manner as in Example 1 to prepare a near infrared absorbing composition. The solid content concentration (polymer copper compound content) of the near-infrared absorbing composition was 21% by mass. In Example 13, the molar ratio of the total coordination part of the polymer (the sum of the coordination atoms coordinated by the lone pair and the coordination site coordinated by the anion) and copper is the total coordination. Position: Copper = 1: 1. Moreover, the quantity of methanol was adjusted so that solid content concentration might be 21 mass%.
(比較例1)
 特開2010-134457号公報の実施例1にならって、近赤外線吸収性組成物を調製した。
(Comparative Example 1)
A near-infrared absorbing composition was prepared in accordance with Example 1 of JP2010-134457A.
<<近赤外線カットフィルタの作成>>
 各近赤外線吸収性組成物を用いて、近赤外線カットフィルタを作製した。
 ガラス基板上に、フォトレジストを塗布し、リソグラフィーによりパターニングしてフォトレジストの隔壁を形成して近赤外線吸収性組成物の滴下領域を形成した。ガラス基板上の滴下領域に、各近赤外線吸収性組成物を3ml滴下し、24時間室温放置により乾燥させた。乾燥後の塗布膜の膜厚を評価したところ、膜厚は200μmであった。
<< Creation of near infrared cut filter >>
A near-infrared cut filter was produced using each near-infrared absorbing composition.
A photoresist was applied on a glass substrate and patterned by lithography to form a partition wall of the photoresist to form a dripping region of the near infrared absorbing composition. 3 ml of each near-infrared absorbing composition was dropped on the dropping region on the glass substrate and dried by standing at room temperature for 24 hours. When the film thickness of the coating film after drying was evaluated, the film thickness was 200 μm.
<<近赤外線遮蔽性評価>>
 上記のようにして得た近赤外線カットフィルタにおける波長800nmの透過率を分光光度計U-4100(日立ハイテクノロジーズ社製)を用いて測定した。近赤外線遮蔽性を以下の基準で評価した。結果を以下の表に示す。
A:800nmの透過率≦5%
B:5%<800nmの透過率≦7%
C:7%<800nmの透過率≦10%
D:10%<800nmの透過率
<< Near-infrared shielding evaluation >>
The transmittance at a wavelength of 800 nm in the near-infrared cut filter obtained as described above was measured using a spectrophotometer U-4100 (manufactured by Hitachi High-Technologies Corporation). Near-infrared shielding was evaluated according to the following criteria. The results are shown in the table below.
A: Transmittance at 800 nm ≦ 5%
B: 5% <800 nm transmittance ≦ 7%
C: 7% <800 nm transmittance ≦ 10%
D: 10% <800 nm transmittance
<<耐熱性評価>>
 上記のようにして得た近赤外線カットフィルタを200℃で5分間放置した。耐熱性試験前と耐熱性試験後とのそれぞれにおいて、近赤外線カットフィルタの800nmにおける吸光度を測定し、((試験前における吸光度-試験後における吸光度)/試験前における吸光度)×100(%)で表される800nmの吸光度の変化率を求めた。400nmにおける吸光度も測定し、((試験後における吸光度-試験前における吸光度)/試験前における吸光度)×100(%)で表される400nmの吸光度の変化率を求めた。それぞれの波長における耐熱性を以下の基準で評価した。吸光度の測定には、分光光度計U-4100(日立ハイテクノロジーズ社製)を用いた。
A:吸光度の変化率≦3%
B:3%<吸光度の変化率≦6%
C:6%<吸光度の変化率≦10%
D:10%<吸光度の変化率
<< Heat resistance evaluation >>
The near-infrared cut filter obtained as described above was left at 200 ° C. for 5 minutes. Before and after the heat resistance test, the absorbance at 800 nm of the near-infrared cut filter was measured, and ((absorbance before the test−absorbance after the test) / absorbance before the test) × 100 (%) The change rate of the absorbance at 800 nm was calculated. The absorbance at 400 nm was also measured, and the change rate of the absorbance at 400 nm represented by ((absorbance after test−absorbance before test) / absorbance before test) × 100 (%) was determined. The heat resistance at each wavelength was evaluated according to the following criteria. A spectrophotometer U-4100 (manufactured by Hitachi High-Technologies Corporation) was used for measuring the absorbance.
