WO2016000161A1 - 一种pm2.5浓度检测装置、检测方法及空气质量检测仪 - Google Patents

一种pm2.5浓度检测装置、检测方法及空气质量检测仪 Download PDF

Info

Publication number
WO2016000161A1
WO2016000161A1 PCT/CN2014/081239 CN2014081239W WO2016000161A1 WO 2016000161 A1 WO2016000161 A1 WO 2016000161A1 CN 2014081239 W CN2014081239 W CN 2014081239W WO 2016000161 A1 WO2016000161 A1 WO 2016000161A1
Authority
WO
WIPO (PCT)
Prior art keywords
concentration
pulse signal
resistor
air
capacitor
Prior art date
Application number
PCT/CN2014/081239
Other languages
English (en)
French (fr)
Inventor
袁剑敏
Original Assignee
深圳华盛昌机械实业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳华盛昌机械实业有限公司 filed Critical 深圳华盛昌机械实业有限公司
Priority to PCT/CN2014/081239 priority Critical patent/WO2016000161A1/zh
Priority to CN201480000500.3A priority patent/CN104067106B/zh
Publication of WO2016000161A1 publication Critical patent/WO2016000161A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions

Definitions

  • the invention belongs to the technical field of air quality detection, and in particular relates to a PM2.5 concentration detecting device, a detecting method and an air quality detecting instrument.
  • the prior art air quality detector detects the PM2.5 concentration of air, it is necessary to use a large volume PM2.5 sampling device to detect the PM2.5 concentration, but the air quality detector is used in different locations. Air quality testing, when using a large volume PM2.5 sampling device, the air quality detector is not convenient to carry. When using a small volume PM2.5 sampling device, the actual sampled PM2.5 signal will follow Weakened, unable to detect accurate PM2.5 concentration, thus reducing the air quality detector Detection accuracy of PM2.5 concentration.
  • An object of the present invention is to provide a PM2.5 concentration detecting method, which aims to solve the problem that the air quality detector is inconvenient to carry when using a sampling device of a large volume of PM2.5 in the prior art, when a small volume is used.
  • the PM2.5 sampling device is used, the actual sampled PM2.5 signal will be weakened, and the accurate PM2.5 concentration cannot be detected, which reduces the detection accuracy of the PM2.5 concentration in the air quality detector.
  • a PM2.5 concentration detecting device includes:
  • a light intensity conversion module configured to collect light intensity scattered by the air particles when the laser illuminates the air particles that are blown by the air supply assembly, and convert the light intensity into a particle pulse signal
  • a signal amplification module connected to the output end of the light intensity conversion module for amplifying the particle pulse signal to generate an amplified particle pulse signal
  • a PM2.5 comparison module connected at an input end to the output end of the signal amplifying module, configured to compare the amplitude of the amplified particle pulse signal with a preset amplitude of the detected PM2.5 voltage pulse signal, when comparing When the amplitude of the amplified particle pulse signal is greater than the amplitude of the preset PM2.5 voltage pulse signal, the pulse signal is output;
  • a concentration processing module connected to the output end of the PM2.5 comparison module for receiving the output pulse signal, and counting the number of the pulse signals, the number of the pulse signals being PM2.5
  • the number of PM2.5 in the environment is detected based on the number of PM2.5 and the wind speed of the air blown by the air supply unit.
  • Another object of the embodiments of the present invention is to provide a detection method based on a PM2.5 concentration detecting apparatus, including:
  • the light intensity conversion module collects the light intensity scattered by the air particles when the laser illuminates the air particles that are blown by the air supply assembly, and converts the light intensity into a particle pulse signal;
  • the signal amplification module amplifies the particle pulse signal to generate an amplified particle pulse signal
  • the PM2.5 comparison module compares the amplitude of the amplified particle pulse signal with a preset amplitude of the detected PM2.5 voltage pulse signal, and when the amplitude of the amplified particle pulse signal is compared to be greater than a preset PM2.5 voltage pulse When the amplitude of the signal is output, the pulse signal is output;
  • the PM2.5 concentration processing module receives the output pulse signal, and counts the number of the pulse signals, and the number of the pulse signals is PM2.5, according to the PM2.5 number and the air supply. The wind speed of the air supplied by the component is concentrated, and the PM2.5 concentration of the environment is detected.
  • Another object of the embodiments of the present invention is to provide an air quality detector including the PM2.5 concentration detecting device and a air supply assembly, wherein the air supply assembly is configured to send the PM2.5 concentration detecting device wind.
  • the air quality detector passes the signal amplification module to amplify the particle pulse signal to generate an amplified particle pulse signal, and obtains PM2.5 numbers through the PM2.5 comparison module, and subsequently passes through
  • the PM2.5 concentration processing module detects the PM2.5 concentration in the environment and solves the problem when using a small volume.
  • the sampling device of PM2.5 is used, the signal of PM2.5 actually sampled will be weakened, and the problem of accurate PM2.5 concentration cannot be detected, thereby improving the detection accuracy of PM2.5 concentration in air quality detector. .
  • FIG. 1 is a structural block diagram of an air quality detector provided by an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a blower assembly 10 according to an embodiment of the present invention
  • FIG. 3 is a structural block diagram of a PM2.5 concentration detecting apparatus 20 according to an embodiment of the present invention.
  • FIG. 4 is a structural diagram of a light intensity conversion module 201 according to an embodiment of the present invention.
  • FIG. 5 is a structural diagram of a signal amplifying module 202 according to an embodiment of the present invention.
  • FIG. 6 is a structural diagram of a PM2.5 comparison module 203 according to an embodiment of the present invention.
  • FIG. 7 is a circuit diagram of a PM2.5 concentration detecting apparatus 20 according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of an implementation of a detection method based on a PM2.5 concentration detecting apparatus according to an embodiment of the present invention.
