WO2016002591A1 - Film formation device - Google Patents

Film formation device Download PDF

Info

Publication number
WO2016002591A1
WO2016002591A1 PCT/JP2015/068067 JP2015068067W WO2016002591A1 WO 2016002591 A1 WO2016002591 A1 WO 2016002591A1 JP 2015068067 W JP2015068067 W JP 2015068067W WO 2016002591 A1 WO2016002591 A1 WO 2016002591A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
plasma generation
generation space
frequency power
plasma
Prior art date
Application number
PCT/JP2015/068067
Other languages
French (fr)
Japanese (ja)
Inventor
雅人 森嶋
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2016002591A1 publication Critical patent/WO2016002591A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Definitions

  • Various aspects and embodiments of the present invention relate to a film forming apparatus.
  • a plasma CVD (Chemical Vapor Deposition) method is known as a method for forming a silicon nitride film on a substrate.
  • a plasma CVD method for example, active species generated by converting a processing gas containing SiH 4 (monosilane) gas or nitrogen (N 2) gas into plasma using high-frequency power is reacted, and a glass substrate is used. A silicon nitride film is formed on the substrate.
  • the film forming speed is slowed down in a shape portion where ions are difficult to enter, such as the bottom of a trench groove.
  • the coverage of the silicon nitride film to be formed is lowered. Therefore, it has been desired to improve the coverage of the silicon nitride film formed on the substrate.
  • the film forming apparatus includes a processing container, a mounting table, a first gas supply unit, a second gas supply unit, and a high-frequency power source.
  • the mounting table is a mounting table provided in the processing container for mounting the substrate.
  • the first gas supply unit supplies a reactive gas containing H2 / N2 or NH3 to the strong plasma generation space formed in the processing container.
  • the second gas supply unit reacts with the active species of the reactive gas in the weak plasma generation space that generates plasma having a light emission intensity lower than that of the plasma formed in the processing vessel and formed in the strong plasma generation space. Then, a silicon compound gas for forming a silicon nitride film on the substrate is supplied.
  • the high frequency power supply supplies high frequency power for converting the reaction gas and the silicon compound gas into plasma.
  • a film forming apparatus capable of improving the coverage of a silicon nitride film formed on a substrate is realized.
  • FIG. 1 is a longitudinal side view of a film forming apparatus according to the first embodiment.
  • FIG. 2 is a perspective view showing an external configuration of the film forming apparatus.
  • FIG. 3 is a partially broken perspective view showing a configuration of an electrode portion provided in the film forming apparatus.
  • FIG. 4 is a plan view of the electrode portion.
  • FIG. 5 is an explanatory diagram illustrating a configuration of a power supply system that supplies high-frequency power to the electrode unit.
  • FIG. 6 is an explanatory view showing the operation of the film forming apparatus.
  • FIG. 7 is an explanatory diagram of a film forming apparatus according to the second embodiment.
  • FIG. 8 is a first explanatory view of a film forming apparatus according to the third embodiment.
  • FIG. 9 is a second explanatory view of a film forming apparatus according to the third embodiment.
  • FIG. 10 is a plan view showing the configuration of the electrode section of the film forming apparatus according to the fourth embodiment.
  • FIG. 11 is a plan view showing a configuration of an electrode portion of a film forming apparatus according to the fifth embodiment.
  • FIG. 12 is a plan view showing the arrangement of electrode portions of the film forming apparatus according to the sixth embodiment.
  • FIG. 13 is an enlarged view of the bottom surface of the electrode portion according to the sixth embodiment.
  • FIG. 14 is a partially broken perspective view of the electrode portion according to the sixth embodiment.
  • FIG. 15 is an explanatory diagram of a power supply system of the film forming apparatus according to the sixth embodiment.
  • FIG. 16 is a plan view showing a modification of the electrode portion according to the sixth embodiment.
  • FIG. 17 is a plan view showing a second modification of the electrode portion according to the sixth embodiment.
  • FIG. 18 is a plan view (No. 1) showing a third modification of the electrode portion according to the sixth embodiment.
  • FIG. 19 is a plan view (No. 2) showing a third modification of the electrode portion according to the sixth embodiment.
  • FIG. 20 is a plan view showing the configuration of the electrode portion when the wafer is rotated.
  • FIG. 21 is an explanatory diagram showing the result of simulating the electron density distribution of the film forming apparatus according to the example.
  • FIG. 22 is a waveform diagram of high-frequency power supplied to the film forming apparatus according to the example.
  • FIG. 22 is a waveform diagram of high-frequency power supplied to the film forming apparatus according to the example.
  • FIG. 23 is a diagram showing experimental results in Comparative Example 1 and Example 3.
  • FIG. 24 is a diagram showing experimental results in Comparative Example 1 and Example 3.
  • FIG. 25 is a diagram showing experimental results in Comparative Example 1 and Example 3.
  • FIG. 26 is a diagram showing the concentration of each atom in the SiN film formed on the substrate after the experiment of Comparative Example 1.
  • FIG. 27 is a diagram showing the concentration of each atom in the SiN film formed on the substrate after the experiment of Example 3.
  • FIG. FIG. 28 is an enlarged trace view of the cross section of the substrate on which the SiN film is formed by the film forming apparatus shown in FIG. 1 when the temperature of the substrate is 70 ° C.
  • FIG. 29 is a diagram showing step coverage of a substrate on which a SiN film is formed by the film forming apparatus shown in FIG. 1 when the temperature of the substrate is 70 ° C., 150 ° C., or 300 ° C.
  • a film forming apparatus is provided in a processing container, a mounting table provided in the processing container for mounting a substrate, and a strong plasma generation space formed in the processing container.
  • a first gas supply unit for supplying a reaction gas containing H2 / N2 or NH3, and weak plasma generation for generating plasma having a light emission intensity lower than that of the plasma formed in the processing vessel and formed in the strong plasma generation space
  • a second gas supply unit for supplying a silicon compound gas for forming a silicon nitride film on the substrate by reacting with reactive species of the reaction gas in the space; and for converting the reaction gas and the silicon compound gas into plasma
  • a high frequency power source for supplying high frequency power.
  • the film forming apparatus is spaced apart from each other in a vertical orientation in order to form a strong plasma generation space above the substrate placed on the mounting table. And a plurality of electrode portions that form a weak plasma generation space in the gap between the lower end portion and the substrate, and the high-frequency power source is adjacent to the strong plasma generation space among the plurality of electrode portions.
  • the film forming apparatus has a power density of high-frequency power supplied from a high-frequency power source of 1 W / cm 2 or more and 3 W / cm 2 or less.
  • the partial pressure of the silicon compound gas is 1 Pa or more and 4 Pa or less.
  • the temperature of the substrate is 70 ° C. or higher and 300 ° C. or lower.
  • a capacitively coupled plasma is formed between adjacent electrode portions, and H2 / N2 or NH3 (reactive gas) is activated to react with SiH4 (silicon compound gas) to form silicon as a thin film.
  • H2 / N2 or NH3 reactive gas
  • SiH4 silicon compound gas
  • the film forming apparatus 1 reacts with a mounting table 2 on which a substrate S to be formed is mounted and a surface of the substrate S on the mounting table 2 in a processing container 10 that is a vacuum container.
  • the arrangement is arranged.
  • the reactive gas is, for example, a reactive gas containing H2 / N2 or NH3
  • the silicon compound gas is, for example, SiH4 or SiH2Cl2.
  • the processing container 10 is configured as a flat and metal container that can be sealed, and has a size that can store a large glass substrate S of, for example, 1100 mm ⁇ 1400 mm or more.
  • 11 is a loading / unloading port through which the short side of the substrate S provided in the processing vessel 10 can pass
  • 12 is a gate valve for opening and closing the loading / unloading port 11.
  • an exhaust pipe 13 for evacuating the inside of the processing container 10 is provided on the side wall surface of the processing container 10, and the processing container is operated by an action of a vacuum pump (not shown) provided downstream of the exhaust pipe 13.
  • the space in 10 can be adjusted to 100 Pa to 400 Pa, for example.
  • the short side direction of the substrate S installed in the processing container 10 will be described as the vertical direction
  • the long side direction of the substrate S will be described as the horizontal direction.
  • the mounting table 2 made of a dielectric or the like is disposed on the floor surface in the processing container 10, and the substrate S described above is mounted on the mounting table 2 to form a SiN film.
  • the transfer of the substrate S between an external substrate transfer mechanism (not shown) that carries the substrate S in and out and the mounting table 2 is performed by using a lift pin 22 configured to be lifted and lowered by a lift mechanism 25 via a lift plate 24. Done with.
  • reference numeral 23 denotes a bellows provided so as to surround the elevating pins 22 in order to keep the inside of the processing vessel 10 in a vacuum atmosphere.
  • a temperature adjusting unit 21 made of, for example, a resistance heating element is embedded in the mounting table 2, and the temperature adjusting unit 21 generates heat by electric power supplied from a power supply unit (not shown) and passes through the upper surface of the mounting table 2.
  • the substrate S can be adjusted to a temperature of 70 ° C. to 300 ° C., for example.
  • the temperature adjusting unit 21 is not limited to the one that heats the substrate S, and may employ, for example, a Peltier element that cools the substrate S and adjusts it to a predetermined temperature according to the process conditions.
  • the film forming apparatus 1 supplies active species SiH3 necessary for the growth of the SiN film at a high concentration to a region near the surface of the substrate S, while active species other than SiH3 such as Si, SiH, and SiH2.
  • active species other than SiH3 such as Si, SiH, and SiH2.
  • a space to which H2 / N2 or NH3 (reactive gas) is supplied is configured as a strong plasma generation space 101 to obtain N radicals and H radicals which are active species.
  • the space on the upper surface of the substrate S where H radicals and SiH 4 (silicon compound gas) react with each other is configured as a weak plasma generation space 102 that generates plasma having a light emission intensity lower than that of the strong plasma generation space 101.
  • SiH3 is supplied to the surface of the substrate S at a high concentration while suppressing generation of unnecessary active species.
  • the film forming apparatus 1 is spaced apart from each other in the lateral direction so as to divide the space in the processing container 10 above the substrate S placed on the mounting table 2.
  • a plurality of plate-like electrode portions 41 arranged with a gap therebetween are arranged.
  • Each electrode part 41 is comprised as an elongate plate-shaped metal member, for example, and is arrange
  • the electrode portions 41 are arranged at equal intervals in the direction of the long side (lateral direction) of the substrate S, and thereby, between the two electrode portions 41 adjacent to each other, the short side direction ( An elongated space (strong plasma generation space 101) extending in the vertical direction is formed.
  • Each electrode portion 41 is fixed to the ceiling portion of the processing container 10 via an insulating member 31.
  • Plasma is generated in the strong plasma generation space 101 by supplying high-frequency power to each electrode unit 41 from first and second power supply units 61 and 62 (see FIG. 5) described later. The detailed configuration of the power supply system will be described later.
  • the distance w between the electrode portions 41 arranged adjacent to each other with the strong plasma generation space 101 interposed therebetween is, for example, in the range of 2 mm or more and 20 mm or less, more preferably 4 mm or more and 10 mm or less. It has been adjusted.
  • the distance between the electrode portions 41 is less than 2 mm, plasma is not generated in the strong plasma generation space 101, while when the distance is greater than 20 mm, the plasma generated in the processing vessel 10 is weakened to generate N radicals. The amount decreases, causing a decrease in film formation rate.
  • the distance h between the lower surface of the electrode part 41 and the surface of the substrate S is adjusted to 5 mm or more and 100 mm or less, more preferably 7 mm or more and 30 mm or less.
  • the distance between the electrode part 41 and the substrate S is larger than 100 mm, the plasma generated in the weak plasma generation space 102 becomes too weak and the film speed is reduced.
  • the distance between the electrode portion 41 and the substrate S is smaller than 5 mm, the intensity of plasma generated in the weak plasma generation space 102 approaches the intensity of plasma generated in the strong plasma generation space 101, and SiH4 Decomposition of the metal proceeds excessively, which causes a decrease in the quality of the SiN film and a decrease in the coverage.
  • FIGS. 1 and 3 a mechanism for supplying a reactive gas to the strong plasma generating space 101 and the weak plasma generating space 102 and exhausting the reacted gas will be described.
  • a space is formed between the upper surface side of the insulating member 31 that fixes the electrode portion 41 and the processing container 10, and strong plasma is generated in this space.
  • a supply path 32 for supplying H2 / N2 or NH3 to the space 101 is provided.
  • the supply path 32 is disposed on the upper side of each strong plasma generation space 101. 3, 4, and 6, the supply path 32 is connected to the supply path 32 along the direction in which the electrode portion 41 extends (that is, the Y direction that is parallel to the substrate S), and the vertical direction ( That is, H2 / N2 or NH3 is supplied into the strong plasma generation space 101 via a branch path 323 extending in the Z direction (perpendicular to the substrate S) and a supply hole 321 drilled in the insulating member 31. Can do.
  • the plurality of supply paths 32 are connected to a common supply line 511, and receive H2 / N2 or NH3 from a supply unit 51 including a cylinder and a flow rate adjusting valve.
  • a predetermined amount of H2 / N2 or NH3 can be supplied to each strong plasma generation space 101.
  • the supply path 32, the supply line 511, the supply part 51, etc. are equivalent to the 1st gas supply part of this example.
  • the supply path 42 for supplying SiH 4 to the weak plasma generation space 102 and the reaction gas supplied to the weak plasma generation space 102 are discharged inside each electrode portion 41.
  • An exhaust passage 43 is formed.
  • the supply path 42 in this example is provided in a region on the lower side of the electrode portion 41 and in a region close to both side wall surfaces of the electrode portion 41 (two in total). It is formed along the direction in which the electrode part 41 extends (that is, the Y direction that is parallel to the substrate S).
  • a plurality of branch paths 423 extend downward from each supply path 42 at intervals, and are formed on the lower surface of the electrode portion 41 as shown in FIGS. 3, 4, and 6.
  • SiH 4 can be supplied toward the weak plasma generation space 102 from the supply holes 421 arranged in two rows along the both side wall surfaces before and after the portion 41.
  • the supply hole 421 is not limited to the case where the supply hole 421 is provided on the bottom surface of the electrode part 41.
  • SiH 4 may be supplied to the lower side of the strong plasma generation space 101.
  • the supply path 42 formed in each electrode part 41 is connected to a common supply line 521, and the supply part 52 including a cylinder and a flow rate adjusting valve is connected to the SiH4. And a preset amount of SiH4 can be supplied.
  • the supply path 42, the supply line 521, the supply unit 52, and the like correspond to the second gas supply unit of this example.
  • the partial pressure of the silicon compound gas such as SiH 4 supplied from the supply path 42, the supply line 521, and the supply unit 52 is preferably 1 Pa or more and 4 Pa or less, more preferably 2.5 Pa or more and 4 Pa or less.
  • the partial pressure of the silicon compound gas supplied from the supply path 42, the supply line 521, and the supply unit 52 is less than 1 Pa, the plasma generated in the weak plasma generation space 102 is weakened. As a result, the SiN film The film formation rate decreases.
  • the partial pressure of the silicon compound gas supplied from the supply path 42, the supply line 521, and the supply unit 52 is larger than 4 Pa, the active species of the silicon compound gas are polymerized, and the fine particles obtained by the polymerization are obtained. Incorporated into the SiN film, as a result, the quality of the SiN film is deteriorated and the coverage is lowered.
  • each electrode portion 41 two exhaust passages 43 are provided in an upper region inside the supply passage 42 described above, and the direction in which the electrode portion 41 extends in parallel with the supply passage 42 (that is, on the substrate S). (Y direction which is a parallel direction). Also from these two exhaust passages 43, a plurality of branch passages 433 extend downward at intervals from each other, and two of the branch passages 433 at the same position of the two exhaust passages are in the middle. And are connected to an exhaust hole 431 formed in the lower surface of the electrode portion 41. As shown in FIG. 4, the exhaust holes 431 are arranged in a row at the center of the lower surface of the electrode portion 41 so as to be sandwiched between the rows of supply holes 421 arranged in two rows.
  • the exhaust passage 43 formed in each electrode portion 41 is connected to an external exhaust means 53 constituted by a vacuum pump or the like via a common exhaust line 531.
  • the reactive gas in the weak plasma generation space 102 can be discharged to the outside.
  • the exhaust path 43, the exhaust line 531, the exhaust means 53, and the like correspond to the exhaust part of this example.
  • the electrode part 41 on one side (indicated as the electrode part 41a in FIG. 5) across the strong plasma generation space 101 is, for example, 13.56 MHz, 2500 W / piece (1
  • the first power supply unit 61 first high frequency power supply unit for applying the high frequency power of the electrode portion
  • the other electrode part 41 (denoted as electrode part 41b in FIG. 5) across the strong plasma generation space 101 has a phase of 180 ° with respect to the high-frequency power supplied from the first power supply part 61.
  • second power supply unit 62 (second high-frequency power supply unit) that applies the high-frequency power of, for example, 13.56 MHz and 2500 W / line which is delayed (phase is inverted).
  • reference numerals 612 and 622 denote matching units for matching high-frequency power supplied from the power supply units 61 and 62, respectively.
  • the first and second power supply units 61 and 62 are configured as externally synchronized power sources capable of outputting high frequency power synchronized with a frequency signal input from the outside.
  • the first and second power supply units 61 and 62 are connected to the common frequency signal generator 63, the first signal line 611 that connects the first power supply unit 61 and the frequency signal generator 63 is used.
  • the second signal line 621 connecting the second power source 62 and the frequency signal generator 63 is longer than the second power line 62.
  • the frequency signal output from the frequency signal generator 63 is input to the second power supply unit 62 with a delay from the timing input to the first power supply unit 61, and the phase of the high frequency power is utilized using this delay. Is adjusted. It has been experimentally confirmed that the phase of the high-frequency power output from each of the power supply units 61 and 62 can be adjusted by this method, as shown in the embodiments described later.
  • the method of adjusting the phase difference between the first power supply unit 61 and the second power supply unit 62 is not limited to a specific method, and other methods may be adopted.
  • a forced balun circuit is connected to the output of one high frequency power supply unit, one output of the forced balun circuit is applied to the electrode unit 41a, and another output whose phase is inverted from the one output is applied to the electrode unit 41b. It is good also as composition to do.
  • the 1st power supply part 61 and the 2nd power supply part 62 supply the high frequency electric power which the phase reversed to the electrode part 41 (41a, 41b) which pinches
  • H2 / N2 or NH3 supplied to the gap between the electrode parts 41 and SiH4 supplied to the gap between the lower end part of the electrode part 41 and the substrate S are turned into plasma.
  • a strong plasma generation space 101 is formed in the gap between the electrode portions 41 to generate H radicals by generating H2 / N2 or NH3 into plasma.
  • plasma caused by the high frequency power applied to the electrode unit 41 is also formed between each electrode unit 41 and the substrate S placed on the lower side thereof.
  • the 1st power supply part 61 and the 2nd power supply part 62 are examples of the high frequency power supply which supplies the high frequency electric power for plasma-izing a reaction gas and silicon compound gas.
  • the substrate S placed on the placement table 2 is: It is in an electrically floating state. For this reason, plasma weaker than the plasma formed in the strong plasma generation space 101 is generated in the space (weak plasma generation space 102) between the electrode portions 41 and the substrate S.
  • the relative intensity ratio of the plasma formed in the strong plasma generation space 101 and the weak plasma generation space 102 is determined as follows. Can be grasped by the ratio of the emission intensity when the image is taken. When the ratio of the emission intensity of the weak plasma generation space 102 to the emission intensity of the strong plasma generation space 101 is less than 1, a weaker plasma than the plasma generated in the strong plasma generation space 101 is generated in the weak plasma generation space 102. It can be said that.
  • the power density of the high frequency power supplied from the first power supply unit 61 and the second power supply unit 62 is preferably 1 W / cm 2 or more and 3 W / cm 2 or less, more preferably 1.5 W / cm 2 or more. 2 W / cm 2 or less.
  • the power density of the high frequency power is a value obtained by dividing the total input power by the surface area of all the electrodes.
  • the film forming apparatus 1 having the above-described configuration is connected to the control unit 7 as shown in FIGS.
  • the control unit 7 includes, for example, a computer including a CPU and a storage unit (not shown).
  • the operation of the film forming apparatus 1, that is, the substrate S is loaded into the processing container 10 and placed on the mounting table 2.
  • a program in which a group of steps (commands) for control and the like related to operations from when a SiN film having a predetermined film thickness is formed on the substrate S to be carried out is recorded.
  • This program is stored in a storage medium such as a hard disk, a compact disk, a magnetic optical disk, or a memory card, and installed in the computer therefrom.
  • the film forming apparatus 1 opens the gate valve 12 of the loading / unloading port 11 and protrudes the lift pins 22 from the mounting table 2 to remove the substrate S from the substrate transport mechanism. receive.
  • the substrate transport mechanism is retracted out of the processing container 10 to close the gate valve 12 and the lifting pins 22 are lowered to place the substrate S on the mounting table 2.
  • the processing chamber 10 is evacuated to adjust the processing chamber 10 to, for example, 200 Pa in the range of 100 Pa to 400 Pa, and the temperature adjusting unit 21 brings the substrate S to, for example, 70 ° C. to 300 ° C. Adjust the temperature as follows.
  • H2 / N2 is supplied to the strong plasma generation space 101 from the supply unit 51 via the supply line 511 and the supply path 32, and the first and second.
  • the high frequency power is applied from the power supply units 61 and 62 to the electrode units 41 to turn H2 / N2 into plasma.
  • SiH 4 is supplied from the supply unit 52 toward the weak plasma generation space 102 via the supply line 521 and the supply path 42.
  • a downward flow is formed in the strong plasma generation space 101 in which H2 / N2 supplied from the supply path 32 flows downward.
  • the H2 / N2 collides with the electrons supplied from the electrode portion 41 to be turned into plasma, thereby forming active species.
  • N radicals are generated as active species from nitrogen plasma.
  • H2 is a molecule consisting of only two hydrogen atoms, H radicals are generated as active species from the hydrogen plasma as shown in the following formula (1).
  • SiH 4 flowing out from the supply hole 421 is supplied to the weak plasma generation space 102 between the electrode portion 41 and the substrate S, and is mixed with H radicals flowing from the upstream side to spread the surface of the substrate S.
  • a mixed gas of H radicals and SiH 4 is supplied to the surface of the substrate S, and a reaction represented by the following formula (2) proceeds in the mixed gas.
  • the space between the grounded electrode portion 41b and the substrate S is formed. Is difficult to generate plasma, and relatively strong plasma is generated in the space between the electrode portion 41a and the substrate S. For this reason, a region where plasma is generated in the weak plasma generation space 102 and a region where plasma is not generated are formed, and a good in-plane uniformity may not be obtained in the SiN film formed on the substrate S. .
  • SiH3 generated by the above formula (2) further reacts with H radicals, and SiH2, SiH, and Si are sequentially generated.
  • Higher order silane and fine particles, which are seeds and their polymers, are taken into the SiN film, which causes deterioration of film quality and covering property.
  • exhaust holes 431 for exhausting the reaction gas in the weak plasma generation space 102 are provided on the lower surface of each electrode portion 41.
  • the inside of the processing chamber 10 is constantly evacuated through the exhaust hole 431 toward the exhaust passage 43, and the mixed gas spreading in the weak plasma generation space 102 reaches the surface of the substrate S and then moves upward in the flow direction. Then, the gas is quickly exhausted from the processing container 10 through the exhaust hole 431.
  • the exhaust hole 431 on the lower surface of the electrode portion 41 By providing the exhaust hole 431 on the lower surface of the electrode portion 41 in this way, the residence time of the mixed gas on the surface of the substrate S is shortened, and even when the reaction between H radicals and SiH 4 proceeds in the weak plasma generation space 102.
  • the generation of unnecessary active species can be suppressed while supplying a high concentration of SiH 3 to the surface of the substrate S, and a SiN film with good film quality can be obtained.
  • a space to which H2 / N2 or NH3 is supplied is configured as a strong plasma generation space 101 to obtain a large amount of N radicals and H radicals as active species, while a space to which SiH4 is supplied.
  • the film forming apparatus 1 has the following effects. For example, high-frequency power having a phase difference of 180 ° is applied to one and the other of the plate-like electrode portions 41 that are spaced apart from each other, and plasma is generated in the strong plasma generation space 101 sandwiched between these electrode portions 41. On the other hand, a weaker plasma than the plasma formed in the strong plasma generation space 101 is also formed in the weak plasma generation space 102 where film formation is performed. In the strong plasma generation space 101, N radicals and H radicals are generated, while in the weak plasma generation space 102, the reaction between the H radicals and SiH4 proceeds. As a result, according to the film forming apparatus 1 according to the present embodiment, the coverage of the SiN film formed on the substrate S can be improved.
  • the distance w between the adjacent electrode portions 41 is adjusted to a range of 2 to 20 mm, and the distance h between the lower surface of the electrode portion 41 and the substrate S is adjusted to a range of 5 to 100 mm.
  • techniques for forming a SiN film with higher coverage on the substrate S are listed below.
  • an inclined surface portion 46 is provided on the lower surface of each electrode portion 41 c so as to rise from the both side wall surfaces of the electrode portion 41 c toward the central portion, and the distance from the substrate S to the lower end of the inclined surface portion 46.
  • the distance h1 from the substrate S to both side wall surfaces of the electrode portion 41c is larger than h2.
  • Both side wall surfaces of the electrode portion 41c correspond to the exit (opening portion) of the strong plasma generation space 101, and it has been confirmed in the simulation described later that uniform plasma is formed in the vicinity of this region.
  • the coupling of electric capacity due to the gap between the lower end portion of the inclined surface portion 46 and the substrate S is made relatively.
  • the plasma intensity at that position can be increased. Therefore, the intensity of the plasma formed near the exit of the strong plasma generation space 101 can be reduced, and the uniformity of the plasma in the weak plasma generation space 102 can be improved.
  • h2 is adjusted within a range of 5 to 100 mm.
  • the mounting table 2 a is supported on the floor surface in the processing container 10 via the caster part 26, and the mounting table 2 a is aligned along the arrangement direction of the electrode parts 41 by the drive mechanism 27. May be reciprocated. Even when the electron density in the vicinity of the exit of the strong plasma generation space 101 is high, the substrate S is moved back and forth in the lateral direction to move the region of the substrate S facing the region having the high electron density, thereby The coverage of the SiN film formed on S can be further improved.
  • FIG. 10 shows that the distance w between the electrode portions 41 in the region where the deposition rate of the SiN film formed on the substrate S is increased is increased, and the plasma intensity in the strong plasma generation space 101 in the region is increased.
  • the example of the electrode part 41d which improves the in-plane uniformity of a film thickness by reducing is shown.
  • the region on the center side of the substrate S where the supply holes 421 and the exhaust holes 431 are densely packed is an N radical and an H radical compared to the side end region of the substrate S where the supply holes 421 and the exhaust holes 431 are less than the center side.
  • the amount of SiH4 supplied is large and the film formation rate tends to increase.
  • the recess 44 is formed on the side wall surface of the electrode part 41d so that the distance w1 between the electrode parts 41d adjacent to each other in the region where the film forming speed is high.
  • the distance w2 between the electrode portions 41d is relatively smaller than in the region where the film formation rate is high.
  • the planar shape of the electrode part 41d is not limited to the example shown in FIG.
  • a preliminary experiment is performed using the electrode unit 41 shown in FIG. 4 to identify a region where the deposition rate is high, and the distance w between the electrode units 41d located in this region is relatively large.
  • the planar shape of the electrode part 41d can be adjusted as appropriate.
  • the method for adjusting the interval between the adjacent electrode portions 41 is not limited to the case where the distance between the electrode portions 41d is uniformly changed as shown in FIG.
  • a notch 45 is provided at a distance on the side wall surface of the electrode portion 41e with a distance w, and the distance between the electrode portions 41e and 41 in the notch 45 is w ′. It may be made to become.
  • the cutout portion 45 is cut so that the average value of the distances between the electrode portions 41e and 41 in the region where the cutout portion 45 is provided and the region where the cutout portion 45 is not provided is w1 described above. It is recommended to adjust the depth of the notch and the arrangement interval.
  • FIGS. 12 to 15 components having the same functions as those of the first embodiment shown in FIGS. 1 to 5 are denoted by the same reference numerals as those shown in these drawings.
  • the SiN film formed on the wafer in the semiconductor device manufacturing process is required to have a higher level of in-plane uniformity compared to the case where the SiN film is formed on a substrate for a solar cell.
  • the shape of the bottom surface of the electrode portion 41f is, for example, a square, and these electrode portions 41f are not only in the X-axis direction in the figure but also in the Y-axis direction.
  • the point that the long and thin plate-like electrode portions 41 are arranged at intervals only in the X-axis direction is different from the film forming apparatus 1 according to the first embodiment in that they are arranged at intervals.
  • the strong plasma generation space 101 is formed in the crossing direction (X-axis direction) intersecting the direction (Y-axis direction) in which the strong plasma generation space 101 shown in FIG.
  • the electrode part 41 is configured by being divided also in the Y-axis direction.
  • the distance between the electrode parts 41f arranged adjacent to each other across the strong plasma generation space 101 is, for example, 2 mm or more and 20 mm or less, more preferably 4 mm or more and 10 mm or less.
  • the first embodiment is that the distance h between the lower surface of the electrode part 41 and the surface of the substrate S is adjusted to 5 mm or more and 100 mm or less, more preferably 7 mm or more and 30 mm or less.
  • the form is the same.
  • supply holes 421 are provided on the bottom surface of each electrode portion 41 f at, for example, four corners of a square, and exhaust holes are provided in the center surrounded by these supply holes 421. 431 is provided.
  • a strong plasma generation space 101 is formed between adjacent electrode portions 41f.
  • an insulating member 31 that forms a ceiling portion of the processing vessel 10 is provided.
  • the supply hole 321 is provided in the same manner as the film forming apparatus 1 of the first embodiment.
  • supply paths 42 and 32 provided on the upper surface side of the insulating member 31, and the insulating member 31 and the electrode part 41f are provided.
  • H2 / N2, NH3, or SiH4 is supplied through the branch paths 423 and 323 that penetrate therethrough. Further, the mixed gas flowing into the exhaust hole 431 is discharged to the outside through the branch path 433 and the exhaust path 43.
  • FIG. 14 only one set of each of the supply / exhaust passages 42, 32, 43 and the branch passages 423, 323, 433 is shown in order to avoid complication of the drawing.
  • each electrode portion 41 f is connected to the first and second power supply portions 61 and 62 so that high-frequency power whose phase is inverted is applied to the adjacent electrode portion 41 f.
  • the electrode portion 41f to which the electric power with reversed phase is applied is surrounded by a strong plasma generation space 101 extending so as to intersect in a lattice pattern, like a checkered pattern. It will be in the state where it lined up.
  • the electrode portion 41 f connected to the first power supply portion 61 is denoted by “41 a”
  • the electrode portion 41 f connected to the second power supply portion 62 is denoted by “41 b”.
  • subjected is the same as that of the case of FIG.
  • the shape of the bottom surface of the electrode portion 41f is, for example, a square, and these electrode portions 41f are arranged in the front-rear and left-right directions, and by applying power whose phase is reversed to the adjacent electrode portions 41f, only the left-right direction (X-axis direction in FIG. 12) is applied. In addition, the plasma is dispersed in the front-rear direction (Y-axis direction in FIG. 12). Therefore, even if there is a slight difference in the film formation speed in the respective regions below the electrode portion 41f and the strong plasma generation space 101, the regions having different film formation rates are arranged in a distributed manner. Become.
  • the length of one side of the bottom surface of the electrode portions 41g to 41j formed in a square shape is The example which comprised so that it might become long gradually toward the peripheral part side from the part side is shown.
  • This example corresponds to the example of the electrode part 41d shown in FIG. 10, and the interval between the adjacent electrode parts 41g to 41j is changed so as to cancel out the difference in the arrangement density of the supply holes 421 and the exhaust holes 431, for example.
  • the film forming speed is made uniform, and the in-plane uniformity of the film thickness is improved.
  • the shape of the bottom surface of the electrode portion is not limited to a rectangular shape such as a square, and an electrode portion 41k having a circular bottom surface may be used as shown in FIG. May be.
  • the strong plasma generation spaces 101 that intersect with each other and extend in a lattice shape are not limited to being orthogonal to each other, and the strong plasma generation spaces 101 may be crossed obliquely.
  • the shape of the bottom surface of the electrode portion is, for example, a rhombus.
  • FIG. 18 shows an example in which one of the electrode portions 41m (41n) (first electrode portion) is integrated among the electrode portions 41m and 41n to which high-frequency powers whose phases are reversed are applied.
  • the first electrode portion 41m is made of a wide metal plate that covers the upper side of the plate surface of the wafer, and the second electrode portion 41n (second electrode portion) is disposed at a position where the second electrode portion 41n (second electrode portion) is disposed.
  • An opening 103 that is slightly larger than the planar shape of the electrode portion 41n is formed. Then, by inserting the second electrode portion 41n into the opening 103, there is a gap between the inner surface of the opening 103 and the outer surface of the second electrode portion 41n disposed inside thereof.
  • the gap is formed and the strong plasma generation space 101 is formed.
  • the opening 103 in this example is similar to the electrode part 41f shown in FIG. 12 described above, and is provided with electrode parts 41m and 41n to which high-frequency power with reversed phase is applied (shown separately in white and gray). Are arranged in a checkered pattern.
  • the shapes of the integrated first electrode portion 41m and the second electrode portion 41n inserted into the opening 103 are not limited to the example shown in FIG.
  • FIG. 19 shows an example in which hexagonal openings 103 are regularly arranged in the first electrode part 41 East formed in a hexagonal shape, and the second electrode part 41p is inserted into the opening part 103.
  • a hexagonal region (indicated by a broken line in FIG. 19) of the first electrode part 41 East sandwiched between the openings 103 and the second electrode part 41p are arranged in a honeycomb shape.
  • the electrode portions 41 East and 41p are highly symmetrical as viewed from the wafer.
  • the shape of the second electrode portion may be other shapes such as a circle, or as shown in FIG. 16, the area of the second electrode portion or the strong plasma generation space 101 Needless to say, the width of the gap forming the gap may be changed between the central portion side and the peripheral portion side of the wafer.
  • a rotation axis that rotates around the vertical axis is provided at the center on the lower surface side of the mounting table 2 that supports the wafer, and film formation is performed while the wafer on the mounting table 2 is rotated. In-plane uniformity may be further improved.
  • the disc-shaped wafer is formed in the same size as shown in FIG. 12, for example, because the circumferential length is different between the position on the center side and the position on the outer periphery side.
  • the outer peripheral portion of the wafer is exposed to the plasma concentration portion (for example, the lower region of the strong plasma generation space 101) more frequently than the inner peripheral portion, and the film formation rate is uneven when viewed in the radial direction. There is also a concern that this will expand.
  • the plasma concentration portion for example, the lower region of the strong plasma generation space 101
  • the strong plasma generation space 101 extending along the circumferential direction of the wafer and the strong plasma extending along the direction intersecting with this direction, that is, along the radial direction of the wafer.
  • An electrode portion 41l divided by the generation space 101 may be provided. Since the number of electrode portions 41l arranged above the electrode portion 41l divided in this way is the same at the position on the center side of the wafer and the position on the outer peripheral portion side, the wafer is rotated one revolution. Further, the number of electrode portions 41l passing above and the number of strong plasma generation spaces 101 extending in the radial direction are uniform, and the film formation rate can be made uniform when viewed in the radial direction.
  • the phase difference of the high frequency power applied from the first and second power supply units 61 and 62 is smaller than 180 °, for example, 30 °.
  • the plasma intensity may be made smaller than that in the case where the phase is inverted (the phase is shifted by 180 °) by adjusting to a range of from above to less than 180 °.
  • the high frequency power applied to the electrode part 41 is not restricted to the example of 13.56 MHz, Of course, other frequencies, for example, 100 MHz or other high frequency power may be applied.
  • the film forming apparatus 1 shown in FIG. 1 the example in which the reaction gas in the weak plasma generation space 102 is exhausted to the outside through the exhaust hole 431 opened on the lower surface of the electrode portion 41 is shown. Is not limited to the case of forming in the electrode part 41. For example, when a good film quality can be obtained even if exhaust is performed from the exhaust pipe 13 shown in FIG. 1, the case where the exhaust pipe 13 is used as an exhaust part is not denied.
  • the present invention is not limited to application to the formation of a SiN film using H2 / N2 or NH3 and SiH4.
  • the present invention can be applied to the case where a SiN film is formed by using a silicon compound gas other than SiH4, for example, SiH2Cl2.
  • the strong plasma generation space 101 and the weak plasma generation space 102 are formed in the processing container 10 using the plurality of electrode portions 41 , but the disclosed technique is not limited thereto.
  • the strong plasma generation space 101 is formed in one of two spaces obtained by dividing the processing vessel 10 using a partition plate or the like in which a through hole is formed, and the weak plasma generation space is formed in the other space. 102 may be formed.
  • Example 1 Simulation conditions (Example 1-1)
  • 13.56 MHz, 400 W / piece from the first power supply portion 61 A strong plasma generation space in a state in which a high frequency power of 13.56 MHz and 600 W / line, which is 180 degrees out of phase with the high frequency power of the first power supply unit 61, is applied from the second power supply unit 62.
  • the electron density distribution in the weak plasma generation space 102 was simulated by a plasma fluid model. References for plasma fluid models include M.I. J. et al. Kushner: J.A. Phys.
  • Example 1-1 a region with a high electron density was confirmed on the lower side of the opening of the strong plasma generation space 101.
  • an inclined surface portion 46 is provided on the lower surface of the electrode portion 41c so as to be inclined from the both side wall surfaces of the electrode portion 41c toward the central portion.
  • the region having a high electron density observed in (Example 1-1) is considerably eliminated, and plasma is uniformly formed over the entire weak plasma generation space 102. This is thought to be because the concentration of the electron density at the exit of the strong plasma generation space 101 was alleviated by strengthening the coupling of electric capacity by the gap with the substrate S at the tip of the inclined surface portion 46.
  • Example 2 As shown in FIG. 5, the frequency signal generator 63 and the first and second power supply units 61 and 62 are connected via the first and second signal lines 611 and 621, and the second signal line 621 is connected.
  • Example 2 is the same as Example 2-1 except that the length of the second signal line 621 from the frequency signal generator 63 to the second power supply unit 62 is 2.85 m.
  • Example 2 is the same as Example 2-1 except that the length of the second signal line 621 from the frequency signal generator 63 to the second power supply unit 62 is 4.7 m.
  • FIGS. 22A to 22C The measurement results of the high-frequency power waveforms in Examples 2-1 to 2-3 are shown in FIGS. 22A to 22C, respectively.
  • the waveform of the high frequency power output from the first power supply unit 61 is indicated by a solid line
  • the waveform of the high frequency power output from the second power supply unit 62 is indicated by a broken line.
  • the difference between the lengths of the first and second signal lines 611 and 621 is set to 7.4 m. It was possible to shift the phase difference of the high-frequency power output from the units 61 and 62 by 180 ° (invert the phase). Also in the case of (Example 2-2) shown in FIG. 22B and (Example 2-3) shown in FIG. 22C, the lengths of the first and second signal lines 611 and 621, respectively. By setting the difference in height to 1.85 m and 3.7 m, the phase difference of the high-frequency power could be changed to 45 ° and 90 °.
  • Example 3 In Experiment 3, a film forming apparatus 1 that supplies a reactive gas containing H2 / N2 to the strong plasma generation space 101 and SiH4 to the weak plasma generation space 102, and a general inductively coupled plasma (ICP). The coverage of the SiN film formed on the substrate S and the concentration of each atom in the SiN film were compared with a film forming apparatus using the above.
  • a film forming apparatus 1 that supplies a reactive gas containing H2 / N2 to the strong plasma generation space 101 and SiH4 to the weak plasma generation space 102, and a general inductively coupled plasma (ICP).
  • FIGS. 23 to 25 are diagrams showing experimental results in Comparative Example 1 and Example 3.
  • FIG. 23 is a trace view of a photograph in which a cross section of the substrate after the experiment of Comparative Example 1 is enlarged.
  • FIG. 24 is a trace view of a photograph in which a cross section of the substrate after the experiment of Example 3 is enlarged.
  • FIG. 25 shows the relationship between the step coverage after the experiment in Comparative Example 1 and Example 3 and the partial pressure of SiH4.
  • the vertical axis represents step coverage (%), and the horizontal axis represents SiH4 partial pressure (Pa).
  • the degree of coverage of the SiN film formed at the bottom of the trench groove on the substrate with respect to the SiN film formed on the flat portion of the substrate is shown.
  • the bottom step coverage (Bottom Step Coverage) shown and the side step coverage (Side Step Coverage) showing the degree of coverage of the SiN film formed on the sidewall of the trench groove on the substrate are shown.
  • the reactive gas containing H2 / N2 is supplied to the strong plasma generation space 101 and SiH4 is supplied to the weak plasma generation space 102.
  • the coverage of the SiN film was improved.
  • the inventor has found that when the partial pressure of SiH4 is 1 Pa or more and 4 Pa or less, the coverage of the SiN film can be improved while maintaining the film quality of the SiN film. It was. For this reason, it is preferable that the partial pressure of SiH4 is 1 Pa or more and 4 Pa or less.
  • FIG. 26 is a diagram showing the concentration of each atom in the SiN film formed on the substrate after the experiment of Comparative Example 1.
  • FIG. FIG. 27 is a diagram showing the concentration of each atom in the SiN film formed on the substrate after the experiment of Example 3.
  • the vertical axis represents the atomic concentration (%).
  • the horizontal axis indicates the flow rate (sccm) of SiH4.
  • the horizontal axis represents the ratio of the flow rate of SiH4 to the sum of the flow rate of SiH4 and the flow rate of N2.
  • the inventor has found that good step coverage can be obtained when the temperature of the substrate S is 70 ° C. or higher and 300 ° C. or lower. Furthermore, it was found that when the temperature of the substrate S is 70 ° C. or higher and 150 ° C. or lower, good step coverage can be obtained and generation of particles due to decomposition of SiH 4 can be suppressed. For this reason, the temperature of the substrate S is preferably 70 ° C. or higher and 300 ° C. or lower, more preferably 70 ° C. or higher and 150 ° C. or lower, and most preferably 70 ° C.
  • FIG. 28 is an enlarged trace view of the cross section of the substrate on which the SiN film is formed by the film forming apparatus shown in FIG. 1 when the substrate temperature is 70 ° C.
  • FIG. 29 is a diagram showing step coverage of a substrate on which a SiN film is formed by the film forming apparatus shown in FIG. 1 when the temperature of the substrate is 70 ° C., 150 ° C., or 300 ° C.
  • the vertical axis indicates the distance d (nm) between the SiN films formed on the pair of side walls sandwiching the trench groove on the substrate. The shorter the distance d, the better the step coverage. It is assumed that the distance between the pair of side walls sandwiching the trench groove on the substrate before the SiN film is formed is 30 (nm).
  • the distance d is 23.3 (nm).
  • the distance d was 23.3 (nm).
  • the distance d was 22.0 (nm).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