A: Change rate of absorbance ≦ 3%
B: 3% <change rate of absorbance ≦ 6%
C: 6% <change rate of absorbance ≦ 10%
D: 10% <change rate of absorbance
<<耐湿性評価>>
 上記のようにして得た近赤外線カットフィルタを85℃/相対湿度85%の高温高湿下で1時間放置した。耐湿性試験前と耐湿性試験後とのそれぞれにおいて、近赤外線カットフィルタの波長700~1400nmにおける最大吸光度(Absλmax)と、波長400~700nmにおける最小吸光度(Absλmin)とを、分光光度計U-4100(日立ハイテクノロジーズ社製)を用いて測定し、「Absλmax/Absλmin」で表される吸光度比を求めた。|(試験前における吸光度比-試験後における吸光度比)/試験前における吸光度比×100|(%)で表される吸光度比変化率を以下の基準で評価した。
A:吸光度比変化率≦2%
B:2%<吸光度比変化率≦4%
C:4%<吸光度比変化率≦7%
D:7%<吸光度比変化率
<<吸水率評価>>
 十分に乾燥した銅錯体(ポリマー銅錯体)粉末を25℃、相対湿度95%の条件に5時間放置した(吸水率試験)。吸水率試験の前の質量を基準とし、吸水率試験後における銅錯体粉末の質量増加率を算出し、以下の基準で評価した。
 A1:0≦質量増加率≦3%
 A2:3%<質量増加率≦10%
 B:10%<質量増加率≦25%
 C:25%<質量増加率≦60%
 D:60%<質量増加率
<< Moisture resistance evaluation >>
The near-infrared cut filter obtained as described above was allowed to stand for 1 hour at a high temperature and high humidity of 85 ° C./85% relative humidity. Before and after the moisture resistance test, the maximum absorbance (Absλmax) at a wavelength of 700 to 1400 nm and the minimum absorbance (Absλmin) at a wavelength of 400 to 700 nm of the near-infrared cut filter were measured with a spectrophotometer U-4100. (Abstract of Hitachi High-Technologies) was used to determine the absorbance ratio represented by “Absλmax / Absλmin”. | (Absorbance ratio before the test−absorbance ratio after the test) / absorbance ratio before the test × 100 | (%) was evaluated based on the following criteria.
A: Absorbance ratio change rate ≦ 2%
B: 2% <absorbance ratio change rate ≦ 4%
C: 4% <absorbance ratio change rate ≦ 7%
D: 7% <Change rate of absorbance ratio << Evaluation of water absorption >>
The sufficiently dried copper complex (polymer copper complex) powder was allowed to stand for 5 hours at 25 ° C. and a relative humidity of 95% (water absorption test). Based on the mass before the water absorption test, the mass increase rate of the copper complex powder after the water absorption test was calculated and evaluated according to the following criteria.
A1: 0 ≦ mass increase rate ≦ 3%
A2: 3% <mass increase rate ≦ 10%
B: 10% <mass increase rate ≦ 25%
C: 25% <mass increase rate ≦ 60%
D: 60% <mass increase rate
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 上記表1から明らかなとおり、本発明の近赤外線吸収性組成物は、高い近赤外線遮蔽性を維持しつつ、耐熱性に優れた硬化膜を形成することができた。また、耐湿性にも優れた硬化膜を形成することができた。また、波長450~550nmの範囲での光透過率を85%以上とし、波長800~900nmの範囲での光透過率を20%以下とすることもできる。
 これに対し、比較例1は、耐熱性が劣るものであった。
 実施例1~13の近赤外線吸収性組成物において、組成物の全固形分に対するポリマー銅化合物の含有量を15質量%、20質量%、30質量%または40質量%とした場合でも、それらと同様に優れた近赤外線遮蔽性が得られる。
As is apparent from Table 1 above, the near-infrared absorbing composition of the present invention was able to form a cured film excellent in heat resistance while maintaining high near-infrared shielding properties. Moreover, the cured film excellent also in moisture resistance was able to be formed. Further, the light transmittance in the wavelength range of 450 to 550 nm may be 85% or more, and the light transmittance in the wavelength range of 800 to 900 nm may be 20% or less.
On the other hand, Comparative Example 1 was inferior in heat resistance.
