WO2016002654A1 - Rubber composition, method for manufacturing same, and use of rubber composition - Google Patents

Rubber composition, method for manufacturing same, and use of rubber composition Download PDF

Info

Publication number
WO2016002654A1
WO2016002654A1 PCT/JP2015/068518 JP2015068518W WO2016002654A1 WO 2016002654 A1 WO2016002654 A1 WO 2016002654A1 JP 2015068518 W JP2015068518 W JP 2015068518W WO 2016002654 A1 WO2016002654 A1 WO 2016002654A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
rubber composition
weight
silane coupling
silica
Prior art date
Application number
PCT/JP2015/068518
Other languages
French (fr)
Japanese (ja)
Inventor
中村 正吉
智之 市野
涼太 蕗谷
Original Assignee
株式会社 大阪ソーダ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 大阪ソーダ filed Critical 株式会社 大阪ソーダ
Priority to JP2016531332A priority Critical patent/JPWO2016002654A1/en
Publication of WO2016002654A1 publication Critical patent/WO2016002654A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/548Silicon-containing compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers

Definitions

  • the present invention relates to a rubber composition, a method for producing the same, and use of the rubber composition.
  • a so-called integral blend method is employed in which silica and a silane coupling agent are blended in rubber, and the silica and the silane coupling agent are reacted during the rubber kneading operation.
  • alcohol is produced when the silane coupling agent reacts with silica. Since this alcohol is released into the atmosphere, there is a problem that the working environment is deteriorated and VOC (Volatile Organic Compound) increases.
  • VOC Volatile Organic Compound
  • Patent Document 1 a technique for converting an alkoxy group of a silane coupling agent into a long chain alcohol (see Patent Document 1), (ii) a technique for producing chemically modified silica (see Patent Document 2), and (iii) A technique of applying a treatment liquid composed of a sulfur-containing silane coupling agent, water, alcohol, and a basic substance to silica and performing surface treatment on the silica (see Patent Document 3) has been proposed.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2005-35889 (published on February 10, 2005)” Japanese Patent Gazette “Special Table 2003-53215 (published on October 21, 2003)” Japanese Patent Publication “Japanese Patent Laid-Open No. 2011-63690 (published March 31, 2011)”
  • the conventional technology as described above has a problem that it is impossible to manufacture a high-performance rubber product while suppressing deterioration of the working environment and VOC and with high productivity.
  • Patent Document 1 it is possible to achieve suppression of VOC by changing the generated alcohol to alcohol having a high boiling point, but improvement of productivity cannot be expected.
  • the silane coupling agent does not penetrate into the inside of the silica particle aggregate, and only the surface of the silica particle aggregate is treated with the silane coupling agent. There is a problem that it is difficult to uniformly treat the whole with a silane coupling agent.
  • the present invention has been made in view of the above-mentioned problems, and an object of the present invention is to produce a rubber composition for producing a high-performance rubber product with good productivity while suppressing deterioration of working environment and VOC. It is to provide a product, a method for producing the product, and a utilization product of the rubber composition.
  • the present inventors have found that a rubber composition containing treated silica and rubber obtained by treating wet silica with a sulfur-containing silane coupling agent in the presence of a polyoxyethylene unsaturated fatty acid ester.
  • a high-performance rubber product can be produced while suppressing deterioration of the working environment and VOC during the rubber kneading operation, and with good productivity, and the present invention has been completed.
  • the rubber composition according to the present invention includes a treated silica obtained by treating wet silica with a sulfur-containing silane coupling agent in the presence of a polyoxyethylene unsaturated fatty acid ester, and a rubber in order to solve the above problems. , Containing.
  • the rubber is preferably a diene rubber.
  • the diene rubber is composed of styrene-butadiene rubber (SBR), butadiene rubber (BR), natural rubber (NR), butyl rubber (IIR), and ethylene-propylene rubber (EPDM). It is preferably at least one selected from the group.
  • SBR styrene-butadiene rubber
  • BR butadiene rubber
  • NR natural rubber
  • IIR butyl rubber
  • EPDM ethylene-propylene rubber
  • the sulfur-containing silane coupling agent includes a sulfur-containing silane coupling agent represented by the following formula [I] and a sulfur-containing silane coupling agent represented by the following formula [II]. It is preferably at least one selected from the group consisting of
  • R 1 is independently a monovalent hydrocarbon group having 1 to 18 carbon atoms
  • R 2 is a divalent hydrocarbon group having 1 to 9 carbon atoms
  • x is 2 to 6
  • Y is 0, It is an integer of 1 or 2.
  • the treated silica contains 1 to 20 parts by weight of the sulfur-containing silane coupling agent with respect to 100 parts by weight of the wet silica, and the 100% by weight of the wet silica. It preferably contains 0.001 to 5 parts by weight of a polyoxyethylene unsaturated fatty acid ester.
  • the polyoxyethylene unsaturated fatty acid ester preferably has an HLB value of 5 to 10.
  • the wet silica preferably has a BET specific surface area of 50 to 300 m 2 / g.
  • the treated silica preferably further contains at least one selected from the group consisting of a basic substance and an acidic substance.
  • the basic substance comprises a monoalkylamine, a dialkylamine, and a trialkylamine having an alkyl group having 1 to 24 carbon atoms to which a hydroxyl group may be bonded. It is preferably at least one selected from the group.
  • the acidic substance is preferably at least one selected from the group consisting of (poly) carboxylic acids and hydroxy acids having 1 to 18 carbon atoms.
  • the extracted amount of the silane coupling agent when the treated silica is subjected to solvent extraction is preferably 2% by weight or less with respect to the treated silica.
  • the rubber composition according to the present invention preferably contains 10 to 120 parts by weight of treated silica with respect to 100 parts by weight of rubber.
  • the rubber composition according to the present invention preferably further contains 1 to 10 parts by weight of the second silane coupling agent with respect to 100 parts by weight of rubber.
  • the second silane coupling agent includes a sulfur-containing silane coupling agent represented by the following formula [III] and a sulfur-containing silane coupling agent represented by the following formula [IV]. It is preferably at least one selected from the group consisting of
  • R 1 is independently a monovalent hydrocarbon group having 1 to 18 carbon atoms
  • R 2 is a divalent hydrocarbon group having 1 to 9 carbon atoms
  • x is 2 to 6
  • Y is 0, It is an integer of 1 or 2.
  • R 3 is independently a monovalent hydrocarbon group having 1 to 18 carbon atoms
  • R 4 is a divalent hydrocarbon group having 1 to 9 carbon atoms
  • R 5 is hydrogen or —CO—R 6
  • R 6 is a monovalent hydrocarbon group having 1 to 18 carbon atoms
  • Y is an integer of 0, 1, or 2.
  • the rubber composition according to the present invention preferably further contains 10 to 80 parts by weight of a filler with respect to 100 parts by weight of rubber.
  • the filler is at least one selected from the group consisting of wet silica, dry silica, and aluminum hydroxide having a BET specific surface area of 20 to 300 m 2 / g. preferable.
  • the rubber composition according to the present invention preferably further contains a vulcanizing agent.
  • the method for producing a rubber composition according to the present invention is characterized in that the treated silica and the second silane coupling agent are kneaded with the rubber in a step before kneading the vulcanizing agent.
  • the method for producing a rubber composition according to the present invention is characterized in that the treated silica, the second silane coupling agent, and the filler are kneaded into the rubber in a step before kneading the vulcanizing agent. It is said.
  • the cross-linked product according to the present invention is characterized by cross-linking the rubber composition.
  • the tire according to the present invention is characterized in that the rubber composition is crosslinked.
  • the rubber composition according to the present invention is a rubber composition containing treated silica and rubber in order to solve the above-mentioned problems, and the treated silica is sulfur in 100 parts by weight of wet silica. It contains 1 to 20 parts by weight of the silane coupling agent and 0.001 to 5 parts by weight of polyoxyethylene unsaturated fatty acid ester with respect to 100 parts by weight of wet silica.
  • the rubber composition according to the present invention only needs to contain a treated silica obtained by treating wet silica with a sulfur-containing silane coupling agent in the presence of a polyoxyethylene unsaturated fatty acid ester, and rubber, Other specific configurations and uses are not particularly limited.
  • the rubber composition according to the present invention only needs to contain a treated silica obtained by treating wet silica with a sulfur-containing silane coupling agent in the presence of a polyoxyethylene unsaturated fatty acid ester, and rubber,
  • the amount of the treated silica contained in the rubber composition is not particularly limited, but it is preferable to contain 10 to 120 parts by weight of the treated silica with respect to 100 parts by weight of the rubber, and 20 to 110 parts.
  • the content is more preferably 30 to 100 parts by weight, still more preferably 40 to 90 parts by weight, and most preferably 50 to 80 parts by weight.
  • the rubber product obtained from such a rubber composition has high reinforcing properties, strength and wear resistance. It is possible to produce a rubber product excellent in Further, when the amount of the treated silica contained in the rubber composition according to the present invention is 120 parts by weight or less with respect to 100 parts by weight of the rubber, a rubber product excellent in processability is obtained from the rubber composition. be able to.
  • the treated silica used in the present invention may be one obtained by treating wet silica with a sulfur-containing silane coupling agent in the presence of a polyoxyethylene unsaturated fatty acid ester, and other specific configurations are particularly limited. Not.
  • the treated silica used in the present invention is obtained by treating wet silica with a sulfur-containing silane coupling agent in the presence of a polyoxyethylene unsaturated fatty acid ester, the sulfur-containing silane coupling is uniformly applied to the silica surface.
  • An agent can be bound. That is, wet silica and sulfur-containing silane coupling agent can be reacted efficiently by reacting wet silica with sulfur-containing silane coupling agent in the presence of polyoxyethylene unsaturated fatty acid ester. Thereby, in the treated silica obtained, a sulfur-containing silane coupling agent can be uniformly bonded to the silica surface.
  • the wet silica and the sulfur-containing silane coupling agent react with each other.
  • the sulfur-containing silane coupling agent enters not only the surface of the aggregate but also the interior of the aggregate, and the silica and the sulfur-containing silane coupling agent are combined. That is, the polyoxyethylene unsaturated fatty acid ester functions as an emulsifier for more uniformly dispersing the wet silica and the sulfur-containing silane coupling agent.
  • the treated silica used in the present invention may be any silica formed by treating wet silica with a sulfur-containing silane coupling agent in the presence of a polyoxyethylene unsaturated fatty acid ester.
  • the amount of the fatty acid ester is not particularly limited, but is preferably 0.001 to 5 parts by weight, for example, 0.001 to 4 parts by weight with respect to 100 parts by weight of wet silica. More preferably, it is 0.001 to 3 parts by weight, further preferably 0.001 to 2 parts by weight, further preferably 0.001 to 1 part by weight, and 0.002 to 2 parts by weight. More preferably, it is 5 parts by weight, particularly preferably 0.005 to 2 parts by weight, and most preferably 0.01 to 1.8 parts by weight.
  • the amount of polyoxyethylene unsaturated fatty acid ester is 0.001 part by weight or more with respect to 100 parts by weight of wet silica, wet silica and sulfur-containing silane coupling agent can be more uniformly dispersed. Moreover, if the amount of polyoxyethylene unsaturated fatty acid ester is 5 parts by weight or less with respect to 100 parts by weight of wet silica, the amount of polyoxyethylene unsaturated fatty acid ester remaining in the obtained treated silica is reduced. be able to. As a result, the various effects of the remaining polyoxyethylene unsaturated fatty acid ester on the treated silica, rubber composition, or product obtained from the rubber composition (eg, rubber product) can be minimized. Furthermore, the amount of polyoxyethylene unsaturated fatty acid ester used can be reduced, and high-performance treated silica can be produced at low cost.
  • the treated silica used in the present invention may be any silica obtained by treating wet silica with a sulfur-containing silane coupling agent in the presence of a polyoxyethylene unsaturated fatty acid ester, and the sulfur-containing silane used in the treatment.
  • the amount of the coupling agent is not particularly limited, but is preferably 1 to 20 parts by weight, more preferably 1 to 18 parts by weight with respect to 100 parts by weight of wet silica.
  • the amount is more preferably 18 parts by weight, more preferably 3 to 15 parts by weight, and particularly preferably 4 to 15 parts by weight.
  • the amount of the sulfur-containing silane coupling agent is 1 part by weight or more with respect to 100 parts by weight of the wet silica, many sulfur-containing silane coupling agents are efficiently bonded to the wet silica per unit weight. be able to. Further, if the amount of the sulfur-containing silane coupling agent is 20 parts by weight or less with respect to 100 parts by weight of wet silica, high-performance treated silica can be realized, and when the treated silica and rubber are mixed, Scorch and viscoelastic properties can be improved.
  • the treated silica used in the present invention is a sulfur-containing silane coupling agent 1 per 100 parts by weight of wet silica in the presence of 0.001 to 5 parts by weight of polyoxyethylene unsaturated fatty acid ester with respect to 100 parts by weight of wet silica. More preferably, it is processed at ⁇ 20 parts by weight.
  • the treated silica used in the present invention is a treated silica containing wet silica, polyoxyethylene unsaturated fatty acid ester and sulfur-containing silane coupling agent, and sulfur-containing silane coupling with respect to 100 parts by weight of wet silica. It may be a treated silica containing 1 to 20 parts by weight of an agent and 0.001 to 5 parts by weight of a polyoxyethylene unsaturated fatty acid ester with respect to 100 parts by weight of wet silica.
  • the treated silica used in the present invention is a treated silica formed by wet silica, polyoxyethylene unsaturated fatty acid ester, and a sulfur-containing silane coupling agent, with respect to 100 parts by weight of the wet silica, In other words, 1 to 20 parts by weight of the sulfur-containing silane coupling agent is bonded to the treated silica containing 0.001 to 5 parts by weight of the polyoxyethylene unsaturated fatty acid ester with respect to 100 parts by weight of the wet silica. .
  • the treated silica may contain 1 to 18 parts by weight or 2 to 18 parts by weight of a sulfur-containing silane coupling agent with respect to 100 parts by weight of wet silica. It may be contained in an amount of ⁇ 15 parts by weight, or may be contained in an amount of 4-15 parts by weight.
  • the treated silica may contain 0.001 to 4 parts by weight, or 0.001 to 3 parts by weight of polyoxyethylene unsaturated fatty acid ester with respect to 100 parts by weight of wet silica. It may be 0.001 to 2 parts by weight, 0.001 to 1 part by weight, or 0.002 to 1 part by weight. It may be contained in an amount of 0.005 to 0.8 parts by weight, or 0.01 to 0.8 parts by weight.
  • the treated silica when the treated silica is subjected to solvent extraction, unreacted sulfur-containing silane coupling agent is extracted from the treated silica.
  • the reaction efficiency between the wet silica and the sulfur-containing silane coupling agent can be known from the amount of the extracted sulfur-containing silane coupling agent. That is, it can be determined that the smaller the amount of the extracted sulfur-containing silane coupling agent, the higher the reaction efficiency between the wet silica and the sulfur-containing silane coupling agent, and it can be said that this is a preferred treated silica.
  • the extraction amount of the sulfur-containing silane coupling agent when the treated silica is subjected to solvent extraction is preferably 2% by weight or less with respect to the treated silica, and 1% by weight or less with respect to the treated silica. It is more preferable that Furthermore, 0.9% by weight or less with respect to the treated silica, 0.8% by weight or less with respect to the treated silica, 0.7% by weight or less with respect to the treated silica, and 0.6% by weight or less with respect to the treated silica.
  • a solvent that can dissolve the sulfur-containing silane coupling agent and does not react with the sulfur-containing silane coupling agent can be used.
  • solvents include hydrocarbons such as hexane and heptane, ketones such as acetone and methyl ethyl ketone, esters such as ethyl acetate, and chloroform, but the present invention is not limited thereto. is not.
  • the solvent extraction test is performed on the treated silica the next day after the production of the treated silica (about 16 hours after the production of the treated silica).
  • methyl ethyl ketone containing the treated silica is filtered under reduced pressure to obtain a filtrate from which the treated silica has been removed. Further, the filtration residue containing the treated silica is rinsed 5 times with 5 mL of methyl ethyl ketone, and the methyl ethyl ketone used for the rinse is recovered.
  • the mixture was concentrated under reduced pressure at 70 ° C. under reduced pressure of 20 mmHg. And the weight of the extract (in other words, unreacted sulfur-containing silane coupling agent) collected after concentration under reduced pressure is measured.
  • the extraction amount is determined as a ratio of the weight of the extract to 10.0 g of the treated silica.
  • wet silica that can be used for the present treated silica
  • known wet silica can be suitably used, and its specific configuration and the like are not particularly limited.
  • wet silica produced by a wet method can be suitably used.
  • wet silica produced by the wet method has many active hydroxyl groups (silanol) on the surface and can react with many silane coupling agents and is low in cost. It has the feature point of being. Therefore, if wet silica is used as a component of this treated silica, compared with the case of using dry silica, the effect of modification by the silane coupling agent is higher and the cost of the product can be reduced because it is inexpensive. There is an advantage of being.
  • the BET specific surface area of the wet silica is not particularly limited, but is preferably 50 to 300 m 2 / g, more preferably 80 to 250 m 2 / g, and 80 to 200 m 2 / g. More preferably, it is more preferably 100 to 220 m 2 / g, particularly preferably 100 to 180 m 2 / g, and most preferably 120 to 165 m 2 / g.
  • the BET specific surface area is 50 m 2 / g or more, when the treated silica and rubber are mixed, the rubber has excellent reinforcing properties and the rubber has improved wear resistance.
  • the BET specific surface area is 300 m 2 / g or less, an increase in the viscosity of the rubber when the treated silica and the rubber are mixed can be suppressed, and the treated silica and the rubber can be more uniformly kneaded.
  • the BET specific surface area can be measured using a Tristar II 3020 manufactured by Shimadzu Corporation according to the protocol attached to the apparatus.
  • wet silica is not particularly limited, but is preferably, for example, a wet silica slurry.
  • “wet silica slurry” means a state in which wet silica is dispersed in a solvent.
  • the present treated silica is obtained by dispersing wet silica and a sulfur-containing silane coupling agent in a state in which wet silica, polyoxyethylene unsaturated fatty acid ester and sulfur-containing silane coupling agent are dispersed in a solvent described later. It may be reacted.
  • the wet silica and the sulfur-containing silane coupling agent can be reacted in a more uniformly dispersed state. Moreover, if it is the said structure, in the process which manufactures a process silica, high temperature heat processing will be carried out to the dispersion liquid which disperse
  • the components in the dispersion for example, wet silica, polyoxyethylene unsaturated fatty acid ester, sulfur-containing silane coupling agent, etc.
  • the produced treated silica can be prevented from thermal decomposition.
  • the solvent for dispersing the wet silica is not particularly limited, and examples thereof include water, ketones such as acetone, alcohols such as ethanol, and ethers such as tetrahydrofuran (THF). Of these solvents, water is particularly preferred. If water is used as the solvent, wet silica and a sulfur-containing silane coupling agent can be more easily and uniformly dispersed in the solvent by using a polyoxyethylene unsaturated fatty acid ester in combination. This is also preferable because the reaction between silica and the silane coupling agent can be promoted.
  • the wet silica slurry may be a semi-finished wet silica slurry obtained when producing wet silica, or after producing the product wet silica, the wet silica is dispersed in a solvent. The resulting wet silica slurry may be used.
  • the concentration of the solid content (wet silica) in the wet silica slurry is not particularly limited, but is preferably 5 to 50% by weight, more preferably 5 to 40% by weight, based on the wet silica slurry. It is more preferably 5 to 35% by weight, further preferably 8 to 30% by weight, and particularly preferably 10 to 17% by weight. If the concentration of the solid content (wet silica) in the wet silica slurry is within the above range, the wet silica and the sulfur-containing silane coupling agent can be more uniformly dispersed in the production process of the treated silica.
  • the polyoxyethylene unsaturated fatty acid ester that can be used in the treated silica can be a known or commercially available product, and is not particularly limited.
  • a product obtained by addition polymerization of an unsaturated fatty acid with ethylene oxide according to a known method can be used.
  • the polyoxyethylene unsaturated fatty acid ester is preferably obtained by addition polymerization of ethylene oxide to unsaturated fatty acid having 12 to 26 carbon atoms, and addition polymerization of ethylene oxide to unsaturated fatty acid having 14 to 24 carbon atoms. More preferably, it is obtained by addition polymerization of ethylene oxide to an unsaturated fatty acid having 16 to 20 carbon atoms, and ethylene oxide is added to an unsaturated fatty acid having 18 carbon atoms. It is particularly preferred that it is obtained by addition polymerization. If it is the said structure, wet silica and a sulfur containing silane coupling agent can be made to react more efficiently.
  • the number of unsaturated bonds contained in the unsaturated fatty acid is not particularly limited, and may be one, two, three, or four. The number may be 5 or more.
  • the type of unsaturated bond contained in the unsaturated fatty acid is not particularly limited, and may be a double bond or a triple bond. From the viewpoint of more efficiently reacting the wet silica and the sulfur-containing silane coupling agent, and from the viewpoint of producing the treated silica at a low cost, it can be said that a double bond is more preferable.
  • the polyoxyethylene unsaturated fatty acid ester is obtained by addition polymerization of ethylene oxide to palmitoleic acid, oleic acid, vaccenic acid, linoleic acid, linolenic acid, eleostearic acid, arachidonic acid, or nervonic acid. May be obtained.
  • polyoxyethylene unsaturated fatty acid ester may be obtained by addition polymerization of ethylene oxide to a mixture containing a plurality of types of fatty acids as described above.
  • the HLB (hydrophile lipophile balance) value of the polyoxyethylene unsaturated fatty acid ester is not particularly limited, but is preferably 5 to 10, more preferably 6 to 10, and further preferably 6 to 9. It is preferably 7-9.
  • the HLB value is an HLB value calculated based on the Griffin equation.
  • the specific structure of the sulfur-containing silane coupling agent that can be used for the treated silica is not particularly limited, and a known sulfur-containing silane coupling agent can be used.
  • a sulfur-containing silane coupling agent represented by the following formula [I]
  • a sulfur-containing silane coupling agent represented by the following formula [II] That means;
  • R 1 is independently a monovalent hydrocarbon group having 1 to 18 carbon atoms
  • R 2 is a divalent hydrocarbon group having 1 to 9 carbon atoms
  • x is 2 to 6
  • Y is 0, It is an integer of 1 or 2.
  • R 3 is independently a monovalent hydrocarbon group having 1 to 18 carbon atoms
  • R 4 is a divalent hydrocarbon group having 1 to 9 carbon atoms
  • R 5 is hydrogen or —CO—R 6
  • R 6 is a monovalent hydrocarbon group having 1 to 18 carbon atoms
  • Y is an integer of 0, 1, or 2.
  • R 1 and R 3 preferably have 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms, and particularly preferably 1 to 4 carbon atoms. If it is the said structure, wet silica and a sulfur containing silane coupling agent can be made to react more efficiently.
  • R 1 and R 3 may be a saturated hydrocarbon group or an unsaturated hydrocarbon group.
  • R 1 and R 3 may be linear, branched or cyclic.
  • X is more preferably from 2 to 6, and particularly preferably from 2 to 4. The reason is that the structure can suppress the scorch property of the rubber while ensuring the reactivity with the rubber.
  • Y is particularly preferably 0 or 1. The reason is that with this configuration, since there are a plurality of reaction points, it can be reacted with more silanols.
  • R 2 and R 4 preferably have 2 to 9 carbon atoms, and particularly preferably 3 to 8 carbon atoms. The reason is that if it is the said structure, workability and rubber physical property can be made compatible.
  • R 2 and R 4 may be a saturated hydrocarbon group or an unsaturated hydrocarbon group.
  • R 2 and R 4 may be linear, branched or cyclic, but more preferably have a structure containing a linear or aromatic ring.
  • R 6 has more preferably 1 to 15 carbon atoms, and particularly preferably 2 to 12 carbon atoms. The reason is that if it is the said structure, workability and rubber physical property can be made compatible.
  • R 6 may be a saturated hydrocarbon group or an unsaturated hydrocarbon group.
  • R 6 may be linear, branched or cyclic.
  • sulfur-containing silane coupling agents include bis (triethoxysilylpropyl) disulfide, bis (triethoxysilylpropyl) tetrasulfide, bis (triethoxysilylpropyl) polysulfide, bis (trimethoxysilylpropyl) disulfide Bis (trimethoxysilylpropyl) tetrasulfide, bis (diethoxymethylsilylpropyl) disulfide, bis (diethoxymethylsilylpropyl) tetrasulfide, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3- Examples include mercaptopropylmethyldimethoxysilane, 3-mercaptopropylmethyldiethoxysilane, and 3-octanoylthio-1-propyltriethoxysilane. Akira is not intended to be limited to these.
  • the treated silica may contain other components in addition to the wet silica, polyoxyethylene unsaturated fatty acid ester and sulfur-containing silane coupling agent described above.
  • said other component is contained in this process silica means that it is contained in this process silica obtained by adding at the process of manufacturing this process silica.
  • the other component may be added at any point in the process of producing the treated silica, but the treated silica is used in the presence of the polyoxyethylene unsaturated fatty acid ester and the other components. It is more preferable that the wet silica be processed with a sulfur-containing silane coupling agent. Thereby, the function of the other component to add is exhibited suitably.
  • the present treated silica may contain, as another component, for example, at least one selected from the group consisting of basic substances and acidic substances.
  • the specific structure of the basic substance is not particularly limited, but from the group consisting of monoalkylamine, dialkylamine and trialkylamine having an alkyl group having 1 to 24 carbon atoms to which a hydroxyl group may be bonded. There may be at least one selected.
  • bonded with the alkyl group is not specifically limited, One may be sufficient and plural may be sufficient.
  • the specific structure of the basic substance has an alkyl group having 2 to 24 carbon atoms to which a hydroxyl group may be bonded.
  • it is at least one selected from the group consisting of monoalkylamines, dialkylamines and trialkylamines, and a dialkylamine having an alkyl group having 4 to 24 carbon atoms to which a hydroxyl group may be bonded.
  • at least one selected from the group consisting of trialkylamines is particularly preferred.
  • a hydroxyl group is bonded to the alkyl group (in other words, the basic substance is more preferably an amine having a hydroxyl group).
  • Examples of such basic substances are methylamine, ethylamine, butylamine, octylamine, dimethylamine, diethylamine, dibutylamine, dioctylamine, trimethylamine, triethylamine, tributylamine, trioctylamine, ethanolamine, diethanolamine, triethanol.
  • Examples include amine, methylethanolamine, ethylethanolamine, butylethanolamine, dimethylethanolamine, diethylethanolamine, dibutylethanolamine, methyldiethanolamine, ethyldiethanolamine, butyldiethanolamine, and aminoethylethanolamine. It is not limited to these.
  • the specific configuration of the acidic substance is not particularly limited, and can include at least one selected from the group consisting of (poly) carboxylic acids and hydroxy acids having 1 to 18 carbon atoms.
  • the specific structure of the acidic substance is at least selected from the group consisting of (poly) carboxylic acids and hydroxy acids having 1 to 12 carbon atoms. It is preferably one, more preferably at least one selected from the group consisting of (poly) carboxylic acids and hydroxy acids having 2 to 12 carbon atoms, and having 3 to 8 carbon atoms ( Particularly preferred is at least one selected from the group consisting of poly) carboxylic acids and hydroxy acids.
  • the acidic substance may contain a double bond between carbons in the molecule. It is preferable that the acidic substance contains a double bond in the molecule because it may suppress bloom, bleed and the like by participating in the vulcanization reaction.
  • Such acidic substances include acetic acid, butyric acid, myristic acid, stearic acid, malic acid, citric acid, succinic acid, tartaric acid, lactic acid, fumaric acid and maleic acid. It is not limited to.
  • the amount of each of the basic substance and the acidic substance contained in the treated silica is not particularly limited, but is preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of wet silica, and 0.1 to 3
  • the amount is more preferably part by weight, more preferably 0.3 to 2 parts by weight, and particularly preferably 0.5 to 2 parts by weight. If it is the said structure, the effect derived from the basic substance mentioned above and the effect derived from the acidic substance mentioned above can be made higher.
  • the present treated silica may further contain other components in addition to the components described above as long as the effects of the present invention are not impaired.
  • this treated silica is a filler such as carbon black and calcium carbonate, processing oil, wax, anti-aging agent, anti-scorching agent, tackifier, stearic acid, polyoxyethylene saturated fatty acid ester, zinc white, processing aid. Further, it may contain a vulcanization accelerator and a vulcanizing agent.
  • the amount of the other component contained in the present treated silica is not particularly limited, but is preferably 1 to 30 parts by weight, and preferably 1 to 15 parts by weight with respect to 100 parts by weight of wet silica. More preferred.
  • the manufacturing method of the processing silica used for this invention is a method for manufacturing the processing silica mentioned above using the component mentioned above.
  • the process for producing the treated silica may include a drying step in which wet silica and a sulfur-containing silane coupling agent are reacted in the presence of a polyoxyethylene unsaturated fatty acid ester, and further optionally a mixing step and a heating step. At least one step selected from the group consisting of: Below, each process is demonstrated.
  • a composition containing wet silica (wet silica slurry), polyoxyethylene unsaturated fatty acid ester, sulfur-containing silane coupling agent, and, if necessary, the above other components is reacted at a high temperature for a predetermined time.
  • wet silica and the sulfur-containing silane coupling agent react with each other, and the sulfur-containing silane coupling agent binds uniformly and in large amounts not only on the surface of the silica particle aggregate but also inside. . Therefore, the drying process may be considered as a reaction process.
  • drying apparatuses used in the drying process are not particularly limited, and examples include a shelf dryer, a drum dryer, a rotary kiln, a vacuum heating dryer, and a spray dryer (spray drying method).
  • a spray dryer spray drying method
  • the reason is that the silica surface can be coated with a silane coupling agent while suppressing aggregation of silica.
  • the spraying method is not particularly limited, and may be a nozzle method or a centrifugal spraying method.
  • the drying temperature (for example, the temperature of hot air for drying) is not particularly limited, but is preferably 60 ° C. to 1000 ° C., and more preferably 100 ° C. to 800 ° C.
  • the drying temperature may be 200 ° C to 900 ° C.
  • the temperature of the treated silica immediately after drying can be adjusted to 80 to 200 ° C. If it is the drying temperature mentioned above, while wet silica and a sulfur containing silane coupling agent can fully be made to react, the obtained process silica can be fully dried. Moreover, it can prevent that the component used for manufacture of a process silica and a process silica thermally decompose.
  • the drying time is not particularly limited, but is preferably 1 second to 24 hours, and more preferably 1 second to 8 hours.
  • the method for producing the treated silica may include a mixing step in which components used for producing the treated silica are mixed in advance before being subjected to the drying step.
  • a mixing process if it is the method by which the component used for manufacture of process silica is fully disperse
  • the mixing temperature condition is not particularly limited, but is preferably 0 to 120 ° C, more preferably 10 ° C to 120 ° C, more preferably 20 ° C to 105 ° C, and more preferably 20 ° C to 95 ° C. It is particularly preferred that the temperature is If it is the said mixing temperature, it can prevent that the component used for manufacture of process silica decomposes
  • the mixing time is preferably 5 minutes to 24 hours, more preferably 10 minutes to 24 hours, and particularly preferably 30 minutes to 4 hours, and 1 to 24 hours.
  • the mixing step it is preferable to mix under conditions of pH 4-10.
  • the pH is particularly preferably 4-9.
  • the pH is in the range of 4 to 10, the amount of acid or base used to adjust the pH can be reduced in the production of the treated silica. Furthermore, it can prevent that a sulfur containing silane coupling agent adheres to the wall surface etc. of a container, when mixing.
  • the method for producing the treated silica may include a heating step of heating the dried product obtained in the drying step. Although it does not specifically limit as a concrete heating apparatus used for a heating process, Commercially available oven etc. can be mentioned.
  • the heating temperature (for example, the temperature in the oven) and the heating time are not particularly limited, but the dried product obtained in the drying step is preferably heated at 80 ° C. to 200 ° C. for 10 minutes to 24 hours, Heating at 80 ° C. to 180 ° C. for 10 minutes to 12 hours is more preferable, heating at 100 ° C. to 160 ° C. for 30 minutes to 8 hours is more preferable, and heating at 150 ° C. for 6 hours is particularly preferable. .
  • heating temperature and the heating time are as described above, it is possible not only to sufficiently dry the treated silica but also to prevent the components used for the production of the treated silica and the treated silica from being thermally decomposed.
  • the rubber contained in the rubber composition according to the present invention is not particularly limited, and may be natural rubber or synthetic rubber.
  • the synthetic rubber is not particularly limited, but for example, styrene-butadiene rubber (SBR), butadiene rubber (BR), isoprene rubber (IR), nitrile rubber (NBR), acrylonitrile-butadiene rubber (NBR).
  • Diene rubbers such as chloroprene rubber (CR); olefins such as butyl rubber (IIR), ethylene-propylene rubber (EPDM), acrylic rubber (ACM), chlorosulfonated polyethylene rubber (CSM), fluorine rubber (FKM) Examples thereof include rubber; silicone rubber (Q); urethane rubber (AU).
  • the rubber may be produced by any polymerization method, and may be a rubber produced by emulsion polymerization or a rubber produced by solution polymerization.
  • the rubber may be a so-called terminal-modified rubber having a molecular terminal modified.
  • the above rubbers can be used alone or in combination of two or more.
  • the rubber is more preferably a diene rubber.
  • the rubber is at least one selected from the group consisting of styrene-butadiene rubber (SBR), butadiene rubber (BR), natural rubber (NR), butyl rubber (IIR), and ethylene-propylene rubber (EPDM). It is particularly preferred.
  • the rubber composition according to the present invention may further contain a second silane coupling agent in addition to the treated silica and the rubber.
  • the “second silane coupling agent” is a sulfur-containing silane that is used to produce the treated silica by treating wet silica with a sulfur-containing silane coupling agent. Aside from the coupling agent, it refers to a silane coupling agent to be contained as a component of the rubber composition.
  • the amount of the second silane coupling agent contained in the rubber composition according to the present invention is not particularly limited, but is preferably 1 to 10 parts by weight with respect to 100 parts by weight of rubber. More preferably, it is 1 to 8 parts by weight.
  • Examples of the second silane coupling agent include, but are not limited to, (halogenated) alkyl silane, amino silane, (meth) acrylic silane, vinyl silane, epoxy silane, (Poly) sulfide silane, (protected) mercapto silane and the like can be used.
  • the second silane coupling agent is selected from the group consisting of a sulfur-containing silane coupling agent represented by the following formula [III] and a sulfur-containing silane coupling agent represented by the following formula [IV]. More preferably, there is at least one. That is;
  • R 1 is independently a monovalent hydrocarbon group having 1 to 18 carbon atoms
  • R 2 is a divalent hydrocarbon group having 1 to 9 carbon atoms
  • x is 2 to 6
  • Y is 0, It is an integer of 1 or 2.
  • R 3 is independently a monovalent hydrocarbon group having 1 to 18 carbon atoms
  • R 4 is a divalent hydrocarbon group having 1 to 9 carbon atoms
  • R 5 is hydrogen or —CO—R 6
  • R 6 is a monovalent hydrocarbon group having 1 to 18 carbon atoms
  • Y is an integer of 0, 1, or 2.
  • R 1 and R 3 preferably have 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms, and particularly preferably 1 to 4 carbon atoms. If it is the said structure, when there exists a part which the sulfur containing silane coupling agent has not couple
  • R 1 and R 3 may be a saturated hydrocarbon group or an unsaturated hydrocarbon group.
  • R 1 and R 3 may be linear, branched or cyclic.
  • X is more preferably from 2 to 6, and particularly preferably from 2 to 4. The reason is that the structure can suppress the scorch property of the rubber while ensuring the reactivity with the rubber.
  • Y is particularly preferably 0 or 1. The reason is that with this configuration, since there are a plurality of reaction points, it can be reacted with more silanols.
  • R 2 and R 4 preferably have 2 to 9 carbon atoms, and particularly preferably 3 to 8 carbon atoms. The reason is that if it is the said structure, workability and rubber physical property can be made compatible.
  • R 2 and R 4 may be a saturated hydrocarbon group or an unsaturated hydrocarbon group.
  • R 2 and R 4 may be linear, branched or cyclic, but more preferably have a structure containing a linear or aromatic ring.
  • R 6 has more preferably 1 to 15 carbon atoms, and particularly preferably 2 to 12 carbon atoms. The reason is that if it is the said structure, workability and rubber physical property can be made compatible.
  • R 6 may be a saturated hydrocarbon group or an unsaturated hydrocarbon group.
  • R 6 may be linear, branched or cyclic.
  • Examples of such second silane coupling agents include bis (triethoxysilylpropyl) disulfide, bis (triethoxysilylpropyl) tetrasulfide, bis (triethoxysilylpropyl) polysulfide, bis (trimethoxysilylpropyl) Disulfide, bis (trimethoxysilylpropyl) tetrasulfide, bis (diethoxymethylsilylpropyl) disulfide, bis (diethoxymethylsilylpropyl) tetrasulfide, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3 -Mercaptopropylmethyldimethoxysilane, 3-mercaptopropylmethyldiethoxysilane, 3-octanoylthio-1-propyltriethoxysilane, etc. It is not intended to be limited thereto.
  • the rubber composition according to the present invention may further contain a filler in addition to the treated silica and the rubber.
  • the filler is not particularly limited as long as it is usually added during the kneading operation of the rubber composition.
  • at least one selected from the group consisting of wet silica, dry silica, and aluminum hydroxide is used.
  • wet silica is particularly preferably used as the filler from the viewpoint of reactivity with the silane coupling agent.
  • the BET specific surface area of the wet silica, dry silica and aluminum hydroxide is preferably 20 to 300 m 2 / g, more preferably 50 to 250 m 2 / g, and 100 to 250 m 2 / g. More preferably.
  • the BET specific surface area of the filler is 20 m 2 / g
  • the rubber has excellent reinforcing properties and the wear resistance of the rubber is improved.
  • the BET specific surface area is 300 m 2 / g or less, an increase in the viscosity of the rubber when the filler and the rubber are mixed can be suppressed, and the filler and the rubber can be more uniformly kneaded.
  • the amount of the filler contained in the rubber composition according to the present invention is not limited to this, but is preferably 10 to 80 parts by weight with respect to 100 parts by weight of the rubber. More preferably, the amount is 10 to 60 parts by weight.
  • the rubber composition according to the present invention may further contain a vulcanizing agent in addition to the treated silica and the rubber.
  • the vulcanizing agent is not particularly limited as long as it is usually added during the kneading operation of the rubber composition, but sulfur, selenium, organic peroxide, morpholine disulfide, thiuram compound and oxime compound. More preferably, it is at least one selected from.
  • the content of the vulcanizing agent contained in the rubber composition according to the present invention is not particularly limited, but is preferably 0.1 to 20 parts by weight with respect to 100 parts by weight of rubber. More preferably, it is 2 to 15 parts by weight, and further preferably 0.5 to 10 parts by weight.
  • the content of the vulcanizing agent is 0.1 parts by weight or more with respect to 100 parts by weight of the rubber because the rubber can be suitably crosslinked. Further, it is preferable that the content of the vulcanizing agent is 20 parts by weight or less with respect to 100 parts by weight of the rubber because rubber elasticity can be maintained.
  • the rubber composition according to the present invention may contain a compounding agent usually used in the rubber industry, as long as it does not depart from the spirit of the present invention.
  • compounding agents include, for example, guanidine crosslinking accelerators, sulfenamide crosslinking accelerators, crosslinking accelerators (auxiliaries) such as zinc white; processing aids such as stearic acid; coupling agents such as titanates; phenyl Anti-aging agents such as - ⁇ -naphthylamine; fillers such as carbon black and calcium carbonate; reinforcing agents; softeners; plasticizers; tackifiers;
  • the method for producing a rubber composition according to the present invention only needs to include a first kneading step of kneading the treated silica with the rubber.
  • the method for producing a rubber composition according to the present invention may further optionally include at least one selected from a second kneading step, a molding step, and a crosslinking step in which a vulcanizing agent is kneaded into the kneaded product obtained in the first kneading step.
  • One step may be included.
  • First kneading step In the first kneading step, the treated silica is kneaded with the rubber to obtain the rubber composition of the present invention.
  • the second silane coupling agent in addition to the treated silica, may be further kneaded into the rubber.
  • the second silane coupling agent and the filler may be further kneaded into the rubber.
  • the first kneading step is preferably performed before the second kneading step for kneading the vulcanizing agent. That is, in the first kneading step, (i) the treated silica, (ii) the treated silica and the second silane coupling agent, or (iii) the treated silica, the second silane coupling agent and the above
  • the filler is kneaded with the rubber in the step before kneading the vulcanizing agent.
  • the above-mentioned (i) the treated silica, (ii) the treated silica and the second silane coupling agent, or (iii) the treated silica, the second silane coupling agent and the above
  • the filler is preferably kneaded at 80 to 250 ° C, more preferably 80 to 200 ° C.
  • the kneading time in the first kneading step is not particularly limited, but is, for example, 1 minute to 1 hour.
  • various mixing machines such as a roll, a pressure kneader, an intermixer, and a Banbury mixer that are usually used in the rubber industry can be used.
  • the vulcanizing agent is kneaded with the kneaded product obtained in the first kneading step to obtain a composition after addition of the vulcanizing agent, that is, a crosslinking rubber composition.
  • the vulcanizing agent is preferably kneaded at 100 ° C. or lower with the kneaded product obtained in the first kneading step. Thereby, it can prevent that bridge
  • the kneading time in the second kneading step is not particularly limited, but is, for example, 1 minute to 1 hour.
  • various mixing machines such as a roll, a pressure kneader, an intermixer, and a Banbury mixer that are usually used in the rubber industry can be used.
  • the crosslinking rubber composition prepared in the second kneading step is molded into an intended shape by a calendar roll, a press or the like.
  • the molded body formed in the above-mentioned forming step is heated preferably at 120 to 230 ° C. for 1 minute to 3 hours to obtain a cross-linked product.
  • a mold may be used for crosslinking.
  • molding step and the crosslinking step may be separate steps or may be a single step that proceeds simultaneously.
  • the crosslinked product obtained by crosslinking the rubber composition of the present invention can be used for various applications as a rubber product. Therefore, a crosslinked product obtained by crosslinking the rubber composition is also included in the present invention.
  • the shape of such a crosslinked product is not particularly limited, and can be used as a tire, a tube, a belt, a hose, an industrial product, or the like.
  • the crosslinked product obtained by crosslinking the rubber composition of the present invention has a small hysteresis loss as described above, for example, when used as a tire, the energy loss during running of the tire can be reduced, and the rolling resistance is reduced. Can be reduced. Therefore, it can be suitably used especially for dynamically used rubber parts such as tires (particularly tread portions).
  • HLB value: 8 0.9 g (0.3 parts by weight with respect to 100 parts by weight of wet silica) and 24 g (wet silica 100) of sulfur-containing silane coupling agent (trade name: Cabras 2B (manufactured by Daiso Corporation)) 8 parts by weight relative to parts by weight) was added.
  • the mixed solution thus obtained was stirred at room temperature (about 23 ° C.) for 2 hours, a uniform yellowish white slurry was obtained, and no separation was observed even when the stirring was stopped.
  • the pH of the mixed solution was 6. Subsequently, the mixed solution was dried under a condition of a hot air temperature of 200 ° C. with a spray dryer manufactured by Nihon Büch to obtain a powder. Furthermore, the obtained powder was dried in an oven at 150 ° C. for 6 hours to obtain treated silica 2.
  • HLB value 7) 0.9 g (0.3 parts by weight with respect to 100 parts by weight of wet silica) and 30 g of wet sulfur-containing silane coupling agent (trade name: Cabras 2B (manufactured by Daiso Corporation)) 10 parts by weight with respect to 100 parts by weight of silica).
  • Cabras 2B manufactured by Daiso Corporation
  • the pH of the mixed solution was 7.
  • the mixed solution was dried under a condition of a hot air temperature of 200 ° C. with a spray dryer manufactured by Nihon Büch to obtain a powder. Furthermore, the obtained powder was dried in an oven at 150 ° C. for 6 hours to obtain treated silica 3.
  • HLB value 7) 0.9 g (0.3 parts by weight with respect to 100 parts by weight of wet silica) and 90% lactic acid (trade name: Musashino lactic acid 90F (manufactured by Musashino Chemical Laboratory Co., Ltd.)) 5 g (0.45 parts by weight with respect to 100 parts by weight of wet silica) and 30 g of sulfur-containing silane coupling agent (trade name: Cabras 2B (manufactured by Daiso Corporation)) (10 parts by weight with respect to 100 parts by weight of wet silica) And were added.
  • lactic acid trade name: Musashino lactic acid 90F (manufactured by Musashino Chemical Laboratory Co., Ltd.)
  • S-containing silane coupling agent trade name: Cabras 2B (manufactured by Daiso Corporation)
  • the mixed solution thus obtained was stirred at room temperature (about 23 ° C.) for 2 hours, a uniform yellowish white slurry was obtained, and no separation was observed even when the stirring was stopped.
  • the pH of the mixed solution was 4.
  • the mixed solution was dried under a condition of a hot air temperature of 200 ° C. with a spray dryer manufactured by Nihon Büch to obtain a powder. Further, the obtained powder was dried in an oven at 150 ° C. for 6 hours to obtain treated silica 4.
  • HLB value 7) 0.9 g (0.3 parts by weight with respect to 100 parts by weight of wet silica) and 45 g (wet type) of sulfur-containing silane coupling agent (trade name: Cabras 2B (manufactured by Daiso Corporation)) 15 parts by weight with respect to 100 parts by weight of silica).
  • Cabras 2B manufactured by Daiso Corporation
  • the pH of the mixed solution was 7.
  • the mixed solution was dried under a condition of a hot air temperature of 200 ° C. with a spray dryer manufactured by Nihon Büch to obtain a powder. Furthermore, the obtained powder was dried in an oven at 150 ° C. for 6 hours to obtain treated silica 5.
  • the treated silica contains unreacted sulfur-containing silane coupling agent in addition to the reaction product of wet silica and sulfur-containing silane coupling agent.
  • Such treated silica has a good compatibility with rubber (for example, compatibility, dispersibility, kneadability, etc.), and when combined with rubber, a tire with improved fuel economy and wear resistance. Can be realized.
  • the unreacted sulfur-containing silane coupling agent contained in the treated silica is extracted with an organic solvent, if the organic solvent used for the extraction is analyzed, the unreacted sulfur-containing silane coupling agent contained in the treated silica Can be measured.
  • the solvent extraction test was performed on the treated silica obtained in the above production example on the next day (about 16 hours later) after the treated silica was produced.
  • the solvent extraction test was specifically performed according to the following procedure.
  • methyl ethyl ketone containing the treated silica was filtered under reduced pressure to obtain a filtrate from which the treated silica was removed. Furthermore, the filtration residue containing the treated silica was rinsed 5 times with 5 mL of methyl ethyl ketone, and methyl ethyl ketone used for the rinse was recovered.
  • the mixture was concentrated under reduced pressure at 70 ° C. under reduced pressure of 20 mmHg using a rotary evaporator. And the weight of the extract (in other words, unreacted sulfur-containing silane coupling agent) collected after concentration under reduced pressure was measured.
  • the extraction amount (%) was determined as a ratio of the weight of the extract to 10.0 g of the treated silica.
  • the treated silica of the examples has a small amount of extraction, and wet silica and the sulfur-containing silane coupling agent react well (in other words, unreacted sulfur-containing silane). It became clear that there were few coupling agents. This indicates that the treated silica obtained in Production Example 1-5 is suitable as the treated silica.
  • the rubber composition of this invention was manufactured using the processing silica 1 or 2 obtained by processing the wet silica with a BET specific surface area of 120 m ⁇ 2 > / g.
  • a Laboplast Mill 10C100 manufactured by Toyo Seiki Seisakusho
  • a 250 cc Banbury mixer type attachment BR-250 was used.
  • the apparatus temperature was 100 ° C. by circulating oil heating, and the rotor rotation speed of the mixer was constant at 60 rpm.
  • the rubber composition was produced on the basis of 110 g of rubber, specifically by the following procedure.
  • the rubber shown in Table 3 as a rubber component was put into a lab plast mill 10C100 and masticated for 30 seconds. Then, the chemical
  • the discharged kneaded product was cooled with a 6-inch roll at room temperature (about 20 ° C.). Thereafter, the cooled kneaded product is molded by adding a cross-linking agent component shown in Table 3 as compounding (III) in Table 3 with a 6-inch roll, kneading for 6 minutes, forming into a sheet, and discharging to form a thickness of about 2 mm.
  • a sheet uncrosslinked sheet
  • a rubber composition crosslinking rubber composition
  • Example 1-3 A rubber composition was produced in the same manner as in Example 1-3, except that the silica shown in Table 3 or the treated silica 7 was used instead of the treated silica 1 or 2, and the rubber composition thus obtained was used. A test sample (crosslinked sheet) was obtained in the same manner as in Example 1-3.
  • Table 4 shows the results of a dynamic viscoelasticity test performed on the test samples (crosslinked sheets) obtained in Example 1-3 and Comparative Example 1-3.
  • Example 4-6 In the above production example, using the treated silica obtained by treating the wet silica having a BET specific surface area of 150 m 2 / g, the drugs shown as Table (I) and the drugs shown as Formula (II) shown in Table 5 A rubber composition was produced in the same manner as in Example 1-3, except that the crosslinking agent component shown as Formulation (III) was blended in the proportions shown in Table 5, and Examples were obtained from the resulting rubber composition. A test sample (crosslinked sheet) was obtained in the same manner as in 1-3.
  • Example 4-5 A rubber composition was produced in the same manner as in Example 1-3, except that the silica shown in Table 5 was used in place of the treated silica, and the obtained rubber composition was used in the same manner as in Example 1-3. Thus, a test sample (crosslinked sheet) was obtained.
  • the silica slurry of the production example is obtained as a uniform slurry, and thus the treated silica obtained by drying the slurry is also obtained as a homogeneous treated silica.
  • the sulfur-containing silane coupling agent separated and floated to the surface of the slurry. This suggests that the silica slurry of the comparative production example separates the silica and the sulfur-containing silane coupling agent during the drying process or during the liquid feeding to the drying process, and the resulting treated silica is an untreated part. And the processing part is mixed. Since untreated silica is known to adversely affect rubber physical properties (particularly tan ⁇ at 60 ° C.), treated silica obtained by the production method of Comparative Production Example is not suitable for use in rubber compositions.
  • the rubber composition containing the treated silica obtained by the production example is particularly suitable for tires.
  • the rubber composition according to the present invention uses treated silica obtained by reacting wet silica with a sulfur-containing silane coupling agent in advance, alcohol is not generated during the rubber kneading operation or even if generated. Trace amount. Therefore, it is effective in improving the working environment of rubber kneading work and reducing VOC. Further, since there is no need to react wet silica with a sulfur-containing silane coupling agent during the rubber kneading operation, the kneading time can be shortened or multi-stage kneading can be omitted. Thereby, since the productivity improvement of the product using the rubber composition of the present invention can be expected, it can be suitably used in the rubber industry field.
  • the rubber composition according to the present invention is particularly useful in the tire industry field.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

 Provided are: a rubber composition for manufacturing high-performance rubber products at high productivity while minimizing VOCs and degradation of the work environment; a method for manufacturing the same; and an article in which the rubber composition is used. This rubber composition contains rubber, and treated silica obtained by treating a wet process silica with a sulfur-containing silane coupling agent, in the presence of a polyoxyethylene unsaturated fatty acid ester.

