WO2016002439A1 - Thermal air flowmeter - Google Patents

Thermal air flowmeter Download PDF

Info

Publication number
WO2016002439A1
WO2016002439A1 PCT/JP2015/066423 JP2015066423W WO2016002439A1 WO 2016002439 A1 WO2016002439 A1 WO 2016002439A1 JP 2015066423 W JP2015066423 W JP 2015066423W WO 2016002439 A1 WO2016002439 A1 WO 2016002439A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
sensor chip
thermal air
flow meter
air passage
Prior art date
Application number
PCT/JP2015/066423
Other languages
French (fr)
Japanese (ja)
Inventor
公俊 緒方
石塚 典男
忍 田代
徳安 昇
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2016002439A1 publication Critical patent/WO2016002439A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow

Definitions

  • the present invention relates to a flow meter that measures the flow rate of a gas to be measured, and more particularly to a thermal air flow meter that measures the intake air amount of an internal combustion engine.
  • a thermal air flow meter that measures the gas flow rate has a flow rate detection unit for measuring the flow rate, and measures the gas flow rate by transferring heat between the flow rate detection unit and the gas to be measured. It is configured as follows.
  • the flow rate measured by the thermal air flow meter is widely used as an important control parameter in various apparatuses.
  • a feature of the thermal air flow meter is that a gas flow rate, for example, a mass flow rate can be measured with relatively high accuracy compared to other types of flow meters.
  • a thermal air flow meter that measures the amount of intake air led to an internal combustion engine includes a sub-passage that takes in a part of the intake air amount and a sensor chip disposed in the sub-passage, and a flow rate detection unit provided in the sensor chip is covered. By performing heat transfer with the measurement gas, the state of the gas to be measured flowing through the sub-passage is measured, and an electric signal representing the amount of intake air guided to the internal combustion engine is output.
  • the sensor chip has a partial cavity formed in a semiconductor substrate by a semiconductor machining technique and a thin film part provided so as to cover the cavity.
  • the thin film part is called a diaphragm, and the response speed of the thermal air flow meter can be further increased by forming the flow rate detection part on the diaphragm.
  • a technique for suppressing the stress generated on the diaphragm is required. Such a technique is disclosed in Patent Document 1, for example.
  • a sensor chip having a diaphragm structure composed of a thin film portion which is a flow rate detection portion is mounted on a plate, and a cavity on the back surface of the diaphragm and outside air are passed through an air passage and an air hole formed in the plate.
  • the diaphragm surface is disposed in the sub-passage for measuring the flow rate, and the air hole connecting the rear surface of the diaphragm and the outside air is formed as a sub-port. Place outside the aisle.
  • An object of the present invention is to provide a thermal air flow meter with high measurement accuracy.
  • the sensor chip and the plate are molded with resin so that a diaphragm of the sensor chip and a part of the plate are exposed, and the plate is In the molding, the plate has a groove or a thinned portion that is partially thinned outside the sensor chip mounting surface area that receives a pressing load from the sensor chip.
  • FIG. 1 is a plan view of a mounted part before the sensor assembly 10 is formed
  • FIG. 2 is a plan view after the sensor assembly 10 is formed
  • FIG. 3A is a cross-sectional view along AA in FIG. 2
  • FIG. FIG. 3 is a sectional view taken along line BB in FIG.
  • the sensor assembly 10 includes a lead frame 1, a plate 2, an LSI 3, and a sensor chip 4, and these are covered with a first resin 24 as shown in FIG. 2.
  • FIG. 1 is a plan view of a mounted part before the sensor assembly 10 is formed
  • FIG. 2 is a plan view after the sensor assembly 10 is formed
  • FIG. 3A is a cross-sectional view along AA in FIG. 2
  • FIG. FIG. 3 is a sectional view taken along line BB in FIG.
  • the sensor assembly 10 includes a lead frame 1, a plate 2, an LSI 3, and a sensor chip 4, and these are covered with a first resin 24 as shown in FIG. 2.
  • FIG. 1 is a
  • the plate 2 is bonded to the lead frame 1 with the adhesive tape 5, and the LSI 3 and the sensor chip 4 are further bonded to the plate 2 with the adhesive tape 6 and the adhesive tape 7.
  • Glue a shape having a longitudinal direction and a lateral direction, such as a rectangle, and the sensor chip 4 and the LSI 3 are arranged on the plate 2 so as to be aligned in the longitudinal direction.
  • the plate 2 may be made of glass or resin.
  • Next, between the LSI 3 and the sensor chip 4 and between the LSI 3 and the lead frame 1 are electrically connected using gold wires 8 and 9 by wire bonding. These are sealed with the first resin 24 to complete the sensor assembly 10.
  • the sensor assembly 10 has a partially exposed structure in which the first resin 24 is not present in the diaphragm portion 27 of the sensor chip 4.
  • FIG. 4 is a cross-sectional view when the mounted component is clamped by the upper mold 16 and the lower mold 15 in the manufacturing process of the sensor assembly 10 having the partially exposed structure.
  • the sensor assembly 10 is manufactured by pouring the first resin 24 into the mold.
  • the diaphragm portion 27 of the sensor chip 4 By pressing the diaphragm portion 27 of the sensor chip 4 with the upper mold 16, inflow of the resin at the time of resin sealing is prevented.
  • the sensor assembly 10 has a partially exposed structure in which the diaphragm 27 is exposed.
  • FIG. 5 is a front view when the sensor assembly 10 is mounted on the housing 11 including the sub-passage 12, and FIG. 6 is a cross-sectional view taken along the line AA in FIG.
  • the housing 11 includes a sub-passage 12 for guiding the air flowing through the main passage to the sensor chip 4, holding portions 20 and 21 of the sensor assembly 10 (to become side walls of the sub-passage), and a holding portion 14 of the lead frame 1.
  • the sensor assembly 10 is fixed simultaneously with the formation of the housing 11 made of the second resin. At this time, the sensor chip 4 having the flow rate detection unit needs to measure the air flow rate, and thus is disposed in the sub-passage 12.
  • FIG. 7 is a front view of the plate 2, and a CC sectional view and a DD sectional view on FIG.
  • the plate 2 has a thinned portion 30 outside the mounting area 29 of the sensor chip 4 and on the back surface side (lead frame side).
  • the thinned portion 30 in the first embodiment is provided up to the end of the plate 2 in the short direction.
  • the sensor chip 4 is pushed by the upper mold 16 in order to form a partially exposed structure of the diaphragm portion 27.
  • the surface of the plate 2 receives a pressing load from the sensor chip 4
  • the back surface of the plate 2 receives a reaction force accompanying the pressing load from the lead frame 1.
  • the contact area between the plate 2 and the lead frame 1 is larger than the contact area between the plate 2 and the sensor chip 4 as shown in FIG. Since the force is distributed, bending deformation occurs in the plate 2.
  • the deformation of the sensor chip 4 is promoted, and stress is generated in the diaphragm portion 27, which may reduce the measurement accuracy.
  • the thinned portion 30 outside the mounting area 29 of the sensor chip 4 on the plate 2
  • the difference between the contact area between the plate 2 and the sensor chip 4 and the contact area between the plate 2 and the lead frame is reduced. It can be reduced in the vicinity of the sensor chip mounting area 29, and the bending deformation of the plate can be suppressed.
  • FIG. 7 shows a particularly preferable configuration of the thinned portion 20.
  • the thinned portion 30 is provided on the back side (lead frame side) of the plate 2 so that the side surface on the sensor mounting region side of the thinned portion 30 and the side surface of the sensor chip 4 are substantially flush with each other.
  • the contact areas on the front and back surfaces of the plate 2 are substantially equal, and the reaction force received from the lead frame 1 is the sensor chip mounting area. Concentrate in the vicinity of 29. Therefore, the bending deformation of the plate 2 as shown in FIG. 8 can be further suppressed, and the flow rate measurement accuracy can be maintained with higher accuracy.
  • the air passage 13 formed in the plate 2 may be configured as one, or the outlet opening 17 may be formed directly below the mounting area 29 of the sensor chip 4 as shown in FIG. Needless to say, the same effects can be obtained.
  • the thinned portion 30 formed on the plate 2 is arranged outside the mounting region 29 of the sensor chip 4 in the short direction of the plate and as shown in FIGS. It is the point arrange
  • the plate 2 is produced, for example, by fragmenting wafer-like glass or resin. However, if the side surface of the plate 2 that is a cut surface is thin, the plate 2 is likely to be chipped when fragmented, and the yield may be reduced.
  • the thinned portion 30 is provided on the inner side of the side surface of the plate 2, it is possible to suppress the thinning of the side surface of the plate 2 and to prevent the yield from being reduced in size. Needless to say, this configuration also achieves the same effects as the previous embodiments.
  • the thinned portion 30 provided on the plate 2 is connected to the air passage 13.
  • the configuration different from the first and second embodiments is that the plate 2 is formed so that the side surface of the mounting area 29 of the sensor chip 4 and the side surface of the plate 2 are flush with each other as shown in FIG. is there.
  • the plate 2 is formed so that the side surface of the mounting area 29 of the sensor chip 4 and the side surface of the plate 2 are flush with each other only in the vicinity of the side surface of the mounting area 29.
  • the plate 2 has a configuration in which the width in the short direction of the sensor mounting region 29 is equal to the width in the short direction (also referred to as a flow rate detection direction) of the sensor chip. Needless to say, this configuration also achieves the same effects as the previous embodiments.
  • the bending deformation of the plate 2 as shown in FIG. 8 decreases in proportion to the cube of the plate thickness. Therefore, when the depth d of the air passage 13 is increased, the thickness of the plate 2 immediately above the air passage is reduced and bending deformation is increased. Therefore, as shown in FIG. 17, bending deformation can be suppressed by increasing the thickness T of the plate 2 and decreasing the depth d of the air passage 13. In order to suppress the bending deformation, it is desirable that d ⁇ T / 2. On the other hand, if the depth d of the air passage 13 is smaller than the thickness t of the adhesive sheet 5 that bonds the plate 2 and the lead frame 1, the air passage 13 may be blocked by the adhesive sheet 5 when the sensor assembly 10 is manufactured.
  • the depth d of the air passage 13 is preferably larger than the thickness t of the adhesive sheet 5 (t ⁇ d). From the above, it is preferable that the thickness T of the plate 2, the depth d of the air passage, and the thickness t of the adhesive sheet satisfy t ⁇ d ⁇ T / 2.
  • FIG. 18 is a sectional view of the plate 2 and an enlarged view of the air passage 13.
  • the air passage 13 and the thinned portion 30 of the plate 2 are formed by sandblasting.
  • minute cracks and scratches as shown in the enlarged view of FIG. It occurs on the surface of the passage 13 and the thinned portion 30.
  • the surface treatment such as hydrofluoric acid treatment can remove minute cracks and scratches generated when the air passage 13 and the thinned portion 30 are formed, thereby reducing the stress concentration. it can.
  • the present invention is also effective in a structure in which the back surface of the diaphragm portion 27 is sealed without providing the air passage 13.
  • a pressure difference is generated on the front and back surfaces of the diaphragm portion 27 due to expansion and contraction of air due to a temperature change during flow rate measurement, and the diaphragm portion 27 is warped and deformed due to this pressure difference. It can be a flow measurement error.
  • the deformation of the plate can be suppressed. It becomes possible. Therefore, even when the diaphragm portion 27 is sealed, the temperature change at the time of flow rate measurement is measured, and the measurement error due to the warp deformation generated in the diaphragm portion 27 is corrected, thereby suppressing a decrease in measurement accuracy. Is possible.
  • the structure different from the previous embodiment is that the air passage 13 provided in the plate 2 is provided inside the region 31 where the sensor chip 4 presses the plate 2, and the air passage 13 is formed only in the longitudinal direction of the plate 2, and the outlet This is a point communicating with the opening 17.
  • W1 / W2 1.0
  • the air passage 13 provided in the plate 2 is provided inside the region 31 where the sensor chip 4 presses the plate 2.
  • the air passage 13 can be provided so as to avoid the high stress region directly below the sensor chip pressing region 31, and the stress generated in the air passage 13 can be reduced.
  • the air passage 13 only in the longitudinal direction of the plate 2 and communicating with the outlet opening 17, it is possible to reduce the thickness reduction region of the plate 2 due to the formation of the air passage 13. Since the bending rigidity of the plate 2 is improved as the thickness reduction region is smaller, the bending deformation of the plate 2 when the sensor assembly 10 is formed can be suppressed, and a more reliable sensor assembly 10 can be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