In the near-infrared absorbing compositions of Examples 1 to 13, even when the content of the polymer copper compound with respect to the total solid content of the composition was 15% by mass, 20% by mass, 30% by mass or 40% by mass, Similarly, excellent near-infrared shielding properties can be obtained.
(実施例20)
 実施例1の近赤外線吸収性組成物において、以下に示す低分子銅錯体Aをさらに追加し、固形分基準でポリマー銅化合物と低分子銅錯体Aとの比が7:3となるようにしたこと以外は、実施例1と同様にして実施例20の近赤外線吸収性組成物を得た。
(実施例21~24)
 実施例20の近赤外線吸収性組成物において、低分子銅錯体Aをそれぞれ低分子銅錯体B,C,DまたはEに変えたこと以外は、実施例20と同様にして、実施例21~24の近赤外線吸収性組成物を得た。
(実施例25~28)
 実施例20の近赤外線吸収性組成物において、固形分基準でポリマー銅化合物と低分子銅錯体Aとの比を、それぞれ5:5、6:4、8:2と変えたこと以外は、実施例20と同様にして、実施例25~28の近赤外線吸収性組成物を得た。
 これら、ポリマー銅化合物と低分子銅錯体との混合タイプでは、さらに高い近赤外線遮蔽性を達成できることを確認できた。
(低分子銅錯体)
 低分子銅錯体A:下記(M-1)を配位子として有する銅錯体。合成方法は後述する。
 低分子銅錯体B:下記化合物(B1-21)を配位子とする銅錯体。合成方法は後述する。
 低分子銅錯体C:フタル酸モノブチル銅、東京化成工業株式会社
 低分子銅錯体D:下記化合物(B2-1)を配位子とする銅錯体。合成方法は後述する。
 低分子銅錯体E:下記化合物(B3-18)を配位子とする銅錯体。合成方法は後述する。
Figure JPOXMLDOC01-appb-C000023
(Example 20)
In the near-infrared absorbing composition of Example 1, the low molecular copper complex A shown below was further added so that the ratio of the polymer copper compound to the low molecular copper complex A was 7: 3 on the basis of the solid content. A near-infrared absorbing composition of Example 20 was obtained in the same manner as Example 1 except that.
(Examples 21 to 24)
In the near-infrared absorbing composition of Example 20, Examples 21 to 24 are the same as Example 20 except that the low molecular copper complex A is changed to low molecular copper complex B, C, D or E, respectively. A near infrared ray absorbing composition was obtained.
(Examples 25 to 28)
In the near-infrared absorptive composition of Example 20, except that the ratio of the polymer copper compound and the low-molecular copper complex A was changed to 5: 5, 6: 4, and 8: 2 on the basis of solid content, respectively. In the same manner as in Example 20, the near-infrared absorbing compositions of Examples 25 to 28 were obtained.
It was confirmed that even a mixed type of the polymer copper compound and the low-molecular copper complex can achieve higher near-infrared shielding properties.
(Low molecular copper complex)
Low molecular copper complex A: a copper complex having the following (M-1) as a ligand. The synthesis method will be described later.
Low molecular copper complex B: a copper complex having the following compound (B1-21) as a ligand. The synthesis method will be described later.
Low molecular copper complex C: Monobutyl copper phthalate, Tokyo Chemical Industry Co., Ltd. Low molecular copper complex D: Copper complex having the following compound (B2-1) as a ligand. The synthesis method will be described later.
Low molecular copper complex E: a copper complex having the following compound (B3-18) as a ligand. The synthesis method will be described later.
Figure JPOXMLDOC01-appb-C000023
 <低分子銅錯体Aの合成>
 三ツ口フラスコに、窒素雰囲気下、ピラゾール-3-カルボン酸エチル4.0g、炭酸セシウム11.16g、3-ブロモペンタン5.17g、2,6-ジメチル-4-ヘプタノン60mLを加え、150℃で1時間加熱した。室温に冷却後、濾過により不溶物を除去し、濾液を濃縮して得られた粗生成物をシリカゲルカラムクロマトグラフィー(溶媒:ヘキサン/酢酸エチル)で精製することにより、1-(3-ペンチル)ピラゾール-3-カルボン酸エチルを3.3g得た。
 フラスコに上記生成物を0.87g、エタノール6mLを加え、室温で撹拌しながら水0.1g、tert-ブトキシカリウム0.46gを加えた後、70℃で30分間撹拌した。室温に冷却後、硫酸銅0.52gを水5mLに溶かした溶液を加え、室温で一時間攪拌した。析出した固体を濾別し、減圧下で乾燥することで低分子銅錯体Aを0.7g得た。
<銅錯体Bの合成>
 化合物B1-21(886mg,9.84mmol)をメタノール20mlに溶解した。この溶液を50℃に昇温した後、水酸化銅(449mg、4.60mmol)のメタノール溶液(160ml)を滴下し、50℃にて2時間反応させた。反応終了後、エバポレータにて発生した水および溶剤を留去することで低分子銅錯体B(1.00g)を得た。
