WO2015199154A1 - IMPROVED Fc-BINDING PROTEIN, METHOD FOR PRODUCING SAID PROTEIN, ANTIBODY ADSORBENT USING SAID PROTEIN, AND METHOD FOR SEPARATING ANTIBODY USING SAID ADSORBENT - Google Patents

IMPROVED Fc-BINDING PROTEIN, METHOD FOR PRODUCING SAID PROTEIN, ANTIBODY ADSORBENT USING SAID PROTEIN, AND METHOD FOR SEPARATING ANTIBODY USING SAID ADSORBENT Download PDF

Info

Publication number
WO2015199154A1
WO2015199154A1 PCT/JP2015/068259 JP2015068259W WO2015199154A1 WO 2015199154 A1 WO2015199154 A1 WO 2015199154A1 JP 2015068259 W JP2015068259 W JP 2015068259W WO 2015199154 A1 WO2015199154 A1 WO 2015199154A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
replaced
binding protein
amino acid
antibody
Prior art date
Application number
PCT/JP2015/068259
Other languages
French (fr)
Japanese (ja)
Inventor
朝岡義晴
田中亨
寺尾陽介
山中直紀
木津奈都子
青木大
井出輝彦
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014147207A external-priority patent/JP6451119B2/en
Priority claimed from JP2014147206A external-priority patent/JP6451118B2/en
Priority claimed from JP2015115078A external-priority patent/JP6699096B2/en
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Priority to CN201580045734.4A priority Critical patent/CN106574261B/en
Priority to EP15811514.7A priority patent/EP3162895B1/en
Priority to US15/321,916 priority patent/US10815289B2/en
Publication of WO2015199154A1 publication Critical patent/WO2015199154A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/22Affinity chromatography or related techniques based upon selective absorption processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86

Definitions

  • the present invention relates to an Fc binding protein having affinity for immunoglobulin. More specifically, the present invention relates to an Fc-binding protein having higher stability against heat and acid than wild type, a method for producing the protein, an antibody adsorbent obtained by immobilizing the protein on an insoluble carrier, and the adsorbent. The present invention relates to a method for separating an antibody using.
  • Fc receptors are a group of molecules that bind to the Fc region of immunoglobulin molecules. Individual molecules recognize a single or the same group of immunoglobulin isotypes by a recognition domain on the Fc receptor by a recognition domain belonging to the immunoglobulin superfamily. This determines which accessory cells are driven in the immune response. Fc receptors can be further classified into several subtypes, such as Fc ⁇ receptors that are receptors for IgG (immunoglobulin G), Fc ⁇ receptors that bind to the Fc region of IgE, Fc ⁇ receptors that bind to the Fc region of IgA, etc. There is. Each receptor is further classified, and Fc ⁇ receptors have been reported to include Fc ⁇ RI, Fc ⁇ RIIa, Fc ⁇ RIIb, Fc ⁇ RIIIa, and Fc ⁇ RIIIb (Non-patent Document 1).
  • Fc ⁇ RIIIa is present on the surface of natural killer cells (NK cells) and macrophages and is an important receptor involved in ADCC (antibody-dependent cellular cytotoxicity) activity, which is important in the human immune system. It is.
  • the Fc ⁇ RIIIa and affinity for human IgG has been reported that binding constant indicates the strength of the bond (KA) is 10 7 M -1 or less (Non-Patent Document 2).
  • the amino acid sequence of human Fc ⁇ RIIIa (SEQ ID NO: 1) is published in public databases such as UniProt (Accession number: P08637).
  • FIG. 1 shows a schematic diagram of the structure of human Fc ⁇ RIIIa.
  • the number in FIG. 1 has shown the amino acid number, and the number respond
  • antibody drugs drugs containing antibodies
  • the antibody used for the antibody drug is purified to high purity using column chromatography after culturing cells capable of expressing the antibody (for example, Chinese hamster ovary (CHO) cells) obtained by genetic engineering techniques.
  • cells capable of expressing the antibody for example, Chinese hamster ovary (CHO) cells
  • CHO Chinese hamster ovary
  • Non-Patent Document 3 As a method for analyzing the molecular structure of an antibody used for an antibody drug, conventionally, LC-MS analysis (Non-Patent Document 3) including peptide mapping, analysis by two-dimensional electrophoresis, and glycan excision has been performed.
  • both methods involve very complicated operations.
  • chromatographic analysis can be mentioned. Specifically, it is possible to separate and quantify aggregates and degradation products by separating antibodies based on molecular weight using gel filtration chromatography. In addition, the difference in charge of antibody molecules can be separated by ion exchange chromatography.
  • the above-described chromatographic analysis has limited results because the minute structural changes of antibody molecules cannot be identified.
  • Patent Document 1 and Non-Patent Document 4 analysis by affinity chromatography among chromatographies can be performed based on the affinity between an affinity ligand immobilized on an insoluble carrier and an antibody. Therefore, minute structural changes of the antibody molecule can be identified (Patent Document 1 and Non-Patent Document 4).
  • Patent Document 1 and Non-Patent Document 4 it is practically difficult to separate antibody molecules on an industrial scale using the methods described in Patent Document 1 and Non-Patent Document 4, and improvements have been desired.
  • ADCC antibody-dependent cytotoxicity
  • ADCC activity In antibody medicine, the strength of ADCC activity possessed by an antibody is important.
  • antibody drugs are usually produced using genetic recombination techniques using animal cells as hosts, and because glycosylation in the host cannot be controlled, antibodies with a certain ADCC activity are expressed. It is difficult. In addition, it takes a lot of time and effort to separate antibodies from the expressed antibodies based on the strength of ADCC activity.
  • An object of the present invention is to provide an Fc-binding protein having improved stability to heat and acid, a method for producing the protein, and an antibody adsorbent using the protein.
  • Another object of the present invention is to provide a method for separating antibodies in a simple and highly efficient manner based on the difference in molecular structure in a method for separating antibodies using a carrier on which an affinity ligand is immobilized. is there.
  • Still another object of the present invention is to provide a method for separating antibodies based on the strength of antibody-dependent cytotoxic activity.
  • the present inventors have identified an amino acid residue involved in stability improvement in human Fc ⁇ RIIIa, and a mutant in which the amino acid residue is substituted with another amino acid residue, It has been found that it has excellent stability against heat and acid, and the present invention has been completed.
  • the present inventors add a certain concentration of chloride ion or sulfate ion to the equilibration solution of the column packed with the insoluble carrier on which the affinity ligand is immobilized. As a result, it was found that the resolution of the antibody was improved, and the present invention was completed.
  • the present inventors have used antibody-dependent cell cytotoxicity (ADCC) by using an adsorbent obtained by immobilizing an Fc-binding protein on an insoluble carrier.
  • ADCC antibody-dependent cell cytotoxicity
  • the amino acid sequence of SEQ ID NO: 37 comprises the amino acid residues from the 33rd to the 208th, and the amino acid residues from the 33rd to the 208th of the following (1) to (84) An Fc binding protein wherein at least one amino acid substitution has occurred.
  • the 117th glutamine in SEQ ID NO: 37 is replaced with leucine (44)
  • the 119th glutamic acid in SEQ ID NO: 37 is replaced with valine (45) 121 of SEQ ID NO: 37
  • the histidine is replaced with arginine (46)
  • the 130th proline of SEQ ID NO: 37 is replaced with leucine (47)
  • the 135th lysine of SEQ ID NO: 37 is replaced with tyrosine (48)
  • the 136th glutamic acid of SEQ ID NO: 37 is valine (49)
  • the 141st histidine of SEQ ID NO: 37 is replaced with glutamine (50)
  • the 146th serine of SEQ ID NO: 37 is replaced with threonine (51)
  • the 154th lysine of SEQ ID NO: 37 is replaced with arginine (52)
  • the 159th glutamine of SEQ ID NO: 37 was replaced with histidine (53)
  • SEQ ID NO: 3 The 163rd
  • (M) A polynucleotide encoding the Fc-binding protein according to any one of (A) to (D).
  • (R) a step of equilibrating the column by adding an equilibration solution to a column packed with an insoluble carrier on which an Fc-binding protein is immobilized; and adding a solution containing an antibody to the equilibrated column,
  • An antibody separation method comprising a step of adsorbing on the carrier and a step of eluting the antibody adsorbed on the carrier using an eluent, wherein the equilibration solution contains chloride ions or sulfate ions of 30 mM or more. Including the separation method.
  • the Fc-binding protein of the present invention is a protein having a binding property to the Fc region of an antibody, and at least of the extracellular region (EC region of FIG. 1) of human Fc ⁇ RIIIa comprising the amino acid sequence set forth in SEQ ID NO: 1.
  • the extracellular region (C in FIG. 1) and the extracellular region (C in FIG. 1) may be included.
  • the amino acid substitution at the specific position is, in the amino acid sequence shown in SEQ ID NO: 1, Val27Glu (in this notation, the 27th valine of SEQ ID NO: 1 (43th in SEQ ID NO: 37) is substituted with glutamic acid.
  • mutants in which any one or more amino acid substitutions are known among Leu66His, Leu66Arg, Gly147Asp, Tyr158His, and Val176Phe are known.
  • An amino acid substitution may be included.
  • the amino acid residue at a specific position may be substituted with an amino acid other than those described above as long as it has antibody binding activity.
  • One example is a conservative substitution that substitutes between amino acids whose physical and / or chemical properties of both amino acids are similar. Conservative substitutions are not limited to Fc-binding proteins, and are generally known to those skilled in the art to maintain protein function between those with substitutions and those without substitutions. Examples of conservative substitutions include substitutions that occur between glycine and alanine, between aspartic acid and glutamic acid, between serine and proline, or between glutamic acid and alanine (protein structure and function, Medical Science International, 9 2005).
  • the number of amino acids to be substituted is not particularly limited.
  • Fc-binding proteins shown in the following (a) to (l) can be mentioned. These Fc-binding proteins are preferable in terms of improving stability against heat, acid or alkali.
  • A In the amino acid sequence shown in SEQ ID NO: 37, the amino acid residues from the 33rd to the 208th amino acid residues are included, and the 45th phenylalanine is the isoleucine in the 33rd to 208th amino acid residues.
  • Fc binding protein (Fc binding protein containing the amino acid sequence from the 33rd position to the 208th position in the amino acid sequence shown in SEQ ID NO: 39) wherein (B) including the 33rd to 208th amino acid residues in the amino acid sequence set forth in SEQ ID NO: 37, and the 45th phenylalanine is the isoleucine in the 33rd to 208th amino acid residues.
  • Fc-binding protein in which valine is substituted with glutamic acid and 187th phenylalanine is substituted with serine (Fc-binding protein containing the amino acid sequence from the 33rd to the 208th of the amino acid sequence described in SEQ ID NO: 43).
  • the amino acid sequence of SEQ ID NO: 37 comprises the amino acid residues from the 33rd to the 208th, and the 37th glutamic acid is the glycine in the 33rd to 208th amino acid residues, the 39th Leucine is methionine, 45th phenylalanine is isoleucine, 64th glutamine is arginine, 67th tyrosine is histidine, 70th glutamic acid is aspartic acid, 84th serine is proline, 133th valine Is a glutamic acid, 163rd glycine is replaced by valine, 187th phenylalanine is replaced by serine, and 194th serine is replaced by arginine (from the 33rd amino acid sequence of SEQ ID NO: 73) Amino acid sequence up to 208th Fc-binding protein that contains).
  • the amino acid sequence shown in SEQ ID NO: 37 includes the 33rd to 208th amino acid residues, and in the 33rd to 208th amino acid residues, the 37th glutamic acid is glycine, the 39th Leucine is methionine, 45th phenylalanine is isoleucine, 64th glutamine is arginine, 67th tyrosine is histidine, 70th glutamic acid is aspartic acid, 84th serine is proline, 133th valine Is glutamic acid, 156th threonine is isoleucine, 163rd glycine is valine, 174th tyrosine is histidine, 181st lysine is glutamic acid, 187th phenylalanine is serine, 194th serine is arginine In each Has been that Fc binding proteins (Fc-binding protein comprising an amino acid sequence from the 33 th of the amino acid sequence
  • (K) includes the 33rd to 208th amino acid residues in the amino acid sequence set forth in SEQ ID NO: 37, and the 37th glutamic acid is the glycine in the 33rd to 208th amino acid residues, the 39th Leucine is methionine, 45th phenylalanine is isoleucine, 64th glutamine is arginine, 67th tyrosine is histidine, 70th glutamic acid is aspartic acid, 84th serine is proline, 98th asparagine Acid is glutamic acid, 117th glutamine is leucine, 133th valine is glutamic acid, 156th threonine is isoleucine, 163rd glycine is valine, 174th tyrosine is histidine, 181st lysine is In glutamic acid, 18 Fc binding protein in which the phenylalanine at position No.
  • the 37th glutamic acid is the glycine
  • the 39th Leucine is methionine
  • 45th phenylalanine is isoleucine
  • 64th glutamine is arginine
  • 67th tyrosine is histidine
  • 70th glutamic acid is aspartic acid
  • 84th serine is proline
  • 98th aspartic acid is glutamic acid
  • 117th glutamine is leucine
  • 133th valine is glutamic acid
  • 156th threonine is isoleucine
  • 163rd glycine is valine
  • 174th tyrosine is 181st in histidine Fc-binding protein in which lysine is substituted with glutamic acid, 187th phenylalanine is substituted with serine, 194th serine with arginine, 201st threonine with alanine, and
  • the Fc-binding protein of the present invention may further be added with an oligopeptide useful for separation from a solution in the presence of a contaminant substance on the N-terminal side or C-terminal side.
  • the oligopeptide include polyhistidine, polylysine, polyarginine, polyglutamic acid, polyaspartic acid and the like.
  • an oligopeptide containing cysteine useful for immobilizing the Fc-binding protein of the present invention on a solid phase such as a support for chromatography is used as an N-terminal side or C-terminal side of the Fc-binding protein of the present invention. It may be further added to.
  • the length of the oligopeptide added to the N-terminal side or C-terminal side of the Fc binding protein is not particularly limited as long as the IgG binding property and stability of the Fc binding protein of the present invention are not impaired.
  • a polynucleotide encoding the oligopeptide is prepared and then genetically engineered using a method well known to those skilled in the art to the N-terminal side of the Fc-binding protein.
  • the chemically synthesized oligopeptide may be added by chemically binding to the N-terminal side or C-terminal side of the Fc-binding protein of the present invention.
  • a signal peptide for promoting efficient expression in the host may be added to the N-terminal side of the Fc binding protein of the present invention.
  • the signal peptide when the host is Escherichia coli include periplasm such as PelB (SEQ ID NO: 101), DsbA, MalE (the first to 26th region of the amino acid sequence described in UniProt No. P0AEX9), TorT, and the like.
  • An example is a signal peptide that secretes a protein (Japanese Patent Laid-Open No. 2011-097898).
  • the Fc binding protein of the present invention may or may not have a sugar chain.
  • animal cells, yeasts, insect cells and the like may be used as hosts.
  • an artificially synthesized sugar chain may be modified.
  • an Fc-binding protein having no sugar chain it may be used as a host in which sugar chain addition does not occur, such as Escherichia coli. Further, by performing an operation of removing a sugar chain from an Fc binding protein having a sugar chain, an Fc binding protein having no sugar chain can be obtained.
  • a method for producing the polynucleotide of the present invention (I) a method of artificially synthesizing a polynucleotide containing the nucleotide sequence by converting the amino acid sequence of the Fc-binding protein of the present invention into a nucleotide sequence, (II) A polynucleotide containing the whole or a partial sequence of an Fc binding protein is prepared artificially or from a cDNA of the Fc binding protein using a DNA amplification method such as PCR, and the prepared polynucleotide is appropriately used.
  • the method of connecting by various methods can be illustrated.
  • the conversion when converting from an amino acid sequence to a nucleotide sequence, the conversion is preferably performed in consideration of the frequency of codon usage in the host to be transformed.
  • the host is Escherichia coli
  • AGA / AGG / CGG / CGA is used for arginine (Arg)
  • ATA is used for isoleucine (Ile)
  • CTA is used for leucine (Leu)
  • GGA is used for glycine (Gly).
  • CCC is less frequently used in proline (Pro) (because it is a so-called rare codon)
  • it may be converted so as to avoid those codons.
  • Analysis of codon usage frequency can also be performed by using a public database (for example, Codon Usage Database on the website of Kazusa DNA Research Institute).
  • an error-prone PCR method can be used.
  • the reaction conditions in the error-prone PCR method are not particularly limited as long as a desired mutation can be introduced into a polynucleotide encoding an Fc binding protein.
  • four types of deoxynucleotides dATP / dTTP / dCTP
  • / DGTP deoxynucleotides
  • MnCl 2 is added to the PCR reaction solution at a concentration of 0.01 to 10 mM (preferably 0.1 to 1 mM) to introduce a mutation into the polynucleotide. be able to.
  • the polynucleotide containing the entire or partial sequence of the Fc-binding protein is contacted / acted with a drug as a mutagen, or irradiated with ultraviolet rays, to obtain a polynucleotide.
  • a method of producing a mutation by introducing a mutation As a drug used as a mutagen in this method, a mutagenic drug commonly used by those skilled in the art such as hydroxylamine, N-methyl-N′-nitro-N-nitrosoguanidine, nitrous acid, sulfite, hydrazine may be used. .
  • the host that expresses the Fc-binding protein of the present invention is not particularly limited, and examples thereof include animal cells (CHO cells, HEK cells, Hela cells, COS cells, etc.), yeasts (Saccharomyces cerevisiae, Pichia pastoris, Hansenula polymorpha, Schomisacios). and japonicus, Schizosaccharomyces octosporus, Schizosaccharomyces pombe, insect cells (Sf9, Sf21 etc.), E. coli (JM109 strain, BL21 (DE3) strain, W3110 strain etc.) and Bacillus subtilis.
  • Use of animal cells or Escherichia coli as a host is preferable in terms of productivity, and more preferable when Escherichia coli is used as a host.
  • the polynucleotide of the present invention When transforming a host using the polynucleotide of the present invention, the polynucleotide of the present invention itself may be used, but an expression vector (for example, bacteriophage, cosmid, or the like commonly used for transformation of prokaryotic cells or eukaryotic cells) may be used. It is more preferable to use a plasmid or the like in which the polynucleotide of the present invention is inserted at an appropriate position.
  • the expression vector is not particularly limited as long as it is stably present in the host to be transformed and can be replicated.
  • pET plasmid vector When Escherichia coli is used as a host, pET plasmid vector, pUC plasmid vector, pTrc plasmid vector, pCDF plasmid vector A pBBR plasmid vector can be exemplified.
  • the appropriate position means a position where the replication function of the expression vector, a desired antibiotic marker, and a region related to transmissibility are not destroyed.
  • promoter examples include trp promoter, tac promoter, trc promoter, lac promoter, T7 promoter, recA promoter, lpp promoter, ⁇ phage ⁇ PL promoter, ⁇ PR promoter when the host is Escherichia coli.
  • examples include SV40 promoter, CMV promoter, and CAG promoter.
  • the expression vector of the present invention In order to transform a host using the expression vector inserted with the polynucleotide of the present invention (hereinafter referred to as the expression vector of the present invention) produced by the above-described method, a person skilled in the art may carry out the method. For example, when a microorganism belonging to the genus Escherichia (E. coli JM109 strain, E. coli BL21 (DE3) strain, E. coli W3110 strain, etc.) is selected as a host, known literature (eg, Molecular Cloning, Cold Spring Harbor Laboratory, 256, 1992). And the like. When the host is an animal cell, electroporation or lipofection may be used. By transforming the transformant obtained by the above-described method with an appropriate method, a transformant capable of expressing the Fc-binding protein of the present invention (hereinafter referred to as the transformant of the present invention). ) Can be obtained.
  • the expression vector of the present invention may be extracted from the transformant of the present invention and prepared by a method suitable for the host used for transformation.
  • the host of the transformant of the present invention is Escherichia coli
  • it can be prepared from a culture obtained by culturing the transformant using an alkaline extraction method or a commercially available extraction kit such as QIAprep Spin Miniprep kit (Qiagen). That's fine.
  • the Fc-binding protein of the present invention can be produced by culturing the transformant of the present invention and recovering the Fc-binding protein of the present invention from the obtained culture.
  • the culture includes not only the cultured cells of the transformant of the present invention itself but also a medium used for the culture.
  • the transformant used in the protein production method of the present invention may be cultured in a medium suitable for culturing the target host.
  • an LB (Luria-Bertani) medium supplemented with necessary nutrient sources is preferable.
  • An example of the medium is given.
  • a drug corresponding to the drug resistance gene contained in the vector to the medium and culture.
  • kanamycin may be added to the medium.
  • an appropriate nutrient source may be added to the medium, and if desired, the medium is selected from the group consisting of glutathione, cysteine, cystamine, thioglycolate and dithiothreitol.
  • One or more reducing agents may be included.
  • a reagent that promotes protein secretion from the transformant to the culture solution such as glycine may be added.
  • glycine is contained in the medium at 2% (w / v) or less. Addition is preferred.
  • the culture temperature is generally 10 ° C. to 40 ° C., preferably 20 ° C. to 37 ° C., more preferably around 25 ° C., but may be selected depending on the characteristics of the protein to be expressed.
  • the pH of the medium is pH 6.8 to pH 7.4, preferably around pH 7.0.
  • an inducible promoter when included in the vector of the present invention, it is preferable that the induction be performed under conditions that allow the Fc-binding protein of the present invention to be expressed well.
  • the inducer include IPTG (isopropyl- ⁇ -D-thiogalactopyranoside).
  • IPTG isopropyl- ⁇ -D-thiogalactopyranoside.
  • the Fc-binding protein of the present invention may be recovered by separating / purifying from the culture. For example, when expressed in the culture supernatant, the cells are separated by centrifugation, and the Fc-binding protein of the present invention may be purified from the obtained culture supernatant.
  • the bacterial cells are collected by centrifugation, and then added with an enzyme treatment agent, a surfactant, etc., or by using ultrasonic waves, a French press, etc. What is necessary is just to refine
  • a method known in the art may be used, and an example is separation / purification using liquid chromatography.
  • Liquid chromatography includes ion exchange chromatography, hydrophobic interaction chromatography, gel filtration chromatography, affinity chromatography, and the like. By performing a purification operation by combining these chromatography, the Fc binding property of the present invention can be obtained. Proteins can be prepared with high purity.
  • the binding activity to IgG is measured using the Enzyme-Linked ImmunoSorbent Assay (hereinafter referred to as ELISA) method or the surface plasmon resonance method.
  • ELISA Enzyme-Linked ImmunoSorbent Assay
  • the IgG used for the measurement of the binding activity is preferably human IgG, and human IgG1 and human IgG3 are particularly preferable.
  • the adsorbent of the present invention can be produced by binding the Fc binding protein of the present invention to an insoluble carrier.
  • the insoluble carrier is not particularly limited, and carriers made from polysaccharides such as agarose, alginate (alginate), carrageenan, chitin, cellulose, dextrin, dextran, starch, polyvinyl alcohol, polymethacrylate, poly (2- Examples include carriers made of synthetic polymers such as hydroxyethyl methacrylate), polyurethane, polyacrylic acid, polystyrene, polyacrylamide, polymethacrylamide, and vinyl polymers, and carriers made of ceramics such as zirconia, zeolite, silica, and coated silica. it can.
  • insoluble carriers carriers made from polysaccharides and carriers made from synthetic polymers are preferred as insoluble carriers.
  • the preferred carrier include polymethacrylate gel introduced with a hydroxyl group such as Toyopearl (manufactured by Tosoh Corporation), agarose gel such as Sepharose (manufactured by GE Healthcare), and cellulose gel such as Cellufine (manufactured by JNC).
  • the shape of the insoluble carrier is not particularly limited, and may be granular or non-particulate, porous or non-porous.
  • N-hydroxysuccinimide (NHS) activated ester group epoxy group, carboxyl group, maleimide group, haloacetyl group, tresyl group, formyl group, halo What is necessary is just to fix
  • the carrier provided with the active group may be a commercially available carrier as it is, or may be prepared by introducing an active group on the surface of the carrier under appropriate reaction conditions.
  • examples of the method for introducing an active group on the surface of the carrier include a method in which one of compounds having two or more active sites reacts with a hydroxyl group, an epoxy group, a carboxyl group, an amino group, etc. present on the surface of the carrier. it can.
  • examples of the compound that introduces an epoxy group into the hydroxyl group or amino group on the surface of the carrier include epichlorohydrin, ethanediol diglycidyl ether, butanediol diglycidyl ether, and hexanediol diglycidyl ether.
  • Examples of the compound that introduces an epoxy group on the carrier surface with the compound and then introduces a carboxyl group on the carrier surface include 2-mercaptoacetic acid, 3-mercaptopropionic acid, 4-mercaptobutyric acid, 6-mercaptobutyric acid, glycine, 3- Examples thereof include aminopropionic acid, 4-aminobutyric acid, and 6-aminohexanoic acid.
