WO2018032602A1 - 一种水质检测仪 - Google Patents

一种水质检测仪 Download PDF

Info

Publication number
WO2018032602A1
WO2018032602A1 PCT/CN2016/103050 CN2016103050W WO2018032602A1 WO 2018032602 A1 WO2018032602 A1 WO 2018032602A1 CN 2016103050 W CN2016103050 W CN 2016103050W WO 2018032602 A1 WO2018032602 A1 WO 2018032602A1
Authority
WO
WIPO (PCT)
Prior art keywords
controller
transistor
resistor
probe
tds
Prior art date
Application number
PCT/CN2016/103050
Other languages
English (en)
French (fr)
Inventor
何春龙
陈文亮
黄磊
李维诚
刘超文
李强
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2018032602A1 publication Critical patent/WO2018032602A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1886Water using probes, e.g. submersible probes, buoys
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers

Definitions

  • the invention relates to the technical field of solution detection, in particular to a water quality detector.
  • the PH instrument adopts a composite PH electrode. The principle of the PH composite probe is to form a primary battery with a hydrogen ion glass electrode and a reference electrode, and measure the potential between the electrodes during ion exchange between the glass membrane and the measured solution. Poor, to detect the concentration of hydrogen ions in the solution, thereby measuring the pH of the liquid to be measured.
  • TDS Total dissolved Solids, total dissolved solids, also known as total dissolved solids, measured in milligrams per liter (mg/L), which indicates how many milligrams of dissolved solids are dissolved in 1 liter of water. The higher the TDS value, the more lysate is contained in the water. Total dissolved solids refers to the total amount of all solutes in water, including both inorganic and organic.
  • the TDS meter uses an electrical method to measure the conductivity of the liquid and evaluate the TDS value of the liquid based on the conductivity.
  • test pH value tester When it is necessary to measure the PH value and the TDS value, it is generally tested separately using a separate test pH value tester and a separate TDS value tester. There are very few products that can simultaneously test PH value and TDS value. Testers that can simultaneously test PH value and TDS value are generally physically isolated tests, and the PH value and TDS value of the liquid at the same time cannot be tested.
  • a reference voltage When the PH probe is placed in the liquid test, a reference voltage must be provided to the PH reference electrode, the reference electrode and the test electrode are ion-exchanged with the liquid to be measured, and a voltage difference is generated between the PH test probe and the reference electrode, and different voltage differences are corresponding. Different pH values. Since the liquid to be tested is ion-exchanged and has a certain charge, at this time, if the TDS probe is placed in the liquid to be tested, since the TDS has different potentials, and the ion exchange of the PH probe is slow, the charge of the liquid to be tested is changed, thereby The voltage between the PH test probe and the reference electrode does not truly reflect the pH value being tested.
  • the technical problem to be solved by the present invention is to provide a water quality detector, which aims to solve the problem that the pH value and the TDS in the solution cannot be simultaneously detected. The value of the problem.
  • the invention is realized by the invention, comprising a controller, a first control loop, a second control loop, a third control loop, a first isolation loop, a second isolation loop, a TDS probe and a PH probe;
  • the controller outputs a level signal to the first control loop, the second control loop, the third control loop, the first isolation loop, and the second isolation loop according to a preset time, and the level signal is a high level signal Or a low level signal, the controller is further configured to read data of the TDS probe and the PH probe;
  • the first control loop is respectively connected to the controller and the first isolation circuit, and is configured to turn on the first control loop when receiving a high level signal of the controller;
  • the second control loop is respectively connected to the controller and the second isolation circuit, and is configured to enable the second control loop to be turned on when receiving a high level signal of the controller;
  • the first isolation circuit is respectively connected to the controller and the first end of the TDS probe for turning on or off the first isolation circuit when receiving the level signal of the controller;
  • the second isolation circuit is respectively connected to the controller and the second end of the TDS probe, for turning on or off the second isolation circuit when receiving the level signal of the controller;
  • the TDS probe outputs the collected data of the dissolved substance in the solution to be tested to the controller
  • the third control loop is respectively connected to the controller and the first end of the PH probe, and is configured to enable the third control loop and the PH when receiving a high level signal of the controller
  • the line between the probes is conducting;
  • the second end of the PH probe is connected to the controller, and the PH probe is used to output the collected PH value of the solution to be tested to the controller.
  • the water quality detector further includes a PH amplification follower module, and the PH amplification follower module is respectively connected to the controller and the second end of the PH probe for amplifying the collected PH data signal.
  • the third control loop includes an NPN-type transistor Q6, a P-channel MOS transistor Q5, a resistor R9, a resistor R10, a resistor R11, and a resistor R12;
  • the base of the transistor Q6 is connected to the controller through the resistor R11, and the collector of the transistor Q6 is connected to the first end of the PH amplification follower module through the resistor R10 and the resistor R9.
  • the emitter of Q6 is grounded, and the base of the transistor Q6 is also grounded through the resistor R12;
  • the gate of the MOS transistor Q5 is connected to the collector of the transistor Q6 through the resistor R10, and the source of the MOS transistor Q5 is connected to the first end of the PH amplification follower module, and the MOS transistor Q5 a drain connected to the first end of the PH probe;
  • the second end of the PH amplification follower module is connected to the second end of the PH probe, and the third and fourth ends of the PH amplification follower module are connected to the controller.
  • the first control loop includes a resistor R3, a resistor R4, and an NPN type transistor Q3;
  • the base of the transistor Q3 is connected to the controller through the resistor R3, the collector of the transistor Q3 is connected to one end of the first isolation circuit, the emitter of the transistor Q3 is grounded, and the transistor Q3 The base is also grounded through the resistor R4.
  • the first isolation circuit includes a resistor R2, a PNP type transistor Q1 and a diode D1;
  • the base of the transistor Q1 is connected to the collector of the transistor Q3 through the resistor R2, the collector of the transistor Q1 is connected to the first end of the TDS probe, and the emitter of the transistor Q1 is The controller is connected;
  • the anode of the diode D1 is connected to the first end of the TDS probe, and the cathode of the diode D1 is connected to the controller.
  • the second control loop includes a resistor R5, a resistor R6 and an NPN type transistor Q4;