Description

ゴム組成物およびその製造方法並びにゴム組成物の利用Rubber composition, method for producing the same, and use of rubber composition
 本発明は、ゴム組成物およびその製造方法並びにゴム組成物の利用に関するものである。 The present invention relates to a rubber composition, a method for producing the same, and use of the rubber composition.
 近年、環境意識の高まりから、低燃費性および制動性に優れた、いわゆる低燃費タイヤが普及しつつある。一般的に低燃費タイヤには、シリカとシランカップリング剤とが配合されており、これによりゴムの発熱性を低減することによって、低燃費化が図られている。また、省資源化の観点から、低燃費性を維持しつつ、かつ、タイヤの耐摩耗性を向上させた上で、タイヤに使用されるゴムの量を低減する事が望まれており、耐摩耗性向上のために、タイヤにおけるシリカおよびシランカップリング剤の配合量が増加しつつある。 In recent years, so-called fuel-efficient tires that are excellent in fuel efficiency and braking performance are becoming widespread due to increasing environmental awareness. Generally, low fuel consumption tires are blended with silica and a silane coupling agent, thereby reducing the heat generation of the rubber, thereby reducing fuel consumption. Further, from the viewpoint of resource saving, it is desired to reduce the amount of rubber used in tires while maintaining low fuel consumption and improving tire wear resistance. In order to improve wear, the amount of silica and silane coupling agent in the tire is increasing.
 タイヤ工業では一般的に、ゴム中へシリカとシランカップリング剤とをそれぞれ配合し、ゴムの混練作業中にシリカとシランカップリング剤とを反応させる、いわゆるインテグラルブレンド法が採用されている。インテグラルブレンド法では、シランカップリング剤がシリカと反応すると、アルコールが生成される。このアルコールは大気中へと放出されるため、作業環境の悪化やVOC(Volatile Organic Compound)の増加が引き起こされるという問題が存在する。更に、インテグラルブレンド法では、シリカとシランカップリング剤との反応時間を十分に得るために、混練時間を長くする、あるいは、多段練りを行う必要が生じる。この場合、製品の生産性が低下するという問題が存在する。 Generally, in the tire industry, a so-called integral blend method is employed in which silica and a silane coupling agent are blended in rubber, and the silica and the silane coupling agent are reacted during the rubber kneading operation. In the integral blend method, alcohol is produced when the silane coupling agent reacts with silica. Since this alcohol is released into the atmosphere, there is a problem that the working environment is deteriorated and VOC (Volatile Organic Compound) increases. Furthermore, in the integral blend method, it is necessary to lengthen the kneading time or perform multi-stage kneading in order to obtain a sufficient reaction time between the silica and the silane coupling agent. In this case, there is a problem that the productivity of the product is lowered.
 上記の問題を解決すべく、様々な手法が提案されている。 Various methods have been proposed to solve the above problems.
 例えば、(i)シランカップリング剤のアルコキシ基を長鎖アルコール類にする技術(特許文献1参照)、(ii)化学変性を施したシリカを製造する技術(特許文献2参照)および(iii)硫黄含有シランカップリング剤、水、アルコールおよび塩基性物質からなる処理液をシリカへ付与し、シリカに対して表面処理を行う技術(特許文献3参照)、などが提案されている。 For example, (i) a technique for converting an alkoxy group of a silane coupling agent into a long chain alcohol (see Patent Document 1), (ii) a technique for producing chemically modified silica (see Patent Document 2), and (iii) A technique of applying a treatment liquid composed of a sulfur-containing silane coupling agent, water, alcohol, and a basic substance to silica and performing surface treatment on the silica (see Patent Document 3) has been proposed.
日本国公開特許公報「特開2005-35889号公報(2005年2月10日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2005-35889 (published on February 10, 2005)” 日本国公表特許公報「特表2003-531215号公報(2003年10月21日公開)」Japanese Patent Gazette “Special Table 2003-53215 (published on October 21, 2003)” 日本国公開特許公報「特開2011-63690号公報(2011年3月31日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2011-63690 (published March 31, 2011)”
 しかしながら、上述のような従来技術は、作業環境の悪化およびVOCを抑制しつつ、かつ、生産性良く、高性能なゴム製品を製造することができないという問題点を有している。 However, the conventional technology as described above has a problem that it is impossible to manufacture a high-performance rubber product while suppressing deterioration of the working environment and VOC and with high productivity.
 例えば、特許文献1に記載の技術では、生成されるアルコールを沸点が高いアルコールにすることによって、VOCの抑制は達成できるが、生産性の問題については改善が望めない。 For example, in the technique described in Patent Document 1, it is possible to achieve suppression of VOC by changing the generated alcohol to alcohol having a high boiling point, but improvement of productivity cannot be expected.
 特許文献2に記載の技術では、過酷な条件下(具体的には、pH2.5以下)で化学変性処理を行い、当該化学変性処理の後で中和処理を行う必要があることから、複数の製造工程が必要であり、生産性や経済性の面で問題がある。 In the technique described in Patent Document 2, it is necessary to perform chemical modification treatment under severe conditions (specifically, pH 2.5 or less) and to perform neutralization treatment after the chemical modification treatment. Manufacturing processes are necessary, and there are problems in terms of productivity and economy.
 特許文献3に記載の技術では、シリカ粒子の凝集体の内部にまでシランカップリング剤が浸透せず、シリカ粒子の凝集体の表面のみがシランカップリング剤によって処理され、シリカ粒子の凝集体の全体を均一にシランカップリング剤によって処理することが難しいという問題がある。 In the technique described in Patent Document 3, the silane coupling agent does not penetrate into the inside of the silica particle aggregate, and only the surface of the silica particle aggregate is treated with the silane coupling agent. There is a problem that it is difficult to uniformly treat the whole with a silane coupling agent.
 本発明は、上記の問題点に鑑みなされたものであって、その目的は、作業環境の悪化およびVOCを抑制しつつ、かつ、生産性良く、高性能なゴム製品を製造するためのゴム組成物およびその製造方法並びにゴム組成物の利用物を提供することにある。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to produce a rubber composition for producing a high-performance rubber product with good productivity while suppressing deterioration of working environment and VOC. It is to provide a product, a method for producing the product, and a utilization product of the rubber composition.
 本発明者らは、上記課題に鑑み鋭意検討した結果、ポリオキシエチレン不飽和脂肪酸エステル存在下で、湿式シリカを硫黄含有シランカップリング剤で処理してなる処理シリカとゴムとを含有するゴム組成物を用いることにより、ゴムの混練作業中の作業環境の悪化およびVOCを抑制しつつ、かつ、生産性良く、高性能なゴム製品を製造できることを見出し、本発明を完成させるに至った。 As a result of intensive studies in view of the above problems, the present inventors have found that a rubber composition containing treated silica and rubber obtained by treating wet silica with a sulfur-containing silane coupling agent in the presence of a polyoxyethylene unsaturated fatty acid ester. By using the product, it was found that a high-performance rubber product can be produced while suppressing deterioration of the working environment and VOC during the rubber kneading operation, and with good productivity, and the present invention has been completed.
 すなわち、本発明に係るゴム組成物は、上記課題を解決するために、ポリオキシエチレン不飽和脂肪酸エステル存在下で、湿式シリカを硫黄含有シランカップリング剤で処理してなる処理シリカと、ゴムと、を含有することを特徴としている。 That is, the rubber composition according to the present invention includes a treated silica obtained by treating wet silica with a sulfur-containing silane coupling agent in the presence of a polyoxyethylene unsaturated fatty acid ester, and a rubber in order to solve the above problems. , Containing.
 本発明に係るゴム組成物では、上記ゴムは、ジエン系ゴムであることが好ましい。 In the rubber composition according to the present invention, the rubber is preferably a diene rubber.
 本発明に係るゴム組成物では、上記ジエン系ゴムは、スチレン-ブタジエンゴム(SBR)、ブタジエンゴム(BR)、天然ゴム(NR)、ブチルゴム(IIR)、およびエチレン-プロピレンゴム(EPDM)からなる群より選択される少なくとも1種であることが好ましい。 In the rubber composition according to the present invention, the diene rubber is composed of styrene-butadiene rubber (SBR), butadiene rubber (BR), natural rubber (NR), butyl rubber (IIR), and ethylene-propylene rubber (EPDM). It is preferably at least one selected from the group.
 本発明に係るゴム組成物では、上記硫黄含有シランカップリング剤は、下記式[I]で表される硫黄含有シランカップリング剤および下記式[II]で表される硫黄含有シランカップリング剤からなる群より選択される少なくとも1つであることが好ましい。 In the rubber composition according to the present invention, the sulfur-containing silane coupling agent includes a sulfur-containing silane coupling agent represented by the following formula [I] and a sulfur-containing silane coupling agent represented by the following formula [II]. It is preferably at least one selected from the group consisting of
Figure JPOXMLDOC01-appb-C000005
(式中、Rはそれぞれ独立して炭素数1~18の一価の炭化水素基、Rは炭素数1~9の二価の炭化水素基、xは2~6、Yは0、1、または2の整数である。)
Figure JPOXMLDOC01-appb-C000005
(Wherein R 1 is independently a monovalent hydrocarbon group having 1 to 18 carbon atoms, R 2 is a divalent hydrocarbon group having 1 to 9 carbon atoms, x is 2 to 6, Y is 0, It is an integer of 1 or 2.)
Figure JPOXMLDOC01-appb-C000006
(式中、Rはそれぞれ独立して炭素数1~18の一価の炭化水素基、Rは炭素数1~9の二価の炭化水素基、Rは水素または-CO-Rであり、Rは炭素数1~18の一価の炭化水素基であり、Yは0、1、または2の整数である。)
 本発明に係るゴム組成物では、上記処理シリカは、上記湿式シリカ100重量部に対し、上記硫黄含有シランカップリング剤を1~20重量部を含有し、上記湿式シリカ100重量部に対し、上記ポリオキシエチレン不飽和脂肪酸エステル0.001~5重量部を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000006
Wherein R 3 is independently a monovalent hydrocarbon group having 1 to 18 carbon atoms, R 4 is a divalent hydrocarbon group having 1 to 9 carbon atoms, R 5 is hydrogen or —CO—R 6 R 6 is a monovalent hydrocarbon group having 1 to 18 carbon atoms, and Y is an integer of 0, 1, or 2.)
In the rubber composition according to the present invention, the treated silica contains 1 to 20 parts by weight of the sulfur-containing silane coupling agent with respect to 100 parts by weight of the wet silica, and the 100% by weight of the wet silica. It preferably contains 0.001 to 5 parts by weight of a polyoxyethylene unsaturated fatty acid ester.
 本発明に係るゴム組成物では、上記ポリオキシエチレン不飽和脂肪酸エステルは、HLB値が5~10であることが好ましい。 In the rubber composition according to the present invention, the polyoxyethylene unsaturated fatty acid ester preferably has an HLB value of 5 to 10.
 本発明に係るゴム組成物では、上記湿式シリカは、BET比表面積が50~300m/gであることが好ましい。 In the rubber composition according to the present invention, the wet silica preferably has a BET specific surface area of 50 to 300 m 2 / g.
 本発明に係るゴム組成物では、上記処理シリカは、更に、塩基性物質および酸性物質からなる群より選択される少なくとも1つを含有することが好ましい。 In the rubber composition according to the present invention, the treated silica preferably further contains at least one selected from the group consisting of a basic substance and an acidic substance.
 本発明に係るゴム組成物では、上記塩基性物質は、ヒドロキシル基が結合していてもよい炭素数1~24のアルキル基を有している、モノアルキルアミン、ジアルキルアミンおよびトリアルキルアミンからなる群より選択される少なくとも1つであることが好ましい。 In the rubber composition according to the present invention, the basic substance comprises a monoalkylamine, a dialkylamine, and a trialkylamine having an alkyl group having 1 to 24 carbon atoms to which a hydroxyl group may be bonded. It is preferably at least one selected from the group.
 本発明に係るゴム組成物では、上記酸性物質は、炭素数が1~18である、(ポリ)カルボン酸およびヒドロキシ酸からなる群から選択される少なくとも1つであることが好ましい。 In the rubber composition according to the present invention, the acidic substance is preferably at least one selected from the group consisting of (poly) carboxylic acids and hydroxy acids having 1 to 18 carbon atoms.
 本発明に係るゴム組成物では、上記処理シリカは、溶剤抽出に供したときのシランカップリング剤の抽出量が、処理シリカに対して2重量%以下であることが好ましい。 In the rubber composition according to the present invention, the extracted amount of the silane coupling agent when the treated silica is subjected to solvent extraction is preferably 2% by weight or less with respect to the treated silica.
 本発明に係るゴム組成物は、ゴム100重量部に対して、処理シリカを10~120重量部含有することが好ましい。 The rubber composition according to the present invention preferably contains 10 to 120 parts by weight of treated silica with respect to 100 parts by weight of rubber.
 本発明に係るゴム組成物は、更に、ゴム100重量部に対して、第2のシランカップリング剤を1~10重量部含有することが好ましい。 The rubber composition according to the present invention preferably further contains 1 to 10 parts by weight of the second silane coupling agent with respect to 100 parts by weight of rubber.
 本発明に係るゴム組成物では、上記第2のシランカップリング剤は、下記式[III]で表される硫黄含有シランカップリング剤および下記式[IV]で表される硫黄含有シランカップリング剤からなる群より選択される少なくとも1つであることが好ましい。 In the rubber composition according to the present invention, the second silane coupling agent includes a sulfur-containing silane coupling agent represented by the following formula [III] and a sulfur-containing silane coupling agent represented by the following formula [IV]. It is preferably at least one selected from the group consisting of
Figure JPOXMLDOC01-appb-C000007
(式中、Rはそれぞれ独立して炭素数1~18の一価の炭化水素基、Rは炭素数1~9の二価の炭化水素基、xは2~6、Yは0、1、または2の整数である。)
Figure JPOXMLDOC01-appb-C000007
(Wherein R 1 is independently a monovalent hydrocarbon group having 1 to 18 carbon atoms, R 2 is a divalent hydrocarbon group having 1 to 9 carbon atoms, x is 2 to 6, Y is 0, It is an integer of 1 or 2.)
Figure JPOXMLDOC01-appb-C000008
(式中、Rはそれぞれ独立して炭素数1~18の一価の炭化水素基、Rは炭素数1~9の二価の炭化水素基、Rは水素または-CO-Rであり、Rは炭素数1~18の一価の炭化水素基であり、Yは0、1、または2の整数である。)
 本発明に係るゴム組成物は、更に、ゴム100重量部に対して、充填材を10~80重量部含有することが好ましい。
Figure JPOXMLDOC01-appb-C000008
Wherein R 3 is independently a monovalent hydrocarbon group having 1 to 18 carbon atoms, R 4 is a divalent hydrocarbon group having 1 to 9 carbon atoms, R 5 is hydrogen or —CO—R 6 R 6 is a monovalent hydrocarbon group having 1 to 18 carbon atoms, and Y is an integer of 0, 1, or 2.)
The rubber composition according to the present invention preferably further contains 10 to 80 parts by weight of a filler with respect to 100 parts by weight of rubber.
 本発明に係るゴム組成物では、上記充填材は、BET比表面積が20~300m/gである、湿式シリカ、乾式シリカおよび水酸化アルミニウムからなる群より選択される少なくとも1つであることが好ましい。 In the rubber composition according to the present invention, the filler is at least one selected from the group consisting of wet silica, dry silica, and aluminum hydroxide having a BET specific surface area of 20 to 300 m 2 / g. preferable.
 本発明に係るゴム組成物は、更に、加硫剤を含有することが好ましい。 The rubber composition according to the present invention preferably further contains a vulcanizing agent.
 本発明に係るゴム組成物の製造方法は、上記処理シリカおよび上記第2のシランカップリング剤を、加硫剤を混練する前の工程にて、上記ゴムに混練することを特徴としている。 The method for producing a rubber composition according to the present invention is characterized in that the treated silica and the second silane coupling agent are kneaded with the rubber in a step before kneading the vulcanizing agent.
 本発明に係るゴム組成物の製造方法は、上記処理シリカ、上記第2のシランカップリング剤および上記充填材を、加硫剤を混練する前の工程にて、上記ゴムに混練することを特徴としている。 The method for producing a rubber composition according to the present invention is characterized in that the treated silica, the second silane coupling agent, and the filler are kneaded into the rubber in a step before kneading the vulcanizing agent. It is said.
 本発明に係る架橋物は、上記ゴム組成物を架橋してなることを特徴としている。 The cross-linked product according to the present invention is characterized by cross-linking the rubber composition.
 本発明に係るタイヤは、上記ゴム組成物を架橋してなることを特徴としている。 The tire according to the present invention is characterized in that the rubber composition is crosslinked.
 また、本発明に係るゴム組成物は、上記課題を解決するために、処理シリカと、ゴムと、を含有するゴム組成物であって、当該処理シリカは、湿式シリカ100重量部に対し、硫黄含有シランカップリング剤を1~20重量部を含有し、湿式シリカ100重量部に対し、ポリオキシエチレン不飽和脂肪酸エステル0.001~5重量部を含有することを特徴としている。 The rubber composition according to the present invention is a rubber composition containing treated silica and rubber in order to solve the above-mentioned problems, and the treated silica is sulfur in 100 parts by weight of wet silica. It contains 1 to 20 parts by weight of the silane coupling agent and 0.001 to 5 parts by weight of polyoxyethylene unsaturated fatty acid ester with respect to 100 parts by weight of wet silica.
 本発明によれば、作業環境の悪化およびVOCを抑制しつつ、かつ、生産性良く、高性能なゴム製品を製造できるという効果を奏する。 According to the present invention, it is possible to produce a high-performance rubber product with high productivity while suppressing deterioration of working environment and VOC.
 本発明の一実施形態について以下に説明するが、本発明は、以下に説明する各構成に限定されるものではなく、特許請求の範囲に示した範囲で種々の変更が可能であり、異なる実施形態や実施例にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態や実施例についても本発明の技術的範囲に含まれる。また、本明細書中に記載された学術文献及び特許文献の全てが、本明細書中において参考文献として援用される。なお、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上(Aを含みかつAより大きい)B以下(Bを含みかつBより小さい)」を意味する。 One embodiment of the present invention will be described below, but the present invention is not limited to each configuration described below, and various modifications are possible within the scope shown in the claims, and different implementations are possible. Embodiments and examples obtained by appropriately combining the technical means disclosed in the respective forms and examples are also included in the technical scope of the present invention. Moreover, all the academic literatures and patent literatures described in this specification are used as references in this specification. Unless otherwise specified in this specification, “A to B” representing a numerical range means “A or more (including A and greater than A) and B or less (including B and less than B)”.
 〔1.ゴム組成物〕
 本発明に係るゴム組成物は、ポリオキシエチレン不飽和脂肪酸エステル存在下で、湿式シリカを硫黄含有シランカップリング剤で処理してなる処理シリカと、ゴムと、を含有するものであればよく、その他の具体的な構成および用途については特に限定されない。
[1. Rubber composition)
The rubber composition according to the present invention only needs to contain a treated silica obtained by treating wet silica with a sulfur-containing silane coupling agent in the presence of a polyoxyethylene unsaturated fatty acid ester, and rubber, Other specific configurations and uses are not particularly limited.
 上記構成によれば、湿式シリカを硫黄含有シランカップリング剤と事前に反応させた処理シリカを用いるため、従来のインテグラルブレンド法のように、ゴムの混練作業中にアルコールが生成することがないか、たとえ生成しても極微量である。それゆえ、ゴムの混練作業の作業環境の改善およびVOCの低減に効果的である。また、ゴムの混練作業中に湿式シリカと硫黄含有シランカップリング剤とを反応させる必要が無いため、混練時間を短縮でき、あるいは多段練りを省略することができる。これにより、本発明のゴム組成物を利用する製品(例えば、ゴム組成物を架橋してなる架橋物、ゴム組成物を架橋してなるタイヤなど)の生産性向上が期待できる。さらに、湿式シリカを硫黄含有シランカップリング剤と事前に反応させた処理シリカを用いることにより、このゴム組成物を架橋させた架橋物のヒステリシスロスを低減することができる。よって、例えば、かかる架橋物をタイヤとして用いたときに、タイヤ走行時のエネルギーロスを小さくすることができ、転がり抵抗を低減させることができる。 According to the above configuration, since treated silica obtained by previously reacting wet silica with a sulfur-containing silane coupling agent is used, alcohol is not generated during the rubber kneading operation as in the conventional integral blend method. Or even if it is produced, it is very small. Therefore, it is effective in improving the working environment of rubber kneading work and reducing VOC. Further, since there is no need to react wet silica with a sulfur-containing silane coupling agent during the rubber kneading operation, the kneading time can be shortened or multi-stage kneading can be omitted. Thereby, productivity improvement of the product (For example, the crosslinked material formed by bridge | crosslinking a rubber composition, the tire formed by bridge | crosslinking a rubber composition, etc.) using the rubber composition of this invention can be anticipated. Furthermore, hysteresis loss of a crosslinked product obtained by crosslinking this rubber composition can be reduced by using treated silica obtained by reacting wet silica with a sulfur-containing silane coupling agent in advance. Thus, for example, when such a cross-linked product is used as a tire, energy loss during running of the tire can be reduced, and rolling resistance can be reduced.
 本発明に係るゴム組成物は、ポリオキシエチレン不飽和脂肪酸エステル存在下で、湿式シリカを硫黄含有シランカップリング剤で処理してなる処理シリカと、ゴムと、を含有するものであればよく、ゴム組成物中に含有される上記処理シリカの量は特に限定されるものではないが、ゴム100重量部に対して、上記処理シリカを、10~120重量部含有することが好ましく、20~110重量部含有することがより好ましく、30~100重量部含有することがさらに好ましく、40~90重量部含有することが特に好ましく、50~80重量部含有することが最も好ましい。 The rubber composition according to the present invention only needs to contain a treated silica obtained by treating wet silica with a sulfur-containing silane coupling agent in the presence of a polyoxyethylene unsaturated fatty acid ester, and rubber, The amount of the treated silica contained in the rubber composition is not particularly limited, but it is preferable to contain 10 to 120 parts by weight of the treated silica with respect to 100 parts by weight of the rubber, and 20 to 110 parts. The content is more preferably 30 to 100 parts by weight, still more preferably 40 to 90 parts by weight, and most preferably 50 to 80 parts by weight.
 本発明に係るゴム組成物が、ゴム100重量部に対して、上記処理シリカを10重量部以上含有する場合は、かかるゴム組成物から得られるゴム製品の補強性が高く、強度および耐摩耗性に優れたゴム製品を製造することができる。また、本発明に係るゴム組成物が含有する上記処理シリカの量が、ゴム100重量部に対して、120重量部以下である場合は、かかるゴム組成物から加工性に優れたゴム製品を得ることができる。 When the rubber composition according to the present invention contains 10 parts by weight or more of the treated silica with respect to 100 parts by weight of rubber, the rubber product obtained from such a rubber composition has high reinforcing properties, strength and wear resistance. It is possible to produce a rubber product excellent in Further, when the amount of the treated silica contained in the rubber composition according to the present invention is 120 parts by weight or less with respect to 100 parts by weight of the rubber, a rubber product excellent in processability is obtained from the rubber composition. be able to.
 以下、本発明に係るゴム組成物に含有される成分について、処理シリカ、ゴム、他の成分の順に説明する。 Hereinafter, the components contained in the rubber composition according to the present invention will be described in the order of treated silica, rubber, and other components.
 〔1-1.処理シリカ〕
 本発明に用いられる処理シリカは、ポリオキシエチレン不飽和脂肪酸エステル存在下で、湿式シリカを硫黄含有シランカップリング剤で処理してなるものであればよく、その他の具体的な構成については特に限定されない。
[1-1. Treated silica)
The treated silica used in the present invention may be one obtained by treating wet silica with a sulfur-containing silane coupling agent in the presence of a polyoxyethylene unsaturated fatty acid ester, and other specific configurations are particularly limited. Not.
 本発明に用いられる処理シリカは、ポリオキシエチレン不飽和脂肪酸エステル存在下で、湿式シリカを硫黄含有シランカップリング剤で処理してなるものであるので、シリカ表面に、均一に硫黄含有シランカップリング剤を結合させることができる。すなわち、ポリオキシエチレン不飽和脂肪酸エステル存在下にて、湿式シリカと硫黄含有シランカップリング剤とを反応させることにより、湿式シリカと硫黄含有シランカップリング剤とを効率よく反応させることができる。これにより、得られる処理シリカでは、シリカ表面に、均一に硫黄含有シランカップリング剤を結合させることができる。 Since the treated silica used in the present invention is obtained by treating wet silica with a sulfur-containing silane coupling agent in the presence of a polyoxyethylene unsaturated fatty acid ester, the sulfur-containing silane coupling is uniformly applied to the silica surface. An agent can be bound. That is, wet silica and sulfur-containing silane coupling agent can be reacted efficiently by reacting wet silica with sulfur-containing silane coupling agent in the presence of polyoxyethylene unsaturated fatty acid ester. Thereby, in the treated silica obtained, a sulfur-containing silane coupling agent can be uniformly bonded to the silica surface.
 より具体的には、本発明に用いられる処理シリカを製造するときに、湿式シリカと硫黄含有シランカップリング剤とが反応するが、ポリオキシエチレン不飽和脂肪酸エステルが存在することにより、シリカ粒子の凝集体の表面のみならず凝集体の内部にまで硫黄含有シランカップリング剤が入り込み、シリカと硫黄含有シランカップリング剤とが結合する。つまり、上記ポリオキシエチレン不飽和脂肪酸エステルは、湿式シリカおよび硫黄含有シランカップリング剤をより均一に分散させるための乳化剤として機能する。 More specifically, when producing the treated silica used in the present invention, the wet silica and the sulfur-containing silane coupling agent react with each other. The sulfur-containing silane coupling agent enters not only the surface of the aggregate but also the interior of the aggregate, and the silica and the sulfur-containing silane coupling agent are combined. That is, the polyoxyethylene unsaturated fatty acid ester functions as an emulsifier for more uniformly dispersing the wet silica and the sulfur-containing silane coupling agent.