  • Examples of the compound that introduces a maleimide group into the hydroxyl group, epoxy group, carboxyl group or amino group present on the surface of the carrier include N- ( ⁇ -maleimidocaproic acid) hydrazide, N- ( ⁇ -maleimidopropionic acid) hydrazide, 4- [ 4-N-maleimidophenyl] acetic acid hydrazide, 2-aminomaleimide, 3-aminomaleimide, 4-aminomaleimide, 6-aminomaleimide, 1- (4-aminophenyl) maleimide, 1- (3-aminophenyl) maleimide, 4- (maleimido) phenyl isocyanate, 2-maleimidoacetic acid, 3-maleimidopropionic acid, 4-maleimidobutyric acid, 6-maleimidohexanoic acid, (N- [ ⁇ -maleimidoacetoxy] succinimide ester), (m-maleimidobenzoyl) N-hydroxys
  • Compounds that introduce a haloacetyl group into the hydroxyl group or amino group present on the surface of the carrier include chloroacetic acid, bromoacetic acid, iodoacetic acid, chloroacetic acid chloride, bromoacetic acid chloride, bromoacetic acid bromide, chloroacetic acid anhydride, bromoacetic acid anhydride, Iodoacetic anhydride, 2- (iodoacetamido) acetic acid-N-hydroxysuccinimide ester, 3- (bromoacetamido) propionic acid-N-hydroxysuccinimide ester, 4- (iodoacetyl) aminobenzoic acid-N-hydroxysuccinimide ester It can be illustrated.
  • An example is a method in which ⁇ -alkenyl alkanglycidyl ether is reacted with a hydroxyl group or amino group present on the surface of the carrier, and then the ⁇ -alkenyl moiety is halogenated with a halogenating agent to activate.
  • ⁇ -alkenyl alkanglycidyl ethers include allyl glycidyl ether, 3-butenyl glycidyl ether, and 4-pentenyl glycidyl ether.
  • halogenating agents include N-chlorosuccinimide, N-bromosuccinimide, and N-iodosuccinimide. it can.
  • the method for introducing an active group on the surface of the carrier there is a method for introducing an activating group into the carboxyl group present on the surface of the carrier using a condensing agent and an additive.
  • the condensing agent include 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide (EDC), dicyclohexylcarbodiamide, and carbonyldiimidazole.
  • the additive include N-hydroxysuccinimide (NHS), 4-nitrophenol, and 1-hydroxybenztriazole.
  • examples of the compound that introduces an active group on the surface of the carrier include tresyl chloride (forms a tresyl group as an activating group) and vinyl bromide (forms a vinyl group as an activating group).
  • Examples of the buffer used when the Fc-binding protein of the present invention is immobilized on an insoluble carrier include acetate buffer, phosphate buffer, MES buffer, HEPES buffer, Tris buffer, and borate buffer.
  • the reaction temperature at the time of immobilization may be appropriately set in consideration of the reactivity of the active group and the stability of the Fc-binding protein of the present invention from the temperature range from 5 ° C. to 50 ° C., preferably It is in the range of 10 ° C to 35 ° C.
  • the separation method of the present invention comprises a step of equilibrating a column by adding an equilibration solution to a column packed with an insoluble carrier on which an Fc-binding protein is immobilized, and a solution containing an antibody is added to the equilibrated column.
  • the step of adsorbing the antibody to the carrier and the step of eluting the antibody adsorbed to the carrier using an eluate the equilibration solution is 30 mM or more of chloride ions or sulfuric acid. It is characterized by containing ions.
  • the degree of separation of antibody components can be improved from 1.1 times to 1.8 times in terms of Rs value.
  • the concentration of chloride ion or sulfate ion contained in the equilibration solution may be 30 mM or more, preferably 30 mM or more and 1500 mM or less, more preferably 30 mM or more and 1000 mM or less, and 30 mM or more and 500 mM or less. And more preferably 50 mM or more and 500 mM or less.
  • the adsorbed antibody using the equilibration solution it may be eluted using an elution solution that weakens the affinity between the antibody and the Fc-binding protein.
  • an elution solution that weakens the affinity between the antibody and the Fc-binding protein.
  • a weakly acidic buffer solution having a pH of 5.0 to 6.9 containing 30 mM or more of chloride ions or sulfate ions was used as an equilibration solution, and an acidic buffer solution having a pH of 2.5 to 4.5 was used as an eluent.
  • a gradient elution method is mentioned.
  • the buffer may be appropriately selected from known buffers based on the pH of the buffer to be prepared.
  • buffer examples include phosphoric acid, acetic acid, formic acid, MES (2-Morpholinosulfonic acid), and MOPS (3-Morpholinosulfonic sulfonic acid). acid), citric acid, succinic acid, glycine, and piperazine.
  • the separation method of the present invention can be separated if it is an antibody having at least the Fc region of an antibody to which a sugar chain is added and has an affinity for an Fc binding protein.
  • Examples include chimeric antibodies, humanized antibodies, human antibodies, and amino acid substitutions thereof that are generally used as antibodies used in antibody pharmaceuticals.
  • bispecific antibodies bispecific antibodies
  • fusion antibodies of Fc regions of antibodies with added sugar chains and other proteins complexes of Fc regions of drugs with added sugar chains and drugs (ADC), etc. Even an antibody whose structure has been artificially modified can be separated by the separation method of the present invention.
  • the separation method of the present invention includes, for example, adding a buffer solution containing an antibody to a column packed with an adsorbent obtained by immobilizing an Fc binding protein on an insoluble carrier using a liquid delivery means such as a pump. After the antibody is specifically adsorbed to the adsorbent, an appropriate eluate is added to the column, whereby the adsorbed antibody can be separated based on the strength of ADCC activity. Note that it is preferable to equilibrate the column with an appropriate buffer before adding the buffer containing the antibody to the column because the antibody can be separated with higher purity.
  • the buffer solution include a buffer solution containing an inorganic salt as a component, such as a phosphate buffer solution.
  • the pH of the buffer solution is pH 3 to 10, preferably pH 5 to 8.
  • the eluate for eluting the antibody adsorbed on the adsorbent based on the strength of ADCC activity is a buffer solution on the acidic side of the solution used when the antibody is adsorbed on the adsorbent.
  • the buffer solution include a citrate buffer solution, a glycine hydrochloride buffer solution, and an acetate buffer solution having a buffer capacity on the acidic side.
  • the pH of the buffer may be set within a range that does not impair the function of the antibody, preferably pH 2.5 to 6.0, more preferably pH 3.0 to 5.0, still more preferably pH 3.3 to 4. 0.
  • a column packed with the adsorbent of the present invention is loaded with sugar.
  • a buffer solution containing an antibody having a chain is added using a liquid delivery means such as a pump to specifically adsorb the antibody having a sugar chain to the adsorbent of the present invention, and then an appropriate eluate is added.
  • the antibody having a sugar chain may be eluted.
  • the buffer solution include a buffer solution containing an inorganic salt as a component, such as a phosphate buffer solution.
  • the pH of the buffer solution is pH 3 to 10, preferably pH 5 to 8.
  • the eluate for eluting the antibody having a sugar chain adsorbed to the adsorbent of the present invention it is more acidic than the solution used for adsorbing the antibody having a sugar chain to the adsorbent of the present invention.
  • Side buffer examples of the buffer solution include a citrate buffer solution, a glycine hydrochloride buffer solution, and an acetate buffer solution having a buffer capacity on the acidic side.
  • the pH of the buffer may be set within a range that does not impair the function of the antibody, preferably pH 2.5 to 6.0, more preferably pH 3.0 to 5.0, still more preferably pH 3.3 to 4. 0.
  • the elution position (elution fraction) of the antibody varies depending on the sugar chain structure of the antibody. Therefore, by separating the antibody using the adsorbent of the present invention, the difference in the sugar chain structure of the antibody can be identified.
  • the structure of the glycans There are no particular limitations on the structure of the glycans that can be identified.
  • the adsorbent of the present invention can be separated based on the difference in the sugar chain structure of the antibody, it can also be used for separation of the sugar chain itself.
  • the adsorbent of the present invention can identify antibody separation, antibody separation based on the strength of ADCC activity, and the difference in the sugar chain structure of the antibody. Even when the Fc receptors (Fc ⁇ RI, Fc ⁇ RIIa, Fc ⁇ RIIb, Fc ⁇ RIIIa, Fc ⁇ RIIIb, FcRn) are used, the difference in the sugar chain structure can be similarly identified.
  • the Fc-binding protein of the present invention is a protein in which an amino acid residue at a specific position in the extracellular region of human Fc ⁇ RIIIa is substituted with another amino acid residue.
  • the Fc-binding protein of the present invention has improved heat and acid stability compared to wild-type human Fc ⁇ RIIIa. Therefore, the Fc binding protein of the present invention is useful as a ligand of an adsorbent for separating immunoglobulin.
  • the separation method of the present invention can easily and accurately separate an antibody based on a medicinal effect or a molecule containing an Fc region of an antibody using chromatography. Therefore, according to the present invention, manufacturing process management and quality control of antibody drugs can be performed with higher accuracy.
  • the separation method of the present invention uses an adsorbent obtained by immobilizing an Fc-binding protein (for example, human Fc ⁇ RIIIa to which a sugar chain is not added) on an insoluble carrier, so that the antibody is antibody-dependent cytotoxic activity (ADCC). ) Can be separated on the basis of strength.
  • an Fc-binding protein for example, human Fc ⁇ RIIIa to which a sugar chain is not added
  • ADCC antibody-dependent cytotoxic activity
  • FIG. 1 is a schematic diagram of human Fc ⁇ RIIIa.
  • the numbers in the figure indicate the amino acid sequence numbers described in SEQ ID NO: 1.
  • S represents a signal sequence
  • EC represents an extracellular region
  • TM represents a transmembrane region
  • C represents an intracellular region.
  • FrA and FrB in the figure indicate the positions of fraction A and fraction B, respectively.
  • N1 to N6 in the figure correspond to N1 to N6 in Table 10
  • M1, M2 and D1 correspond to M1, M2 and D1 in Table 11, respectively.
  • FrA, FrB, and FrC in the figure indicate the positions of fraction A, fraction B, and fraction C, respectively.
  • Example 1 Preparation of Fc-binding protein expression vector (1) Based on the amino acid sequence from the 17th glycine (Gly) to the 192nd glutamine (Gln) of the human Fc ⁇ RIIIa amino acid sequence described in SEQ ID NO: 1, Using the DNAworks method (Nucleic Acids Res., 30, e43, 2002), a nucleotide sequence in which a codon was converted from a human type to an E. coli type was designed. The designed nucleotide sequence is shown in SEQ ID NO: 2.
  • the DNA mix in Table 1 means a solution obtained by sampling a predetermined amount of each of 18 types of oligonucleotides having the sequences described in SEQ ID NOs: 3 to 20 and mixing them.
  • the second-stage PCR uses FcRp1 synthesized in (2-1) as a template, SEQ ID NO: 21 (5′-TAGCCATGGGCATGCCGTACGAGAATCTGCCCGAAAGCTCTGTGGATGTCCCTGTGGGTAATCTGTG An oligonucleotide consisting of the sequence described in 1 was used as a PCR primer.
  • a reaction solution having the composition shown in Table 2 was prepared, and the reaction solution was heat-treated at 98 ° C. for 5 minutes, then the first step at 98 ° C. for 10 seconds, the second step at 62 ° C. for 5 seconds, 72 The reaction was carried out by repeating 30 cycles of the third step of 1.5 minutes at ° C. for 30 cycles.
  • the polynucleotide obtained in (2) is purified, digested with restriction enzymes NcoI and HindIII, and then ligated to an expression vector pETmalE (Japanese Patent Laid-Open No. 2011-206046) previously digested with restriction enzymes NcoI and HindIII.
  • Escherichia coli BL21 strain (DE3) was transformed with the ligation product.
  • the obtained transformant was cultured in an LB medium containing 50 ⁇ g / mL kanamycin, and then the expression vector pET-eFcR was extracted using QIAprep Spin Miniprep kit (manufactured by Qiagen).
  • the amino acid sequence of the polypeptide expressed by the expression vector pET-eFcR is shown in SEQ ID NO: 25, and the sequence of the polynucleotide encoding the polypeptide is shown in SEQ ID NO: 26, respectively.
  • the first methionine (Met) to the 26th alanine (Ala) are MalE signal peptides
  • the 27th lysine (Lys) to the 32nd methionine (Met) are linker sequences.
  • Example 2 Mutation Introduction to Fc Binding Protein and Library Preparation Of the Fc binding protein expression vector pET-eFcR prepared in Example 1, the polynucleotide portion encoding the Fc binding protein was subjected to error-prone PCR. Mutation was randomly introduced. (1) Error prone PCR was performed using pET-eFcR prepared in Example 1 as a template. In error-prone PCR, after preparing a reaction solution having the composition shown in Table 3, the reaction solution is heat-treated at 95 ° C. for 2 minutes, the first step at 95 ° C. for 30 seconds, the second step at 60 ° C.
  • the PCR product obtained in (1) was purified, digested with restriction enzymes NcoI and HindIII, and ligated into an expression vector pETmalE (Japanese Patent Laid-Open No. 2011-206046) previously digested with the same restriction enzymes.
  • the reaction solution was introduced into E. coli BL21 (DE3) strain by electroporation, cultured in LB plate medium containing 50 ⁇ g / mL kanamycin (18 hours at 37 ° C.), and then placed on the plate. The formed colonies were used as a random mutant library.
  • Example 3 Screening of heat-stabilized Fc binding protein (1)
  • the random mutant library (transformant) prepared in Example 2 was subjected to 2YT liquid medium containing 50 ⁇ g / mL kanamycin (peptone 16 g / L, yeast).
  • (Extract 10 g / L, sodium chloride 5 g / L) was inoculated into 200 ⁇ L, and cultured with shaking at 30 ° C. overnight using a 96-well deep well plate.
  • Blocking was performed with 20 mM Tris-HCl buffer (pH 7.4) containing SKIM MILK (manufactured by BD) and 150 mM sodium chloride. (4-2) Fc for evaluating antibody binding activity after washing with a washing buffer (20 mM Tris-HCl buffer (pH 7.4) containing 0.05% [w / v] Tween 20, 150 mM NaCl) A solution containing a binding protein was added to react the Fc binding protein with the immobilized gamma globulin (1 hour at 30 ° C.).
  • Table 4 summarizes the amino acid substitution position and the remaining activity (%) after heat treatment of the Fc binding protein expressed by the transformant selected in (5) with respect to the wild type (without amino acid substitution) Fc binding protein.
  • the amino acid residues from the 17th glycine to the 192nd glutamine and the 17th to 192nd amino acid residues are Met18Arg (this notation is SEQ ID NO: 1 represents that 18th methionine of 1 is substituted with arginine, the same applies below), Val27Glu, Phe29Leu, Phe29Ser, Leu30Gln, Tyr35Asn, Tyr35Asp, Tyr35Sr, Tyr35His, Lys46Thr, Lys46Thr, Lys46Thr, , Glu54Asp, Glu54Gly, Asn56Thr, Gln59Arg, Phe61Tyr, Glu64Asp, Ser6 Arg, Ala71Asp, Phe75Le
  • FcR2 the Fc-binding protein with the highest residual activity, in which the amino acid substitution of Val27Glu and Tyr35Asn occurred, was named FcR2 and contained a polynucleotide encoding FcR2.
  • the vector was named pET-FcR2.
  • the amino acid sequence of FcR2 is shown in SEQ ID NO: 27, and the sequence of the polynucleotide encoding FcR2 is shown in SEQ ID NO: 28.
  • the first methionine (Met) to the 26th alanine (Ala) are MalE signal peptides
  • the 27th lysine (Lys) to the 32nd methionine (Met) are linker sequences.
  • the amino acid sequence of FcR2 corresponding to the 17th to 192nd region of SEQ ID NO: 1
  • the 209th to 210th glycine (Gly) Is a linker sequence
  • histidines (His) from 211 to 216 are tag sequences.
  • glutamic acid of Val27Glu is present at the 43rd position
  • asparagine of Tyr35Asn is present at the 51st position.
  • Example 4 Production of Amino Acid-Substituted Fc Binding Protein The stability was further improved by accumulating amino acid substitutions that were found in Example 3 and involved in improving the thermal stability of the Fc binding protein. Accumulation of substituted amino acids was mainly performed using PCR, and three types of Fc-binding proteins shown in (a) to (c) below were prepared.
  • B FcR4 obtained by further performing amino acid substitution of Phe75Leu and Glu121Gly on FcR2.
  • C FcR5a in which Asn92Ser amino acid substitution was further performed on FcR4
  • Asn92Ser amino acid substitution was further performed on FcR4
  • FcR3 Val27Glu, Tyr35Asn, and Phe75Leu were selected from among the amino acid substitutions involved in improving thermal stability, which were revealed in Example 3, and FcR3 in which these substitutions were accumulated in a wild-type Fc-binding protein was prepared. Specifically, FcR3 was produced by introducing a mutation causing Phe75Leu into a polynucleotide encoding FcR2. (A-1) PCR was performed using pET-FcR2 obtained in Example 3 as a template.
  • oligonucleotides having the sequences described in SEQ ID NO: 24 and SEQ ID NO: 29 were used as primers for the PCR.
  • the reaction solution was heat-treated at 98 ° C. for 5 minutes, first step at 98 ° C. for 10 seconds, second step at 55 ° C. for 5 seconds, and at 72 ° C. 30 cycles of the reaction in which the third step for 1 minute was set to 1 cycle were performed by heat treatment at 72 ° C. for 7 minutes.
  • the amplified PCR product was subjected to agarose gel electrophoresis, and purified from the gel using a QIAquick Gel Extraction kit (Qiagen). The purified PCR product was designated as m3F.
  • A-2) Except that pET-FcR2 obtained in Example 3 was used as a template, and an oligonucleotide having the sequences described in SEQ ID NO: 23 and SEQ ID NO: 30 (5′-CCACCGTCGCCCGCATCAATAAGGTTAGCTGC-3 ′) was used as a PCR primer. , (A-1).
  • the purified PCR product was designated as m3R.
  • A-3) Two types of PCR products (m3F and m3R) obtained in (a-1) and (a-2) were mixed to prepare a reaction solution having the composition shown in Table 6. The reaction solution is heat-treated at 98 ° C. for 5 minutes, followed by 5 cycles of reaction in which the first step is 98 ° C. for 10 seconds, the second step is 55 ° C. for 5 seconds, and the third step is 72 ° C. for 1 minute. PCR was performed, and a PCR product m3p in which m3F and m3R were linked was obtained.
  • (A-4) PCR was performed using the PCR product m3p obtained in (a-3) as a template and oligonucleotides having the sequences described in SEQ ID NO: 23 and SEQ ID NO: 24 as PCR primers.
  • the reaction solution was heat-treated at 98 ° C. for 5 minutes, first step at 98 ° C. for 10 seconds, second step at 55 ° C. for 5 seconds, and at 72 ° C.
  • the reaction with the third step of 1 minute as one cycle was performed 30 cycles.
  • a polynucleotide encoding FcR3 in which an amino acid substitution at one site was introduced into FcR2 was prepared.
  • the amino acid sequence of FcR3 added with a signal sequence and a polyhistidine tag is shown in SEQ ID NO: 31, and the sequence of the polynucleotide encoding the FcR3 is shown in SEQ ID NO: 32.
  • the first methionine (Met) to the 26th alanine (Ala) are MalE signal peptides
  • the 27th lysine (Lys) to the 32nd methionine (Met) are linker sequences.
  • the amino acid sequence of FcR3 (corresponding to the 17th to 192nd region of SEQ ID NO: 1), the 209th to 210th glycine (Gly) Is a linker sequence, and histidines (His) from 211 to 216 are tag sequences.
  • glutamic acid of Val27Glu is present at the 43rd position, asparagine of Tyr35Asn is present at the 51st position, and leucine of Phe75Leu is present at the 91st position.
  • FcR4 Val27Glu, Tyr35Asn, Phe75Leu and Glu121Gly were selected from the amino acid substitutions involved in improving the stability of the Fc binding protein revealed in Example 3, and these substitutions were accumulated in the wild-type Fc binding protein.
  • FcR4 was produced. Specifically, FcR4 was produced by introducing a mutation that causes Phe75Leu and Glu121Gly to the polynucleotide encoding FcR2.
  • oligonucleotide comprising the sequences described in SEQ ID NO: 24 and SEQ ID NO: 29, which was obtained in Example 3, using the plasmid expressing Fc-binding protein (Table 4) containing amino acid substitutions of Ala71Asp, Phe75Leu and Glu121Gly as a template.
  • PCR product m4R was obtained by PCR in the same manner as in (a-1) using as a PCR primer.
  • B-2) After mixing the two types of PCR products (m3R, m4R) obtained in (b-1), PCR was performed in the same manner as in (a-3) to link m3R and m4R.
  • the obtained PCR product was designated as m4p.
  • (B-3) A method similar to (a-4), using the PCR product m4p obtained in (b-2) as a template and an oligonucleotide comprising the sequences described in SEQ ID NO: 23 and SEQ ID NO: 24 as PCR primers PCR was performed. This produced a polynucleotide encoding FcR4.
  • (B-4) After purification of the polynucleotide obtained in (b-3), digestion with restriction enzymes NcoI and HindIII and expression vector pETmalE previously digested with restriction enzymes NcoI and HindIII (Japanese Patent Laid-Open No. 2011-206046) was used to transform Escherichia coli BL21 (DE3) strain.
  • the amino acid sequence of FcR4 added with a signal sequence and a polyhistidine tag is shown in SEQ ID NO: 33, and the sequence of a polynucleotide encoding the FcR4 is shown in SEQ ID NO: 34.
  • SEQ ID NO: 33 the first methionine (Met) to the 26th alanine (Ala) are MalE signal peptides, and the 27th lysine (Lys) to the 32nd methionine (Met) are linker sequences.
  • FcR5a Val27Glu, Tyr35Asn, Phe75Leu, Asn92Ser, and Glu121Gly were selected from the amino acid substitutions involved in improving the stability of the Fc binding protein revealed in Example 3, and these substitutions were changed to the wild type Fc binding protein. Accumulated FcR5a was produced. Specifically, FcR5a was prepared by introducing a mutation that caused Asn92Ser to the polynucleotide encoding FcR4 prepared in (b).
  • C-2 except that pET-FcR4 prepared in (b) was used as a template, and an oligonucleotide having the sequence described in SEQ ID NO: 21 and SEQ ID NO: 36 (5′-GATCGCTCCAGGGTGCTCAGGCTGGTTCTGGC-3 ′) was used as a PCR primer, PCR was performed in the same manner as (a-1). The purified PCR product was designated as m5aR.
  • C-3 After mixing the two kinds of PCR products (m5aF, m5aR) obtained in (c-1) and (c-2), PCR was performed in the same manner as in (a-3), and m5aF And m5aR were ligated.
  • the obtained PCR product was designated as m5ap.
  • C-4 A method similar to (a-4), using the PCR product m5ap obtained in (c-3) as a template and an oligonucleotide comprising the sequences shown in SEQ ID NO: 21 and SEQ ID NO: 22 as PCR primers PCR was performed. This produced a polynucleotide encoding FcR5a.
  • C-5 After purifying the polynucleotide obtained in (c-4), digested with restriction enzymes NcoI and HindIII, and previously digested with restriction enzymes NcoI and HindIII (Japanese Patent Laid-Open No.
  • the amino acid sequence of FcR5a added with a signal sequence and a polyhistidine tag is shown in SEQ ID NO: 37, and the sequence of the polynucleotide encoding the FcR5a is shown in SEQ ID NO: 38.
  • SEQ ID NO: 37 the first methionine (Met) to the 26th alanine (Ala) are MalE signal peptides, and the 27th lysine (Lys) to the 32nd methionine (Met) are linker sequences.
  • Example 5 Mutation Introduction to FcR5a and Library Preparation Mutation was randomly introduced into the polynucleotide portion encoding FcR5a prepared in Example 4 (c) by error-prone PCR.
  • (1) Error-prone PCR was performed using the expression vector pET-FcR5a prepared in Example 4 (c) as a template.
  • the reaction solution was heat-treated at 95 ° C. for 2 minutes, and the first step at 95 ° C. for 30 seconds. The reaction was carried out by performing 35 cycles of a second step of 60 ° C.
  • the PCR product obtained in (1) was purified, digested with restriction enzymes NcoI and HindIII, and ligated into an expression vector pETmalE (Japanese Patent Laid-Open No. 2011-206046) previously digested with the same restriction enzymes.
  • reaction solution was introduced into Escherichia coli BL21 (DE3) strain by electroporation, cultured in LB plate medium containing 50 ⁇ g / mL kanamycin, and the colonies formed on the plate were randomly mutated. It was rally.
  • Example 6 Screening of Heat Stabilized Fc Binding Protein (1) By culturing the random mutation library prepared in Example 5 by the method described in Examples 3 (1) to (2), Fc binding protein was obtained. Expressed. (2) After culture, the culture supernatant containing Fc-binding protein obtained by centrifugation is diluted 20-fold with pure water, and further 20-fold with 0.1 M sodium carbonate buffer (pH 10.0). Dilute to Thereafter, the diluted solution was heat-treated at 40 ° C. for 15 minutes, and the pH was returned to near neutral with 1M Tris buffer (pH 7.0). (3) Example 3 (4) shows the antibody binding activity of the Fc binding protein when the heat treatment of (2) is performed and the antibody binding activity of the Fc binding protein when the heat treatment of (2) is not performed.