  • the base of the transistor Q4 is connected to the controller through the resistor R6, the collector of the transistor Q4 is connected to one end of the second isolation circuit, the emitter of the transistor Q4 is grounded, and the transistor Q4 The base is also grounded through the resistor R5.
  • the second isolation circuit includes a resistor R7, a PNP type transistor Q2 and a diode D2;
  • the base of the transistor Q2 is connected to the collector of the transistor Q4 through the resistor R7, the collector of the transistor Q2 is connected to the second end of the TDS probe, and the emitter of the transistor Q2 is The controller is connected;
  • the anode of the diode D2 is connected to the second end of the TDS probe, and the cathode of the diode D2 is connected to the controller.
  • the water quality detector further includes a resistor R1 and a resistor R8;
  • the first isolation circuit is connected to the controller through the resistor R1;
  • the second isolation circuit is connected to the controller through the resistor R8.
  • controller is a single chip microcomputer.
  • the invention has the beneficial effects that: the water quality detector adopts a structure in which the first, second, and third control loops are combined with the first and second isolation loops, and the TDS probe and the PH probe. Connected, the controller outputs different level signals according to the preset time, so that the TDS probe and the PH probe work in a time-sharing manner, so that the PH value and the TDS value can be simultaneously tested on the same detector, thereby improving the utilization rate of the detector and detecting The efficiency and simplification of the solution detection steps.
  • FIG. 1 is a schematic diagram of circuit modules of a water quality detector according to a first embodiment of the present invention
  • FIG. 2 is a schematic diagram showing the circuit structure of a water quality detector according to a second embodiment of the present invention.
  • FIG. 3 is a schematic diagram of one of preset times in a controller in an embodiment of the present invention.
  • Figure 4 is a schematic view of the first conduction state of Figure 2;
  • Figure 5 is a schematic view of the second conduction state of Figure 2;
  • Figure 6 is a schematic view of the third conduction state of Figure 2.
  • a water quality detector includes a controller 101 , a first control loop 102 , a second control loop 104 , a third control loop 106 , a first isolation loop 103 , a second isolation loop 105 , and a TDS probe 107 .
  • PH probe 108 The detailed description of each circuit and each device is as follows:
  • the controller 101 outputs a level signal to the first control loop 102, the second control loop 104, the third control loop 106, the first isolation loop 103, and the second isolation loop 105 according to the preset time, and the level signal is a high level signal. Or a low level signal.
  • the controller 101 is also used to read data from the TDS probe 107 and the PH probe 108.
  • the first control loop 102 is connected to the controller 101 and the first isolation circuit 103 respectively for turning on the first control loop 102 when receiving the high level signal of the controller 101.
  • the second control circuit 104 is connected to the controller 101 and the second isolation circuit 104 respectively for turning on the second control circuit 104 when receiving the high level signal of the controller 101.
  • the first isolation circuit 103 is connected to the controller 101 and the first end of the TDS probe 107, respectively, for turning on or off the first isolation circuit 103 when receiving the level signal of the controller 101.
  • the second isolation circuit 105 is connected to the controller 101 and the second end of the TDS probe 107, respectively, for turning on or off the second isolation circuit 105 when receiving the level signal of the controller 101.
  • the TDS probe 107 outputs the collected data of the dissolved substance in the solution to be tested to the controller 101.
  • the third control loop 106 is connected to the first end of the controller 101 and the PH probe 108, respectively, for guiding the line between the third control loop 106 and the PH probe 108 when receiving the high level signal of the controller 101. through.
  • the second end of the PH probe 108 is connected to the controller 101, and the PH probe 108 is used to output the collected PH value of the solution to be tested to the controller 101.
  • the TDS probe 107 sampling data and the PH probe 108 sampling data are operated in a time sharing manner, that is, when the TDS probe 107 samples data, the PH probe 108 stops sampling data, thereby avoiding the PH probe.
  • the ion exchange between the 108 and the liquid to be tested affects the test result; when the PH probe 108 samples the data, the TDS probe 107 stops sampling the data, thereby improving the utilization rate and the detection efficiency of the detector.
  • the water quality detector further includes a PH amplification follower module, and the PH amplification follower module is respectively connected to the controller 101 and the second end of the PH probe 108 for amplifying the collected PH data signal.
  • FIG. 2 is a schematic diagram showing the circuit structure of the water quality detector according to the second embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing the circuit structure of the water quality detector according to the second embodiment of the present invention.
  • the same part of the content as the first embodiment please refer to the above embodiment, and details are not described herein again.
  • the third control loop 106 includes an NPN-type transistor Q6, a P-channel MOS transistor Q5, a resistor R9, a resistor R10, a resistor R11, and a resistor R12.
  • the base of the transistor Q6 is connected to the controller 101 through a resistor R11.
  • the collector of the transistor Q6 is connected to the first end of the PH amplifying follower module U1 through a resistor R10 and a resistor R9.
  • the emitter of the transistor Q6 is grounded, and the base of the transistor Q6 is also Grounded through resistor R12.
  • the gate of the MOS transistor Q5 is connected to the collector of the transistor Q6 through a resistor R10, the source of the MOS transistor Q5 is connected to the first end of the PH amplification follower module U1, and the drain of the MOS transistor Q5 is connected to the first end of the PH probe 108. .
  • the second end of the PH amplification follower module U1 is connected to the second end of the PH probe 108, and the third and fourth ends of the PH amplification follower module U1 are connected to the controller 101.
  • the first control loop 102 includes a resistor R3, a resistor R4, and an NPN transistor Q3.
  • the base of the transistor Q3 is connected to the controller 101 through a resistor R3.
  • the collector of the transistor Q3 is connected to the base of the transistor Q1 through a resistor R2, the emitter of the transistor Q3 is grounded, and the base of the transistor Q3 is also grounded via a resistor R4.
  • the first isolation circuit 103 includes a resistor R2, a transistor of the PNP type Q1, and a diode D1.
  • the base of the transistor Q1 is connected to the collector of the transistor Q3 via a resistor R2, the collector of the transistor Q1 is connected to the first end of the TDS probe 107, and the emitter of the transistor Q1 is connected to the controller 101.
  • the anode of the diode D1 is connected to the first end of the TDS probe 107, the cathode of the diode D1 is connected to the controller 101, and the cathode of the diode D1 is also connected to the controller 101 using TDS signal sampling.
  • the second control loop 104 includes a resistor R5, a resistor R6, and an NPN type transistor Q4.