 このように、均一かつ大量に硫黄含有シランカップリング剤が結合したシリカ粒子の凝集体は、処理シリカとしてゴムと混ぜ合わせてゴム組成物とすれば、このゴム組成物を架橋させた架橋物のヒステリシスロスを低減することができる。よって、例えば、かかる架橋物をタイヤとして用いたときに、タイヤ走行時のエネルギーロスを小さくすることができ、転がり抵抗を低減させることができる。それゆえ、低燃費性および耐摩耗性が向上したタイヤを実現できる。 Thus, if the aggregate of silica particles to which a sulfur-containing silane coupling agent is bonded in a uniform and large amount is mixed with rubber as treated silica to form a rubber composition, a crosslinked product obtained by crosslinking the rubber composition is obtained. Hysteresis loss can be reduced. Thus, for example, when such a cross-linked product is used as a tire, energy loss during running of the tire can be reduced, and rolling resistance can be reduced. Therefore, a tire with improved fuel efficiency and wear resistance can be realized.
 本発明に用いられる処理シリカは、ポリオキシエチレン不飽和脂肪酸エステル存在下で、湿式シリカを硫黄含有シランカップリング剤で処理してなるものであればよく、当該処理に用いられるポリオキシエチレン不飽和脂肪酸エステルの量は、特に限定されるものではないが、例えば、湿式シリカ100重量部に対して、0.001~5重量部であることが好ましく、0.001~4重量部であることがより好ましく、0.001~3重量部であることがさらに好ましく、0.001~2重量部であることがさらに好ましく、0.001~1重量部であることがさらに好ましく、0.002~2.5重量部であることがさらに好ましく、0.005~2重量部であることが特に好ましく、0.01~1.8重量部であることが最も好ましい。 The treated silica used in the present invention may be any silica formed by treating wet silica with a sulfur-containing silane coupling agent in the presence of a polyoxyethylene unsaturated fatty acid ester. The amount of the fatty acid ester is not particularly limited, but is preferably 0.001 to 5 parts by weight, for example, 0.001 to 4 parts by weight with respect to 100 parts by weight of wet silica. More preferably, it is 0.001 to 3 parts by weight, further preferably 0.001 to 2 parts by weight, further preferably 0.001 to 1 part by weight, and 0.002 to 2 parts by weight. More preferably, it is 5 parts by weight, particularly preferably 0.005 to 2 parts by weight, and most preferably 0.01 to 1.8 parts by weight.
 ポリオキシエチレン不飽和脂肪酸エステルの量が、湿式シリカ100重量部に対して、0.001重量部以上であれば、湿式シリカおよび硫黄含有シランカップリング剤をより均一に分散させることができる。また、ポリオキシエチレン不飽和脂肪酸エステルの量が、湿式シリカ100重量部に対して、5重量部以下であれば、得られる処理シリカ中に残存するポリオキシエチレン不飽和脂肪酸エステルの量を少なくすることができる。その結果、残存するポリオキシエチレン不飽和脂肪酸エステルが処理シリカ、ゴム組成物、またはゴム組成物から得られる製品(例えば、ゴム製品)に及ぼす様々な影響を、最小限に抑えることができる。さらに、使用するポリオキシエチレン不飽和脂肪酸エステルの量を少なくでき、低コストにて高性能な処理シリカを製造できる。 If the amount of polyoxyethylene unsaturated fatty acid ester is 0.001 part by weight or more with respect to 100 parts by weight of wet silica, wet silica and sulfur-containing silane coupling agent can be more uniformly dispersed. Moreover, if the amount of polyoxyethylene unsaturated fatty acid ester is 5 parts by weight or less with respect to 100 parts by weight of wet silica, the amount of polyoxyethylene unsaturated fatty acid ester remaining in the obtained treated silica is reduced. be able to. As a result, the various effects of the remaining polyoxyethylene unsaturated fatty acid ester on the treated silica, rubber composition, or product obtained from the rubber composition (eg, rubber product) can be minimized. Furthermore, the amount of polyoxyethylene unsaturated fatty acid ester used can be reduced, and high-performance treated silica can be produced at low cost.
 また、本発明に用いられる処理シリカは、ポリオキシエチレン不飽和脂肪酸エステル存在下で、湿式シリカを硫黄含有シランカップリング剤で処理してなるものであればよく、当該処理に用いられる硫黄含有シランカップリング剤の量も、特に限定されるものではないが、湿式シリカ100重量部に対して、1~20重量部であることが好ましく、1~18重量部であることがより好ましく、2~18重量部であることがより好ましく、3~15重量部であることがより好ましく、4~15重量部であることが特に好ましい。硫黄含有シランカップリング剤の量が、湿式シリカ100重量部に対して1重量部以上であれば、単位重量あたりの湿式シリカに対して、効率よく、多くの硫黄含有シランカップリング剤を結合させることができる。また、硫黄含有シランカップリング剤の量が、湿式シリカ100重量部に対して20重量部以下であれば、高性能な処理シリカを実現でき、当該処理シリカとゴムとを混合した場合、ゴムのスコーチや粘弾性特性を向上させ得る。 Further, the treated silica used in the present invention may be any silica obtained by treating wet silica with a sulfur-containing silane coupling agent in the presence of a polyoxyethylene unsaturated fatty acid ester, and the sulfur-containing silane used in the treatment. The amount of the coupling agent is not particularly limited, but is preferably 1 to 20 parts by weight, more preferably 1 to 18 parts by weight with respect to 100 parts by weight of wet silica. The amount is more preferably 18 parts by weight, more preferably 3 to 15 parts by weight, and particularly preferably 4 to 15 parts by weight. If the amount of the sulfur-containing silane coupling agent is 1 part by weight or more with respect to 100 parts by weight of the wet silica, many sulfur-containing silane coupling agents are efficiently bonded to the wet silica per unit weight. be able to. Further, if the amount of the sulfur-containing silane coupling agent is 20 parts by weight or less with respect to 100 parts by weight of wet silica, high-performance treated silica can be realized, and when the treated silica and rubber are mixed, Scorch and viscoelastic properties can be improved.
 本発明に用いられる処理シリカは、湿式シリカ100重量部に対し、0.001~5重量部のポリオキシエチレン不飽和脂肪酸エステル存在下で、湿式シリカ100重量部に対し硫黄含有シランカップリング剤1~20重量部で処理してなるものであることがより好ましい。 The treated silica used in the present invention is a sulfur-containing silane coupling agent 1 per 100 parts by weight of wet silica in the presence of 0.001 to 5 parts by weight of polyoxyethylene unsaturated fatty acid ester with respect to 100 parts by weight of wet silica. More preferably, it is processed at ˜20 parts by weight.
 また、本発明に用いられる処理シリカは、湿式シリカ、ポリオキシエチレン不飽和脂肪酸エステルおよび硫黄含有シランカップリング剤を含有する処理シリカであって、湿式シリカ100重量部に対し、硫黄含有シランカップリング剤1~20重量部を含有し、湿式シリカ100重量部に対し、ポリオキシエチレン不飽和脂肪酸エステル0.001~5重量部を含有する処理シリカであり得る。また、本発明に用いられる処理シリカは、湿式シリカ、ポリオキシエチレン不飽和脂肪酸エステル、および、硫黄含有シランカップリング剤によって形成されている処理シリカであって、上記湿式シリカ100重量部に対し、上記硫黄含有シランカップリング剤1~20重量部が結合しており、上記湿式シリカ100重量部に対し、上記ポリオキシエチレン不飽和脂肪酸エステル0.001~5重量部を含有する処理シリカとも換言できる。 Further, the treated silica used in the present invention is a treated silica containing wet silica, polyoxyethylene unsaturated fatty acid ester and sulfur-containing silane coupling agent, and sulfur-containing silane coupling with respect to 100 parts by weight of wet silica. It may be a treated silica containing 1 to 20 parts by weight of an agent and 0.001 to 5 parts by weight of a polyoxyethylene unsaturated fatty acid ester with respect to 100 parts by weight of wet silica. Further, the treated silica used in the present invention is a treated silica formed by wet silica, polyoxyethylene unsaturated fatty acid ester, and a sulfur-containing silane coupling agent, with respect to 100 parts by weight of the wet silica, In other words, 1 to 20 parts by weight of the sulfur-containing silane coupling agent is bonded to the treated silica containing 0.001 to 5 parts by weight of the polyoxyethylene unsaturated fatty acid ester with respect to 100 parts by weight of the wet silica. .
 本処理シリカは、湿式シリカ100重量部に対し、硫黄含有シランカップリング剤を、1~18重量部含有するものであってもよく、2~18重量部含有するものであってもよく、3~15重量部含有するものであってもよく、4~15重量部含有するものであってもよい。 The treated silica may contain 1 to 18 parts by weight or 2 to 18 parts by weight of a sulfur-containing silane coupling agent with respect to 100 parts by weight of wet silica. It may be contained in an amount of ˜15 parts by weight, or may be contained in an amount of 4-15 parts by weight.
 また、本処理シリカは、湿式シリカ100重量部に対し、ポリオキシエチレン不飽和脂肪酸エステルを、0.001~4重量部含有するものであってもよく、0.001~3重量部含有するものであってもよく、0.001~2重量部含有するものであってもよく、0.001~1重量部含有するものであってもよく、0.002~1重量部含有するものであってもよく、0.005~0.8重量部含有するものであってもよく、0.01~0.8重量部含有するものであってもよい。 The treated silica may contain 0.001 to 4 parts by weight, or 0.001 to 3 parts by weight of polyoxyethylene unsaturated fatty acid ester with respect to 100 parts by weight of wet silica. It may be 0.001 to 2 parts by weight, 0.001 to 1 part by weight, or 0.002 to 1 part by weight. It may be contained in an amount of 0.005 to 0.8 parts by weight, or 0.01 to 0.8 parts by weight.
 一般的に、処理シリカを溶剤抽出に供すると、未反応の硫黄含有シランカップリング剤が、処理シリカから抽出される。抽出された硫黄含有シランカップリング剤の量によって、湿式シリカと硫黄含有シランカップリング剤との反応効率を知ることができる。つまり、抽出された硫黄含有シランカップリング剤の量が少ないほど、湿式シリカと硫黄含有シランカップリング剤との反応効率が高いと判定でき、好ましい処理シリカであるといえる。 Generally, when the treated silica is subjected to solvent extraction, unreacted sulfur-containing silane coupling agent is extracted from the treated silica. The reaction efficiency between the wet silica and the sulfur-containing silane coupling agent can be known from the amount of the extracted sulfur-containing silane coupling agent. That is, it can be determined that the smaller the amount of the extracted sulfur-containing silane coupling agent, the higher the reaction efficiency between the wet silica and the sulfur-containing silane coupling agent, and it can be said that this is a preferred treated silica.
 本発明に用いられる処理シリカでは、湿式シリカと硫黄含有シランカップリング剤とを、効率良く反応させることができる。それ故に、本処理シリカでは、抽出される硫黄含有シランカップリング剤の量が少ない。 In the treated silica used in the present invention, wet silica and a sulfur-containing silane coupling agent can be reacted efficiently. Therefore, in the present treated silica, the amount of the sulfur-containing silane coupling agent extracted is small.
 具体的に、本処理シリカを溶剤抽出に供したときの硫黄含有シランカップリング剤の抽出量は、処理シリカに対して2重量%以下であることが好ましく、処理シリカに対して1重量%以下であることがより好ましい。さらには、処理シリカに対して0.9重量%以下、処理シリカに対して0.8重量%以下、処理シリカに対して0.7重量%以下、処理シリカに対して0.6重量%以下、処理シリカに対して0.5重量%以下、処理シリカに対して0.4重量%以下、処理シリカに対して0.3重量%以下、処理シリカに対して0.2重量%以下および処理シリカに対して0.1重量%以下の順で、より好ましい。 Specifically, the extraction amount of the sulfur-containing silane coupling agent when the treated silica is subjected to solvent extraction is preferably 2% by weight or less with respect to the treated silica, and 1% by weight or less with respect to the treated silica. It is more preferable that Furthermore, 0.9% by weight or less with respect to the treated silica, 0.8% by weight or less with respect to the treated silica, 0.7% by weight or less with respect to the treated silica, and 0.6% by weight or less with respect to the treated silica. 0.5% by weight or less for the treated silica, 0.4% by weight or less for the treated silica, 0.3% by weight or less for the treated silica, 0.2% by weight or less for the treated silica, and a treatment It is more preferable in the order of 0.1% by weight or less based on silica.
 本処理シリカを溶剤抽出に供したときの硫黄含有シランカップリング剤の抽出量が小さい程、ゴム組成物の混練作業時に生成するVOCを低減することができ、また得られたゴム製品の物性に及ぼす影響を最小限に抑えることができる。 The smaller the extraction amount of the sulfur-containing silane coupling agent when the treated silica is subjected to solvent extraction, the lower the VOC produced during the kneading operation of the rubber composition, and the physical properties of the resulting rubber product. The effect of this can be minimized.
 溶剤抽出に用いる溶剤としては、硫黄含有シランカップリング剤を溶解させることができ、かつ、硫黄含有シランカップリング剤と反応しない溶剤が用いられ得る。このような溶剤の例としては、ヘキサン、ヘプタンなどの炭化水素類、アセトン、メチルエチルケトンなどのケトン類、酢酸エチルなどのエステル類、クロロホルムなどが挙げられるが、本発明は、これらに限定されるものではない。 As the solvent used for solvent extraction, a solvent that can dissolve the sulfur-containing silane coupling agent and does not react with the sulfur-containing silane coupling agent can be used. Examples of such solvents include hydrocarbons such as hexane and heptane, ketones such as acetone and methyl ethyl ketone, esters such as ethyl acetate, and chloroform, but the present invention is not limited thereto. is not.
 以下に、抽出量の算出方法の一例を説明する。 Hereinafter, an example of the extraction amount calculation method will be described.
 処理シリカを製造した翌日(処理シリカを製造してから、約16時間後)に、処理シリカについて、溶剤抽出試験を行う。 The solvent extraction test is performed on the treated silica the next day after the production of the treated silica (about 16 hours after the production of the treated silica).
 まず、処理シリカ10.0gをガラス容器内に秤量し、当該ガラス容器へ50mlのメチルエチルケトンを添加する。そして、500rpmで10分間、ガラス容器内の処理シリカとメチルエチルケトンとを撹拌する。 First, 10.0 g of treated silica is weighed in a glass container, and 50 ml of methyl ethyl ketone is added to the glass container. Then, the treated silica and methyl ethyl ketone in the glass container are stirred for 10 minutes at 500 rpm.
 次いで、処理シリカを含むメチルエチルケトンを減圧濾過して、処理シリカが除去された濾液を取得する。更に、処理シリカを含む濾過残渣を5mLのメチルエチルケトンで5回リンスし、当該リンスに用いたメチルエチルケトンを回収する。 Next, methyl ethyl ketone containing the treated silica is filtered under reduced pressure to obtain a filtrate from which the treated silica has been removed. Further, the filtration residue containing the treated silica is rinsed 5 times with 5 mL of methyl ethyl ketone, and the methyl ethyl ketone used for the rinse is recovered.
 上記濾液と、上記回収したリンスに用いたメチルエチルケトンとを混ぜ合わせた後、当該混合液を、20mmHg減圧下、70℃にて衡量となるまで減圧濃縮する。そして、減圧濃縮後に回収された抽出物(換言すれば、未反応の硫黄含有シランカップリング剤)の重量を測定する。 After the filtrate and methyl ethyl ketone used for the collected rinse were combined, the mixture was concentrated under reduced pressure at 70 ° C. under reduced pressure of 20 mmHg. And the weight of the extract (in other words, unreacted sulfur-containing silane coupling agent) collected after concentration under reduced pressure is measured.
 そして、抽出量を、処理シリカ10.0gに対する、抽出物の重量の割合として求める。 Then, the extraction amount is determined as a ratio of the weight of the extract to 10.0 g of the treated silica.
 以下に、本発明に用いられる処理シリカに使用し得る各成分について説明する。 Hereinafter, each component that can be used in the treated silica used in the present invention will be described.
 <湿式シリカ>
 本処理シリカに使用し得る湿式シリカとしては、公知の湿式シリカを好適に利用でき、その具体的な構成等は特に限定されるものではない。例えば、湿式法(沈降法、ゲル法など)によって作製された湿式シリカを好適に用いることができる。
<Wet silica>
As wet silica that can be used for the present treated silica, known wet silica can be suitably used, and its specific configuration and the like are not particularly limited. For example, wet silica produced by a wet method (precipitation method, gel method, etc.) can be suitably used.
 乾式法によって作製された乾式シリカと比較して、湿式法によって作製された湿式シリカは、表面に活性な水酸基(シラノール)が多くシランカップリング剤を多数反応させることが可能であり、また低コストであるという特徴点を有している。それ故に、本処理シリカの成分として湿式シリカを用いれば、乾式シリカを用いた場合と比較して、よりシランカップリング剤による改質効果が高く、安価である為に製品のコストを低減可能であるという利点がある。 Compared with dry silica produced by the dry method, wet silica produced by the wet method has many active hydroxyl groups (silanol) on the surface and can react with many silane coupling agents and is low in cost. It has the feature point of being. Therefore, if wet silica is used as a component of this treated silica, compared with the case of using dry silica, the effect of modification by the silane coupling agent is higher and the cost of the product can be reduced because it is inexpensive. There is an advantage of being.
 湿式シリカのBET比表面積は、特に限定されるものではないが、50~300m/gであることが好ましく、80~250m/gであることがより好ましく、80~200m/gであることがさらに好ましく、100~220m/gであることがさらに好ましく、100~180m/gであることが特に好ましく、120~165m/gであることが最も好ましい。BET比表面積が50m/g以上であれば、本処理シリカとゴムとを混ぜ合わせたときの、ゴムの補強性に優れ、ゴムの耐摩耗性が向上する。BET比表面積が300m/g以下であれば、本処理シリカとゴムとを混ぜ合わせたときの、ゴムの粘度上昇を抑えることができ、処理シリカとゴムとを、より均一に混練できる。 The BET specific surface area of the wet silica is not particularly limited, but is preferably 50 to 300 m 2 / g, more preferably 80 to 250 m 2 / g, and 80 to 200 m 2 / g. More preferably, it is more preferably 100 to 220 m 2 / g, particularly preferably 100 to 180 m 2 / g, and most preferably 120 to 165 m 2 / g. When the BET specific surface area is 50 m 2 / g or more, when the treated silica and rubber are mixed, the rubber has excellent reinforcing properties and the rubber has improved wear resistance. When the BET specific surface area is 300 m 2 / g or less, an increase in the viscosity of the rubber when the treated silica and the rubber are mixed can be suppressed, and the treated silica and the rubber can be more uniformly kneaded.
 なお、BET比表面積は、島津製作所社製のトライスターII3020を用い、当該装置に添付されるプロトコールにしたがって測定することができる。 The BET specific surface area can be measured using a Tristar II 3020 manufactured by Shimadzu Corporation according to the protocol attached to the apparatus.
 上記湿式シリカの形態は特に限定されないが、例えば、湿式シリカスラリーであることが好ましい。なお、本明細書において「湿式シリカスラリー」とは、湿式シリカが溶媒中に分散している状態を意図する。換言すれば、本処理シリカは、後述する溶媒中に、湿式シリカ、ポリオキシエチレン不飽和脂肪酸エステルおよび硫黄含有シランカップリング剤を分散させた状態で、湿式シリカと硫黄含有シランカップリング剤とを反応させたものであってもよい。 The form of the wet silica is not particularly limited, but is preferably, for example, a wet silica slurry. In this specification, “wet silica slurry” means a state in which wet silica is dispersed in a solvent. In other words, the present treated silica is obtained by dispersing wet silica and a sulfur-containing silane coupling agent in a state in which wet silica, polyoxyethylene unsaturated fatty acid ester and sulfur-containing silane coupling agent are dispersed in a solvent described later. It may be reacted.
 上記構成であれば、湿式シリカおよび硫黄含有シランカップリング剤をより均一に分散した状態で反応させることができる。また、上記構成であれば、処理シリカを製造する工程において、湿式シリカ、ポリオキシエチレン不飽和脂肪酸エステルおよび硫黄含有シランカップリング剤などからなる組成物を分散させた分散液に高温の加熱処理を施したとしても、当該分散液の温度が必要以上に上昇することを防ぐことができる。当該分散液の温度が必要以上に上昇しなければ、当該分散液中の各成分(例えば、湿式シリカ、ポリオキシエチレン不飽和脂肪酸エステル、硫黄含有シランカップリング剤など)や、製造された処理シリカが熱分解することを防ぐことができる。その結果、処理シリカの製造に用いた湿式シリカ、ポリオキシエチレン不飽和脂肪酸エステルおよび硫黄含有シランカップリング剤などからなる組成物と略同じ組成を有する処理シリカを製造することができ、処理シリカの品質管理を容易にすることができる。 With the above configuration, the wet silica and the sulfur-containing silane coupling agent can be reacted in a more uniformly dispersed state. Moreover, if it is the said structure, in the process which manufactures a process silica, high temperature heat processing will be carried out to the dispersion liquid which disperse | distributed the composition which consists of wet silica, a polyoxyethylene unsaturated fatty acid ester, a sulfur containing silane coupling agent, etc. Even if applied, it is possible to prevent the temperature of the dispersion from rising more than necessary. If the temperature of the dispersion does not rise more than necessary, the components in the dispersion (for example, wet silica, polyoxyethylene unsaturated fatty acid ester, sulfur-containing silane coupling agent, etc.) and the produced treated silica Can be prevented from thermal decomposition. As a result, it is possible to produce a treated silica having substantially the same composition as a composition comprising a wet silica, a polyoxyethylene unsaturated fatty acid ester and a sulfur-containing silane coupling agent used for the production of the treated silica. Quality control can be facilitated.
 湿式シリカを分散させる溶媒としては、特に限定されるものではないが、水、アセトンなどのケトン類、エタノールなどのアルコール類、テトラヒドロフラン(THF)などのエーテル類などを挙げることができる。これらの溶媒の中では、水が特に好ましい。上記溶媒として、水を用いれば、ポリオキシエチレン不飽和脂肪酸エステルを併用することによって、当該溶媒中に湿式シリカおよび硫黄含有シランカップリング剤を、より容易に均一に分散させ得ることができ、またシリカとシランカップリング剤との反応を促進することが可能となることからも好ましい。 The solvent for dispersing the wet silica is not particularly limited, and examples thereof include water, ketones such as acetone, alcohols such as ethanol, and ethers such as tetrahydrofuran (THF). Of these solvents, water is particularly preferred. If water is used as the solvent, wet silica and a sulfur-containing silane coupling agent can be more easily and uniformly dispersed in the solvent by using a polyoxyethylene unsaturated fatty acid ester in combination. This is also preferable because the reaction between silica and the silane coupling agent can be promoted.
 上記湿式シリカスラリーは、湿式シリカを製造するときに得られる半製品の状態の湿式シリカスラリーであってもよいし、製品である湿式シリカを作製した後で、当該湿式シリカを溶媒に分散させて得られる湿式シリカスラリーであってもよい。 The wet silica slurry may be a semi-finished wet silica slurry obtained when producing wet silica, or after producing the product wet silica, the wet silica is dispersed in a solvent. The resulting wet silica slurry may be used.
 湿式シリカスラリー中の固形分(湿式シリカ)の濃度は、特に限定されないが、湿式シリカスラリーに対して、5~50重量%であることが好ましく、5~40重量%であることがより好ましく、5~35重量%であることが更に好ましく、8~30重量%であることが更に好ましく、10~17重量%であることが特に好ましい。湿式シリカスラリー中の固形分(湿式シリカ)の濃度が上記範囲内であれば、本処理シリカの製造工程で、湿式シリカおよび硫黄含有シランカップリング剤をより均一に分散させ得る。 The concentration of the solid content (wet silica) in the wet silica slurry is not particularly limited, but is preferably 5 to 50% by weight, more preferably 5 to 40% by weight, based on the wet silica slurry. It is more preferably 5 to 35% by weight, further preferably 8 to 30% by weight, and particularly preferably 10 to 17% by weight. If the concentration of the solid content (wet silica) in the wet silica slurry is within the above range, the wet silica and the sulfur-containing silane coupling agent can be more uniformly dispersed in the production process of the treated silica.
 <ポリオキシエチレン不飽和脂肪酸エステル>
 本処理シリカに使用し得るポリオキシエチレン不飽和脂肪酸エステルは、公知のものや市販品を利用でき、特に限定されない。例えば、周知の方法にしたがって、不飽和脂肪酸にエチレンオキシドを付加重合して得られたものを使用できる。
<Polyoxyethylene unsaturated fatty acid ester>
The polyoxyethylene unsaturated fatty acid ester that can be used in the treated silica can be a known or commercially available product, and is not particularly limited. For example, a product obtained by addition polymerization of an unsaturated fatty acid with ethylene oxide according to a known method can be used.
 上記ポリオキシエチレン不飽和脂肪酸エステルは、炭素数12~26の不飽和脂肪酸にエチレンオキシドを付加重合することによって得られるものであることが好ましく、炭素数14~24の不飽和脂肪酸にエチレンオキシドを付加重合することによって得られるものであることがより好ましく、炭素数16~20の不飽和脂肪酸にエチレンオキシドを付加重合することによって得られるものであることがさらに好ましく、炭素数18の不飽和脂肪酸にエチレンオキシドを付加重合することによって得られるものであることが特に好ましい。上記構成であれば、湿式シリカと硫黄含有シランカップリング剤とをより効率良く反応させることができる。 The polyoxyethylene unsaturated fatty acid ester is preferably obtained by addition polymerization of ethylene oxide to unsaturated fatty acid having 12 to 26 carbon atoms, and addition polymerization of ethylene oxide to unsaturated fatty acid having 14 to 24 carbon atoms. More preferably, it is obtained by addition polymerization of ethylene oxide to an unsaturated fatty acid having 16 to 20 carbon atoms, and ethylene oxide is added to an unsaturated fatty acid having 18 carbon atoms. It is particularly preferred that it is obtained by addition polymerization. If it is the said structure, wet silica and a sulfur containing silane coupling agent can be made to react more efficiently.
 上記不飽和脂肪酸内に含まれている不飽和結合の数は、特に限定されず、1個であってもよいし、2個であってもよいし、3個であってもよいし、4個であってもよいし、5個以上であってもよい。 The number of unsaturated bonds contained in the unsaturated fatty acid is not particularly limited, and may be one, two, three, or four. The number may be 5 or more.
 上記不飽和脂肪酸内に含まれている不飽和結合の種類は、特に限定されず、二重結合であってもよいし、三重結合であってもよい。湿式シリカと硫黄含有シランカップリング剤とをより効率良く反応させるという観点および低コストにて処理シリカを製造するという観点からは、二重結合であることがより好ましいといえる。 The type of unsaturated bond contained in the unsaturated fatty acid is not particularly limited, and may be a double bond or a triple bond. From the viewpoint of more efficiently reacting the wet silica and the sulfur-containing silane coupling agent, and from the viewpoint of producing the treated silica at a low cost, it can be said that a double bond is more preferable.
 より具体的には、上記ポリオキシエチレン不飽和脂肪酸エステルは、パルミトレイン酸、オレイン酸、バクセン酸、リノール酸、リノレン酸、エレオステアリン酸、アラキドン酸、またはネルボン酸に、エチレンオキシドを付加重合することによって得られるものであってもよい。 More specifically, the polyoxyethylene unsaturated fatty acid ester is obtained by addition polymerization of ethylene oxide to palmitoleic acid, oleic acid, vaccenic acid, linoleic acid, linolenic acid, eleostearic acid, arachidonic acid, or nervonic acid. May be obtained.
 また、上記ポリオキシエチレン不飽和脂肪酸エステルは、上述した脂肪酸を複数種類含む混合物にエチレンオキシドを付加重合することによって得られるものであってもよい。 Further, the polyoxyethylene unsaturated fatty acid ester may be obtained by addition polymerization of ethylene oxide to a mixture containing a plurality of types of fatty acids as described above.