The purpose of the present invention is to improve the measurement accuracy of a thermal air flowmeter. The thermal air flowmeter is equipped with a sensor assembly having a lead frame, a plate provided on the lead frame, a sensor chip provided on the plate, and a resin provided so as to expose a diaphragm portion of the sensor chip, wherein the diaphragm portion is provided so as to be positioned in a sub-passage. In the thermal air flowmeter, the plate has a groove or a partially thin reduced thickness portion outside a sensor chip mounting surface region where the plate receives a press load from the sensor chip during resin molding. Alternatively, in another embodiment, the side surface of the plate is substantially flush with the side surface of the sensor chip at least in the sensor chip mounting region.

Description

熱式空気流量計Thermal air flow meter
 本発明は被測定気体の流量を計測する流量計に係り、特に、内燃機関の吸入空気量を計測する熱式空気流量計に関する。 The present invention relates to a flow meter that measures the flow rate of a gas to be measured, and more particularly to a thermal air flow meter that measures the intake air amount of an internal combustion engine.
 気体流量を計測する熱式空気流量計は、流量を計測するための流量検出部を備え、流量検出部と計測対象である気体との間で熱伝達を行うことにより、気体の流量を計測するように構成されている。熱式空気流量計が計測する流量は、様々な装置において重要な制御パラメータとして広く使用されている。熱式空気流量計の特徴は、他方式の流量計に比べ相対的に高い精度で気体流量、例えば質量流量を計測できることである。 A thermal air flow meter that measures the gas flow rate has a flow rate detection unit for measuring the flow rate, and measures the gas flow rate by transferring heat between the flow rate detection unit and the gas to be measured. It is configured as follows. The flow rate measured by the thermal air flow meter is widely used as an important control parameter in various apparatuses. A feature of the thermal air flow meter is that a gas flow rate, for example, a mass flow rate can be measured with relatively high accuracy compared to other types of flow meters.
 しかし、さらなる気体流量計測精度の向上が望まれている。例えば、内燃機関を搭載した車両では、省燃費の要望や排気ガス浄化の要望が非常に高い。これらの要望に応えるには、内燃機関の主要パラメータである吸入空気量の計測高精度化、高速応答化が求められている。内燃機関に導かれる吸入空気量を計測する熱式空気流量計は、吸入空気量の一部を取り込む副通路と副通路に配置されたセンサチップを備え、センサチップに備えられる流量検出部が被計測気体との間で熱伝達を行うことにより、副通路を流れる被計測気体の状態を計測して、内燃機関に導かれる吸入空気量を表す電気信号を出力する。センサチップは半導体マシニング技術により半導体基板に形成された部分的な空洞部と空洞部を覆うように設けられた薄膜部を有する。薄膜部をダイアフラムと呼び、ダイアフラム上に流量検出部を形成することで熱式空気流量計の応答速度の更なる高速化が可能となる。しかし、ダイアフラム上に配置された抵抗体に応力がかかると、ピエゾ効果により抵抗値が変化するため、流量計測時の誤差要因となる。そのため、ダイアフラム上に発生する応力を抑制する技術が必要となる。このような技術は、例えば特許文献1に開示されている。 However, further improvement in gas flow measurement accuracy is desired. For example, a vehicle equipped with an internal combustion engine has a very high demand for fuel saving and exhaust gas purification. In order to meet these demands, there is a need for highly accurate measurement and high-speed response of the intake air amount, which is a main parameter of an internal combustion engine. A thermal air flow meter that measures the amount of intake air led to an internal combustion engine includes a sub-passage that takes in a part of the intake air amount and a sensor chip disposed in the sub-passage, and a flow rate detection unit provided in the sensor chip is covered. By performing heat transfer with the measurement gas, the state of the gas to be measured flowing through the sub-passage is measured, and an electric signal representing the amount of intake air guided to the internal combustion engine is output. The sensor chip has a partial cavity formed in a semiconductor substrate by a semiconductor machining technique and a thin film part provided so as to cover the cavity. The thin film part is called a diaphragm, and the response speed of the thermal air flow meter can be further increased by forming the flow rate detection part on the diaphragm. However, when a stress is applied to the resistor arranged on the diaphragm, the resistance value changes due to the piezo effect, which becomes an error factor when measuring the flow rate. Therefore, a technique for suppressing the stress generated on the diaphragm is required. Such a technique is disclosed in Patent Document 1, for example.
WO2013084259A1WO2013084259A1
 特許文献1に記載の技術は、流量検出部である薄膜部からなるダイアフラム構造を有するセンサチップをプレートに搭載し、ダイアフラム裏面の空洞部と外気をプレートに形成された空気通路及び空気孔を介して接続する。そして、センサチップ及びプレートを、流量検出部であるダイアフラム表面を露出した状態で樹脂封止した後、流量を測定する副通路にダイアフラム表面を配置し、ダイアフラム裏面と外気を接続する空気孔を副通路の外に配置する。この技術によれば、流量測定時の温度変化によって生じるダイアフラム表裏面の圧力差を低減でき、ダイアフラムに発生する反りを抑制することができる。そのため、ダイアフラムに発生する応力を低減でき、計測精度低下を抑制することができる。しかし、上記構造では、樹脂封止時にセンサチップがプレートを押すことによって、プレートに曲げ変形が生じ、センサチップが変形するおそれがある。これにより、ダイアフラムに応力が発生し、計測精度が低下するおそれがある。 In the technique described in Patent Document 1, a sensor chip having a diaphragm structure composed of a thin film portion which is a flow rate detection portion is mounted on a plate, and a cavity on the back surface of the diaphragm and outside air are passed through an air passage and an air hole formed in the plate. Connect. After sealing the sensor chip and plate with the diaphragm surface serving as a flow rate detection unit exposed, the diaphragm surface is disposed in the sub-passage for measuring the flow rate, and the air hole connecting the rear surface of the diaphragm and the outside air is formed as a sub-port. Place outside the aisle. According to this technique, it is possible to reduce the pressure difference between the front and back surfaces of the diaphragm caused by a temperature change during flow rate measurement, and to suppress warping that occurs in the diaphragm. Therefore, the stress generated in the diaphragm can be reduced, and a decrease in measurement accuracy can be suppressed. However, in the above structure, when the sensor chip pushes the plate at the time of resin sealing, the plate may be bent and deformed, and the sensor chip may be deformed. As a result, stress is generated in the diaphragm, which may reduce the measurement accuracy.