  • FIG. 1 is a structural block diagram of an air quality detector according to an embodiment of the present invention.
  • the air quality detector includes a PM2.5 concentration detecting device 20 and a blower assembly 10 for collectively supplying air to the PM2.5 concentration detecting device 20.
  • FIG. 2 is a cross-sectional view of the air supply assembly 10 according to an embodiment of the present invention.
  • the mounting seat 15 is provided with a mounting hole 152 for mounting the PM2.5 concentration detecting device 20 perpendicularly to the air outlet.
  • the mounting hole 152 is continuous with the air outlet, and the PM2.5 concentration detecting device 20 is mounted on the mounting hole 152 and the air outlet. The location. With such an arrangement, air is sent to the air outlet, and since the mounting hole 152 is continuous with the air outlet, the flowing air flows into the mounting hole 152, so that the PM2.5 concentration in the mounting hole 152 is present.
  • the detecting device 20 can detect PM2.5 in the air, in addition to the mounting hole
  • the wind speed in 152 is relatively slow, so the PM2.5 concentration detecting device 20 can sufficiently detect the PM2.5 in the wind, and enhance the accuracy of the PM2.5 concentration detection.
  • FIG. 3 is a structural block diagram of a PM2.5 concentration detecting apparatus 20 according to an embodiment of the present invention, which can operate on a PM2.5 sensor. For the convenience of explanation, only the parts related to the present embodiment are shown.
  • the PM2.5 concentration detecting device 20 includes:
  • the light intensity conversion module 201 is configured to collect the light intensity scattered by the air particles when the laser illuminates the air particles that are blown by the air supply assembly, and convert the light intensity into a particle pulse signal;
  • a signal amplifying module 202 connected to the output end of the light intensity conversion module 201 for amplifying the particle pulse signal to generate an amplified particle pulse signal
  • the PM2.5 comparison module 203 which is connected to the output end of the signal amplifying module 202, is configured to compare the amplitude of the amplified particle pulse signal with the amplitude of the preset detected PM2.5 voltage pulse signal, when comparing Outputting a pulse signal when the amplitude of the amplified particle pulse signal is greater than a magnitude of a preset PM2.5 voltage pulse signal;
  • the concentration processing module 204 which is connected to the output end of the PM2.5 comparison module 203, is configured to receive the output pulse signal, and count the number of the pulse signals, and the number of the pulse signals is PM2.
  • the number of PM2.5 is determined based on the number of PM2.5 and the wind speed at which the air blowing unit 10 concentrates the air.
  • the air quality detector passes the signal amplification module 202 to amplify the particle pulse signal to generate an amplified particle pulse signal, and obtains the PM2.5 number through the PM2.5 comparison module 203, and subsequently passes through the PM2.5.
  • the concentration processing module 204 detects the PM2.5 concentration of the environment, and solves the problem that when the sampling device of the small volume PM2.5 is used, the signal of the actually sampled PM2.5 is weakened, and the accurate detection cannot be detected.
  • the problem of PM2.5 concentration improves the detection accuracy of PM2.5 concentration in the air quality detector.
  • the PM2.5 concentration processing module 204 uses a control chip U4, and the control chip U4 includes:
  • a detecting unit configured to detect a temporary PM2.5 concentration according to the number of PM2.5 and the wind speed of the air supply unit 10;
  • An extracting unit configured to extract, in the recorded PM2.5 concentration, a PM2.5 concentration that generates N times before the time sorting
  • An averaging unit for adding the temporary PM2.5 concentration to the PM2.5 concentration extracted to the first N position, and taking an average concentration, wherein the average concentration is the PM2.5 concentration of the current environment, and the N is greater than 1 The integer.
  • the PM2.5 concentration processing module 204 uses a control chip U4, and the control chip U4 includes:
  • an execution unit configured to collect, when the air-on event is detected, the light particles scattered by the air particles are collected, and the light intensity scattered by the air particles is collected, and the light intensity is converted into a particle pulse signal. step.
  • FIG. 4 is a structural diagram of a light intensity conversion module 201 according to an embodiment of the present invention, where
  • the light intensity conversion module 201 includes:
  • Phototransistor T resistor R1, capacitor C1, capacitor C2, power supply VCC1;
  • the emission of the phototransistor T is extremely the output end of the light intensity conversion module 201;
  • the first end of the R1 is connected to the power source VCC1;
  • the emission of the phototransistor T is extremely the output of the light intensity conversion module 201.
  • the phototransistor T is used for a conduction circuit that collects the intensity of light scattered by the air particles when the laser illuminates the air particles that are supplied by the air supply assembly, and converts the light intensity into a particle pulse signal.
  • FIG. 5 is a structural diagram of a signal amplifying module 202 according to an embodiment of the present invention, where the signal amplifying module 202 includes:
  • An inverting input end of the amplifier U1 is an input end of the signal amplifying module 202;
  • the second end of the capacitor C4 is connected to the first end of the resistor R3;
  • the first end of the resistor R5 is connected to the power source VCC2;
  • the resistor R6 is connected in parallel with the capacitor R6, and a common terminal is grounded.
  • the other common terminal, the second end of the resistor R5, and the non-inverting input terminal of the amplifier U1 are connected in common to the input of the amplifier U2.
  • the output of the amplifier U2 is the output of the signal amplification module 202.
  • Capacitor C4 is used for DC blocking.
  • Capacitor C3, capacitor C5 and capacitor C6 are used to filter high-frequency signals.
  • the particle pulse signal is amplified by amplifier U1 and amplifier U2 to generate amplified particle pulse signals.
  • FIG. 6 is a structural diagram of a PM2.5 comparison module 203 according to an embodiment of the present invention, where the PM2.5 comparison module 203 includes:
  • the first end of the capacitor C7 is an input end of the PM2.5 comparison module 203;