  • the base of the transistor Q4 is connected to the controller 101 through a resistor R6.
  • the collector of the transistor Q4 is connected to the base of the transistor Q2 through a resistor R7, the emitter of the transistor Q4 is grounded, and the base of the transistor Q4 is also grounded via a resistor R5.
  • the second isolation circuit 105 includes a resistor R7, a PNP type transistor Q2, and a diode D2.
  • the base of the transistor Q2 is connected to the collector of the transistor Q4 via a resistor R7, the collector of the transistor Q2 is connected to the second end of the TDS probe 107, and the emitter of the transistor Q2 is connected to the controller 101.
  • the anode of the diode D2 is connected to the second end of the TDS probe 107, and the cathode of the diode D2 is connected to the controller 101.
  • the water quality detector can also include a resistor R1 and a resistor R8.
  • the first isolation circuit 103 is connected to the controller 101 via a resistor R1.
  • the second isolation circuit 105 is connected to the controller 101 via a resistor R8.
  • one end of the resistor R1 is connected to the controller 101, the other end of the resistor R1 is connected to the cathode of the diode D1, and the other end of the resistor R1 is also connected to the emitter of the transistor Q1.
  • One end of the resistor R8 is connected to the controller 101, the other end of the resistor R8 is connected to the cathode of the diode D2, and the other end of the resistor R8 is also connected to the emitter of the transistor Q2.
  • Each of the above circuits can be made as a separate module, or several circuits can be integrated into one module, or each circuit can be integrated inside the IC.
  • the controller 101 can be a single chip 201.
  • the single-chip microcomputer 201 outputs a level signal to each loop in a time division period, and reads and analyzes the data collected by the TDS probe 107 and the PH probe 108.
  • the water quality detector of the present invention, the first, second and third control loops 102, 104 and 106, and the first and second isolation circuits 103, 105 are designed with a PN junction (PN)
  • PN PN junction
  • the unidirectional conductivity is characterized by the addition of a PN junction transistor to the circuit connected to the TDS probe 107, and a PN junction transistor is also added to the circuit connected to the PH probe 108.
  • the PN junction uses different doping processes to form a P-type semiconductor and an N-type semiconductor on the same semiconductor substrate by diffusion, and a space charge region is formed at their interface.
  • the preset time of the controller 101 is set according to the actual detection requirement. For example, one period of the preset time may be set to test the PH value in the first time period, and the second time period is switched from the PH value test to the TDS value. Test, the TDS value is tested in the third time period, and the fourth time period is switched from the TDS value test to the PH value test. Alternatively, you can test the TDS value first and then the PH value. The length of the test time in each time period is adjusted according to the actual situation.
  • one sampling working period in the preset time is 100 ms, wherein the first time period is 1 ms to 92 ms, which is the PH sampling period.
  • the second period 93ms to 94ms is the switching period
  • the third period 95ms to 98ms is the TDS sampling period
  • the fourth period 99ms to 100ms is the switching period, as shown in FIG.
  • the TDS control signal is set to zero level, so that the triodes Q3 and Q4 are open, and the C poles of the triodes Q3 and Q4 are respectively connected to the triodes Q1 and Q2 through resistors, and there are greater than zero potentials, then the B poles and C of the triodes Q3 and Q4 are Extremely divergent, there is a corresponding electromotive force that blocks ion exchange at both ends. 2.
  • the TDS detection signal 1 and the TDS detection signal 2 are set to a high level, and the liquid point is less than the high potential.
  • This potential difference causes the B poles of the P-type transistors Q1 and Q2 to deviate from the PN junction of the E pole, and there is a corresponding electromotive force, which hinders the triode.
  • Q1 and Q2 are ion exchanged at both ends, and the diodes D1 and D2 are separated from each other. Their PN junctions are separated, and there is a corresponding electromotive force, which hinders ion exchange at both ends. From the last 12 points, the TDS probe 107 is completely deviated from the test system in this state, without ion exchange. 3.
  • the PH control signal outputs a high voltage level, and the driving MOS tube Q5 is turned on.
  • the single chip 201 can collect the required PH data after following the module U1 by PH amplification.
  • the second time period (93ms to 94ms): the TDS control signal and the PH control signal are both low level, and the single chip microcomputer 201 stops sampling the signal, which is the system switching and recovery time.
  • the third time period (95ms to 98ms): as shown in FIG. 5 and FIG. 6, the time period is the sampling of the data by the TDS probe 107.
  • the microcontroller 201 sets the PH control signal to zero level, the TDS control signal is set to a high level, the TDS test signal 1 is set to a high level, and the TDS test signal 2 is set to a zero level. .
  • the PH control signal zero-level drive MOS transistor Q5 is turned off, so that the PH reference electrode is disconnected from the test system, and no voltage is output.
  • the TDS control signal drives the transistors Q3 and Q4 to be turned on, and the C pole of the transistor Q3 and the transistor Q4 is turned to a zero potential.
  • TDS test signal 1 is high level
  • TDS test signal 2 is set to zero level
  • test current from TDS test signal 1 through resistor R1, transistor Q1, TDS probe 107, measured liquid, diode D2, resistor R8 to TDS test signal 2.
  • the single chip microcomputer 201 reads the relevant data through the TDS detection signal port.
  • the microcontroller 201 sets the PH control signal to zero level, the TDS control signal is set to high level, the TDS test signal 2 is set to high level, and the TDS test signal 1 is set to zero level. .
  • the PH control signal zero-level drive MOS transistor Q5 is turned off, so that the PH reference electrode is disconnected from the test system, and no voltage is output.
  • the TDS control signal drives the transistor Q3 and the transistor Q4 to be turned on, and the C pole of the transistor Q3 and the transistor Q4 is turned to a zero potential.
  • TDS test signal 2 is high level, TDS test signal 1 is set to zero level, test current from TDS test signal 2 through resistor R8, transistor Q2, TDS probe 107, measured liquid, diode D1, resistor R1 to TDS test signal 1.
  • the single chip microcomputer 201 reads the relevant data through the TDS detection signal port.
  • the TDS value corresponding to the liquid can be obtained.
  • the fourth time period (99ms to 100ms): the TDS control signal and the PH control signal are both low level, and the single chip microcomputer 201 stops sampling the signal, which is the system switching and recovery time.
  • the TDS value and the pH value of the corresponding liquid can be obtained.
  • the water quality detector of the invention can make the TDS probe 107 and the PH probe 108 work in a time-sharing manner, realizes that the same product can simultaneously test the PH value and the TDS value, improves the utilization rate of the product, saves the cost, and improves the accuracy of the test. Degree and test efficiency.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)