<銅錯体Dの合成>
 化合物B2-1(0.2g,1.1mmol)をエタノール5mlに溶解した。この溶液を70℃に昇温した後、酢酸銅(0.2g、1.1mmol)のエタノール溶液(5ml)を滴下し、70℃にて2時間反応させた。反応終了後、エバポレータにて発生した水および溶剤を留去することで低分子銅錯体D(0.6g)を得た。
<銅錯体Eの合成>
 化合物B3-18(スルホフタル酸)53.1質量%水溶液(13.49g,29.1mmol)をメタノール50mLに溶かし、この溶液を50℃に昇温した後、水酸化銅(2.84g,29.1mmol)を加え50℃で2時間反応させた。反応終了後、エバポレータにて溶剤及び発生した水を留去することで低分子銅錯体E(8.57g)を得た。
<Synthesis of low molecular copper complex A>
Under a nitrogen atmosphere, 4.0 g of ethyl pyrazole-3-carboxylate, 11.16 g of cesium carbonate, 5.17 g of 3-bromopentane, and 60 mL of 2,6-dimethyl-4-heptanone were added to a three-necked flask. Heated for hours. After cooling to room temperature, insoluble matters are removed by filtration, and the filtrate is concentrated, and the resulting crude product is purified by silica gel column chromatography (solvent: hexane / ethyl acetate) to give 1- (3-pentyl). 3.3 g of ethyl pyrazole-3-carboxylate was obtained.
To the flask, 0.87 g of the above product and 6 mL of ethanol were added, and 0.1 g of water and 0.46 g of tert-butoxypotassium were added while stirring at room temperature, followed by stirring at 70 ° C. for 30 minutes. After cooling to room temperature, a solution prepared by dissolving 0.52 g of copper sulfate in 5 mL of water was added, and the mixture was stirred at room temperature for 1 hour. The precipitated solid was separated by filtration and dried under reduced pressure to obtain 0.7 g of low-molecular copper complex A.
<Synthesis of Copper Complex B>
Compound B1-21 (886 mg, 9.84 mmol) was dissolved in 20 ml of methanol. After the temperature of this solution was raised to 50 ° C., a methanol solution (160 ml) of copper hydroxide (449 mg, 4.60 mmol) was added dropwise and reacted at 50 ° C. for 2 hours. After completion of the reaction, the low-molecular copper complex B (1.00 g) was obtained by distilling off the water and the solvent generated in the evaporator.
<Synthesis of Copper Complex D>
Compound B2-1 (0.2 g, 1.1 mmol) was dissolved in 5 ml of ethanol. After heating this solution to 70 degreeC, the ethanol solution (5 ml) of copper acetate (0.2g, 1.1mmol) was dripped, and it was made to react at 70 degreeC for 2 hours. After completion of the reaction, the low-molecular copper complex D (0.6 g) was obtained by distilling off the water and the solvent generated in the evaporator.
<Synthesis of copper complex E>
Compound B3-18 (sulfophthalic acid) 53.1 mass% aqueous solution (13.49 g, 29.1 mmol) was dissolved in 50 mL of methanol, and the solution was heated to 50 ° C., and then copper hydroxide (2.84 g, 29.29 g). 1 mmol) was added and reacted at 50 ° C. for 2 hours. After completion of the reaction, a low molecular copper complex E (8.57 g) was obtained by distilling off the solvent and generated water with an evaporator.
10 カメラモジュール、11 固体撮像素子、12 平坦化層、13 近赤外線カットフィルタ、14 撮像レンズ、15 レンズホルダー、16 シリコン基板、17 カラーフィルタ、18 マイクロレンズ、19 紫外・赤外光反射膜、20 透明基材、21 近赤外線吸収層、22 反射防止層 10 camera module, 11 solid-state imaging device, 12 flattening layer, 13 near infrared cut filter, 14 imaging lens, 15 lens holder, 16 silicon substrate, 17 color filter, 18 microlens, 19 ultraviolet / infrared light reflecting film, 20 Transparent substrate, 21 near infrared absorption layer, 22 antireflection layer