  • the second end of the capacitor C7 and one end of the resistor R7 are connected to the non-inverting input end of the comparator U3, and the other end of the resistor R7 is grounded;
  • One end of the resistor R8 and one end of the resistor R9 are connected to the inverting input end of the comparator U3, the other end of the resistor R8 is connected to the power source VCC3, and the other end of the resistor R9 is grounded;
  • the first end of the resistor R10 is connected to the output end of the comparator U3, and the second end of the resistor R10 is the output end of the PM2.5 comparison module 203.
  • the power supply VCC3 generates a detection PM2.5 voltage pulse signal through the resistors R8 and R9, and the comparator U3 compares the amplitude of the amplified particle pulse signal with the amplitude of the preset detection PM2.5 voltage pulse signal, when comparing the amplified particles When the amplitude of the pulse signal is greater than the amplitude of the preset PM2.5 voltage pulse signal, a high level pulse signal is output.
  • FIG. 7 is a circuit diagram of a PM2.5 concentration detecting apparatus 20 according to an embodiment of the present invention.
  • Embodiment 2 For the working principle, reference may be made to Embodiment 2, Embodiment 3, Embodiment 4, and Embodiment 5, and details are not described herein.
  • FIG. 8 is a flowchart of an implementation of a detection method based on a PM2.5 concentration detecting apparatus according to an embodiment of the present invention, which is described in detail as follows:
  • step S801 the light intensity conversion module 201 collects the light intensity scattered by the air particles when the laser illuminates the air particles that are blown by the air blowing assembly, and converts the light intensity into a particle pulse signal;
  • step S802 the particle pulse signal is amplified by the first signal amplifier and the second signal amplifier to generate an amplified particle pulse signal
  • step S803 the PM2.5 comparison module 203 compares the amplitude of the amplified particle pulse signal with the amplitude of the preset detected PM2.5 voltage pulse signal, and when the amplitude of the amplified particle pulse signal is compared, the amplitude is greater than the preset. When the amplitude of the PM2.5 voltage pulse signal is output, the pulse signal is output;
  • step S804 the PM2.5 concentration processing module 204 receives the output pulse signal, and counts the number of the pulse signals, the number of the pulse signals is PM2.5, according to the PM2.5 The number and the wind speed at which the air blowing unit 10 concentrates the air are detected, and the PM2.5 concentration of the environment is detected.
  • the air quality detector passes the signal amplification module 202 to amplify the particle pulse signal to generate an amplified particle pulse signal, and obtains the PM2.5 number through the PM2.5 comparison module 203, and subsequently passes through the PM2.5.
  • the concentration processing module 204 detects the PM2.5 concentration of the environment, and solves the problem that when the sampling device of the small volume PM2.5 is used, the signal of the actually sampled PM2.5 is weakened, and the accurate detection cannot be detected.
  • the problem of PM2.5 concentration improves the detection accuracy of PM2.5 concentration in the air quality detector.
  • This embodiment mainly describes the implementation process of detecting the PM2.5 concentration of the environment, which is detailed as follows:
  • the PM2.5 concentration processing module 204 detects the temporary PM2.5 concentration according to the number of PM2.5 and the wind speed of the air blown by the air supply unit 10;
  • the temporary PM2.5 concentration is added to the PM2.5 concentration extracted to the first N position, and the average concentration is taken as the PM2.5 concentration of the environment, and the N is an integer greater than 1.
  • the generated PM2.5 concentration, the PM2.5 concentration generation time, and the PM2.5 concentration were recorded.
  • the PM2.5 concentration of the records is sorted according to the generation time of the records by the sorting function.
  • the temporary temperature value is added to the PM2.5 concentration before the N-order, and the average temperature is taken.
  • the average temperature is the current PM2.5 concentration, and N is an integer greater than 1.
  • the number N of the rankings may be set by the user, or may be determined by the system default, and is not limited herein. Since the amount of the PM2.5 concentration is large, the value of N is set by the empirical value, and preferably, the value of N is 20. Therefore, the PM2.5 concentration can be generated according to the average temperature of the first 20 PM2.5 concentration and the temporary temperature value, thereby avoiding the instability of the temperature data by the air quality detector every time, so that the temperature data is more stable. The obtained PM2.5 concentration is more accurate.
  • This embodiment mainly describes a preferred implementation process for implementing the present invention in practical applications, which is described in detail as follows:
  • the step of collecting the light intensity scattered by the air particles and converting the light intensity into a particle pulse signal is performed when the air particles of the air blown by the laser-illuminating air supply unit are concentrated.
  • the boot event is used as a trigger condition.
  • the booting event is detected by hardware or software, and when the booting event is detected, when the air particles that are concentrated by the laser illuminating air supply component are collected, the light intensity scattered by the air particles is collected, and the light intensity is converted into a particle pulse.
  • the step of the signal thereby ensuring that after the air quality detector is turned on, the step of collecting the intensity of the light scattered by the air particles when the laser illuminates the air particles that are supplied by the air supply assembly, and converting the light intensity into the particle pulse signal .
  • the present invention can be implemented by means of software plus necessary general hardware.
  • the technical solution of the present invention which is essential or contributes to the prior art, can be embodied in the form of a software product stored in a readable storage medium, such as a floppy disk of a computer.
  • a hard disk or optical disk, etc. includes instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform the methods described in various embodiments of the present invention.

