WO2016000088A1 - Procédé d'extraction de gamme d'ondes hyperspectrales selon un procédé de coefficient de corrélation de facteur d'indice optimal - Google Patents

Procédé d'extraction de gamme d'ondes hyperspectrales selon un procédé de coefficient de corrélation de facteur d'indice optimal Download PDF

Info

Publication number
WO2016000088A1
WO2016000088A1 PCT/CN2014/000676 CN2014000676W WO2016000088A1 WO 2016000088 A1 WO2016000088 A1 WO 2016000088A1 CN 2014000676 W CN2014000676 W CN 2014000676W WO 2016000088 A1 WO2016000088 A1 WO 2016000088A1
Authority
WO
WIPO (PCT)
Prior art keywords
index
correlation coefficient
data
band
bands
Prior art date
Application number
PCT/CN2014/000676
Other languages
English (en)
Chinese (zh)
Inventor
程志庆
张劲松
郑宁
王鹤松
李春友
Original Assignee
中国林业科学研究院林业研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国林业科学研究院林业研究所 filed Critical 中国林业科学研究院林业研究所
Publication of WO2016000088A1 publication Critical patent/WO2016000088A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands

Definitions

  • the invention relates to the field of spectral data processing, in particular to a method for extracting a hyperspectral remote sensing band.
  • Hyperspectral technology is the use of light from objects Spectral characteristics, the spectral information of the object is obtained by a high-resolution spectroscopic instrument, and the characteristic band of the object is analyzed by means of analysis Extract and distinguish to obtain useful spectral information. Due to the high resolution of the hyperspectral, the amount of data obtained is large and More redundant information, therefore, the ability to extract useful spectral information from hyperspectral data for hyperspectral techniques has Great significance.
  • the main analytical tool is to reduce the spectral information and extract the useful band.
  • the correlation coefficient analysis method is more commonly used and applied to remote sensing image processing.
  • the Optimum Index Factor can obtain the band combination with the most information. It has the advantages of rich information and small redundancy of band information, which can provide important reference for hyperspectral data processing. Comprehensive In addition, if the above two methods can be combined, it will be beneficial to improve the detection and simulation capabilities of hyperspectral data.
  • the object of the present invention is to overcome the conventional hyperspectral data band selection method and use a single band to meet the target requirements. Inversion is very susceptible to interference from other factors, and the use of multiple bands lacks the relationship between each band and the target. A method for selecting a band of hyperspectral remote sensing data is provided.
  • the invention comprises the following steps: a method for extracting hyperspectral bands based on an optimal exponential-correlation coefficient method, including the following step:
  • Step A Sort and sort the original hyperspectral data. The specific steps are as follows:
  • the unwanted information in the single raw hyperspectral data obtained is removed, and then the reflectivity of all the individual data is The data is integrated into the same file as the basic database for the following processing;
  • Step B Perform the optimal index calculation process after classifying and sorting the original hyperspectral data.
  • the specific method is as follows:
  • the optimal combination band needs to select three relevant bands for calculation at the same time, and the best index OIF is used as the evaluation index of the optimized combination.
  • the calculation formula is: Where: S i is the standard deviation of any i-band of the three bands, R ij is the correlation coefficient of any i and j bands of the three bands, and r is the combination number of any i and j bands;
  • Step C The 3-band correlation coefficient is simultaneously selected to calculate the maximum value, and the calculation method is as follows:
  • R std Rr std , where: R std is the correlation coefficient evaluation index of the 3 bands. The larger the R stf is, the larger the correlation coefficient values of the three bands are at the same time; R is the sum of the three bands and the target data, and r std is the standard deviation of the correlation coefficient between each of the three bands and the target data;
  • Step D Using the calculation method of the commercial power index to establish a comprehensive index evaluation system for the best index and correlation coefficient of the data, And on this basis, the selection of the hyperspectral band is as follows:
  • the calculation method of the commercial power index is to use the best index calculation result and the correlation coefficient calculation result as the two input index values.
  • Negative indicator data optimization processing formula is where: r ij ′ is the optimization index evaluation value of the i-th item under the j-th index, and max(r ij ) and min(r ij ) are the maximum and minimum values of the optimization index evaluation of all i items in the j-th index;
  • L 1 is the selection index of the hyperspectral band extraction method based on the optimal exponential-correlation coefficient method.
  • this experiment selects 5 nm interval hyperspectral data for processing and analysis, with 108 Spectral samples are modeled.
  • the measured data of chlorophyll data is directly observed by instruments, and the observation instrument is Konica's SPAD. Type chlorophyll meter.
  • Spectral data is processed by Matlab R2012b programming, and the extracted band is used to minimize the second Multiplication is used for regression analysis, and the accuracy ratio is compared with the regression model obtained by using the best index method or the correlation coefficient method alone. Compared.
  • the OIF value of the three-band combination of Figure 1, 2 is obtained by calculating the optimal index (OIF) of the pre-processed spectral data, OIF
  • the maximum value is mainly distributed in three band intervals: the first band is located at 740nm-1115nm, and the second band is located at 1850nm-1860nm, the third band is located at 1930nm-2010nm.
  • the three-band combination of the maximum values obtained by the OIF algorithm is: 745 nm, 1860 nm, 1950 nm and 750 nm, 1860 nm, 1950 nm.
  • the numbers are -0.679 and -0.692, respectively, and the bands with the largest correlation coefficients in the two groups are: 696 nm (correlation coefficient -0.728) And 1890nm (correlation coefficient -0.775); chlorophyll content and its original spectral reflectance at the 740-1140nm band Significant positive correlation, but the correlation coefficient is small, where the position correlation coefficient is the largest at 770 nm (correlation coefficient is 0.46). Studies have shown that the main absorption peak of chlorophyll is blue and red light, and in the green light area is absorption low. Therefore in the selection of the relationship When modeling the number of chlorophyll, the band with the largest correlation coefficient between 350 nm and 800 nm is used at 696 nm.
  • the model of the various methods obtained in Table 1 and the decision coefficients of the model show that the decision method of the selected three methods is The number has reached extremely significant, and the coefficient of determination from large to small is OIFC>OIF>MCC, and the 3-band pass obtained by the OIFC method.
  • the coefficient of determination for PLS modeling reached 0.739, which was 0.027 and 0.1383 higher than OIF and MCC, respectively.
  • the verification data randomly selected 22 sets of measured data in different growth periods of wheat to predict the predicted values of the above five groups of models. Line verification ( Figure 6).
  • the predicted values of the three sets of models have a significant linear correlation with the measured values.
  • the model prediction effect established by the extraction band of the invention has high precision.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Complex Calculations (AREA)