 In the present invention, a film formation device is provided with a processing container, a platform, a first gas supply part, a second gas supply part, and a high-frequency power source. The platform is provided inside the processing container, a substrate being mounted on the platform. The first gas supply part supplies a reaction gas containing H2/N2 or NH3 into a strong plasma generation space formed inside the processing container. The second gas supply part supplies a silicon compound gas that forms a silicon nitride film on the substrate upon reacting with an active species of the reaction gas in a weak plasma generation space for generating plasma having weaker emission intensity than the plasma formed in the strong plasma generation space that is formed inside the processing container. The high-frequency power source supplies high-frequency power for converting the reaction gas and the silicon compound gas into plasma.

Description

成膜装置Deposition equipment
 本発明の種々の側面及び実施形態は成膜装置に関するものである。 Various aspects and embodiments of the present invention relate to a film forming apparatus.
 従来、基板上にシリコン窒化膜を成膜する手法として、プラズマCVD(Chemical Vapor Deposition)法が知られている。プラズマCVD法を採用した成膜装置では、例えば高周波電力を用いてSiH4(モノシラン)ガスや窒素(N2)ガスを含む処理ガスをプラズマ化することで生成される活性種を反応させて、ガラス基板等の基板上にシリコン窒化膜を成膜する。 Conventionally, a plasma CVD (Chemical Vapor Deposition) method is known as a method for forming a silicon nitride film on a substrate. In a film forming apparatus that employs a plasma CVD method, for example, active species generated by converting a processing gas containing SiH 4 (monosilane) gas or nitrogen (N 2) gas into plasma using high-frequency power is reacted, and a glass substrate is used. A silicon nitride film is formed on the substrate.
特開2013-175780号公報JP 2013-175780 A
 しかしながら、プラズマCVD法を採用した成膜装置では、シリコン窒化膜を成膜する場合に、例えばトレンチ溝の底のようにイオンの侵入し難い形状部分において成膜速度が遅くなるため、基板上に成膜されるシリコン窒化膜の被覆性が低下するという問題がある。したがって、基板上に成膜されるシリコン窒化膜の被覆性を向上することが望まれていた。 However, in a film forming apparatus employing the plasma CVD method, when forming a silicon nitride film, the film forming speed is slowed down in a shape portion where ions are difficult to enter, such as the bottom of a trench groove. There is a problem that the coverage of the silicon nitride film to be formed is lowered. Therefore, it has been desired to improve the coverage of the silicon nitride film formed on the substrate.
 本発明の一側面に係る成膜装置は、処理容器と、載置台と、第1のガス供給部と、第2のガス供給部と、高周波電源とを備えた。載置台は、前記処理容器内に設けられ、基板を載置するための載置台である。第1のガス供給部は、前記処理容器内に形成された強プラズマ生成空間に、H2/N2又はNH3を含む反応ガスを供給する。第2のガス供給部は、前記処理容器内に形成されて前記強プラズマ生成空間に形成されるプラズマよりも発光強度が弱いプラズマを生成する弱プラズマ生成空間に、前記反応ガスの活性種と反応して前記基板上にシリコン窒化膜を成膜するシリコン化合物ガスを供給する。高周波電源は、前記反応ガスと、前記シリコン化合物ガスとをプラズマ化するための高周波電力を供給する。 The film forming apparatus according to one aspect of the present invention includes a processing container, a mounting table, a first gas supply unit, a second gas supply unit, and a high-frequency power source. The mounting table is a mounting table provided in the processing container for mounting the substrate. The first gas supply unit supplies a reactive gas containing H2 / N2 or NH3 to the strong plasma generation space formed in the processing container. The second gas supply unit reacts with the active species of the reactive gas in the weak plasma generation space that generates plasma having a light emission intensity lower than that of the plasma formed in the processing vessel and formed in the strong plasma generation space. Then, a silicon compound gas for forming a silicon nitride film on the substrate is supplied. The high frequency power supply supplies high frequency power for converting the reaction gas and the silicon compound gas into plasma.
 本発明の種々の側面及び実施形態によれば、基板上に成膜されるシリコン窒化膜の被覆性を向上することができる成膜装置が実現される。 According to various aspects and embodiments of the present invention, a film forming apparatus capable of improving the coverage of a silicon nitride film formed on a substrate is realized.
図1は、第1の実施の形態に係わる成膜装置の縦断側面図である。FIG. 1 is a longitudinal side view of a film forming apparatus according to the first embodiment. 図2は、成膜装置の外観構成を示す斜視図である。FIG. 2 is a perspective view showing an external configuration of the film forming apparatus. 図3は、成膜装置に設けられた電極部の構成を示す一部破断斜視図である。FIG. 3 is a partially broken perspective view showing a configuration of an electrode portion provided in the film forming apparatus. 図4は、電極部の平面図である。FIG. 4 is a plan view of the electrode portion. 図5は、電極部に高周波電力を供給する電力供給系統の構成を示す説明図である。FIG. 5 is an explanatory diagram illustrating a configuration of a power supply system that supplies high-frequency power to the electrode unit. 図6は、成膜装置の作用を示す説明図である。FIG. 6 is an explanatory view showing the operation of the film forming apparatus. 図7は、第2の実施形態に係わる成膜装置の説明図である。FIG. 7 is an explanatory diagram of a film forming apparatus according to the second embodiment. 図8は、第3の実施の形態に係わる成膜装置の第1の説明図である。FIG. 8 is a first explanatory view of a film forming apparatus according to the third embodiment. 図9は、第3の実施の形態に係わる成膜装置の第2の説明図である。FIG. 9 is a second explanatory view of a film forming apparatus according to the third embodiment. 図10は、第4の実施の形態に係わる成膜装置の電極部の構成を示す平面図である。FIG. 10 is a plan view showing the configuration of the electrode section of the film forming apparatus according to the fourth embodiment. 図11は、第5の実施の形態に係わる成膜装置の電極部の構成を示す平面図である。FIG. 11 is a plan view showing a configuration of an electrode portion of a film forming apparatus according to the fifth embodiment. 図12は、第6の実施の形態に関わる成膜装置の電極部の配置を示す平面図である。FIG. 12 is a plan view showing the arrangement of electrode portions of the film forming apparatus according to the sixth embodiment. 図13は、第6の実施の形態に関わる電極部の底面の拡大図である。FIG. 13 is an enlarged view of the bottom surface of the electrode portion according to the sixth embodiment. 図14は、第6の実施の形態に関わる電極部の一部破断斜視図である。FIG. 14 is a partially broken perspective view of the electrode portion according to the sixth embodiment. 図15は、第6の実施の形態に関わる成膜装置の電力供給系統の説明図である。FIG. 15 is an explanatory diagram of a power supply system of the film forming apparatus according to the sixth embodiment. 図16は、第6の実施の形態に関わる電極部の変形例を示す平面図である。FIG. 16 is a plan view showing a modification of the electrode portion according to the sixth embodiment. 図17は、第6の実施の形態に関わる電極部の第2変形例を示す平面図である。FIG. 17 is a plan view showing a second modification of the electrode portion according to the sixth embodiment. 図18は、第6の実施の形態に関わる電極部の第3変形例を示す平面図(その1)である。FIG. 18 is a plan view (No. 1) showing a third modification of the electrode portion according to the sixth embodiment. 図19は、第6の実施の形態に関わる電極部の第3変形例を示す平面図(その2)である。FIG. 19 is a plan view (No. 2) showing a third modification of the electrode portion according to the sixth embodiment. 図20は、ウエハを回転させる場合の電極部の構成を示す平面図である。FIG. 20 is a plan view showing the configuration of the electrode portion when the wafer is rotated. 図21は、実施例に係わる成膜装置の電子密度分布をシミュレーションした結果を示す説明図である。FIG. 21 is an explanatory diagram showing the result of simulating the electron density distribution of the film forming apparatus according to the example. 図22は、実施例に係わる成膜装置に供給される高周波電力の波形図である。FIG. 22 is a waveform diagram of high-frequency power supplied to the film forming apparatus according to the example. 図23は、比較例1及び実施例3における実験結果を示す図である。FIG. 23 is a diagram showing experimental results in Comparative Example 1 and Example 3. 図24は、比較例1及び実施例3における実験結果を示す図である。FIG. 24 is a diagram showing experimental results in Comparative Example 1 and Example 3. 図25は、比較例1及び実施例3における実験結果を示す図である。FIG. 25 is a diagram showing experimental results in Comparative Example 1 and Example 3. 図26は、比較例1の実験後の基板に成膜されたSiN膜中の各原子の濃度を示す図である。FIG. 26 is a diagram showing the concentration of each atom in the SiN film formed on the substrate after the experiment of Comparative Example 1. 図27は、実施例3の実験後の基板に成膜されたSiN膜中の各原子の濃度を示す図である。FIG. 27 is a diagram showing the concentration of each atom in the SiN film formed on the substrate after the experiment of Example 3. In FIG. 図28は、基板の温度が70℃である場合に図1に示した成膜装置によってSiN膜が成膜された基板の断面を拡大したトレース図である。FIG. 28 is an enlarged trace view of the cross section of the substrate on which the SiN film is formed by the film forming apparatus shown in FIG. 1 when the temperature of the substrate is 70 ° C. 図29は、基板の温度が70℃、150℃又は300℃である場合に図1に示した成膜装置によってSiN膜が成膜された基板のステップカバレッジを示す図である。FIG. 29 is a diagram showing step coverage of a substrate on which a SiN film is formed by the film forming apparatus shown in FIG. 1 when the temperature of the substrate is 70 ° C., 150 ° C., or 300 ° C.
 以下、図面を参照して種々の実施形態について詳細に説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を付すこととする。 Hereinafter, various embodiments will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals.
 本実施形態に係る成膜装置は、1つの実施形態において、処理容器と、処理容器内に設けられ、基板を載置するための載置台と、処理容器内に形成された強プラズマ生成空間に、H2/N2又はNH3を含む反応ガスを供給する第1のガス供給部と、処理容器内に形成されて強プラズマ生成空間に形成されるプラズマよりも発光強度が弱いプラズマを生成する弱プラズマ生成空間に、反応ガスの活性種と反応して基板上にシリコン窒化膜を成膜するシリコン化合物ガスを供給する第2のガス供給部と、反応ガスと、シリコン化合物ガスとをプラズマ化するための高周波電力を供給する高周波電源とを備える。 In one embodiment, a film forming apparatus according to this embodiment is provided in a processing container, a mounting table provided in the processing container for mounting a substrate, and a strong plasma generation space formed in the processing container. , A first gas supply unit for supplying a reaction gas containing H2 / N2 or NH3, and weak plasma generation for generating plasma having a light emission intensity lower than that of the plasma formed in the processing vessel and formed in the strong plasma generation space A second gas supply unit for supplying a silicon compound gas for forming a silicon nitride film on the substrate by reacting with reactive species of the reaction gas in the space; and for converting the reaction gas and the silicon compound gas into plasma A high frequency power source for supplying high frequency power.
 また、本実施形態に係る成膜装置は、1つの実施形態において、載置台に載置された基板の上方において、強プラズマ生成空間を形成するために、各々縦向きの姿勢で互いに間隔をおいて横方向に配置されると共に、下端部と基板との隙間に弱プラズマ生成空間を形成する複数の電極部をさらに備え、高周波電源は、複数の電極部のうち強プラズマ生成空間を挟んで隣り合う電極部の対に互いに位相が異なる高周波電力を供給することによって、反応ガスと、シリコン化合物ガスとをプラズマ化する。 Further, in one embodiment, the film forming apparatus according to the present embodiment is spaced apart from each other in a vertical orientation in order to form a strong plasma generation space above the substrate placed on the mounting table. And a plurality of electrode portions that form a weak plasma generation space in the gap between the lower end portion and the substrate, and the high-frequency power source is adjacent to the strong plasma generation space among the plurality of electrode portions. By supplying high-frequency power with different phases to a pair of matching electrode parts, the reaction gas and the silicon compound gas are turned into plasma.
 また、本実施形態に係る成膜装置は、1つの実施形態において、高周波電源から供給される高周波電力の電力密度は、1W/cm2以上3W/cm2以下である。 In one embodiment, the film forming apparatus according to this embodiment has a power density of high-frequency power supplied from a high-frequency power source of 1 W / cm 2 or more and 3 W / cm 2 or less.
 また、本実施形態に係る成膜装置は、1つの実施形態において、シリコン化合物ガスの分圧は、1Pa以上4Pa以下である。 In the film forming apparatus according to this embodiment, in one embodiment, the partial pressure of the silicon compound gas is 1 Pa or more and 4 Pa or less.
 また、本実施形態に係る成膜装置は、1つの実施形態において、基板の温度は、70℃以上300℃以下である。 Further, in the film forming apparatus according to the present embodiment, in one embodiment, the temperature of the substrate is 70 ° C. or higher and 300 ° C. or lower.
 本実施形態として、隣り合って配置された電極部間に容量結合プラズマを形成し、H2/N2又はNH3(反応ガス)を活性化させてSiH4(シリコン化合物ガス)と反応させ、薄膜であるシリコン窒化膜(SiN膜)の成膜を行う成膜装置の装置構成について図1~図5を参照しながら説明する。 As this embodiment, a capacitively coupled plasma is formed between adjacent electrode portions, and H2 / N2 or NH3 (reactive gas) is activated to react with SiH4 (silicon compound gas) to form silicon as a thin film. An apparatus configuration of a film forming apparatus for forming a nitride film (SiN film) will be described with reference to FIGS.
 図1に示すように、成膜装置1は、真空容器である処理容器10の内部に、成膜対象の基板Sが載置される載置台2と、載置台2上の基板S表面に反応ガスの活性種を供給するために強プラズマ生成空間101を形成すると共に、この活性種とシリコン化合物ガスとの反応を進行させる弱プラズマ生成空間102を形成するための複数の電極部41と、を配置した構成となっている。ここで、反応ガスとは、例えば、H2/N2又はNH3を含む反応ガスであり、シリコン化合物ガスとは、例えば、SiH4又はSiH2Cl2である。図1、図2に示すように処理容器10は、密閉可能で扁平な金属製の容器として構成され、例えば1100mm×1400mm以上の大型のガラス基板Sを格納可能なサイズに構成されている。 As shown in FIG. 1, the film forming apparatus 1 reacts with a mounting table 2 on which a substrate S to be formed is mounted and a surface of the substrate S on the mounting table 2 in a processing container 10 that is a vacuum container. A plurality of electrode portions 41 for forming a strong plasma generation space 101 for supplying an active species of gas and forming a weak plasma generation space 102 for advancing the reaction between the active species and the silicon compound gas; The arrangement is arranged. Here, the reactive gas is, for example, a reactive gas containing H2 / N2 or NH3, and the silicon compound gas is, for example, SiH4 or SiH2Cl2. As shown in FIGS. 1 and 2, the processing container 10 is configured as a flat and metal container that can be sealed, and has a size that can store a large glass substrate S of, for example, 1100 mm × 1400 mm or more.
 図中、11は処理容器10に設けられた基板Sの短辺が通過可能な搬入出口、12は搬入出口11を開閉するためのゲートバルブである。また処理容器10の側壁面には、処理容器10内を真空排気するための排気管13が設けられており、排気管13の下流側に設けられた不図示の真空ポンプの作用により、処理容器10内の空間を例えば100Pa~400Paに調節することができる。以下、処理容器10内に設置された基板Sの短辺方向を縦方向とし、基板Sの長辺方向を横方向として説明を行う。 In the figure, 11 is a loading / unloading port through which the short side of the substrate S provided in the processing vessel 10 can pass, and 12 is a gate valve for opening and closing the loading / unloading port 11. In addition, an exhaust pipe 13 for evacuating the inside of the processing container 10 is provided on the side wall surface of the processing container 10, and the processing container is operated by an action of a vacuum pump (not shown) provided downstream of the exhaust pipe 13. The space in 10 can be adjusted to 100 Pa to 400 Pa, for example. Hereinafter, the short side direction of the substrate S installed in the processing container 10 will be described as the vertical direction, and the long side direction of the substrate S will be described as the horizontal direction.
 処理容器10内の床面には、誘電体などからなる載置台2が配置されており、この載置台2上に既述の基板Sを載置してSiN膜の成膜が実行される。基板Sの搬入出を行う外部の基板搬送機構(不図示)と載置台2との間の基板Sの受け渡しは、昇降板24を介して昇降機構25により昇降自在に構成された昇降ピン22を用いて行われる。図1中、23は処理容器10内を真空雰囲気に保つため昇降ピン22を囲むように設けられたベローズである。 The mounting table 2 made of a dielectric or the like is disposed on the floor surface in the processing container 10, and the substrate S described above is mounted on the mounting table 2 to form a SiN film. The transfer of the substrate S between an external substrate transfer mechanism (not shown) that carries the substrate S in and out and the mounting table 2 is performed by using a lift pin 22 configured to be lifted and lowered by a lift mechanism 25 via a lift plate 24. Done with. In FIG. 1, reference numeral 23 denotes a bellows provided so as to surround the elevating pins 22 in order to keep the inside of the processing vessel 10 in a vacuum atmosphere.
 載置台2には、例えば抵抗発熱体からなる温度調整部21が埋設されており、この温度調整部21は不図示の電力供給部から供給される電力により発熱し、載置台2の上面を介して基板Sを例えば70℃~300℃の温度に調節することができる。ここで温度調整部21は基板Sを加熱するものに限られず、プロセス条件に応じて基板Sを冷却して所定の温度に調節する例えばペルチェ素子などを採用してもよい。 A temperature adjusting unit 21 made of, for example, a resistance heating element is embedded in the mounting table 2, and the temperature adjusting unit 21 generates heat by electric power supplied from a power supply unit (not shown) and passes through the upper surface of the mounting table 2. Thus, the substrate S can be adjusted to a temperature of 70 ° C. to 300 ° C., for example. Here, the temperature adjusting unit 21 is not limited to the one that heats the substrate S, and may employ, for example, a Peltier element that cools the substrate S and adjusts it to a predetermined temperature according to the process conditions.
 本実施形態に係る成膜装置1は、SiN膜の成長に必要な活性種SiH3については基板S表面の近傍領域に高濃度で供給する一方で、SiやSiH、SiH2などのSiH3以外の活性種、高次シランやその微粒子などのSiN膜の膜質低下および被覆性の低下を引き起こす物質については基板S表面への供給を抑えるため、以下に列記する作用を得ることが可能な構成となっている。 The film forming apparatus 1 according to the present embodiment supplies active species SiH3 necessary for the growth of the SiN film at a high concentration to a region near the surface of the substrate S, while active species other than SiH3 such as Si, SiH, and SiH2. In order to suppress the supply to the surface of the substrate S with respect to substances that cause deterioration in the quality and coverage of the SiN film, such as higher-order silane and its fine particles, the following effects can be obtained. .
 (1)H2/N2又はNH3(反応ガス)が供給される空間を強プラズマ生成空間101として構成し活性種であるNラジカル及びHラジカルを得る。一方、このうちHラジカルとSiH4(シリコン化合物ガス)とを反応させる基板Sの上面の空間は、前記強プラズマ生成空間101よりも発光強度の弱いプラズマを生成する弱プラズマ生成空間102として構成することにより不要な活性種の発生を抑えつつSiH3を高濃度で基板S表面に供給する。 (1) A space to which H2 / N2 or NH3 (reactive gas) is supplied is configured as a strong plasma generation space 101 to obtain N radicals and H radicals which are active species. On the other hand, the space on the upper surface of the substrate S where H radicals and SiH 4 (silicon compound gas) react with each other is configured as a weak plasma generation space 102 that generates plasma having a light emission intensity lower than that of the strong plasma generation space 101. Thus, SiH3 is supplied to the surface of the substrate S at a high concentration while suppressing generation of unnecessary active species.
 (2)過剰なHラジカルとSiH4との混合ガスを基板S表面から速やかに排気することにより、HラジカルとSiH4とのラジカル反応が必要以上に進行することに伴う不要な活性種の発生を抑制する。
 以下、上述の作用を得るために成膜装置1に設けられている電極部41等の構成について説明する。
(2) By quickly exhausting a mixed gas of excess H radicals and SiH4 from the surface of the substrate S, generation of unnecessary active species due to excessive progress of radical reaction between H radicals and SiH4 is suppressed. To do.