Abstract

一种PM2.5浓度检测装置、检测方法及空气质量检测仪,该PM2.5浓度检测装置(20)包括:光强度转换模块(201),用于当激光照射送风组件集中送风的空气颗粒时,收集该空气颗粒散射的光强度,将该光强度转换为颗粒脉冲信号;信号放大模块(202),用于将颗粒脉冲信号进行放大,生成放大颗粒脉冲信号;PM2.5比较模块(203),用于将该放大颗粒脉冲信号的幅度与预设的检测PM2.5电压脉冲信号的幅度相比较,当比较到该放大颗粒脉冲信号的幅度大于检测PM2.5电压脉冲信号的幅度时,输出脉冲信号;PM2.5浓度处理模块(204),用于根据PM2.5个数以及所述送风组件(10)集中送风的风速,检测出所处环境的PM2.5浓度,提高了空气质量检测仪中PM2.5浓度的检测精度。

Description

一种PM2.5浓度检测装置、检测方法及空气质量检测仪 技术领域
本发明属于空气质量检测技术领域,尤其涉及一种PM2.5浓度检测装置、检测方法及空气质量检测仪。
背景技术
随着空气质量检测仪智能化时代的到来,空气质量检测仪的配置越来越强大,功能越来越齐全,越来越多的用户通过空气质量检测仪进行空气质量检测,在不同的地点空气质量检测,并显示检测到的空气中的PM2.5浓度,以便于用户了解所处环境的空气的质量。
然而,由于现有技术中空气质量检测仪检测空气的PM2.5浓度,需要采用大体积的PM2.5的取样装置,才能检测到PM2.5浓度,然而空气质量检测仪是用在不同的地点空气质量检测,当采用大体积的PM2.5的取样装置时,空气质量检测仪不方便携带,当采用小体积的PM2.5的取样装置时,实际采样到的PM2.5的信号就会随之减弱,无法检测到准确的PM2.5浓度,从而降低了空气质量检测仪中 PM2.5浓度的检测精度。
技术问题
本发明实施例的目的在于提供一种PM2.5浓度检测方法,旨在解决现有技术中当采用大体积的PM2.5的取样装置时,空气质量检测仪不方便携带,当采用小体积的PM2.5的取样装置时,实际采样到的PM2.5的信号就会随之减弱,无法检测到准确的PM2.5浓度,降低了空气质量检测仪中PM2.5浓度的检测精度。
技术解决方案
本发明实施例是这样实现的,一种PM2.5浓度检测装置,包括:
光强度转换模块,用于当激光照射送风组件集中送风的空气颗粒时,收集所述空气颗粒散射的光强度,将所述光强度转换为颗粒脉冲信号;
输入端与所述光强度转换模块的输出端连接的信号放大模块,用于将所述颗粒脉冲信号进行放大,生成放大颗粒脉冲信号;
输入端与所述信号放大模块的输出端连接的PM2.5比较模块,用于将所述放大颗粒脉冲信号的幅度与预设的检测PM2.5电压脉冲信号的幅度相比较,当比较到所述放大颗粒脉冲信号的幅度大于预设的PM2.5电压脉冲信号的幅度时,输出脉冲信号;
输入端与所述PM2.5比较模块的输出端连接的浓度处理模块,用于接收输出的脉冲信号,统计出所述脉冲信号的个数,所述脉冲信号的个数即为PM2.5个数,根据所述PM2.5个数以及所述送风组件集中送风的风速,检测出所处环境的PM2.5浓度。
本发明实施例的另一目的在于提供一种基于PM2.5浓度检测装置的检测方法,包括:
光强度转换模块当激光照射送风组件集中送风的空气颗粒时,收集所述空气颗粒散射的光强度,将所述光强度转换为颗粒脉冲信号;
信号放大模块将所述颗粒脉冲信号进行放大,生成放大颗粒脉冲信号;
PM2.5比较模块将所述放大颗粒脉冲信号的幅度与预设的检测PM2.5电压脉冲信号的幅度相比较,当比较到所述放大颗粒脉冲信号的幅度大于预设的PM2.5电压脉冲信号的幅度时,输出脉冲信号;
PM2.5浓度处理模块接收输出的脉冲信号,统计出所述脉冲信号的个数,所述脉冲信号的个数即为PM2.5个数,根据所述PM2.5个数以及所述送风组件集中送风的风速,检测出所处环境的PM2.5浓度。
本发明实施例的另一目的在于提供一种空气质量检测仪,包括上述的PM2.5浓度检测装置以及一送风组件,所述送风组件用于对所述PM2.5浓度检测装置集中送风。
有益效果
在本实施例中,空气质量检测仪通过信号放大模块,将颗粒脉冲信号进行放大,生成放大颗粒脉冲信号,并通过PM2.5比较模块,得到PM2.5个数,后续通过 PM2.5浓度处理模块,检测出所处环境的PM2.5浓度,解决了当采用小体积的 PM2.5的取样装置时,实际采样到的PM2.5的信号就会随之减弱,无法检测到准确的PM2.5浓度的问题,从而提高了空气质量检测仪中PM2.5浓度的检测精度。
附图说明
图1是本发明实施例提供的空气质量检测仪的结构框图;
图2是本发明实施例提供的送风组件10的剖面示意图;
图3是本发明实施例提供的PM2.5浓度检测装置20的结构框图;
图4是本发明实施例提供的光强度转换模块201的结构图;
图5是本发明实施例提供的信号放大模块202的结构图;
图6是本发明实施例提供的PM2.5比较模块203的结构图;
图7是本发明实施例提供的PM2.5浓度检测装置20的电路图;
图8是本发明实施例提供的基于PM2.5浓度检测装置的检测方法的实现流程图。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例一
参考图1,图1是本发明实施例提供的空气质量检测仪的结构框图。
其中,在该空气质量检测仪中,包括PM2.5浓度检测装置20以及一送风组件10,所述送风组件10用于对所述PM2.5浓度检测装置20集中送风。
图2是本发明实施例提供的送风组件10的剖面示意图。