  • the residual activity was measured by the ELISA method described in 1. Calculated. (4) About 2,700 strains of transformants were evaluated by the method of (3), and transformants expressing Fc-binding proteins with improved thermal stability compared to FcR5a were selected. The selected transformant was cultured in a 2YT liquid medium containing 50 ⁇ g / mL kanamycin, and an expression vector was prepared using QIAprep Spin Miniprep kit (manufactured by Qiagen). (5) The nucleotide sequence of the sequence of the polynucleotide region encoding the Fc binding protein inserted into the obtained expression vector was analyzed by the method described in Example 1 (5), and amino acid mutation sites were identified.
  • Table 8 shows a summary of amino acid substitution positions for FcR5a and the residual activity (%) after heat treatment of the Fc-binding protein expressed by the transformant selected in (4).
  • Phe29Ile this notation is SEQ ID NO: 1 represents that phenylalanine at position 29 (position 45 in SEQ ID NO: 37) is substituted with isoleucine, and so on
  • Phe29Leu Glu39Gly, Gln48Arg, Tyr51Ser, Phe61Tyr, Asp77Gly, Asp82Glu, Gln90Alg, L Of Lys119Glu, Thr140Ile, Leu142Gln, Phe171Ser, Leu175Arg, Asn180Ser and Ile188Val Fc binding protein amino acid substitutions Zureka has at least one
  • FcR7a Fc binding protein in which Phe29Ile and Val117Glu amino acid substitutions were named FcR7a
  • FcR7a an expression vector containing a polynucleotide encoding FcR7a was designated as pET -It
  • the amino acid sequence of FcR7a is shown in SEQ ID NO: 39
  • the sequence of the polynucleotide encoding FcR7a is shown in SEQ ID NO: 40.
  • the first methionine (Met) to the 26th alanine (Ala) are MalE signal peptides
  • the 27th lysine (Lys) to the 32nd methionine (Met) are linker sequences.
  • the amino acid sequence of FcR7a corresponding to the 17th to 192nd region of SEQ ID NO: 1
  • histidines (His) from 211 to 216 are tag sequences.
  • isoleucine of Phe29Ile is present at the 45th position and glutamic acid of Val117Glu is present at the 133rd position.
  • Example 7 Production of Improved Fc Binding Protein The stability was further improved by accumulating amino acid substitutions found in Example 6 involved in improving the thermal stability of Fc binding protein in FcR7a. Accumulation of substituted amino acids was mainly performed using PCR, and four types of improved Fc binding proteins shown in (a) to (d) below were prepared.
  • FcR8 obtained by further performing amino acid substitution of Phe171Ser on FcR7a
  • FcR9 obtained by further substituting Gln48Arg amino acid for FcR8
  • FcR10 obtained by further performing amino acid substitution of Gln48Arg and Tyr51Ser on FcR8
  • D FcR11 obtained by further substituting amino acid substitution of Gln90Arg for FcR10
  • FcR8 Phe29Ile, Val117Glu, and Phe171Ser were selected from the amino acid substitutions involved in improving thermal stability, which were revealed in Example 6, and FcR8 in which these substitutions were accumulated in FcR5a (Example 4 (c)) was prepared. did. Specifically, FcR8 was produced by introducing a mutation that causes Phe171Ser into a polynucleotide encoding FcR7a. (A-1) PCR was performed using pET-FcR7a obtained in Example 6 as a template.
  • an oligonucleotide having a sequence described in SEQ ID NO: 23 and SEQ ID NO: 41 was used as a primer in the PCR.
  • the reaction solution was heat-treated at 98 ° C. for 5 minutes, first step at 98 ° C. for 10 seconds, second step at 55 ° C. for 5 seconds, and at 72 ° C. 30 cycles of the reaction in which the third step for 1 minute was set to 1 cycle were performed by heat treatment at 72 ° C. for 5 minutes.
  • the amplified PCR product was subjected to agarose gel electrophoresis, and purified from the gel using a QIAquick Gel Extraction kit (Qiagen).
  • the purified PCR product was designated as m8F.
  • A-2 Except that pET-FcR7a obtained in Example 6 was used as a template, and an oligonucleotide consisting of SEQ ID NO: 42 (5′-GACACGCGCAGCATTTCCTGCCCTGGGGCTG-3 ′) and the sequence shown in SEQ ID NO: 24 was used as a PCR primer. , (A-1).
  • the purified PCR product was designated as m8R.
  • reaction solution having the composition shown in Table 6.
  • the reaction solution is heat-treated at 98 ° C. for 5 minutes, followed by 5 cycles of reaction in which the first step is 98 ° C. for 10 seconds, the second step is 55 ° C. for 5 seconds, and the third step is 72 ° C. for 1 minute.
  • PCR was performed, and a PCR product m8p in which m8F and m8R were linked was obtained.
  • (A-4) PCR was performed using the PCR product m8p obtained in (a-3) as a template and oligonucleotides having the sequences described in SEQ ID NO: 23 and SEQ ID NO: 24 as PCR primers.
  • the reaction solution was heat-treated at 98 ° C. for 5 minutes, first step at 98 ° C. for 10 seconds, second step at 55 ° C. for 5 seconds, and at 72 ° C.
  • the reaction with the third step of 1 minute as one cycle was performed 30 cycles.
  • a polynucleotide encoding FcR8 in which an amino acid substitution at one site was introduced into FcR7a was prepared.
  • FcR8 which is a polypeptide in which amino acids are substituted at 3 positions on FcR5a (8 positions relative to a wild-type Fc-binding protein) by extracting a plasmid from the collected microbial cells (transformants) Plasmid pET-FcR8 containing was obtained.
  • A-7) The nucleotide sequence of pET-FcR8 was analyzed in the same manner as in Example 1 (5).
  • the amino acid sequence of FcR8 added with a signal sequence and a polyhistidine tag is shown in SEQ ID NO: 43, and the sequence of the polynucleotide encoding the FcR8 is shown in SEQ ID NO: 44.
  • the first methionine (Met) to the 26th alanine (Ala) are MalE signal peptides
  • the 27th lysine (Lys) to the 32nd methionine (Met) are linker sequences.
  • the amino acid sequence of FcR8 (corresponding to the 17th to 192nd region of SEQ ID NO: 1), the 209th to 210th glycine (Gly) Is a linker sequence, and histidines (His) from 211 to 216 are tag sequences.
  • isoleucine of Phe29Ile is present at the 45th position
  • glutamic acid of Val117Glu is located at the 133rd position
  • serine of Phe171Ser is present at the 187th position.
  • FcR9 Phe29Ile, Gln48Arg, Val117Glu and Phe171Ser were selected from the amino acid substitutions involved in improving thermal stability, which were revealed in Example 6, and FcR9 integrated in FcR5a (Example 4 (c)) was selected.
  • FcR9 was produced by introducing a mutation that caused Gln48Arg to the polynucleotide encoding FcR8.
  • (B-4) A method similar to (a-4), using the PCR product m9p obtained in (b-3) as a template and an oligonucleotide consisting of the sequences of SEQ ID NO: 21 and SEQ ID NO: 22 as a PCR primer PCR was performed. This produced a polynucleotide encoding FcR9.
  • (B-5) After purifying the polynucleotide obtained in (b-4), digested with restriction enzymes NcoI and HindIII and previously digested with restriction enzymes NcoI and HindIII (Japanese Patent Laid-Open No. 2011-206046) was used to transform Escherichia coli BL21 (DE3) strain.
  • the amino acid sequence of FcR9 added with a signal sequence and a polyhistidine tag is shown in SEQ ID NO: 47, and the sequence of the polynucleotide encoding the FcR9 is shown in SEQ ID NO: 48.
  • SEQ ID NO: 47 the first methionine (Met) to the 26th alanine (Ala) are MalE signal peptides, and the 27th lysine (Lys) to the 32nd methionine (Met) are linker sequences.
  • FcR9 There is an amino acid sequence of FcR9 from the 33rd glycine (Gly) to the 208th glutamine (Gln) (corresponding to the 17th to 192nd region of SEQ ID NO: 1), and the 209th to 210th glycine (Gly).
  • 211 to 216th histidine (His) is a tag sequence.
  • isoleucine of Phe29Ile is present at the 45th position
  • arginine of Gln48Arg is present at the 64th position
  • glutamic acid of Val117Glu is present at the 133rd position
  • serine of Phe171Ser is present at the 187th position.
  • FcR10 Phe29Ile, Gln48Arg, Tyr51Ser, Val117Glu and Phe171Ser were selected from the amino acid substitutions involved in the improvement of thermal stability, which were revealed in Example 6, and these substitutions were accumulated in FcR5a (Example 4 (c)).
  • FcR10 was prepared. Specifically, FcR10 was produced by introducing a mutation that caused Gln48Arg and Tyr51Ser into a polynucleotide encoding FcR8.
  • the purified PCR product was designated as m10F.
  • C-2 except that pET-FcR8 prepared in (a) was used as a template, and an oligonucleotide having the sequences described in SEQ ID NO: 21 and SEQ ID NO: 50 (5′-GCTAGACCGCCCCGGCATTTAAGGGTCAC-3 ′) was used as a PCR primer, PCR was performed in the same manner as (a-1). The purified PCR product was designated as m10R.
  • C-3) After mixing the two kinds of PCR products (m10F, m10R) obtained in (c-1) and (c-2), PCR was performed in the same manner as in (a-3), and m10F And m10R were linked. The obtained PCR product was designated as m10p.
  • C-4 The same method as (a-4), using the PCR product m10p obtained in (c-3) as a template and the oligonucleotide consisting of the sequences shown in SEQ ID NO: 21 and SEQ ID NO: 22 as PCR primers PCR was performed. This produced a polynucleotide encoding FcR10.
  • C-5 After purifying the polynucleotide obtained in (c-4), digested with restriction enzymes NcoI and HindIII, and previously digested with restriction enzymes NcoI and HindIII (Japanese Patent Laid-Open No. 2011-206046) was used to transform Escherichia coli BL21 (DE3) strain.
  • the amino acid sequence of FcR10 to which a signal sequence and a polyhistidine tag are added is shown in SEQ ID NO: 51, and the sequence of the polynucleotide encoding the FcR10 is shown in SEQ ID NO: 52.
  • SEQ ID NO: 51 the first methionine (Met) to the 26th alanine (Ala) are MalE signal peptides, and the 27th lysine (Lys) to the 32nd methionine (Met) are linker sequences.
  • FcR10 There is an amino acid sequence of FcR10 from the 33rd glycine (Gly) to the 208th glutamine (Gln) (corresponding to the 17th to 192nd region of SEQ ID NO: 1), and the 209th to 210th glycine (Gly).
  • 211 to 216th histidine (His) is a tag sequence.
  • isoleucine of Phe29Ile is located at position 45
  • arginine of Gln48Arg is located at position 64
  • serine of Tyr51Ser is located at position 67
  • glutamic acid of Val117Glu is located at position 133
  • serine of Phe171Ser is located at position 187.
  • FcR11 Phe29Ile, Gln48Arg, Tyr51Ser, Gln90Arg, Val117Glu, and Phe171Ser were selected from the amino acid substitutions involved in improving the thermal stability, which were revealed in Example 6, and these substitutions were FcR5a (Example 4 (c)).
  • FcR11 accumulated in the above was prepared. Specifically, FcR11 was produced by introducing a mutation that caused Gln90Arg to the polynucleotide encoding FcR10.
  • PCR was performed in the same manner as (a-1).
  • the purified PCR product was designated as m11R.
  • D-3 After mixing the two types of PCR products (m11F, m11R) obtained in (d-1) and (d-2), PCR was performed in the same manner as in (a-3). And m11R were linked. The obtained PCR product was designated as m11p.
  • (D-4) A method similar to (a-4), using the PCR product m11p obtained in (d-3) as a template and an oligonucleotide comprising the sequences described in SEQ ID NO: 21 and SEQ ID NO: 22 as PCR primers PCR was performed. This produced a polynucleotide encoding FcR11.
  • (D-5) After purifying the polynucleotide obtained in (d-4), digested with restriction enzymes NcoI and HindIII, and previously digested with restriction enzymes NcoI and HindIII (Japanese Patent Laid-Open No. 2011-206046) was used to transform Escherichia coli BL21 (DE3) strain.
  • the amino acid sequence of FcR11 to which a signal sequence and a polyhistidine tag are added is shown in SEQ ID NO: 55, and the sequence of the polynucleotide encoding the FcR11 is shown in SEQ ID NO: 56.
  • SEQ ID NO: 55 the first methionine (Met) to the 26th alanine (Ala) are MalE signal peptides, and the 27th lysine (Lys) to the 32nd methionine (Met) are linker sequences.
  • isoleucine of Phe29Ile is at position 45
  • arginine of Gln48Arg is position 64
  • serine of Tyr51Ser is position 67
  • arginine of Gln90Arg is position 106
  • glutamic acid of Val117Glu is position 133
  • serine of Phe171Ser is position 187.
  • Example 8 Evaluation of acid stability of Fc binding protein (1) Wild type Fc binding protein prepared in Example 1, Fc binding protein selected in Example 6 (FcR7a), and Fc prepared in Example 7 Transformants expressing binding proteins (FcR8, FcR9, FcR10, FcR11) are inoculated into 3 mL of 2YT liquid medium each containing 50 ⁇ g / mL kanamycin and cultured aerobically at 37 ° C. overnight. Thus, preculture was performed.
  • Example 3 shows the antibody binding activity of the protein after acid treatment with glycine hydrochloride buffer (pH 3.0) and the antibody binding activity of the protein without acid treatment. It was measured by the described ELISA method. Thereafter, the residual activity was calculated by dividing the antibody binding activity when acid treatment was performed by the antibody binding activity when acid treatment was not performed.
  • Example 9 Preparation of FcR5a (FcR5aCys) Added with Cysteine Tag (1) PCR was performed using pET-FcR5a prepared in Example 4 (c) as a template. As a primer in the PCR, an oligonucleotide having the sequence described in SEQ ID NO: 21 and SEQ ID NO: 57 (5′-CCCAAGCTTATCCGCAGGTATCGTTGCGGCACCCTTGGGTAATGGTAATATTCACGGTCTCGCTGC-3 ′) was used. In PCR, after preparing a reaction solution having the composition shown in Table 2, the reaction solution was heat-treated at 98 ° C. for 5 minutes, first step at 98 ° C. for 10 seconds, second step at 55 ° C.
  • the polynucleotide obtained in (1) is purified, digested with restriction enzymes NcoI and HindIII, and then ligated to an expression vector pETmalE (Japanese Patent Laid-Open No. 2011-206046) previously digested with restriction enzymes NcoI and HindIII. Escherichia coli BL21 (DE3) strain was transformed with the ligation product.
  • pETmalE Japanese Patent Laid-Open No. 2011-206046
  • the obtained transformant was cultured in an LB medium containing 50 ⁇ g / mL kanamycin, and then the expression vector pET-FcR5aCys was extracted using QIAprep Spin Miniprep kit (Qiagen).
  • the nucleotide sequence of pET-FcR5aCys was analyzed in the same manner as in Example 1 (5).
  • the amino acid sequence of the polypeptide expressed by the expression vector pET-FcR5aCys is shown in SEQ ID NO: 58, and the sequence of the polynucleotide encoding the polypeptide is shown in SEQ ID NO: 59, respectively.
  • the first methionine (Met) to the 26th alanine (Ala) are MalE signal peptides
  • the 27th lysine (Lys) to the 32nd methionine (Met) are linker sequences.
  • the amino acid sequence of FcR5a corresponding to the 17th to 192nd region of SEQ ID NO: 1
  • the 209th glycine (Gly) to the 216th Up to glycine (Gly) is the cysteine tag sequence.
  • Example 10 Preparation of FcR9 (FcR9Cys) Added with Cysteine Tag (1) Using the pET-FcR9 prepared in Example 7 (b) as a template, an oligonucleotide comprising the sequences described in SEQ ID NO: 21 and SEQ ID NO: 57 was subjected to PCR. PCR was performed in the same manner as in Example 9 (1) except that primers were used. (2) E. coli BL21 (DE3) strain was transformed by the same method as in Example 9 (2). (3) After the obtained transformant was cultured in the same manner as in Example 9 (3), the expression vector pET-FcR9Cys was extracted using QIAprep Spin Miniprep kit (Qiagen). (4) The nucleotide sequence of pET-FcR9Cys was analyzed in the same manner as in Example 1 (5).
  • the amino acid sequence of the polypeptide expressed by the expression vector pET-FcR9Cys is shown in SEQ ID NO: 60, and the sequence of the polynucleotide encoding the polypeptide is shown in SEQ ID NO: 61, respectively.
  • the first methionine (Met) to the 26th alanine (Ala) are MalE signal peptides
  • the 27th lysine (Lys) to the 32nd methionine (Met) are linker sequences.
  • the amino acid sequence of FcR9 (corresponding to the 17th to 192nd region of SEQ ID NO: 1), the 209th glycine (Gly) to the 216th Up to glycine (Gly) is the cysteine tag sequence.
  • Example 11 Preparation of FcR5aCys (1) 400 mL of 2YT liquid medium containing 50 ⁇ g / mL kanamycin (peptone 16 g / L, yeast extract) containing the transformant expressing FcR5aCys prepared in Example 9 in a 2 L baffle flask 10 g / L, sodium chloride 5 g / L), and precultured by aerobic shaking culture at 37 ° C. overnight.
  • 2YT liquid medium containing 50 ⁇ g / mL kanamycin (peptone 16 g / L, yeast extract) containing the transformant expressing FcR5aCys prepared in Example 9 in a 2 L baffle flask 10 g / L, sodium chloride 5 g / L
  • the liquid culture medium 1.8L containing / L was inoculated with 180 mL of the culture solution of (1), and main culture was performed using a 3 L fermenter (product of Biot). The main culture was started under the conditions of a temperature of 30 ° C., a pH of 6.9 to 7.1, an aeration rate of 1 VVM, and a dissolved oxygen concentration of 30% saturation.
  • the pH was controlled by using 50% phosphoric acid as the acid and 14% ammonia water as the alkali.
  • the dissolved oxygen was controlled by changing the stirring speed, and the stirring speed was set at the lower limit of 500 rpm and the upper limit of 1000 rpm. .
  • fed-batch medium glucose 248.9 g / L, yeast extract 83.3 g / L, magnesium sulfate heptahydrate 7.2 g / L
  • DO dissolved oxygen
  • the collected cells are suspended in 20 mM Tris-HCl buffer (pH 7.0) so as to be 5 mL / 1 g (cells), and an ultrasonic generator (Insonator 201M (trade name), manufactured by Kubota Corporation) ) was used to disrupt the cells at an output of about 150 W for about 10 minutes at 4 ° C.
  • the cell disruption solution was centrifuged twice at 8000 rpm for 20 minutes at 4 ° C., and the supernatant was collected.
  • the supernatant obtained in (5) is a VL32 ⁇ 250 column (Merck Millipore) packed with 140 mL of TOYOPEARL CM-650M (manufactured by Tosoh) equilibrated in advance with 20 mM Tris-HCl buffer (pH 7.0). Manufactured at a flow rate of 5 mL / min. After washing with the buffer used for equilibration, elution was performed with 20 mM Tris-HCl buffer (pH 7.0) containing 0.5 M sodium chloride.
  • Example 12 Preparation of FcR5a Immobilized Gel and Antibody Separation
  • FcR5aCys prepared in Example 11 after activating the hydroxyl group on the surface of 2 mL of hydrophilic vinyl polymer for separation agent (Tosoh Pearl: Toyopearl) with iodoacetyl group was reacted to obtain an FcR5a-immobilized gel.
  • Example 13 Measurement of ADCC (Antibody Dependent Cytotoxic Activity) Activity of Antibody Separated on FcR5a Immobilized Gel
  • Monoclonal antibodies were separated under the elution conditions described in Example 12, and the elution pattern shown in FIG. Fraction A (FrA) and fraction B (FrB) were fractionated.
  • Fraction A (FrA) and fraction B (FrB) were fractionated.
  • Fraction B (FrB) Fraction A
  • FrB fraction B
  • PBS Phosphate Buffered Saline
  • the ADCC activity of the antibodies contained in FrA and FrB was measured by the following method.
  • (4-1) Using ADCC Assay Buffer prepared by mixing 1.4 mL of Low IgG Serum and 33.6 mL of RPMI1640 medium, the antibody contained in FrA and FrB and the monoclonal antibody before separation were 3 ⁇ g / mL. 8 dilution series were prepared with 1/3 dilution.
  • (4-2) Raji cells were prepared to about 5 ⁇ 10 5 cells / mL with ADCC Assay Buffer and added to a 96-well plate (3917: Corning) at 25 ⁇ L / well.
  • Luciferase Assay Reagent manufactured by Promega
  • a GloMax Multi Detection System manufactured by Promega
  • FIG. 3 shows the results of comparing the luminescence intensity of FrA and FrB fractionated under the elution conditions described in Example 12 and the monoclonal antibody before separation.
  • the result of FIG. 3 shows a value obtained by subtracting the emission intensity of the blank from the measured emission intensity. The higher the emission intensity, the higher the ADCC activity.
  • FrA has almost the same luminescence intensity as that of the monoclonal antibody before separation, it can be said that the ADCC activity is almost the same.
  • FrB was improved by about 3.2 times compared with the monoclonal antibody before separation and 2.5 times compared with FrA. That is, it can be seen that FrB has higher ADCC activity than the monoclonal antibody and FrA before separation.
  • Example 14 Sugar chain analysis of antibody separated by FcR5a-immobilized gel (1) FrA and FrB fractionated in Example 13 (1) and the monoclonal antibody before separation were denatured by heat treatment at 100 ° C. for 10 minutes, Glycoamidase A / pepsin and pronase were sequentially treated, and a sugar chain fraction was obtained through purification by gel filtration. (2) After concentrating and drying the sugar chain obtained in (1) with an evaporator, 2-aminopyridine and then dimethylamine borane are successively acted on in an acetic acid solvent to form a fluorescent labeled sugar chain. Purified.
  • the neutral sugar chain fraction and the monosialylated sugar were obtained by using the fluorescently labeled sugar chain obtained in (2). Separated into chain fractions.
  • the neutral sugar chain fraction and monosialylated sugar chain fraction obtained in (3) were isolated into individual sugar chains using an ODS column. After obtaining the molecular weight information of the sugar chain isolated by MALDI-TOF-MS analysis, the sugar chain structure was assigned in comparison with the retention time of the ODS column chromatograph.
  • the assigned sugar chain structures (N1 to N6, M1, M2 and D1) are shown in FIG. 4, the composition ratio of neutral sugar chains is shown in Table 10, and the composition ratio of monosialylated and disialylated sugar chains is shown in Table 11.
  • Antibodies with sugar chain structures N4 + N4 'and N6 increased with FrB before separation and compared to FrA.
  • antibodies with N1, N2 + N3 ', N3 and N5 were reduced in FrB before separation and compared to FrA. That is, it can be seen that antibodies having N4 + N4 ′ and N6 sugar chains strongly bind to FcR5a, and antibodies having N1, N2 + N3 ′, N3 and N5 have weak binding to FcR5a.
  • antibodies with M1, M2 and D1 increased in FrB before separation and compared to FrA. That is, it can be seen that antibodies having M1, M2 and D1 sugar chains strongly bind to FcR5a.
  • Example 13 When the above results and the results of Example 13 are combined, it can be seen that an antibody having a sugar chain structure increased by FrB before separation and FrA has higher ADCC activity. That is, it can be seen that the FcR5a-immobilized gel can identify the difference in the sugar chain structure of the antibody and can separate the antibody with high ADCC activity based on the identification.
  • Example 15 Preparation of FcR9-immobilized gel and antibody separation (1) Using the transformant expressing FcR9Cys prepared in Example 10, Example 11 Incubation was carried out in the same manner as (1) to (4). (2) Purification was performed in the same manner as in Example 11 to obtain about 10 mg of high-purity FcR9Cys. (3) After obtaining an FcR9Cys-immobilized gel in the same manner as in Example 12 (1), 0.5 mL of the gel was packed into a stainless steel column of ⁇ 4.0 mm ⁇ 40 mm.
  • a column packed with FcR9-immobilized gel was connected to a high performance liquid chromatography apparatus (manufactured by Tosoh Corporation) and equilibrated with 20 mM acetate buffer (pH 4.5).
  • a monoclonal antibody (Rituxan, manufactured by Zenyaku Kogyo Co., Ltd.) diluted to 4.0 mg / mL with PBS (Phosphate Buffered Saline) (pH 7.4) was applied at 0.15 mL at a flow rate of 0.3 mL / min.
  • Example 16 ADCC activity measurement of antibody separated on FcR9-immobilized gel
  • Monoclonal antibodies were separated under the elution conditions of Example 15, and fractions A (FrA) and B (FrB) in the elution pattern shown in FIG. ) And fraction C (FrC).
  • the concentrations of the antibody contained in FrA, FrB and FrC, and the monoclonal antibody before separation were measured by absorbance at 280 nm, and ADCC activity was measured by the same method as in Example 13 (4).
  • the results are shown in FIG.
  • the result of FIG. 6 shows a value obtained by subtracting the blank emission intensity from the measured emission intensity. The higher the emission intensity, the higher the ADCC activity.
  • FrA and FrB have slightly lower ADCC activity than the monoclonal antibody before separation.
  • FrC improved ADCC activity by about 1.6 times compared with the monoclonal antibody before separation. That is, it can be seen that FrC that is slowly eluted has higher ADCC activity than FrA and FrB that are eluted quickly and the monoclonal antibody before separation.