Hereinafter, the configuration of the electrode unit 41 and the like provided in the film forming apparatus 1 in order to obtain the above-described operation will be described.
 図1、図3、図6に示すように、成膜装置1には載置台2に載置された基板Sの上方に、処理容器10内の空間を分割するように、横方向に互いに間隔をおいて配置された板状の複数の電極部41が配置されている。各電極部41は例えば細長い板状の金属製部材として構成され、処理容器10の天井部(後述の絶縁部材31)から縦向きの姿勢で下方側へ伸び出すように配置されている。 As shown in FIGS. 1, 3, and 6, the film forming apparatus 1 is spaced apart from each other in the lateral direction so as to divide the space in the processing container 10 above the substrate S placed on the mounting table 2. A plurality of plate-like electrode portions 41 arranged with a gap therebetween are arranged. Each electrode part 41 is comprised as an elongate plate-shaped metal member, for example, and is arrange | positioned so that it may extend below from the ceiling part (after-mentioned insulating member 31) of the processing container 10 with a vertical orientation.
 各電極部41は、基板Sの長辺の方向(横方向)に、等間隔で配置されており、これにより互いに隣り合う2本の電極部41の間には、基板Sの短辺方向(縦方向)に伸びる細長い空間(強プラズマ生成空間101)が形成される。各電極部41は絶縁部材31を介して処理容器10の天井部に固定されている。各電極部41に後述する第1、第2の電源部61、62(図5参照)から高周波電力が供給されることにより、この強プラズマ生成空間101にプラズマが生成される。電力供給系統の詳細な構成については後述する。 The electrode portions 41 are arranged at equal intervals in the direction of the long side (lateral direction) of the substrate S, and thereby, between the two electrode portions 41 adjacent to each other, the short side direction ( An elongated space (strong plasma generation space 101) extending in the vertical direction is formed. Each electrode portion 41 is fixed to the ceiling portion of the processing container 10 via an insulating member 31. Plasma is generated in the strong plasma generation space 101 by supplying high-frequency power to each electrode unit 41 from first and second power supply units 61 and 62 (see FIG. 5) described later. The detailed configuration of the power supply system will be described later.
 図6に示すように、強プラズマ生成空間101を挟んで隣り合って配置されている電極部41間の距離wは、例えば2mm以上、20mm以下、より好適には4mm以上、10mm以下の範囲に調節されている。電極部41間の距離が2mmよりも小さくなると、強プラズマ生成空間101内にプラズマが立たなくなる一方、この距離が20mmよりも大きくなると、処理容器10に生成するプラズマが弱くなってNラジカルの生成量が低下し、成膜速度の低下などを引き起こす。 As shown in FIG. 6, the distance w between the electrode portions 41 arranged adjacent to each other with the strong plasma generation space 101 interposed therebetween is, for example, in the range of 2 mm or more and 20 mm or less, more preferably 4 mm or more and 10 mm or less. It has been adjusted. When the distance between the electrode portions 41 is less than 2 mm, plasma is not generated in the strong plasma generation space 101, while when the distance is greater than 20 mm, the plasma generated in the processing vessel 10 is weakened to generate N radicals. The amount decreases, causing a decrease in film formation rate.
 また電極部41は、電極部41の下面と基板S表面との間の距離hが5mm以上、100mm以下、より好適には7mm以上、30mm以下に調節されている。電極部41と基板Sとの距離が100mmよりも大きくなると、弱プラズマ生成空間102に生成するプラズマが弱くなりすぎて膜速度が低下する。また、電極部41と基板Sとの距離が5mmより小さくなった場合には、弱プラズマ生成空間102に生成するプラズマの強度が強プラズマ生成空間101に生成するプラズマの強度に近づいてしまい、SiH4の分解などが過剰に進行して、SiN膜の膜質の低下および被覆性の低下を起こす要因となる。 In the electrode part 41, the distance h between the lower surface of the electrode part 41 and the surface of the substrate S is adjusted to 5 mm or more and 100 mm or less, more preferably 7 mm or more and 30 mm or less. When the distance between the electrode part 41 and the substrate S is larger than 100 mm, the plasma generated in the weak plasma generation space 102 becomes too weak and the film speed is reduced. When the distance between the electrode portion 41 and the substrate S is smaller than 5 mm, the intensity of plasma generated in the weak plasma generation space 102 approaches the intensity of plasma generated in the strong plasma generation space 101, and SiH4 Decomposition of the metal proceeds excessively, which causes a decrease in the quality of the SiN film and a decrease in the coverage.
 次いで、強プラズマ生成空間101や弱プラズマ生成空間102に反応ガスを供給し、反応後のガスを排気する機構について説明する。図1、図3に示すように、電極部41を固定している絶縁部材31の上面側には、処理容器10との間に空間が形成されており、この空間内には、強プラズマ生成空間101にH2/N2又はNH3を供給するための供給路32が配設されている。 Next, a mechanism for supplying a reactive gas to the strong plasma generating space 101 and the weak plasma generating space 102 and exhausting the reacted gas will be described. As shown in FIGS. 1 and 3, a space is formed between the upper surface side of the insulating member 31 that fixes the electrode portion 41 and the processing container 10, and strong plasma is generated in this space. A supply path 32 for supplying H2 / N2 or NH3 to the space 101 is provided.
 供給路32は、各強プラズマ生成空間101の上方側に配置されている。供給路32は、図3、図4、図6に示すように電極部41の伸びる方向(すなわち、基板Sに平行な方向であるY方向)に沿って供給路32に接続され、縦方向(すなわち、基板Sに垂直な方向であるZ方向)に延びる分岐路323、及び絶縁部材31に穿設された供給孔321を介して強プラズマ生成空間101内にH2/N2又はNH3を供給することができる。 The supply path 32 is disposed on the upper side of each strong plasma generation space 101. 3, 4, and 6, the supply path 32 is connected to the supply path 32 along the direction in which the electrode portion 41 extends (that is, the Y direction that is parallel to the substrate S), and the vertical direction ( That is, H2 / N2 or NH3 is supplied into the strong plasma generation space 101 via a branch path 323 extending in the Z direction (perpendicular to the substrate S) and a supply hole 321 drilled in the insulating member 31. Can do.
 図1~図3に示すように、これら複数本の供給路32は共通の供給ライン511に接続されており、ボンベと流量調整弁などにより構成される供給部51からH2/N2又はNH3を受け入れて、予め設定された量のH2/N2又はNH3を各強プラズマ生成空間101に供給することができる。供給路32、供給ライン511、供給部51などは、本例の第1のガス供給部に相当する。 As shown in FIGS. 1 to 3, the plurality of supply paths 32 are connected to a common supply line 511, and receive H2 / N2 or NH3 from a supply unit 51 including a cylinder and a flow rate adjusting valve. Thus, a predetermined amount of H2 / N2 or NH3 can be supplied to each strong plasma generation space 101. The supply path 32, the supply line 511, the supply part 51, etc. are equivalent to the 1st gas supply part of this example.
 また図1、図3に示すように、各電極部41の内部には、弱プラズマ生成空間102にSiH4を供給するための供給路42と、弱プラズマ生成空間102に供給された反応ガスを排出するための排気路43とが形成されている。 As shown in FIG. 1 and FIG. 3, the supply path 42 for supplying SiH 4 to the weak plasma generation space 102 and the reaction gas supplied to the weak plasma generation space 102 are discharged inside each electrode portion 41. An exhaust passage 43 is formed.
 本例の供給路42は、図3中に破線で示すように、電極部41の下部側の領域であって、当該電極部41の両側壁面に近い領域にそれぞれ設けられ(合計2本)ており、電極部41の伸びる方向(すなわち、基板Sに平行な方向であるY方向)に沿って形成されている。 As shown by the broken line in FIG. 3, the supply path 42 in this example is provided in a region on the lower side of the electrode portion 41 and in a region close to both side wall surfaces of the electrode portion 41 (two in total). It is formed along the direction in which the electrode part 41 extends (that is, the Y direction that is parallel to the substrate S).
 各供給路42からは、複数の分岐路423が互いに間隔をおいて下方側へ向けて伸び出しており、図3、図4、図6に示すように電極部41の下面に形成され、電極部41の前後の両側壁面に沿って2列に並ぶ供給孔421から弱プラズマ生成空間102に向けてSiH4を供給することができる。ここで供給孔421は、電極部41の底面に設ける場合に限られるものではなく、例えば供給路42から分岐路423を水平方向に伸ばして電極部41の下部側の側壁面に供給孔421を形成し、強プラズマ生成空間101の下部側にSiH4を供給するように構成してもよい。 A plurality of branch paths 423 extend downward from each supply path 42 at intervals, and are formed on the lower surface of the electrode portion 41 as shown in FIGS. 3, 4, and 6. SiH 4 can be supplied toward the weak plasma generation space 102 from the supply holes 421 arranged in two rows along the both side wall surfaces before and after the portion 41. Here, the supply hole 421 is not limited to the case where the supply hole 421 is provided on the bottom surface of the electrode part 41. Alternatively, SiH 4 may be supplied to the lower side of the strong plasma generation space 101.
 図1~図3に示すように、各電極部41の内部に形成された供給路42は共通の供給ライン521に接続されており、ボンベと流量調整弁などにより構成される供給部52からSiH4を受け入れて、予め設定された量のSiH4を供給することができる。供給路42、供給ライン521、供給部52などは本例の第2のガス供給部に相当する。 As shown in FIGS. 1 to 3, the supply path 42 formed in each electrode part 41 is connected to a common supply line 521, and the supply part 52 including a cylinder and a flow rate adjusting valve is connected to the SiH4. And a preset amount of SiH4 can be supplied. The supply path 42, the supply line 521, the supply unit 52, and the like correspond to the second gas supply unit of this example.
 また、供給路42、供給ライン521及び供給部52から供給されるSiH4等のシリコン化合物ガスの分圧は、好ましくは、1Pa以上4Pa以下であり、より好ましくは、2.5Pa以上4Pa以下である。供給路42、供給ライン521及び供給部52から供給されるシリコン化合物ガスの分圧が1Pa未満である場合には、弱プラズマ生成空間102に生成されるプラズマが弱体化し、結果として、SiN膜の成膜速度が低下する。一方、供給路42、供給ライン521及び供給部52から供給されるシリコン化合物ガスの分圧が4Paよりも大きい場合には、シリコン化合物ガスの活性種どうしが重合化し、重合化により得られる微粒子がSiN膜中に取り込まれ、結果として、SiN膜の膜質の低下や被覆性の低下が引き起こされる。 Moreover, the partial pressure of the silicon compound gas such as SiH 4 supplied from the supply path 42, the supply line 521, and the supply unit 52 is preferably 1 Pa or more and 4 Pa or less, more preferably 2.5 Pa or more and 4 Pa or less. . When the partial pressure of the silicon compound gas supplied from the supply path 42, the supply line 521, and the supply unit 52 is less than 1 Pa, the plasma generated in the weak plasma generation space 102 is weakened. As a result, the SiN film The film formation rate decreases. On the other hand, when the partial pressure of the silicon compound gas supplied from the supply path 42, the supply line 521, and the supply unit 52 is larger than 4 Pa, the active species of the silicon compound gas are polymerized, and the fine particles obtained by the polymerization are obtained. Incorporated into the SiN film, as a result, the quality of the SiN film is deteriorated and the coverage is lowered.
 さらに各電極部41の内部には、既述の供給路42よりも内側の上方領域に2本の排気路43が、前記供給路42と平行に電極部41の伸びる方向(すなわち、基板Sに平行な方向であるY方向)に沿って形成されている。これら2本の排気路43からも複数の分岐路433が互いに間隔をおいて下方側へ向けて伸び出しており、2本の排気路の同じ位置にあるそれぞれの分岐路433の2本は途中で合流し、電極部41の下面に形成された排気孔431に接続されている。図4に示すように排気孔431は、2列に並ぶ供給孔421の列に挟まれるように電極部41の下面の中央部に1列に配置されている。 Further, in each electrode portion 41, two exhaust passages 43 are provided in an upper region inside the supply passage 42 described above, and the direction in which the electrode portion 41 extends in parallel with the supply passage 42 (that is, on the substrate S). (Y direction which is a parallel direction). Also from these two exhaust passages 43, a plurality of branch passages 433 extend downward at intervals from each other, and two of the branch passages 433 at the same position of the two exhaust passages are in the middle. And are connected to an exhaust hole 431 formed in the lower surface of the electrode portion 41. As shown in FIG. 4, the exhaust holes 431 are arranged in a row at the center of the lower surface of the electrode portion 41 so as to be sandwiched between the rows of supply holes 421 arranged in two rows.
 図1~図3に示すように、各電極部41の内部に形成された排気路43は共通の排気ライン531を介し、真空ポンプなどにより構成される外部の排気手段53に接続されており、弱プラズマ生成空間102の反応ガスを外部へと排出することができる。これら排気路43、排気ライン531や排気手段53などは本例の排気部に相当している。 As shown in FIGS. 1 to 3, the exhaust passage 43 formed in each electrode portion 41 is connected to an external exhaust means 53 constituted by a vacuum pump or the like via a common exhaust line 531. The reactive gas in the weak plasma generation space 102 can be discharged to the outside. The exhaust path 43, the exhaust line 531, the exhaust means 53, and the like correspond to the exhaust part of this example.
 次いで、処理容器10内の各電極部41に高周波電力を供給する電力供給系統について説明する。図5に示すように、強プラズマ生成空間101を挟んで一方側の電極部41(図5に電極部41aと記してある)は、各電極部41aに例えば13.56MHz、2500W/本(1本の電極部)の高周波電力を印加する第1の電源部61(第1の高周波電源部)と接続されている。一方、強プラズマ生成空間101を挟んで他方側の電極部41(図5中に電極部41bと記してある)は、第1の電源部61から供給される高周波電力に対して位相が180°遅れた(位相が反転した)、例えば13.56MHz、2500W/本の高周波電力を印加する第2の電源部62(第2の高周波電源部)に接続されている。図中、612、622は各電源部61、62から供給される高周波電力のマッチングを行う整合器である。 Next, a power supply system that supplies high-frequency power to each electrode portion 41 in the processing container 10 will be described. As shown in FIG. 5, the electrode part 41 on one side (indicated as the electrode part 41a in FIG. 5) across the strong plasma generation space 101 is, for example, 13.56 MHz, 2500 W / piece (1 The first power supply unit 61 (first high frequency power supply unit) for applying the high frequency power of the electrode portion) is connected. On the other hand, the other electrode part 41 (denoted as electrode part 41b in FIG. 5) across the strong plasma generation space 101 has a phase of 180 ° with respect to the high-frequency power supplied from the first power supply part 61. It is connected to the second power supply unit 62 (second high-frequency power supply unit) that applies the high-frequency power of, for example, 13.56 MHz and 2500 W / line which is delayed (phase is inverted). In the figure, reference numerals 612 and 622 denote matching units for matching high-frequency power supplied from the power supply units 61 and 62, respectively.
 図5に示した例では第1、第2の電源部61、62は、外部から入力された周波数信号に同期した高周波電力を出力することが可能な外部同期型の電源として構成されている。そして、これら第1、第2の電源部61、62を共通の周波数信号発生器63に接続する際に、第1の電源部61と周波数信号発生器63とを接続する第1の信号線611よりも第2の電源部62と周波数信号発生器63とを接続する第2の信号線621の方が長くなっている。 In the example shown in FIG. 5, the first and second power supply units 61 and 62 are configured as externally synchronized power sources capable of outputting high frequency power synchronized with a frequency signal input from the outside. When the first and second power supply units 61 and 62 are connected to the common frequency signal generator 63, the first signal line 611 that connects the first power supply unit 61 and the frequency signal generator 63 is used. The second signal line 621 connecting the second power source 62 and the frequency signal generator 63 is longer than the second power line 62.
 これにより、周波数信号発生器63から出力された周波数信号は、第1の電源部61に入力されるタイミングより遅れて第2の電源部62に入力され、この遅れを利用して高周波電力の位相が調整される。本法により各電源部61、62から出力される高周波電力の位相を調整できることは、後述の実施例に示すように実験的に確かめてある。 Thus, the frequency signal output from the frequency signal generator 63 is input to the second power supply unit 62 with a delay from the timing input to the first power supply unit 61, and the phase of the high frequency power is utilized using this delay. Is adjusted. It has been experimentally confirmed that the phase of the high-frequency power output from each of the power supply units 61 and 62 can be adjusted by this method, as shown in the embodiments described later.
 但し、第1の電源部61と第2の電源部62との位相差を調整する手法は特定の方法に限定されるものではなく、他の方法を採用してもよい。例えば1つの高周波電源部の出力に強制バラン回路を接続し、当該強制バラン回路の一の出力を電極部41aに印加し、当該一の出力と位相が反転した他の出力を電極部41bに印加する構成としてもよい。 However, the method of adjusting the phase difference between the first power supply unit 61 and the second power supply unit 62 is not limited to a specific method, and other methods may be adopted. For example, a forced balun circuit is connected to the output of one high frequency power supply unit, one output of the forced balun circuit is applied to the electrode unit 41a, and another output whose phase is inverted from the one output is applied to the electrode unit 41b. It is good also as composition to do.
 第1の電源部61及び第2の電源部62は、複数の電極部41のうち強プラズマ生成空間101を挟んで隣り合う電極部41(41a、41b)に位相の反転した高周波電力を供給することによって、電極部41同士の隙間に供給されたH2/N2又はNH3と、電極部41の下端部と基板Sとの隙間に供給されたSiH4とをプラズマ化する。これにより、電極部41同士の隙間に、H2/N2又はNH3をプラズマ化してNラジカルを生成する強プラズマ生成空間101が形成される。また、各電極部41と、その下方側に載置された基板Sとの間にも電極部41に印加される高周波電力に起因するプラズマが形成される。第1の電源部61及び第2の電源部62は、反応ガスと、シリコン化合物ガスとをプラズマ化するための高周波電力を供給する高周波電源の一例である。 The 1st power supply part 61 and the 2nd power supply part 62 supply the high frequency electric power which the phase reversed to the electrode part 41 (41a, 41b) which pinches | interposes the strong plasma production space 101 among several electrode parts 41 As a result, H2 / N2 or NH3 supplied to the gap between the electrode parts 41 and SiH4 supplied to the gap between the lower end part of the electrode part 41 and the substrate S are turned into plasma. As a result, a strong plasma generation space 101 is formed in the gap between the electrode portions 41 to generate H radicals by generating H2 / N2 or NH3 into plasma. Further, plasma caused by the high frequency power applied to the electrode unit 41 is also formed between each electrode unit 41 and the substrate S placed on the lower side thereof. The 1st power supply part 61 and the 2nd power supply part 62 are examples of the high frequency power supply which supplies the high frequency electric power for plasma-izing a reaction gas and silicon compound gas.
 ここで、互いに位相が反転し、いわゆるプッシュ-プルの状態で電極部41a、41bに高周波電力が印加される強プラズマ生成空間101とは異なり、載置台2上に載置された基板Sは、電気的に浮いた状態となっている。このため、各電極部41と基板Sとの隙間の空間(弱プラズマ生成空間102)には、強プラズマ生成空間101に形成されるプラズマよりも弱いプラズマが生成される。 Here, unlike the strong plasma generation space 101 in which the phases are reversed and a high-frequency power is applied to the electrode portions 41a and 41b in a so-called push-pull state, the substrate S placed on the placement table 2 is: It is in an electrically floating state. For this reason, plasma weaker than the plasma formed in the strong plasma generation space 101 is generated in the space (weak plasma generation space 102) between the electrode portions 41 and the substrate S.
 ここで強プラズマ生成空間101及び弱プラズマ生成空間102に形成されるプラズマの相対的な強度比、例えばプラズマ中の電子温度や電子密度の比は、処理容器10の内部を透過波長フィルタ付きCCDカメラにより撮影したときの発光強度の比で把握することができる。強プラズマ生成空間101の発光強度に対する弱プラズマ生成空間102の発光強度の比が1未満の場合に、弱プラズマ生成空間102には強プラズマ生成空間101に生成するプラズマよりも弱いプラズマが生成しているといえる。 Here, the relative intensity ratio of the plasma formed in the strong plasma generation space 101 and the weak plasma generation space 102, for example, the ratio of the electron temperature and the electron density in the plasma, is determined as follows. Can be grasped by the ratio of the emission intensity when the image is taken. When the ratio of the emission intensity of the weak plasma generation space 102 to the emission intensity of the strong plasma generation space 101 is less than 1, a weaker plasma than the plasma generated in the strong plasma generation space 101 is generated in the weak plasma generation space 102. It can be said that.