安装座15上垂直于出风口设置有用于安装PM2.5浓度检测装置20的安装孔152,安装孔152与出风口相贯通,PM2.5浓度检测装置20安装于安装孔152和出风口相贯通的位置处。通过这样的设置,空气会被输送至出风口处,而由于安装孔152是与出风口是贯通的,这样流动的空气便会流向安装孔152内,从而位于安装孔152内的PM2.5浓度检测装置20可对空气中的PM2.5进行检测,此外由于安装孔 152内的风速较缓慢,因此PM2.5浓度检测装置20可对风中的PM2.5进行充分的检测,增强了PM2.5浓度检测的准确性。
实施例二
参考图3,图3是本发明实施例提供的PM2.5浓度检测装置20的结构框图,该装置可以运行于PM2.5传感器。为了便于说明,仅示出了与本实施例相关的部分。
参照图3,该PM2.5浓度检测装置20,包括:
光强度转换模块201,用于当激光照射送风组件集中送风的空气颗粒时,收集所述空气颗粒散射的光强度,将所述光强度转换为颗粒脉冲信号;
输入端与所述光强度转换模块201的输出端连接的信号放大模块202,用于将所述颗粒脉冲信号进行放大,生成放大颗粒脉冲信号;
输入端与所述信号放大模块202的输出端连接的PM2.5比较模块203,用于将所述放大颗粒脉冲信号的幅度与预设的检测PM2.5电压脉冲信号的幅度相比较,当比较到所述放大颗粒脉冲信号的幅度大于预设的PM2.5电压脉冲信号的幅度时,输出脉冲信号;
输入端与所述PM2.5比较模块203的输出端连接的浓度处理模块204,用于接收输出的脉冲信号,统计出所述脉冲信号的个数,所述脉冲信号的个数即为PM2.5个数,根据所述PM2.5个数以及所述送风组件10集中送风的风速,检测出所处环境的PM2.5浓度。
在本实施例中,空气质量检测仪通过信号放大模块202,将颗粒脉冲信号进行放大,生成放大颗粒脉冲信号,并通过PM2.5比较模块203,得到PM2.5个数,后续通过PM2.5浓度处理模块204,检测出所处环境的PM2.5浓度,解决了当采用小体积的PM2.5的取样装置时,实际采样到的PM2.5的信号就会随之减弱,无法检测到准确的PM2.5浓度的问题,从而提高了空气质量检测仪中PM2.5浓度的检测精度。
在本实施例的一种实施方式中,在该PM2.5浓度检测装置20中,所述PM2.5浓度处理模块204采用控制芯片U4,所述控制芯片U4包括:
检测单元,用于根据所述PM2.5个数以及所述送风组件10集中送风的风速,检测出临时PM2.5浓度;
提取单元,用于在记录的PM2.5浓度中,提取生成时间排序前N位的PM2.5浓度;
平均单元,用于将临时PM2.5浓度与提取到前N位的PM2.5浓度相加,取平均浓度,所述平均浓度为当前所处环境的PM2.5浓度,所述N为大于1的整数。
在本实施例的一种实施方式中,在该PM2.5浓度检测装置20中,所述PM2.5浓度处理模块204采用控制芯片U4,所述控制芯片U4包括:
执行单元,用于当检测到开机事件时,执行所述当激光照射送风组件集中送风的空气颗粒时,收集所述空气颗粒散射的光强度,将所述光强度转换为颗粒脉冲信号的步骤。
本发明实施例提供的装置可以应用在下述对应的方法实施例中,详情见下述实施例的描述,在此不做描述。
实施例三
参考图4,图4是本发明实施例提供的光强度转换模块201的结构图,其中,
所述光强度转换模块201包括:
光敏三极管T、电阻R1、电容C1、电容C2、电源VCC1;
所述光敏三极管T的发射极为所述光强度转换模块201的输出端;
所述R1的第一端接所述电源VCC1;
所述电容C1与所述电容C2并联后,一公共端与所述R1的第二端共接在所述光敏三极管T的集电极上,另一端公共端接地;
所述光敏三极管T的发射极为所述光强度转换模块201的输出端。
其工作原理如下:
光敏三极管T用于导通电路,当激光照射送风组件集中送风的空气颗粒时,收集所述空气颗粒散射的光强度,将所述光强度转换为颗粒脉冲信号。
实施例四
参考图5,图5是本发明实施例提供的信号放大模块202的结构图,其中,所述信号放大模块202包括:
电阻R2、电阻R3、电阻R4、电阻R5、电阻R6、电容C3、电容C4、电容C5、电容C6、放大器U1、放大器U2以及电源VCC2;
所述放大器U1的反相输入端为所述信号放大模块202的输入端;
所述电阻R2与所述电容C3并联后,一公共端接在所述放大器U1的反相输入端上,另一公共端与所述电容C4的第一端共接在所述放大器U1的输出端上;
所述电容C4的第二端与所述电阻R3的第一端相连接;
所述电阻R4与所述电容C5并联后,一公共端与所述电阻R3的第二端共接在所述放大器U2的反相输入端上,另一公共端接在所述放大器U2的输出端上;
所述电阻R5的第一端接所述电源VCC2;
所述的电阻R6与电容R6并联后一公共端接地,另一公共端、所述电阻R5的第二端以及所述放大器U1的同向输入端,共接在所述放大器U2的同向输入端上;
所述放大器U2的输出端为所述信号放大模块202的输出端。
其工作原理如下:
电容C4用于隔直流,电容C3、电容C5、电容C6均用于过滤高频信号,颗粒脉冲信号经过放大器U1以及放大器U2进行放大,生成放大颗粒脉冲信号。
实施例五
参考图6,图6是本发明实施例提供的PM2.5比较模块203的结构图,其中,所述PM2.5比较模块203包括:
电阻R7、电阻R8、电阻R9、电阻R10、电容C7、比较器U3以及电源VCC3;
所述电容C7的第一端为所述PM2.5比较模块203的输入端;
所述电容C7的第二端与所述电阻R7的一端共接在所述比较器U3的同相输入端上,所述电阻R7的另一端接地;
所述电阻R8的一端与所述电阻R9的一端共接在所述比较器U3的反相输入端上,所述电阻R8的另一端接所述电源VCC3,所述电阻R9的另一端接地;