 上記ポリオキシエチレン不飽和脂肪酸エステルのHLB(hydrophile lipophile balance)値は、特に限定されないが、5~10であることが好ましく、6~10であることがより好ましく、6~9であることがさらに好ましく、7~9であることが特に好ましい。なお、本発明において、HLB値は、グリフィンの式に基づいて算出されるHLB値である。グリフィンの式は、界面活性剤の親水基の式量と分子量を元に定義されるものであり、「HLB値=20×親水部の式量の総和/分子量」の式により算出されるものである。上記構成であれば、湿式シリカと硫黄含有シランカップリング剤とをより効率良く反応させることができる。 The HLB (hydrophile lipophile balance) value of the polyoxyethylene unsaturated fatty acid ester is not particularly limited, but is preferably 5 to 10, more preferably 6 to 10, and further preferably 6 to 9. It is preferably 7-9. In the present invention, the HLB value is an HLB value calculated based on the Griffin equation. The Griffin formula is defined based on the formula weight and molecular weight of the hydrophilic group of the surfactant, and is calculated by the formula “HLB value = 20 × sum of formula weight of hydrophilic portion / molecular weight”. is there. If it is the said structure, wet silica and a sulfur containing silane coupling agent can be made to react more efficiently.
 <硫黄含有シランカップリング剤>
 本処理シリカに使用し得る硫黄含有シランカップリング剤の具体的な構造は、特に限定されず、公知の硫黄含有シランカップリング剤を用いることができる。例えば、下記式[I]で表される硫黄含有シランカップリング剤および下記式[II]で表される硫黄含有シランカップリング剤からなる群より選択される少なくとも1つであることが好ましい。つまり;
<Sulfur-containing silane coupling agent>
The specific structure of the sulfur-containing silane coupling agent that can be used for the treated silica is not particularly limited, and a known sulfur-containing silane coupling agent can be used. For example, it is preferably at least one selected from the group consisting of a sulfur-containing silane coupling agent represented by the following formula [I] and a sulfur-containing silane coupling agent represented by the following formula [II]. That means;
Figure JPOXMLDOC01-appb-C000009
 (式中、Rはそれぞれ独立して炭素数1~18の一価の炭化水素基、Rは炭素数1~9の二価の炭化水素基、xは2~6、Yは0、1、または2の整数である。)
Figure JPOXMLDOC01-appb-C000009
(Wherein R 1 is independently a monovalent hydrocarbon group having 1 to 18 carbon atoms, R 2 is a divalent hydrocarbon group having 1 to 9 carbon atoms, x is 2 to 6, Y is 0, It is an integer of 1 or 2.)
Figure JPOXMLDOC01-appb-C000010
 (式中、Rはそれぞれ独立して炭素数1~18の一価の炭化水素基、Rは炭素数1~9の二価の炭化水素基、Rは水素または-CO-Rであり、Rは炭素数1~18の一価の炭化水素基であり、Yは0、1、または2の整数である。)
 RおよびRの炭素数は、1~12であることがより好ましく、1~8であることがさらに好ましく、1~4であることが特に好ましい。当該構成であれば、湿式シリカと硫黄含有シランカップリング剤とをより効率良く反応させることができる。RおよびRは、飽和炭化水素基であっても不飽和炭化水素基であってもよい。また、RおよびRは、直鎖状であっても、枝分かれ状であっても、環状であってもよい。
Figure JPOXMLDOC01-appb-C000010
Wherein R 3 is independently a monovalent hydrocarbon group having 1 to 18 carbon atoms, R 4 is a divalent hydrocarbon group having 1 to 9 carbon atoms, R 5 is hydrogen or —CO—R 6 R 6 is a monovalent hydrocarbon group having 1 to 18 carbon atoms, and Y is an integer of 0, 1, or 2.)
R 1 and R 3 preferably have 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms, and particularly preferably 1 to 4 carbon atoms. If it is the said structure, wet silica and a sulfur containing silane coupling agent can be made to react more efficiently. R 1 and R 3 may be a saturated hydrocarbon group or an unsaturated hydrocarbon group. R 1 and R 3 may be linear, branched or cyclic.
 上記xは、2~6であることがより好ましく、2~4であることが特に好ましい。その理由は、当該構成であれば、ゴムとの反応性を担保しながらゴムのスコーチ性を抑制することができるからである。 X is more preferably from 2 to 6, and particularly preferably from 2 to 4. The reason is that the structure can suppress the scorch property of the rubber while ensuring the reactivity with the rubber.
 上記Yは、0または1であることが特に好ましい。その理由は、当該構成であれば、反応点を複数持つためより多くのシラノールと反応させることができるからである。 Y is particularly preferably 0 or 1. The reason is that with this configuration, since there are a plurality of reaction points, it can be reacted with more silanols.
 RおよびRの炭素数は、2~9であることがより好ましく、3~8であることが特に好ましい。その理由は、当該構成であれば、加工性とゴム物性を両立させることができるからである。RおよびRは、飽和炭化水素基であっても不飽和炭化水素基であってもよい。また、RおよびRは、直鎖状であっても、枝分かれ状であっても、環状であってもよいが、直鎖もしくは芳香環を含む構造であることがより好ましい。 R 2 and R 4 preferably have 2 to 9 carbon atoms, and particularly preferably 3 to 8 carbon atoms. The reason is that if it is the said structure, workability and rubber physical property can be made compatible. R 2 and R 4 may be a saturated hydrocarbon group or an unsaturated hydrocarbon group. R 2 and R 4 may be linear, branched or cyclic, but more preferably have a structure containing a linear or aromatic ring.
 Rの炭素数は、1~15であることがより好ましく、2~12であることが特に好ましい。その理由は、当該構成であれば、加工性とゴム物性を両立させることができるからである。Rは、飽和炭化水素基であっても不飽和炭化水素基であってもよい。また、Rは、直鎖状であっても、枝分かれ状であっても、環状であってもよい。 R 6 has more preferably 1 to 15 carbon atoms, and particularly preferably 2 to 12 carbon atoms. The reason is that if it is the said structure, workability and rubber physical property can be made compatible. R 6 may be a saturated hydrocarbon group or an unsaturated hydrocarbon group. R 6 may be linear, branched or cyclic.
 このような硫黄含有シランカップリング剤の例としては、ビス(トリエトキシシリルプロピル)ジスルフィド、ビス(トリエトキシシリルプロピル)テトラスルフィド、ビス(トリエトキシシリルプロピル)ポリスルフィド、ビス(トリメトキシシリルプロピル)ジスルフィド、ビス(トリメトキシシリルプロピル)テトラスルフィド、ビス(ジエトキシメチルシリルプロピル)ジスルフィド、ビス(ジエトキシメチルシリルプロピル)テトラスルフィド、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシランおよび3-メルカプトプロピルメチルジエトキシシラン、3-オクタノイルチオ-1-プロピルトリエトキシシランなどが例示されるが、本発明は、これらに限定されるものではない。 Examples of such sulfur-containing silane coupling agents include bis (triethoxysilylpropyl) disulfide, bis (triethoxysilylpropyl) tetrasulfide, bis (triethoxysilylpropyl) polysulfide, bis (trimethoxysilylpropyl) disulfide Bis (trimethoxysilylpropyl) tetrasulfide, bis (diethoxymethylsilylpropyl) disulfide, bis (diethoxymethylsilylpropyl) tetrasulfide, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3- Examples include mercaptopropylmethyldimethoxysilane, 3-mercaptopropylmethyldiethoxysilane, and 3-octanoylthio-1-propyltriethoxysilane. Akira is not intended to be limited to these.
 <他の成分>
 本処理シリカは、上述した湿式シリカ、ポリオキシエチレン不飽和脂肪酸エステルおよび硫黄含有シランカップリング剤の他に、他の成分を含んでいてもよい。
<Other ingredients>
The treated silica may contain other components in addition to the wet silica, polyoxyethylene unsaturated fatty acid ester and sulfur-containing silane coupling agent described above.
 なお、上記他の成分が、本処理シリカに含まれているとは、本処理シリカを製造する工程で添加されたことにより得られた本処理シリカに含まれていることを意味する。上記他の成分は、本処理シリカを製造する工程のどの時点で添加されたものであってもよいが、本処理シリカは、ポリオキシエチレン不飽和脂肪酸エステルおよび上記他の成分の存在下で、湿式シリカを硫黄含有シランカップリング剤で処理してなるものであることがより好ましい。これにより、添加する他の成分の機能が好適に発揮される。 In addition, that said other component is contained in this process silica means that it is contained in this process silica obtained by adding at the process of manufacturing this process silica. The other component may be added at any point in the process of producing the treated silica, but the treated silica is used in the presence of the polyoxyethylene unsaturated fatty acid ester and the other components. It is more preferable that the wet silica be processed with a sulfur-containing silane coupling agent. Thereby, the function of the other component to add is exhibited suitably.
 本処理シリカは、他の成分として、例えば、塩基性物質および酸性物質からなる群より選択される少なくとも1つを含有していてもよい。 The present treated silica may contain, as another component, for example, at least one selected from the group consisting of basic substances and acidic substances.
 塩基性物質や酸性物質を含むことにより、シランカップリング剤の加水分解が促進され、シリカとシランカップリング剤との反応がより進行するという効果がある。 By including a basic substance or an acidic substance, hydrolysis of the silane coupling agent is promoted, and there is an effect that the reaction between silica and the silane coupling agent further proceeds.
 上記塩基性物質の具体的な構成は、特に限定されないが、ヒドロキシル基が結合していてもよい炭素数1~24のアルキル基を有する、モノアルキルアミン、ジアルキルアミンおよびトリアルキルアミンからなる群より選択される少なくとも1つを挙げることができる。なお、アルキル基に結合しているヒドロキシル基の数は特に限定されず、1個であってもよいし、複数個であってもよい。 The specific structure of the basic substance is not particularly limited, but from the group consisting of monoalkylamine, dialkylamine and trialkylamine having an alkyl group having 1 to 24 carbon atoms to which a hydroxyl group may be bonded. There may be at least one selected. In addition, the number of the hydroxyl groups couple | bonded with the alkyl group is not specifically limited, One may be sufficient and plural may be sufficient.
 上述した塩基性物質に由来する効果をより高くするという観点から、上記塩基性物質の具体的な構成は、ヒドロキシル基が結合していてもよい、炭素数2~24であるアルキル基を有する、モノアルキルアミン、ジアルキルアミンおよびトリアルキルアミンからなる群より選択される少なくとも1つであることが好ましく、ヒドロキシル基が結合していてもよい、炭素数4~24であるアルキル基を有する、ジアルキルアミンおよびトリアルキルアミンからなる群より選択される少なくとも1つであることが特に好ましい。更に、上記アルキル基には、ヒドロキシル基が結合していることが、より好ましい(換言すれば、上記塩基性物質は、ヒドロキシル基を有するアミン類であることが、より好ましい)。 From the viewpoint of enhancing the effect derived from the basic substance described above, the specific structure of the basic substance has an alkyl group having 2 to 24 carbon atoms to which a hydroxyl group may be bonded. Preferably, it is at least one selected from the group consisting of monoalkylamines, dialkylamines and trialkylamines, and a dialkylamine having an alkyl group having 4 to 24 carbon atoms to which a hydroxyl group may be bonded. And at least one selected from the group consisting of trialkylamines is particularly preferred. Furthermore, it is more preferable that a hydroxyl group is bonded to the alkyl group (in other words, the basic substance is more preferably an amine having a hydroxyl group).
 このような塩基性物質の例としては、メチルアミン、エチルアミン、ブチルアミン、オクチルアミン、ジメチルアミン、ジエチルアミン、ジブチルアミン、ジオクチルアミン、トリメチルアミン、トリエチルアミン、トリブチルアミン、トリオクチルアミン、エタノールアミン、ジエタノールアミン、トリエタノールアミン、メチルエタノールアミン、エチルエタノールアミン、ブチルエタノールアミン、ジメチルエタノールアミン、ジエチルエタノールアミン、ジブチルエタノールアミン、メチルジエタノールアミン、エチルジエタノールアミン、ブチルジエタノールアミンおよびアミノエチルエタノールアミンなどが例示されるが、本発明は、これらに限定されるものではない。 Examples of such basic substances are methylamine, ethylamine, butylamine, octylamine, dimethylamine, diethylamine, dibutylamine, dioctylamine, trimethylamine, triethylamine, tributylamine, trioctylamine, ethanolamine, diethanolamine, triethanol. Examples include amine, methylethanolamine, ethylethanolamine, butylethanolamine, dimethylethanolamine, diethylethanolamine, dibutylethanolamine, methyldiethanolamine, ethyldiethanolamine, butyldiethanolamine, and aminoethylethanolamine. It is not limited to these.
 上記酸性物質の具体的な構成は、特に限定されないが、炭素数が1~18である、(ポリ)カルボン酸およびヒドロキシ酸からなる群より選択される少なくとも1つを挙げることができる。 The specific configuration of the acidic substance is not particularly limited, and can include at least one selected from the group consisting of (poly) carboxylic acids and hydroxy acids having 1 to 18 carbon atoms.
 上述した酸性物質に由来する効果をより高くするという観点から、上記酸性物質の具体的な構成は、炭素数1~12である、(ポリ)カルボン酸およびヒドロキシ酸からなる群より選択される少なくとも1つであることが好ましく、炭素数2~12である、(ポリ)カルボン酸およびヒドロキシ酸からなる群より選択される少なくとも1つであることがより好ましく、炭素数3~8である、(ポリ)カルボン酸およびヒドロキシ酸からなる群より選択される少なくとも1つであることが特に好ましい。 From the viewpoint of increasing the effect derived from the acidic substance described above, the specific structure of the acidic substance is at least selected from the group consisting of (poly) carboxylic acids and hydroxy acids having 1 to 12 carbon atoms. It is preferably one, more preferably at least one selected from the group consisting of (poly) carboxylic acids and hydroxy acids having 2 to 12 carbon atoms, and having 3 to 8 carbon atoms ( Particularly preferred is at least one selected from the group consisting of poly) carboxylic acids and hydroxy acids.
 また、上記酸性物質は、分子内に、炭素間の二重結合を含んでいてもよい。酸性物質が分子内に二重結合を含んでいれば、加硫反応に関与することにより、ブルームやブリード等を抑制する可能性があるため好ましい。 The acidic substance may contain a double bond between carbons in the molecule. It is preferable that the acidic substance contains a double bond in the molecule because it may suppress bloom, bleed and the like by participating in the vulcanization reaction.
 このような酸性物質の例としては、酢酸、酪酸、ミリスチン酸、ステアリン酸、リンゴ酸、クエン酸、コハク酸、酒石酸、乳酸、フマル酸およびマレイン酸などが例示されるが、本発明は、これらに限定されるものではない。 Examples of such acidic substances include acetic acid, butyric acid, myristic acid, stearic acid, malic acid, citric acid, succinic acid, tartaric acid, lactic acid, fumaric acid and maleic acid. It is not limited to.
 本処理シリカに含まれる塩基性物質および酸性物質の各々の量は、特に限定されないが、湿式シリカ100重量部に対して、0.1~5重量部であることが好ましく、0.1~3重量部であることがより好ましく、0.3~2重量部であることがより好ましく、0.5~2重量部であることが特に好ましい。上記構成であれば、上述した塩基性物質に由来する効果および上述した酸性物質に由来する効果を、より高くすることができる。 The amount of each of the basic substance and the acidic substance contained in the treated silica is not particularly limited, but is preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of wet silica, and 0.1 to 3 The amount is more preferably part by weight, more preferably 0.3 to 2 parts by weight, and particularly preferably 0.5 to 2 parts by weight. If it is the said structure, the effect derived from the basic substance mentioned above and the effect derived from the acidic substance mentioned above can be made higher.
 本処理シリカは、本発明の効果を損なわない限りにおいて、上述した成分以外に、更に別の成分を含んでいてもよい。例えば、本処理シリカは、カーボンブラック、炭酸カルシウムなどの充填材、加工油、ワックス、老化防止剤、スコーチ防止剤、粘着付与剤、ステアリン酸、ポリオキシエチレン飽和脂肪酸エステル、亜鉛華、加工助剤、加硫促進剤および加硫剤等を含んでいてもよい。 The present treated silica may further contain other components in addition to the components described above as long as the effects of the present invention are not impaired. For example, this treated silica is a filler such as carbon black and calcium carbonate, processing oil, wax, anti-aging agent, anti-scorching agent, tackifier, stearic acid, polyoxyethylene saturated fatty acid ester, zinc white, processing aid. Further, it may contain a vulcanization accelerator and a vulcanizing agent.
 本処理シリカに含まれる上記の更に別の成分の量は、特に限定されないが、湿式シリカ100重量部に対して、1~30重量部であることが好ましく、1~15重量部であることがより好ましい。 The amount of the other component contained in the present treated silica is not particularly limited, but is preferably 1 to 30 parts by weight, and preferably 1 to 15 parts by weight with respect to 100 parts by weight of wet silica. More preferred.
 <処理シリカの製造方法>
 本発明に用いられる処理シリカの製造方法は、上述した成分を用いて、上述した処理シリカを製造するための方法である。本処理シリカの製造方法は、ポリオキシエチレン不飽和脂肪酸エステル存在下で、湿式シリカと硫黄含有シランカップリング剤とを反応させる乾燥工程を含んでいればよく、更に任意で、混合工程および加熱工程からなる群より選択される少なくとも1つの工程を含んでいてもよい。以下に、各工程について説明する。
<Method for producing treated silica>
The manufacturing method of the processing silica used for this invention is a method for manufacturing the processing silica mentioned above using the component mentioned above. The process for producing the treated silica may include a drying step in which wet silica and a sulfur-containing silane coupling agent are reacted in the presence of a polyoxyethylene unsaturated fatty acid ester, and further optionally a mixing step and a heating step. At least one step selected from the group consisting of: Below, each process is demonstrated.
 乾燥工程は、湿式シリカ(湿式シリカスラリー)、ポリオキシエチレン不飽和脂肪酸エステル、硫黄含有シランカップリング剤、および必要に応じて上記他の成分を含む組成物を、高温にて、所定の時間反応させる工程であればよく、その他の構成は限定されない。当該乾燥工程において、湿式シリカと硫黄含有シランカップリング剤とが反応して、シリカ粒子の凝集体の表面のみならず内部にまでも、均一、かつ、大量に硫黄含有シランカップリング剤が結合する。従って、乾燥工程は反応工程として考えてもよい。 In the drying step, a composition containing wet silica (wet silica slurry), polyoxyethylene unsaturated fatty acid ester, sulfur-containing silane coupling agent, and, if necessary, the above other components is reacted at a high temperature for a predetermined time. Any other configuration is not limited as long as it is a process to be performed. In the drying step, wet silica and the sulfur-containing silane coupling agent react with each other, and the sulfur-containing silane coupling agent binds uniformly and in large amounts not only on the surface of the silica particle aggregate but also inside. . Therefore, the drying process may be considered as a reaction process.
 乾燥工程に用いる具体的な乾燥装置としては、特に限定されないが、棚段乾燥機、ドラムドライヤー、ロータリーキルン、真空加熱乾燥機およびスプレードライヤー(スプレードライ法)などを挙げることができる。これらの乾燥装置の中では、スプレードライヤー(スプレードライ法)が好ましい。その理由は、シリカ同士の凝集を抑制しつつシランカップリング剤でシリカ表面を被覆することが可能となるからである。 Specific drying apparatuses used in the drying process are not particularly limited, and examples include a shelf dryer, a drum dryer, a rotary kiln, a vacuum heating dryer, and a spray dryer (spray drying method). Among these drying apparatuses, a spray dryer (spray drying method) is preferable. The reason is that the silica surface can be coated with a silane coupling agent while suppressing aggregation of silica.
 なお、乾燥方法としてスプレードライヤー(スプレードライ法)を採用する場合、噴霧方式は、特に限定されず、ノズル方式であってもよいし、遠心噴霧方式であってもよい。 In addition, when a spray dryer (spray drying method) is adopted as a drying method, the spraying method is not particularly limited, and may be a nozzle method or a centrifugal spraying method.
 乾燥温度(例えば、乾燥用の熱風の温度)としては、特に限定されないが、60℃~1000℃であることが好ましく、100℃~800℃であることがより好ましい。乾燥温度は、200℃~900℃であってもよい。この場合、乾燥直後の処理シリカの温度は、80~200℃に調整され得る。上述した乾燥温度であれば、湿式シリカと硫黄含有シランカップリング剤とを十分に反応させることができるとともに、得られた処理シリカを十分に乾燥させることができる。また、処理シリカの製造に用いられる成分および処理シリカが熱分解することを防ぐことができる。 The drying temperature (for example, the temperature of hot air for drying) is not particularly limited, but is preferably 60 ° C. to 1000 ° C., and more preferably 100 ° C. to 800 ° C. The drying temperature may be 200 ° C to 900 ° C. In this case, the temperature of the treated silica immediately after drying can be adjusted to 80 to 200 ° C. If it is the drying temperature mentioned above, while wet silica and a sulfur containing silane coupling agent can fully be made to react, the obtained process silica can be fully dried. Moreover, it can prevent that the component used for manufacture of a process silica and a process silica thermally decompose.
 乾燥時間としては、特に限定されないが、1秒間~24時間であることが好ましく、1秒間~8時間であることがより好ましい。 The drying time is not particularly limited, but is preferably 1 second to 24 hours, and more preferably 1 second to 8 hours.
 本処理シリカの製造方法は、乾燥工程に付される前に、予め処理シリカの製造に用いられる成分を混合する混合工程を含んでいてもよい。混合工程においては、処理シリカの製造に用いられる成分が十分に分散される方法であれば、特に限定されることはなく、適宜攪拌装置を用いても良い。 The method for producing the treated silica may include a mixing step in which components used for producing the treated silica are mixed in advance before being subjected to the drying step. In a mixing process, if it is the method by which the component used for manufacture of process silica is fully disperse | distributed, it will not specifically limit and you may use a stirring apparatus suitably.
 混合の温度条件としては、特に限定されないが、0~120℃であることが好ましく、10℃~120℃であることがより好ましく、20℃~105℃であることがより好ましく、20℃~95℃であることが特に好ましい。上記混合温度であれば、処理シリカの製造に用いられる成分が熱分解することを防ぐことができる。その結果、本実施の形態の処理シリカの組成を、処理シリカの製造に用いられる成分の組成を反映した組成にすることができる。 The mixing temperature condition is not particularly limited, but is preferably 0 to 120 ° C, more preferably 10 ° C to 120 ° C, more preferably 20 ° C to 105 ° C, and more preferably 20 ° C to 95 ° C. It is particularly preferred that the temperature is If it is the said mixing temperature, it can prevent that the component used for manufacture of process silica decomposes | disassembles thermally. As a result, the composition of the treated silica of the present embodiment can be made to reflect the composition of the components used for producing the treated silica.
 混合時間は、5分間~24時間であることが好ましく、10分間~24時間であることがより好ましく、さらに30分間~4時間、1~24時間が特に好ましい。 The mixing time is preferably 5 minutes to 24 hours, more preferably 10 minutes to 24 hours, and particularly preferably 30 minutes to 4 hours, and 1 to 24 hours.
 混合工程においては、pH4~10の条件下で混合することが好ましい。また、上記pHは、4~9であることが特に好ましい。上記のpH4~10の条件であれば、処理シリカの製造において、pHの調節に用いる酸または塩基の量を少なくすることができる。更に、硫黄含有シランカップリング剤などが、混合する際に容器の壁面などに付着することを防止できる。 In the mixing step, it is preferable to mix under conditions of pH 4-10. The pH is particularly preferably 4-9. When the pH is in the range of 4 to 10, the amount of acid or base used to adjust the pH can be reduced in the production of the treated silica. Furthermore, it can prevent that a sulfur containing silane coupling agent adheres to the wall surface etc. of a container, when mixing.
 本処理シリカの製造方法は、乾燥工程にて得られた乾燥産物を加熱する加熱工程を含んでいてもよい。加熱工程に用いる具体的な加熱装置としては、特に限定されないが、市販のオーブンなどを挙げることができる。 The method for producing the treated silica may include a heating step of heating the dried product obtained in the drying step. Although it does not specifically limit as a concrete heating apparatus used for a heating process, Commercially available oven etc. can be mentioned.
 加熱温度(例えば、オーブン内の温度)および加熱時間としては、特に限定されないが、乾燥工程にて得られた乾燥産物を、80℃~200℃にて10分間~24時間加熱することが好ましく、80℃~180℃にて10分間~12時間加熱することがより好ましく、100℃~160℃にて30分間~8時間加熱することがさらに好ましく、150℃にて6時間加熱することが特に好ましい。 The heating temperature (for example, the temperature in the oven) and the heating time are not particularly limited, but the dried product obtained in the drying step is preferably heated at 80 ° C. to 200 ° C. for 10 minutes to 24 hours, Heating at 80 ° C. to 180 ° C. for 10 minutes to 12 hours is more preferable, heating at 100 ° C. to 160 ° C. for 30 minutes to 8 hours is more preferable, and heating at 150 ° C. for 6 hours is particularly preferable. .
 上述した加熱温度および加熱時間であれば、処理シリカを十分に乾燥させることができるのみならず、処理シリカの製造に用いられる成分、および、処理シリカが熱分解することを防ぐことができる。 If the heating temperature and the heating time are as described above, it is possible not only to sufficiently dry the treated silica but also to prevent the components used for the production of the treated silica and the treated silica from being thermally decomposed.
 〔1-2.ゴム〕
 本発明に係るゴム組成物に含有されるゴムは、特に限定されるものではなく、天然ゴムであっても、合成ゴムであってもよい。また、合成ゴムとしても、特に限定されるものではないが、例えば、スチレン-ブタジエンゴム(SBR)、ブタジエンゴム(BR)、イソプレンゴム(IR)、ニトリルゴム(NBR)、アクリロニトリル-ブタジエンゴム(NBR)、クロロプレンゴム(CR)などのジエン系ゴム;ブチルゴム(IIR)、エチレン-プロピレンゴム(EPDM)、アクリルゴム(ACM)、クロロスルホン化ポリエチレンゴム(CSM)、フッ素ゴム(FKM)などのオレフィン系ゴム;シリコーンゴム(Q);ウレタンゴム(AU)などを挙げることができる。
[1-2. Rubber)
The rubber contained in the rubber composition according to the present invention is not particularly limited, and may be natural rubber or synthetic rubber. Further, the synthetic rubber is not particularly limited, but for example, styrene-butadiene rubber (SBR), butadiene rubber (BR), isoprene rubber (IR), nitrile rubber (NBR), acrylonitrile-butadiene rubber (NBR). ), Diene rubbers such as chloroprene rubber (CR); olefins such as butyl rubber (IIR), ethylene-propylene rubber (EPDM), acrylic rubber (ACM), chlorosulfonated polyethylene rubber (CSM), fluorine rubber (FKM) Examples thereof include rubber; silicone rubber (Q); urethane rubber (AU).
 上記ゴムは、どのような重合方法によって製造されたものでもよく、乳化重合により製造されたゴムであっても、溶液重合によって製造されたゴムであってもよい。また、上記ゴムは、分子末端が変性された、いわゆる末端変性ゴムであってもよい。 The rubber may be produced by any polymerization method, and may be a rubber produced by emulsion polymerization or a rubber produced by solution polymerization. The rubber may be a so-called terminal-modified rubber having a molecular terminal modified.
 上記ゴムは、それぞれ単独で、または2種類以上を組み合わせて用いることができる。 The above rubbers can be used alone or in combination of two or more.
 中でも、硫黄含有シランカップリング剤の反応性の観点から、上記ゴムは、ジエン系ゴムであることがより好ましい。とりわけ、上記ゴムは、スチレン-ブタジエンゴム(SBR)、ブタジエンゴム(BR)、天然ゴム(NR)、ブチルゴム(IIR)、およびエチレン-プロピレンゴム(EPDM)からなる群より選択される少なくとも1種であることが特に好ましい。 Among these, from the viewpoint of the reactivity of the sulfur-containing silane coupling agent, the rubber is more preferably a diene rubber. In particular, the rubber is at least one selected from the group consisting of styrene-butadiene rubber (SBR), butadiene rubber (BR), natural rubber (NR), butyl rubber (IIR), and ethylene-propylene rubber (EPDM). It is particularly preferred.
 〔1-3.他の成分〕
 <第2のシランカップリング剤>