 本発明の目的は、計測精度の高い熱式空気流量計を提供することである。 An object of the present invention is to provide a thermal air flow meter with high measurement accuracy.
 上記目的を達成するために、本発明の熱式空気流量計は、前記センサチップ及び前記プレートは、前記センサチップのダイアフラム及び前記プレートの一部が露出するように樹脂でモールドされ、前記プレートは、前記モールド時に前記プレートが前記センサチップから押し荷重を受ける前記センサチップ搭載面領域の外部に溝、あるいは、一部薄くなる減肉部を有することを特徴とする。 To achieve the above object, in the thermal air flow meter of the present invention, the sensor chip and the plate are molded with resin so that a diaphragm of the sensor chip and a part of the plate are exposed, and the plate is In the molding, the plate has a groove or a thinned portion that is partially thinned outside the sensor chip mounting surface area that receives a pressing load from the sensor chip.
 本発明によれば、計測精度の高い熱式空気流量計を提供することが可能となる。 According to the present invention, it is possible to provide a thermal air flow meter with high measurement accuracy.
本願に係る第1実施例におけるセンサアセンブリ内実装部品の平面図である。It is a top view of the mounting component in a sensor assembly in the 1st example concerning this application. 本願に係る第1実施例におけるセンサアセンブリの平面図である。It is a top view of the sensor assembly in the 1st example concerning this application. 本願に係る第1実施例におけるセンサアセンブリの断面図である。It is sectional drawing of the sensor assembly in 1st Example which concerns on this application. 本願に係る第1実施例におけるセンサアセンブリ作製時の断面図である。It is sectional drawing at the time of sensor assembly preparation in 1st Example which concerns on this application. 本願に係る第1実施例における熱式空気流量計平面図である。It is a thermal type air flow meter top view in the 1st example concerning this application. 本願に係る第1実施例における熱式空気流量計断面図である。It is sectional drawing of the thermal type air flowmeter in 1st Example which concerns on this application. 本願に係る第1実施例におけるプレートの平面図及び断面図である。It is the top view and sectional view of a plate in the 1st example concerning this application. 本願に係る第1実施例におけるセンサアセンブリ作製時の断面図である。It is sectional drawing at the time of sensor assembly preparation in 1st Example which concerns on this application. 本願に係る第1実施例におけるプレートの平面図及び断面図である。It is the top view and sectional view of a plate in the 1st example concerning this application. 本願に係る第1実施例におけるプレートの平面図及び断面図である。It is the top view and sectional view of a plate in the 1st example concerning this application. 本願に係る第2実施例におけるプレートの平面図及び断面図である。It is the top view and sectional view of a plate in the 2nd example concerning this application. 本願に係る第2実施例におけるプレートの平面図である。It is a top view of the plate in the 2nd example concerning this application. 本願に係る第2実施例におけるプレートの平面図及び断面図である。It is the top view and sectional view of a plate in the 2nd example concerning this application. 本願に係る第2実施例におけるプレートの平面図及び断面図である。It is the top view and sectional view of a plate in the 2nd example concerning this application. 本願に係る第3実施例におけるプレートの平面図及び断面図である。It is the top view and sectional view of a plate in the 3rd example concerning this application. 本願に係る第3実施例におけるプレートの平面図及び断面図である。It is the top view and sectional view of a plate in the 3rd example concerning this application. 本願に係る第4実施例におけるプレートの平面図及び断面図である。It is the top view and sectional view of a plate in the 4th example concerning this application. 本願に係る第5実施例におけるプレートの断面図及び拡大図である。It is sectional drawing and the enlarged view of the plate in 5th Example which concerns on this application. 本願に係る第5実施例におけるプレートの断面図及び拡大図である。It is sectional drawing and the enlarged view of the plate in 5th Example which concerns on this application. 本願に係る第6実施例におけるプレートの平面図及び断面図である。It is the top view and sectional view of a plate in the 6th example concerning this application. 本願に係る第7実施例におけるプレートの平面図及び断面図である。It is the top view and sectional view of a plate in the 7th example concerning this application. 本願に係る第7実施例におけるプレートの空気通路部に発生する応力の空気通路位置依存性を示した図である。It is the figure which showed the air passage position dependence of the stress which generate | occur | produces in the air passage part of the plate in 7th Example which concerns on this application.
 以下、本発明の実施例について図を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 まず初めに熱式空気流量計の第1実施例について説明する。図1はセンサアセンブリ10形成前の実装部品の平面図であり、図2はセンサアセンブリ10形成後の平面図、図3(a)は図2上のA-A断面図、図3(b)は図2上のB-B断面図である。図1に示すように、センサアセンブリ10はリードフレーム1、プレート2、LSI3、センサチップ4を備えており、図2に示すように、これらが第1樹脂24で覆われている。具体的な製造方法は、図3に示すように、まず、リードフレーム1上にプレート2を接着テープ5で接着し、さらにプレート2上にLSI3とセンサチップ4を接着テープ6、接着テープ7で接着する。プレート2は、例えば長方形などの長手方向と短手方向とを有する形状であり、長手方向に並ぶようにセンサチップ4とLSI3はプレート2上に配置される。なお、このプレート2には、ガラスを用いても樹脂を用いても構わない。次に、LSI3とセンサチップ4の間、及びLSI3とリードフレーム1の間をワイヤボンディングにより金線8、9を用いて電気的に結線する。これらを第1樹脂24によって樹脂封止し、センサアセンブリ10が完成する。流量検出時は、図2の矢印方向もしくは反対方向から空気26がセンサチップ4の流量検出部を有するダイアフラム部27上に流入することで流量を測定する。そのため、センサアセンブリ10はセンサチップ4のダイアフラム部27に第1樹脂24が無い部分露出構造となっている。 First, a first embodiment of the thermal air flow meter will be described. FIG. 1 is a plan view of a mounted part before the sensor assembly 10 is formed, FIG. 2 is a plan view after the sensor assembly 10 is formed, FIG. 3A is a cross-sectional view along AA in FIG. 2, and FIG. FIG. 3 is a sectional view taken along line BB in FIG. As shown in FIG. 1, the sensor assembly 10 includes a lead frame 1, a plate 2, an LSI 3, and a sensor chip 4, and these are covered with a first resin 24 as shown in FIG. 2. Specifically, as shown in FIG. 3, first, the plate 2 is bonded to the lead frame 1 with the adhesive tape 5, and the LSI 3 and the sensor chip 4 are further bonded to the plate 2 with the adhesive tape 6 and the adhesive tape 7. Glue. The plate 2 has a shape having a longitudinal direction and a lateral direction, such as a rectangle, and the sensor chip 4 and the LSI 3 are arranged on the plate 2 so as to be aligned in the longitudinal direction. The plate 2 may be made of glass or resin. Next, between the LSI 3 and the sensor chip 4 and between the LSI 3 and the lead frame 1 are electrically connected using gold wires 8 and 9 by wire bonding. These are sealed with the first resin 24 to complete the sensor assembly 10. At the time of detecting the flow rate, the air 26 flows into the diaphragm portion 27 having the flow rate detecting portion of the sensor chip 4 from the direction of the arrow in FIG. Therefore, the sensor assembly 10 has a partially exposed structure in which the first resin 24 is not present in the diaphragm portion 27 of the sensor chip 4.