Abstract

一种水质检测仪,包括控制器(101,201)、第一控制回路(102)、第二控制回路(104)、第三控制回路(106)、第一隔离回路(103)、第二隔离回路(105)、TDS探头(107)和PH探头(108);控制器(101,201)根据预置时间向第一控制回路(102)、第二控制回路(104)、第三控制回路(106)、第一隔离回路(103)和第二隔离回路(105)输出电平信号,电平信号为高电平信号或者低电平信号,控制器(101,201)还用于读取TDS探头(107)和PH探头(108)的数据;第一、第二、第三控制回路(102,104,106)和第一、第二隔离回路(103,105)用于根据电平信号控制TDS探头(107)和PH探头(108)所在回路的导通或断开,使得TDS探头(107)和PH探头(108)能分时工作。水质检测仪实现了同一产品能够同时测试PH值和TDS值,提高了产品的利用率、节约了成本,并且可以提高测试的精确度和测试效率。

Description

一种水质检测仪 技术领域
本发明涉及溶液检测技术领域,尤其涉及一种水质检测仪。
背景技术
PH:氢离子浓度指数(hydrogen ion concentration)是指溶液中氢离子的总数和总物质的量的比值。表示溶液酸碱度的数值,pH=-lg(H+)即所含氢离子浓度的常用对数的负值。PH仪采用复合PH电极,PH复合探头的原理为:用氢离子玻璃电极与参比电极组成原电池,在玻璃膜与被测溶液中氢离子进行离子交换过程中,通过测量电极之间的电位差,来检测溶液中的氢离子浓度,从而测得被测液体的PH值。
TDS:(Total dissolved solids,总溶解固体),又称溶解性固体总量,测量单位为毫克/升(mg/L),它表明1升水中溶有多少毫克溶解性固体。TDS值越高,表示水中含有的溶解物越多。 总溶解固体指水中全部溶质的总量,包括无机物和有机物两者的含量。TDS仪采用电方法测出液体的电导率,根据电导率来评估液体的TDS值。
目前需要测量PH值和TDS值时,一般都是使用单独的测试PH值测试计、单独的TDS值测试计,分开进行测试。很少有能同时测试PH值与TDS值的产品,能够同时测试PH值与TDS值的测试计,一般是通过物理方式隔离测试,无法实现同时测试液体的PH值与TDS值。
无法同时测试PH值和TDS值,或者不能先在同一杯测试溶液中先测试PH值再测试TDS值,或者不能在同一杯测试溶液中先测试TDS值再测试PH值,主要存在如下问题:
(1) PH探头放于液体测试时,必先给PH参考电极提供一参考电压,参考电极及测试电极与被测液体发生离子交换,PH测试探头与参考电极间会产生电压差,不同的电压差值对应不同的PH值。由于被测液体经过离子交换,带有一定的电荷,此时,被测液体如果有TDS探头放入,因TDS有不同的电势,且PH探头离子交换缓慢,被测试液体电荷被改变,从而使PH测试探头与参考电极间的电压无法真实反应被测试的PH值。
(2) TDS探头放于被测液体测试时,TDS两个探头间产生一定的电压差,根据此时的电压差,可以评估被测液体的TDS值。此时再放入PH探头,代电的PH探头影响水中电离情况。使TDS两个探头间产生一定的电压差发生改变,从而无法客观反应被测液体的电导率。
技术问题
本发明所要解决的技术问题在于提供一种水质检测仪,旨在解决不能同时检测溶液中 PH 值和与 TDS 值的问题。
技术解决方案
本发明是这样实现的,一种水质检测仪,包括控制器、第一控制回路、第二控制回路、第三控制回路、第一隔离回路、第二隔离回路、TDS探头和PH探头;
所述控制器根据预置时间向所述第一控制回路、第二控制回路、第三控制回路、第一隔离回路和第二隔离回路输出电平信号,所述电平信号为高电平信号或者低电平信号,所述控制器还用于读取所述TDS探头和PH探头的数据;
所述第一控制回路分别与所述控制器、所述第一隔离回路相连,用于在接收到所述控制器的高电平信号时,使所述第一控制回路导通;
所述第二控制回路分别与所述控制器、所述第二隔离回路相连,用于在接收到所述控制器的高电平信号时,使所述第二控制回路导通;
所述第一隔离回路分别与所述控制器、所述TDS探头的第一端相连,用于在接收到所述控制器的电平信号时,导通或关闭所述第一隔离回路;
所述第二隔离回路分别与所述控制器、所述TDS探头的第二端相连,用于在接收到所述控制器的电平信号时,导通或关闭所述第二隔离回路;
所述TDS探头将采集到的待测溶液中溶解性物质的数据输出到所述控制器;
所述第三控制回路分别与所述控制器、所述PH探头的第一端相连,用于在接收到所述控制器的高电平信号时,使所述第三控制回路与所述PH探头之间的线路导通;
所述PH探头的第二端与所述控制器相连,所述PH探头用于将采集到的待测溶液的PH数值输出到所述控制器。
进一步地,所述水质检测仪还包括PH放大跟随模块,所述PH放大跟随模块分别与所述控制器、所述PH探头的第二端相连,用于将采集到的PH数据信号进行放大。
进一步地,所述第三控制回路包括NPN型的三极管Q6、P沟道的MOS管Q5、电阻R9、电阻R10、电阻R11和电阻R12;
所述三极管Q6的基极通过所述电阻R11与所述控制器相连,所述三极管Q6的集电极通过所述电阻R10、电阻R9与所述PH放大跟随模块的第一端相连,所述三极管Q6的发射极接地,所述三极管Q6的基极还通过所述电阻R12接地;
所述MOS管Q5的栅极通过所述电阻R10与所述三极管Q6的集电极相连,所述MOS管Q5的源极与所述PH放大跟随模块的第一端相连,所述MOS管Q5的漏极与所述PH探头的第一端相连;
所述PH放大跟随模块的第二端接所述PH探头的第二端,所述PH放大跟随模块的第三、第四端与所述控制器相连。