 本発明に係るゴム組成物は、上記処理シリカおよび上記ゴムの他に、更に、第2のシランカップリング剤を含有していてもよい。
[1-3. Other ingredients]
<Second silane coupling agent>
The rubber composition according to the present invention may further contain a second silane coupling agent in addition to the treated silica and the rubber.
 ここで、「第2のシランカップリング剤」とは、湿式シリカを硫黄含有シランカップリング剤で処理して上記処理シリカを製造するために用いられ、上記処理シリカに含有されている硫黄含有シランカップリング剤とは別に、ゴム組成物の成分として含有させるシランカップリング剤をいう。 Here, the “second silane coupling agent” is a sulfur-containing silane that is used to produce the treated silica by treating wet silica with a sulfur-containing silane coupling agent. Aside from the coupling agent, it refers to a silane coupling agent to be contained as a component of the rubber composition.
 本発明に係るゴム組成物に含有される第2のシランカップリング剤の量は、特に限定されるものではないが、ゴム100重量部に対して、1~10重量部であることが好ましく、1~8重量部であることがより好ましい。 The amount of the second silane coupling agent contained in the rubber composition according to the present invention is not particularly limited, but is preferably 1 to 10 parts by weight with respect to 100 parts by weight of rubber. More preferably, it is 1 to 8 parts by weight.
 第2のシランカップリング剤の含有量が、ゴム100重量部に対して、1重量部以上であることにより、処理シリカのシリカ粒子表面に一部硫黄含有シランカップリング剤が結合していない部分がある場合に、かかる部分をさらに、第2のシランカップリング剤で被覆することができる。これにより、ゴム組成物を混練するときの、混練物の粘度を下げることができる。また第2のシランカップリング剤の量が、ゴム100重量部に対して、10重量部以下であることにより、少ない配合量にて効果を発揮でき、発生するVOCも抑制できるという効果がある。 The part in which the sulfur-containing silane coupling agent is not partially bonded to the silica particle surface of the treated silica when the content of the second silane coupling agent is 1 part by weight or more with respect to 100 parts by weight of rubber. If present, such portions can be further coated with a second silane coupling agent. Thereby, the viscosity of the kneaded product when kneading the rubber composition can be lowered. Moreover, when the amount of the second silane coupling agent is 10 parts by weight or less with respect to 100 parts by weight of the rubber, the effect can be exhibited with a small blending amount, and the generated VOC can be suppressed.
 上記第2のシランカップリング剤としては、これに限定されるものではないが、例えば、(ハロゲン化)アルキル系シラン、アミノ系シラン、(メタ)アクリル系シラン、ビニル系シラン、エポキシ系シラン、(ポリ)スルフィド系シラン、(保護化)メルカプト系シランなどを用いることができる。 Examples of the second silane coupling agent include, but are not limited to, (halogenated) alkyl silane, amino silane, (meth) acrylic silane, vinyl silane, epoxy silane, (Poly) sulfide silane, (protected) mercapto silane and the like can be used.
 中でも、上記第2のシランカップリング剤は、下記式[III]で表される硫黄含有シランカップリング剤および下記式[IV]で表される硫黄含有シランカップリング剤からなる群より選択される少なくとも1つであることがより好ましい。つまり; Among these, the second silane coupling agent is selected from the group consisting of a sulfur-containing silane coupling agent represented by the following formula [III] and a sulfur-containing silane coupling agent represented by the following formula [IV]. More preferably, there is at least one. That is;
Figure JPOXMLDOC01-appb-C000011
(式中、Rはそれぞれ独立して炭素数1~18の一価の炭化水素基、Rは炭素数1~9の二価の炭化水素基、xは2~6、Yは0、1、または2の整数である。)
Figure JPOXMLDOC01-appb-C000011
(Wherein R 1 is independently a monovalent hydrocarbon group having 1 to 18 carbon atoms, R 2 is a divalent hydrocarbon group having 1 to 9 carbon atoms, x is 2 to 6, Y is 0, It is an integer of 1 or 2.)
Figure JPOXMLDOC01-appb-C000012
(式中、Rはそれぞれ独立して炭素数1~18の一価の炭化水素基、Rは炭素数1~9の二価の炭化水素基、Rは水素または-CO-Rであり、Rは炭素数1~18の一価の炭化水素基であり、Yは0、1、または2の整数である。)
 RおよびRの炭素数は、1~12であることがより好ましく、1~8であることがさらに好ましく、1~4であることが特に好ましい。当該構成であれば、処理シリカのシリカ表面に一部硫黄含有シランカップリング剤が結合していない部分がある場合に、かかる部分をさらに、第2のシランカップリング剤で効率よく被覆することができる。RおよびRは、飽和炭化水素基であっても不飽和炭化水素基であってもよい。また、RおよびRは、直鎖状であっても、枝分かれ状であっても、環状であってもよい。
Figure JPOXMLDOC01-appb-C000012
Wherein R 3 is independently a monovalent hydrocarbon group having 1 to 18 carbon atoms, R 4 is a divalent hydrocarbon group having 1 to 9 carbon atoms, R 5 is hydrogen or —CO—R 6 R 6 is a monovalent hydrocarbon group having 1 to 18 carbon atoms, and Y is an integer of 0, 1, or 2.)
R 1 and R 3 preferably have 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms, and particularly preferably 1 to 4 carbon atoms. If it is the said structure, when there exists a part which the sulfur containing silane coupling agent has not couple | bonded with the silica surface of process silica, this part can be further coat | covered efficiently with a 2nd silane coupling agent. it can. R 1 and R 3 may be a saturated hydrocarbon group or an unsaturated hydrocarbon group. R 1 and R 3 may be linear, branched or cyclic.
 上記xは、2~6であることがより好ましく、2~4であることが特に好ましい。その理由は、当該構成であれば、ゴムとの反応性を担保しながらゴムのスコーチ性を抑制することができるからである。 X is more preferably from 2 to 6, and particularly preferably from 2 to 4. The reason is that the structure can suppress the scorch property of the rubber while ensuring the reactivity with the rubber.
 上記Yは、0または1であることが特に好ましい。その理由は、当該構成であれば、反応点を複数持つためより多くのシラノールと反応させることができるからである。 Y is particularly preferably 0 or 1. The reason is that with this configuration, since there are a plurality of reaction points, it can be reacted with more silanols.
 RおよびRの炭素数は、2~9であることがより好ましく、3~8であることが特に好ましい。その理由は、当該構成であれば、加工性とゴム物性を両立させることができるからである。RおよびRは、飽和炭化水素基であっても不飽和炭化水素基であってもよい。また、RおよびRは、直鎖状であっても、枝分かれ状であっても、環状であってもよいが、直鎖もしくは芳香環を含む構造であることがより好ましい。 R 2 and R 4 preferably have 2 to 9 carbon atoms, and particularly preferably 3 to 8 carbon atoms. The reason is that if it is the said structure, workability and rubber physical property can be made compatible. R 2 and R 4 may be a saturated hydrocarbon group or an unsaturated hydrocarbon group. R 2 and R 4 may be linear, branched or cyclic, but more preferably have a structure containing a linear or aromatic ring.
 Rの炭素数は、1~15であることがより好ましく、2~12であることが特に好ましい。その理由は、当該構成であれば、加工性とゴム物性を両立させることができるからである。Rは、飽和炭化水素基であっても不飽和炭化水素基であってもよい。また、Rは、直鎖状であっても、枝分かれ状であっても、環状であってもよい。 R 6 has more preferably 1 to 15 carbon atoms, and particularly preferably 2 to 12 carbon atoms. The reason is that if it is the said structure, workability and rubber physical property can be made compatible. R 6 may be a saturated hydrocarbon group or an unsaturated hydrocarbon group. R 6 may be linear, branched or cyclic.
 このような第2のシランカップリング剤の例としては、ビス(トリエトキシシリルプロピル)ジスルフィド、ビス(トリエトキシシリルプロピル)テトラスルフィド、ビス(トリエトキシシリルプロピル)ポリスルフィド、ビス(トリメトキシシリルプロピル)ジスルフィド、ビス(トリメトキシシリルプロピル)テトラスルフィド、ビス(ジエトキシメチルシリルプロピル)ジスルフィド、ビス(ジエトキシメチルシリルプロピル)テトラスルフィド、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシランおよび3-メルカプトプロピルメチルジエトキシシラン、3-オクタノイルチオ-1-プロピルトリエトキシシランなどが例示されるが、本発明は、これらに限定されるものではない。 Examples of such second silane coupling agents include bis (triethoxysilylpropyl) disulfide, bis (triethoxysilylpropyl) tetrasulfide, bis (triethoxysilylpropyl) polysulfide, bis (trimethoxysilylpropyl) Disulfide, bis (trimethoxysilylpropyl) tetrasulfide, bis (diethoxymethylsilylpropyl) disulfide, bis (diethoxymethylsilylpropyl) tetrasulfide, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3 -Mercaptopropylmethyldimethoxysilane, 3-mercaptopropylmethyldiethoxysilane, 3-octanoylthio-1-propyltriethoxysilane, etc. It is not intended to be limited thereto.
 <充填材>
 本発明に係るゴム組成物は、上記処理シリカおよび上記ゴムの他に、更に、充填材を含有していてもよい。
<Filler>
The rubber composition according to the present invention may further contain a filler in addition to the treated silica and the rubber.
 かかる充填材としては、ゴム組成物の混練作業時に通常添加されるものであれば特に限定されるものではないが、例えば、湿式シリカ、乾式シリカおよび水酸化アルミニウムからなる群より選択される少なくとも1つを好適に用いることができる。これらの充填材を用いることにより、ゴムの補強性をさらに向上させることができるという効果を得ることができる。中でも、シランカップリング剤との反応性の観点から、湿式シリカが本充填材として用いられることが特に好ましい。また、上記湿式シリカ、乾式シリカおよび水酸化アルミニウムのBET比表面積は20~300m/gであることが好ましく、50~250m/gであることがより好ましく、100~250m/gであることがさらに好ましい。上記充填材のBET比表面積が20m/gであれば、本充填材とゴムとを混ぜ合わせたときの、ゴムの補強性に優れ、ゴムの耐摩耗性が向上する。BET比表面積が300m/g以下であれば、本充填材とゴムとを混ぜ合わせたときの、ゴムの粘度上昇を抑えることができ、本充填材とゴムとを、より均一に混練できる。 The filler is not particularly limited as long as it is usually added during the kneading operation of the rubber composition. For example, at least one selected from the group consisting of wet silica, dry silica, and aluminum hydroxide is used. Can be suitably used. By using these fillers, it is possible to obtain an effect that the rubber reinforcement can be further improved. Among them, wet silica is particularly preferably used as the filler from the viewpoint of reactivity with the silane coupling agent. The BET specific surface area of the wet silica, dry silica and aluminum hydroxide is preferably 20 to 300 m 2 / g, more preferably 50 to 250 m 2 / g, and 100 to 250 m 2 / g. More preferably. When the BET specific surface area of the filler is 20 m 2 / g, when the filler and the rubber are mixed, the rubber has excellent reinforcing properties and the wear resistance of the rubber is improved. When the BET specific surface area is 300 m 2 / g or less, an increase in the viscosity of the rubber when the filler and the rubber are mixed can be suppressed, and the filler and the rubber can be more uniformly kneaded.
 本発明に係るゴム組成物に含有される上記充填材の量はこれに限定されるものではないが、ゴム100重量部に対して、10~80重量部であることが好ましく、10~70重量部であることがより好ましく、10~60重量部であることがさらに好ましい。 The amount of the filler contained in the rubber composition according to the present invention is not limited to this, but is preferably 10 to 80 parts by weight with respect to 100 parts by weight of the rubber. More preferably, the amount is 10 to 60 parts by weight.
 上記充填材の含有量が、ゴム100重量部に対して、10重量部以上であることにより、かかるゴム組成物から得られるゴム製品の補強性が高く、強度および耐摩耗性に優れたゴム製品を製造することができる。また上記充填材の含有量が、ゴム100重量部に対して、80重量部以下であることにより、かかるゴム組成物から加工性に優れたゴム製品を得ることができる。 A rubber product obtained from the rubber composition having a high reinforcing property and an excellent strength and wear resistance when the filler content is 10 parts by weight or more with respect to 100 parts by weight of the rubber. Can be manufactured. Further, when the content of the filler is 80 parts by weight or less with respect to 100 parts by weight of the rubber, a rubber product excellent in processability can be obtained from the rubber composition.
 <加硫剤>
 本発明に係るゴム組成物は、上記処理シリカおよび上記ゴムの他に、更に、加硫剤を含有していてもよい。
<Vulcanizing agent>
The rubber composition according to the present invention may further contain a vulcanizing agent in addition to the treated silica and the rubber.
 かかる加硫剤としては、ゴム組成物の混練作業時に通常添加されるものであれば特に限定されるものではないが、硫黄、セレン、有機過酸化物、モルホリンジスルフィド、チウラム系化合物およびオキシム系化合物から選択される少なくとも一つであることがより好ましい。 The vulcanizing agent is not particularly limited as long as it is usually added during the kneading operation of the rubber composition, but sulfur, selenium, organic peroxide, morpholine disulfide, thiuram compound and oxime compound. More preferably, it is at least one selected from.
 本発明に係るゴム組成物に含有される上記加硫剤の含有量も特に限定されるものではないが、ゴム100重量部に対して、0.1~20重量部であることが好ましく、0.2~15重量部であることがより好ましく、0.5~10重量部であることがさらに好ましい。 The content of the vulcanizing agent contained in the rubber composition according to the present invention is not particularly limited, but is preferably 0.1 to 20 parts by weight with respect to 100 parts by weight of rubber. More preferably, it is 2 to 15 parts by weight, and further preferably 0.5 to 10 parts by weight.
 上記加硫剤の含有量が、ゴム100重量部に対して、0.1重量部以上であることにより、ゴムを好適に架橋することができるため好ましい。また上記加硫剤の含有量が、ゴム100重量部に対して、20重量部以下であることにより、ゴム状弾性を保つことが可能であるため好ましい。 It is preferable that the content of the vulcanizing agent is 0.1 parts by weight or more with respect to 100 parts by weight of the rubber because the rubber can be suitably crosslinked. Further, it is preferable that the content of the vulcanizing agent is 20 parts by weight or less with respect to 100 parts by weight of the rubber because rubber elasticity can be maintained.
 <その他の配合剤>
 本発明に係るゴム組成物は、本発明の趣旨を逸脱しない限りにおいて、上記の他に、通常ゴム工業で用いられる配合剤を含有してもよい。かかる配合剤としては、例えば、グアニジン系架橋促進剤、スルフェンアミド系架橋促進剤、亜鉛華などの架橋促進(助)剤;ステアリン酸などの加工助剤;チタネート系などのカップリング剤;フェニル-α-ナフチルアミンなどの老化防止剤;カーボンブラック、炭酸カルシウムなどの充填剤;補強剤;軟化剤;可塑剤;粘着付与剤;スコーチ防止剤等を挙げることができる。
<Other ingredients>
In addition to the above, the rubber composition according to the present invention may contain a compounding agent usually used in the rubber industry, as long as it does not depart from the spirit of the present invention. Such compounding agents include, for example, guanidine crosslinking accelerators, sulfenamide crosslinking accelerators, crosslinking accelerators (auxiliaries) such as zinc white; processing aids such as stearic acid; coupling agents such as titanates; phenyl Anti-aging agents such as -α-naphthylamine; fillers such as carbon black and calcium carbonate; reinforcing agents; softeners; plasticizers; tackifiers;
 上述したその他の配合剤は、単独で、または、2種類以上を組み合わせて、本発明に係るゴム組成物に用いることができる。 Other compounding agents described above can be used alone or in combination of two or more for the rubber composition according to the present invention.
 〔2.ゴム組成物の製造方法〕
 以下に本発明に係るゴム組成物の製造方法について説明する。
[2. Method for producing rubber composition]
Below, the manufacturing method of the rubber composition which concerns on this invention is demonstrated.
 本発明に係るゴム組成物の製造方法は、上記処理シリカを、上記ゴムに混練する第1混練工程を含んでいればよい。本発明に係るゴム組成物の製造方法は、更に、任意で、上記第1混練工程で得られた混練物に加硫剤を混練する第2混練工程、成形工程および架橋工程から選ばれる少なくとも1つの工程を含んでいてもよい。 The method for producing a rubber composition according to the present invention only needs to include a first kneading step of kneading the treated silica with the rubber. The method for producing a rubber composition according to the present invention may further optionally include at least one selected from a second kneading step, a molding step, and a crosslinking step in which a vulcanizing agent is kneaded into the kneaded product obtained in the first kneading step. One step may be included.
 〔第1混練工程〕
 第1混練工程では、上記処理シリカを、上記ゴムに混練して、本発明のゴム組成物を得る。また、本工程では、上記処理シリカに加えて、更に上記第2のシランカップリング剤を、上記ゴムに混練してもよい。あるいは、上記処理シリカに加えて、更に上記第2のシランカップリング剤および上記充填材を、上記ゴムに混練してもよい。
[First kneading step]
In the first kneading step, the treated silica is kneaded with the rubber to obtain the rubber composition of the present invention. In this step, in addition to the treated silica, the second silane coupling agent may be further kneaded into the rubber. Alternatively, in addition to the treated silica, the second silane coupling agent and the filler may be further kneaded into the rubber.
 本第1混練工程は、加硫剤を混練する第2混練工程の前に行うことが好ましい。すなわち、本第1混練工程では、(i)上記処理シリカ、(ii)上記処理シリカおよび上記第2のシランカップリング剤、または(iii)上記処理シリカ、上記第2のシランカップリング剤および上記充填材、を加硫剤を混練する前の工程にて、上記ゴムに混練する。 The first kneading step is preferably performed before the second kneading step for kneading the vulcanizing agent. That is, in the first kneading step, (i) the treated silica, (ii) the treated silica and the second silane coupling agent, or (iii) the treated silica, the second silane coupling agent and the above The filler is kneaded with the rubber in the step before kneading the vulcanizing agent.
 本第1混練工程では、上述した(i)上記処理シリカ、(ii)上記処理シリカおよび上記第2のシランカップリング剤、または(iii)上記処理シリカ、上記第2のシランカップリング剤および上記充填材を、80~250℃で混練することが好ましく、80~200℃で混練することがより好ましい。かかる温度範囲で上記成分を混練することにより、混練物をゲル化やスコーチさせること無く処理シリカ等を均一に分散せしめ好適に各成分を混練することができる。また、本第1混練工程では、加硫剤が添加されていないため、架橋の形成を気にすることなく、比較的高温で混練を行うことが可能となる。本第1混練工程の混練時間は特に制限はないが、例えば1分~1時間である。 In the first kneading step, the above-mentioned (i) the treated silica, (ii) the treated silica and the second silane coupling agent, or (iii) the treated silica, the second silane coupling agent and the above The filler is preferably kneaded at 80 to 250 ° C, more preferably 80 to 200 ° C. By kneading the above components in such a temperature range, it is possible to uniformly disperse the treated silica or the like without causing the kneaded product to gel or scorch and to knead each component suitably. Further, in the first kneading step, since no vulcanizing agent is added, kneading can be performed at a relatively high temperature without worrying about the formation of crosslinks. The kneading time in the first kneading step is not particularly limited, but is, for example, 1 minute to 1 hour.
 本第1混練工程における混練には、通常ゴム工業にて使用されるロール、加圧ニーダー、インターミキサー、バンバリーミキサーなどの各種混合機械を用いることができる。 For the kneading in the first kneading step, various mixing machines such as a roll, a pressure kneader, an intermixer, and a Banbury mixer that are usually used in the rubber industry can be used.
 〔第2混練工程〕
 第2混練工程では、上記第1混練工程で得られた混練物に上記加硫剤を混練して、加硫剤を添加後の組成物、すなわち、架橋用ゴム組成物を得る。本第2混練工程では、上記第1混練工程で得られた混練物に上記加硫剤を100℃以下で混練することが好ましい。これにより、上記加硫剤により架橋が形成されるのを防ぐことができる。本第2混練工程の混練時間は特に制限はないが、例えば1分~1時間である。
[Second kneading step]
In the second kneading step, the vulcanizing agent is kneaded with the kneaded product obtained in the first kneading step to obtain a composition after addition of the vulcanizing agent, that is, a crosslinking rubber composition. In the second kneading step, the vulcanizing agent is preferably kneaded at 100 ° C. or lower with the kneaded product obtained in the first kneading step. Thereby, it can prevent that bridge | crosslinking is formed with the said vulcanizing agent. The kneading time in the second kneading step is not particularly limited, but is, for example, 1 minute to 1 hour.
 本第2混練工程における混練には、通常ゴム工業にて使用されるロール、加圧ニーダー、インターミキサー、バンバリーミキサーなどの各種混合機械を用いることができる。 For the kneading in the second kneading step, various mixing machines such as a roll, a pressure kneader, an intermixer, and a Banbury mixer that are usually used in the rubber industry can be used.
 〔成形工程〕
 成形工程では、第2混練工程で調製された架橋用ゴム組成物を、カレンダーロール、プレスなどにより意図する形状に成形する。
[Molding process]
In the molding step, the crosslinking rubber composition prepared in the second kneading step is molded into an intended shape by a calendar roll, a press or the like.
 〔架橋工程〕
 架橋工程では、上記成形工程で成形された成形体を、好ましくは120~230℃で、1分~3時間加熱して架橋物を得る。また、架橋の際には金型を用いても良い。
[Crosslinking process]
In the cross-linking step, the molded body formed in the above-mentioned forming step is heated preferably at 120 to 230 ° C. for 1 minute to 3 hours to obtain a cross-linked product. In addition, a mold may be used for crosslinking.
 なお、成形工程と、架橋工程とは、別個の工程としてもよいし、同時に進行する1つの工程としてもよい。 Note that the molding step and the crosslinking step may be separate steps or may be a single step that proceeds simultaneously.
 〔3.ゴム組成物の利用〕
 上記のようにして、本発明のゴム組成物を架橋してなる架橋物は、ゴム製品として様々な用途に利用することができる。それゆえ、ゴム組成物を架橋してなる架橋物も本発明に含まれる。
[3. Use of rubber composition)
As described above, the crosslinked product obtained by crosslinking the rubber composition of the present invention can be used for various applications as a rubber product. Therefore, a crosslinked product obtained by crosslinking the rubber composition is also included in the present invention.
 かかる架橋物の形状は特に限定されるものではなく、タイヤ、チューブ、ベルト、ホース、工業用品などとして利用することができる。 The shape of such a crosslinked product is not particularly limited, and can be used as a tire, a tube, a belt, a hose, an industrial product, or the like.
 本発明のゴム組成物を架橋してなる架橋物は、上述したように、ヒステリシスロスが小さいため、例えば、タイヤとして用いたときに、タイヤ走行時のエネルギーロスを小さくすることができ、転がり抵抗を低減させることができる。それゆえ、とりわけ、タイヤ(特にトレッド部分)などの動的に使用されるゴム部品で好適に使用することができる。 Since the crosslinked product obtained by crosslinking the rubber composition of the present invention has a small hysteresis loss as described above, for example, when used as a tire, the energy loss during running of the tire can be reduced, and the rolling resistance is reduced. Can be reduced. Therefore, it can be suitably used especially for dynamically used rubber parts such as tires (particularly tread portions).
 以下に、本発明の実施例および比較例について説明する。但し、本発明はその要旨を逸脱しない限り、以下の実施例に限定されるものではない。 Hereinafter, examples and comparative examples of the present invention will be described. However, the present invention is not limited to the following examples without departing from the gist thereof.
 〔処理シリカの製造〕
 <製造例1.処理シリカ1の製造>
 Tokusil233(OSC製、BET比表面積120m/g)を15重量%含む水分散された湿式シリカスラリー2kgに、ポリオキシエチレンオレイン酸エステル(商品名:H-3549A(第一工業製薬株式会社製)、HLB値:8)0.9g(湿式シリカ100重量部に対し、0.3重量部)と、硫黄含有シランカップリング剤(商品名:カブラス2B(ダイソー株式会社製))18g(湿式シリカ100重量部に対し、6重量部)と、を添加した。こうして得られた混合溶液を、室温(約23℃)にて2時間撹拌したところ均一な黄白色スラリーが得られ、撹拌を停止しても分離は見られなかった。なお、当該混合溶液のpHは、6であった。続いて、日本ビュッヒ製スプレードライヤーにより、上記混合溶液を、熱風温度200℃の条件下にて乾燥させて紛体を得た。更に、得られた粉体を150℃のオーブンにて6時間乾燥させて、処理シリカ1を得た。
[Production of treated silica]
<Production Example 1. Production of treated silica 1>
Polyoxyethylene oleate (trade name: H-3549A (Daiichi Kogyo Seiyaku Co., Ltd.)) was added to 2 kg of water-dispersed wet silica slurry containing 15 wt% of Tokusil 233 (manufactured by OSC, BET specific surface area 120 m 2 / g). , HLB value: 8) 0.9 g (0.3 parts by weight with respect to 100 parts by weight of wet silica) and sulfur-containing silane coupling agent (trade name: Cabras 2B (manufactured by Daiso Corporation)) 18 g (wet silica 100) 6 parts by weight relative to parts by weight) was added. When the mixed solution thus obtained was stirred at room temperature (about 23 ° C.) for 2 hours, a uniform yellowish white slurry was obtained, and no separation was observed even when the stirring was stopped. The pH of the mixed solution was 6. Subsequently, the mixed solution was dried under a condition of a hot air temperature of 200 ° C. with a spray dryer manufactured by Nihon Büch to obtain a powder. Furthermore, the obtained powder was dried in an oven at 150 ° C. for 6 hours to obtain treated silica 1.
 <製造例2.処理シリカ2の製造>
 Tokusil233(OSC製、BET比表面積120m/g)を15重量%含む水分散された湿式シリカスラリー2kgに、ポリオキシエチレンオレイン酸エステル(商品名:H-3549A(第一工業製薬株式会社製)、HLB値:8)0.9g(湿式シリカ100重量部に対し、0.3重量部)と、硫黄含有シランカップリング剤(商品名:カブラス2B(ダイソー株式会社製))24g(湿式シリカ100重量部に対し、8重量部)と、を添加した。こうして得られた混合溶液を、室温(約23℃)にて2時間撹拌したところ均一な黄白色スラリーが得られ、撹拌を停止しても分離は見られなかった。なお、当該混合溶液のpHは、6であった。続いて、日本ビュッヒ製スプレードライヤーにより、上記混合溶液を、熱風温度200℃の条件下にて乾燥させて紛体を得た。更に、得られた粉体を150℃のオーブンにて6時間乾燥させ、処理シリカ2を得た。
<Production Example 2. Production of treated silica 2>
Polyoxyethylene oleate (trade name: H-3549A (Daiichi Kogyo Seiyaku Co., Ltd.)) was added to 2 kg of water-dispersed wet silica slurry containing 15 wt% of Tokusil 233 (manufactured by OSC, BET specific surface area 120 m 2 / g). HLB value: 8) 0.9 g (0.3 parts by weight with respect to 100 parts by weight of wet silica) and 24 g (wet silica 100) of sulfur-containing silane coupling agent (trade name: Cabras 2B (manufactured by Daiso Corporation)) 8 parts by weight relative to parts by weight) was added. When the mixed solution thus obtained was stirred at room temperature (about 23 ° C.) for 2 hours, a uniform yellowish white slurry was obtained, and no separation was observed even when the stirring was stopped. The pH of the mixed solution was 6. Subsequently, the mixed solution was dried under a condition of a hot air temperature of 200 ° C. with a spray dryer manufactured by Nihon Büch to obtain a powder. Furthermore, the obtained powder was dried in an oven at 150 ° C. for 6 hours to obtain treated silica 2.
 <製造例3.処理シリカ3の製造>
 TokusilUSG-L(OSC製、BET比表面積150m/g)を15重量%含む水分散された湿式シリカスラリー2kgに、ポリオキシエチレンオレイン酸エステル(商品名:H-3549C(第一工業製薬株式会社製)、HLB値:7)0.9g(湿式シリカ100重量部に対し、0.3重量部)と、硫黄含有シランカップリング剤(商品名:カブラス2B(ダイソー株式会社製))30g(湿式シリカ100重量部に対し、10重量部)と、を添加した。こうして得られた混合溶液を、室温(約23℃)にて2時間撹拌したところ均一な黄白色スラリーが得られ、撹拌を停止しても分離は見られなかった。なお、当該混合溶液のpHは、7であった。続いて、日本ビュッヒ製スプレードライヤーにより、上記混合溶液を、熱風温度200℃の条件下にて乾燥させて紛体を得た。更に、得られた粉体を150℃のオーブンにて6時間乾燥させ、処理シリカ3を得た。