所述电阻R10的第一端连接所述比较器U3的输出端,所述电阻R10的第二端为所述PM2.5比较模块203的输出端。
工作原理如下:
电源VCC3通过电阻R8以及R9,生成检测PM2.5电压脉冲信号,比较器U3将放大颗粒脉冲信号的幅度与预设的检测PM2.5电压脉冲信号的幅度相比较,当比较到所述放大颗粒脉冲信号的幅度大于预设的PM2.5电压脉冲信号的幅度时,输出高电平脉冲信号。
实施例六
参考图7,图7是本发明实施例提供的PM2.5浓度检测装置20的电路图。
其工作原理,可参考实施例二、实施例三、实施例四、实施例五,在此不做赘述。
实施例七
图8是本发明实施例提供的基于PM2.5浓度检测装置的检测方法的实现流程图,详述如下:
在步骤S801中,光强度转换模块201当激光照射送风组件集中送风的空气颗粒时,收集所述空气颗粒散射的光强度,将所述光强度转换为颗粒脉冲信号;
在步骤S802中,通过第一信号放大器以及第二信号放大器将所述颗粒脉冲信号进行放大,生成放大颗粒脉冲信号;
在步骤S803中,PM2.5比较模块203将所述放大颗粒脉冲信号的幅度与预设的检测PM2.5电压脉冲信号的幅度相比较,当比较到所述放大颗粒脉冲信号的幅度大于预设的PM2.5电压脉冲信号的幅度时,输出脉冲信号;
在步骤S804中,PM2.5浓度处理模块204接收输出的脉冲信号,统计出所述脉冲信号的个数,所述脉冲信号的个数即为PM2.5个数,根据所述PM2.5个数以及所述送风组件10集中送风的风速,检测出所处环境的PM2.5浓度。
在本实施例中,空气质量检测仪通过信号放大模块202,将颗粒脉冲信号进行放大,生成放大颗粒脉冲信号,并通过PM2.5比较模块203,得到PM2.5个数,后续通过PM2.5浓度处理模块204,检测出所处环境的PM2.5浓度,解决了当采用小体积的PM2.5的取样装置时,实际采样到的PM2.5的信号就会随之减弱,无法检测到准确的PM2.5浓度的问题,从而提高了空气质量检测仪中PM2.5浓度的检测精度。
实施例八
本实施例主要描述了检测出所处环境的PM2.5浓度的实施过程,详述如下:
PM2.5浓度处理模块204根据所述PM2.5个数以及所述送风组件10集中送风的风速,检测出临时PM2.5浓度;
在记录的PM2.5浓度中,提取生成时间排序前N位的PM2.5浓度;
将临时PM2.5浓度与提取到前N位的PM2.5浓度相加,取平均浓度,所述平均浓度为所处环境的PM2.5浓度,所述N为大于1的整数。
其中,在生成PM2.5浓度后,记录生成的PM2.5浓度、PM2.5浓度的生成时间以及PM2.5浓度的个数。
当记录的个数到达预设数值时,通过排序函数,根据记录的生成时间,对记录的PM2.5浓度进行排序。将临时温度值与排序前N位的PM2.5浓度相加,取平均温度,平均温度即为当前的PM2.5浓度,N为大于1的整数。
在本发明实施例中,排名的个数N可以用户自设,也可以通过系统默认,在此不做限制。由于PM2.5浓度的数量较多,因此通过经验值设定N的数值,优选地,N的数值为20。从而可以根据前20个PM2.5浓度以及临时温度值的平均温度,从而生成了PM2.5浓度,这样避免了空气质量检测仪每次采样到温度数据的不稳定性,使得温度数据更稳,得到的PM2.5浓度精度更高。
实施例九
本实施例主要描述了在实际应用中执行本发明的较佳的实施过程,详述如下:
当检测到开机事件时,执行当激光照射送风组件集中送风的空气颗粒时,收集所述空气颗粒散射的光强度,将所述光强度转换为颗粒脉冲信号的步骤。
其中,将开机事件作为触发条件。通过硬件或者软件,检测开机事件,当检测到开机事件时,执行当激光照射送风组件集中送风的空气颗粒时,收集所述空气颗粒散射的光强度,将所述光强度转换为颗粒脉冲信号的步骤,从而保证了空气质量检测仪开机后,可以执行当激光照射送风组件集中送风的空气颗粒时,收集空气颗粒散射的光强度,将所述光强度转换为颗粒脉冲信号的步骤。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本发明可借助软件加必需的通用硬件的方式来实现。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘,硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. 一种PM2.5浓度检测装置,其特征在于,包括:
    光强度转换模块,用于当激光照射送风组件集中送风的空气颗粒时,收集所述空气颗粒散射的光强度,将所述光强度转换为颗粒脉冲信号;
    输入端与所述光强度转换模块的输出端连接的信号放大模块,用于将所述颗粒脉冲信号进行放大,生成放大颗粒脉冲信号;
    输入端与所述信号放大模块的输出端连接的PM2.5比较模块,用于将所述放大颗粒脉冲信号的幅度与预设的检测PM2.5电压脉冲信号的幅度相比较,当比较到所述放大颗粒脉冲信号的幅度大于预设的PM2.5电压脉冲信号的幅度时,输出脉冲信号;
    输入端与所述PM2.5比较模块的输出端连接的浓度处理模块,用于接收输出的脉冲信号,统计出所述脉冲信号的个数,所述脉冲信号的个数即为PM2.5个数,根据所述PM2.5个数以及所述送风组件集中送风的风速,检测出所处环境的PM2.5浓度。
  2. 如权利要求1所述的PM2.5浓度检测装置,其特征在于,所述光强度转换模块包括:
    光敏三极管T、电阻R1、电容C1、电容C2、电源VCC1;
    所述R1的第一端接所述电源VCC1;