进一步地,所述第一控制回路包括电阻R3、电阻R4和NPN型的三极管Q3;
所述三极管Q3的基极通过所述电阻R3与所述控制器相连,所述三极管Q3的集电极与所述第一隔离回路的一端相连,所述三极管Q3的发射极接地,所述三极管Q3的基极还通过所述电阻R4接地。
进一步地,所述第一隔离回路包括电阻R2、PNP型的三极管Q1和二极管D1;
所述三极管Q1的基极通过所述电阻R2与所述三极管Q3的集电极相连,所述三极管Q1的集电极与所述TDS探头的第一端相连,所述三极管Q1的发射极与所述控制器相连;
所述二极管D1的正极与所述TDS探头的第一端相连,所述二极管D1的负极与所述控制器相连。
进一步地,所述第二控制回路包括电阻R5、电阻R6和NPN型的三极管Q4;
所述三极管Q4的基极通过所述电阻R6与所述控制器相连,所述三极管Q4的集电极与所述第二隔离回路的一端相连,所述三极管Q4的发射极接地,所述三极管Q4的基极还通过所述电阻R5接地。
进一步地,所述第二隔离回路包括电阻R7、PNP型的三极管Q2和二极管D2;
所述三极管Q2的基极通过所述电阻R7与所述三极管Q4的集电极相连,所述三极管Q2的集电极与所述TDS探头的第二端相连,所述三极管Q2的发射极与所述控制器相连;
所述二极管D2的正极与所述TDS探头的第二端相连,所述二极管D2的负极与所述控制器相连。
进一步地,所述水质检测仪还包括电阻R1和电阻R8;
所述第一隔离回路通过所述电阻R1与所述控制器相连;
所述第二隔离回路通过所述电阻R8与所述控制器相连。
进一步地,所述控制器为单片机。
有益效果
本发明与现有技术相比,有益效果在于:所述的水质检测仪采用第一、第二、第三控制回路和第一、第二隔离回路相结合的结构与所述TDS探头和PH探头相连,控制器根据预置时间输出不同的电平信号,使得TDS探头和PH探头分时工作,实现了在同一检测仪上能够同时测试PH值与TDS值,提高了检测仪的利用率、检测的效率,以及简化了对溶液检测操作步骤。
附图说明
图1是本发明第一实施例提供的水质检测仪的电路模块示意图;
图2是本发明第二实施例提供的水质检测仪的电路结构示意图;
图3是本发明实施例中控制器内其中一种预置时间的示意图;
图4是图2的第一种导通情况示意图;
图5是图2的第二种导通情况示意图;
图6是图2的第三种导通情况示意图。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如图1所示,一种水质检测仪,包括控制器101、第一控制回路102、第二控制回路104、第三控制回路106、第一隔离回路103、第二隔离回路105、TDS探头107和PH探头108。各个回路以及各个器件的详细说明如下:
控制器101根据预置时间向第一控制回路102、第二控制回路104、第三控制回路106、第一隔离回路103和第二隔离回路105输出电平信号,电平信号为高电平信号或者低电平信号。控制器101还用于读取TDS探头107和PH探头108的数据。
第一控制回路102分别与控制器101、第一隔离回路103相连,用于在接收到控制器101的高电平信号时,使第一控制回路102导通。
第二控制回路104分别与控制器101、第二隔离回路104相连,用于在接收到控制器101的高电平信号时,使第二控制回路104导通。
第一隔离回路103分别与控制器101、TDS探头107的第一端相连,用于在接收到控制器101的电平信号时,导通或关闭第一隔离回路103。
第二隔离回路105分别与控制器101、TDS探头107的第二端相连,用于在接收到控制器101的电平信号时,导通或关闭第二隔离回路105。
TDS探头107将采集到的待测溶液中溶解性物质的数据输出到控制器101。
第三控制回路106分别与控制器101、PH探头108的第一端相连,用于在接收到控制器101的高电平信号时,使第三控制回路106与PH探头108之间的线路导通。
PH探头108的第二端与控制器101相连,PH探头108用于将采集到的待测溶液的PH数值输出到控制器101。
该水质检测仪为了避免两路信号互相干扰,TDS探头107采样数据与PH探头108采样数据采用分时工作的方式,即,TDS探头107采样数据时,PH探头108停止采样数据,避免了PH探头108与被测液体间的离子交换影响测试结果;PH探头108采样数据时,TDS探头107停止采样数据,从而提高了检测仪的利用率和检测效率。
在上述实施例的基础上,水质检测仪还包括PH放大跟随模块,PH放大跟随模块分别与控制器101、PH探头108的第二端相连,用于将采集到的PH数据信号进行放大。
请参阅图2,图2是本发明第二实施例提供的水质检测仪的电路结构示意图。与第一实施例相同的部分内容,请参考上述实施例,在此不再赘述。
第三控制回路106包括NPN型的三极管Q6、P沟道的MOS管Q5、电阻R9、电阻R10、电阻R11和电阻R12。三极管Q6的基极通过电阻R11与控制器101相连,三极管Q6的集电极通过电阻R10、电阻R9与PH放大跟随模块U1的第一端相连,三极管Q6的发射极接地,三极管Q6的基极还通过电阻R12接地。MOS管Q5的栅极通过电阻R10与三极管Q6的集电极相连,MOS管Q5的源极与PH放大跟随模块U1的第一端相连,MOS管Q5的漏极与PH探头108的第一端相连。PH放大跟随模块U1的第二端接PH探头108的第二端,PH放大跟随模块U1的第三、第四端与控制器101相连。
第一控制回路102包括电阻R3、电阻R4和NPN型的三极管Q3。三极管Q3的基极通过电阻R3与控制器101相连,三极管Q3的集电极通过电阻R2与三极管Q1的基极相连,三极管Q3的发射极接地,三极管Q3的基极还通过电阻R4接地。