<Production Example 3. Production of treated silica 3>
Polyoxyethylene oleate (trade name: H-3549C (Daiichi Kogyo Seiyaku Co., Ltd.) was added to 2 kg of water-dispersed wet silica slurry containing 15% by weight of TokusilUSG-L (manufactured by OSC, BET specific surface area 150 m 2 / g). Manufactured), HLB value: 7) 0.9 g (0.3 parts by weight with respect to 100 parts by weight of wet silica) and 30 g of wet sulfur-containing silane coupling agent (trade name: Cabras 2B (manufactured by Daiso Corporation)) 10 parts by weight with respect to 100 parts by weight of silica). When the mixed solution thus obtained was stirred at room temperature (about 23 ° C.) for 2 hours, a uniform yellowish white slurry was obtained, and no separation was observed even when the stirring was stopped. The pH of the mixed solution was 7. Subsequently, the mixed solution was dried under a condition of a hot air temperature of 200 ° C. with a spray dryer manufactured by Nihon Büch to obtain a powder. Furthermore, the obtained powder was dried in an oven at 150 ° C. for 6 hours to obtain treated silica 3.
 <製造例4.処理シリカ4の製造>
 TokusilUSG-L(OSC製、BET比表面積150m/g)を15重量%含む水分散された湿式シリカスラリー2kgに、ポリオキシエチレンオレイン酸エステル(商品名:H-3549C(第一工業製薬株式会社製)、HLB値:7)0.9g(湿式シリカ100重量部に対し、0.3重量部)と、90%乳酸(商品名:ムサシノ乳酸90F(株式会社武蔵野化学研究所製))1.5g(湿式シリカ100重量部に対し、0.45重量部)と硫黄含有シランカップリング剤(商品名:カブラス2B(ダイソー株式会社製))30g(湿式シリカ100重量部に対し、10重量部)と、を添加した。こうして得られた混合溶液を、室温(約23℃)にて2時間撹拌したところ均一な黄白色スラリーが得られ、撹拌を停止しても分離は見られなかった。なお、当該混合溶液のpHは、4であった。続いて、日本ビュッヒ製スプレードライヤーにより、上記混合溶液を、熱風温度200℃の条件下にて乾燥させて紛体を得た。更に、得られた粉体を150℃のオーブンにて6時間乾燥させ、処理シリカ4を得た。
<Production Example 4. Production of treated silica 4>
Polyoxyethylene oleate (trade name: H-3549C (Daiichi Kogyo Seiyaku Co., Ltd.) was added to 2 kg of water-dispersed wet silica slurry containing 15% by weight of TokusilUSG-L (manufactured by OSC, BET specific surface area 150 m 2 / g). Manufactured), HLB value: 7) 0.9 g (0.3 parts by weight with respect to 100 parts by weight of wet silica) and 90% lactic acid (trade name: Musashino lactic acid 90F (manufactured by Musashino Chemical Laboratory Co., Ltd.)) 5 g (0.45 parts by weight with respect to 100 parts by weight of wet silica) and 30 g of sulfur-containing silane coupling agent (trade name: Cabras 2B (manufactured by Daiso Corporation)) (10 parts by weight with respect to 100 parts by weight of wet silica) And were added. When the mixed solution thus obtained was stirred at room temperature (about 23 ° C.) for 2 hours, a uniform yellowish white slurry was obtained, and no separation was observed even when the stirring was stopped. The pH of the mixed solution was 4. Subsequently, the mixed solution was dried under a condition of a hot air temperature of 200 ° C. with a spray dryer manufactured by Nihon Büch to obtain a powder. Further, the obtained powder was dried in an oven at 150 ° C. for 6 hours to obtain treated silica 4.
 <製造例5.処理シリカ5の製造>
 TokusilUSG-L(OSC製、BET比表面積150m/g)を15重量%含む水分散された湿式シリカスラリー2kgに、ポリオキシエチレンオレイン酸エステル(商品名:H-3549C(第一工業製薬株式会社製)、HLB値:7)0.9g(湿式シリカ100重量部に対し、0.3重量部)と、硫黄含有シランカップリング剤(商品名:カブラス2B(ダイソー株式会社製))45g(湿式シリカ100重量部に対し、15重量部)と、を添加した。こうして得られた混合溶液を、室温(約23℃)にて2時間撹拌したところ均一な黄白色スラリーが得られ、撹拌を停止しても分離は見られなかった。なお、当該混合溶液のpHは、7であった。続いて、日本ビュッヒ製スプレードライヤーにより、上記混合溶液を、熱風温度200℃の条件下にて乾燥させて紛体を得た。更に、得られた粉体を150℃のオーブンにて6時間乾燥させ、処理シリカ5を得た。
<Production Example 5. Production of treated silica 5>
Polyoxyethylene oleate (trade name: H-3549C (Daiichi Kogyo Seiyaku Co., Ltd.) was added to 2 kg of water-dispersed wet silica slurry containing 15% by weight of TokusilUSG-L (manufactured by OSC, BET specific surface area 150 m 2 / g). Manufactured), HLB value: 7) 0.9 g (0.3 parts by weight with respect to 100 parts by weight of wet silica) and 45 g (wet type) of sulfur-containing silane coupling agent (trade name: Cabras 2B (manufactured by Daiso Corporation)) 15 parts by weight with respect to 100 parts by weight of silica). When the mixed solution thus obtained was stirred at room temperature (about 23 ° C.) for 2 hours, a uniform yellowish white slurry was obtained, and no separation was observed even when the stirring was stopped. The pH of the mixed solution was 7. Subsequently, the mixed solution was dried under a condition of a hot air temperature of 200 ° C. with a spray dryer manufactured by Nihon Büch to obtain a powder. Furthermore, the obtained powder was dried in an oven at 150 ° C. for 6 hours to obtain treated silica 5.
 <比較製造例1.処理シリカ6の製造>
 Tokusil233(OSC製、BET比表面積120m/g)を15重量%含む水分散された湿式シリカスラリー2kgに、乳化剤としてNSソープ(花王ケミカル製)0.9gと、硫黄含有シランカップリング剤(商品名:カブラス2B(ダイソー株式会社製))45gと、を添加した。こうして得られた混合溶液を、室温(約23℃)にて2時間撹拌した。しかし、撹拌を停止すると、硫黄含有シランカップリング剤が分離してスラリー表面へ浮き出ており、湿式シリカスラリー中に硫黄含有シランカップリング剤を分散させることが、全くできなかった。それ故に、その後の評価は行わなかった。
<Comparative Production Example 1. Production of treated silica 6>
2 kg of water-dispersed wet silica slurry containing 15% by weight of Tokusil 233 (manufactured by OSC, BET specific surface area 120 m 2 / g), 0.9 g of NS soap (manufactured by Kao Chemical) as an emulsifier, and a sulfur-containing silane coupling agent (product) Name: Cabras 2B (Daiso Co., Ltd.) 45 g was added. The mixed solution thus obtained was stirred at room temperature (about 23 ° C.) for 2 hours. However, when the stirring was stopped, the sulfur-containing silane coupling agent separated and floated to the surface of the slurry, and the sulfur-containing silane coupling agent could not be dispersed in the wet silica slurry at all. Therefore, no subsequent evaluation was performed.
 <比較製造例2.処理シリカ7の製造>
 Tokusil233(OSC製、BET比表面積120m/g)を15重量%含む水分散された湿式シリカスラリー2kgに、ポリオキシエチレンステアリン酸エステル(商品名:H-3549S(第一工業製薬株式会社製)、HLB値:8)0.9gと、硫黄含有シランカップリング剤(商品名:カブラス2B(ダイソー株式会社製))24gと、を添加した。こうして得られた混合溶液を、室温(約23℃)にて2時間撹拌した。しかし、撹拌を停止すると硫黄含有シランカップリング剤が分離しスラリー表面へ浮き出ており、湿式シリカスラリーに硫黄含有シランカップリング剤を分散させることが、全くできなかった。これを、日本ビュッヒ製スプレードライヤーにより、熱風温度200℃の条件にて乾燥させ、得られた粉体を更に150℃のオーブンにて6時間乾燥させ、処理シリカ7を得た。なおこの処理シリカ7は、色目が不均一であり、均質でないことが目視にて確認できた。
<Comparative Production Example 2. Production of treated silica 7>
Polyoxyethylene stearate (trade name: H-3549S (Daiichi Kogyo Seiyaku Co., Ltd.)) was added to 2 kg of water-dispersed wet silica slurry containing 15% by weight of Tokusil 233 (manufactured by OSC, BET specific surface area 120 m 2 / g). , HLB value: 8) 0.9 g and 24 g of a sulfur-containing silane coupling agent (trade name: Cabras 2B (manufactured by Daiso Corporation)) were added. The mixed solution thus obtained was stirred at room temperature (about 23 ° C.) for 2 hours. However, when the stirring was stopped, the sulfur-containing silane coupling agent separated and floated to the surface of the slurry, and the sulfur-containing silane coupling agent could not be dispersed in the wet silica slurry. This was dried with a Nippon Büch spray dryer at a hot air temperature of 200 ° C., and the obtained powder was further dried in an oven at 150 ° C. for 6 hours to obtain treated silica 7. The treated silica 7 was visually non-uniform in color and could be confirmed visually.
 <溶剤抽出試験>
 処理シリカには、湿式シリカと硫黄含有シランカップリング剤との反応産物の他に、未反応の硫黄含有シランカップリング剤が含まれている。
<Solvent extraction test>
The treated silica contains unreacted sulfur-containing silane coupling agent in addition to the reaction product of wet silica and sulfur-containing silane coupling agent.
 処理シリカ中の未反応の硫黄含有シランカップリング剤が少なければ少ないほど、湿式シリカと硫黄含有シランカップリング剤との反応が良好に進行したことを示している。 The smaller the amount of unreacted sulfur-containing silane coupling agent in the treated silica, the better the reaction between wet silica and sulfur-containing silane coupling agent progressed.
 このような処理シリカは、ゴムとの相性(例えば、相溶性、分散性、または、混練性など)が良く、ゴムと組み合わせたときに、低燃費性、および、耐摩耗性が向上したタイヤを実現することができる。 Such treated silica has a good compatibility with rubber (for example, compatibility, dispersibility, kneadability, etc.), and when combined with rubber, a tire with improved fuel economy and wear resistance. Can be realized.
 処理シリカ中に含まれる未反応の硫黄含有シランカップリング剤は有機溶剤によって抽出されるので、抽出に用いた有機溶剤を解析すれば、処理シリカ中に含まれる未反応の硫黄含有シランカップリング剤の量を測定することができる。 Since the unreacted sulfur-containing silane coupling agent contained in the treated silica is extracted with an organic solvent, if the organic solvent used for the extraction is analyzed, the unreacted sulfur-containing silane coupling agent contained in the treated silica Can be measured.
 そこで、処理シリカを製造した翌日(約16時間後)に、上記製造例で得られた処理シリカについて、溶剤抽出試験を行った。溶剤抽出試験は、具体的に以下の手順にて行った。 Therefore, the solvent extraction test was performed on the treated silica obtained in the above production example on the next day (about 16 hours later) after the treated silica was produced. The solvent extraction test was specifically performed according to the following procedure.
 まず、処理シリカ10.0gをガラス容器に秤量し、当該ガラス容器へ50mlのメチルエチルケトンを添加した。そして、マグネティックスターラーを用いて、500rpmで10分間、ガラス容器内の処理シリカとメチルエチルケトンとを撹拌した。 First, 10.0 g of treated silica was weighed into a glass container, and 50 ml of methyl ethyl ketone was added to the glass container. And the treated silica and methyl ethyl ketone in a glass container were stirred for 10 minutes at 500 rpm using the magnetic stirrer.
 次いで、処理シリカを含むメチルエチルケトンを減圧濾過して、処理シリカが除去された濾液を取得した。更に、処理シリカを含む濾過残渣を5mLのメチルエチルケトンで5回リンスし、当該リンスに用いたメチルエチルケトンを回収した。 Next, methyl ethyl ketone containing the treated silica was filtered under reduced pressure to obtain a filtrate from which the treated silica was removed. Furthermore, the filtration residue containing the treated silica was rinsed 5 times with 5 mL of methyl ethyl ketone, and methyl ethyl ketone used for the rinse was recovered.
 上記濾液と、上記回収したリンスに用いたメチルエチルケトンとを混ぜ合わせた後、当該混合液を、ロータリーエバポレーターにて、20mmHg減圧下、70℃にて衡量となるまで減圧濃縮した。そして、減圧濃縮後に回収された抽出物(換言すれば、未反応の硫黄含有シランカップリング剤)の重量を測定した。 After the filtrate and methyl ethyl ketone used for the collected rinse were mixed, the mixture was concentrated under reduced pressure at 70 ° C. under reduced pressure of 20 mmHg using a rotary evaporator. And the weight of the extract (in other words, unreacted sulfur-containing silane coupling agent) collected after concentration under reduced pressure was measured.
 そして、抽出量(%)は、処理シリカ10.0gに対する、抽出物の重量の割合として求めた。 And the extraction amount (%) was determined as a ratio of the weight of the extract to 10.0 g of the treated silica.
 以下の表1および表2に、試験結果を示す。 The test results are shown in Tables 1 and 2 below.
 表1および表2に示すように、実施例の処理シリカは抽出量が少なく、湿式シリカと硫黄含有シランカップリング剤とが良好に反応していること(換言すれば、未反応の硫黄含有シランカップリング剤が少ないこと)が明らかになった。このことは、製造例1-5で得られた処理シリカは、処理シリカとして好適であることを示している。 As shown in Tables 1 and 2, the treated silica of the examples has a small amount of extraction, and wet silica and the sulfur-containing silane coupling agent react well (in other words, unreacted sulfur-containing silane). It became clear that there were few coupling agents. This indicates that the treated silica obtained in Production Example 1-5 is suitable as the treated silica.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 〔ゴム組成物の製造〕
 <実施例1-3>
 上記製造例において、BET比表面積120m/gの湿式シリカを処理して得られた処理シリカ1または2を用いて、本発明のゴム組成物を製造した。
Figure JPOXMLDOC01-appb-T000014
[Production of rubber composition]
<Example 1-3>
In the said manufacture example, the rubber composition of this invention was manufactured using the processing silica 1 or 2 obtained by processing the wet silica with a BET specific surface area of 120 m < 2 > / g.
 ゴム組成物の混練には、250ccバンバリーミキサータイプのアタッチメントBR-250を備えたラボプラストミル10C100(東洋精機製作所製)を用いた。装置温度は、オイル循環加熱により100℃とし、ミキサーのローター回転速度は60rpmで一定とした。ゴム組成物の製造は、ゴム110gベースにて、具体的には以下の手順で行った。 For the kneading of the rubber composition, a Laboplast Mill 10C100 (manufactured by Toyo Seiki Seisakusho) equipped with a 250 cc Banbury mixer type attachment BR-250 was used. The apparatus temperature was 100 ° C. by circulating oil heating, and the rotor rotation speed of the mixer was constant at 60 rpm. The rubber composition was produced on the basis of 110 g of rubber, specifically by the following procedure.
 まず、表3にゴム成分として示されるゴムを、ラボプラストミル10C100に投入し、30秒間素練りした。その後、素練りしたゴムに、表3に配合(I)として示される薬剤を添加して30秒間混練した。得られた、配合(I)として示される薬剤を含む混練物に、次いで、表3に配合(II)として示される薬剤を添加して3分間混練した。得られた混練物をラボプラストミル10C100から排出した。 First, the rubber shown in Table 3 as a rubber component was put into a lab plast mill 10C100 and masticated for 30 seconds. Then, the chemical | medical agent shown as mixing | blending (I) in Table 3 was added to kneaded rubber, and it knead | mixed for 30 seconds. To the obtained kneaded material containing the drug shown as the blend (I), the drug shown as the blend (II) in Table 3 was added and kneaded for 3 minutes. The obtained kneaded material was discharged from the Laboplast Mill 10C100.
 排出した混練物を、室温(約20℃)の6インチロールにて冷却した。その後、冷却された混練物を6インチロールにて表3に配合(III)として示される架橋剤成分を添加して6分間混練し、シート化して排出することにより成形して、約2mmの厚みのシート(未架橋シート)として、ゴム組成物(架橋用ゴム組成物)を得た。 The discharged kneaded product was cooled with a 6-inch roll at room temperature (about 20 ° C.). Thereafter, the cooled kneaded product is molded by adding a cross-linking agent component shown in Table 3 as compounding (III) in Table 3 with a 6-inch roll, kneading for 6 minutes, forming into a sheet, and discharging to form a thickness of about 2 mm. As a sheet (uncrosslinked sheet), a rubber composition (crosslinking rubber composition) was obtained.
 翌日(約16時間後)、未架橋シートを160℃で20分間熱プレス架橋し、試験用サンプル(架橋シート)を得た。 The next day (after about 16 hours), the uncrosslinked sheet was hot-press crosslinked at 160 ° C. for 20 minutes to obtain a test sample (crosslinked sheet).
 <比較例1-3>
 処理シリカ1または2の代わりに、表3に示されるシリカまたは処理シリカ7を用いた以外は、実施例1-3と同様にして、ゴム組成物を製造し、得られたゴム組成物から実施例1-3と同様にして試験用サンプル(架橋シート)を得た。
<Comparative Example 1-3>
A rubber composition was produced in the same manner as in Example 1-3, except that the silica shown in Table 3 or the treated silica 7 was used instead of the treated silica 1 or 2, and the rubber composition thus obtained was used. A test sample (crosslinked sheet) was obtained in the same manner as in Example 1-3.
Figure JPOXMLDOC01-appb-T000015
 以下に、表3および表5に示される実施例および比較例で用いた薬剤を示す。なお、表3および表5に示される配合量の単位は「重量部」である。
*1  JSR株式会社製 S-SBR SL552
*2  OSC製 Tokusil233(BET比表面積120m/g)
*3  日本サン石油株式会社製 Sunthene415
*4  日油株式会社製 ステアリン酸さくら
*5  大内新興化学工業株式会社製 ノクラック6C
*6  ダイソー株式会社製 カブラス2B
*7  堺化学工業株式会社製 酸化亜鉛2種
*8  大内新興化学工業株式会社製 ノクセラーD
*9  大内新興化学工業株式会社製 ノクセラーCZ
*10 細井化学工業株式会社製 コロイド硫黄
*11 OSC製 Tokusil USG-L(BET比表面積150m/g)
 <動的粘弾性試験>
 試験用サンプル(架橋シート)から幅4mm×長さ25mm×厚み2mmの試験片を打ち抜き、株式会社ユービーエム製Rheogel-4000にて、チャック間距離20mm、初期歪10%、動振幅1%、10Hzの加振条件下で、tanδを測定した。なお測定温度範囲は60℃で一定とした。
Figure JPOXMLDOC01-appb-T000015
The chemical | medical agent used by the Example and comparative example which are shown to Table 3 and Table 5 below is shown. The unit of the amount shown in Tables 3 and 5 is “parts by weight”.
* 1 S-SBR SL552 manufactured by JSR Corporation
* 2 Tokusil 233 manufactured by OSC (BET specific surface area 120 m 2 / g)
* 3 Sunthene 415 manufactured by Nippon San Oil Co., Ltd.
* 4 Nippon Oil Co., Ltd. Sakura stearate
* 5 Nouchi 6C manufactured by Ouchi Shinsei Chemical Co., Ltd.
* 6 Cabras 2B manufactured by Daiso Corporation
* 7 2 types of zinc oxide manufactured by Sakai Chemical Industry Co., Ltd.
* 8 Noxeller D manufactured by Ouchi Shinsei Chemical Co., Ltd.
* 9 Noxeller CZ manufactured by Ouchi Shinsei Chemical Co., Ltd.
* 10 Colloidal sulfur manufactured by Hosoi Chemical Co., Ltd.
* 11 Tokusil USG-L manufactured by OSC (BET specific surface area 150 m 2 / g)
<Dynamic viscoelasticity test>
A test piece having a width of 4 mm, a length of 25 mm and a thickness of 2 mm was punched from a test sample (crosslinked sheet), and a distance between chucks of 20 mm, initial strain of 10%, dynamic amplitude of 1%, and 10 Hz using a Rheogel-4000 manufactured by UBM Co., Ltd. Tan δ was measured under the following excitation conditions. The measurement temperature range was constant at 60 ° C.
 実施例1-3および比較例1-3で得られた試験用サンプル(架橋シート)について、動的粘弾性試験を行った結果を表4に示す。 Table 4 shows the results of a dynamic viscoelasticity test performed on the test samples (crosslinked sheets) obtained in Example 1-3 and Comparative Example 1-3.
Figure JPOXMLDOC01-appb-T000016
 <実施例4-6>
 上記製造例において、BET比表面積150m/gの湿式シリカを処理して得られた処理シリカを用いて、表5に示す、配合(I)として示される薬剤、配合(II)として示される薬剤および配合(III)として示される架橋剤成分を、表5に示される割合で配合した以外は、実施例1-3と同様にしてゴム組成物を製造し、得られたゴム組成物から実施例1-3と同様にして試験用サンプル(架橋シート)を得た。
Figure JPOXMLDOC01-appb-T000016
<Example 4-6>
In the above production example, using the treated silica obtained by treating the wet silica having a BET specific surface area of 150 m 2 / g, the drugs shown as Table (I) and the drugs shown as Formula (II) shown in Table 5 A rubber composition was produced in the same manner as in Example 1-3, except that the crosslinking agent component shown as Formulation (III) was blended in the proportions shown in Table 5, and Examples were obtained from the resulting rubber composition. A test sample (crosslinked sheet) was obtained in the same manner as in 1-3.
 <比較例4-5>
 処理シリカの代わりに、表5に示されるシリカを用いた以外は、実施例1-3と同様にして、ゴム組成物を製造し、得られたゴム組成物から実施例1-3と同様にして試験用サンプル(架橋シート)を得た。
<Comparative Example 4-5>
A rubber composition was produced in the same manner as in Example 1-3, except that the silica shown in Table 5 was used in place of the treated silica, and the obtained rubber composition was used in the same manner as in Example 1-3. Thus, a test sample (crosslinked sheet) was obtained.
Figure JPOXMLDOC01-appb-T000017
 <動的粘弾性試験>
 実施例4-6および比較例4-5で得られた試験用サンプル(架橋シート)について、動的粘弾性試験を行った。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000017
<Dynamic viscoelasticity test>
A dynamic viscoelasticity test was performed on the test samples (crosslinked sheets) obtained in Example 4-6 and Comparative Example 4-5. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000018
 比較製造例と製造例とを比較すると、製造例のシリカスラリーは均一なスラリーとして得られるため、かかるスラリーを乾燥してなる処理シリカも均質な処理シリカとして得られる。一方、比較製造例のシリカスラリーは、撹拌を停止すると硫黄含有シランカップリング剤が分離しスラリー表面へ浮き出てしまった。これは、比較製造例のシリカスラリーは、乾燥工程や乾燥工程への送液中にシリカと硫黄含有シランカップリング剤が分離してしまうことを示唆しており、得られる処理シリカは未処理部分と処理部分が混在したものとなることを示している。未処理シリカはゴム物性(特に60℃のtanδ)に悪影響を与えることが知られていることから、比較製造例の製法にて得られる処理シリカはゴム組成物に用いるには適さない。
Figure JPOXMLDOC01-appb-T000018
When the comparative production example and the production example are compared, the silica slurry of the production example is obtained as a uniform slurry, and thus the treated silica obtained by drying the slurry is also obtained as a homogeneous treated silica. On the other hand, in the silica slurry of the comparative production example, when the stirring was stopped, the sulfur-containing silane coupling agent separated and floated to the surface of the slurry. This suggests that the silica slurry of the comparative production example separates the silica and the sulfur-containing silane coupling agent during the drying process or during the liquid feeding to the drying process, and the resulting treated silica is an untreated part. And the processing part is mixed. Since untreated silica is known to adversely affect rubber physical properties (particularly tan δ at 60 ° C.), treated silica obtained by the production method of Comparative Production Example is not suitable for use in rubber compositions.
 また、表4および表6に示されるように、製造例により得られた処理シリカを配合した実施例で製造されたゴム組成物の架橋物は、シリカと硫黄含有カップリング剤とをそれぞれ添加した比較例で製造されたゴム組成物の架橋物よりも、60℃のtanδが低い。特に比較例3からわかるように、分離したスラリーから作成した処理シリカを配合した場合、60℃のtanδが悪化しており均質にシリカが処理されていないことが示唆されている。60℃のtanδは、ヒステリシスロスの指標として知られ、値が小さいほど、タイヤとして用いたときに、タイヤ走行時のエネルギーロスが小さく、転がり抵抗に優れることを示している。したがって、60℃のtanδが小さいほど低燃費性能に優れたタイヤであるとされる。この結果からも製造例により得られた処理シリカを含有するゴム組成物は、特にタイヤに好適であるといえる。 Moreover, as Table 4 and Table 6 show, the crosslinked material of the rubber composition manufactured by the Example which mix | blended the processing silica obtained by the manufacture example added the silica and the sulfur containing coupling agent, respectively. The tan δ at 60 ° C. is lower than the crosslinked product of the rubber composition produced in the comparative example. In particular, as can be seen from Comparative Example 3, when the treated silica prepared from the separated slurry was blended, tan δ at 60 ° C. was deteriorated, suggesting that the silica was not uniformly treated. The tan δ at 60 ° C. is known as an index of hysteresis loss, and the smaller the value, the smaller the energy loss during running of the tire and the better the rolling resistance when used as a tire. Therefore, the smaller the tan δ at 60 ° C., the better the fuel economy performance. Also from this result, it can be said that the rubber composition containing the treated silica obtained by the production example is particularly suitable for tires.
 なお本実施例および比較例においては、硫黄含有シランカップリング剤の配合量が異なる場合はゴム物性に与える影響が大きいため、配合物中の総硫黄含有量(硫黄含有シランカップリング剤由来の硫黄量+配合(III)で配合する硫黄量)が同一となるよう調整している。 In Examples and Comparative Examples, when the blending amount of the sulfur-containing silane coupling agent is different, the rubber property is greatly affected, so the total sulfur content in the blend (sulfur derived from the sulfur-containing silane coupling agent) The amount is adjusted to be the same as the amount + sulfur amount to be blended by blending (III).
 本発明に係るゴム組成物は、湿式シリカを硫黄含有シランカップリング剤と予め反応させた処理シリカを用いるため、ゴムの混練作業中にアルコールが生成することがないか、たとえ生成しても極微量である。それゆえ、ゴムの混練作業の作業環境の改善およびVOCの低減に効果的である。また、ゴムの混練作業中に湿式シリカと硫黄含有シランカップリング剤とを反応させる必要が無いため、混練時間を短縮でき、あるいは多段練りを省略することができる。これにより、本発明のゴム組成物を利用する製品の生産性向上が期待できることから、ゴム工業分野において好適に使用できる。ゴム組成物を架橋させた架橋物のヒステリシスロスを低減することができるので、タイヤとして用いたときに、タイヤ走行時のエネルギーロスを小さくすることができ、転がり抵抗を低減させることができる。それゆえ、本発明に係るゴム組成物は、特にタイヤ工業分野において有用である。 Since the rubber composition according to the present invention uses treated silica obtained by reacting wet silica with a sulfur-containing silane coupling agent in advance, alcohol is not generated during the rubber kneading operation or even if generated. Trace amount. Therefore, it is effective in improving the working environment of rubber kneading work and reducing VOC. Further, since there is no need to react wet silica with a sulfur-containing silane coupling agent during the rubber kneading operation, the kneading time can be shortened or multi-stage kneading can be omitted. Thereby, since the productivity improvement of the product using the rubber composition of the present invention can be expected, it can be suitably used in the rubber industry field. Since the hysteresis loss of the crosslinked product obtained by crosslinking the rubber composition can be reduced, when used as a tire, the energy loss during running of the tire can be reduced, and the rolling resistance can be reduced. Therefore, the rubber composition according to the present invention is particularly useful in the tire industry field.