 図4は、部分露出構造を有するセンサアセンブリ10の製造工程において、実装部品を上金型16と下金型15でクランプしたときの断面図である。金型クランプ後、第1樹脂24を金型内に流し込むことでセンサアセンブリ10を作製する。センサチップ4のダイアフラム部27を上金型16で押すことによって樹脂封止時の樹脂の流入を防ぐ。これにより、センサアセンブリ10はダイアフラム部27が露出する部分露出構造となる。 FIG. 4 is a cross-sectional view when the mounted component is clamped by the upper mold 16 and the lower mold 15 in the manufacturing process of the sensor assembly 10 having the partially exposed structure. After the mold clamping, the sensor assembly 10 is manufactured by pouring the first resin 24 into the mold. By pressing the diaphragm portion 27 of the sensor chip 4 with the upper mold 16, inflow of the resin at the time of resin sealing is prevented. As a result, the sensor assembly 10 has a partially exposed structure in which the diaphragm 27 is exposed.
 図5は、副通路12を含む筐体11にセンサアセンブリ10を実装したときの正面図であり、図6は図5上のA-A断面図である。筐体11は主通路を流れる空気をセンサチップ4に導くための副通路12とセンサアセンブリ10の保持部20、21(副通路の側壁となる)とリードフレーム1の保持部14を備えており、第2樹脂からなる筐体11形成と同時にセンサアセンブリ10が固定される。この際、流量検出部を有するセンサチップ4は空気流量を測定する必要があるため、副通路12中に配置される。図7はプレート2の正面図及び、図7上のC-C断面図及びD-D断面図である。図7に示すとおり、プレート2は、センサチップ4の搭載領域29の外側かつ裏面側(リードフレーム側)に減肉部30を有する。第1実施例における減肉部30は、プレート2の短手方向終端まで設けられている。 FIG. 5 is a front view when the sensor assembly 10 is mounted on the housing 11 including the sub-passage 12, and FIG. 6 is a cross-sectional view taken along the line AA in FIG. The housing 11 includes a sub-passage 12 for guiding the air flowing through the main passage to the sensor chip 4, holding portions 20 and 21 of the sensor assembly 10 (to become side walls of the sub-passage), and a holding portion 14 of the lead frame 1. The sensor assembly 10 is fixed simultaneously with the formation of the housing 11 made of the second resin. At this time, the sensor chip 4 having the flow rate detection unit needs to measure the air flow rate, and thus is disposed in the sub-passage 12. FIG. 7 is a front view of the plate 2, and a CC sectional view and a DD sectional view on FIG. As shown in FIG. 7, the plate 2 has a thinned portion 30 outside the mounting area 29 of the sensor chip 4 and on the back surface side (lead frame side). The thinned portion 30 in the first embodiment is provided up to the end of the plate 2 in the short direction.
 次に、第1実施例による作用効果について説明する。図4に示すセンサアセンブリ10の製造工程において、ダイアフラム部27の部分露出構造形成のため、センサチップ4を上金型16で押す。これにより、プレート2表面はセンサチップ4から押し荷重を受け、プレート2裏面は、リードフレーム1から上記押し荷重に伴う反力を受ける。プレート2に減肉部30が形成されない場合、図8に示すように、プレート2とセンサチップ4との接触領域に比べプレート2とリードフレーム1との接触領域が大きく、リードフレーム1から受ける反力が分散するため、プレート2に曲げ変形が生じる。プレート2に曲げ変形が生じると、センサチップ4の変形を助長し、ダイアフラム部27に応力が発生するため、計測精度が低下するおそれがある。本実施例では、プレート2のセンサチップ4の搭載領域29の外側に減肉部30を設けることで、プレート2とセンサチップ4との接触領域とプレート2とリードフレームとの接触領域の差をセンサチップ搭載領域29近傍で小さくすることができ、プレートの曲げ変形を抑えることが可能となる。 Next, the function and effect of the first embodiment will be described. In the manufacturing process of the sensor assembly 10 shown in FIG. 4, the sensor chip 4 is pushed by the upper mold 16 in order to form a partially exposed structure of the diaphragm portion 27. As a result, the surface of the plate 2 receives a pressing load from the sensor chip 4, and the back surface of the plate 2 receives a reaction force accompanying the pressing load from the lead frame 1. When the thinned portion 30 is not formed on the plate 2, the contact area between the plate 2 and the lead frame 1 is larger than the contact area between the plate 2 and the sensor chip 4 as shown in FIG. Since the force is distributed, bending deformation occurs in the plate 2. When bending deformation occurs in the plate 2, the deformation of the sensor chip 4 is promoted, and stress is generated in the diaphragm portion 27, which may reduce the measurement accuracy. In this embodiment, by providing the thinned portion 30 outside the mounting area 29 of the sensor chip 4 on the plate 2, the difference between the contact area between the plate 2 and the sensor chip 4 and the contact area between the plate 2 and the lead frame is reduced. It can be reduced in the vicinity of the sensor chip mounting area 29, and the bending deformation of the plate can be suppressed.
 図7に特に好ましい減肉部20の構成を示す。減肉部30は、減肉部30のセンサ搭載領域側の側面と、センサチップ4の側面とがほぼ面一となるように、プレート2の裏面側(リードフレーム側)に設けられる。このように減肉部30を形成することにより、図4(b)の断面図に示すようにプレート2の表裏面の接触領域がほぼ同等となり、リードフレーム1から受ける反力がセンサチップ搭載領域29近傍に集中する。そのため、図8に示すようなプレート2の曲げ変形をさらに抑制することができ、流量測定精度をより高精度に維持できる。 FIG. 7 shows a particularly preferable configuration of the thinned portion 20. The thinned portion 30 is provided on the back side (lead frame side) of the plate 2 so that the side surface on the sensor mounting region side of the thinned portion 30 and the side surface of the sensor chip 4 are substantially flush with each other. By forming the thinned portion 30 in this way, as shown in the cross-sectional view of FIG. 4B, the contact areas on the front and back surfaces of the plate 2 are substantially equal, and the reaction force received from the lead frame 1 is the sensor chip mounting area. Concentrate in the vicinity of 29. Therefore, the bending deformation of the plate 2 as shown in FIG. 8 can be further suppressed, and the flow rate measurement accuracy can be maintained with higher accuracy.