    所述电容C1与所述电容C2并联后,一公共端与所述R1的第二端共接在所述光敏三极管T的集电极上,另一端公共端接地;
    所述光敏三极管T的发射极为所述光强度转换模块的输出端。
  3. 权利要求1所述的PM2.5浓度检测装置,其特征在于,所述信号放大模块包括:
    电阻R2、电阻R3、电阻R4、电阻R5、电阻R6、电容C3、电容C4、电容C5、电容C6、放大器U1、放大器U2以及电源VCC2;
    所述放大器U1的反相输入端为所述信号放大模块的输入端;
    所述电阻R2与所述电容C3并联后,一公共端接在所述放大器U1的反相输入端上,另一公共端与所述电容C4的第一端共接在所述放大器U1的输出端上;
    所述电容C4的第二端与所述电阻R3的第一端相连接;
    所述电阻R4与所述电容C5并联后,一公共端与所述电阻R3的第二端共接在所述放大器U2的反相输入端上,另一公共端接在所述放大器U2的输出端上;
    所述电阻R5的第一端接所述电源VCC2;
    所述的电阻R6与电容R6并联后一公共端接地,另一公共端、所述电阻R5的第二端以及所述放大器U1的同向输入端,共接在所述放大器U2的同向输入端上;
    所述放大器U2的输出端为所述信号放大模块的输出端。
  4. 权利要求1所述的PM2.5浓度检测装置,其特征在于,所述PM2.5比较模块包括:
    电阻R7、电阻R8、电阻R9、电阻R10、电容C7、比较器U3以及电源VCC3;
    所述电容C7的第一端为所述PM2.5比较模块的输入端;
    所述电容C7的第二端与所述电阻R7的一端共接在所述比较器U3的同相输入端上,所述电阻R7的另一端接地;
    所述电阻R8的一端与所述电阻R9的一端共接在所述比较器U3的反相输入端上,所述电阻R8的另一端接所述电源VCC3,所述电阻 R9的另一端接地;
    所述电阻R10的第一端连接所述比较器U3的输出端,所述电阻R10的第二端为所述PM2.5比较模块的输出端。
  5. 如权利要求1所述的PM2.5浓度检测装置,其特征在于,所述PM2.5浓度处理模块采用控制芯片U4,所述控制芯片U4包括:
    检测单元,用于根据所述PM2.5个数以及所述送风组件集中送风的风速,检测出临时PM2.5浓度;
    提取单元,用于在记录的PM2.5浓度中,提取生成时间排序前N位的PM2.5浓度;
    平均单元,用于将临时PM2.5浓度与提取到前N位的PM2.5浓度相加,取平均浓度,所述平均浓度为当前所处环境的PM2.5浓度,所述N为大于1的整数。
  6. 如权利要求1所述的PM2.5浓度检测装置,其特征在于,所述PM2.5浓度检测装置采用控制芯片U4,所述控制芯片U4包括:
    执行单元,用于当检测到开机事件时,执行所述当激光照射送风组件集中送风的空气颗粒时,收集所述空气颗粒散射的光强度,将所述光强度转换为颗粒脉冲信号。
  7. 一种基于权利要求1至6任意一项权利要求所述的PM2.5浓度检测装置的检测方法,其特征在于,包括:
    光强度转换模块当激光照射送风组件集中送风的空气颗粒时,收集所述空气颗粒散射的光强度,将所述光强度转换为颗粒脉冲信号;
    信号放大模块将所述颗粒脉冲信号进行放大,生成放大颗粒脉冲信号;
    PM2.5比较模块将所述放大颗粒脉冲信号的幅度与预设的检测 PM2.5电压脉冲信号的幅度相比较,当比较到所述放大颗粒脉冲信号的幅度大于预设的PM2.5电压脉冲信号的幅度时,输出脉冲信号;
    PM2.5浓度处理模块接收输出的脉冲信号,统计出所述脉冲信号的个数,所述脉冲信号的个数即为PM2.5个数,根据所述PM2.5个数以及所述送风组件集中送风的风速,检测出所处环境的PM2.5浓度。
  8. 如权利要求7所述的检测方法,其特征在于,所述PM2.5浓度处理模块接收输出的脉冲信号,统计出所述脉冲信号的个数,所述脉冲信号的个数即为PM2.5个数,根据所述PM2.5个数以及所述送风组件集中送风的风速,检测出所处环境的PM2.5浓度,具体为:
    PM2.5浓度处理模块根据所述PM2.5个数以及所述送风组件集中送风的风速,检测出临时PM2.5浓度;
    在记录的PM2.5浓度中,提取生成时间排序前N位的PM2.5浓度;
    将临时PM2.5浓度与提取到前N位的PM2.5浓度相加,取平均浓度,所述平均浓度为所处环境的PM2.5浓度,所述N为大于1的整数。
  9. 如权利要求7或8所述的检测方法,其特征在于,所述检测方法还包括:
    当检测到开机事件时,执行所述当激光照射送风组件集中送风的空气颗粒时,收集所述空气颗粒散射的光强度,将所述光强度转换为颗粒脉冲信号。
  10. 一种空气质量检测仪,其特征在于,包括权利要求1至6任意一项权利要求所述的PM2.5浓度检测装置以及一送风组件,所述送风组件用于对所述PM2.5浓度检测装置集中送风。
PCT/CN2014/081239 2014-06-30 2014-06-30 一种pm2.5浓度检测装置、检测方法及空气质量检测仪 WO2016000161A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2014/081239 WO2016000161A1 (zh) 2014-06-30 2014-06-30 一种pm2.5浓度检测装置、检测方法及空气质量检测仪
CN201480000500.3A CN104067106B (zh) 2014-06-30 2014-06-30 一种pm2.5浓度检测装置、检测方法及空气质量检测仪