Claims (22)

  1.  ポリオキシエチレン不飽和脂肪酸エステル存在下で、湿式シリカを硫黄含有シランカップリング剤で処理してなる処理シリカと、ゴムと、を含有するゴム組成物。 A rubber composition comprising a treated silica obtained by treating wet silica with a sulfur-containing silane coupling agent in the presence of a polyoxyethylene unsaturated fatty acid ester, and rubber.
  2.  上記ゴムは、ジエン系ゴムであることを特徴とする請求項1に記載のゴム組成物。 The rubber composition according to claim 1, wherein the rubber is a diene rubber.
  3.  上記ジエン系ゴムは、スチレン-ブタジエンゴム(SBR)、ブタジエンゴム(BR)、天然ゴム(NR)、ブチルゴム(IIR)、およびエチレン-プロピレンゴム(EPDM)からなる群より選択される少なくとも1種であることを特徴とする請求項2に記載のゴム組成物。 The diene rubber is at least one selected from the group consisting of styrene-butadiene rubber (SBR), butadiene rubber (BR), natural rubber (NR), butyl rubber (IIR), and ethylene-propylene rubber (EPDM). The rubber composition according to claim 2, wherein the rubber composition is present.
  4.  上記硫黄含有シランカップリング剤は、下記式[I]で表される硫黄含有シランカップリング剤および下記式[II]で表される硫黄含有シランカップリング剤からなる群より選択される少なくとも1つであることを特徴とする請求項1~3のいずれか1項に記載のゴム組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rはそれぞれ独立して炭素数1~18の一価の炭化水素基、Rは炭素数1~9の二価の炭化水素基、xは2~6、Yは0、1、または2の整数である。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rはそれぞれ独立して炭素数1~18の一価の炭化水素基、Rは炭素数1~9の二価の炭化水素基、Rは水素または-CO-Rであり、Rは炭素数1~18の一価の炭化水素基であり、Yは0、1、または2の整数である。)
    The sulfur-containing silane coupling agent is at least one selected from the group consisting of a sulfur-containing silane coupling agent represented by the following formula [I] and a sulfur-containing silane coupling agent represented by the following formula [II]. The rubber composition according to any one of claims 1 to 3, wherein:
    Figure JPOXMLDOC01-appb-C000001
    (Wherein R 1 is independently a monovalent hydrocarbon group having 1 to 18 carbon atoms, R 2 is a divalent hydrocarbon group having 1 to 9 carbon atoms, x is 2 to 6, Y is 0, It is an integer of 1 or 2.)
    Figure JPOXMLDOC01-appb-C000002
    Wherein R 3 is independently a monovalent hydrocarbon group having 1 to 18 carbon atoms, R 4 is a divalent hydrocarbon group having 1 to 9 carbon atoms, R 5 is hydrogen or —CO—R 6 R 6 is a monovalent hydrocarbon group having 1 to 18 carbon atoms, and Y is an integer of 0, 1, or 2.)
  5.  上記処理シリカは、上記湿式シリカ100重量部に対し、上記硫黄含有シランカップリング剤を1~20重量部を含有し、上記湿式シリカ100重量部に対し、上記ポリオキシエチレン不飽和脂肪酸エステル0.001~5重量部を含有することを特徴とする請求項1~4のいずれか1項に記載のゴム組成物。 The treated silica contains 1 to 20 parts by weight of the sulfur-containing silane coupling agent with respect to 100 parts by weight of the wet silica, and 0.1% by weight of the polyoxyethylene unsaturated fatty acid ester to 100 parts by weight of the wet silica. The rubber composition according to any one of claims 1 to 4, which contains 001 to 5 parts by weight.
  6.  上記ポリオキシエチレン不飽和脂肪酸エステルは、HLB値が5~10であることを特徴とする請求項1~5のいずれか1項に記載のゴム組成物。 The rubber composition according to any one of claims 1 to 5, wherein the polyoxyethylene unsaturated fatty acid ester has an HLB value of 5 to 10.
  7.  上記湿式シリカは、BET比表面積が50~300m/gであることを特徴とする請求項1~6いずれか1項に記載のゴム組成物。 The rubber composition according to any one of claims 1 to 6, wherein the wet silica has a BET specific surface area of 50 to 300 m 2 / g.
  8.  上記処理シリカは、更に、塩基性物質および酸性物質からなる群より選択される少なくとも1つを含有することを特徴とする請求項1~7のいずれか1項に記載のゴム組成物。 The rubber composition according to any one of claims 1 to 7, wherein the treated silica further contains at least one selected from the group consisting of a basic substance and an acidic substance.
  9.  上記塩基性物質は、ヒドロキシル基が結合していてもよい炭素数1~24のアルキル基を有している、モノアルキルアミン、ジアルキルアミンおよびトリアルキルアミンからなる群より選択される少なくとも1つであることを特徴とする請求項8に記載のゴム組成物。 The basic substance is at least one selected from the group consisting of monoalkylamines, dialkylamines and trialkylamines having an alkyl group having 1 to 24 carbon atoms to which a hydroxyl group may be bonded. The rubber composition according to claim 8, wherein the rubber composition is present.
  10.  上記酸性物質は、炭素数が1~18である、(ポリ)カルボン酸およびヒドロキシ酸からなる群から選択される少なくとも1つであることを特徴とする請求項8または9に記載のゴム組成物。 10. The rubber composition according to claim 8, wherein the acidic substance is at least one selected from the group consisting of (poly) carboxylic acids and hydroxy acids having 1 to 18 carbon atoms. .
  11.  上記処理シリカは、溶剤抽出に供したときのシランカップリング剤の抽出量が、処理シリカに対して2重量%以下であることを特徴とする請求項1~10のいずれか1項に記載のゴム組成物。 The extracted amount of the silane coupling agent when the treated silica is subjected to solvent extraction is 2% by weight or less with respect to the treated silica, according to any one of claims 1 to 10. Rubber composition.
  12.  ゴム100重量部に対して、処理シリカを10~120重量部含有することを特徴とする請求項1~11のいずれか1項に記載のゴム組成物。 The rubber composition according to any one of claims 1 to 11, wherein 10 to 120 parts by weight of the treated silica is contained with respect to 100 parts by weight of the rubber.
  13.  更に、ゴム100重量部に対して、第2のシランカップリング剤を1~10重量部含有することを特徴とする請求項1~12のいずれか1項に記載のゴム組成物。 The rubber composition according to any one of claims 1 to 12, further comprising 1 to 10 parts by weight of a second silane coupling agent with respect to 100 parts by weight of rubber.
  14.  上記第2のシランカップリング剤は、下記式[III]で表される硫黄含有シランカップリング剤および下記式[IV]で表される硫黄含有シランカップリング剤からなる群より選択される少なくとも1つであることを特徴とする請求項13に記載のゴム組成物。
    Figure JPOXMLDOC01-appb-C000003
    (式中、Rはそれぞれ独立して炭素数1~18の一価の炭化水素基、Rは炭素数1~9の二価の炭化水素基、xは2~6、Yは0、1、または2の整数である。)
    Figure JPOXMLDOC01-appb-C000004
    (式中、Rはそれぞれ独立して炭素数1~18の一価の炭化水素基、Rは炭素数1~9の二価の炭化水素基、Rは水素または-CO-Rであり、Rは炭素数1~18の一価の炭化水素基であり、Yは0、1、または2の整数である。)
    The second silane coupling agent is at least one selected from the group consisting of a sulfur-containing silane coupling agent represented by the following formula [III] and a sulfur-containing silane coupling agent represented by the following formula [IV]. The rubber composition according to claim 13, wherein
    Figure JPOXMLDOC01-appb-C000003
    (Wherein R 1 is independently a monovalent hydrocarbon group having 1 to 18 carbon atoms, R 2 is a divalent hydrocarbon group having 1 to 9 carbon atoms, x is 2 to 6, Y is 0, It is an integer of 1 or 2.)
    Figure JPOXMLDOC01-appb-C000004
    Wherein R 3 is independently a monovalent hydrocarbon group having 1 to 18 carbon atoms, R 4 is a divalent hydrocarbon group having 1 to 9 carbon atoms, R 5 is hydrogen or —CO—R 6 R 6 is a monovalent hydrocarbon group having 1 to 18 carbon atoms, and Y is an integer of 0, 1, or 2.)
  15.  更に、ゴム100重量部に対して、充填材を10~80重量部含有することを特徴とする請求項1~14のいずれか1項に記載のゴム組成物。 The rubber composition according to any one of claims 1 to 14, further comprising 10 to 80 parts by weight of a filler with respect to 100 parts by weight of the rubber.
  16.  上記充填材は、BET比表面積が20~300m/gである、湿式シリカ、乾式シリカおよび水酸化アルミニウムからなる群より選択される少なくとも1つであることを特徴とする請求項15に記載のゴム組成物。 The filler according to claim 15, wherein the filler is at least one selected from the group consisting of wet silica, dry silica, and aluminum hydroxide having a BET specific surface area of 20 to 300 m 2 / g. Rubber composition.
  17.  更に、加硫剤を含有することを特徴とする請求項1~16のいずれか1項に記載のゴム組成物。 The rubber composition according to any one of claims 1 to 16, further comprising a vulcanizing agent.
  18.  上記処理シリカおよび上記第2のシランカップリング剤を、加硫剤を混練する前の工程にて、上記ゴムに混練することを特徴とする請求項13または14に記載のゴム組成物の製造方法。 The method for producing a rubber composition according to claim 13 or 14, wherein the treated silica and the second silane coupling agent are kneaded with the rubber in a step before kneading the vulcanizing agent. .
  19.  上記処理シリカ、上記第2のシランカップリング剤および充填材を、加硫剤を混練する前の工程にて、上記ゴムに混練することを特徴とする請求項18に記載のゴム組成物の製造方法。 The rubber composition according to claim 18, wherein the treated silica, the second silane coupling agent and the filler are kneaded with the rubber in a step before kneading the vulcanizing agent. Method.
  20.  請求項17に記載のゴム組成物を架橋してなる架橋物。 A cross-linked product obtained by cross-linking the rubber composition according to claim 17.
  21.  請求項17に記載のゴム組成物を架橋してなるタイヤ。 A tire formed by crosslinking the rubber composition according to claim 17.
  22.  処理シリカと、ゴムと、を含有するゴム組成物であって、
     当該処理シリカは、湿式シリカ100重量部に対し、硫黄含有シランカップリング剤を1~20重量部を含有し、湿式シリカ100重量部に対し、ポリオキシエチレン不飽和脂肪酸エステル0.001~5重量部を含有することを特徴とするゴム組成物。
    A rubber composition containing treated silica and rubber,
    The treated silica contains 1 to 20 parts by weight of a sulfur-containing silane coupling agent with respect to 100 parts by weight of wet silica, and 0.001 to 5 parts by weight of polyoxyethylene unsaturated fatty acid ester with respect to 100 parts by weight of wet silica. A rubber composition comprising a part.
PCT/JP2015/068518 2014-07-04 2015-06-26 Rubber composition, method for manufacturing same, and use of rubber composition WO2016002654A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016531332A JPWO2016002654A1 (en) 2014-07-04 2015-06-26 Rubber composition, method for producing the same, and use of rubber composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014139193 2014-07-04
JP2014-139193 2014-07-04