Claims (11)

  1.  銅成分と、銅成分に対し非共有電子対で配位する配位原子を含有する重合体との反応で得られる化合物を含む、近赤外線吸収性組成物。 A near-infrared absorptive composition comprising a compound obtained by a reaction between a copper component and a polymer containing a coordinating atom coordinated by a lone pair with respect to the copper component.
  2.  前記配位原子が、酸素原子、窒素原子、硫黄原子およびリン原子から選ばれる1種以上である、請求項1に記載の近赤外線吸収性組成物。 The near-infrared absorbing composition according to claim 1, wherein the coordination atom is at least one selected from an oxygen atom, a nitrogen atom, a sulfur atom and a phosphorus atom.
  3.  前記重合体は、さらに、アニオンで配位する配位部位を有する、請求項1または2に記載の近赤外線吸収性組成物。 The near-infrared absorbing composition according to claim 1 or 2, wherein the polymer further has a coordination site coordinated by an anion.
  4.  前記アニオンが、酸素アニオン、窒素アニオンおよび硫黄アニオンから選ばれる1種以上である、請求項3に記載の近赤外線吸収性組成物。 The near-infrared absorbing composition according to claim 3, wherein the anion is one or more selected from an oxygen anion, a nitrogen anion, and a sulfur anion.
  5.  前記重合体は、下記式(1)で表される基を側鎖に含む、請求項1~4のいずれか1項に記載の近赤外線吸収性組成物;
    *-L1-Y1     ・・・(1)
     一般式(1)において、L1は単結合または連結基を表し、Y1は、非共有電子対で配位する配位原子を1個以上有する基または非共有電子対で配位する配位原子を1個以上とアニオンで配位する配位部位を1個以上有する基を表し、*は、重合体との連結手を表す。
    The near-infrared absorbing composition according to any one of claims 1 to 4, wherein the polymer contains a group represented by the following formula (1) in a side chain;
    * -L 1 -Y 1 (1)
    In the general formula (1), L 1 represents a single bond or a linking group, and Y 1 is a group having one or more coordination atoms coordinated by an unshared electron pair or a coordination coordinated by an unshared electron pair. A group having at least one coordination site that coordinates with one or more atoms and an anion is represented, and * represents a bond with a polymer.
  6.  前記重合体は、下記式(A1-1)で表される構成単位を含む、請求項1~5のいずれか1項に記載の近赤外線吸収性組成物;
    Figure JPOXMLDOC01-appb-C000001
     式(A1-1)中、R1は水素原子または炭化水素基を表し、L1は単結合または連結基を表し、Y1は、非共有電子対で配位する配位原子を1個以上有する基または非共有電子対で配位する配位原子を1個以上とアニオンで配位する配位部位を1個以上有する基を表す。
    The near-infrared absorbing composition according to any one of claims 1 to 5, wherein the polymer includes a structural unit represented by the following formula (A1-1);
    Figure JPOXMLDOC01-appb-C000001
    In formula (A1-1), R 1 represents a hydrogen atom or a hydrocarbon group, L 1 represents a single bond or a linking group, and Y 1 represents one or more coordination atoms coordinated by a lone pair of electrons. Or a group having at least one coordination atom coordinated by an unshared electron pair and at least one coordination site coordinated by an anion.
  7.  前記重合体は、下記式(A1-1-1)~(A1-1-4)から選ばれる少なくとも1種の構成単位を含む、請求項1~6のいずれか1項に記載の近赤外線吸収性組成物;