  • the gel immobilized with the Fc-binding protein of the present invention can distinguish the difference in the sugar chain structure of the antibody. Therefore, an antibody that strongly binds to FcR9 contained in FrC has high ADCC activity. It is suggested that the antibody has a sugar chain structure.
  • Example 17 Mutation Introduction to FcR9 and Library Preparation Mutation was randomly introduced into the polynucleotide portion encoding FcR9 prepared in Example 7 (b) by error-prone PCR.
  • (1) Error-prone PCR was performed using the expression vector pET-FcR9 prepared in Example 7 (b) as a template.
  • pET-FcR9 was used as a template, and a reaction solution having the same composition as shown in Table 3 was prepared except that oligonucleotides having the sequences shown in SEQ ID NO: 23 and SEQ ID NO: 24 were used as primers.
  • a heat treatment at 95 ° C.
  • reaction solution was introduced into Escherichia coli BL21 (DE3) strain by electroporation, cultured in LB plate medium containing 50 ⁇ g / mL kanamycin, and the colonies formed on the plate were randomly mutated. It was rally.
  • Example 18 Screening of Alkaline Stabilized Fc Binding Protein (1)
  • the random mutation library prepared in Example 17 was cultured by the method described in Examples 3 (1) to (2) to obtain Fc binding protein. Expressed. (2) After culturing, the culture supernatant containing Fc-binding protein obtained by centrifugation is diluted 10-fold with pure water, mixed with an equal volume of 60 mM sodium hydroxide solution, and 1 at 30 ° C. . Alkali treatment by standing for 5 hours. Thereafter, the pH was returned to near neutral with 4 volumes of 1 M Tris buffer (pH 7.0).
  • the selected transformant was cultured in a 2YT liquid medium containing 50 ⁇ g / mL kanamycin, and an expression vector was prepared using QIAprep Spin Miniprep kit (manufactured by Qiagen).
  • the nucleotide sequence of the sequence of the polynucleotide region encoding the Fc binding protein inserted into the obtained expression vector was analyzed by the method described in Example 1 (5), and amino acid mutation sites were identified.
  • Table 12 shows a summary of amino acid substitution positions for FcR9 and residual activity (%) after alkali treatment of the Fc-binding protein expressed by the transformant selected in (4).
  • Met18Ile this notation is SEQ ID NO: 1 represents that methionine at 18th position (34th in SEQ ID NO: 37) is substituted with isoleucine, the same applies to the following
  • Glu21Lys Glu21Gly, Leu23Met, Gln33Pro, Lys46Glu, Phe61Tyr
  • Glu64Gly Ser65Arg, Ser68Pro, Asp77V , Val81Met, Asp82Ala, Gln101Leu, Glu103Val, His105Arg, Glu120Val, Ser178Arg and Asn180Ly Fc binding proteins or amino acid substitutions are at least
  • Example 19 Production of Improved Fc Binding Protein The stability was further improved by accumulating amino acid substitutions found in Example 18 involved in improving the alkali stability of Fc binding protein in FcR9. Accumulation of substituted amino acids was mainly performed using PCR, and two types of improved Fc-binding proteins shown in (a) and (b) below were prepared.
  • B FcR13 obtained by further performing amino acid substitution of Glu21Gly, Leu23Met, Ser68Pro and Ser178Arg to FcR9
  • a method for producing each improved Fc-binding protein will be described in detail.
  • FcR12 Glu21Gly, Leu23Met and Ser178Arg were selected from the amino acid substitutions involved in improving alkali stability, which were revealed in Example 18, and FcR12 in which these substitutions were accumulated in FcR9 (Example 7 (b)) was prepared. did. Specifically, FcR12 is obtained by introducing a mutation that causes Glu21Gly and Leu23Met to the polynucleotide containing the Ser178Arg mutation obtained in Example 18. Was made. (A-1) PCR was carried out using the polynucleotide obtained in Example 18 encoding Fc-binding protein containing Ser178Arg mutation in FcR9 as a template.
  • oligonucleotides having the sequences described in SEQ ID NO: 24 and SEQ ID NO: 62 were used.
  • the reaction solution was heat-treated at 98 ° C. for 5 minutes, the first step at 98 ° C. for 10 seconds, and the second step at 55 ° C. for 5 seconds.
  • 30 cycles of the third step of 1 minute at 72 ° C. were performed for 30 cycles, and finally heat treatment was performed at 72 ° C. for 5 minutes.
  • the amplified PCR product was subjected to agarose gel electrophoresis, and purified from the gel using a QIAquick Gel Extraction kit (Qiagen).
  • the purified PCR product was designated as m12p.
  • A-2) m12p obtained in (a-1) was digested with restriction enzymes NcoI and HindIII, and ligated to an expression vector pETmalE (Japanese Patent Laid-Open No. 2011-206046) previously digested with restriction enzymes NcoI and HindIII. This was used to transform E. coli BL21 (DE3) strain.
  • A-3) The obtained transformant was cultured in an LB medium supplemented with 50 ⁇ g / mL kanamycin.
  • FcR12 which is a polypeptide in which amino acid substitution has been performed at three positions on FcR9 (12 positions relative to a wild-type Fc-binding protein) by extracting a plasmid from the collected bacterial cells (transformants) Plasmid pET-FcR12 containing was obtained.
  • A-4 The nucleotide sequence of pET-FcR12 was analyzed in the same manner as in Example 1 (5).
  • the amino acid sequence of FcR12 to which a signal sequence and a polyhistidine tag are added is shown in SEQ ID NO: 63
  • the sequence of the polynucleotide encoding the FcR12 is shown in SEQ ID NO: 64.
  • the first methionine (Met) to the 26th alanine (Ala) are MalE signal peptides
  • the 27th lysine (Lys) to the 32nd methionine (Met) are linker sequences.
  • the amino acid sequence of FcR12 (corresponding to the 17th to 192nd region of SEQ ID NO: 1), the 209th to 210th glycine (Gly) Is a linker sequence, and histidines (His) from 211 to 216 are tag sequences.
  • SEQ ID NO: 63 Glu21Gly glycine is position 37, Leu23Met methionine is position 39, Val27Glu glutamate is position 43, Phe29Ile isoleucine is position 45, Tyr35Asn asparagine is position 51, Gln48Arg arginine is position 64, Phe75Lu.
  • FcR13 Glu21Gly, Leu23Met, Ser68Pro and Ser178Arg were selected from the amino acid substitutions involved in improving the alkali stability, which were revealed in Example 18, and these substitutions were accumulated in FcR9 (Example 7 (b)). Was made. Specifically, FcR13 was produced by introducing a mutation that caused Ser68Pro to the polynucleotide encoding FcR12.
  • the amplified PCR product was subjected to agarose gel electrophoresis, and purified from the gel using a QIAquick Gel Extraction kit (Qiagen).
  • the purified PCR product was designated as m13F. (B-2) except that pET-FcR12 prepared in (a) was used as a template, and an oligonucleotide having the sequences described in SEQ ID NO: 62 and SEQ ID NO: 66 (5′-GTAGCTGCTCGCCCTGCTGGGAATCAGGCT-3 ′) was used as a PCR primer, PCR was performed in the same manner as (b-1).
  • the purified PCR product was designated as m13R.
  • (B-4) PCR was performed using the PCR product m13p obtained in (b-3) as a template and oligonucleotides having the sequences shown in SEQ ID NO: 23 and SEQ ID NO: 24 as PCR primers.
  • the reaction solution was heat-treated at 98 ° C. for 5 minutes, first step at 98 ° C. for 10 seconds, second step at 55 ° C. for 5 seconds, and at 72 ° C.
  • the reaction with the third step of 1 minute as one cycle was performed 30 cycles.
  • a polynucleotide encoding FcR13 in which an amino acid substitution at one position was introduced into FcR12 was prepared.
  • FcR13 which is a polypeptide in which amino acids are substituted at 4 positions (13 positions with respect to a wild-type Fc-binding protein) with respect to FcR9 by extracting a plasmid from the collected microbial cells (transformants) Plasmid pET-FcR13 containing was obtained.
  • B-7 The nucleotide sequence of pET-FcR13 was analyzed in the same manner as in Example 1 (5).
  • the amino acid sequence of FcR13 added with a signal sequence and a polyhistidine tag is shown in SEQ ID NO: 67, and the sequence of the polynucleotide encoding the FcR13 is shown in SEQ ID NO: 68.
  • SEQ ID NO: 67 the first methionine (Met) to the 26th alanine (Ala) are MalE signal peptides, and the 27th lysine (Lys) to the 32nd methionine (Met) are linker sequences.
  • the amino acid sequence of FcR13 from the 33rd glycine (Gly) to the 208th glutamine (Gln) (corresponding to the region from the 17th to the 192nd region of SEQ ID NO: 1), the 209th to the 210th glycine (Gly) ) Is a linker sequence, and 211 to 216th histidine (His) is a tag sequence.
  • Example 20 Evaluation of Alkali Stability of Fc Binding Protein
  • Fc binding protein (FcR5a) prepared in Example 4 (c) Fc binding protein (FcR9) prepared in Example 7 (b), and The transformant expressing the Fc binding protein (FcR12, FcR13) prepared in Example 19 was cultured by the method described in Example 8 (1) to (4), and FcR5a, FcR9, FcR12 and FcR13 were prepared.
  • the antibody binding activity of FcR5a, FcR9, FcR12 and FcR13 in the protein extract prepared in (1) was measured using the ELISA method described in Example 3 (4). At this time, a calibration curve was prepared using FcR9 purified and quantified, and the concentration was measured.
  • Example 21 Mutation Introduction to FcR13 and Library Preparation Mutation was randomly introduced into the polynucleotide part encoding FcR13 prepared in Example 19 (b) by error-prone PCR.
  • Error-prone PCR was performed using the expression vector pET-FcR13 prepared in Example 19 (b) as a template.
  • a reaction solution similar to the composition shown in Table 3 was prepared except that pET-FcR13 was used as a template and oligonucleotides having the sequences shown in SEQ ID NO: 23 and SEQ ID NO: 24 were used as primers.
  • reaction solution was introduced into Escherichia coli BL21 (DE3) strain by electroporation, cultured in LB plate medium containing 50 ⁇ g / mL kanamycin, and the colonies formed on the plate were randomly mutated. It was rally.
  • Example 22 Screening of alkali-stabilized Fc-binding protein (1)
  • the random mutation library prepared in Example 21 was cultured by the method described in Examples 3 (1) to (2) to obtain an Fc-binding protein. Expressed. (2) After culture, the culture supernatant containing Fc-binding protein obtained by centrifugation was treated with alkali by the method shown below. After the alkali treatment, the pH was returned to near neutral with 4 volumes of 1M Tris buffer (pH 7.0).
  • ii Dilute 20 times with pure water, After mixing with 60 mM sodium hydroxide solution, left at 30 ° C.
  • the selected transformant was cultured in a 2YT liquid medium containing 50 ⁇ g / mL kanamycin, and an expression vector was prepared using QIAprep Spin Miniprep kit (manufactured by Qiagen).
  • the nucleotide sequence of the sequence of the polynucleotide region encoding the Fc binding protein inserted into the obtained expression vector was analyzed by the method described in Example 1 (5), and amino acid mutation sites were identified.
  • Table 14 summarizes the amino acid substitution positions for FcR13 and the residual activity (%) after alkali treatment of the Fc-binding protein expressed by the transformant selected in (4) (alkaline treatment is the conditions of (i)). And Table 15 (alkali treatment is the condition (ii)).
  • FcR14 Fc binding protein in which amino acid substitution of Gly147Val occurred was named FcR14, and an expression vector containing a polynucleotide encoding FcR14 was designated as pET-FcR14. Named.
  • the amino acid sequence of FcR14 is shown in SEQ ID NO: 69, and the sequence of the polynucleotide encoding FcR14 is shown in SEQ ID NO: 70.
  • the first methionine (Met) to the 26th alanine (Ala) are MalE signal peptides
  • the 27th lysine (Lys) to the 32nd methionine (Met) are linker sequences.
  • the amino acid sequence of FcR14 corresponding to the 17th to 192nd region of SEQ ID NO: 1
  • 209th to 210th glycine (Gly) Is a linker sequence
  • histidines (His) from 211 to 216 are tag sequences.
  • Glu21Gly glycine is position 37
  • Leu23Met methionine is position 39
  • Val27Glu glutamate is position 43
  • Phe29Ile isoleucine
  • Tyr35Asn asparagine is position 51
  • Gln48Arg arginine is position 64
  • Ser68Pro. Proline 84th Phe75Leu leucine 91st, Asn92Ser serine 108th
  • Val117Glu glutamic acid 133rd Glu121Gly glycine 137th
  • Gly147Val valine 163rd Phe171Ser serine 187th
  • Ser178Arg Exists at the 194th position.
  • Example 23 Production of Improved Fc Binding Protein Tyr51His and Glu54Asp were selected from among the amino acid substitutions involved in improving the alkali stability of Fc binding protein revealed in Example 22, and these substitutions were changed to FcR14. By accumulating, an improved Fc binding protein (FcR16) was produced. Hereinafter, the production method will be described in detail.
  • the amplified PCR product was subjected to agarose gel electrophoresis, and purified from the gel using a QIAquick Gel Extraction kit (Qiagen).
  • the purified PCR product was designated as m16F.
  • the purified PCR product was designated as m16R.
  • reaction solution having the composition shown in Table 6.
  • the reaction solution is heat-treated at 98 ° C. for 5 minutes, followed by 5 cycles of reaction in which the first step is 98 ° C. for 10 seconds, the second step is 55 ° C. for 5 seconds, and the third step is 72 ° C. for 1 minute.
  • PCR was performed by heat treatment at 72 ° C. for 5 minutes to obtain a PCR product m16p in which m16F and m16R were ligated.
  • PCR was performed using the PCR product m16p obtained in (3) as a template and oligonucleotides having the sequences described in SEQ ID NO: 23 and SEQ ID NO: 24 as PCR primers.
  • the reaction solution was heat-treated at 98 ° C. for 5 minutes, first step at 98 ° C. for 10 seconds, second step at 55 ° C. for 5 seconds, and at 72 ° C. 30 cycles of the reaction with the third step of 1 minute as one cycle were performed, and finally PCR was performed by heat treatment at 72 ° C. for 5 minutes.
  • FcR16 which is a polypeptide in which amino acid substitution has been performed at two positions on FcR14 (16 positions relative to a wild-type Fc-binding protein) by extracting a plasmid from the collected cells (transformants) Plasmid pET-FcR16 containing was obtained. (7) The nucleotide sequence of pET-FcR16 was analyzed in the same manner as in Example 1 (5).
  • the amino acid sequence of FcR16 added with a signal sequence and a polyhistidine tag is shown in SEQ ID NO: 73, and the sequence of the polynucleotide encoding the FcR16 is shown in SEQ ID NO: 74.
  • SEQ ID NO: 73 the first methionine (Met) to the 26th alanine (Ala) are MalE signal peptides, and the 27th lysine (Lys) to the 32nd methionine (Met) are linker sequences.
  • the amino acid sequence of FcR13 from the 33rd glycine (Gly) to the 208th glutamine (Gln) (corresponding to the region from the 17th to the 192nd region of SEQ ID NO: 1), the 209th to the 210th glycine (Gly) ) Is a linker sequence, and 211 to 216th histidine (His) is a tag sequence.
  • Example 24 Alkali Stability Evaluation of Fc Binding Protein
  • Fc binding protein (FcR13) prepared in Example 19 (b), Fc binding protein (FcR14) obtained in Example 22, and Example 23 FcR13, FcR14, and FcR16 were prepared by culturing the transformant expressing Fc-binding protein (FcR16) prepared in step 1 by culturing by the method described in (1) to (4) of Example 8 and extracting the protein. did.
  • the antibody binding activity of FcR13, FcR14 and FcR16 in the protein extract prepared in (1) was measured using the ELISA method described in Example 3 (4). At this time, a calibration curve was prepared using FcR9 purified and quantified, and the concentration was measured.
  • Example 25 Mutation Introduction to FcR16 and Library Preparation Mutation was randomly introduced into the polynucleotide portion encoding FcR16 prepared in Example 23 by error-prone PCR.
  • (1) Error-prone PCR was performed using the expression vector pET-FcR16 prepared in Example 23 as a template.
  • pET-FcR16 was used as a template, and a reaction solution having the same composition as shown in Table 3 was prepared, except that oligonucleotides having the sequences shown in SEQ ID NOs: 23 and 24 were used as primers.
  • Heat treatment at 95 ° C. for 2 minutes, 35 cycles of reaction with 95 ° C. for 30 seconds for the first step, 50 ° C.
  • the PCR product obtained in (1) was purified, digested with restriction enzymes NcoI and HindIII, and ligated into an expression vector pETmalE (Japanese Patent Laid-Open No. 2011-206046) previously digested with the same restriction enzymes.
  • reaction solution was introduced into Escherichia coli BL21 (DE3) strain by electroporation, cultured in LB plate medium containing 50 ⁇ g / mL kanamycin, and the colonies formed on the plate were randomly mutated. It was rally.
  • Example 26 Screening of alkali-stabilized Fc-binding protein (1)
  • the random mutation library prepared in Example 25 was cultured by the method described in Examples 3 (1) to (2) to obtain an Fc-binding protein. Expressed. (2) After culture, the culture supernatant containing Fc-binding protein obtained by centrifugation is diluted 20-fold with pure water, mixed with an equal amount of 80 mM sodium hydroxide solution, and then at 30 ° C. The alkali treatment was carried out by leaving still for 2 hours. After the alkali treatment, the pH was returned to near neutral with 4 volumes of 1 M Tris buffer (pH 7.0).
  • the selected transformant was cultured in a 2YT liquid medium containing 50 ⁇ g / mL kanamycin, and an expression vector was prepared using QIAprep Spin Miniprep kit (manufactured by Qiagen).
  • the nucleotide sequence of the sequence of the polynucleotide region encoding the Fc binding protein inserted into the obtained expression vector was analyzed by the method described in Example 1 (5), and amino acid mutation sites were identified.
  • Table 17 shows a summary of amino acid substitution positions for FcR13 and residual activity (%) after alkali treatment of the Fc-binding protein expressed by the transformant selected in (4).
  • the amino acid residue from the 33rd glycine to the 208th glutamine corresponding to the 17th to 192nd of SEQ ID NO: 1
  • Ala78Ser this notation indicates that the 78th alanine in SEQ ID NO: 1 (94th in SEQ ID NO: 37) is substituted with serine, the same applies hereinafter
  • Asp82Glu Gln101Leu, Gln101Arg, Thr140Ile
  • An Fc-binding protein in which at least one amino acid substitution of any one of Gln143His, Tyr158His, Lys161Arg, Lys165Glu, Thr185Ala, Asn187Asp, Asn187Tyr has occurred is more stable than Fc
  • Example 27 Production of Improved Fc Binding Protein The stability was further improved by accumulating amino acid substitutions found in Example 26 involved in improving the alkali stability of Fc binding protein in FcR16. Accumulation of substituted amino acids was mainly performed using PCR, and three types of improved Fc-binding proteins shown in (a) to (c) below were prepared.
  • A FcR19 in which Thr140Ile, Tyr158His and Lys165Glu were further substituted for FcR16
  • B FcR21 in which Asp82Glu, Gln101Leu, Thr140Ile, Tyr158His and Lys165Glu were further substituted for FcR16
  • C FcR24 in which Ala78Ser, Asp82Glu, Gln101Leu, Thr140Ile, Tyr158His, Lys165Glu, Thr185Ala, and Asn187Asp were further substituted for FcR16
  • a method for producing each improved Fc-binding protein will be described in detail.
  • FcR19 Thr140Ile, Tyr158His and Lys165Glu were selected from the amino acid substitutions involved in improving alkali stability, which were revealed in Example 26, and FcR19 in which these substitutions were accumulated in FcR16 (Example 23) was prepared. Specifically, FcR19 was produced by carrying out mutation introduction
  • Example 26 (A-1) SEQ ID NO: 24 and SEQ ID NO: 75 (5′-ATTCCCAAAGCGACCGCTGGAGGACACGCGGC-3 ′), using as a template the polynucleotide obtained in Example 26 that encodes an Fc-binding protein containing Thr140Ile and Tyr158His mutations in FcR16
  • the reaction solution having the composition shown in Table 5 was prepared, and the reaction solution was heat-treated at 98 ° C. for 5 minutes, and then the first step at 98 ° C. for 10 seconds.
  • the reaction was performed by 30 cycles of the second step at 55 ° C. for 5 seconds and the third step at 72 ° C. for 1 minute for 30 cycles, and finally by heat treatment at 72 ° C. for 5 minutes.
  • the amplified PCR product was subjected to agarose gel electrophoresis, and purified from the gel using a QIAquick Gel Extraction kit (Qiagen).
  • the purified PCR product was designated as m19F.
  • A-2 SEQ ID NO: 23 and SEQ ID NO: 76 (5′-ATAGCTGCCGCTGTCTCCCCACGGTCGCTTT-3 ′) using, as a template, a polynucleotide encoding an Fc-binding protein containing Thr140Ile and Tyr158His mutations in FcR16 obtained in Example 26 PCR was performed in the same manner as (a-1) except that the oligonucleotide having the sequence described in (1) was used as a PCR primer.
  • the purified PCR product was designated as m19R.
  • A-3 Two types of PCR products (m19F and m19R) obtained in (a-1) and (a-2) were mixed to prepare a reaction solution having the composition shown in Table 6. The reaction solution is heat-treated at 98 ° C. for 5 minutes, followed by 5 cycles of reaction in which the first step is 98 ° C. for 10 seconds, the second step is 55 ° C. for 5 seconds, and the third step is 72 ° C. for 1 minute. PCR was carried out to obtain a PCR product m19p in which m19F and m19R were linked.
  • (A-4) PCR was performed using the PCR product m19p obtained in (a-3) as a template and oligonucleotides having the sequences shown in SEQ ID NO: 23 and SEQ ID NO: 24 as PCR primers.
  • the reaction solution was heat-treated at 98 ° C. for 5 minutes, first step at 98 ° C. for 10 seconds, second step at 55 ° C. for 5 seconds, and at 72 ° C.
  • the reaction with the third step of 1 minute as one cycle was performed 30 cycles.
  • a polynucleotide encoding FcR19 having three amino acid substitutions introduced into FcR16 was prepared.
  • FcR19 which is a polypeptide in which amino acid substitution has been performed on FcR16 at three positions (19 positions relative to a wild-type Fc-binding protein) by extracting a plasmid from the collected bacterial cells (transformants) Plasmid pET-FcR19 containing was obtained.
  • A-7) The nucleotide sequence of pET-FcR19 was analyzed in the same manner as in Example 1 (5).
  • the amino acid sequence of FcR19 added with a signal sequence and a polyhistidine tag is shown in SEQ ID NO: 77, and the sequence of the polynucleotide encoding the FcR19 is shown in SEQ ID NO: 78.
  • the first methionine (Met) to the 26th alanine (Ala) are MalE signal peptides
  • the 27th lysine (Lys) to the 32nd methionine (Met) are linker sequences.
  • the amplified PCR product was subjected to agarose gel electrophoresis, and purified from the gel using a QIAquick Gel Extraction kit (Qiagen). The purified PCR product was designated as m21-2F.
  • (B-2) SEQ ID NO: 23 and SEQ ID NO: 80 (5′-TTGCAGGGTAGACTACTTTATGCAGGGCGGT-) using as a template a polynucleotide encoding an Fc-binding protein obtained in Example 26 and containing Asp82Glu, Gln101Leu and Asn187Asp mutations in FcR16 PCR was performed in the same manner as (b-1) except that the oligonucleotide having the sequence described in 3 ′) was used as a PCR primer.
  • the purified PCR product was designated as m21-2R.
  • reaction solution having the composition shown in Table 6.
  • the reaction solution is heat-treated at 98 ° C. for 5 minutes, followed by 5 cycles of reaction in which the first step is 98 ° C. for 10 seconds, the second step is 55 ° C. for 5 seconds, and the third step is 72 ° C. for 1 minute.
  • PCR was performed to obtain a PCR product m21-2p in which m21-2F and m21-2R were ligated.
  • (B-4) PCR was performed using the PCR product m21-2p obtained in (b-3) as a template and oligonucleotides having the sequences described in SEQ ID NO: 23 and SEQ ID NO: 24 as PCR primers.
  • the reaction solution was heat-treated at 98 ° C. for 5 minutes, first step at 98 ° C. for 10 seconds, second step at 55 ° C. for 5 seconds, and at 72 ° C.
  • the reaction with the third step of 1 minute as one cycle was performed 30 cycles.
  • the amplified PCR product was subjected to agarose gel electrophoresis, and purified from the gel using a QIAquick Gel Extraction kit (Qiagen). The purified PCR product was designated as m21-1F.
  • (B-7) Two types of PCR products (m21-1F, m21-1R) obtained in (b-5) and (b-6) were mixed to prepare a reaction solution having the composition shown in Table 6.
  • the reaction solution is heat-treated at 98 ° C. for 5 minutes, followed by 5 cycles of reaction in which the first step is 98 ° C. for 10 seconds, the second step is 55 ° C. for 5 seconds, and the third step is 72 ° C. for 1 minute.
  • PCR was performed to obtain a PCR product m21-1p in which m21-1F and m21-1R were ligated.