 また、第1の電源部61及び第2の電源部62から供給される高周波電力の電力密度は、好ましくは、1W/cm2以上3W/cm2以下であり、より好ましくは、1.5W/cm2以上2W/cm2以下である。ここで、高周波電力の電力密度とは、全投入電力を全電極の表面積で割った値である。第1の電源部61及び第2の電源部62から供給される高周波電力の電力密度が1W/cm2未満である場合には、弱プラズマ生成空間102に生成されるプラズマが弱体化し、結果として、SiN膜の成膜速度が低下する。一方、第1の電源部61及び第2の電源部62から供給される高周波電力の電力密度が3W/cm2よりも大きい場合には、過剰のHラジカルが発生しSiH4の分解が過剰に進行し、結果としてSiN膜の膜質が低下や被覆性の低下を引き起こす。 The power density of the high frequency power supplied from the first power supply unit 61 and the second power supply unit 62 is preferably 1 W / cm 2 or more and 3 W / cm 2 or less, more preferably 1.5 W / cm 2 or more. 2 W / cm 2 or less. Here, the power density of the high frequency power is a value obtained by dividing the total input power by the surface area of all the electrodes. When the power density of the high frequency power supplied from the first power supply unit 61 and the second power supply unit 62 is less than 1 W / cm 2, the plasma generated in the weak plasma generation space 102 is weakened. The deposition rate of the SiN film decreases. On the other hand, when the power density of the high frequency power supplied from the first power supply unit 61 and the second power supply unit 62 is larger than 3 W / cm 2, excessive H radicals are generated and the decomposition of SiH 4 proceeds excessively. As a result, the film quality of the SiN film is lowered and the coverage is lowered.
 上述の構成を備えた成膜装置1は、図1、図5に示すように制御部7と接続されている。制御部7は例えば図示しないCPUと記憶部とを備えたコンピュータからなり、記憶部には当該成膜装置1の作用、つまり処理容器10内に基板Sを搬入し、載置台2上に載置された基板Sに所定の膜厚のSiN膜を成膜してから搬出するまでの動作に係わる制御等についてのステップ(命令)群が組まれたプログラムが記録されている。このプログラムは、例えばハードディスク、コンパクトディスク、マグネットオプティカルディスク、メモリーカード等の記憶媒体に格納され、そこからコンピュータにインストールされる。 The film forming apparatus 1 having the above-described configuration is connected to the control unit 7 as shown in FIGS. The control unit 7 includes, for example, a computer including a CPU and a storage unit (not shown). The operation of the film forming apparatus 1, that is, the substrate S is loaded into the processing container 10 and placed on the mounting table 2. A program in which a group of steps (commands) for control and the like related to operations from when a SiN film having a predetermined film thickness is formed on the substrate S to be carried out is recorded. This program is stored in a storage medium such as a hard disk, a compact disk, a magnetic optical disk, or a memory card, and installed in the computer therefrom.
 以上に説明した構成を備えた成膜装置1の作用の一例について説明する。初めに外部の基板搬送機構よって基板Sが搬送されてくると、成膜装置1は搬入出口11のゲートバルブ12を開き、載置台2から昇降ピン22を突き出させて基板搬送機構から基板Sを受け取る。 An example of the action of the film forming apparatus 1 having the above-described configuration will be described. First, when the substrate S is transported by an external substrate transport mechanism, the film forming apparatus 1 opens the gate valve 12 of the loading / unloading port 11 and protrudes the lift pins 22 from the mounting table 2 to remove the substrate S from the substrate transport mechanism. receive.
 基板Sの受け渡しを終えたら基板搬送機構を処理容器10の外に退避させてゲートバルブ12を閉じると共に、昇降ピン22を降下させて載置台2上に基板S載置する。また、この動作と平行して処理容器10内の真空排気を行い、処理容器10内を100Pa~400Paの範囲の例えば200Paに調節し温度調整部21により基板Sが例えば70℃~300℃となるように温度調節を行う。 When the delivery of the substrate S is completed, the substrate transport mechanism is retracted out of the processing container 10 to close the gate valve 12 and the lifting pins 22 are lowered to place the substrate S on the mounting table 2. In parallel with this operation, the processing chamber 10 is evacuated to adjust the processing chamber 10 to, for example, 200 Pa in the range of 100 Pa to 400 Pa, and the temperature adjusting unit 21 brings the substrate S to, for example, 70 ° C. to 300 ° C. Adjust the temperature as follows.
 処理容器10内の圧力調節及び基板Sの温度調節を終えたら、供給部51から供給ライン511、供給路32を介して、H2/N2を強プラズマ生成空間101に供給すると共に第1、第2の電源部61、62から各電極部41に高周波電力を印加してH2/N2をプラズマ化する。一方、供給部52から供給ライン521、供給路42を介してSiH4を弱プラズマ生成空間102に向けて供給する。ここで、H2の流量とN2の流量との比は、好ましくは、H2:N2=1:1~2:1である。例えば、H2/N2/SiH4の流量は、H2/N2/SiH4=1000/500/20sccmである。 When the pressure adjustment in the processing container 10 and the temperature adjustment of the substrate S are finished, H2 / N2 is supplied to the strong plasma generation space 101 from the supply unit 51 via the supply line 511 and the supply path 32, and the first and second. The high frequency power is applied from the power supply units 61 and 62 to the electrode units 41 to turn H2 / N2 into plasma. On the other hand, SiH 4 is supplied from the supply unit 52 toward the weak plasma generation space 102 via the supply line 521 and the supply path 42. Here, the ratio of the flow rate of H2 to the flow rate of N2 is preferably H2: N2 = 1: 1 to 2: 1. For example, the flow rate of H2 / N2 / SiH4 is H2 / N2 / SiH4 = 1000/500/20 sccm.
 この結果、図6に模式的に示すように、強プラズマ生成空間101内には供給路32から供給されたH2/N2が下方側へ向け流れる下降流が形成される。このH2/N2が電極部41から供給された電子と衝突することによりプラズマ化して活性種が形成される。例えば、窒素プラズマから活性種としてNラジカルが生成される。H2は2個の水素原子のみからなる分子なので、水素プラズマからは下記(1)式に示すように活性種としてはHラジカルが生成される。
 H2+e-→2H+e- …(1)
As a result, as schematically shown in FIG. 6, a downward flow is formed in the strong plasma generation space 101 in which H2 / N2 supplied from the supply path 32 flows downward. The H2 / N2 collides with the electrons supplied from the electrode portion 41 to be turned into plasma, thereby forming active species. For example, N radicals are generated as active species from nitrogen plasma. Since H2 is a molecule consisting of only two hydrogen atoms, H radicals are generated as active species from the hydrogen plasma as shown in the following formula (1).
H2 + e− → 2H + e− (1)
 一方で供給孔421から流出したSiH4は、電極部41と基板Sとの間の弱プラズマ生成空間102に供給され、上流側から流れてきたHラジカルと混合されて基板Sの表面を広がる。この結果、基板Sの表面には、HラジカルとSiH4との混合ガスが供給され、この混合ガス内で下記の(2)式に示す反応が進行する。
 SiH4+H→SiH3+H2 …(2)
On the other hand, SiH 4 flowing out from the supply hole 421 is supplied to the weak plasma generation space 102 between the electrode portion 41 and the substrate S, and is mixed with H radicals flowing from the upstream side to spread the surface of the substrate S. As a result, a mixed gas of H radicals and SiH 4 is supplied to the surface of the substrate S, and a reaction represented by the following formula (2) proceeds in the mixed gas.
SiH4 + H → SiH3 + H2 (2)
 こうして電極部41に適切な電力密度の電力が供給されることで、適量のHラジカルが発生し十分な量のSiH3を基板S表面に供給させることができ、NラジカルとSiH3とから良質なSiN膜が基板Sの表面に成膜される。 By supplying power with an appropriate power density to the electrode portion 41 in this way, an appropriate amount of H radicals can be generated, and a sufficient amount of SiH3 can be supplied to the surface of the substrate S. From the N radicals and SiH3, good quality SiN A film is formed on the surface of the substrate S.
 このとき、弱プラズマ生成空間102に強プラズマ生成空間101よりも弱いプラズマを形成することにより、従来の平行平板を用いた容量結合型の成膜装置に比べてSiやSiH、SiH2などの不要な活性種が生成されにくい条件を維持しつつ上記(2)の反応進行を進行させ、かつ基板Sへのイオンダメージを低減できる。 At this time, by forming a weaker plasma in the weak plasma generation space 102 than in the strong plasma generation space 101, Si, SiH, SiH2 or the like is unnecessary as compared with a conventional capacitively coupled film forming apparatus using parallel plates. While maintaining the condition where active species are hardly generated, the progress of the reaction of (2) can be advanced, and ion damage to the substrate S can be reduced.
 また、例えば電極部41a、41bのいずれか一方側例えば電極部41bを接地して強プラズマ生成空間101にプラズマを形成する場合には、接地された電極部41bと基板Sとの間の空間にはプラズマが生成されにくく、また電極部41aと基板Sとの間の空間には比較的強いプラズマが生成される。このため、弱プラズマ生成空間102内にプラズマが生成される領域と、プラズマが生成されない領域とが形成され、基板Sに形成されるSiN膜において良好な面内均一性が得られない場合がある。 In addition, for example, when the plasma is formed in the strong plasma generation space 101 by grounding one of the electrode portions 41a and 41b, for example, the electrode portion 41b, the space between the grounded electrode portion 41b and the substrate S is formed. Is difficult to generate plasma, and relatively strong plasma is generated in the space between the electrode portion 41a and the substrate S. For this reason, a region where plasma is generated in the weak plasma generation space 102 and a region where plasma is not generated are formed, and a good in-plane uniformity may not be obtained in the SiN film formed on the substrate S. .
 これに比べて、隣り合う電極部41a、41bの双方に逆位相の高周波電力を印加する場合には、いずれの電極部41についても基板Sとの間の空間で一様に弱いプラズマが生成されやすくなり、より面内均一性の高いSiN膜を得ることができる。すなわち、電極部41a、41bのいずれか一方側例えば電極部41bを接地する構造と比較して、隣り合う電極部41a、41bの双方に印加される高周波電力の位相をずらす構造では、強プラズマ生成空間101に強いプラズマが形成され易く、かつ、弱プラズマ生成空間102に弱いプラズマが形成され易くなり、結果として、SiN膜の面内均一性を向上することが可能となる。 In contrast, when high-frequency power of opposite phase is applied to both of the adjacent electrode portions 41a and 41b, weak plasma is uniformly generated in the space between the substrate S for any electrode portion 41. This makes it easier to obtain a SiN film with higher in-plane uniformity. That is, in the structure in which the phase of the high frequency power applied to both of the adjacent electrode parts 41a and 41b is shifted compared to the structure in which either one of the electrode parts 41a and 41b, for example, the electrode part 41b is grounded, strong plasma is generated. Strong plasma is easily formed in the space 101 and weak plasma is easily formed in the weak plasma generation space 102. As a result, the in-plane uniformity of the SiN film can be improved.
 また、混合ガス内では時間の経過、即ち滞留時間が長くなるにつれて上記(2)式で生成されたSiH3がさらにHラジカルと反応し、SiH2、SiH、Siが順次生成されるので、これらの活性種やその重合体である高次シランや微粒子がSiN膜中に取り込まれ、膜質の低下や被覆性の低下が引き起こされることとなる。 In addition, in the mixed gas, as time elapses, that is, as the residence time becomes longer, SiH3 generated by the above formula (2) further reacts with H radicals, and SiH2, SiH, and Si are sequentially generated. Higher order silane and fine particles, which are seeds and their polymers, are taken into the SiN film, which causes deterioration of film quality and covering property.
 そこで本実施形態に係る成膜装置1は、各電極部41の下面に弱プラズマ生成空間102内の反応ガスを排気する排気孔431が設けられている。そして処理容器10内はこの排気孔431を介して排気路43へ向けて常時真空排気されており、弱プラズマ生成空間102内を広がる混合ガスは、基板S表面に到達した後、流れ方向を上方側へ変え、排気孔431を介して処理容器10から速やかに排気される。 Therefore, in the film forming apparatus 1 according to this embodiment, exhaust holes 431 for exhausting the reaction gas in the weak plasma generation space 102 are provided on the lower surface of each electrode portion 41. The inside of the processing chamber 10 is constantly evacuated through the exhaust hole 431 toward the exhaust passage 43, and the mixed gas spreading in the weak plasma generation space 102 reaches the surface of the substrate S and then moves upward in the flow direction. Then, the gas is quickly exhausted from the processing container 10 through the exhaust hole 431.
 このように電極部41の下面に排気孔431を設けることにより、基板S表面における混合ガスの滞留時間を短くし、弱プラズマ生成空間102内でHラジカルとSiH4との反応を進行させた場合でも、基板S表面に高濃度のSiH3を供給しつつ不要な活性種の生成を抑え、良好な膜質のSiN膜を得ることができる。 By providing the exhaust hole 431 on the lower surface of the electrode portion 41 in this way, the residence time of the mixed gas on the surface of the substrate S is shortened, and even when the reaction between H radicals and SiH 4 proceeds in the weak plasma generation space 102. The generation of unnecessary active species can be suppressed while supplying a high concentration of SiH 3 to the surface of the substrate S, and a SiN film with good film quality can be obtained.
 以上に説明した構成により、(1)H2/N2又はNH3が供給される空間を強プラズマ生成空間101として構成し活性種であるNラジカル及びHラジカルを多量に得る一方、SiH4が供給される空間を弱プラズマ生成空間102として構成し、成膜が行われる基板Sの上面に一様に弱いプラズマを形成することにより基板Sへのイオンダメージを抑えつつ十分な量のSiH3を基板S表面に供給できる。また、(2)過剰なHラジカルとSiH4との混合ガスを基板S表面から速やかに排気することにより、HラジカルとSiH4とのラジカル反応が必要以上に進行することに伴う不要な活性種の発生を抑制することができる。 With the configuration described above, (1) a space to which H2 / N2 or NH3 is supplied is configured as a strong plasma generation space 101 to obtain a large amount of N radicals and H radicals as active species, while a space to which SiH4 is supplied. Is formed as a weak plasma generation space 102, and a sufficient amount of SiH3 is supplied to the surface of the substrate S while suppressing ion damage to the substrate S by uniformly forming a weak plasma on the upper surface of the substrate S on which the film is formed. it can. Also, (2) generation of unnecessary active species associated with the radical reaction between H radicals and SiH4 proceeding more than necessary by quickly exhausting the mixed gas of excess H radicals and SiH4 from the surface of the substrate S. Can be suppressed.
 こうして予め設定した時間だけ基板S表面への成膜を実行し、所望の膜厚のSiN膜が得られたら、H2/N2の供給、SiH4の供給、高周波電力の印加を停止して、外部の基板搬送機構により搬入時とは逆の動作で基板Sを処理容器10から搬出して一連の動作を終える。 In this way, film formation on the surface of the substrate S is performed for a preset time, and when an SiN film having a desired film thickness is obtained, supply of H2 / N2, supply of SiH4, and application of high-frequency power are stopped, and external The substrate S is unloaded from the processing container 10 by the operation opposite to that carried in by the substrate carrying mechanism, and the series of operations is completed.
 本実施形態に係る成膜装置1によれば以下の効果がある。互いに間隔をおいて配置された板状の電極部41の一方と他方とに例えば180°の位相差を有する高周波電力を印加し、これら電極部41に挟まれた強プラズマ生成空間101にプラズマを発生させる一方、成膜が行われる弱プラズマ生成空間102にも前記強プラズマ生成空間101に形成されるプラズマよりも弱いプラズマを形成する。そして、強プラズマ生成空間101では、Nラジカル及びHラジカルを生成する一方、弱プラズマ生成空間102ではHラジカルとSiH4との反応を進行させる。その結果、本実施形態に係る成膜装置1によれば、基板S上に成膜されるSiN膜の被覆性を向上することができる。 The film forming apparatus 1 according to this embodiment has the following effects. For example, high-frequency power having a phase difference of 180 ° is applied to one and the other of the plate-like electrode portions 41 that are spaced apart from each other, and plasma is generated in the strong plasma generation space 101 sandwiched between these electrode portions 41. On the other hand, a weaker plasma than the plasma formed in the strong plasma generation space 101 is also formed in the weak plasma generation space 102 where film formation is performed. In the strong plasma generation space 101, N radicals and H radicals are generated, while in the weak plasma generation space 102, the reaction between the H radicals and SiH4 proceeds. As a result, according to the film forming apparatus 1 according to the present embodiment, the coverage of the SiN film formed on the substrate S can be improved.
 このように、隣り合う電極部41同士の距離wが2~20mmの範囲に調整され、電極部41の下面と基板Sとの間の距離hが5~100mmの範囲に調整された成膜装置において、基板Sにさらに被覆性の高いSiN膜を成膜する手法を以下に列記する。 As described above, the distance w between the adjacent electrode portions 41 is adjusted to a range of 2 to 20 mm, and the distance h between the lower surface of the electrode portion 41 and the substrate S is adjusted to a range of 5 to 100 mm. In the following, techniques for forming a SiN film with higher coverage on the substrate S are listed below.
 例えば、図7は各電極部41cの下面に、当該電極部41cの両側壁面側から中央部側へ向けて盛り上がるように傾斜する傾斜面部46を設け、基板Sから傾斜面部46の下端までの距離h2よりも基板Sから電極部41cの両側壁面までの距離h1の方が大きくなるように構成した例である。電極部41cの両側壁面は強プラズマ生成空間101の出口(開口部)に相当し、この領域の近傍に均一なプラズマが形成されることは後述のシミュレーションでも確認している。 For example, in FIG. 7, an inclined surface portion 46 is provided on the lower surface of each electrode portion 41 c so as to rise from the both side wall surfaces of the electrode portion 41 c toward the central portion, and the distance from the substrate S to the lower end of the inclined surface portion 46. In this example, the distance h1 from the substrate S to both side wall surfaces of the electrode portion 41c is larger than h2. Both side wall surfaces of the electrode portion 41c correspond to the exit (opening portion) of the strong plasma generation space 101, and it has been confirmed in the simulation described later that uniform plasma is formed in the vicinity of this region.
 強プラズマ生成空間101の出口の位置よりも傾斜面部46の下端部の位置を基板Sに近づけて配置することにより、傾斜面部46の下端部と基板Sとの隙間による電気的容量の結合を相対的に強化し、その位置でのプラズマ強度を高めることができる。したがって強プラズマ生成空間101の出口付近に形成されるプラズマの強度を低減することができ、弱プラズマ生成空間102内のプラズマの均一性を高めることとなる。なお、本例においてはh2について5~100mmの範囲内に調整されることとなる。 By disposing the lower end portion of the inclined surface portion 46 closer to the substrate S than the position of the exit of the strong plasma generation space 101, the coupling of electric capacity due to the gap between the lower end portion of the inclined surface portion 46 and the substrate S is made relatively. The plasma intensity at that position can be increased. Therefore, the intensity of the plasma formed near the exit of the strong plasma generation space 101 can be reduced, and the uniformity of the plasma in the weak plasma generation space 102 can be improved. In this example, h2 is adjusted within a range of 5 to 100 mm.
 また、図8、図9に示すように処理容器10内の床面上に、キャスター部26を介して載置台2aを支持し、駆動機構27によって載置台2aを電極部41の並び方向に沿って往復移動させてもよい。強プラズマ生成空間101の出口近傍の電子密度が高い場合であっても、基板Sを横方向に往復移動させて、当該電子密度の高い領域と対向する基板Sの領域を移動させることにより、基板Sに成膜されるSiN膜の被覆性をさらに向上することができる。 Further, as shown in FIGS. 8 and 9, the mounting table 2 a is supported on the floor surface in the processing container 10 via the caster part 26, and the mounting table 2 a is aligned along the arrangement direction of the electrode parts 41 by the drive mechanism 27. May be reciprocated. Even when the electron density in the vicinity of the exit of the strong plasma generation space 101 is high, the substrate S is moved back and forth in the lateral direction to move the region of the substrate S facing the region having the high electron density, thereby The coverage of the SiN film formed on S can be further improved.
 次いで図10は、基板Sに成膜されるSiN膜の成膜速度が速くなる領域の電極部41間の距離wを離して大きくし、当該領域における強プラズマ生成空間101内のプラズマの強度を低減することにより、膜厚の面内均一性を向上させる電極部41dの例を示している。例えば供給孔421や排気孔431が密集している基板Sの中央側の領域は、中央側に比べて供給孔421や排気孔431が少ない基板Sの側端領域に比べてNラジカル及びHラジカルやSiH4の供給量が多く、成膜速度が速くなる傾向がある。 Next, FIG. 10 shows that the distance w between the electrode portions 41 in the region where the deposition rate of the SiN film formed on the substrate S is increased is increased, and the plasma intensity in the strong plasma generation space 101 in the region is increased. The example of the electrode part 41d which improves the in-plane uniformity of a film thickness by reducing is shown. For example, the region on the center side of the substrate S where the supply holes 421 and the exhaust holes 431 are densely packed is an N radical and an H radical compared to the side end region of the substrate S where the supply holes 421 and the exhaust holes 431 are less than the center side. In addition, the amount of SiH4 supplied is large and the film formation rate tends to increase.