    Figure JPOXMLDOC01-appb-C000002
     式(A1-1-1)~(A1-1-4)中、R1は水素原子または炭化水素基を表し、L2は単結合または連結基を表し、Y1は、非共有電子対で配位する配位原子を1個以上有する基または非共有電子対で配位する配位原子を1個以上とアニオンで配位する配位部位を1個以上有する基を表す。
    The near-infrared absorption according to any one of claims 1 to 6, wherein the polymer includes at least one structural unit selected from the following formulas (A1-1-1) to (A1-1-4): Sex composition;
    Figure JPOXMLDOC01-appb-C000002
    In formulas (A1-1-1) to (A1-1-4), R 1 represents a hydrogen atom or a hydrocarbon group, L 2 represents a single bond or a linking group, and Y 1 represents a lone pair of electrons. A group having one or more coordination atoms to be coordinated or a group having one or more coordination atoms coordinated by an lone pair and one or more coordination sites coordinated by an anion.
  8.  請求項1~7のいずれか1項に記載の近赤外線吸収性組成物を用いて得られた近赤外線カットフィルタ。 A near-infrared cut filter obtained using the near-infrared absorptive composition according to any one of claims 1 to 7.
  9.  固体撮像素子の受光側において、請求項1~7のいずれか1項に記載の近赤外線吸収性組成物を塗布する工程を含む、近赤外線カットフィルタの製造方法。 A method for producing a near-infrared cut filter comprising a step of applying the near-infrared absorbing composition according to any one of claims 1 to 7 on a light-receiving side of a solid-state imaging device.
  10.  請求項1~7のいずれか1項に記載の近赤外線吸収性組成物を用いて得られた近赤外線カットフィルタを有する固体撮像素子。 A solid-state imaging device having a near-infrared cut filter obtained by using the near-infrared absorptive composition according to any one of claims 1 to 7.
  11.  固体撮像素子と、前記固体撮像素子の受光側に配置された近赤外線カットフィルタとを有し、前記近赤外線カットフィルタが請求項8に記載の近赤外線カットフィルタである、カメラモジュール。 A camera module, comprising: a solid-state image sensor; and a near-infrared cut filter disposed on a light receiving side of the solid-state image sensor, wherein the near-infrared cut filter is the near-infrared cut filter according to claim 8.
PCT/JP2015/068641 2014-06-30 2015-06-29 Near-infrared-absorbent composition, near-infrared cut filter, method for manufacturing near-infrared cut filter, solid-state imaging element, and camera module WO2016002701A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016531356A JP6340078B2 (en) 2014-06-30 2015-06-29 Near-infrared absorbing composition, near-infrared cut filter, method for producing near-infrared cut filter, solid-state imaging device, camera module
KR1020167034410A KR101958696B1 (en) 2014-06-30 2015-06-29 Near-infrared-absorbent composition, near-infrared cut filter, method for manufacturing near-infrared cut filter, solid-state imaging element, and camera module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-134256 2014-06-30
JP2014134256 2014-06-30