Abstract

La présente invention concerne un procédé d'extraction de gamme d'ondes hyperspectrales selon un procédé de coefficient de corrélation de facteur d'indice, comprenant les étapes suivantes : étape A : effectuer un traitement tel que le tri et l'organisation de données originales hyperspectrales ; étape B : effectuer un calcul de facteur d'indice optimal après le tri et l'organisation des données originales hyperspectrales ; étape C : calculer les 3 coefficients de corrélation de gamme d'ondes maximum ; étape D : sélectionner une gamme d'ondes hyperspectrales en fonction du calcul de facteur d'indice optimum, du calcul de corrélation et du calcul d'indice quotient-poids des données. Le procédé résout les défauts d'un procédé classique de sélection de gamme d'ondes de données hyperspectrales sensible à une interférence provenant d'autres facteurs en cas d'inversion d'une exigence cible à l'aide d'une seule gamme d'ondes et d'absence d'une relation entre chaque gamme d'ondes et une cible lors de l'utilisation d'une multibande.
PCT/CN2014/000676 2014-07-02 2014-07-16 Procédé d'extraction de gamme d'ondes hyperspectrales selon un procédé de coefficient de corrélation de facteur d'indice optimal WO2016000088A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410310957.6 2014-07-02
CN201410310957.6A CN104122210B (zh) 2014-07-02 2014-07-02 一种基于最佳指数‑相关系数法的高光谱波段提取方法

Publications (1)

Publication Number Publication Date
WO2016000088A1 true WO2016000088A1 (fr) 2016-01-07

Family

ID=51767707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/000676 WO2016000088A1 (fr) 2014-07-02 2014-07-16 Procédé d'extraction de gamme d'ondes hyperspectrales selon un procédé de coefficient de corrélation de facteur d'indice optimal

Country Status (2)