 また、図9に示すように、プレート2に形成する空気通路13を1本とした構成や、図10に示すように、出口開口17をセンサチップ4の搭載領域29直下に形成した構成としても、同等の作用効果を奏することは言うまでもない。 Further, as shown in FIG. 9, the air passage 13 formed in the plate 2 may be configured as one, or the outlet opening 17 may be formed directly below the mounting area 29 of the sensor chip 4 as shown in FIG. Needless to say, the same effects can be obtained.
 次に、本発明第2実施例について図11~図14を用いて説明する。第1実施例と同様の構成については説明を省略する。 Next, a second embodiment of the present invention will be described with reference to FIGS. The description of the same configuration as in the first embodiment is omitted.
 第1実施例と異なる構成は、図11~12に示すように、プレート2に形成する減肉部30を、プレートの短手方向において、センサチップ4の搭載領域29の外側且つ、プレート2の側面より内側に配置している点である。言い換えると、減肉部30は、プレート2の短手方向終端まで設けられていない。プレート2は、例えばウエハー状のガラスや樹脂を小片化することで作製するが、切断面であるプレート2の側面が薄いと、小片化時にプレート2が欠けやすく、歩留まりが低下するおそれがある。本実施例では、プレート2の側面より内側に減肉部30を設けるため、プレート2側面の薄肉化を抑制でき、小片化時の歩留まり低下を防止することができる。本構成でも先の実施例と同等の作用効果を奏することは言うまでもない。 11 to 12, the thinned portion 30 formed on the plate 2 is arranged outside the mounting region 29 of the sensor chip 4 in the short direction of the plate and as shown in FIGS. It is the point arrange | positioned inside from the side. In other words, the thinned portion 30 is not provided up to the end of the plate 2 in the short direction. The plate 2 is produced, for example, by fragmenting wafer-like glass or resin. However, if the side surface of the plate 2 that is a cut surface is thin, the plate 2 is likely to be chipped when fragmented, and the yield may be reduced. In the present embodiment, since the thinned portion 30 is provided on the inner side of the side surface of the plate 2, it is possible to suppress the thinning of the side surface of the plate 2 and to prevent the yield from being reduced in size. Needless to say, this configuration also achieves the same effects as the previous embodiments.
 さらなる変形例として、図13~図14に示すように、プレート2に設けられる減肉部30を空気通路13と連結する構造とする。減肉部30が密封されることを防止することにより、熱変化による空気の体積変動に起因するセンサチップの変形を抑えることが可能となる。 As a further modification, as shown in FIG. 13 to FIG. 14, the thinned portion 30 provided on the plate 2 is connected to the air passage 13. By preventing the thinned portion 30 from being sealed, it is possible to suppress deformation of the sensor chip due to air volume fluctuation due to heat change.
 次に、本発明の第3実施例について図15~図16を用いて説明する。第1実施例と第2実施例と同様の構成については説明を省略する。 Next, a third embodiment of the present invention will be described with reference to FIGS. The description of the same configuration as in the first and second embodiments is omitted.
 第1実施例および第2実施例と異なる構成は、図15に示すようにセンサチップ4の搭載領域29の側面とプレート2の側面が面一になるようにプレート2を形成している点である。 The configuration different from the first and second embodiments is that the plate 2 is formed so that the side surface of the mounting area 29 of the sensor chip 4 and the side surface of the plate 2 are flush with each other as shown in FIG. is there.
 また、図16に示す第3実施例の変形例では、センサチップ4の搭載領域29側面とプレート2側面が搭載領域29側面近傍においてのみ、面一になるようにプレート2を形成する構成としている。言い換えると、プレート2は、センサ搭載領域29の短手方向の幅がセンサチップの短手方向(流量検出方向ともいう)の幅と等しい構成を有する。本構成でも先の実施例と同等の作用効果を奏することは言うまでもない。 In the modification of the third embodiment shown in FIG. 16, the plate 2 is formed so that the side surface of the mounting area 29 of the sensor chip 4 and the side surface of the plate 2 are flush with each other only in the vicinity of the side surface of the mounting area 29. . In other words, the plate 2 has a configuration in which the width in the short direction of the sensor mounting region 29 is equal to the width in the short direction (also referred to as a flow rate detection direction) of the sensor chip. Needless to say, this configuration also achieves the same effects as the previous embodiments.
 次に、本発明の第4実施例について図17を用いて説明する。第1実施例乃至第3実施例と同様の構成については説明を省略する。 Next, a fourth embodiment of the present invention will be described with reference to FIG. The description of the same configuration as in the first to third embodiments is omitted.
 図8に示すようなプレート2の曲げ変形は、プレート2の板厚の3乗に比例して減少する。そのため、空気通路13の深さdが大きくなると空気通路直上のプレート2の厚さは小さくなり、曲げ変形が大きくなる。したがって、図17に示すように、プレート2の厚さTを大きく、空気通路13の深さdを小さくすることで曲げ変形を抑制することができる。上記曲げ変形を抑制するには、d<T/2となることがのぞましい。一方、空気通路13の深さdがプレート2とリードフレーム1を接着する接着シート5の厚さtより小さいと、センサアセンブリ10作製時に、空気通路13が接着シート5によって閉塞するおそれがあるため、空気通路13の深さdは、接着シート5の厚さtよりも大きいこと(t<d)が好ましい。以上より、プレート2の厚さT、空気通路の深さd、接着シートの厚さtは、t<d<T/2となることが好ましい。 The bending deformation of the plate 2 as shown in FIG. 8 decreases in proportion to the cube of the plate thickness. Therefore, when the depth d of the air passage 13 is increased, the thickness of the plate 2 immediately above the air passage is reduced and bending deformation is increased. Therefore, as shown in FIG. 17, bending deformation can be suppressed by increasing the thickness T of the plate 2 and decreasing the depth d of the air passage 13. In order to suppress the bending deformation, it is desirable that d <T / 2. On the other hand, if the depth d of the air passage 13 is smaller than the thickness t of the adhesive sheet 5 that bonds the plate 2 and the lead frame 1, the air passage 13 may be blocked by the adhesive sheet 5 when the sensor assembly 10 is manufactured. The depth d of the air passage 13 is preferably larger than the thickness t of the adhesive sheet 5 (t <d). From the above, it is preferable that the thickness T of the plate 2, the depth d of the air passage, and the thickness t of the adhesive sheet satisfy t <d <T / 2.
 次に、本発明の第5実施例について図18~19を用いて説明する。第1実施例乃至第4実施例と同様の構成については説明を省略する。 Next, a fifth embodiment of the present invention will be described with reference to FIGS. The description of the same configuration as in the first to fourth embodiments is omitted.