 そこで図10の平面図に示すように、成膜速度が速い領域において隣り合う電極部41d同士の距離w1が大きくなるように電極部41dの側壁面に凹部44を形成している。この結果、成膜速度の遅い領域では、同速度が速い領域に比べて相対的に電極部41d同士の距離w2が小さくなっている。このような構成を採用することにより、成膜速度が速くなる領域ではプラズマの強度を小さくして、成膜速度を均一化し、膜厚の面内均一性の向上を図ることが可能となる。 Therefore, as shown in the plan view of FIG. 10, the recess 44 is formed on the side wall surface of the electrode part 41d so that the distance w1 between the electrode parts 41d adjacent to each other in the region where the film forming speed is high. As a result, in the region where the film formation rate is low, the distance w2 between the electrode portions 41d is relatively smaller than in the region where the film formation rate is high. By adopting such a configuration, it is possible to reduce the plasma intensity in a region where the film formation rate is high, to uniform the film formation rate, and to improve the in-plane uniformity of the film thickness.
 ここで電極部41dの平面形状は、図10に示した例に限られるものではない。例えば図4に示した電極部41を用いて予備実験を行い、成膜速度が速くなる領域を特定し、この領域に位置する電極部41d間の距離wが相対的に大きくなるようにすることで、電極部41dの平面形状は適宜、調整することができる。 Here, the planar shape of the electrode part 41d is not limited to the example shown in FIG. For example, a preliminary experiment is performed using the electrode unit 41 shown in FIG. 4 to identify a region where the deposition rate is high, and the distance w between the electrode units 41d located in this region is relatively large. Thus, the planar shape of the electrode part 41d can be adjusted as appropriate.
 また隣り合う電極部41の間隔の調整方法は、図10に示したように電極部41d間の距離を一様に変化させる場合に限定されない。例えば図11の電極部41eに示すように、距離wの電極部41eの側壁面に間隔をおいて切り欠き部45を設け、この切り欠き部45における電極部41e、41の距離がw’となるようにしてもよい。これら切り欠き部45が設けられている領域と、切り欠き部45が設けられていない領域とにおける電極部41e、41の距離の平均値が既述のw1となるように切り欠き部45の切り欠きの深さや配置間隔などを調整するとよい。 Further, the method for adjusting the interval between the adjacent electrode portions 41 is not limited to the case where the distance between the electrode portions 41d is uniformly changed as shown in FIG. For example, as shown in the electrode portion 41e of FIG. 11, a notch 45 is provided at a distance on the side wall surface of the electrode portion 41e with a distance w, and the distance between the electrode portions 41e and 41 in the notch 45 is w ′. It may be made to become. The cutout portion 45 is cut so that the average value of the distances between the electrode portions 41e and 41 in the region where the cutout portion 45 is provided and the region where the cutout portion 45 is not provided is w1 described above. It is recommended to adjust the depth of the notch and the arrangement interval.
 次に、半導体装置の製造に用いられるウエハへの成膜に適した電極部41fを備えた成膜装置の構成例について図12~図15を参照しながら説明する。図12~図15においては、図1~図5に示す第1の実施の形態と共通の機能を有する構成要素には、これらの図に示すものと共通の符号を付してある。 Next, a configuration example of a film forming apparatus provided with an electrode portion 41f suitable for film formation on a wafer used for manufacturing a semiconductor device will be described with reference to FIGS. 12 to 15, components having the same functions as those of the first embodiment shown in FIGS. 1 to 5 are denoted by the same reference numerals as those shown in these drawings.
 半導体装置の製造工程にてウエハ上に成膜されるSiN膜は、太陽電池用の基板に成膜される場合に比べて、より高い水準の膜厚の面内均一性が求められる。 The SiN film formed on the wafer in the semiconductor device manufacturing process is required to have a higher level of in-plane uniformity compared to the case where the SiN film is formed on a substrate for a solar cell.
 そこで、他の実施形態の成膜装置においては、図12に示すように電極部41fの底面の形状を例えば正方形とし、これらの電極部41fが図中のX軸方向のみならず、Y軸方向にも互いに間隔をおいて配置されている点が、細長い板状の電極部41をX軸方向にのみ間隔をおいて配置した第1の実施形態に関わる成膜装置1と異なっている。言い替えると、図12の電極部41fは、図4に示した強プラズマ生成空間101が伸びる方向(Y軸方向)と交差する交差方向(X軸方向)にも強プラズマ生成空間101が形成されるように、当該電極部41をY軸方向にも分割することにより構成されているともいえる。 Therefore, in the film forming apparatus of another embodiment, as shown in FIG. 12, the shape of the bottom surface of the electrode portion 41f is, for example, a square, and these electrode portions 41f are not only in the X-axis direction in the figure but also in the Y-axis direction. In addition, the point that the long and thin plate-like electrode portions 41 are arranged at intervals only in the X-axis direction is different from the film forming apparatus 1 according to the first embodiment in that they are arranged at intervals. In other words, the strong plasma generation space 101 is formed in the crossing direction (X-axis direction) intersecting the direction (Y-axis direction) in which the strong plasma generation space 101 shown in FIG. Thus, it can also be said that the electrode part 41 is configured by being divided also in the Y-axis direction.
 一方、これらの電極部41fにおいても、強プラズマ生成空間101を挟んで隣り合って配置されている電極部41f間の距離は、例えば2mm以上、20mm以下、より好適には4mm以上、10mm以下の範囲に調節され、また、電極部41の下面と基板S表面との間の距離hが5mm以上、100mm以下、より好適には7mm以上、30mm以下に調節されている点は、第1の実施形態と同じである。 On the other hand, also in these electrode parts 41f, the distance between the electrode parts 41f arranged adjacent to each other across the strong plasma generation space 101 is, for example, 2 mm or more and 20 mm or less, more preferably 4 mm or more and 10 mm or less. The first embodiment is that the distance h between the lower surface of the electrode part 41 and the surface of the substrate S is adjusted to 5 mm or more and 100 mm or less, more preferably 7 mm or more and 30 mm or less. The form is the same.
 図13に拡大して示すように、各電極部41fの底面には、例えば正方形の四隅の位置に各々供給孔421が設けられ、また、これらの供給孔421に囲まれた中央部に排気孔431が設けられている。一方、隣り合う電極部41f同士の間には強プラズマ生成空間101が形成され、この強プラズマ生成空間101にH2/N2又はNH3を供給するために、処理容器10の天井部を成す絶縁部材31に供給孔321が設けられている点は、第1の実施形態の成膜装置1と同じである。 As shown in an enlarged view in FIG. 13, supply holes 421 are provided on the bottom surface of each electrode portion 41 f at, for example, four corners of a square, and exhaust holes are provided in the center surrounded by these supply holes 421. 431 is provided. On the other hand, a strong plasma generation space 101 is formed between adjacent electrode portions 41f. In order to supply H2 / N2 or NH3 to the strong plasma generation space 101, an insulating member 31 that forms a ceiling portion of the processing vessel 10 is provided. The supply hole 321 is provided in the same manner as the film forming apparatus 1 of the first embodiment.
 図14に示すように、これら供給孔421や供給孔321(図13参照)に対しては、絶縁部材31の上面側に設けられた供給路42、32、及び絶縁部材31や電極部41fを貫通する分岐路423、323を介してH2/N2又はNH3やSiH4が供給される。また、排気孔431に流れ込んだ混合ガスは、分岐路433や排気路43を介して外部へ排出される。なお、図が煩雑になることを避けるため、図14においては供給・排気路42、32、43及び分岐路423、323、433を各々1組ずつだけ示してある。 As shown in FIG. 14, for these supply holes 421 and supply holes 321 (see FIG. 13), supply paths 42 and 32 provided on the upper surface side of the insulating member 31, and the insulating member 31 and the electrode part 41f are provided. H2 / N2, NH3, or SiH4 is supplied through the branch paths 423 and 323 that penetrate therethrough. Further, the mixed gas flowing into the exhaust hole 431 is discharged to the outside through the branch path 433 and the exhaust path 43. In FIG. 14, only one set of each of the supply / exhaust passages 42, 32, 43 and the branch passages 423, 323, 433 is shown in order to avoid complication of the drawing.
 そして図15に模式的に示すように、隣り合う電極部41fに対して位相の反転した高周波電力が印加されるように各電極部41fを第1、第2の電源部61、62に接続すると、図12に白と灰色とで塗り分けて示すように、格子状に交差して伸びる強プラズマ生成空間101に囲まれて、位相の反転した電力が印加された電極部41fが市松模様のように並んだ状態となる。ここで図15において、第1の電源部61に接続されている電極部41fに「41a」の符号を付し、第2の電源部62に接続されている電極部41fに「41b」の符号を付している点は、図5の場合と同様である。 Then, as schematically shown in FIG. 15, when each electrode portion 41 f is connected to the first and second power supply portions 61 and 62 so that high-frequency power whose phase is inverted is applied to the adjacent electrode portion 41 f. As shown separately in white and gray in FIG. 12, the electrode portion 41f to which the electric power with reversed phase is applied is surrounded by a strong plasma generation space 101 extending so as to intersect in a lattice pattern, like a checkered pattern. It will be in the state where it lined up. Here, in FIG. 15, the electrode portion 41 f connected to the first power supply portion 61 is denoted by “41 a”, and the electrode portion 41 f connected to the second power supply portion 62 is denoted by “41 b”. The point which is attached | subjected is the same as that of the case of FIG.
 電極部41fの底面の形状を例えば正方形としてこれらの電極部41fを前後左右に並べ、隣り合う電極部41fに位相の反転した電力を印加することにより、左右方向(図12のX軸方向)のみならず、前後方向(図12のY軸方向)へもプラズマが分散される。従って、電極部41fの下方側や、強プラズマ生成空間101の下方側の各領域において成膜速度に若干の違いがあったとしても、成膜速度の異なる領域が分散して配置されることになる。この結果、ウエハには、膜厚の異なる小さな領域がウエハの全面に分散して形成され、ウエハ全体を見ると膜厚の面内均一性が向上することになる。なお図12には、電極部41fの下方側に配置されるウエハの外周の位置を一点鎖線で示してある。 The shape of the bottom surface of the electrode portion 41f is, for example, a square, and these electrode portions 41f are arranged in the front-rear and left-right directions, and by applying power whose phase is reversed to the adjacent electrode portions 41f, only the left-right direction (X-axis direction in FIG. 12) is applied. In addition, the plasma is dispersed in the front-rear direction (Y-axis direction in FIG. 12). Therefore, even if there is a slight difference in the film formation speed in the respective regions below the electrode portion 41f and the strong plasma generation space 101, the regions having different film formation rates are arranged in a distributed manner. Become. As a result, small regions having different film thicknesses are formed on the wafer in a distributed manner over the entire surface of the wafer, and the in-plane uniformity of the film thickness is improved when the entire wafer is viewed. In FIG. 12, the position of the outer periphery of the wafer disposed on the lower side of the electrode portion 41f is indicated by a one-dot chain line.
 図16には、電極部41g~41jの配置密度をウエハの中央側で小さく、周縁部側で大きくするために、正方形に形成された電極部41g~41jの底面の一辺の長さを、中央部側から周縁部側へ向けて次第に長くなるように構成した例を示している。本例は、図10に示した電極部41dの例に対応しており、例えば供給孔421や排気孔431の配置密度の違いを相殺するように隣り合う電極部41g~41j同士の間隔を変化させることにより、成膜速度を均一化し、膜厚の面内均一性の向上を図っている。 In FIG. 16, in order to reduce the arrangement density of the electrode portions 41g to 41j on the center side of the wafer and increase on the peripheral edge side, the length of one side of the bottom surface of the electrode portions 41g to 41j formed in a square shape is The example which comprised so that it might become long gradually toward the peripheral part side from the part side is shown. This example corresponds to the example of the electrode part 41d shown in FIG. 10, and the interval between the adjacent electrode parts 41g to 41j is changed so as to cancel out the difference in the arrangement density of the supply holes 421 and the exhaust holes 431, for example. By doing so, the film forming speed is made uniform, and the in-plane uniformity of the film thickness is improved.
 また、電極部の底面の形状は、正方形などの矩形形状に限られるものではなく、図17に示すように底面が円形の電極部41kを用いてもよいし、他の形状のものを利用してもよい。また、互いに交差して格子状に伸びる強プラズマ生成空間101は、直交する場合に限定されず、強プラズマ生成空間101を斜めに交差させてもよい。この場合には、電極部の底面の形状は例えばひし形となる。 Further, the shape of the bottom surface of the electrode portion is not limited to a rectangular shape such as a square, and an electrode portion 41k having a circular bottom surface may be used as shown in FIG. May be. Further, the strong plasma generation spaces 101 that intersect with each other and extend in a lattice shape are not limited to being orthogonal to each other, and the strong plasma generation spaces 101 may be crossed obliquely. In this case, the shape of the bottom surface of the electrode portion is, for example, a rhombus.
 図18は、互いに位相が反転した高周波電力が印加される電極部41m、41nのうち、一方側の電極部41m(第1の電極部)を一体化した例を示している。例えば、第1の電極部41mは、ウエハの板面の上方側を覆う幅広の金属板からなり、他方側の電極部41n(第2の電極部)が配置される位置に、当該第2の電極部41nの平面形状よりも一回り大きな開口部103が形成されている。そして、この開口部103内に第2の電極部41nを挿入することにより、前記開口部103の内側面と、その内側に配置された第2の電極部41nの外側面との間に隙間が形成され、この隙間が強プラズマ生成空間101となる。本例の開口部103は、既述の図12に示した電極部41fと同様に、位相の反転した高周波電力が印加される電極部41m、41n(白と灰色に塗り分けて示してある)が市松模様状に並ぶように配列されている。本例のように第1の電極部41mを一体化することにより、第1の電極部41mや給電供給系統の部品点数を減らしてコスト低減を図ることができる。 FIG. 18 shows an example in which one of the electrode portions 41m (41n) (first electrode portion) is integrated among the electrode portions 41m and 41n to which high-frequency powers whose phases are reversed are applied. For example, the first electrode portion 41m is made of a wide metal plate that covers the upper side of the plate surface of the wafer, and the second electrode portion 41n (second electrode portion) is disposed at a position where the second electrode portion 41n (second electrode portion) is disposed. An opening 103 that is slightly larger than the planar shape of the electrode portion 41n is formed. Then, by inserting the second electrode portion 41n into the opening 103, there is a gap between the inner surface of the opening 103 and the outer surface of the second electrode portion 41n disposed inside thereof. The gap is formed and the strong plasma generation space 101 is formed. The opening 103 in this example is similar to the electrode part 41f shown in FIG. 12 described above, and is provided with electrode parts 41m and 41n to which high-frequency power with reversed phase is applied (shown separately in white and gray). Are arranged in a checkered pattern. By integrating the first electrode part 41m as in this example, the number of parts of the first electrode part 41m and the power supply system can be reduced, and the cost can be reduced.
 ここで、一体化された第1の電極部41mや、開口部103内に挿入される第2の電極部41nの形状は、図18に示した例に限定されるものではない。図19には、六角形に形成された第1の電極部41оに、六角形の開口部103を規則正しく配置し、この開口部103内に第2の電極部41pを挿入した例を示している。本例は、開口部103の間に挟まれた、第1の電極部41оの六角形状の領域(図19中に破線で示してある)と、第2の電極部41pとがハニカム状に配列され、ウエハから見て対称性の高い電極部41о、41p配置となっている。この結果、反応ガスの流れやプラズマの分布の対称性を向上させ、均一な成膜を行うことができる。また、図17に示したように、第2の電極部の形状を円形など他の形状にしてもよいし、図16に示したように、第2の電極部の面積や強プラズマ生成空間101を成す隙間の幅をウエハの中央部側と周縁部側とで変化させてもよいことは勿論である。 Here, the shapes of the integrated first electrode portion 41m and the second electrode portion 41n inserted into the opening 103 are not limited to the example shown in FIG. FIG. 19 shows an example in which hexagonal openings 103 are regularly arranged in the first electrode part 41о formed in a hexagonal shape, and the second electrode part 41p is inserted into the opening part 103. . In this example, a hexagonal region (indicated by a broken line in FIG. 19) of the first electrode part 41о sandwiched between the openings 103 and the second electrode part 41p are arranged in a honeycomb shape. Thus, the electrode portions 41о and 41p are highly symmetrical as viewed from the wafer. As a result, it is possible to improve the symmetry of the reactant gas flow and the plasma distribution and perform uniform film formation. In addition, as shown in FIG. 17, the shape of the second electrode portion may be other shapes such as a circle, or as shown in FIG. 16, the area of the second electrode portion or the strong plasma generation space 101 Needless to say, the width of the gap forming the gap may be changed between the central portion side and the peripheral portion side of the wafer.
 この他、ウエハを支持する載置台2の下面側中央部に鉛直軸周りに回転する回転軸を設け、載置台2上のウエハを回転させながら成膜を行うことにより、周方向の膜厚の面内均一性をさらに向上させてもよい。一方で、円板形状のウエハは、中央部側の位置と、外周部側の位置とで周方向の長さが異なっているので、例えば図12に示すように、同じ大きさに形成され、市松模様のように配置された電極部41fの下方でウエハを回転させると、ウエハが一回転する間に、その上方を通り過ぎる電極部41fの数が、中央部側と外周部側とで異なってしまう。この結果、ウエハの外周部側が内周部側よりもプラズマ集中部分(例えば強プラズマ生成空間101の下方領域)に高い頻度で曝されることとなり、径方向で見ると成膜速度の不均一性が拡大する懸念もある。 In addition, a rotation axis that rotates around the vertical axis is provided at the center on the lower surface side of the mounting table 2 that supports the wafer, and film formation is performed while the wafer on the mounting table 2 is rotated. In-plane uniformity may be further improved. On the other hand, the disc-shaped wafer is formed in the same size as shown in FIG. 12, for example, because the circumferential length is different between the position on the center side and the position on the outer periphery side. When the wafer is rotated under the electrode part 41f arranged like a checkered pattern, the number of electrode parts 41f passing over the wafer during one rotation is different between the central part side and the outer peripheral part side. End up. As a result, the outer peripheral portion of the wafer is exposed to the plasma concentration portion (for example, the lower region of the strong plasma generation space 101) more frequently than the inner peripheral portion, and the film formation rate is uneven when viewed in the radial direction. There is also a concern that this will expand.
 そこでウエハを回転させる場合には、図20に示すように、ウエハの周方向に沿って伸びる強プラズマ生成空間101、及びこの方向と交差する方向、即ち、ウエハの径方向に沿って伸びる強プラズマ生成空間101によって分割された電極部41lを設けるとよい。このように分割された電極部41lは、ウエハの中央部側の位置と、外周部側の位置とでその上方に配置される電極部41lの数が同じであるので、ウエハが一回転する間にその上方を通過する電極部41l、及び径方向に伸びる強プラズマ生成空間101の数が揃っており、径方向で見たときの成膜速度の均一化を図ることができる。 Therefore, when rotating the wafer, as shown in FIG. 20, the strong plasma generation space 101 extending along the circumferential direction of the wafer and the strong plasma extending along the direction intersecting with this direction, that is, along the radial direction of the wafer. An electrode portion 41l divided by the generation space 101 may be provided. Since the number of electrode portions 41l arranged above the electrode portion 41l divided in this way is the same at the position on the center side of the wafer and the position on the outer peripheral portion side, the wafer is rotated one revolution. Further, the number of electrode portions 41l passing above and the number of strong plasma generation spaces 101 extending in the radial direction are uniform, and the film formation rate can be made uniform when viewed in the radial direction.