  • (B-8) PCR was performed using the PCR product m21-1p obtained in (b-7) as a template and oligonucleotides having the sequences described in SEQ ID NO: 23 and SEQ ID NO: 24 as PCR primers.
  • the reaction solution was heat-treated at 98 ° C. for 5 minutes, first step at 98 ° C. for 10 seconds, second step at 55 ° C. for 5 seconds, and at 72 ° C.
  • the reaction with the third step of 1 minute as one cycle was performed 30 cycles.
  • the reaction solution having the composition shown in Table 5 was prepared except that the oligonucleotide having the sequence described above was used as a PCR primer, and then the reaction solution was heat-treated at 98 ° C. for 5 minutes, and the first step at 98 ° C. for 10 seconds, 55
  • the reaction was carried out by performing 30 cycles of the second step of 5 seconds at ° C and the third step of 1 minute at 72 ° C for 30 cycles, and finally heat treating at 72 ° C for 5 minutes.
  • the amplified PCR product was subjected to agarose gel electrophoresis, and purified from the gel using a QIAquick Gel Extraction kit (Qiagen).
  • the purified PCR product was designated as m21F (Asn187Asp mutation was deleted by this operation).
  • B-10 A polynucleotide encoding FcR21-1 containing the mutations of Asp82Glu, Gln101Leu, Thr140Ile, Tyr158His, and Asn187Asp obtained in (b-8) in FcR16 is used as a template.
  • SEQ ID NO: 62 and SEQ ID NO: 76 PCR was carried out in the same manner as in (b-9) except that oligonucleotides having the sequences described were used as PCR primers.
  • the purified PCR product was designated as m21R.
  • reaction solution having the composition shown in Table 6.
  • the reaction solution is heat-treated at 98 ° C. for 5 minutes, followed by 5 cycles of reaction in which the first step is 98 ° C. for 10 seconds, the second step is 55 ° C. for 5 seconds, and the third step is 72 ° C. for 1 minute.
  • PCR was performed to obtain a PCR product m21p in which m21F and m21R were linked.
  • (B-12) PCR was performed using the PCR product m21p obtained in (b-11) as a template and oligonucleotides having the sequences described in SEQ ID NO: 62 and SEQ ID NO: 22 as PCR primers.
  • the reaction solution was heat-treated at 98 ° C. for 5 minutes, first step at 98 ° C. for 10 seconds, second step at 55 ° C. for 5 seconds, and at 72 ° C.
  • the reaction with the third step of 1 minute as one cycle was performed 30 cycles.
  • the amino acid sequence of FcR21 added with a signal sequence and a polyhistidine tag is shown in SEQ ID NO: 83, and the sequence of a polynucleotide encoding the FcR21 is shown in SEQ ID NO: 84.
  • SEQ ID NO: 83 the first methionine (Met) to the 26th alanine (Ala) are MalE signal peptides, and the 27th lysine (Lys) to the 32nd methionine (Met) are linker sequences.
  • FcR24 Among the amino acid substitutions involved in improving the alkali stability revealed in Example 26, Ala78Ser, Asp82Glu, Gln101Leu, Thr140Ile, Tyr158His, Lys165Glu, Thr185Ala and Asn187Asp were selected, and these substitutions were selected as FcR16 (Example 23). FcR24 accumulated in (1) was prepared. Specifically, FcR24 was prepared by introducing a mutation that causes Ala78Ser, Thr185Ala and Asn187Asp to the polynucleotide encoding FcR21.
  • the amplified PCR product was subjected to agarose gel electrophoresis, and purified from the gel using a QIAquick Gel Extraction kit (Qiagen).
  • the purified PCR product was designated as m24-2F. (C-2) except that pET-FcR21 prepared in (b) was used as a template, and an oligonucleotide consisting of the sequences described in SEQ ID NO: 23 and SEQ ID NO: 86 (5′-GCTATCTCCCACCGTCGCCGAATCAATAAG-3 ′) was used as a PCR primer.
  • PCR was performed in the same manner as in (c-1).
  • the purified PCR product was designated m24-2R.
  • (C-4) PCR was performed using the PCR product m24-2p obtained in (c-3) as a template and oligonucleotides having the sequences described in SEQ ID NO: 23 and SEQ ID NO: 24 as PCR primers.
  • the reaction solution was heat-treated at 98 ° C. for 5 minutes, first step at 98 ° C. for 10 seconds, second step at 55 ° C. for 5 seconds, and at 72 ° C.
  • the reaction with the third step of 1 minute as one cycle was performed 30 cycles.
  • (C-5) The polynucleotide obtained by (c-4) and encoding FcR24-2 containing mutations of Ala78Ser, Asp82Glu, Gln101Leu, Thr140Ile, Tyr158His and Lys165Glu in FcR16 as a template, SEQ ID NO: 24 and SEQ ID NO: 87 (5′-AAAAATGTGAGCAGCGAGGCCCGTGGATTT-3 ′) except that the PCR primer was used as a PCR primer, a reaction solution having the composition shown in Table 5 was prepared, and the reaction solution was heat-treated at 98 ° C. for 5 minutes.
  • the amplified PCR product was subjected to agarose gel electrophoresis, and purified from the gel using a QIAquick Gel Extraction kit (Qiagen). The purified PCR product was designated as m24F.
  • (C-6) The polynucleotide obtained by (c-4) and encoding FcR24-2 containing mutations of Ala78Ser, Asp82Glu, Gln101Leu, Thr140Ile, Tyr158His and Lys165Glu in FcR16 was used as a template, and SEQ ID NO: 62 and SEQ ID NO: PCR was carried out in the same manner as in (c-5), except that an oligonucleotide having the sequence described in No. 88 (5′-GGTAATGGTAATATCCCACGCCCCGCGTGCT-3 ′) was used as a PCR primer. The purified PCR product was designated as m24R.
  • (C-8) PCR was performed using the PCR product m24p obtained in (c-7) as a template and oligonucleotides having the sequences described in SEQ ID NO: 62 and SEQ ID NO: 24 as PCR primers.
  • the reaction solution was heat-treated at 98 ° C. for 5 minutes, first step at 98 ° C. for 10 seconds, second step at 55 ° C. for 5 seconds, and at 72 ° C.
  • the reaction with the third step of 1 minute as one cycle was performed 30 cycles.
  • a plasmid pET-FcR24 containing a polynucleotide encoding FcR24, which is a polypeptide obtained by substituting eight amino acids for FcR16 was obtained.
  • C-11 The nucleotide sequence of pET-FcR24 was analyzed in the same manner as in Example 1 (5).
  • the amino acid sequence of FcR24 added with a signal sequence and a polyhistidine tag is shown in SEQ ID NO: 89, and the sequence of the polynucleotide encoding the FcR24 is shown in SEQ ID NO: 90.
  • SEQ ID NO: 89 the first methionine (Met) to the 26th alanine (Ala) are MalE signal peptides, and the 27th lysine (Lys) to the 32nd methionine (Met) are linker sequences.
  • the amino acid sequence of FcR24 (corresponding to the 17th to 192nd region of SEQ ID NO: 1) from the 33rd glycine (Gly) to the 208th glutamine (Gln), and the 209th to 210th glycine (Gly) ) Is a linker sequence, and 211 to 216th histidine (His) is a tag sequence.
  • Glu21Gly glycine is position 37
  • Leu23Met methionine is position 39
  • Val27Glu glutamate is position 43
  • Phe29Ile isoleucine is position 45
  • Tyr35Asn asparagine is position 51
  • Gln48Arg arginine is position 64
  • Tyr51His is also known in SEQ ID NO: 89.
  • Example 28 Evaluation of Alkali Stability of Fc Binding Protein (1) Expression of Fc binding protein (FcR16) prepared in Example 23 and Fc binding proteins (FcR19, FcR21 and FcR24) obtained in Example 27 FcR16, FcR19, FcR21 and FcR24 were prepared by culturing the transformant by the method described in Example 8 (1) to (4) and extracting the protein. (2) The antibody binding activity of FcR16, FcR19, FcR21 and FcR24 in the protein extract prepared in (1) was measured using the ELISA method described in Example 3 (4). At this time, a calibration curve was prepared using FcR13 purified and quantified, and the concentration was measured.
  • Example 29 Mutation Introduction to FcR24 and Library Preparation Mutation was randomly introduced into the polynucleotide portion encoding FcR24 prepared in Example 27 (c) by error-prone PCR.
  • (1) Error prone PCR was performed using the expression vector pET-FcR24 prepared in Example 27 (c) as a template.
  • pET-FcR24 was used as a template, and a reaction solution having the same composition as shown in Table 3 was prepared except that oligonucleotides having the sequences shown in SEQ ID NOs: 23 and 24 were used as primers.
  • Heat treatment at 95 ° C. for 2 minutes, 35 cycles of reaction with 95 ° C. for 30 seconds for the first step, 50 ° C.
  • the heat treatment was performed at 72 ° C. for 7 minutes.
  • the mutation was successfully introduced into the polynucleotide encoding the Fc binding protein.
  • the PCR product obtained in (1) was purified, digested with restriction enzymes NcoI and HindIII, and ligated into an expression vector pETmalE (Japanese Patent Laid-Open No. 2011-206046) previously digested with the same restriction enzymes.
  • the reaction solution was introduced into E. coli BL21 (DE3) strain by electroporation, cultured in LB plate medium containing 50 ⁇ g / mL kanamycin, and the colonies formed on the plate were randomly mutated. It was rally.
  • Example 30 Screening of alkali-stabilized Fc binding protein (1) Random mutation library prepared in Example 29 was cultured by the method described in Example 3 (1) to (2) to thereby obtain Fc binding protein. Expressed. (2) After culture, the culture supernatant containing Fc-binding protein obtained by centrifugation is diluted 20-fold with pure water, mixed with an equal amount of 300 mM sodium hydroxide solution, and then at 30 ° C. The alkali treatment was carried out by leaving still for 2 hours. After the alkali treatment, the pH was returned to near neutral with 4 volumes of 1 M Tris buffer (pH 7.0).
  • the selected transformant was cultured in a 2YT liquid medium containing 50 ⁇ g / mL kanamycin, and an expression vector was prepared using QIAprep Spin Miniprep kit (manufactured by Qiagen).
  • the nucleotide sequence of the sequence of the polynucleotide region encoding the Fc binding protein inserted into the obtained expression vector was analyzed by the method described in Example 1 (5), and amino acid mutation sites were identified.
  • Table 19 shows a summary of amino acid substitution positions for FcR24 and residual activity (%) after alkali treatment of the Fc-binding protein expressed by the transformant selected in (4).
  • the amino acid residues from the 33rd glycine to the 208th glutamine corresponding to the 17th to 192nd of SEQ ID NO: 1
  • Lys40Gln this notation represents that 40th lysine in SEQ ID NO: 1 (56th in SEQ ID NO: 37) is substituted with glutamine, the same applies hereinafter
  • Lys46Asn Ala50Thr, Asn56Tyr, His62Leu, Ser65Gly, Tyr74His, Asp77Val, Gln90Leu, Lys119Thr, Lys119Glu, Asp122Glu, His137Gln, Thr (Ile) 140Met (This notation is the 140th position of SEQ ID NO:
  • Example 31 Production of Thr140 or Tyr158 Amino Acid Substituted Of the amino acid substitutions that contribute to the improvement of alkali stability of the Fc binding protein revealed in Example 26, the 140th position of SEQ ID NO: 1 (156th position of SEQ ID NO: 37) In particular, threonine (Thr140) was replaced with isoleucine (Ile) and 158th (174th in SEQ ID NO: 37) tyrosine (Tyr158) was replaced with histidine, whereby alkali stability was particularly improved.
  • Thr140 threonine
  • Ile isoleucine
  • Tyr158 tyrosine
  • Thr140 and Tyr158 were prepared in Example 27 (c) Fc-binding protein was prepared by substituting 174th in number 89 with another amino acid.
  • PCR was performed by performing 35 cycles of the second step of 30 seconds at 72 ° C and the third step of 90 seconds at 72 ° C for one cycle, and finally heat treating at 72 ° C for 7 minutes.
  • the obtained PCR product was designated as T140p1.
  • A-2 Using, as a primer, an oligonucleotide having the sequence described in SEQ ID NO: 23 and SEQ ID NO: 92 (5′-CCGTTTTGCAGGTAMNNCACTTTATGCAGGG-3 ′), which was prepared in Example 27 (c), using pET-FcR24 as a template After preparing a reaction solution having the same composition as shown in Table 3, the reaction solution was heat-treated at 95 ° C. for 2 minutes, first step at 95 ° C.
  • T140p2 Two types of PCR products (T140p1, T140p2) obtained in (a-1) and (a-2) were mixed to prepare a reaction solution having the composition shown in Table 6. The reaction solution is heat-treated at 98 ° C. for 5 minutes, followed by 5 cycles of reaction in which the first step is 98 ° C. for 10 seconds, the second step is 55 ° C. for 5 seconds, and the third step is 72 ° C. for 1 minute.
  • PCR was performed, and a PCR product T140p in which T140p1 and T140p2 were ligated was obtained.
  • A-4 PCR was performed using the PCR product T140p obtained in (a-3) as a template and oligonucleotides having the sequences described in SEQ ID NO: 23 and SEQ ID NO: 24 as PCR primers.
  • the reaction solution was heat-treated at 98 ° C. for 5 minutes, first step at 98 ° C. for 10 seconds, second step at 55 ° C. for 5 seconds, and at 72 ° C.
  • the reaction with the third step of 1 minute as one cycle was performed 30 cycles.
  • a polynucleotide encoding an Fc binding protein in which the 140th amino acid of the Fc binding protein (FcR24) was substituted with an arbitrary amino acid was obtained.
  • the obtained polynucleotide was designated as T140p3.
  • A-5 After purifying the polynucleotide obtained in (a-4), digested with restriction enzymes NcoI and HindIII, and previously digested with restriction enzymes NcoI and HindIII (Japanese Patent Laid-Open No. 2011-206046) was used to transform Escherichia coli BL21 (DE3) strain.
  • A-6 The obtained transformant was cultured in LB medium supplemented with 50 ⁇ g / mL kanamycin.
  • a plasmid was extracted from the collected cells (transformants), and the nucleotide sequence of the polynucleotide region was analyzed by the method described in Example 1 (5). As a result, Thr140 (SEQ ID NO: 89) of the Fc-binding protein FcR24 was analyzed. Then, a transformant expressing an Fc-binding protein in which 156th isoleucine) was substituted with Ala, Arg, Gly, Leu, Lys, Phe, Thr, Ser or Val was obtained.
  • PCR was performed by performing 35 cycles of the second step of 30 seconds at 72 ° C and the third step of 90 seconds at 72 ° C for one cycle, and finally heat treating at 72 ° C for 7 minutes.
  • the obtained PCR product was designated as Y158p1.
  • B-2 An oligonucleotide having the sequence described in SEQ ID NO: 23 and SEQ ID NO: 94 (5′-GTCGCTTTGGGAATNNNGAAGTCGGAGTTG-3 ′) prepared in Example 27 (c) as a template and used as a primer
  • the reaction solution was heat-treated at 95 ° C. for 2 minutes, first step at 95 ° C. for 30 seconds, second step at 50 ° C.
  • PCR was carried out by performing 35 cycles of a reaction in which the third step of 90 seconds at 90 ° C. was carried out, and finally heat treating at 72 ° C. for 7 minutes.
  • the obtained PCR product was designated as Y158p2.
  • B-3 Two types of PCR products (Y158p1, Y158p2) obtained in (b-1) and (b-2) were mixed to prepare a reaction solution having the composition shown in Table 6. The reaction solution is heat-treated at 98 ° C. for 5 minutes, followed by 5 cycles of reaction in which the first step is 98 ° C. for 10 seconds, the second step is 55 ° C. for 5 seconds, and the third step is 72 ° C. for 1 minute.
  • PCR was performed to obtain a PCR product Y140p in which Y140p1 and Y140p2 were ligated.
  • B-4 PCR was performed using the PCR product Y140p obtained in (b-3) as a template and oligonucleotides having the sequences described in SEQ ID NO: 23 and SEQ ID NO: 24 as PCR primers.
  • the reaction solution was heat-treated at 98 ° C. for 5 minutes, first step at 98 ° C. for 10 seconds, second step at 55 ° C. for 5 seconds, and at 72 ° C.
  • the reaction with the third step of 1 minute as one cycle was performed 30 cycles.
  • a polynucleotide encoding an Fc binding protein in which the 158th amino acid of the Fc binding protein (FcR24) was substituted with an arbitrary amino acid was obtained.
  • the obtained polynucleotide was designated as Y158p3.
  • B-5 After purifying the polynucleotide obtained in (b-4), digested with restriction enzymes NcoI and HindIII, and previously digested with restriction enzymes NcoI and HindIII (Japanese Unexamined Patent Publication No. 2011-206046) was used to transform Escherichia coli BL21 (DE3) strain.
  • B-6 The obtained transformant was cultured in an LB medium supplemented with 50 ⁇ g / mL kanamycin.
  • a plasmid was extracted from the collected cells (transformants), and the nucleotide sequence of the polynucleotide region was analyzed by the method described in Example 1 (5). As a result, Tyr158 (SEQ ID NO: 89) of the Fc-binding protein FcR24 was analyzed. Fc-binding protein in which 174th histidine is substituted with Ala, Arg, Asn, Cys, Gln, Glu, Gly, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr or Val A transformant expressing was obtained.
  • Example 32 Evaluation of Thr140 or Tyr158 Amino Acid Substitution (1)
  • the transformant expressing the Fc-binding protein prepared in Example 31 was cultured by the method described in Example 8 (1) to (4).
  • the protein was extracted.
  • the antibody binding activity of the Fc binding protein in the protein extract prepared in (1) was measured using the ELISA method described in Example 3 (4).
  • a calibration curve was prepared using FcR24 purified and quantified, and the concentration was measured.
  • Example 33 Preparation of Fc-binding protein-immobilized gel (1) Transformation obtained by transforming Escherichia coli with a plasmid containing a polynucleotide encoding a human Fc-binding protein consisting of the amino acid sequence set forth in SEQ ID NO: 60 The body was cultured, and the Fc receptor protein was purified from the obtained cells to prepare a ligand to be immobilized on an insoluble carrier.
  • the human Fc binding protein consisting of the amino acid sequence set forth in SEQ ID NO: 60 had the following amino acid substitutions (a) to (d) in the human Fc binding protein consisting of the amino acid sequence set forth in SEQ ID NO: 58. It is a protein.
  • Buffer A is allowed to flow for 2 minutes after the addition of the monoclonal antibody solution, and from 2% to 40 minutes, from Buffer A 100% -10 mM glycine hydrochloride buffer (pH 3.0) (Buffer B) 0%
  • Buffer A 100% -10 mM glycine hydrochloride buffer (pH 3.0)
  • Buffer B 0%
  • the monoclonal antibody added to the column was separated and eluted with a gradient of Buffer A 0%-Buffer B 100%.
  • the eluted monoclonal antibody was detected with a UV detector (absorption at 280 nm).
  • Example 35 Separation of monoclonal antibody according to the present invention (part 2)
  • the same experiment as in Comparative Example 1 was performed except that 20 mM sodium acetate buffer (pH 5.0) supplemented with 100 mM or 200 mM potassium chloride was used as buffer A.
  • the results are shown in FIG.
  • the Rs value was calculated in the same manner as in Comparative Example 1 from the peak with the earlier elution time to Peak 1, Peak 2, and Peak 3, the results shown in Table 23 were obtained. From this result, even when potassium chloride was used instead of sodium chloride, the Rs value between peak 1 and peak 2 and / or the Rs value between peak 2 and peak 3 was improved as in the result of Example 34. I understand that.
  • Example 36 Separation of monoclonal antibody according to the present invention (part 3)
  • the same experiment as Comparative Example 1 was performed except that 20 mM sodium acetate buffer (pH 5.0) to which 100 mM sodium sulfate or ammonium sulfate was added as buffer A was used.
  • the results are shown in FIG.
  • the Rs value was calculated in the same manner as in Comparative Example 1 from the peak with the earlier elution time to Peak 1, Peak 2, and Peak 3, the results shown in Table 24 were obtained. From this result, even when sulfate ion is used instead of chloride ion, the Rs value between peak 1 and peak 2 or the Rs value between peak 2 and peak 3 is improved as in the result of Example 34. I understand.
  • Example 37 Production of Fc binding protein with amino acid substitution at one position Among the amino acid substitutions involved in improving the stability of Fc binding protein revealed in Example 3, the 27th valine (Val) of SEQ ID NO: 1, Regarding the 35th tyrosine (Tyr) and the 121st glutamic acid (Glu), Fc binding proteins substituted with other amino acids were prepared by the following methods, respectively.
  • PCR was performed in the same manner as in Example 4 (a-1).
  • the purified PCR product was 27 pR.
  • A-3 After mixing the two PCR products (27pF, 27pR) obtained in (A-1) and (A-2), PCR was performed in the same manner as in Example 4 (a-3). 27pF and 27pR were ligated. The obtained PCR product was designated as 27p.
  • Example 4 (a-4) and the PCR product 27p obtained in (A-3) as a template and oligonucleotides having the sequences shown in SEQ ID NO: 23 and SEQ ID NO: 24 as PCR primers PCR was performed in the same manner.
  • a polynucleotide encoding an Fc-binding protein in which the 27th valine of SEQ ID NO: 1 was substituted with an arbitrary amino acid was prepared.
  • A-5) After purifying the polynucleotide obtained in (A-4), digested with restriction enzymes NcoI and HindIII, and previously digested with restriction enzymes NcoI and HindIII (Japanese Patent Laid-Open No.
  • PCR was performed in the same manner as in Example 4 (a-1).
  • the purified PCR product was 35 pR.
  • B-3 After mixing the two types of PCR products (35pF, 35pR) obtained in (B-1) and (B-2), PCR was performed in the same manner as in Example 4 (a-3). And 35 pF and 35 pR were ligated. The obtained PCR product was 35p.
  • Tyr35Cys (Y35C), Tyr35Asp (Y35D), Tyr35Phe (Y35F), Tyr35Gly (Y35G), Tyr35Lys (Y35K), Tyr35Leu (Y35L), Tyr35Asn (Y35N), Tyr35Tr35Yr, YrN ), Tyr35Thr (Y35T), Tyr35Val (Y35V), or Tyr35Trp (Y35W), a polynucleotide encoding an Fc-binding protein in which an amino acid substitution occurred was obtained.
  • Example 4 (C-2) except that pET-eFcR prepared in Example 1 was used as a template, and an oligonucleotide having the sequences described in SEQ ID NO: 23 and SEQ ID NO: 100 (5′-AATCGGATCMNNCTCTTTGAACACCCCACCG-3 ′) was used as a PCR primer, PCR was performed in the same manner as in Example 4 (a-1).
  • the purified PCR product was 121 pR.
  • C-3) After mixing the two kinds of PCR products (121pF, 121pR) obtained by (C-1) and (C-2), PCR was performed in the same manner as in Example 4 (a-3). In practice, 121pF and 121pR were ligated.
  • the obtained PCR product was designated as 121p.
  • C-4 The same as in Example 4 (a-4), using the PCR product 121p obtained in (C-3) as a template and the oligonucleotide consisting of the sequences shown in SEQ ID NO: 23 and SEQ ID NO: 24 as PCR primers PCR was performed.
  • a polynucleotide encoding an Fc binding protein in which the 121st glutamic acid of SEQ ID NO: 1 was substituted with an arbitrary amino acid was prepared.
  • Example 38 Evaluation of Antibody Binding Activity of 1 Amino Acid-Substituted Fc Binding Protein (1) Expressing the wild-type Fc binding protein prepared in Example 1 and the Fc binding protein with one amino acid substitution prepared in Example 37 The transformant was cultured in the same manner as in Example 3 (1) and (2), and wild type Fc binding protein and Fc binding protein substituted with 1 amino acid were expressed. (2) The binding activity of the expressed Fc binding protein with one amino acid substitution was examined by the ELISA method described in Example 3 (3) and (4).
  • the 35th tyrosine of SEQ ID NO: 1 is converted to aspartic acid (Y35D), phenylalanine (Y35F), glycine (Y35G), lysine (Y35K), leucine (Y35L), asparagine (Y35N), proline (Y35P), serine (Y35S).
  • Y35D aspartic acid
  • Y35F phenylalanine
  • Y35G glycine
  • Y35K lysine
  • leucine Y35L
  • asparagine Y35N
  • proline Y35P
  • serine Y35S
  • Y35D, Y35G, Y35K, Y35L, Y35N, Y35P, Y35S, Y35T, and Y35W have significantly improved antibody binding activity compared to the wild-type Fc-binding protein.
  • the 35th tyrosine of SEQ ID NO: 1 was substituted with cysteine (Y35C) or arginine (Y35R), the antibody binding activity was almost equivalent to that of the wild type Fc binding protein.
  • E121G By replacing the 121st glutamic acid of SEQ ID NO: 1 with lysine (E121K), arginine (E121R), glycine (E121G), and histidine (E121H), the antibody binding activity was improved compared to the wild-type Fc-binding protein. . Among them, E121G showed significantly improved antibody binding activity as compared with wild-type Fc binding protein. On the other hand, when the glutamic acid at position 121 of SEQ ID NO: 1 was substituted with valine (E121V), the antibody-binding activity was almost equivalent to that of wild-type Fc binding protein, and when substituted with proline (E121P), wild-type Fc binding Antibody binding activity was reduced compared to the sex protein.