第一隔离回路103包括电阻R2、PNP型的三极管Q1和二极管D1。三极管Q1的基极通过电阻R2与三极管Q3的集电极相连,三极管Q1的集电极与TDS探头107的第一端相连,三极管Q1的发射极与控制器101相连。二极管D1的正极与TDS探头107的第一端相连,二极管D1的负极与控制器101相连,二极管D1的负极还使用TDS信号采样与控制器101相连。
第二控制回路104包括电阻R5、电阻R6和NPN型的三极管Q4。三极管Q4的基极通过电阻R6与控制器101相连,三极管Q4的集电极通过电阻R7与三极管Q2的基极相连,三极管Q4的发射极接地,三极管Q4的基极还通过电阻R5接地。
第二隔离回路105包括电阻R7、PNP型的三极管Q2和二极管D2。三极管Q2的基极通过电阻R7与三极管Q4的集电极相连,三极管Q2的集电极与TDS探头107的第二端相连,三极管Q2的发射极与控制器101相连。二极管D2的正极与TDS探头107的第二端相连,二极管D2的负极与控制器101相连。
水质检测仪还可以包括电阻R1和电阻R8。第一隔离回路103通过电阻R1与控制器101相连。第二隔离回路105通过电阻R8与控制器101相连。具体的,电阻R1的一端与控制器101相连,电阻R1的另一端与二极管D1的负极相连,电阻R1的另一端还与三极管Q1的发射极相连。电阻R8的一端与控制器101相连,电阻R8的另一端与二极管D2的负极相连,电阻R8的另一端还与三极管Q2的发射极相连。
上述各个回路可以做成单独的各个模块,或者将几个回路集成在一个模块内部,或者也可以将各个回路都集成在IC内部。
控制器101可以为单片机201。采用单片机201分时段向各个回路输出电平信号,以及对TDS探头107和PH探头108采集到的数据进行读取、分析。
本发明的水质检测仪,第一、第二和第三控制回路102、104和106,以及第一、第二隔离回路103、105在设计时,采用了PN结(PN junction)单向导电性的特点,在与TDS探头107连接的回路中外加了有PN结的三极管,在与PH探头108连接的回路中也外加了有PN结的三极管。PN结,采用不同的掺杂工艺,通过扩散作用,将P型半导体与N型半导体制作在同一块半导体基片上,在它们的交界面就形成了空间电荷区。在进行PH测试时,由于三极管Q3、Q4、Q1、Q2的PN结形成反向电动势,形成背离,阻碍离子交换,使TDS探头107停止工作,并与被测液体隔离。从而使PH值可以精确测试。同理,在进行TDS测试时,由于三极管Q6、Q5的PN结形成反向电动势,形成背离,阻碍离子交换,使PH探头108停止工作,并与被测液体隔离。从而使TDS值可以精确测试。
控制器101的预置时间根据实际的检测需要来设定,比如,预置时间的一个周期可以设定为第一时间段对PH值进行测试,第二时间段从PH值测试切换到TDS值测试,第三时间段对TDS值进行测试,第四时间段从TDS值测试切换到PH值测试。或者,也可以先测试TDS值,再测试PH值。各个时间段中测试时间的长短根据实际情况做相应的调整。
为了更清楚地说明预置时间中各个时间段内各回路的工作情况及探头的工作情况,设预置时间中一个采样工作周期为100ms,其中,第一时间段1ms至92ms为PH采样期,第二时间段93ms至94ms为切换期,第三时间段95ms至98ms为TDS采样期,第四时间段99ms至100ms为切换期,如图3所示。下面根据该列举的周期,对各个回路的具体工作情况进行说明:
第一时间段(1ms至92ms):如图4所示,单片机201将PH控制信号置高电平,TDS控制信号置为零电平,TDS检测信号1与TDS检测信号2置高电平。①、TDS控制信号置为零电平,使三极管Q3、Q4开路,三极管Q3与Q4的C极分别通过电阻与三极管Q1、Q2连接,有大于零电位,则三极管Q3、Q4的B极与C极背离,存在相应电动势,阻碍两端离子交换。②、TDS检测信号1与TDS检测信号2置高电平,液体点位小于此高电位,此电位差使P型三极管Q1、Q2的B极与E极的PN结背离,存在相应电动势,阻碍三极管Q1、Q2两端离子交换,同理二极管D1、D2背离,它们的PN结背离,存在相应电动势,阻碍两端离子交换。由上①②两点,TDS探头107在此状态下,完全从测试系统背离,无离子交换。③、PH控制信号输出高压电平,驱动MOS管Q5导通,单片机201可以通过PH放大跟随模块U1后采集到需要的PH数据。
第二时间段(93ms至94ms):TDS控制信号与PH控制信号均为低电平,单片机201停止采样信号,为系统切换及恢复时间。
第三时间段(95ms至98ms):如图5和图6所示,该时间段为TDS探头107进行数据的采样。
95ms至96ms,如图5所示,单片机201将PH控制信号置为零电平,TDS控制信号置为高电平,TDS测试信号1置为高电平,TDS测试信号2置为零电平。PH控制信号零电平驱动MOS管Q5关闭,使PH参考电极与测试系统断开,无电压输出。TDS控制信号驱动三极管Q3、Q4导通,三极管Q3与三极管Q4导通的C极为零电位。TDS测试信号1为高电平,TDS测试信号2置为零电平,测试电流从TDS测试信号1经过电阻R1、三极管Q1、TDS探头107、被测液体、二极管D2、电阻R8到TDS测试信号2。单片机201通过TDS检测信号口读取相关数据。
97ms至98ms,如图6所示,单片机201将PH控制信号置为零电平,TDS控制信号置为高电平,TDS测试信号2置为高电平,TDS测试信号1置为零电平。PH控制信号零电平驱动MOS管Q5关闭,使PH参考电极与测试系统断开,无电压输出。TDS控制信号驱动三极管Q3与三极管Q4导通,三极管Q3与三极管Q4导通的C极为零电位。TDS测试信号2为高电平,TDS测试信号1置为零电平,测试电流从TDS测试信号2经过电阻R8、三极管Q2、TDS探头107、被测液体、二极管D1、电阻R1到TDS测试信号1。单片机201通过TDS检测信号口读取相关数据。