Publications (1)

Publication Number Publication Date
WO2016002701A1 true WO2016002701A1 (en) 2016-01-07

Family

ID=55019236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068641 WO2016002701A1 (en) 2014-06-30 2015-06-29 Near-infrared-absorbent composition, near-infrared cut filter, method for manufacturing near-infrared cut filter, solid-state imaging element, and camera module

Country Status (4)

Country Link
JP (1) JP6340078B2 (en)
KR (1) KR101958696B1 (en)
TW (1) TWI667243B (en)
WO (1) WO2016002701A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208258A1 (en) * 2015-06-24 2016-12-29 富士フイルム株式会社 Near-infrared absorbing composition, near-infrared blocking filter, method for producing near-infrared blocking filter, apparatus, method for producing copper-containing polymer, and copper-containing polymer
US11555132B2 (en) 2019-02-01 2023-01-17 Samsung Electronics Co., Ltd. Near-infrared absorbing composition, optical structure, and camera module and electronic device comprising the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102476708B1 (en) 2017-11-01 2022-12-09 삼성전자주식회사 Optical filter, and camera module and ectronic device comprising thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0866971A (en) * 1994-08-30 1996-03-12 Nippon Hikyumen Lens Kk Preparation of metal containing resin and lens using resin as material
JPH1152127A (en) * 1997-08-07 1999-02-26 Kyoritsu Kagaku Sangyo Kk Near infrared ray absorbing material, method for synthesizing same and near infrared ray absorbing resin composition
JPH11315215A (en) * 1998-02-20 1999-11-16 Mitsubishi Rayon Co Ltd Resin composition containing copper compound, resin sheet, and front panel for pdp
JP2000007870A (en) * 1998-06-23 2000-01-11 Kureha Chem Ind Co Ltd Resin composition and its production, optical filter and device equipped with the same, athermanous filter, optical fiber and glass lens
JP2007178915A (en) * 2005-12-28 2007-07-12 Fujifilm Corp Fine metal particle-dispersed material and infrared ray shielding filter
JP2010134457A (en) * 2008-11-06 2010-06-17 Uni-Chemical Co Ltd Infrared ray blocking film and infrared ray blocking laminated film
WO2011135974A1 (en) * 2010-04-26 2011-11-03 一般財団法人川村理化学研究所 Infrared-ray-absorbable thin film containing rutile-type titanium oxide crystals, and process for production thereof
JP2013253224A (en) * 2012-05-08 2013-12-19 Fujifilm Corp Near infrared absorptive liquid composition, near infrared cut filter using the same, method of manufacturing the same, and camera module and method of manufacturing the same
WO2014084288A1 (en) * 2012-11-30 2014-06-05 富士フイルム株式会社 Curable resin composition, and image-sensor-chip production method and image sensor chip using same
WO2015012322A1 (en) * 2013-07-24 2015-01-29 富士フイルム株式会社 Near-infrared-absorbing composition, near-infrared cut filter obtained using same, process for producing said cut filter, camera module and process for producing same, and solid photographing element
WO2015111530A1 (en) * 2014-01-21 2015-07-30 富士フイルム株式会社 Near-infrared absorbing composition, near-infrared blocking filter, method for producing near-infrared blocking filter, camera module and method for manufacturing camera module

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001213918A (en) 2000-02-04 2001-08-07 Nisshinbo Ind Inc Near infrared ray absorbing composition and near infrared ray absorbing filter manufactured using the same
JP2009013200A (en) 2007-06-29 2009-01-22 Toyo Ink Mfg Co Ltd Near-infrared absorbing pressure-sensitive adhesive and near-infrared absorbing pressure-sensitive adhesive sheet
JP5941424B2 (en) * 2012-07-09 2016-06-29 富士フイルム株式会社 Near-infrared absorbing composition, near-infrared cut filter using the same, and method for manufacturing the same, and camera module and method for manufacturing the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0866971A (en) * 1994-08-30 1996-03-12 Nippon Hikyumen Lens Kk Preparation of metal containing resin and lens using resin as material
JPH1152127A (en) * 1997-08-07 1999-02-26 Kyoritsu Kagaku Sangyo Kk Near infrared ray absorbing material, method for synthesizing same and near infrared ray absorbing resin composition
JPH11315215A (en) * 1998-02-20 1999-11-16 Mitsubishi Rayon Co Ltd Resin composition containing copper compound, resin sheet, and front panel for pdp
JP2000007870A (en) * 1998-06-23 2000-01-11 Kureha Chem Ind Co Ltd Resin composition and its production, optical filter and device equipped with the same, athermanous filter, optical fiber and glass lens
JP2007178915A (en) * 2005-12-28 2007-07-12 Fujifilm Corp Fine metal particle-dispersed material and infrared ray shielding filter
JP2010134457A (en) * 2008-11-06 2010-06-17 Uni-Chemical Co Ltd Infrared ray blocking film and infrared ray blocking laminated film
WO2011135974A1 (en) * 2010-04-26 2011-11-03 一般財団法人川村理化学研究所 Infrared-ray-absorbable thin film containing rutile-type titanium oxide crystals, and process for production thereof
JP2013253224A (en) * 2012-05-08 2013-12-19 Fujifilm Corp Near infrared absorptive liquid composition, near infrared cut filter using the same, method of manufacturing the same, and camera module and method of manufacturing the same
WO2014084288A1 (en) * 2012-11-30 2014-06-05 富士フイルム株式会社 Curable resin composition, and image-sensor-chip production method and image sensor chip using same
WO2015012322A1 (en) * 2013-07-24 2015-01-29 富士フイルム株式会社 Near-infrared-absorbing composition, near-infrared cut filter obtained using same, process for producing said cut filter, camera module and process for producing same, and solid photographing element
WO2015111530A1 (en) * 2014-01-21 2015-07-30 富士フイルム株式会社 Near-infrared absorbing composition, near-infrared blocking filter, method for producing near-infrared blocking filter, camera module and method for manufacturing camera module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208258A1 (en) * 2015-06-24 2016-12-29 富士フイルム株式会社 Near-infrared absorbing composition, near-infrared blocking filter, method for producing near-infrared blocking filter, apparatus, method for producing copper-containing polymer, and copper-containing polymer
US11555132B2 (en) 2019-02-01 2023-01-17 Samsung Electronics Co., Ltd. Near-infrared absorbing composition, optical structure, and camera module and electronic device comprising the same