Country Link
CN (1) CN104122210B (fr)
WO (1) WO2016000088A1 (fr)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109460712A (zh) * 2018-10-12 2019-03-12 西北工业大学 一种基于最优近邻重构的高光谱波段选择方法
CN109521437A (zh) * 2018-12-05 2019-03-26 武汉大学 面向植被生化参数探测的多光谱激光雷达波长选择方法
CN109657653A (zh) * 2019-01-21 2019-04-19 安徽大学 一种基于成像高光谱数据的小麦籽粒赤霉病识别方法
CN110309822A (zh) * 2019-06-18 2019-10-08 哈尔滨工程大学 基于量子进化粒子群算法的高光谱图像波段选择方法
CN111145276A (zh) * 2019-12-18 2020-05-12 河南大学 基于深度学习和分布式信源编码的高光谱图像压缩方法
CN111161362A (zh) * 2020-01-15 2020-05-15 昆山小茶智能科技有限公司 一种茶树生长状态光谱影像鉴别方法
CN111709637A (zh) * 2020-06-11 2020-09-25 中国科学院西安光学精密机械研究所 一种光谱曲线受干扰程度的定性分析方法
CN112163523A (zh) * 2020-09-29 2021-01-01 北京环境特性研究所 一种异常目标检测方法、装置和计算机可读介质
CN112858178A (zh) * 2021-01-11 2021-05-28 武汉大学 一种航空热红外高光谱影像温度和发射率反演方法
CN113063739A (zh) * 2021-02-25 2021-07-02 北京麦飞科技有限公司 一种基于机载高光谱传感器的水稻冠层氮含量监测方法
CN113075129A (zh) * 2021-02-07 2021-07-06 浙江师范大学 一种基于近邻子空间划分高光谱影像波段选择方法及系统
CN113155747A (zh) * 2021-01-15 2021-07-23 西安科技大学 一种构建分数阶微分光谱指数及其监测小麦条锈病的方法
CN113156452A (zh) * 2021-04-07 2021-07-23 中国空间技术研究院 一种星载差分吸收激光雷达co2廓线探测最优波段确定方法
CN113496218A (zh) * 2021-07-27 2021-10-12 浙江省淡水水产研究所 一种高光谱遥感敏感波段选择方式的评价方法和系统
CN114136445A (zh) * 2021-12-03 2022-03-04 江苏天汇空间信息研究院有限公司 一种提高无人机机载高光谱辐射校正精度的方法
WO2023087630A1 (fr) * 2021-11-22 2023-05-25 浙江大学 Procédé d'estimation de la salinité du sol de terre agricole à résidus de paille à l'aide d'un indice de construction de détection à distance
CN116297530A (zh) * 2023-05-19 2023-06-23 广东正一包装股份有限公司 基于光学技术的阻隔膜表面质量检测方法
CN116341223A (zh) * 2022-12-07 2023-06-27 南京农业大学 一种基于新型三波段光谱指数的水稻穗腐病病情严重度估算方法
CN117853931A (zh) * 2024-03-04 2024-04-09 中国铁路设计集团有限公司 基于最近邻距离的高光谱图像孤立异常检测方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107421895A (zh) * 2017-06-30 2017-12-01 中国水利水电科学研究院 一种多波段优化组合的水质参数浓度反演方法和装置
CN108280419B (zh) * 2018-01-18 2020-06-30 中国地质科学院矿产资源研究所 一种空间特征检测方法及系统
CN111077093A (zh) * 2020-01-10 2020-04-28 安徽理工大学 一种基于多光谱技术的煤矸石快速检测的方法与装置
CN111539409B (zh) * 2020-04-09 2022-10-14 武汉大学 一种基于高光谱遥感技术的古墓题记文字识别方法
CN111507312A (zh) * 2020-05-26 2020-08-07 长江勘测规划设计研究有限责任公司 基于高光谱数据的土壤水分提取方法
CN112525346B (zh) * 2020-12-03 2022-10-11 安徽理工大学 一种基于改进oif的光谱图像最佳波段的选择方法、系统及存储介质
CN112378866A (zh) * 2021-01-18 2021-02-19 航天宏图信息技术股份有限公司 水质参数反演模型的训练方法、水质监测方法及装置
CN113177488A (zh) * 2021-05-07 2021-07-27 华北理工大学 基于最佳指数波段组合的高光谱图像波段选择方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101131734A (zh) * 2007-06-25 2008-02-27 北京航空航天大学 适用于高光谱遥感图像的自动波段选择方法
CN101859383A (zh) * 2010-06-08 2010-10-13 河海大学 基于时间序列重要点分析的高光谱遥感图像波段选择方法
CN103150577A (zh) * 2013-03-26 2013-06-12 河海大学 基于粒子群优化的高光谱遥感影像自适应波段选择方法
CN103268502A (zh) * 2013-06-05 2013-08-28 中国科学院对地观测与数字地球科学中心 高光谱图像波段选择方法及装置
US20140029793A1 (en) * 2012-07-30 2014-01-30 Wei Chen Method of optimal out-of-band correction for multispectral remote sensing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101131734A (zh) * 2007-06-25 2008-02-27 北京航空航天大学 适用于高光谱遥感图像的自动波段选择方法
CN101859383A (zh) * 2010-06-08 2010-10-13 河海大学 基于时间序列重要点分析的高光谱遥感图像波段选择方法
US20140029793A1 (en) * 2012-07-30 2014-01-30 Wei Chen Method of optimal out-of-band correction for multispectral remote sensing
CN103150577A (zh) * 2013-03-26 2013-06-12 河海大学 基于粒子群优化的高光谱遥感影像自适应波段选择方法
CN103268502A (zh) * 2013-06-05 2013-08-28 中国科学院对地观测与数字地球科学中心 高光谱图像波段选择方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DONG, GUANGJUN ET AL.: "Image Fusion for Hyperspectral Date of PHI and High-Resolution Aerial Image", JOURNAL OF INFRARED AND MILLIMETER WAVES, vol. 25, no. 2, 30 April 2006 (2006-04-30), pages 124 - 126, XP055249933 *