 さらに、強プラズマ生成空間101に形成されるプラズマの強度を調整する手法として、第1、第2の電源部61、62から印加される高周波電力の位相差を180°よりも小さい、例えば30°以上~180°未満の範囲に調整して、当該位相を反転させる(位相を180°ずらす)場合よりもプラズマ強度が小さくなるようにしてもよい。また、電極部41に印加される高周波電力は、13.56MHzの例に限られるものではなく、他の周波数、例えば100MHzやこれ以外の高周波電力を印加してもよいことは勿論である。 Further, as a method for adjusting the intensity of the plasma formed in the strong plasma generation space 101, the phase difference of the high frequency power applied from the first and second power supply units 61 and 62 is smaller than 180 °, for example, 30 °. The plasma intensity may be made smaller than that in the case where the phase is inverted (the phase is shifted by 180 °) by adjusting to a range of from above to less than 180 °. Moreover, the high frequency power applied to the electrode part 41 is not restricted to the example of 13.56 MHz, Of course, other frequencies, for example, 100 MHz or other high frequency power may be applied.
 また、図1に示した成膜装置1では、電極部41の下面に開口する排気孔431を介して弱プラズマ生成空間102内の反応ガスを外部へ排気する例を示したが、排気路43は電極部41内に形成する場合に限られない。例えば図1に示した排気管13から排気を行っても良好な膜質が得られる場合には、この排気管13を排気部として利用する場合を否定するものではない。 Further, in the film forming apparatus 1 shown in FIG. 1, the example in which the reaction gas in the weak plasma generation space 102 is exhausted to the outside through the exhaust hole 431 opened on the lower surface of the electrode portion 41 is shown. Is not limited to the case of forming in the electrode part 41. For example, when a good film quality can be obtained even if exhaust is performed from the exhaust pipe 13 shown in FIG. 1, the case where the exhaust pipe 13 is used as an exhaust part is not denied.
 さらにまた本発明は、H2/N2又はNH3とSiH4とを用いたSiN膜の成膜に適用する場合に限定されるものではない。例えばシリコン化合物ガスをSiH4以外のシリコン化合物ガス、例えばSiH2Cl2としてSiN膜を成膜する場合などにも適用することができる。 Furthermore, the present invention is not limited to application to the formation of a SiN film using H2 / N2 or NH3 and SiH4. For example, the present invention can be applied to the case where a SiN film is formed by using a silicon compound gas other than SiH4, for example, SiH2Cl2.
 なお、上記実施形態では、複数の電極部41を用いて処理容器10内に強プラズマ生成空間101及び弱プラズマ生成空間102を形成する例を示したが、開示の技術はこれに限られない。例えば、貫通孔が形成された仕切り板等を用いて処理容器10を分割することで得られる2つの空間のうち一方の空間に強プラズマ生成空間101を形成し、他方の空間に弱プラズマ生成空間102を形成しても良い。 In the above-described embodiment, an example in which the strong plasma generation space 101 and the weak plasma generation space 102 are formed in the processing container 10 using the plurality of electrode portions 41 has been described, but the disclosed technique is not limited thereto. For example, the strong plasma generation space 101 is formed in one of two spaces obtained by dividing the processing vessel 10 using a partition plate or the like in which a through hole is formed, and the weak plasma generation space is formed in the other space. 102 may be formed.
 (シミュレーション1)
 電極部41に傾斜面部46を設けた場合と設けない場合とにおける、弱プラズマ生成空間102内の電子密度の分布をシミュレーションした。
(Simulation 1)
The distribution of the electron density in the weak plasma generation space 102 was simulated when the inclined surface portion 46 was not provided in the electrode portion 41.
 A.シミュレーション条件
 (実施例1-1)
 図6に示した例につき、電極部41間の距離をw=10mm、電極部41の下面と基板Sとの距離をh=20mmとし、第1の電源部61から13.56MHz、400W/本の高周波電力を印加し、第2の電源部62から第1の電源部61の高周波電力とは位相が180°ずれた13.56MHz、600W/本の高周波電力を印加した状態における強プラズマ生成空間101、弱プラズマ生成空間102の電子密度分布をプラズマ流体モデルによりシミュレーションした。プラズマ流体モデルの参考文献としては、M.J.Kushner:J.Phys.D42、194013(2009)が挙げられる。なお処理容器10内の圧力は200Paとした。
 (実施例1-2)
 図7に示した例と同様に電極部41の下面に傾斜面部46を設け、h1=20mm、h2=10mmとした点以外は(実施例1-1)と同様の条件でシミュレーションを行った。
A. Simulation conditions (Example 1-1)
In the example shown in FIG. 6, the distance between the electrode portions 41 is w = 10 mm, the distance between the lower surface of the electrode portion 41 and the substrate S is h = 20 mm, and 13.56 MHz, 400 W / piece from the first power supply portion 61. A strong plasma generation space in a state in which a high frequency power of 13.56 MHz and 600 W / line, which is 180 degrees out of phase with the high frequency power of the first power supply unit 61, is applied from the second power supply unit 62. 101, the electron density distribution in the weak plasma generation space 102 was simulated by a plasma fluid model. References for plasma fluid models include M.I. J. et al. Kushner: J.A. Phys. D42, 194013 (2009). The pressure in the processing container 10 was 200 Pa.
Example 1-2
Similar to the example shown in FIG. 7, a simulation was performed under the same conditions as in Example 1-1 except that the inclined surface portion 46 was provided on the lower surface of the electrode portion 41 and h1 = 20 mm and h2 = 10 mm.
 B.シミュレーション結果
 (実施例1-1)のシミュレーション結果を図21(a)に示し、(実施例1-2)のシミュレーション結果を図21(b)に示す。
B. Simulation Result The simulation result of (Example 1-1) is shown in FIG. 21 (a), and the simulation result of (Example 1-2) is shown in FIG. 21 (b).
 図21(a)に示した(実施例1-1)の結果によれば、強プラズマ生成空間101の開口部の下部側に電子密度の高い領域が確認された。これに対して、図21(b)に示す(実施例1-2)では、電極部41cの下面に、電極部41cの両側壁面側から中央部側へ向けて傾斜する傾斜面部46を設けることにより、(実施例1-1)で観察された電子密度の高い領域がかなり解消され、弱プラズマ生成空間102全体に渡り均一にプラズマが形成されている。これは傾斜面部46の先端で基板Sとの隙間による電気的容量の結合が強化されることで、強プラズマ生成空間101の出口において電子密度の集中が緩和されたものと考えられる。 According to the result of Example 1-1 shown in FIG. 21A, a region with a high electron density was confirmed on the lower side of the opening of the strong plasma generation space 101. On the other hand, in (Example 1-2) shown in FIG. 21B, an inclined surface portion 46 is provided on the lower surface of the electrode portion 41c so as to be inclined from the both side wall surfaces of the electrode portion 41c toward the central portion. Thus, the region having a high electron density observed in (Example 1-1) is considerably eliminated, and plasma is uniformly formed over the entire weak plasma generation space 102. This is thought to be because the concentration of the electron density at the exit of the strong plasma generation space 101 was alleviated by strengthening the coupling of electric capacity by the gap with the substrate S at the tip of the inclined surface portion 46.
 (実験2)
 図5に示すように、周波数信号発生器63と第1、第2の電源部61、62とを第1、第2の信号線611、621を介して接続し、第2の信号線621の長さを変化させたときに第1、第2の電源部61、62から出力される高周波電力の波形をオシロスコープで測定した。
 A.実験条件
 (実施例2-1)
 周波数信号発生器63から第1の電源部61までの第1の信号線611の長さを1mとし、周波数信号発生器63から第2の電源部62までの第2の信号線621の長さを8.4mとした。
 (実施例2-2)
 周波数信号発生器63から第2の電源部62までの第2の信号線621の長さを2.85mとした点以外は(実施例2-1)と同様である。
 (実施例2-3)
 周波数信号発生器63から第2の電源部62までの第2の信号線621の長さを4.7mとした点以外は(実施例2-1)と同様である。
(Experiment 2)
As shown in FIG. 5, the frequency signal generator 63 and the first and second power supply units 61 and 62 are connected via the first and second signal lines 611 and 621, and the second signal line 621 is connected. The waveform of the high frequency power output from the first and second power supply units 61 and 62 when the length was changed was measured with an oscilloscope.
A. Experimental conditions (Example 2-1)
The length of the first signal line 611 from the frequency signal generator 63 to the first power supply unit 61 is 1 m, and the length of the second signal line 621 from the frequency signal generator 63 to the second power supply unit 62 is Was 8.4 m.
(Example 2-2)
Example 2 is the same as Example 2-1 except that the length of the second signal line 621 from the frequency signal generator 63 to the second power supply unit 62 is 2.85 m.
(Example 2-3)
Example 2 is the same as Example 2-1 except that the length of the second signal line 621 from the frequency signal generator 63 to the second power supply unit 62 is 4.7 m.
 B.実験結果
 (実施例2-1)~(実施例2-3)における高周波電力の波形の測定結果を各々図22(a)~図22(c)に示す。各図において第1の電源部61から出力される高周波電力の波形を実線で示し、第2の電源部62から出力される高周波電力の波形を破線で示してある。
B. Experimental Results The measurement results of the high-frequency power waveforms in Examples 2-1 to 2-3 are shown in FIGS. 22A to 22C, respectively. In each figure, the waveform of the high frequency power output from the first power supply unit 61 is indicated by a solid line, and the waveform of the high frequency power output from the second power supply unit 62 is indicated by a broken line.
 図22(a)に示した(実施例2-1)の場合、第1、第2の信号線611、621の長さの差を7.4mとすることで、第1、第2の電源部61、62から出力される高周波電力の位相差を180°ずらす(位相を反転させる)ことができた。また、図22(b)に示す(実施例2-2)、図22(c)に示す(実施例2-3)の場合にも、各々第1、第2の信号線611、621の長さの差を1.85m、3.7mとすることにより、高周波電力の位相差を45°、90°と変化させることがでた。これらの結果から、図5に示すように周波数信号発生器63から入力される周波数信号に同期させて第1、第2の電源部61、62から高周波電力を出力する場合に、第1、第2の信号線611、621の長さを異ならせることにより、隣り合う電極部41に印加される高周波電力の位相差を調整できることを確認できた。 In the case of (Example 2-1) shown in FIG. 22A, the difference between the lengths of the first and second signal lines 611 and 621 is set to 7.4 m. It was possible to shift the phase difference of the high-frequency power output from the units 61 and 62 by 180 ° (invert the phase). Also in the case of (Example 2-2) shown in FIG. 22B and (Example 2-3) shown in FIG. 22C, the lengths of the first and second signal lines 611 and 621, respectively. By setting the difference in height to 1.85 m and 3.7 m, the phase difference of the high-frequency power could be changed to 45 ° and 90 °. From these results, when the high frequency power is output from the first and second power supply units 61 and 62 in synchronization with the frequency signal input from the frequency signal generator 63 as shown in FIG. It was confirmed that the phase difference of the high-frequency power applied to the adjacent electrode portions 41 can be adjusted by making the lengths of the two signal lines 611 and 621 different.
 (実験3)
 実験3では、強プラズマ生成空間101にH2/N2を含む反応ガスを供給し、弱プラズマ生成空間102にSiH4を供給する成膜装置1と、一般的な誘導結合プラズマ(ICP:Inductively Coupled Plasma)を用いた成膜装置との間で、基板Sに成膜されるSiN膜の被覆性、及びSiN膜中の各原子の濃度を比較した。
(Experiment 3)
In Experiment 3, a film forming apparatus 1 that supplies a reactive gas containing H2 / N2 to the strong plasma generation space 101 and SiH4 to the weak plasma generation space 102, and a general inductively coupled plasma (ICP). The coverage of the SiN film formed on the substrate S and the concentration of each atom in the SiN film were compared with a film forming apparatus using the above.
 A.実験条件
 (実施例3)
 成膜装置: 図1に示した成膜装置1
 処理ガス: H2/N2/SiH4=1000/500/20sccm
 高周波電力:1000W
 処理容器10内の圧力:200Pa
 基板温度:70℃
 (比較例1)
 成膜装置: ICPを用いた成膜装置
 処理ガス: H2/N2/SiH4=1000/500/20sccm
 高周波電力:1000W
 処理容器10内の圧力:200Pa
 基板温度:70℃
A. Experimental conditions (Example 3)
Film forming apparatus: Film forming apparatus 1 shown in FIG.
Process gas: H2 / N2 / SiH4 = 1000/500/20 sccm
High frequency power: 1000W
Pressure in processing container 10: 200 Pa
Substrate temperature: 70 ° C
(Comparative Example 1)
Film forming apparatus: Film forming apparatus using ICP Processing gas: H2 / N2 / SiH4 = 1000/500/20 sccm
High frequency power: 1000W
Pressure in processing container 10: 200 Pa
Substrate temperature: 70 ° C
 B.実験結果
 図23~図25は、比較例1及び実施例3における実験結果を示す図である。図23は、比較例1の実験後の基板の断面を拡大した写真のトレース図である。図24は、実施例3の実験後の基板の断面を拡大した写真のトレース図である。
B. Experimental Results FIGS. 23 to 25 are diagrams showing experimental results in Comparative Example 1 and Example 3. FIG. FIG. 23 is a trace view of a photograph in which a cross section of the substrate after the experiment of Comparative Example 1 is enlarged. FIG. 24 is a trace view of a photograph in which a cross section of the substrate after the experiment of Example 3 is enlarged.
 また、図25では、比較例1及び実施例3における実験後のステップカバレッジ(Step Coverage)と、SiH4の分圧との関係を示した。図25において、縦軸は、ステップカバレッジ(%)を示し、横軸は、SiH4の分圧(Pa)を示す。また、図25では、比較例1及び実施例3における実験後のステップカバレッジとして、基板平坦部に形成されるSiN膜に対する基板上のトレンチ溝の底に形成されるSiN膜の被覆性の度合いを示すボトムステップカバレッジ(Bottom Step Coverage)と、基板上のトレンチ溝の側壁に形成されるSiN膜の被覆性の度合いを示すサイドステップカバレッジ(Side Step Coverage)とを示した。なお、ボトムステップカバレッジ及びサイドステップカバレッジの値が大きいほど、SiN膜の被覆性が高いことを示す。 FIG. 25 shows the relationship between the step coverage after the experiment in Comparative Example 1 and Example 3 and the partial pressure of SiH4. In FIG. 25, the vertical axis represents step coverage (%), and the horizontal axis represents SiH4 partial pressure (Pa). In FIG. 25, as the step coverage after the experiment in Comparative Example 1 and Example 3, the degree of coverage of the SiN film formed at the bottom of the trench groove on the substrate with respect to the SiN film formed on the flat portion of the substrate is shown. The bottom step coverage (Bottom Step Coverage) shown and the side step coverage (Side Step Coverage) showing the degree of coverage of the SiN film formed on the sidewall of the trench groove on the substrate are shown. In addition, it shows that the coverage of a SiN film | membrane is so high that the value of a bottom step coverage and a side step coverage is large.
 図23~図25に示すように、ICPを用いた比較例1と比較して、強プラズマ生成空間101にH2/N2を含む反応ガスを供給し、弱プラズマ生成空間102にSiH4を供給する実施例3では、SiN膜の被覆性が改善された。 As shown in FIGS. 23 to 25, compared with Comparative Example 1 using ICP, the reactive gas containing H2 / N2 is supplied to the strong plasma generation space 101 and SiH4 is supplied to the weak plasma generation space 102. In Example 3, the coverage of the SiN film was improved.
 また、発明者は、更に鋭意研究を重ねた結果、SiH4の分圧が1Pa以上4Pa以下である場合に、SiN膜の膜質を維持しつつ、SiN膜の被覆性を向上することができることが分かった。このため、SiH4の分圧は、1Pa以上4Pa以下であることが好ましい。 Further, as a result of further earnest research, the inventor has found that when the partial pressure of SiH4 is 1 Pa or more and 4 Pa or less, the coverage of the SiN film can be improved while maintaining the film quality of the SiN film. It was. For this reason, it is preferable that the partial pressure of SiH4 is 1 Pa or more and 4 Pa or less.
 図26は、比較例1の実験後の基板に成膜されたSiN膜中の各原子の濃度を示す図である。図27は、実施例3の実験後の基板に成膜されたSiN膜中の各原子の濃度を示す図である。図26及び図27において、縦軸は、原子濃度(Atomic Concentration)(%)を示す。図26において、横軸は、SiH4の流量(sccm)を示す。図27において、横軸は、SiH4の流量とN2の流量との総和に対するSiH4の流量の比率を示す。 FIG. 26 is a diagram showing the concentration of each atom in the SiN film formed on the substrate after the experiment of Comparative Example 1. FIG. FIG. 27 is a diagram showing the concentration of each atom in the SiN film formed on the substrate after the experiment of Example 3. In FIG. In FIG. 26 and FIG. 27, the vertical axis represents the atomic concentration (%). In FIG. 26, the horizontal axis indicates the flow rate (sccm) of SiH4. In FIG. 27, the horizontal axis represents the ratio of the flow rate of SiH4 to the sum of the flow rate of SiH4 and the flow rate of N2.
 図26及び図27に示すように、比較例1及び実施例3のいずれにおいても、SiH4の流量の減少に伴って、SiN膜中のN原子の濃度が増加した。つまり、強プラズマ生成空間にH2/N2を含む反応ガスを供給し、弱プラズマ生成空間にSiH4を供給する実施例3では、ICPを用いた比較例1と同様に、窒化反応が促進されることが分かった。 As shown in FIGS. 26 and 27, in both Comparative Example 1 and Example 3, the concentration of N atoms in the SiN film increased as the flow rate of SiH 4 decreased. That is, in Example 3 in which a reactive gas containing H2 / N2 is supplied to the strong plasma generation space and SiH4 is supplied to the weak plasma generation space, the nitriding reaction is promoted as in Comparative Example 1 using ICP. I understood.
 また、発明者は、更に鋭意研究を重ねた結果、基板Sの温度が70℃以上300℃以下である場合に、良好なステップカバレッジが得られることが分かった。さらに、基板Sの温度が70℃以上150℃以下である場合に、良好なステップカバレッジが得られ、かつ、SiH4の分解に起因したパーティクルの発生を抑制することができることが分かった。このため、基板Sの温度は、70℃以上300℃以下であることが好ましく、70℃以上150℃以下であることがより好ましく、70℃であることが最も好ましい。 In addition, as a result of further earnest research, the inventor has found that good step coverage can be obtained when the temperature of the substrate S is 70 ° C. or higher and 300 ° C. or lower. Furthermore, it was found that when the temperature of the substrate S is 70 ° C. or higher and 150 ° C. or lower, good step coverage can be obtained and generation of particles due to decomposition of SiH 4 can be suppressed. For this reason, the temperature of the substrate S is preferably 70 ° C. or higher and 300 ° C. or lower, more preferably 70 ° C. or higher and 150 ° C. or lower, and most preferably 70 ° C.
 図28は、基板の温度が70℃である場合に図1に示した成膜装置によってSiN膜が成膜された基板の断面を拡大したトレース図である。図29は、基板の温度が70℃、150℃又は300℃である場合に図1に示した成膜装置によってSiN膜が成膜された基板のステップカバレッジを示す図である。図29において、縦軸は、基板上のトレンチ溝を挟む一対の側壁に成膜されたSiN膜間の距離d(nm)を示す。距離dが短いほどステップカバレッジが良好であることを示す。なお、SiN膜が成膜される前の基板上のトレンチ溝を挟む一対の側壁間の距離は30(nm)であるものとする。 FIG. 28 is an enlarged trace view of the cross section of the substrate on which the SiN film is formed by the film forming apparatus shown in FIG. 1 when the substrate temperature is 70 ° C. FIG. 29 is a diagram showing step coverage of a substrate on which a SiN film is formed by the film forming apparatus shown in FIG. 1 when the temperature of the substrate is 70 ° C., 150 ° C., or 300 ° C. In FIG. 29, the vertical axis indicates the distance d (nm) between the SiN films formed on the pair of side walls sandwiching the trench groove on the substrate. The shorter the distance d, the better the step coverage. It is assumed that the distance between the pair of side walls sandwiching the trench groove on the substrate before the SiN film is formed is 30 (nm).
 また、図29において、「70℃」は、基板の温度が70℃であることを示し、「150℃」は、基板の温度が150℃であることを示し、「300℃」は、基板の温度が300℃であることを示す。 In FIG. 29, “70 ° C.” indicates that the substrate temperature is 70 ° C., “150 ° C.” indicates that the substrate temperature is 150 ° C., and “300 ° C.” indicates that the substrate temperature is Indicates that the temperature is 300 ° C.
 図28及び図29に示すように、基板の温度が70℃である場合に、距離dは、23.3(nm)であった。また、基板の温度が150℃である場合に、距離dは、23.3(nm)であった。また、基板の温度が300℃である場合に、距離dは22.0(nm)であった。これらの距離dは、いずれも予め定められた許容スペックを満たすものであった。 As shown in FIGS. 28 and 29, when the substrate temperature is 70 ° C., the distance d is 23.3 (nm). When the substrate temperature was 150 ° C., the distance d was 23.3 (nm). When the substrate temperature was 300 ° C., the distance d was 22.0 (nm). These distances d all satisfy a predetermined allowable specification.
1 成膜装置
2 載置台
7 制御部
10 処理容器
32 供給路
41 電極部
42 供給路
51 供給部
52 供給部
61 第1の電源部
62 第2の電源部
101 強プラズマ生成空間
102 弱プラズマ生成空間
511 供給ライン
521 供給ライン
S 基板
DESCRIPTION OF SYMBOLS 1 Film-forming apparatus 2 Mounting stand 7 Control part 10 Processing container 32 Supply path 41 Electrode part 42 Supply path 51 Supply part 52 Supply part 61 1st power supply part 62 2nd power supply part 101 Strong plasma generation space 102 Weak plasma generation space 511 Supply line 521 Supply line S Substrate