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/081239 WO2016000161A1 (zh) 2014-06-30 2014-06-30 一种pm2.5浓度检测装置、检测方法及空气质量检测仪

Publications (1)

Publication Number Publication Date
WO2016000161A1 true WO2016000161A1 (zh) 2016-01-07

Family

ID=51553772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/081239 WO2016000161A1 (zh) 2014-06-30 2014-06-30 一种pm2.5浓度检测装置、检测方法及空气质量检测仪

Country Status (2)

Country Link
CN (1) CN104067106B (zh)
WO (1) WO2016000161A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110132810A (zh) * 2019-05-09 2019-08-16 新立科技股份有限公司 一种pm2.5浓度检测方法及其检测装置
CN111239016A (zh) * 2020-03-13 2020-06-05 浙江吉叶生物科技有限公司 一种空气质量检测系统
CN114878757A (zh) * 2022-06-09 2022-08-09 艾易西(中国)环保科技有限公司 空气质量检测器及空气质量检测系统

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016000161A1 (zh) * 2014-06-30 2016-01-07 深圳华盛昌机械实业有限公司 一种pm2.5浓度检测装置、检测方法及空气质量检测仪
CN104330341A (zh) * 2014-10-30 2015-02-04 哈尔滨幻石科技发展有限公司 一种基于压缩空气的小型pm2.5浓度检测装置
CN104865175A (zh) * 2015-05-20 2015-08-26 常州大学 一种空气中pm2.5浓度检测方法
CN105259085B (zh) * 2015-10-20 2018-03-02 武汉四方光电科技有限公司 一种激光粉尘传感器的粉尘浓度测量系统及其测量方法
CN105259086B (zh) * 2015-10-29 2018-03-27 广东美的制冷设备有限公司 粉尘浓度的检测方法及检测系统
CN105774480A (zh) * 2016-02-29 2016-07-20 北京汽车研究总院有限公司 汽车空气安全的控制方法、汽车空气安全系统及汽车
CN106404624A (zh) * 2016-08-30 2017-02-15 深圳益杉创新科技有限公司 基于压力检测的空气颗粒物浓度检测方法及装置
CN106483052A (zh) * 2016-10-08 2017-03-08 北京信息科技大学 一种基于光散射法的pm2.5检测仪
CN106840981A (zh) * 2017-03-08 2017-06-13 芜湖美智空调设备有限公司 空气颗粒检测装置及其精度校正方法
CN108956395B (zh) * 2017-05-18 2021-01-08 中兴通讯股份有限公司 一种空气微粒浓度检测的方法及终端
CN108469404B (zh) * 2018-02-01 2020-06-02 滨州学院 一种pm2.5浓度估算系统及方法
CN108426809A (zh) * 2018-02-28 2018-08-21 杭州电子科技大学 一种基于ccd侧向散射的全天候pm2.5浓度实时检测装置
CN110215785A (zh) * 2019-06-25 2019-09-10 哈尔滨工程大学 一种适应雾霾浓度的除霾方法
CN110514566B (zh) * 2019-08-28 2022-02-22 徐州治鼎环境科技有限公司 一种新型烟尘测量装置和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102636621A (zh) * 2012-03-31 2012-08-15 北京盈胜泰科技术有限公司 一种便携式pm2.5的监测设备及监测方法
CN103018145A (zh) * 2012-10-12 2013-04-03 桂林电子科技大学 一种新型的pm2.5质量浓度实时监测装置与监测方法
CN103257095A (zh) * 2013-05-14 2013-08-21 中国环境科学研究院 排放源中细颗粒物的分级检测方法和装置
CN203287312U (zh) * 2013-04-16 2013-11-13 比亚迪股份有限公司 车辆及其pm2.5颗粒检测装置组件
CN203376235U (zh) * 2013-07-30 2014-01-01 上海理工大学 一种适用于空气净化器内在线测量pm2.5浓度的装置
CN104067106A (zh) * 2014-06-30 2014-09-24 深圳华盛昌机械实业有限公司 一种pm2.5浓度检测装置、检测方法及空气质量检测仪

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11201892A (ja) * 1998-01-09 1999-07-30 Ricoh Elemex Corp 空気清浄機
US20030136194A1 (en) * 2001-12-05 2003-07-24 Wu Sean F. Acoustic particulates density meter
CN2906598Y (zh) * 2006-03-09 2007-05-30 苏州大学 小型半导体激光尘埃粒子计数器
CN101750273A (zh) * 2008-12-03 2010-06-23 北京航峰科伟装备技术有限公司 三维油液污染度检测仪
CN101425306A (zh) * 2008-12-03 2009-05-06 苏州信达光电科技有限公司 红外传感控制媒体播放装置
CN101762447A (zh) * 2008-12-25 2010-06-30 邓可 油液污染度检测电路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102636621A (zh) * 2012-03-31 2012-08-15 北京盈胜泰科技术有限公司 一种便携式pm2.5的监测设备及监测方法
CN103018145A (zh) * 2012-10-12 2013-04-03 桂林电子科技大学 一种新型的pm2.5质量浓度实时监测装置与监测方法
CN203287312U (zh) * 2013-04-16 2013-11-13 比亚迪股份有限公司 车辆及其pm2.5颗粒检测装置组件
CN103257095A (zh) * 2013-05-14 2013-08-21 中国环境科学研究院 排放源中细颗粒物的分级检测方法和装置
CN203376235U (zh) * 2013-07-30 2014-01-01 上海理工大学 一种适用于空气净化器内在线测量pm2.5浓度的装置
CN104067106A (zh) * 2014-06-30 2014-09-24 深圳华盛昌机械实业有限公司 一种pm2.5浓度检测装置、检测方法及空气质量检测仪

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110132810A (zh) * 2019-05-09 2019-08-16 新立科技股份有限公司 一种pm2.5浓度检测方法及其检测装置
CN111239016A (zh) * 2020-03-13 2020-06-05 浙江吉叶生物科技有限公司 一种空气质量检测系统
CN114878757A (zh) * 2022-06-09 2022-08-09 艾易西(中国)环保科技有限公司 空气质量检测器及空气质量检测系统

Also Published As

Publication number Publication date
CN104067106B (zh) 2016-05-18
CN104067106A (zh) 2014-09-24

Similar Documents

Publication Publication Date Title
WO2016000161A1 (zh) 一种pm2.5浓度检测装置、检测方法及空气质量检测仪
US5793230A (en) Sensor readout detector circuit
WO2016029464A1 (zh) 电子烟、电子烟的蓝牙组件、吸烟信息采集系统及方法
CN205120537U (zh) 一种微颗粒物检测传感器及检测设备
WO2018090612A1 (zh) 光源系统、投影仪及温度控制方法
WO2020015060A1 (zh) 用电量异常评估方法、装置、设备和计算机存储介质
WO2016138791A1 (zh) 经鼻压力发生器自适应校准系统及方法
WO2016000626A1 (zh) 空气净化装置及方法
WO2022092708A1 (ko) 알파 입자의 펄스 검출을 통한 라돈 측정기
CN107966167B (zh) 一种光信号接收装置和光电检测设备
Canu et al. Understanding the Shinyei PPD24NS low-cost dust sensor
WO2020143296A1 (zh) 数据采集方法、装置、设备及计算机可读存储介质
WO2020224090A1 (zh) 基于体温信息的抑郁症预测系统
CN208489528U (zh) 负离子发生器和空调器
WO2019199116A1 (ko) 옵셋을 조절하는 증폭기 및 옵셋 성분을 제거할 수 있는 센서
Pullia et al. A low-noise large dynamic-range readout suitable for laser spectroscopy with photodiodes
WO2014101539A1 (zh) 一种基于感知知识库的视频内容审查系统及方法
JP3959221B2 (ja) イオン化計測装置
Mandal et al. Modified cmos peak detector and sample hold circuit for biomedical applications
WO2018032602A1 (zh) 一种水质检测仪
WO2019020085A1 (zh) 采样电流处理电路、功率检测电路以及电磁烹饪器具
CN205664946U (zh) 一种应用于大气环境监测的温度检测显示报警电路
WO2015109807A1 (zh) 一种实时数据缓存方法及装置
WO2016011702A1 (zh) 传感器接口芯片及传感器信号检测系统
CN109841487A (zh) 一种在线加速器质谱测量方法和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14896443

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14896443

Country of ref document: EP

Kind code of ref document: A1