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109460712B (zh) * 2018-10-12 2024-01-12 西北工业大学 一种基于最优近邻重构的高光谱波段选择方法
CN109460712A (zh) * 2018-10-12 2019-03-12 西北工业大学 一种基于最优近邻重构的高光谱波段选择方法
CN109521437A (zh) * 2018-12-05 2019-03-26 武汉大学 面向植被生化参数探测的多光谱激光雷达波长选择方法
CN109521437B (zh) * 2018-12-05 2023-07-21 武汉大学 面向植被生化参数探测的多光谱激光雷达波长选择方法
CN109657653A (zh) * 2019-01-21 2019-04-19 安徽大学 一种基于成像高光谱数据的小麦籽粒赤霉病识别方法
CN109657653B (zh) * 2019-01-21 2022-10-04 安徽大学 一种基于成像高光谱数据的小麦籽粒赤霉病识别方法
CN110309822A (zh) * 2019-06-18 2019-10-08 哈尔滨工程大学 基于量子进化粒子群算法的高光谱图像波段选择方法
CN110309822B (zh) * 2019-06-18 2022-09-27 哈尔滨工程大学 基于量子进化粒子群算法的高光谱图像波段选择方法
CN111145276A (zh) * 2019-12-18 2020-05-12 河南大学 基于深度学习和分布式信源编码的高光谱图像压缩方法
CN111145276B (zh) * 2019-12-18 2023-03-24 河南大学 基于深度学习和分布式信源编码的高光谱图像压缩方法
CN111161362B (zh) * 2020-01-15 2024-02-09 苏州伙伴实验设备有限公司 一种茶树生长状态光谱影像鉴别方法
CN111161362A (zh) * 2020-01-15 2020-05-15 昆山小茶智能科技有限公司 一种茶树生长状态光谱影像鉴别方法
CN111709637B (zh) * 2020-06-11 2023-08-22 中国科学院西安光学精密机械研究所 一种光谱曲线受干扰程度的定性分析方法
CN111709637A (zh) * 2020-06-11 2020-09-25 中国科学院西安光学精密机械研究所 一种光谱曲线受干扰程度的定性分析方法
CN112163523A (zh) * 2020-09-29 2021-01-01 北京环境特性研究所 一种异常目标检测方法、装置和计算机可读介质
CN112858178A (zh) * 2021-01-11 2021-05-28 武汉大学 一种航空热红外高光谱影像温度和发射率反演方法
CN113155747B (zh) * 2021-01-15 2022-12-06 西安科技大学 一种构建分数阶微分光谱指数及其监测小麦条锈病的方法
CN113155747A (zh) * 2021-01-15 2021-07-23 西安科技大学 一种构建分数阶微分光谱指数及其监测小麦条锈病的方法
CN113075129B (zh) * 2021-02-07 2023-03-31 浙江师范大学 一种基于近邻子空间划分高光谱影像波段选择方法及系统
CN113075129A (zh) * 2021-02-07 2021-07-06 浙江师范大学 一种基于近邻子空间划分高光谱影像波段选择方法及系统
CN113063739A (zh) * 2021-02-25 2021-07-02 北京麦飞科技有限公司 一种基于机载高光谱传感器的水稻冠层氮含量监测方法
CN113156452A (zh) * 2021-04-07 2021-07-23 中国空间技术研究院 一种星载差分吸收激光雷达co2廓线探测最优波段确定方法
CN113496218B (zh) * 2021-07-27 2023-10-24 浙江省淡水水产研究所 一种高光谱遥感敏感波段选择方式的评价方法和系统
CN113496218A (zh) * 2021-07-27 2021-10-12 浙江省淡水水产研究所 一种高光谱遥感敏感波段选择方式的评价方法和系统
WO2023087630A1 (fr) * 2021-11-22 2023-05-25 浙江大学 Procédé d'estimation de la salinité du sol de terre agricole à résidus de paille à l'aide d'un indice de construction de détection à distance
CN114136445A (zh) * 2021-12-03 2022-03-04 江苏天汇空间信息研究院有限公司 一种提高无人机机载高光谱辐射校正精度的方法
CN116341223B (zh) * 2022-12-07 2024-01-16 南京农业大学 一种基于新型三波段光谱指数的水稻穗腐病病情严重度估算方法
CN116341223A (zh) * 2022-12-07 2023-06-27 南京农业大学 一种基于新型三波段光谱指数的水稻穗腐病病情严重度估算方法
CN116297530B (zh) * 2023-05-19 2023-07-25 广东正一包装股份有限公司 基于光学技术的阻隔膜表面质量检测方法
CN116297530A (zh) * 2023-05-19 2023-06-23 广东正一包装股份有限公司 基于光学技术的阻隔膜表面质量检测方法
CN117853931A (zh) * 2024-03-04 2024-04-09 中国铁路设计集团有限公司 基于最近邻距离的高光谱图像孤立异常检测方法
CN117853931B (zh) * 2024-03-04 2024-05-14 中国铁路设计集团有限公司 基于最近邻距离的高光谱图像孤立异常检测方法