Claims (5)

  1.  処理容器と、
     前記処理容器内に設けられ、基板を載置するための載置台と、
     前記処理容器内に形成された強プラズマ生成空間に、H2/N2又はNH3を含む反応ガスを供給する第1のガス供給部と、
     前記処理容器内に形成されて前記強プラズマ生成空間に形成されるプラズマよりも発光強度が弱いプラズマを生成する弱プラズマ生成空間に、前記反応ガスの活性種と反応して前記基板上にシリコン窒化膜を成膜するシリコン化合物ガスを供給する第2のガス供給部と、
     前記反応ガスと、前記シリコン化合物ガスとをプラズマ化するための高周波電力を供給する高周波電源と
     を備えたことを特徴とする成膜装置。
    A processing vessel;
    A mounting table provided in the processing container for mounting a substrate;
    A first gas supply unit that supplies a reactive gas containing H2 / N2 or NH3 to the strong plasma generation space formed in the processing container;
    Silicon nitride is formed on the substrate by reacting with the active species of the reactive gas in a weak plasma generation space that generates plasma having a light emission intensity lower than that of the plasma formed in the strong plasma generation space. A second gas supply unit for supplying a silicon compound gas for forming the film;
    A film forming apparatus comprising: a high-frequency power source that supplies high-frequency power for converting the reaction gas and the silicon compound gas into plasma.
  2.  前記載置台に載置された前記基板の上方において、前記強プラズマ生成空間を形成するために、各々縦向きの姿勢で互いに間隔をおいて配置されると共に、下端部と前記基板との隙間に前記弱プラズマ生成空間を形成する複数の電極部をさらに備え、
     前記高周波電源は、前記複数の電極部のうち前記強プラズマ生成空間を挟んで隣り合う電極部の対に互いに位相が異なる前記高周波電力を供給することによって、前記反応ガスと、前記シリコン化合物ガスとをプラズマ化することを特徴とする請求項1に記載の成膜装置。
    Above the substrate placed on the mounting table, in order to form the strong plasma generation space, they are arranged at intervals in a vertical orientation, and in the gap between the lower end and the substrate. A plurality of electrode portions that form the weak plasma generation space;
    The high-frequency power source supplies the high-frequency power having a phase different from each other to a pair of electrode portions adjacent to each other across the strong plasma generation space among the plurality of electrode portions, whereby the reaction gas, the silicon compound gas, The film forming apparatus according to claim 1, wherein the film is converted into plasma.
  3.  前記高周波電源から供給される前記高周波電力の電力密度は、1W/cm2以上3W/cm2以下であることを特徴とする請求項1又は2に記載の成膜装置。 3. The film forming apparatus according to claim 1, wherein a power density of the high frequency power supplied from the high frequency power source is 1 W / cm 2 or more and 3 W / cm 2 or less.
  4.  前記シリコン化合物ガスの分圧は、1Pa以上4Pa以下であることを特徴とする請求項1に記載の成膜装置。 The film forming apparatus according to claim 1, wherein a partial pressure of the silicon compound gas is 1 Pa or more and 4 Pa or less.
  5.  前記基板の温度は、70℃以上300℃以下であることを特徴とする請求項1に記載の成膜装置。 The film forming apparatus according to claim 1, wherein the temperature of the substrate is 70 ° C. or higher and 300 ° C. or lower.
PCT/JP2015/068067 2014-07-03 2015-06-23 Film formation device WO2016002591A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-138124 2014-07-03
JP2014138124 2014-07-03