  • E121K lysine
  • E121R arginine
  • E121G glycine
  • E121H histidine
  • Example 39 Preparation of Fc-binding protein expression vector
  • the expression vector pTrc99a encodes a signal peptide in which the sixth proline (P) of the PelB signal peptide described in SEQ ID NO: 101 (MKYLLPTAAAGLLLLAAQPAMA) is substituted with serine (S)
  • SEQ ID NO: 101 MKYLLPTAAAGLLLLAAQPAMA
  • SEQ ID NO: 102 5′-CATGAAATACCTGCTGTCGCACCGCTGCTGCTGTGTCTGCTGCTCCCTCGCTGCCCAGCCGGCGGATGGCGCGCGCGCTCGCTCGC The temperature was lowered every 1 ° C. in 1 minute, and a double-stranded oligonucleotide was prepared by holding when the temperature reached 15 ° C.
  • PCR was performed using pET-eFcR prepared in Example 1 as a template.
  • an oligonucleotide having the sequence described in SEQ ID NO: 21 and SEQ ID NO: 57 was used as a primer in the PCR.
  • the reaction solution was heat-treated at 98 ° C. for 5 minutes, first step at 98 ° C. for 10 seconds, second step at 55 ° C.
  • the amino acid sequence of the polypeptide expressed by the expression vector pTrc-eFcRCys is shown in SEQ ID NO: 106, and the sequence of the polynucleotide encoding the polypeptide is shown in SEQ ID NO: 107, respectively.
  • SEQ ID NO: 107 from the first methionine (Met) to the 22nd alanine (Ala) is a PelB signal peptide in which the 6th proline is substituted with serine, and the 199th from the 24th glycine (Gly).
  • Up to glutamine is the amino acid sequence of the Fc binding protein (corresponding to the 17th to 192nd region of SEQ ID NO: 1), and the cysteine tag sequence is from the 200th glycine (Gly) to the 207th glycine (Gly). It is.
  • Example 41 Preparation of FcRCys (1) 400 mL of 2YT liquid medium (peptone 16 g / L, yeast extract) containing 100 ⁇ g / mL carbenicillin in a 2 L baffle flask containing the transformant expressing FcRCys produced in Example 40 10 g / L, sodium chloride 5 g / L), and precultured by aerobic shaking culture at 37 ° C. overnight.
  • 2YT liquid medium peptone 16 g / L, yeast extract
  • the liquid culture medium 1.8L containing / L was inoculated with 180 mL of the culture solution of (1), and main culture was performed using a 3 L fermenter (manufactured by Biot). The main culture was started under the conditions of a temperature of 30 ° C., a pH of 6.9 to 7.1, an aeration rate of 1 VVM, and a dissolved oxygen concentration of 30% saturation.
  • the pH was controlled by using 50% phosphoric acid as the acid and 14% ammonia water as the alkali.
  • the dissolved oxygen was controlled by changing the stirring speed, and the stirring speed was set at the lower limit of 500 rpm and the upper limit of 1000 rpm. .
  • fed-batch medium glucose 248.9 g / L, yeast extract 83.3 g / L, magnesium sulfate heptahydrate 7.2 g / L
  • DO dissolved oxygen
  • the collected cells are suspended in 20 mM Tris-HCl buffer (pH 7.0) so as to be 5 mL / 1 g (cells), and an ultrasonic generator (Insonator 201M (trade name), manufactured by Kubota Corporation) ) was used to disrupt the cells at an output of about 150 W for about 10 minutes at 4 ° C.
  • the cell disruption solution was centrifuged twice at 8000 rpm for 20 minutes at 4 ° C., and the supernatant was collected.
  • Example 42 Preparation of Fc Binding Protein (FcR) Immobilized Gel and Antibody Separation
  • FcR Fc Binding Protein
  • Toyopearl Toyopearl
  • An FcR-immobilized gel was obtained by reacting 4 mg of FcRCys prepared in Example 41.
  • An FcR column was prepared by filling 0.5 mL of the FcR-immobilized gel prepared in (1) into a ⁇ 4.6 mm ⁇ 75 mm stainless steel column.
  • the FcR column prepared in (2) was connected to a high performance liquid chromatography apparatus (manufactured by Tosoh Corporation), and equilibrated with 20 mM acetate buffer (pH 4.5).
  • a monoclonal antibody (Rituxan, manufactured by Zenyaku Kogyo Co., Ltd.) diluted to 4.0 mg / mL with PBS (Phosphate Buffered Saline) (pH 7.4) was applied at 0.15 mL at a flow rate of 0.3 mL / min.
  • Example 43 Antibody Dependent Cytotoxicity (ADCC) Activity Measurement of Antibody Separated on FcR-Immobilized Gel
  • Monoclonal antibody was separated under the elution conditions described in Example 42, and fractions in the elution pattern described in FIG. The region of A (FrA) and fraction B (FrB) was fractionated.
  • PBS (10 mM disodium hydrogen phosphate, 1.76 mM potassium dihydrogen phosphate, 137 mM sodium chloride, 2.7 mM potassium chloride) while concentrating the fractionated FrA and FrB with an ultrafiltration membrane (Merck Millipore)
  • the buffer solution was exchanged to pH 7.4.
  • Raji cells were prepared to about 5 ⁇ 10 5 cells / mL with ADCC Assay Buffer and added to a 96-well plate (3917: Corning) at 25 ⁇ L / well. (4-3) Only 25 ⁇ L / well of FrA and FrB prepared in (2), the monoclonal antibody before separation, and blank ADCC Assay Buffer were added to the well to which Raji cells were added. (4-4) Effector cells (Promega) were prepared to about 3.0 ⁇ 10 5 cells / mL using ADCC Assay Buffer, and added to wells containing Raji cells and antibodies at 25 ⁇ L / well. Then, it was left still for 6 hours in a CO 2 incubator (5% CO 2 , 37 ° C.).
  • Luciferase Assay Reagent manufactured by Promega was added at 75 ⁇ L / well. After reacting at room temperature for 30 minutes, luminescence was measured with GloMax Multi Detection System (Promega).
  • FIG. 12 shows the results of comparing the luminescence intensities of FrA and FrB fractionated under the elution conditions described in Example 42 and the monoclonal antibody before separation.
  • the result of FIG. 12 shows a value obtained by subtracting the blank emission intensity from the measured emission intensity. The higher the emission intensity, the higher the ADCC activity.
  • FrB has higher ADCC activity than the monoclonal antibody and FcA before separation.
  • the FcR-immobilized gel is based on the strength of ADCC activity. Can be separated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cell Biology (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plant Pathology (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Provided are: an Fc-binding protein having improved stability, particularly to heat and acid; a method for producing the protein; an antibody adsorbent using the protein; and a method for separating the antibodies, using the adsorbent. Specifically provided are: an Fc-binding protein having improved stability to heat and acid, achieved by substituting an amino-acid residue in a specific position in the extracellular region of human FcγRIIIa with another specific amino acid; a method for producing the protein; an antibody adsorbent using the protein; and a method for separating the antibodies, using the adsorbent.

Description

改良Fc結合性タンパク質、当該タンパク質の製造方法、当該タンパク質を用いた抗体吸着剤および当該吸着剤を用いた抗体の分離方法Improved Fc binding protein, method for producing the protein, antibody adsorbent using the protein, and antibody separation method using the adsorbent
 本発明は、免疫グロブリンに親和性のあるFc結合性タンパク質に関する。より詳しくは、本発明は、熱や酸に対する安定性が野生型よりも高いFc結合性タンパク質、当該タンパク質の製造方法、当該タンパク質を不溶性担体に固定化して得られる抗体吸着剤、および当該吸着剤を用いた抗体の分離方法に関する。 The present invention relates to an Fc binding protein having affinity for immunoglobulin. More specifically, the present invention relates to an Fc-binding protein having higher stability against heat and acid than wild type, a method for producing the protein, an antibody adsorbent obtained by immobilizing the protein on an insoluble carrier, and the adsorbent. The present invention relates to a method for separating an antibody using.
 Fcレセプターは、免疫グロブリン分子のFc領域に結合する一群の分子である。個々の分子は、免疫グロブリンスーパーファミリーに属する認識ドメインによって、単一の、または同じグループの免疫グロブリンイソタイプをFcレセプター上の認識ドメインによって認識している。これによって、免疫応答においてどのアクセサリー細胞が動因されるかが決まってくる。Fcレセプターは、さらにいくつかのサブタイプに分類することができ、IgG(免疫グロブリンG)に対するレセプターであるFcγレセプター、IgEのFc領域に結合するFcεレセプター、IgAのFc領域に結合するFcαレセプター等がある。また各レセプターは更に細かく分類されており、Fcγレセプターは、FcγRI、FcγRIIa、FcγRIIb及びFcγRIIIa、FcγRIIIbの存在が報告されている(非特許文献1)。 Fc receptors are a group of molecules that bind to the Fc region of immunoglobulin molecules. Individual molecules recognize a single or the same group of immunoglobulin isotypes by a recognition domain on the Fc receptor by a recognition domain belonging to the immunoglobulin superfamily. This determines which accessory cells are driven in the immune response. Fc receptors can be further classified into several subtypes, such as Fcγ receptors that are receptors for IgG (immunoglobulin G), Fcε receptors that bind to the Fc region of IgE, Fcα receptors that bind to the Fc region of IgA, etc. There is. Each receptor is further classified, and Fcγ receptors have been reported to include FcγRI, FcγRIIa, FcγRIIb, FcγRIIIa, and FcγRIIIb (Non-patent Document 1).
 Fcγレセプターの中でも、FcγRIIIaはナチュラルキラー細胞(NK細胞)やマクロファージなどの細胞表面に存在しており、ヒト免疫機構の中でも重要なADCC(抗体依存性細胞傷害)活性に関与している重要なレセプターである。このFcγRIIIaとヒトIgGとの親和性は結合の強さを示す結合定数(KA)が10-1以下であることが報告されている(非特許文献2)。ヒトFcγRIIIaのアミノ酸配列(配列番号1)はUniProt(Accession number:P08637)などの公的データベースに公表されている。また、ヒトFcγRIIIaの構造上の機能ドメイン、細胞膜を貫通するためのシグナルペプチド配列、細胞膜貫通領域の位置についても同様に公表されている。図1にヒトFcγRIIIaの構造略図を示す。なお、図1中の番号はアミノ酸番号を示しており、その番号は配列番号1に記載のアミノ酸番号に対応する。すなわち、配列番号1中の1番目のメチオニン(Met)から16番目のアラニン(Ala)までがシグナル配列(S)、17番目のグリシン(Gly)から208番目のグルタミン(Gln)までが細胞外領域(EC)、209番目のバリン(Val)から229番目のバリン(Val)までが細胞膜貫通領域(TM)および230番目のリジン(Lys)から254番目のリジン(Lys)までが細胞内領域(C)とされている。なおFcγRIIIaはIgG1からIgG4まであるヒトIgGサブクラスのうち、特にIgG1とIgG3に対し強く結合する一方、IgG2とIgG4に対する結合は弱いことが知られている。 Among Fcγ receptors, FcγRIIIa is present on the surface of natural killer cells (NK cells) and macrophages and is an important receptor involved in ADCC (antibody-dependent cellular cytotoxicity) activity, which is important in the human immune system. It is. The FcγRIIIa and affinity for human IgG has been reported that binding constant indicates the strength of the bond (KA) is 10 7 M -1 or less (Non-Patent Document 2). The amino acid sequence of human FcγRIIIa (SEQ ID NO: 1) is published in public databases such as UniProt (Accession number: P08637). Similarly, the functional domain in the structure of human FcγRIIIa, the signal peptide sequence for penetrating the cell membrane, and the position of the cell membrane penetrating region are also published. FIG. 1 shows a schematic diagram of the structure of human FcγRIIIa. In addition, the number in FIG. 1 has shown the amino acid number, and the number respond | corresponds to the amino acid number as described in sequence number 1. That is, the signal sequence (S) is from the first methionine (Met) to the 16th alanine (Ala) in SEQ ID NO: 1, and the extracellular region is from the 17th glycine (Gly) to the 208th glutamine (Gln). (EC), from the 209th valine (Val) to the 229th valine (Val) is the transmembrane region (TM) and from the 230th lysine (Lys) to the 254th lysine (Lys) is the intracellular region (C ). It is known that FcγRIIIa binds strongly to IgG1 and IgG3 among human IgG subclasses ranging from IgG1 to IgG4, but weakly binds to IgG2 and IgG4.
 また近年、ガンや免疫疾患等の治療に抗体を含む医薬品(抗体医薬)が用いられている。抗体医薬に用いる抗体は、遺伝子工学的手法により得られた、当該抗体を発現可能な細胞(たとえば、チャイニーズハムスター卵巣(CHO)細胞等)を培養後、カラムクロマトグラフィー等を用いて高純度に精製し製造するが、近年の研究で前記抗体が、酸化、還元、異性化、糖鎖付加等の修飾を受けることで多様な分子の集合体となっていることが判明しており、薬効や安全性への影響が懸念されている。 In recent years, drugs containing antibodies (antibody drugs) have been used for the treatment of cancer and immune diseases. The antibody used for the antibody drug is purified to high purity using column chromatography after culturing cells capable of expressing the antibody (for example, Chinese hamster ovary (CHO) cells) obtained by genetic engineering techniques. However, in recent studies, it has been found that the antibody is a collection of various molecules by undergoing modifications such as oxidation, reduction, isomerization, and glycosylation. There are concerns about the effects on sex.
 抗体医薬に用いる抗体の分子構造を分析する方法として、従来より、ペプチドマッピング、二次元電気泳動による分析や糖鎖の切り出しを含むLC-MS分析(非特許文献3)が実施されている。しかしながらいずれの方法も非常に煩雑な操作を伴う。より簡便な抗体の分子構造の分析方法としては、クロマトグラフィーによる分析があげられる。具体的には、ゲルろ過クロマトグラフィーを用いて、抗体を分子量に基づき分離することで凝集体や分解物を分離・定量することが可能である。またイオン交換クロマトグラフィーにより、抗体分子が有する電荷の違いを分離することができる。しかしながら前述したクロマトグラフィーによる分析では、抗体分子の微小な構造変化を識別できないため、得られる分析結果は限定的であった。 As a method for analyzing the molecular structure of an antibody used for an antibody drug, conventionally, LC-MS analysis (Non-Patent Document 3) including peptide mapping, analysis by two-dimensional electrophoresis, and glycan excision has been performed. However, both methods involve very complicated operations. As a simpler method for analyzing the molecular structure of an antibody, chromatographic analysis can be mentioned. Specifically, it is possible to separate and quantify aggregates and degradation products by separating antibodies based on molecular weight using gel filtration chromatography. In addition, the difference in charge of antibody molecules can be separated by ion exchange chromatography. However, the above-described chromatographic analysis has limited results because the minute structural changes of antibody molecules cannot be identified.
 一方、クロマトグラフィーの中でもアフィニティークロマトグラフィーによる分析は、不溶性担体に固定化されたアフィニティーリガンドと抗体との親和性に基づく分析が可能である。そのため抗体分子の微小な構造変化を識別することができる(特許文献1および非特許文献4)。しかしながら特許文献1および非特許文献4に記載の方法を用いて、工業的スケールで抗体分子を分離するのは事実上困難であり、改善が望まれていた。 On the other hand, analysis by affinity chromatography among chromatographies can be performed based on the affinity between an affinity ligand immobilized on an insoluble carrier and an antibody. Therefore, minute structural changes of the antibody molecule can be identified (Patent Document 1 and Non-Patent Document 4). However, it is practically difficult to separate antibody molecules on an industrial scale using the methods described in Patent Document 1 and Non-Patent Document 4, and improvements have been desired.
 さらに、抗体医薬で用いるヒトIgGのうち、Fc領域の297番目のアスパラギン残基に付加するN型糖鎖の違いにより抗体依存性細胞傷害(ADCC)活性が変化することが知られており、特に糖鎖の一種であるフコースを除去した抗体でADCC活性が向上することが報告されている(非特許文献5)。 Furthermore, it is known that antibody-dependent cytotoxicity (ADCC) activity is changed by the difference in the N-type sugar chain added to the 297th asparagine residue in the Fc region of human IgG used in antibody pharmaceuticals. It has been reported that ADCC activity is improved by an antibody from which fucose, a kind of sugar chain, has been removed (Non-patent Document 5).
 抗体医薬においては、抗体が有するADCC活性の強さに重要な意味がある。しかしながら、抗体医薬は通常、動物細胞を宿主とした遺伝子組換え技術を用いて製造しており、宿主内での糖鎖付加を制御できないことから、一定のADCC活性を有した抗体を発現させるのは困難である。また発現した抗体の中から、ADCC活性の強さに基づき抗体を分離するには多くの時間と労力が必要である。 In antibody medicine, the strength of ADCC activity possessed by an antibody is important. However, antibody drugs are usually produced using genetic recombination techniques using animal cells as hosts, and because glycosylation in the host cannot be controlled, antibodies with a certain ADCC activity are expressed. It is difficult. In addition, it takes a lot of time and effort to separate antibodies from the expressed antibodies based on the strength of ADCC activity.
WO2013/120929号WO2013 / 120929
 本発明の課題は、特に熱や酸に対する安定性が向上したFc結合性タンパク質、当該タンパク質の製造方法、および当該タンパク質を用いた抗体吸着剤を提供することにある。 An object of the present invention is to provide an Fc-binding protein having improved stability to heat and acid, a method for producing the protein, and an antibody adsorbent using the protein.
 また本発明の別の課題は、アフィニティーリガンドを固定化した担体を用いた抗体の分離方法において、前記抗体を、その分子構造の違いに基づき、簡便かつ高効率に分離できる方法を提供することにある。 Another object of the present invention is to provide a method for separating antibodies in a simple and highly efficient manner based on the difference in molecular structure in a method for separating antibodies using a carrier on which an affinity ligand is immobilized. is there.
 また本発明のさらに別の課題は、抗体依存性細胞傷害活性の強さに基づき抗体を分離する方法を提供することにある。 Still another object of the present invention is to provide a method for separating antibodies based on the strength of antibody-dependent cytotoxic activity.
 本発明者らは上記の課題を解決すべく鋭意検討した結果、ヒトFcγRIIIaにおける安定性向上に関与したアミノ酸残基を特定し、当該アミノ酸残基を他のアミノ酸残基に置換した変異体が、熱や酸に対して優れた安定性を有することを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have identified an amino acid residue involved in stability improvement in human FcγRIIIa, and a mutant in which the amino acid residue is substituted with another amino acid residue, It has been found that it has excellent stability against heat and acid, and the present invention has been completed.
 また本発明者らは上記に示す別の課題を解決すべく鋭意検討した結果、アフィニティーリガンドを固定化した不溶性担体を充填したカラムの平衡化液に一定濃度の塩化物イオンまたは硫酸イオンを添加することで、抗体の分離能が向上することを見出し、本発明を完成させるに至った。 In addition, as a result of intensive studies to solve the other problems described above, the present inventors add a certain concentration of chloride ion or sulfate ion to the equilibration solution of the column packed with the insoluble carrier on which the affinity ligand is immobilized. As a result, it was found that the resolution of the antibody was improved, and the present invention was completed.
 また本発明者らは上記に示すさらに別の課題を解決すべく鋭意検討した結果、Fc結合性タンパク質を不溶性担体に固定化して得られる吸着剤を用いることで、抗体依存性細胞傷害(ADCC)活性の強さに基づいて抗体を分離できることを見出し、本発明を完成するに至った。 Further, as a result of intensive studies to solve the above-described further problems, the present inventors have used antibody-dependent cell cytotoxicity (ADCC) by using an adsorbent obtained by immobilizing an Fc-binding protein on an insoluble carrier. The inventors have found that antibodies can be separated based on the strength of activity, and have completed the present invention.
 すなわち、本願は以下の(A)から(T)に記載の態様を包含する:
 (A)配列番号37に記載のアミノ酸配列のうち33番目から208番目までのアミノ酸残基を含み、かつ当該33番目から208番目までのアミノ酸残基において以下の(1)から(84)のうち少なくともいずれか1つのアミノ酸置換が生じている、Fc結合性タンパク質。
(1)配列番号37の45番目のフェニルアラニンがイソロイシンまたはロイシンに置換
(2)配列番号37の55番目のグルタミン酸がグリシンに置換
(3)配列番号37の64番目のグルタミンがアルギニンに置換
(4)配列番号37の67番目のチロシンがセリンに置換
(5)配列番号37の77番目のフェニルアラニンがチロシンに置換
(6)配列番号37の93番目のアスパラギン酸がグリシンに置換
(7)配列番号37の98番目のアスパラギン酸がグルタミン酸に置換
(8)配列番号37の106番目のグルタミンがアルギニンに置換
(9)配列番号37の128番目のグルタミンがロイシンに置換
(10)配列番号37の133番目のバリンがグルタミン酸に置換
(11)配列番号37の135番目のリジンがアスパラギンまたはグルタミン酸に置換
(12)配列番号37の156番目のスレオニンがイソロイシンに置換
(13)配列番号37の158番目のロイシンがグルタミンに置換
(14)配列番号37の187番目のフェニルアラニンがセリンに置換
(15)配列番号37の191番目のロイシンがアルギニンに置換
(16)配列番号37の196番目のアスパラギンがセリンに置換
(17)配列番号37の204番目のイソロイシンがバリンに置換
(18)配列番号37の34番目のメチオニンがイソロイシン、リジンまたはスレオニンに置換
(19)配列番号37の37番目のグルタミン酸がグリシンまたはリジンに置換
(20)配列番号37の39番目のロイシンがメチオニンまたはアルギニンに置換
(21)配列番号37の49番目のグルタミンがプロリンに置換
(22)配列番号37の62番目のリジンがイソロイシンまたはグルタミン酸に置換
(23)配列番号37の64番目のグルタミンがトリプトファンに置換
(24)配列番号37の67番目のチロシンがヒスチジンまたはアスパラギンに置換
(25)配列番号37の70番目のグルタミン酸がグリシンまたはアスパラギン酸に置換
(26)配列番号37の72番目のアスパラギンがセリンまたはイソロイシンに置換
(27)配列番号37の77番目のフェニルアラニンがロイシンに置換
(28)配列番号37の80番目のグルタミン酸がグリシンに置換
(29)配列番号37の81番目のセリンがアルギニンに置換
(30)配列番号37の83番目のイソロイシンがロイシンに置換
(31)配列番号37の84番目のセリンがプロリンに置換
(32)配列番号37の85番目のセリンがアスパラギンに置換
(33)配列番号37の87番目のアラニンがスレオニンに置換
(34)配列番号37の90番目のチロシンがフェニルアラニンに置換
(35)配列番号37の91番目のフェニルアラニンがアルギニンに置換
(36)配列番号37の93番目のアスパラギン酸がバリンまたはグルタミン酸に置換
(37)配列番号37の94番目のアラニンがグルタミン酸に置換
(38)配列番号37の97番目のバリンがメチオニンとグルタミン酸に置換
(39)配列番号37の98番目のアスパラギン酸がアラニンに置換
(40)配列番号37の102番目のグルタミン酸がアスパラギン酸に置換
(41)配列番号37の106番目のグルタミンがロイシンに置換
(42)配列番号37の109番目のロイシンがグルタミンに置換
(43)配列番号37の117番目のグルタミンがロイシンに置換
(44)配列番号37の119番目のグルタミン酸がバリンに置換
(45)配列番号37の121番目のヒスチジンがアルギニンに置換
(46)配列番号37の130番目のプロリンがロイシンに置換
(47)配列番号37の135番目のリジンがチロシンに置換
(48)配列番号37の136番目のグルタミン酸がバリンに置換
(49)配列番号37の141番目のヒスチジンがグルタミンに置換
(50)配列番号37の146番目のセリンがスレオニンに置換
(51)配列番号37の154番目のリジンがアルギニンに置換
(52)配列番号37の159番目のグルタミンがヒスチジンに置換
(53)配列番号37の163番目のグリシンがバリンに置換
(54)配列番号37の165番目のリジンがメチオニンに置換
(55)配列番号37の167番目のフェニルアラニンがチロシンに置換
(56)配列番号37の169番目のヒスチジンがチロシンに置換
(57)配列番号37の174番目のチロシンがフェニルアラニンに置換
(58)配列番号37の177番目のリジンがアルギニンに置換
(59)配列番号37の185番目のセリンがグリシンに置換
(60)配列番号37の194番目のセリンがアルギニンに置換
(61)配列番号37の196番目のアスパラギンがリジンに置換
(62)配列番号37の201番目のスレオニンがアラニンに置換
(63)配列番号37の203番目のアスパラギンがイソロイシンまたはリジンに置換
(64)配列番号37の207番目のスレオニンがアラニンに置換
(65)配列番号37の94番目のアラニンがセリンに置換
(66)配列番号37の98番目のアスパラギン酸がグルタミン酸に置換
(67)配列番号37の117番目のグルタミンがアルギニンに置換
(68)配列番号37の174番目のチロシンがヒスチジンに置換
(69)配列番号37の181番目のリジンがグルタミン酸に置換
(70)配列番号37の203番目のアスパラギンがアスパラギン酸またはチロシンに置換
(71)配列番号37の56番目のリジンがグルタミンに置換
(72)配列番号37の62番目のリジンがアスパラギンに置換
(73)配列番号37の66番目のアラニンがスレオニンに置換
(74)配列番号37の72番目のアスパラギンがチロシンに置換
(75)配列番号37の78番目のヒスチジンがロイシンに置換
(76)配列番号37の81番目のセリンがグリシンに置換
(77)配列番号37の90番目のチロシンがヒスチジンに置換
(78)配列番号37の138番目のアスパラギン酸がグルタミン酸に置換
(79)配列番号37の153番目のヒスチジンがグルタミンに置換
(80)配列番号37の156番目のスレオニンがアラニン、アルギニン、ロイシン、リジン、フェニルアラニン、セリン、バリンまたはメチオニンに置換
(81)配列番号37の157番目のチロシンがフェニルアラニンに置換
(82)配列番号37の174番目のチロシンがロイシン、システイン、イソロイシン、リジン、トリプトファンまたはバリンに置換
(83)配列番号37の206番目のイソロイシンがバリンに置換
(84)配列番号37の207番目のスレオニンがイソロイシンに置換
 (B)配列番号39、配列番号43、配列番号47、配列番号51、配列番号55、配列番号63、配列番号67、配列番号69、配列番号73、配列番号77、配列番号83、配列番号89のいずれかに記載のアミノ酸配列のうち33番目から208番目までのアミノ酸残基を含む、(A)に記載のFc結合性タンパク質。
That is, this application includes the aspects described in the following (A) to (T):
(A) The amino acid sequence of SEQ ID NO: 37 comprises the amino acid residues from the 33rd to the 208th, and the amino acid residues from the 33rd to the 208th of the following (1) to (84) An Fc binding protein wherein at least one amino acid substitution has occurred.