Also Published As

Publication number Publication date
JP6340078B2 (en) 2018-06-06
TW201600523A (en) 2016-01-01
KR20170007365A (en) 2017-01-18
JPWO2016002701A1 (en) 2017-06-01
TWI667243B (en) 2019-08-01
KR101958696B1 (en) 2019-03-15

Similar Documents

Publication Publication Date Title
JP6442539B2 (en) Near-infrared absorbing composition, near-infrared cut filter using the same, and method for manufacturing the same, and camera module and method for manufacturing the same
JP6243027B2 (en) Near-infrared absorbing composition, near-infrared cut filter, method for producing near-infrared cut filter, solid-state imaging device, camera module
JP6242782B2 (en) Near-infrared absorbing composition, near-infrared cut filter and manufacturing method thereof, and camera module and manufacturing method thereof
WO2015012322A1 (en) Near-infrared-absorbing composition, near-infrared cut filter obtained using same, process for producing said cut filter, camera module and process for producing same, and solid photographing element
WO2015111531A1 (en) Near-infrared absorbing composition, near-infrared cut-off filter and method for manufacturing same, and camera module and method for manufacturing same
JPWO2017104735A1 (en) Near-infrared absorbing composition, near-infrared cut filter, method for producing near-infrared cut filter, solid-state imaging device, camera module, and image display device
WO2016068037A1 (en) Near-infrared absorbing composition, near-infrared blocking filter, solid-state imaging element and camera module
TW201508346A (en) Method for manufacturing near infrared cut filter, and solid-state image sensing device
JP6340078B2 (en) Near-infrared absorbing composition, near-infrared cut filter, method for producing near-infrared cut filter, solid-state imaging device, camera module
JP6611278B2 (en) Near-infrared absorbing composition, near-infrared cut filter, method for producing near-infrared cut filter, solid-state imaging device, camera module, and image display device
JP6180379B2 (en) Near-infrared absorbing composition, near-infrared cut filter, method for producing the same, and solid-state imaging device
JP6563014B2 (en) Near-infrared absorbing composition, near-infrared cut filter, method for producing near-infrared cut filter, apparatus, method for producing copper-containing polymer, and copper-containing polymer
TWI660036B (en) Near-infrared ray cut filter, near-infrared absorption composition, photo-sensitive resin composition, cured film, compound, camera module, and method for manufacturing camera module
WO2014189099A1 (en) Near-infrared-absorbing composition, near-infrared cut-off filter and production method using same, and camera module
WO2015016142A1 (en) Method for manufacturing film containing copper compound, method for suppressing thickening of film-forming composition, kit for manufacturing film-forming composition, and solid-state image sensor
JP6277056B2 (en) Spectral adjustment method of near-infrared absorbing substance, near-infrared absorbing composition and manufacturing method thereof, near-infrared cut filter and manufacturing method thereof, camera module, and copper compound spectral adjusting agent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15814874

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167034410

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016531356

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15814874

Country of ref document: EP

Kind code of ref document: A1