根据95ms到98ms读取的相关数据,经过相应处理,可以得出液体对应的TDS值。
第四时间段(99ms至100ms):TDS控制信号与PH控制信号均为低电平,单片机201停止采样信号,为系统切换及恢复时间。
经过多次如上的周期测试,即可以得到对应液体的TDS值和PH值。
本发明的水质检测仪能够使TDS探头107和PH探头108分时工作,实现了同一产品能够同时测试PH值和TDS值,提高了产品的利用率,节约了成本,并且还提高了测试的精确度和测试效率。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种水质检测仪,其特征在于,包括控制器、第一控制回路、第二控制回路、第三控制回路、第一隔离回路、第二隔离回路、TDS探头和PH探头;
    所述控制器根据预置时间向所述第一控制回路、第二控制回路、第三控制回路、第一隔离回路和第二隔离回路输出电平信号,所述电平信号为高电平信号或者低电平信号,所述控制器还用于读取所述TDS探头和PH探头的数据;
    所述第一控制回路分别与所述控制器、所述第一隔离回路相连,用于在接收到所述控制器的高电平信号时,使所述第一控制回路导通;
    所述第二控制回路分别与所述控制器、所述第二隔离回路相连,用于在接收到所述控制器的高电平信号时,使所述第二控制回路导通;
    所述第一隔离回路分别与所述控制器、所述TDS探头的第一端相连,用于在接收到所述控制器的电平信号时,导通或关闭所述第一隔离回路;
    所述第二隔离回路分别与所述控制器、所述TDS探头的第二端相连,用于在接收到所述控制器的电平信号时,导通或关闭所述第二隔离回路;
    所述TDS探头将采集到的待测溶液中溶解性物质的数据输出到所述控制器;
    所述第三控制回路分别与所述控制器、所述PH探头的第一端相连,用于在接收到所述控制器的高电平信号时,使所述第三控制回路与所述PH探头之间的线路导通;
    所述PH探头的第二端与所述控制器相连,所述PH探头用于将采集到的待测溶液的PH数值输出到所述控制器。
  2. 根据权利要求1所述的水质检测仪,其特征在于,所述水质检测仪还包括PH放大跟随模块,所述PH放大跟随模块分别与所述控制器、所述PH探头的第二端相连,用于将采集到的PH数据信号进行放大。
  3. 根据权利要求2所述的水质检测仪,其特征在于,所述第三控制回路包括NPN型的三极管Q6、P沟道的MOS管Q5、电阻R9、电阻R10、电阻R11和电阻R12;
    所述三极管Q6的基极通过所述电阻R11与所述控制器相连,所述三极管Q6的集电极通过所述电阻R10、电阻R9与所述PH放大跟随模块的第一端相连,所述三极管Q6的发射极接地,所述三极管Q6的基极还通过所述电阻R12接地;
    所述MOS管Q5的栅极通过所述电阻R10与所述三极管Q6的集电极相连,所述MOS管Q5的源极与所述PH放大跟随模块的第一端相连,所述MOS管Q5的漏极与所述PH探头的第一端相连;
    所述PH放大跟随模块的第二端接所述PH探头的第二端,所述PH放大跟随模块的第三、第四端与所述控制器相连。
  4. 根据权利要求1所述的水质检测仪,其特征在于,所述第一控制回路包括电阻R3、电阻R4和NPN型的三极管Q3;
    所述三极管Q3的基极通过所述电阻R3与所述控制器相连,所述三极管Q3的集电极与所述第一隔离回路的一端相连,所述三极管Q3的发射极接地,所述三极管Q3的基极还通过所述电阻R4接地。
  5. 根据权利要求4所述的水质检测仪,其特征在于,所述第一隔离回路包括电阻R2、PNP型的三极管Q1和二极管D1;
    所述三极管Q1的基极通过所述电阻R2与所述三极管Q3的集电极相连,所述三极管Q1的集电极与所述TDS探头的第一端相连,所述三极管Q1的发射极与所述控制器相连;
    所述二极管D1的正极与所述TDS探头的第一端相连,所述二极管D1的负极与所述控制器相连。
  6. 根据权利要求1所述的水质检测仪,其特征在于,所述第二控制回路包括电阻R5、电阻R6和NPN型的三极管Q4;
    所述三极管Q4的基极通过所述电阻R6与所述控制器相连,所述三极管Q4的集电极与所述第二隔离回路的一端相连,所述三极管Q4的发射极接地,所述三极管Q4的基极还通过所述电阻R5接地。
  7. 根据权利要求6所述的水质检测仪,其特征在于,所述第二隔离回路包括电阻R7、PNP型的三极管Q2和二极管D2;
    所述三极管Q2的基极通过所述电阻R7与所述三极管Q4的集电极相连,所述三极管Q2的集电极与所述TDS探头的第二端相连,所述三极管Q2的发射极与所述控制器相连;
    所述二极管D2的正极与所述TDS探头的第二端相连,所述二极管D2的负极与所述控制器相连。
  8. 根据权利要求1所述的水质检测仪,其特征在于,所述水质检测仪还包括电阻R1和电阻R8;
    所述第一隔离回路通过所述电阻R1与所述控制器相连;
    所述第二隔离回路通过所述电阻R8与所述控制器相连。
  9. 根据权利要求1所述的水质检测仪,其特征在于,所述控制器为单片机。
PCT/CN2016/103050 2016-08-19 2016-10-24 一种水质检测仪 WO2018032602A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610692271.7A CN106153847B (zh) 2016-08-19 2016-08-19 一种水质检测仪
CN201610692271.7 2016-08-19