(1) 45th phenylalanine of SEQ ID NO: 37 is replaced with isoleucine or leucine (2) 55th glutamic acid of SEQ ID NO: 37 is replaced with glycine (3) 64th glutamine of SEQ ID NO: 37 is replaced with arginine (4) The 67th tyrosine of SEQ ID NO: 37 is replaced with serine (5) The 77th phenylalanine of SEQ ID NO: 37 is replaced with tyrosine (6) The 93rd aspartic acid of SEQ ID NO: 37 is replaced with glycine (7) of SEQ ID NO: 37 98th aspartic acid replaced with glutamic acid (8) 106th glutamine of SEQ ID NO: 37 replaced with arginine (9) 128th glutamine of SEQ ID NO: 37 replaced with leucine (10) 133rd valine of SEQ ID NO: 37 Is replaced with glutamic acid (11) The 135th lysine of SEQ ID NO: 37 is asparagine Or substituted with glutamic acid (12) 156th threonine of SEQ ID NO: 37 replaced with isoleucine (13) 158th leucine of SEQ ID NO: 37 replaced with glutamine (14) 187th phenylalanine of SEQ ID NO: 37 replaced with serine (15) 191st leucine of SEQ ID NO: 37 is replaced with arginine (16) 196th asparagine of SEQ ID NO: 37 is replaced with serine (17) 204th isoleucine of SEQ ID NO: 37 is replaced with valine (18) SEQ ID NO: 37th methionine of 37 was replaced with isoleucine, lysine or threonine (19) 37th glutamic acid of SEQ ID NO: 37 was replaced with glycine or lysine (20) 39th leucine of SEQ ID NO: 37 was replaced with methionine or arginine (21 49th glutamine of SEQ ID NO: 37 Replacement with proline (22) Replacement of 62nd lysine of SEQ ID NO: 37 with isoleucine or glutamic acid (23) Replacement of 64th glutamine of SEQ ID NO: 37 with tryptophan (24) Replacement of 67th tyrosine of SEQ ID NO: 37 with histidine or asparagine (25) The 70th glutamic acid of SEQ ID NO: 37 is replaced with glycine or aspartic acid (26) The 72nd asparagine of SEQ ID NO: 37 is replaced with serine or isoleucine (27) The 77th phenylalanine of SEQ ID NO: 37 is leucine (28) The 80th glutamic acid of SEQ ID NO: 37 is replaced with glycine (29) The 81st serine of SEQ ID NO: 37 is replaced with arginine (30) The 83rd isoleucine of SEQ ID NO: 37 is replaced with leucine (31) 84th serine of SEQ ID NO: 37 Replacement with proline (32) Replacement of 85th serine of SEQ ID NO: 37 with asparagine (33) Replacement of 87th alanine of SEQ ID NO: 37 with threonine (34) Replacement of 90th tyrosine of SEQ ID NO: 37 with phenylalanine (35 ) The 91st phenylalanine of SEQ ID NO: 37 is replaced with arginine (36) The 93rd aspartic acid of SEQ ID NO: 37 is replaced with valine or glutamic acid (37) The 94th alanine of SEQ ID NO: 37 is replaced with glutamic acid (38) The 97th valine of No. 37 is substituted with methionine and glutamic acid (39) The 98th aspartic acid of SEQ ID NO: 37 is substituted with alanine (40) The 102nd glutamic acid of SEQ ID NO: 37 is substituted with aspartic acid (41) 37 of 106th glutamine replaced by leucine (42) The 109th leucine in column No. 37 is replaced with glutamine (43) The 117th glutamine in SEQ ID NO: 37 is replaced with leucine (44) The 119th glutamic acid in SEQ ID NO: 37 is replaced with valine (45) 121 of SEQ ID NO: 37 The histidine is replaced with arginine (46) The 130th proline of SEQ ID NO: 37 is replaced with leucine (47) The 135th lysine of SEQ ID NO: 37 is replaced with tyrosine (48) The 136th glutamic acid of SEQ ID NO: 37 is valine (49) The 141st histidine of SEQ ID NO: 37 is replaced with glutamine (50) The 146th serine of SEQ ID NO: 37 is replaced with threonine (51) The 154th lysine of SEQ ID NO: 37 is replaced with arginine (52) The 159th glutamine of SEQ ID NO: 37 was replaced with histidine (53) SEQ ID NO: 3 The 163rd glycine of SEQ ID NO: 37 is replaced with methineine (55) the 167th phenylalanine of SEQ ID NO: 37 is replaced with tyrosine (56) the 169th histidine of SEQ ID NO: 37 (57) 174th tyrosine of SEQ ID NO: 37 replaced with phenylalanine (58) 177th lysine of SEQ ID NO: 37 replaced with arginine (59) 185th serine of SEQ ID NO: 37 replaced with glycine ( 60) 194th serine of SEQ ID NO: 37 is replaced with arginine (61) 196th asparagine of SEQ ID NO: 37 is replaced with lysine (62) 201st threonine of SEQ ID NO: 37 is replaced with alanine (63) SEQ ID NO: 37 The asparagine at position 203 is substituted with isoleucine or lysine (64) 207 threonine of column number 37 is replaced with alanine (65) 94th alanine of SEQ ID NO: 37 is replaced with serine (66) 98th aspartic acid of SEQ ID NO: 37 is replaced with glutamic acid (67) 117th glutamine is replaced with arginine (68) 174th tyrosine of SEQ ID NO: 37 is replaced with histidine (69) 181st lysine of SEQ ID NO: 37 is replaced with glutamic acid (70) 203rd asparagine of SEQ ID NO: 37 is Substitution with aspartic acid or tyrosine (71) Replacement of 56th lysine of SEQ ID NO: 37 with glutamine (72) Replacement of 62nd lysine of SEQ ID NO: 37 with asparagine (73) Replacement of 66th alanine of SEQ ID NO: 37 with threonine Substitution (74) Asparagine at position 72 in SEQ ID NO: 37 replaced with tyrosine 75) 78th histidine of SEQ ID NO: 37 is replaced with leucine (76) 81st serine of SEQ ID NO: 37 is replaced with glycine (77) 90th tyrosine of SEQ ID NO: 37 is replaced with histidine (78) SEQ ID NO: 37 138th aspartic acid is replaced with glutamic acid (79) 153rd histidine of SEQ ID NO: 37 is replaced with glutamine (80) 156th threonine of SEQ ID NO: 37 is alanine, arginine, leucine, lysine, phenylalanine, serine, valine Alternatively, methionine is substituted (81) 157th tyrosine of SEQ ID NO: 37 is replaced with phenylalanine (82) 174th tyrosine of SEQ ID NO: 37 is replaced with leucine, cysteine, isoleucine, lysine, tryptophan or valine (83) SEQ ID NO: 37 The 206th isoro Syn replaced with valine (84) 207 threonine of SEQ ID NO: 37 replaced with isoleucine (B) SEQ ID NO: 39, SEQ ID NO: 43, SEQ ID NO: 47, SEQ ID NO: 51, SEQ ID NO: 55, SEQ ID NO: 63, SEQ ID NO: 67 Fc according to (A), comprising amino acid residues from position 33 to position 208 of the amino acid sequence according to any one of SEQ ID NO: 69, SEQ ID NO: 73, SEQ ID NO: 77, SEQ ID NO: 83, SEQ ID NO: 89 Binding protein.
 (C)配列番号39、配列番号43、配列番号47、配列番号51、配列番号55、配列番号63、配列番号67、配列番号69、配列番号73、配列番号77、配列番号83、配列番号89のいずれかに記載のアミノ酸配列からなる、(B)に記載のFc結合性タンパク質。 (C) SEQ ID NO: 39, SEQ ID NO: 43, SEQ ID NO: 47, SEQ ID NO: 51, SEQ ID NO: 55, SEQ ID NO: 63, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 73, SEQ ID NO: 77, SEQ ID NO: 83, SEQ ID NO: 89 The Fc binding protein according to (B), comprising the amino acid sequence according to any one of the above.
 (D)(A)に記載のFc結合性タンパク質において、さらに以下の(85)から(88)のうち少なくともいずれか1つのアミノ酸置換が生じている、Fc結合性タンパク質。
(85)配列番号37の82番目のロイシンがヒスチジンまたはアルギニンに置換
(86)配列番号37の163番目のグリシンがアスパラギン酸に置換
(87)配列番号37の174番目のチロシンがヒスチジンに置換
(88)配列番号37の192番目のバリンがフェニルアラニンに置換
 (E)(A)から(D)のいずれかに記載のFc結合性タンパク質を不溶性担体に固定化して得られる吸着剤。
(D) The Fc binding protein according to (A), further comprising at least one amino acid substitution of (85) to (88) below:
(85) 82nd leucine of SEQ ID NO: 37 was replaced with histidine or arginine (86) 163rd glycine of SEQ ID NO: 37 was replaced with aspartic acid (87) 174th tyrosine of SEQ ID NO: 37 was replaced with histidine (88 ) Substitution of 192th valine of SEQ ID NO: 37 with phenylalanine (E) An adsorbent obtained by immobilizing the Fc-binding protein according to any one of (A) to (D) on an insoluble carrier.
 (F)(E)に記載の吸着剤を充填したカラムに平衡化液を添加してカラムを平衡化する工程と、前記平衡化したカラムに抗体を含む溶液を添加して前記抗体を前記担体に吸着させる工程と、前記担体に吸着した抗体を溶出液を用いて溶出させる工程とを含む、抗体の分離方法。 (F) a step of adding an equilibration solution to the column packed with the adsorbent according to (E) to equilibrate the column; and adding a solution containing an antibody to the equilibrated column to allow the antibody to move to the carrier A method for separating antibodies, comprising a step of adsorbing to a carrier and a step of eluting the antibody adsorbed on the carrier using an eluent.
 (G)平衡化液が30mM以上の塩化物イオンまたは硫酸イオンを含む、(F)に記載の分離方法。 (G) The separation method according to (F), wherein the equilibration solution contains 30 mM or more of chloride ions or sulfate ions.
 (H)(E)に記載の吸着剤を用いた、抗体依存性細胞傷害活性の強さに基づき抗体を分離する方法。 (H) A method for separating antibodies based on the strength of antibody-dependent cytotoxic activity using the adsorbent described in (E).
 (I)(F)から(H)のいずれかに記載の分離方法で得られる抗体。 (I) An antibody obtained by the separation method according to any one of (F) to (H).
 (J)(E)に記載の吸着剤を用いて抗体を分離することで、抗体が有する糖鎖構造の違いを識別する方法。 (J) A method for discriminating differences in sugar chain structures of antibodies by separating the antibodies using the adsorbent described in (E).
 (K)(E)に記載の吸着剤を用いた糖鎖の分離方法。 (K) A method for separating sugar chains using the adsorbent according to (E).
 (L)(K)に記載の分離方法で得られる糖鎖。 (L) A sugar chain obtained by the separation method described in (K).
 (M)(A)から(D)のいずれかに記載のFc結合性タンパク質をコードするポリヌクレオチド。 (M) A polynucleotide encoding the Fc-binding protein according to any one of (A) to (D).
 (N)(K)に記載のポリヌクレオチドを含む発現ベクター。 (N) An expression vector comprising the polynucleotide according to (K).
 (O)(L)に記載の発現ベクターで宿主を形質転換して得られる形質転換体。 (O) A transformant obtained by transforming a host with the expression vector described in (L).
 (P)宿主が大腸菌である、(O)に記載の形質転換体。 (P) The transformant according to (O), wherein the host is E. coli.
 (Q)(O)または(P)に記載の形質転換体を培養することによりFc結合性タンパク質を発現させ、その培養物から発現されたFc結合性タンパク質を回収する、Fc結合性タンパク質の製造方法。 (Q) Production of Fc-binding protein, wherein Fc-binding protein is expressed by culturing the transformant described in (O) or (P), and Fc-binding protein expressed from the culture is recovered. Method.
 (R)Fc結合性タンパク質を固定化した不溶性担体を充填したカラムに平衡化液を添加してカラムを平衡化する工程と、前記平衡化したカラムに抗体を含む溶液を添加して前記抗体を前記担体に吸着させる工程と、前記担体に吸着した抗体を溶出液を用いて溶出させる工程とを含む、抗体の分離方法であって、前記平衡化液が30mM以上の塩化物イオンまたは硫酸イオンを含む、前記分離方法。 (R) a step of equilibrating the column by adding an equilibration solution to a column packed with an insoluble carrier on which an Fc-binding protein is immobilized; and adding a solution containing an antibody to the equilibrated column, An antibody separation method comprising a step of adsorbing on the carrier and a step of eluting the antibody adsorbed on the carrier using an eluent, wherein the equilibration solution contains chloride ions or sulfate ions of 30 mM or more. Including the separation method.
 (S)Fc結合性タンパク質を不溶性担体に固定化して得られる吸着剤を用いた、抗体依存性細胞傷害活性の強さに基づき抗体を分離する方法。 (S) A method of separating antibodies based on the strength of antibody-dependent cytotoxic activity using an adsorbent obtained by immobilizing an Fc-binding protein on an insoluble carrier.
 (T)Fc結合性タンパク質がヒトFcγRIIIaである、(R)または(S)に記載の方法。 (T) The method according to (R) or (S), wherein the Fc binding protein is human FcγRIIIa.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本発明のFc結合性タンパク質は、抗体のFc領域に結合性を持つタンパク質であり、配列番号1に記載のアミノ酸配列からなるヒトFcγRIIIaの細胞外領域(図1のECの領域)のうち、少なくとも17番目のグリシンから192番目のグルタミンまでのアミノ酸残基を含むタンパク質であって、当該17番目から192番目までのアミノ酸残基において特定位置におけるアミノ酸置換が生じたタンパク質である。したがって、本発明のFc結合性タンパク質は、細胞外領域のN末端側にあるシグナルペプチド領域(図1のS)の全てまたは一部を含んでもよいし、細胞外領域のC末端側にある細胞膜貫通領域(図1のTM)および細胞外領域(図1のC)の全てまたは一部を含んでもよい。前記特定位置におけるアミノ酸置換は、具体的には、配列番号1に記載のアミノ酸配列において、Val27Glu(この表記は、配列番号1の27番目(配列番号37では43番目)のバリンがグルタミン酸に置換されていることを表す、以下同様)、Tyr35Asn、Phe75Leu、Asn92Ser、Glu121Gly、Phe29Ile、Phe29Leu、Glu39Gly、Gln48Arg、Tyr51Ser、Phe61Tyr、Asp77Gly、Asp82Glu、Gln90Arg、Gln112Leu、Val117Glu、Lys119Asn、Lys119Glu、Thr140Ile、Leu142Gln、Phe171Ser、Leu175Arg、Asn180Ser、Ile188Val、Met18Ile、Met18Lys、Met18Thr、Glu21Gly、Glu21Lys、Leu23Met、Leu23Arg、Gln33Pro、Lys46Ile、Lys46Glu、Gln48Trp、Tyr51His、Tyr51Asn、Glu54Gly、Glu54Asp、Asn56Ser、Asn56Ile、Phe61Leu、Glu64Gly、Ser65Arg、Ile67Leu、Ser68Pro、Ser69Asn、Ala71Thr、Tyr74Phe、Phe75Arg、Asp77Val、Asp77Glu、Ala78Glu、Val81Met、Val81Glu、Asp82Ala、Glu86Asp、Gln90Leu、Leu93Gln、Gln101Leu、Glu103Val、His105Arg、Pro114Leu、Lys119Tyr、Glu120Val、His125Gln、Ser130Thr、Lys138Arg、Gln143His、Gly147Val、Lys149Met、Phe151Tyr、His153Tyr、Tyr158Phe、Lys161Arg、Ser169Gly、Ser178Arg、Asn180Lys、Thr185Ala、Asn187Ile、Asn187Lys、Thr191Ala、Ala78Ser、Asp82Glu、Gln101Arg、Tyr158His、Lys165Glu、Asn187Asp、Asn187Tyr、Lys40Gln、Lys46Asn、Ala50Thr、Asn56Tyr、His62Leu、Ser65Gly、Tyr74His、Asp122Glu、His137Gln、Thr140Ala、Thr140Arg、Thr140Leu、Thr140Lys、Thr140Phe、Thr140Ser、Thr140Val、Thr140Met、Tyr141Phe、Tyr158Leu、Tyr158Cys、Tyr158Ile、Tyr158Lys、Tyr158Trp、Tyr158Val、Ile190Val、Thr191Ileのうち、少なくともいずれかの1つの置換である。なお、野生型FcγRIIIaには、Leu66His、Leu66Arg、Gly147Asp、Tyr158His、Val176Pheのうち、いずれか1つ以上のアミノ酸置換が生じた変異体が知られているが、前記特定位置におけるアミノ酸置換以外にこれらのアミノ酸置換を含んでいてもよい。 The Fc-binding protein of the present invention is a protein having a binding property to the Fc region of an antibody, and at least of the extracellular region (EC region of FIG. 1) of human FcγRIIIa comprising the amino acid sequence set forth in SEQ ID NO: 1. A protein comprising amino acid residues from the 17th glycine to the 192nd glutamine, wherein the amino acid substitution at a specific position occurs in the 17th to 192th amino acid residues. Therefore, the Fc binding protein of the present invention may include all or part of the signal peptide region (S in FIG. 1) on the N-terminal side of the extracellular region, or the cell membrane on the C-terminal side of the extracellular region. All or part of the penetrating region (TM in FIG. 1) and the extracellular region (C in FIG. 1) may be included. Specifically, the amino acid substitution at the specific position is, in the amino acid sequence shown in SEQ ID NO: 1, Val27Glu (in this notation, the 27th valine of SEQ ID NO: 1 (43th in SEQ ID NO: 37) is substituted with glutamic acid. indicating that is, the same applies hereinafter), Tyr35Asn, Phe75Leu, Asn92Ser, Glu121Gly, Phe29Ile, Phe29Leu, Glu39Gly, Gln48Arg, Tyr51Ser, Phe61Tyr, Asp77Gly, Asp82Glu, Gln90Arg, Gln112Leu, Val117Glu, Lys119Asn, Lys119Glu, Thr140Ile, Leu142Gln, Phe171Ser, Leu175Arg, Asn180Ser, Ile188Val, M t18Ile, Met18Lys, Met18Thr, Glu21Gly, Glu21Lys, Leu23Met, Leu23Arg, Gln33Pro, Lys46Ile, Lys46Glu, Gln48Trp, Tyr51His, Tyr51Asn, Glu54Gly, Glu54Asp, Asn56Ser, Asn56Ile, Phe61Leu, Glu64Gly, Ser65Arg, Ile67Leu, Ser68Pro, Ser69Asn, Ala71Thr, Tyr74Phe, Phe75Arg, Asp77Val, Asp77Glu, Ala78Glu, Val81Met, Val81Glu, Asp82Ala, Glu86Asp, Gln90Leu, Leu93Gln, Gln101Leu, Glu103Val His105Arg, Pro114Leu, Lys119Tyr, Glu120Val, His125Gln, Ser130Thr, Lys138Arg, Gln143His, Gly147Val, Lys149Met, Phe151Tyr, His153Tyr, Tyr158Phe, Lys161Arg, Ser169Gly, Ser178Arg, Asn180Lys, Thr185Ala, Asn187Ile, Asn187Lys, Thr191Ala, Ala78Ser, Asp82Glu, Gln101Arg, Tyr158His, Lys165Glu, Asn187Asp, Asn187Tyr, Lys40Gln, Lys46Asn, Ala50Thr, Asn56Tyr, His62Leu, Ser65Gly, T yr74His, Asp122Glu, His137Gln, Thr140Ala, Thr140Arg, Thr140Leu, Thr140Lys, Thr140Phe, Thr140Ser, Thr140Val, Thr140Met, Tyr141Phe, Tyr158Leu, Tyr158Cys, Tyr158Ile, Tyr158Lys, Tyr158Trp, Tyr158Val, Ile190Val, among Thr191Ile, at least one in one substitution is there. In addition, among wild-type FcγRIIIa, mutants in which any one or more amino acid substitutions are known among Leu66His, Leu66Arg, Gly147Asp, Tyr158His, and Val176Phe are known. An amino acid substitution may be included.
 アミノ酸置換を行なうことで本発明のFc結合性タンパク質を作製する際、特定位置のアミノ酸残基については、抗体結合活性を有する限り前述したアミノ酸以外のアミノ酸に置換してもよい。その一例として、両アミノ酸の物理的性質と化学的性質またはそのどちらかが類似したアミノ酸間で置換する保守的置換があげられる。保守的置換は、Fc結合性タンパク質に限らず一般に、置換が生じているものと置換が生じていないものとの間でタンパク質の機能が維持されることが当業者において知られている。保守的置換の一例としては、グリシンとアラニン間、アスパラギン酸とグルタミン酸間、セリンとプロリン間、またはグルタミン酸とアラニン間に生じる置換があげられる(タンパク質の構造と機能,メディカル・サイエンス・インターナショナル社,9,2005)。 When the Fc-binding protein of the present invention is produced by amino acid substitution, the amino acid residue at a specific position may be substituted with an amino acid other than those described above as long as it has antibody binding activity. One example is a conservative substitution that substitutes between amino acids whose physical and / or chemical properties of both amino acids are similar. Conservative substitutions are not limited to Fc-binding proteins, and are generally known to those skilled in the art to maintain protein function between those with substitutions and those without substitutions. Examples of conservative substitutions include substitutions that occur between glycine and alanine, between aspartic acid and glutamic acid, between serine and proline, or between glutamic acid and alanine (protein structure and function, Medical Science International, 9 2005).