Publications (1)

Publication Number Publication Date
WO2016002591A1 true WO2016002591A1 (en) 2016-01-07

Family

ID=55019134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068067 WO2016002591A1 (en) 2014-07-03 2015-06-23 Film formation device

Country Status (1)

Country Link
WO (1) WO2016002591A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111586958A (en) * 2020-06-10 2020-08-25 常州比太科技有限公司 Push-pull linear plasma source and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002016056A (en) * 2000-06-29 2002-01-18 Nec Corp Remote plasma cvd apparatus and method for manufacturing film
JP2009044171A (en) * 1994-06-15 2009-02-26 Seiko Epson Corp Method for fabricating thin film semiconductor device
US20110006040A1 (en) * 2009-07-08 2011-01-13 Stephen Edward Savas Methods for Plasma Processing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009044171A (en) * 1994-06-15 2009-02-26 Seiko Epson Corp Method for fabricating thin film semiconductor device
JP2002016056A (en) * 2000-06-29 2002-01-18 Nec Corp Remote plasma cvd apparatus and method for manufacturing film
US20110006040A1 (en) * 2009-07-08 2011-01-13 Stephen Edward Savas Methods for Plasma Processing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111586958A (en) * 2020-06-10 2020-08-25 常州比太科技有限公司 Push-pull linear plasma source and application thereof

Similar Documents

Publication Publication Date Title
JP6103104B2 (en) Deposition equipment
TWI830918B (en) Method of forming an electronic structure, system for performing the method, and structure formed according to the method
KR101885411B1 (en) Substrate processing method and substrate processing apparatus
US9279184B2 (en) Method of forming a pattern and substrate processing system
JP6134191B2 (en) Rotary semi-batch ALD equipment
JP2014201804A5 (en)
WO2009093459A1 (en) Atomic layer growing apparatus and thin film forming method
KR102190863B1 (en) Substrate processing apparatus and gas introduction plate
KR20150106339A (en) Vertical heat treatment apparatus, method for operating vertical heat treatment apparatus, and storage medium
TWI602213B (en) Plasma processing method, and plasma processing apparatus
KR101393185B1 (en) Pattern-forming method and method for manufacturing semiconductor device
JP2013125762A (en) Film forming device and film forming method
US10151029B2 (en) Silicon nitride film forming method and silicon nitride film forming apparatus
TW201800597A (en) Film deposition method
US20190136377A1 (en) Film-forming apparatus and film-forming method
US20160326651A1 (en) Substrate processing apparatus
US9373498B2 (en) Method of operating vertical heat treatment apparatus, vertical heat treatment apparatus and non-transitory recording medium
KR20180014656A (en) Substrate processing apparatus and substrate processing method
CN112838004A (en) Etching method and etching apparatus
TWI702304B (en) Silicon nitride film deposition method and deposition device
WO2016002591A1 (en) Film formation device
JP2015138885A (en) substrate processing apparatus, shower plate and substrate processing method
JP2016014185A (en) Film deposition apparatus
US11037823B2 (en) Method of manufacturing semiconductor device
KR102663075B1 (en) Film forming method and film forming apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15815063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15815063

Country of ref document: EP

Kind code of ref document: A1