 図18はプレート2の断面図及び空気通路13の拡大図である。例えば、プレート2にガラスを用いた場合、プレート2の空気通路13及び減肉部30は、サンドブラスト加工により形成するが、このとき、図18の拡大図に示すような微小なクラックや傷が空気通路13及び減肉部30の表面上に生じる。一方、図8に示すようなプレート2の曲げ変化が生じると空気通路13及び減肉部30は応力集中部となるため、この応力集中を低減することが好ましい。本実施例では、図19の拡大図に示すようにフッ酸処理等の表面処理によって、空気通路13及び減肉部30形成時に生じる微小なクラックや傷を除去し、応力集中を低減することができる。 FIG. 18 is a sectional view of the plate 2 and an enlarged view of the air passage 13. For example, when glass is used for the plate 2, the air passage 13 and the thinned portion 30 of the plate 2 are formed by sandblasting. At this time, minute cracks and scratches as shown in the enlarged view of FIG. It occurs on the surface of the passage 13 and the thinned portion 30. On the other hand, when the bending change of the plate 2 as shown in FIG. 8 occurs, the air passage 13 and the thinned portion 30 become stress concentration portions, and it is preferable to reduce this stress concentration. In this embodiment, as shown in the enlarged view of FIG. 19, the surface treatment such as hydrofluoric acid treatment can remove minute cracks and scratches generated when the air passage 13 and the thinned portion 30 are formed, thereby reducing the stress concentration. it can.
 次に、本発明の第6実施例について図20を用いて説明する。 Next, a sixth embodiment of the present invention will be described with reference to FIG.
 第一実施例乃至第五実施例では、プレート2に空気通路13を設けてダイアフラム部27の裏面を密封しない構成について説明した。しかしながら、本発明は空気通路13を設けずに、ダイアフラム部27の裏面を密封する構造においても有効である。ダイアフラム部27の裏面側が密閉している場合、流量測定時の温度変化による空気の膨張収縮でダイアフラム部27の表裏面に圧力差が生じ、この圧力差によりダイアフラム部27に反り変形が生じることで流量測定誤差となり得る。そして、流量測定誤差の要因としては、更にプレートの変形に起因するダイアフラム部の反りが存在するところ、本発明の第1乃至第5実施例に記載の発明によると、プレートの変形を抑えることが可能となる。そのため、ダイアフラム部27を密封した場合であっても、流量測定時の温度変化を計測し、ダイアフラム部27に発生する反り変形に起因する測定誤差分を補正することで、測定精度の低下を抑制することが可能である。 In the first to fifth embodiments, the configuration in which the air passage 13 is provided in the plate 2 and the back surface of the diaphragm portion 27 is not sealed has been described. However, the present invention is also effective in a structure in which the back surface of the diaphragm portion 27 is sealed without providing the air passage 13. When the back surface side of the diaphragm portion 27 is sealed, a pressure difference is generated on the front and back surfaces of the diaphragm portion 27 due to expansion and contraction of air due to a temperature change during flow rate measurement, and the diaphragm portion 27 is warped and deformed due to this pressure difference. It can be a flow measurement error. Further, as a factor of the flow measurement error, there is a warp of the diaphragm portion due to the deformation of the plate. According to the inventions described in the first to fifth embodiments of the present invention, the deformation of the plate can be suppressed. It becomes possible. Therefore, even when the diaphragm portion 27 is sealed, the temperature change at the time of flow rate measurement is measured, and the measurement error due to the warp deformation generated in the diaphragm portion 27 is corrected, thereby suppressing a decrease in measurement accuracy. Is possible.
 次に、本発明の第7実施例について図21、図22を用いて説明する。 Next, a seventh embodiment of the present invention will be described with reference to FIGS.
 先の実施例と異なる構成は、プレート2に設ける空気通路13を、センサチップ4がプレート2を押付ける領域31より内側に設け、さらに空気通路13をプレート2の長手方向のみに形成し、出口開口17と連通している点である。 The structure different from the previous embodiment is that the air passage 13 provided in the plate 2 is provided inside the region 31 where the sensor chip 4 presses the plate 2, and the air passage 13 is formed only in the longitudinal direction of the plate 2, and the outlet This is a point communicating with the opening 17.
 本実施例の作用効果について説明する。センサアセンブリ10形成時には、下金型15及び上金型16のクランプにより、プレート2はセンサチップ4の押付け領域31から圧縮荷重を受け、空気通路13に応力が集中する。図22は、図21のD-D断面について、空気通路13の中心からの距離W1とセンサチップ4の押付け領域31の中心からの距離W2の比W1/W2と、空気通路13に発生する応力(W1/W2=1.1のときの発生応力の比)の関係である。図22より、センサチップ押付け領域31直下に空気通路13を設ける(W1/W2=1.0)と、空気通路13が応力集中しやすくなる。本実施例では、プレート2に設ける空気通路13を、センサチップ4がプレート2を押付ける領域31より内側に設けることとした。これにより、センサチップ押付け領域31直下の高応力領域を避けるように空気通路13を設けることができ、空気通路13に発生する応力を低減することができる。さらに、空気通路13をプレート2の長手方向のみに形成し、出口開口17と連通することで空気通路13の形成によるプレート2の減肉領域を低減することができる。減肉領域が小さいほどプレート2の曲げ剛性は向上するため、センサアセンブリ10形成時のプレート2の曲げ変形を抑制でき、より高信頼なセンサアセンブリ10を提供できる。 The function and effect of this embodiment will be described. When the sensor assembly 10 is formed, the plate 2 receives a compressive load from the pressing region 31 of the sensor chip 4 due to the clamp of the lower mold 15 and the upper mold 16, and stress concentrates in the air passage 13. FIG. 22 shows the ratio W1 / W2 between the distance W1 from the center of the air passage 13 and the distance W2 from the center of the pressing region 31 of the sensor chip 4 and the stress (W1 generated in the air passage 13 for the DD cross section of FIG. /W2=1.1 ratio of generated stress). As shown in FIG. 22, when the air passage 13 is provided immediately below the sensor chip pressing region 31 (W1 / W2 = 1.0), the air passage 13 tends to concentrate stress. In this embodiment, the air passage 13 provided in the plate 2 is provided inside the region 31 where the sensor chip 4 presses the plate 2. Thereby, the air passage 13 can be provided so as to avoid the high stress region directly below the sensor chip pressing region 31, and the stress generated in the air passage 13 can be reduced. Furthermore, by forming the air passage 13 only in the longitudinal direction of the plate 2 and communicating with the outlet opening 17, it is possible to reduce the thickness reduction region of the plate 2 due to the formation of the air passage 13. Since the bending rigidity of the plate 2 is improved as the thickness reduction region is smaller, the bending deformation of the plate 2 when the sensor assembly 10 is formed can be suppressed, and a more reliable sensor assembly 10 can be provided.
 本実施例による作用効果は、先の実施例と組み合わせることでも同等もしくはそれ以上の効果を奏することは言うまでもない。