Also Published As

Publication number Publication date
CN104122210B (zh) 2017-01-25
CN104122210A (zh) 2014-10-29

Similar Documents

Publication Publication Date Title
WO2016000088A1 (fr) Procédé d'extraction de gamme d'ondes hyperspectrales selon un procédé de coefficient de corrélation de facteur d'indice optimal
Shiklomanov et al. Quantifying the influences of spectral resolution on uncertainty in leaf trait estimates through a Bayesian approach to RTM inversion
Jin et al. Comparison of different satellite bands and vegetation indices for estimation of soil organic matter based on simulated spectral configuration
CN105630743B (zh) 一种光谱波数的选择方法
US10481081B2 (en) Texture analysis of a coated surface using pivot-normalization
US20210404952A1 (en) Method for selection of calibration set and validation set based on spectral similarity and modeling
CN107679569A (zh) 基于自适应超图算法的拉曼光谱物质自动识别方法
CN106596450A (zh) 基于红外光谱分析物质成分含量的增量式方法
CN106951720A (zh) 基于典型相关性分析及线性插值的土壤养分模型转移方法
CN108802002B (zh) 一种快速无损鉴别解除滞育的蚕卵拉曼光谱模型构建方法
CN109870419B (zh) 一种采用航空高光谱数据预测黑土氮磷钾含量的方法
Liu et al. Identification of heat damage in imported soybeans based on hyperspectral imaging technology
CN106770005A (zh) 一种用于近红外光谱分析的校正集和验证集的划分方法
WO2023207453A1 (fr) Procédé et système d'analyse d'ingrédients de médecine chinoise traditionnelle basés sur une classification spectrale
Beguet et al. Retrieving forest structure variables from very high resolution satellite images using an automatic method
CN113570538A (zh) 一种叶片rgb图像偏态分布参数信息采集及分析方法
CN106323466A (zh) 一种连续小波变换分析的叶片氮含量高光谱估算方法
CN109991174A (zh) 一种高光谱相机与普通光谱仪之间的模型转移方法
CN109932335A (zh) 一种用于植物中天然橡胶含量测定的方法及测定用led近红外光谱仪
He et al. Estimation of leaf chlorophyll content in winter wheat using variable importance for projection (VIP) with hyperspectral data
Poona et al. Reducing hyperspectral data dimensionality using random forest based wrappers
CN105651727B (zh) 基于jade和elm的近红外光谱分析鉴别苹果货架期的方法
Priedītis et al. Assessment of hyperspectral data analysis methods to classify tree species.
CN104181125A (zh) 快速测定啤酒麦芽中库尔巴哈值的方法
CN108777019B (zh) 一种近红外光谱模型转移策略优选方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14896432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14896432

Country of ref document: EP

Kind code of ref document: A1