Publications (1)

Publication Number Publication Date
WO2018032602A1 true WO2018032602A1 (zh) 2018-02-22

Family

ID=57331430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/103050 WO2018032602A1 (zh) 2016-08-19 2016-10-24 一种水质检测仪

Country Status (2)

Country Link
CN (1) CN106153847B (zh)
WO (1) WO2018032602A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109406584B (zh) * 2018-12-06 2024-05-10 深圳市深舍传感科技有限公司 一种双通道数字tds传感器及其实现方法
CN111198518B (zh) * 2019-10-30 2022-04-22 浙江苏泊尔家电制造有限公司 烹饪器具和烹饪器具的控制方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050207939A1 (en) * 2003-12-05 2005-09-22 Christopher Roussi Water-quality assessment system
CN201828538U (zh) * 2010-07-16 2011-05-11 深圳市凯利博实业有限公司 游泳池水质的pH和余氯检测装置
CN102565144A (zh) * 2011-01-04 2012-07-11 上海仪迈仪器科技有限公司 在同一溶液中同时进行电导率和ph值测量的实现装置
CN103675023A (zh) * 2012-09-12 2014-03-26 珠海格力电器股份有限公司 Tds的检测电路和检测方法
CN104020266A (zh) * 2014-05-19 2014-09-03 苏州国华环境技术有限公司 一种基于智能终端的在线水质监测系统
CN203858235U (zh) * 2014-04-28 2014-10-01 深圳市妙联科技开发有限责任公司 一种无土栽培培养液参数检测装置
CN204154674U (zh) * 2014-10-28 2015-02-11 珠海市茂田科技有限公司 一种盐度、电导率测量装置
CN204188203U (zh) * 2014-11-11 2015-03-04 苏州优康泰电气有限公司 水质在线测试仪表
US20150226721A1 (en) * 2014-02-10 2015-08-13 Yun-Ho Son Pen type of apparatus for measuring multiple water qualities
CN105044155A (zh) * 2015-06-24 2015-11-11 中山欧麦克仪器设备有限公司 一种集成了pH、盐度、溶解氧的多参数传感器
CN205003137U (zh) * 2015-09-18 2016-01-27 泰州市正大科教仪器设备厂 无土栽培培养液参数检测装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202939149U (zh) * 2012-11-27 2013-05-15 上海出入境检验检疫局工业品与原材料检测技术中心 一种多通道pH值测试装置
CN103174462B (zh) * 2013-02-05 2015-03-04 中国矿业大学 透水水源实时监测识别装置及方法
CN204903519U (zh) * 2015-07-20 2015-12-23 厦门市科宁沃特水处理科技股份有限公司 一体化水质检测设备

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050207939A1 (en) * 2003-12-05 2005-09-22 Christopher Roussi Water-quality assessment system
CN201828538U (zh) * 2010-07-16 2011-05-11 深圳市凯利博实业有限公司 游泳池水质的pH和余氯检测装置
CN102565144A (zh) * 2011-01-04 2012-07-11 上海仪迈仪器科技有限公司 在同一溶液中同时进行电导率和ph值测量的实现装置
CN103675023A (zh) * 2012-09-12 2014-03-26 珠海格力电器股份有限公司 Tds的检测电路和检测方法
US20150226721A1 (en) * 2014-02-10 2015-08-13 Yun-Ho Son Pen type of apparatus for measuring multiple water qualities
CN203858235U (zh) * 2014-04-28 2014-10-01 深圳市妙联科技开发有限责任公司 一种无土栽培培养液参数检测装置
CN104020266A (zh) * 2014-05-19 2014-09-03 苏州国华环境技术有限公司 一种基于智能终端的在线水质监测系统
CN204154674U (zh) * 2014-10-28 2015-02-11 珠海市茂田科技有限公司 一种盐度、电导率测量装置
CN204188203U (zh) * 2014-11-11 2015-03-04 苏州优康泰电气有限公司 水质在线测试仪表
CN105044155A (zh) * 2015-06-24 2015-11-11 中山欧麦克仪器设备有限公司 一种集成了pH、盐度、溶解氧的多参数传感器
CN205003137U (zh) * 2015-09-18 2016-01-27 泰州市正大科教仪器设备厂 无土栽培培养液参数检测装置

Also Published As

Publication number Publication date
CN106153847A (zh) 2016-11-23
CN106153847B (zh) 2018-07-03

Similar Documents

Publication Publication Date Title
Shepherd et al. A novel voltage-clamped CMOS ISFET sensor interface
WO2018032602A1 (zh) 一种水质检测仪
TW200424518A (en) Ion-sensitive circuit
JPS62237349A (ja) 水素イオン濃度分布測定装置
WO2018035931A1 (zh) 蓄电池端电压检测装置
CN206362890U (zh) 电力电子开关器件结温在线监测装置、检测电路
CN115825518A (zh) 一种高精度通用型电流测量装置
CN106443128A (zh) 一种飞安级微弱电流信号测量电路
WO2018035932A1 (zh) 蓄电池巡检装置
WO2017114319A1 (zh) 一种双传感器信号采集电路
CN207780103U (zh) 一种用于电池化成电源的电压采样电路
CN107356856A (zh) 一种三通道电压反馈式vdmos器件单粒子效应高精度检测装置
TW200834516A (en) Circuit and method for matching current channels
CN103743934B (zh) 高精度高边电流检测电路
CN105044536A (zh) 一种新型的封装缺陷检测方法和系统
CN111257718A (zh) 一种测量mosfet功率模块热阻的装置和方法
CN105356880B (zh) 一路模数采集通道采集双路传感器数据的电路
CN204694799U (zh) 一种新型的封装检测系统
CN109282856A (zh) 一种同时检测温度/电压/电流信号的单芯片传感器
CN211348397U (zh) 一种便携式开路电压和短路电流检测装置
CN116679113A (zh) 一种基于tmr的电流检测电路
CN113805030B (zh) 一种基于单片机的晶体管参数智能检测系统
CN206892190U (zh) 一种直流绝缘监测仪
CN108345343B (zh) 一种双向电流检测电路
CN215728641U (zh) 一种同步整流二极管动静态测试电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16913357

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/06/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16913357

Country of ref document: EP

Kind code of ref document: A1