Needless to say, the effects of this embodiment can be obtained by combining or combining with the previous embodiment.

 1…リードフレーム
 2…プレート
 3…LSI
 4…センサチップ
 5…接着テープ
 6…接着テープ
 7…接着テープ
 8…金線
 9…金線
 10…センサアセンブリ
 11…筐体
 12…副通路
 13…空気通路
 14…保持部    
 15…下金型
 16…上金型
 17…出口開口
 20…保持部
 21…保持部    
 24…第1樹脂
 26…空気
 27…ダイアフラム部
 28…空洞部
 29…センサチップ搭載領域
 30…減肉部
 31…センサチップ押付け領域
1 ... Lead frame 2 ... Plate 3 ... LSI
DESCRIPTION OF SYMBOLS 4 ... Sensor chip 5 ... Adhesive tape 6 ... Adhesive tape 7 ... Adhesive tape 8 ... Gold wire 9 ... Gold wire 10 ... Sensor assembly 11 ... Housing 12 ... Sub-passage 13 ... Air passage 14 ... Holding part
15 ... Lower mold 16 ... Upper mold 17 ... Outlet opening 20 ... Holding part 21 ... Holding part
24 ... 1st resin 26 ... Air 27 ... Diaphragm part 28 ... Hollow part 29 ... Sensor chip mounting area 30 ... Thinning part 31 ... Sensor chip pressing area

Claims (9)