Publications (1)

Publication Number Publication Date
WO2016002654A1 true WO2016002654A1 (en) 2016-01-07

Family

ID=55019191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068518 WO2016002654A1 (en) 2014-07-04 2015-06-26 Rubber composition, method for manufacturing same, and use of rubber composition

Country Status (3)

Country Link
JP (1) JPWO2016002654A1 (en)
TW (1) TW201609995A (en)
WO (1) WO2016002654A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016017100A (en) * 2014-07-04 2016-02-01 第一工業製薬株式会社 Filler composition, filler and method of producing filler
CN110862577A (en) * 2019-11-22 2020-03-06 北京航天凯恩化工科技有限公司 Preparation method and application of unsaturated polyolefin loaded graphene master batch

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11130908A (en) * 1997-10-29 1999-05-18 Sumitomo Rubber Ind Ltd Rubber composition
JP2011174011A (en) * 2010-02-25 2011-09-08 Toyo Tire & Rubber Co Ltd Rubber composition for tire and pneumatic tire
JP2012172137A (en) * 2011-02-24 2012-09-10 Sumitomo Rubber Ind Ltd Rubber composition for tire and pneumatic tire
JP2013095806A (en) * 2011-10-28 2013-05-20 Daiso Co Ltd Rubber composition, crosslinked product thereof, and method for producing them
JP2014031419A (en) * 2012-08-02 2014-02-20 Bridgestone Corp Rubber composition and tire using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11130908A (en) * 1997-10-29 1999-05-18 Sumitomo Rubber Ind Ltd Rubber composition
JP2011174011A (en) * 2010-02-25 2011-09-08 Toyo Tire & Rubber Co Ltd Rubber composition for tire and pneumatic tire
JP2012172137A (en) * 2011-02-24 2012-09-10 Sumitomo Rubber Ind Ltd Rubber composition for tire and pneumatic tire
JP2013095806A (en) * 2011-10-28 2013-05-20 Daiso Co Ltd Rubber composition, crosslinked product thereof, and method for producing them
JP2014031419A (en) * 2012-08-02 2014-02-20 Bridgestone Corp Rubber composition and tire using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016017100A (en) * 2014-07-04 2016-02-01 第一工業製薬株式会社 Filler composition, filler and method of producing filler
US10836911B2 (en) 2014-07-04 2020-11-17 Dai-Ichi Kogyo Seiyaku Co., Ltd. Filler composition, filler, and method for manufacturing filler
CN110862577A (en) * 2019-11-22 2020-03-06 北京航天凯恩化工科技有限公司 Preparation method and application of unsaturated polyolefin loaded graphene master batch
CN110862577B (en) * 2019-11-22 2022-01-28 北京航天凯恩化工科技有限公司 Preparation method and application of unsaturated polyolefin loaded graphene master batch

Also Published As

Publication number Publication date
JPWO2016002654A1 (en) 2017-04-27
TW201609995A (en) 2016-03-16

Similar Documents

Publication Publication Date Title
TWI272281B (en) Organosilane masterbatch
JP2008274017A (en) Rubber composition
WO2016002654A1 (en) Rubber composition, method for manufacturing same, and use of rubber composition
JP2007224197A (en) Rubber composition
TWI720978B (en) Low-emission pulverulent mixtures containing nitrile rubbers
WO2010074245A1 (en) Process for producing natural rubber
WO2013133380A1 (en) Method for producing epoxidized natural rubber, rubber composition for tires, and pneumatic tire
JP2010111722A (en) Method for producing modified natural rubber
US10836911B2 (en) Filler composition, filler, and method for manufacturing filler
JP2009215338A (en) Silica-blended rubber composition, crosslinked product thereof, and method for producing it
JP2018062613A (en) Method for manufacturing tire member
JP2011093968A (en) Method for producing epoxidized diene rubber, and rubber composition
JP2008255153A (en) Pneumatic tire
JP5725365B2 (en) Rubber composition, cross-linked product thereof, and production method thereof
JP2006063206A (en) Rubber composition
WO2016186155A1 (en) Process for producing rubber composition
JP2012121965A (en) Rubber composition for tire and pneumatic tire
WO2019082900A1 (en) Rubber composition, heteroring-modified glycerin fatty acid ester, and production method for heteroring-modified glycerin fatty acid ester
JP5998505B2 (en) Method for producing modified diene rubber and method for producing rubber composition
WO2017093805A1 (en) Carbon black latex masterbatch composition
JP2019034988A (en) Manufacturing method of rubber composition
JP2004224898A (en) Rubber composition
JP2006257164A (en) Rubber composition for tire
JP4454420B2 (en) Rubber composition for tire side tread
JP2005120178A (en) Method of preparation of silica masterbatch

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15814527

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016531332

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15814527

Country of ref document: EP

Kind code of ref document: A1