  1.  リードフレームと、前記リードフレーム上に設けられるプレートと、前記プレート上に設けられるセンサチップと、前記センサチップのダイアフラム部を露出するよう設けられる樹脂と、を有するセンサアセンブリと、を備え、
     前記ダイアフラム部が副通路内に位置するように設けられる熱式空気流量計において、
     前記プレートは、前記センサチップ搭載領域に対して前記プレートの短手方向外側に、減肉部を有することを特徴とする熱式空気流量計。
    A sensor assembly having a lead frame, a plate provided on the lead frame, a sensor chip provided on the plate, and a resin provided to expose a diaphragm portion of the sensor chip;
    In the thermal air flow meter provided so that the diaphragm portion is located in the sub passage,
    The thermal air flowmeter according to claim 1, wherein the plate has a thinned portion on the outer side in the short direction of the plate with respect to the sensor chip mounting region.
  2.  前記減肉部は、プレートに設けられた溝であることを特徴とする請求項1に記載の熱式空気流量計。 The thermal air flow meter according to claim 1, wherein the thinned portion is a groove provided in a plate.
  3.  前記減肉部は、前記プレートの短手方向終端まで設けられていることを特徴とする請求項1に記載の熱式空気流量計。 2. The thermal air flow meter according to claim 1, wherein the thinned portion is provided up to an end in a short direction of the plate.
  4.  前記プレートは、前記ダイアフラム部裏面を前記センサアセンブリ外部と連通するための空気通路を有することを特徴とする請求項1乃至3の何れかに記載の熱式空気流量計。 The thermal air flow meter according to any one of claims 1 to 3, wherein the plate has an air passage for communicating the rear surface of the diaphragm portion with the outside of the sensor assembly.
  5.  前記減肉部と前記空気通路とを連通することを特徴とする請求項4に記載の熱式空気流量計。 The thermal air flowmeter according to claim 4, wherein the thinned portion and the air passage are communicated with each other.
  6.  前記プレートと前記リードフレームとを接着する接着シートの厚さtと、前記プレートの厚さTと、前記空気通路深さdとの関係が、t<d<T/2なる関係となることを特徴とする請求項4に記載の熱式空気流量計。 The relationship between the thickness t of the adhesive sheet for bonding the plate and the lead frame, the thickness T of the plate, and the air passage depth d is such that t <d <T / 2. The thermal air flowmeter according to claim 4, wherein
  7.  前記空気通路及び前記減肉部はフッ酸処理による表面処理が施されていることを特徴とする請求項4に記載の熱式空気流量計。 The thermal air flow meter according to claim 4, wherein the air passage and the thinned portion are subjected to a surface treatment by a hydrofluoric acid treatment.
  8.  リードフレームと、前記リードフレーム上に設けられるプレートと、前記プレート上に設けられるセンサチップと、前記センサチップのダイアフラム部を露出するよう設けられる樹脂と、を有するセンサアセンブリと、を備え、
     前記ダイアフラム部が副通路内に位置するように設けられる熱式空気流量計において、
     前記プレートの側面は、少なくとも前記センサチップ搭載領域において、前記センサチップの側面とほぼ面一になることを特徴とする熱式空気流量計。
    A sensor assembly having a lead frame, a plate provided on the lead frame, a sensor chip provided on the plate, and a resin provided to expose a diaphragm portion of the sensor chip;
    In the thermal air flow meter provided so that the diaphragm portion is located in the sub passage,
    The thermal air flow meter according to claim 1, wherein a side surface of the plate is substantially flush with a side surface of the sensor chip at least in the sensor chip mounting region.
  9.  請求項1または8に記載の熱式空気流量計において、
     前記プレートは、前記ダイアフラム部裏面を前記センサアセンブリ外部と連通するための空気通路を有しており、
     前記空気通路は、前記プレートの短手方向における前記センサチップに押しつけられる箇所よりも内側に形成されており、
     かつ、前記空気通路は、長手方向に延存する形状のみであることを特徴とする熱式空気流量計。
    The thermal air flow meter according to claim 1 or 8,
    The plate has an air passage for communicating the rear surface of the diaphragm portion with the outside of the sensor assembly;
    The air passage is formed on the inner side of the portion pressed against the sensor chip in the short direction of the plate,
    And the said air passage is only a shape extended in a longitudinal direction, The thermal type air flowmeter characterized by the above-mentioned.
PCT/JP2015/066423 2014-06-30 2015-06-08 Thermal air flowmeter WO2016002439A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-133497 2014-06-30
JP2014133497A JP6336833B2 (en) 2014-06-30 2014-06-30 Thermal air flow meter

Publications (1)

Publication Number Publication Date
WO2016002439A1 true WO2016002439A1 (en) 2016-01-07

Family

ID=55018988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066423 WO2016002439A1 (en) 2014-06-30 2015-06-08 Thermal air flowmeter

Country Status (2)

Country Link
JP (1) JP6336833B2 (en)
WO (1) WO2016002439A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020079711A (en) * 2018-11-12 2020-05-28 日立オートモティブシステムズ株式会社 Resin package and flow rate measuring device including the same
JP2024014020A (en) * 2022-07-21 2024-02-01 サーパス工業株式会社 Thermal flow meter, and method for manufacturing thermal flow meter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009036639A (en) * 2007-08-01 2009-02-19 Denso Corp Sensor device
WO2013084259A1 (en) * 2011-12-07 2013-06-13 日立オートモティブシステムズ株式会社 Airflow measuring apparatus
JP2014010023A (en) * 2012-06-29 2014-01-20 Hitachi Automotive Systems Ltd Thermal air flow rate sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009036639A (en) * 2007-08-01 2009-02-19 Denso Corp Sensor device
WO2013084259A1 (en) * 2011-12-07 2013-06-13 日立オートモティブシステムズ株式会社 Airflow measuring apparatus
JP2014010023A (en) * 2012-06-29 2014-01-20 Hitachi Automotive Systems Ltd Thermal air flow rate sensor

Also Published As

Publication number Publication date
JP6336833B2 (en) 2018-06-06
JP2016011887A (en) 2016-01-21

Similar Documents

Publication Publication Date Title
US9587970B2 (en) Airflow measuring apparatus including a ventilation hole between a connector part and a circuit chamber
US9989390B2 (en) Thermal airflow measuring device
JP5012330B2 (en) Manufacturing method of sensor device and sensor device
JP5675716B2 (en) Thermal air flow sensor
JP4952428B2 (en) Sensor device
US9945706B2 (en) Thermal-type air flow meter
JP2008058131A (en) Thermal type gas flowmeter
WO2014002738A1 (en) Thermal airflow sensor
JP2017020982A (en) Thermal air flowmeter
WO2016002439A1 (en) Thermal air flowmeter
JP6101619B2 (en) Thermal air flow meter
WO2013187247A1 (en) Thermal flow meter
JP2009031067A (en) Sensor device
JP5744299B2 (en) Thermal air flow sensor
WO2016039019A1 (en) Flow rate sensor
JP2016133367A (en) Thermal type air flowmeter
JP5533590B2 (en) Thermal flow sensor
JP5768179B2 (en) Thermal air flow sensor
WO2021181827A1 (en) Airflow amount measuring device
JP5949573B2 (en) Manufacturing method of physical quantity sensor
JP6602744B2 (en) Sensor device and manufacturing method thereof
WO2022209268A1 (en) Physical quantity measurement device
JP5976167B2 (en) Thermal flow meter
JP2010096613A (en) Pressure sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15814132

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15814132

Country of ref document: EP

Kind code of ref document: A1