 本発明のFc結合性タンパク質において、置換するアミノ酸の数に特に制限はない。一例として、以下の(a)から(l)に示すFc結合性タンパク質があげられる。これらのFc結合性タンパク質は熱、酸またはアルカリに対する安定性が向上する点で好ましい。
(a)配列番号37に記載のアミノ酸配列のうち33番目から208番目までのアミノ酸残基を含み、かつ当該33番目から208番目までのアミノ酸残基において、45番目のフェニルアラニンがイソロイシンに、133番目のバリンがグルタミン酸にそれぞれ置換されているFc結合性タンパク質(配列番号39に記載のアミノ酸配列のうち33番目から208番目までのアミノ酸配列を含むFc結合性タンパク質)。
(b)配列番号37に記載のアミノ酸配列のうち33番目から208番目までのアミノ酸残基を含み、かつ当該33番目から208番目までのアミノ酸残基において、45番目のフェニルアラニンがイソロイシンに、133番目のバリンがグルタミン酸に、187番目のフェニルアラニンがセリンにそれぞれ置換されているFc結合性タンパク質(配列番号43に記載のアミノ酸配列のうち33番目から208番目までのアミノ酸配列を含むFc結合性タンパク質)。
(c)配列番号37に記載のアミノ酸配列のうち33番目から208番目までのアミノ酸残基を含み、かつ当該33番目から208番目までのアミノ酸残基において、45番目のフェニルアラニンがイソロイシンに、64番目のグルタミンがアルギニンに、133番目のバリンがグルタミン酸に、187番目のフェニルアラニンがセリンにそれぞれ置換されているFc結合性タンパク質(配列番号47に記載のアミノ酸配列のうち33番目から208番目までのアミノ酸配列を含むFc結合性タンパク質)。
(d)配列番号37に記載のアミノ酸配列のうち33番目から208番目までのアミノ酸残基を含み、かつ当該33番目から208番目までのアミノ酸残基において、45番目のフェニルアラニンがイソロイシンに、64番目のグルタミンがアルギニンに、67番目のチロシンがセリンに、133番目のバリンがグルタミン酸に、187番目のフェニルアラニンがセリンにそれぞれ置換されているFc結合性タンパク質(配列番号51に記載のアミノ酸配列のうち33番目から208番目までのアミノ酸配列を含むFc結合性タンパク質)。
(e)配列番号37に記載のアミノ酸配列のうち33番目から208番目までのアミノ酸残基を含み、かつ当該33番目から208番目までのアミノ酸残基において、45番目のフェニルアラニンがイソロイシンに、64番目のグルタミンがアルギニンに、67番目のチロシンがセリンに、106番目のグルタミンがアルギニンに、133番目のバリンがグルタミン酸に、187番目のフェニルアラニンがセリンにそれぞれ置換されているFc結合性タンパク質(配列番号55に記載のアミノ酸配列のうち33番目から208番目までのアミノ酸配列を含むFc結合性タンパク質)。
(f)配列番号37に記載のアミノ酸配列のうち33番目から208番目までのアミノ酸残基を含み、かつ当該33番目から208番目までのアミノ酸残基において、37番目のグルタミン酸がグリシンに、39番目のロイシンがメチオニンに、45番目のフェニルアラニンがイソロイシンに、64番目のグルタミンがアルギニンに、133番目のバリンがグルタミン酸に、187番目のフェニルアラニンがセリンに、194番目のセリンがアルギニンにそれぞれ置換されているFc結合性タンパク質(配列番号63に記載のアミノ酸配列のうち33番目から208番目までのアミノ酸配列を含むFc結合性タンパク質)。
(g)配列番号37に記載のアミノ酸配列のうち33番目から208番目までのアミノ酸残基を含み、かつ当該33番目から208番目までのアミノ酸残基において、37番目のグルタミン酸がグリシンに、39番目のロイシンがメチオニンに、45番目のフェニルアラニンがイソロイシンに、64番目のグルタミンがアルギニンに、84番目のセリンがプロリンに、133番目のバリンがグルタミン酸に、187番目のフェニルアラニンがセリンに、194番目のセリンがアルギニンにそれぞれ置換されているFc結合性タンパク質(配列番号67に記載のアミノ酸配列のうち33番目から208番目までのアミノ酸配列を含むFc結合性タンパク質)。
(h)配列番号37に記載のアミノ酸配列のうち33番目から208番目までのアミノ酸残基を含み、かつ当該33番目から208番目までのアミノ酸残基において、37番目のグルタミン酸がグリシンに、39番目のロイシンがメチオニンに、45番目のフェニルアラニンがイソロイシンに、64番目のグルタミンがアルギニンに、84番目のセリンがプロリンに、133番目のバリンがグルタミン酸に、163番目のグリシンがバリンに、187番目のフェニルアラニンがセリンに、194番目のセリンがアルギニンにそれぞれ置換されているFc結合性タンパク質(配列番号69に記載のアミノ酸配列のうち33番目から208番目までのアミノ酸配列を含むFc結合性タンパク質)。
(i)配列番号37に記載のアミノ酸配列のうち33番目から208番目までのアミノ酸残基を含み、かつ当該33番目から208番目までのアミノ酸残基において、37番目のグルタミン酸がグリシンに、39番目のロイシンがメチオニンに、45番目のフェニルアラニンがイソロイシンに、64番目のグルタミンがアルギニンに、67番目のチロシンがヒスチジン、70番目のグルタミン酸がアスパラギン酸に、84番目のセリンがプロリンに、133番目のバリンがグルタミン酸に、163番目のグリシンがバリンに、187番目のフェニルアラニンがセリンに、194番目のセリンがアルギニンにそれぞれ置換されているFc結合性タンパク質(配列番号73に記載のアミノ酸配列のうち33番目から208番目までのアミノ酸配列を含むFc結合性タンパク質)。
(j)配列番号37に記載のアミノ酸配列のうち33番目から208番目までのアミノ酸残基を含み、かつ当該33番目から208番目までのアミノ酸残基において、37番目のグルタミン酸がグリシンに、39番目のロイシンがメチオニンに、45番目のフェニルアラニンがイソロイシンに、64番目のグルタミンがアルギニンに、67番目のチロシンがヒスチジン、70番目のグルタミン酸がアスパラギン酸に、84番目のセリンがプロリンに、133番目のバリンがグルタミン酸に、156番目のスレオニンがイソロイシンに、163番目のグリシンがバリンに、174番目のチロシンがヒスチジンに、181番目のリジンがグルタミン酸に、187番目のフェニルアラニンがセリンに、194番目のセリンがアルギニンにそれぞれ置換されているFc結合性タンパク質(配列番号77に記載のアミノ酸配列のうち33番目から208番目までのアミノ酸配列を含むFc結合性タンパク質)。
(k)配列番号37に記載のアミノ酸配列のうち33番目から208番目までのアミノ酸残基を含み、かつ当該33番目から208番目までのアミノ酸残基において、37番目のグルタミン酸がグリシンに、39番目のロイシンがメチオニンに、45番目のフェニルアラニンがイソロイシンに、64番目のグルタミンがアルギニンに、67番目のチロシンがヒスチジン、70番目のグルタミン酸がアスパラギン酸に、84番目のセリンがプロリンに、98番目のアスパラギン酸がグルタミン酸に、117番目のグルタミンがロイシンに、133番目のバリンがグルタミン酸に、156番目のスレオニンがイソロイシンに、163番目のグリシンがバリンに、174番目のチロシンがヒスチジンに、181番目のリジンがグルタミン酸に、187番目のフェニルアラニンがセリンに、194番目のセリンがアルギニンにそれぞれ置換されているFc結合性タンパク質(配列番号83に記載のアミノ酸配列のうち33番目から208番目までのアミノ酸配列を含むFc結合性タンパク質)。
(l)配列番号37に記載のアミノ酸配列のうち33番目から208番目までのアミノ酸残基を含み、かつ当該33番目から208番目までのアミノ酸残基において、37番目のグルタミン酸がグリシンに、39番目のロイシンがメチオニンに、45番目のフェニルアラニンがイソロイシンに、64番目のグルタミンがアルギニンに、67番目のチロシンがヒスチジン、70番目のグルタミン酸がアスパラギン酸に、84番目のセリンがプロリンに、94番目のアラニンがセリンに、98番目のアスパラギン酸がグルタミン酸に、117番目のグルタミンがロイシンに、133番目のバリンがグルタミン酸に、156番目のスレオニンがイソロイシンに、163番目のグリシンがバリンに、174番目のチロシンがヒスチジンに、181番目のリジンがグルタミン酸に、187番目のフェニルアラニンがセリンに、194番目のセリンがアルギニンに、201番目のスレオニンがアラニンに、203番目のアスパラギンがアスパラギン酸にそれぞれ置換されているFc結合性タンパク質(配列番号89に記載のアミノ酸配列のうち33番目から208番目までのアミノ酸配列を含むFc結合性タンパク質)。
In the Fc binding protein of the present invention, the number of amino acids to be substituted is not particularly limited. As an example, Fc-binding proteins shown in the following (a) to (l) can be mentioned. These Fc-binding proteins are preferable in terms of improving stability against heat, acid or alkali.
(A) In the amino acid sequence shown in SEQ ID NO: 37, the amino acid residues from the 33rd to the 208th amino acid residues are included, and the 45th phenylalanine is the isoleucine in the 33rd to 208th amino acid residues. Fc binding protein (Fc binding protein containing the amino acid sequence from the 33rd position to the 208th position in the amino acid sequence shown in SEQ ID NO: 39) wherein
(B) including the 33rd to 208th amino acid residues in the amino acid sequence set forth in SEQ ID NO: 37, and the 45th phenylalanine is the isoleucine in the 33rd to 208th amino acid residues. Fc-binding protein in which valine is substituted with glutamic acid and 187th phenylalanine is substituted with serine (Fc-binding protein containing the amino acid sequence from the 33rd to the 208th of the amino acid sequence described in SEQ ID NO: 43).
(C) In the amino acid sequence shown in SEQ ID NO: 37, the amino acid residue from the 33rd to the 208th amino acid residue, and in the amino acid residue from the 33rd to the 208th, the 45th phenylalanine is the isoleucine, the 64th Fc-binding protein in which glutamine is substituted with arginine, 133th valine is substituted with glutamic acid, and 187th phenylalanine is substituted with serine (amino acid sequence from 33rd to 208th of the amino acid sequence described in SEQ ID NO: 47) Fc binding protein).
(D) In the amino acid sequence of SEQ ID NO: 37, the amino acid residues from the 33rd to the 208th amino acid residues are included, and in the amino acid residues from the 33rd to the 208th, the 45th phenylalanine is the isoleucine, the 64th Of Fc-binding protein in which glutamine of arginine, 67th tyrosine is substituted with serine, 133rd valine is substituted with glutamic acid, and 187th phenylalanine is substituted with serine (33 of the amino acid sequence shown in SEQ ID NO: 51) Fc-binding protein comprising the amino acid sequence from position No. to position 208).
(E) In the amino acid sequence shown in SEQ ID NO: 37, the amino acid residue from the 33rd to the 208th amino acid residue, and in the amino acid residue from the 33rd to the 208th, the 45th phenylalanine is the isoleucine, the 64th Fc-binding protein wherein SEQ ID NO: 55 is substituted with glutamine of arginine, 67th tyrosine with serine, 106th glutamine with arginine, 133rd valine with glutamic acid, and 187th phenylalanine with serine. Fc-binding protein comprising the amino acid sequence of the 33rd to 208th amino acids in the amino acid sequence described in 1).
(F) In the amino acid sequence shown in SEQ ID NO: 37, the amino acid residue from the 33rd to the 208th amino acid residue, and in the amino acid residue from the 33rd to the 208th, the 37th glutamic acid is the glycine, the 39th Leucine is replaced with methionine, 45th phenylalanine with isoleucine, 64th glutamine with arginine, 133th valine with glutamic acid, 187th phenylalanine with serine, and 194th serine with arginine. Fc binding protein (Fc binding protein containing the amino acid sequence from the 33rd to 208th among the amino acid sequences of sequence number 63).
(G) including the 33rd to 208th amino acid residues in the amino acid sequence set forth in SEQ ID NO: 37, and in the 33rd to 208th amino acid residues, the 37th glutamic acid is glycine, the 39th Leucine is methionine, 45th phenylalanine is isoleucine, 64th glutamine is arginine, 84th serine is proline, 133th valine is glutamic acid, 187th phenylalanine is serine, 194th serine Are Fc-binding proteins each substituted with arginine (Fc-binding protein comprising the amino acid sequence from the 33rd to the 208th of the amino acid sequence shown in SEQ ID NO: 67).
(H) In the amino acid sequence of SEQ ID NO: 37, the amino acid residue from the 33rd to the 208th amino acid residue, and the 37th glutamic acid in the amino acid residue from the 33rd to the 208th to the glycine, the 39th Leucine is methionine, 45th phenylalanine is isoleucine, 64th glutamine is arginine, 84th serine is proline, 133th valine is glutamic acid, 163rd glycine is valine, 187th phenylalanine Is an Fc-binding protein in which serine is substituted for serine and 194th serine is substituted for arginine (an Fc-binding protein comprising the amino acid sequence from the 33rd to the 208th of the amino acid sequence shown in SEQ ID NO: 69).
(I) The amino acid sequence of SEQ ID NO: 37 comprises the amino acid residues from the 33rd to the 208th, and the 37th glutamic acid is the glycine in the 33rd to 208th amino acid residues, the 39th Leucine is methionine, 45th phenylalanine is isoleucine, 64th glutamine is arginine, 67th tyrosine is histidine, 70th glutamic acid is aspartic acid, 84th serine is proline, 133th valine Is a glutamic acid, 163rd glycine is replaced by valine, 187th phenylalanine is replaced by serine, and 194th serine is replaced by arginine (from the 33rd amino acid sequence of SEQ ID NO: 73) Amino acid sequence up to 208th Fc-binding protein that contains).
(J) In the amino acid sequence shown in SEQ ID NO: 37, the amino acid sequence includes the 33rd to 208th amino acid residues, and in the 33rd to 208th amino acid residues, the 37th glutamic acid is glycine, the 39th Leucine is methionine, 45th phenylalanine is isoleucine, 64th glutamine is arginine, 67th tyrosine is histidine, 70th glutamic acid is aspartic acid, 84th serine is proline, 133th valine Is glutamic acid, 156th threonine is isoleucine, 163rd glycine is valine, 174th tyrosine is histidine, 181st lysine is glutamic acid, 187th phenylalanine is serine, 194th serine is arginine In each Has been that Fc binding proteins (Fc-binding protein comprising an amino acid sequence from the 33 th of the amino acid sequence set forth to 208th in SEQ ID NO: 77).
(K) includes the 33rd to 208th amino acid residues in the amino acid sequence set forth in SEQ ID NO: 37, and the 37th glutamic acid is the glycine in the 33rd to 208th amino acid residues, the 39th Leucine is methionine, 45th phenylalanine is isoleucine, 64th glutamine is arginine, 67th tyrosine is histidine, 70th glutamic acid is aspartic acid, 84th serine is proline, 98th asparagine Acid is glutamic acid, 117th glutamine is leucine, 133th valine is glutamic acid, 156th threonine is isoleucine, 163rd glycine is valine, 174th tyrosine is histidine, 181st lysine is In glutamic acid, 18 Fc binding protein in which the phenylalanine at position No. 1 is substituted with serine and the serine at position 194 is substituted with arginine (Fc binding protein comprising the amino acid sequence from the 33rd position to the 208th position in the amino acid sequence of SEQ ID NO: 83) .
(L) In the amino acid sequence shown in SEQ ID NO: 37, the amino acid sequence includes the 33rd to 208th amino acid residues. In the 33rd to 208th amino acid residues, the 37th glutamic acid is the glycine, the 39th Leucine is methionine, 45th phenylalanine is isoleucine, 64th glutamine is arginine, 67th tyrosine is histidine, 70th glutamic acid is aspartic acid, 84th serine is proline, 94th alanine Is serine, 98th aspartic acid is glutamic acid, 117th glutamine is leucine, 133th valine is glutamic acid, 156th threonine is isoleucine, 163rd glycine is valine, and 174th tyrosine is 181st in histidine Fc-binding protein in which lysine is substituted with glutamic acid, 187th phenylalanine is substituted with serine, 194th serine with arginine, 201st threonine with alanine, and 203rd asparagine with aspartic acid (SEQ ID NO: 89) Fc-binding protein comprising the amino acid sequence of the 33rd to 208th amino acids in the amino acid sequence described in 1).
 本発明のFc結合性タンパク質は、そのN末端側またはC末端側に、夾雑物質存在下の溶液から分離する際に有用なオリゴペプチドをさらに付加してもよい。前記オリゴペプチドとしては、ポリヒスチジン、ポリリジン、ポリアルギニン、ポリグルタミン酸、ポリアスパラギン酸等があげられる。また本発明のFc結合性タンパク質をクロマトグラフィー用の支持体等の固相に固定化する際に有用な、システインを含むオリゴペプチドを、本発明のFc結合性タンパク質のN末端側またはC末端側にさらに付加してもよい。Fc結合性タンパク質のN末端側またはC末端側に付加するオリゴペプチドの長さは、本発明のFc結合性タンパク質のIgG結合性や安定性を損なわない限り特に制限はない。前記オリゴペプチドを本発明のFc結合性タンパク質に付加させる際は、前記オリゴペプチドをコードするポリヌクレオチドを作製後、当業者に周知の方法を用いて遺伝子工学的にFc結合性タンパク質のN末端側またはC末端側に付加させてもよいし、化学的に合成した前記オリゴペプチドを本発明のFc結合性タンパク質のN末端側またはC末端側に化学的に結合させて付加させてもよい。さらに本発明のFc結合性タンパク質のN末端側には、宿主での効率的な発現を促すためのシグナルペプチドを付加してもよい。宿主が大腸菌の場合における前記シグナルペプチドの例としては、PelB(配列番号101)、DsbA、MalE(UniProt No.P0AEX9に記載のアミノ酸配列のうち1番目から26番目までの領域)、TorTなどといったペリプラズムにタンパク質を分泌させるシグナルペプチドを例示することができる(特開2011-097898号公報)。 The Fc-binding protein of the present invention may further be added with an oligopeptide useful for separation from a solution in the presence of a contaminant substance on the N-terminal side or C-terminal side. Examples of the oligopeptide include polyhistidine, polylysine, polyarginine, polyglutamic acid, polyaspartic acid and the like. Further, an oligopeptide containing cysteine useful for immobilizing the Fc-binding protein of the present invention on a solid phase such as a support for chromatography is used as an N-terminal side or C-terminal side of the Fc-binding protein of the present invention. It may be further added to. The length of the oligopeptide added to the N-terminal side or C-terminal side of the Fc binding protein is not particularly limited as long as the IgG binding property and stability of the Fc binding protein of the present invention are not impaired. When the oligopeptide is added to the Fc-binding protein of the present invention, a polynucleotide encoding the oligopeptide is prepared and then genetically engineered using a method well known to those skilled in the art to the N-terminal side of the Fc-binding protein. Alternatively, it may be added to the C-terminal side, or the chemically synthesized oligopeptide may be added by chemically binding to the N-terminal side or C-terminal side of the Fc-binding protein of the present invention. Furthermore, a signal peptide for promoting efficient expression in the host may be added to the N-terminal side of the Fc binding protein of the present invention. Examples of the signal peptide when the host is Escherichia coli include periplasm such as PelB (SEQ ID NO: 101), DsbA, MalE (the first to 26th region of the amino acid sequence described in UniProt No. P0AEX9), TorT, and the like. An example is a signal peptide that secretes a protein (Japanese Patent Laid-Open No. 2011-097898).
 本発明のFc結合性タンパク質には糖鎖を有していても有していなくても構わない。糖鎖を有するFc結合性タンパク質を得るためには、動物細胞、酵母や昆虫細胞等を宿主として用いればよい。さらに人工的に合成した糖鎖を修飾してもよい。また、糖鎖を有していないFc結合性タンパク質を得るためには、大腸菌等糖鎖付加が起こらない宿主として用いればよい。さらに糖鎖を有したFc結合性タンパク質から糖鎖を除去する操作を行なうことで、糖鎖を有していないFc結合性タンパク質を得ることもできる。 The Fc binding protein of the present invention may or may not have a sugar chain. In order to obtain an Fc-binding protein having a sugar chain, animal cells, yeasts, insect cells and the like may be used as hosts. Furthermore, an artificially synthesized sugar chain may be modified. Further, in order to obtain an Fc-binding protein having no sugar chain, it may be used as a host in which sugar chain addition does not occur, such as Escherichia coli. Further, by performing an operation of removing a sugar chain from an Fc binding protein having a sugar chain, an Fc binding protein having no sugar chain can be obtained.
 本発明のポリヌクレオチドの作製方法の一例として、
(I)本発明のFc結合性タンパク質のアミノ酸配列からヌクレオチド配列に変換し、当該ヌクレオチド配列を含むポリヌクレオチドを人工的に合成する方法や、
(II)Fc結合性タンパク質の全体または部分配列を含むポリヌクレオチドを直接人工的に、またはFc結合性タンパク質のcDNA等からPCR法といったDNA増幅法を用いて調製し、調製した当該ポリヌクレオチドを適当な方法で連結する方法、が例示できる。
前記(I)の方法において、アミノ酸配列からヌクレオチド配列に変換する際、形質転換させる宿主におけるコドンの使用頻度を考慮して変換するのが好ましい。一例として、宿主が大腸菌(Escherichia coli)の場合は、アルギニン(Arg)ではAGA/AGG/CGG/CGAが、イソロイシン(Ile)ではATAが、ロイシン(Leu)ではCTAが、グリシン(Gly)ではGGAが、プロリン(Pro)ではCCCが、それぞれ使用頻度が少ないため(いわゆるレアコドンであるため)、それらのコドンを避けるように変換すればよい。コドンの使用頻度の解析は公的データベース(例えば、かずさDNA研究所のホームページにあるCodon Usage Databaseなど)を利用することによっても可能である。
As an example of a method for producing the polynucleotide of the present invention,
(I) a method of artificially synthesizing a polynucleotide containing the nucleotide sequence by converting the amino acid sequence of the Fc-binding protein of the present invention into a nucleotide sequence,
(II) A polynucleotide containing the whole or a partial sequence of an Fc binding protein is prepared artificially or from a cDNA of the Fc binding protein using a DNA amplification method such as PCR, and the prepared polynucleotide is appropriately used. The method of connecting by various methods can be illustrated.
In the method (I), when converting from an amino acid sequence to a nucleotide sequence, the conversion is preferably performed in consideration of the frequency of codon usage in the host to be transformed. For example, when the host is Escherichia coli, AGA / AGG / CGG / CGA is used for arginine (Arg), ATA is used for isoleucine (Ile), CTA is used for leucine (Leu), and GGA is used for glycine (Gly). However, since CCC is less frequently used in proline (Pro) (because it is a so-called rare codon), it may be converted so as to avoid those codons. Analysis of codon usage frequency can also be performed by using a public database (for example, Codon Usage Database on the website of Kazusa DNA Research Institute).
 本発明のポリヌクレオチドへ変異を導入する場合、エラープローンPCR法を用いることができる。エラープローンPCR法における反応条件は、Fc結合性タンパク質をコードするポリヌクレオチドに所望の変異を導入できる条件であれば特に限定はなく、例えば、基質である4種類のデオキシヌクレオチド(dATP/dTTP/dCTP/dGTP)の濃度を不均一にし、MnClを0.01から10mM(好ましくは0.1から1mM)の濃度でPCR反応液に添加してPCRを行なうことで、ポリヌクレオチドに変異を導入することができる。またエラープローンPCR法以外の変異導入方法としては、Fc結合性タンパク質の全体または部分配列を含むポリヌクレオチドに、変異原となる薬剤を接触・作用させたり、紫外線を照射したりして、ポリヌクレオチドに変異を導入して作製する方法があげられる。当該方法において変異原として使用する薬剤としては、ヒドロキシルアミン、N-メチル-N’-ニトロ-N-ニトロソグアニジン、亜硝酸、亜硫酸、ヒドラジン等、当業者が通常用いる変異原性薬剤を用いればよい。 When introducing a mutation into the polynucleotide of the present invention, an error-prone PCR method can be used. The reaction conditions in the error-prone PCR method are not particularly limited as long as a desired mutation can be introduced into a polynucleotide encoding an Fc binding protein. For example, four types of deoxynucleotides (dATP / dTTP / dCTP) that are substrates are used. / DGTP) concentration is heterogeneous, and MnCl 2 is added to the PCR reaction solution at a concentration of 0.01 to 10 mM (preferably 0.1 to 1 mM) to introduce a mutation into the polynucleotide. be able to. Further, as a method for introducing a mutation other than the error-prone PCR method, the polynucleotide containing the entire or partial sequence of the Fc-binding protein is contacted / acted with a drug as a mutagen, or irradiated with ultraviolet rays, to obtain a polynucleotide. And a method of producing a mutation by introducing a mutation. As a drug used as a mutagen in this method, a mutagenic drug commonly used by those skilled in the art such as hydroxylamine, N-methyl-N′-nitro-N-nitrosoguanidine, nitrous acid, sulfite, hydrazine may be used. .
 本発明のFc結合性タンパク質を発現させる宿主には特に制限はなく、一例として、動物細胞(CHO細胞、HEK細胞、Hela細胞、COS細胞等)、酵母(Saccharomyces cerevisiae、Pichia pastoris、Hansenula polymorpha、Schizosaccharomyces japonicus、Schizosaccharomyces octosporus、Schizosaccharomyces pombe等)、昆虫細胞(Sf9、Sf21等)、大腸菌(JM109株、BL21(DE3)株、W3110株等)や枯草菌があげられる。なお動物細胞や大腸菌を宿主として用いると生産性の面で好ましく、大腸菌を宿主として用いるとさらに好ましい。 The host that expresses the Fc-binding protein of the present invention is not particularly limited, and examples thereof include animal cells (CHO cells, HEK cells, Hela cells, COS cells, etc.), yeasts (Saccharomyces cerevisiae, Pichia pastoris, Hansenula polymorpha, Schomisacios). and japonicus, Schizosaccharomyces octosporus, Schizosaccharomyces pombe, insect cells (Sf9, Sf21 etc.), E. coli (JM109 strain, BL21 (DE3) strain, W3110 strain etc.) and Bacillus subtilis. Use of animal cells or Escherichia coli as a host is preferable in terms of productivity, and more preferable when Escherichia coli is used as a host.
 本発明のポリヌクレオチドを用いて宿主を形質転換する場合、本発明のポリヌクレオチドそのものを用いてもよいが、発現ベクター(例えば、原核細胞や真核細胞の形質転換に通常用いるバクテリオファージ、コスミドやプラスミド等)の適切な位置に本発明のポリヌクレオチドを挿入したものを用いると、より好ましい。なお当該発現ベクターは、形質転換する宿主内で安定に存在し複製できるものであれば特に制限はなく、大腸菌を宿主とする場合は、pETプラスミドベクター、pUCプラスミドベクター、pTrcプラスミドベクター、pCDFプラスミドベクター、pBBRプラスミドベクターを例示することができる。また前記適切な位置とは、発現ベクターの複製機能、所望の抗生物質マーカー、伝達性に関わる領域を破壊しない位置を意味する。前記発現ベクターに本発明のポリヌクレオチドを挿入する際は、発現に必要なプロモータといった機能性ポリヌクレオチドに連結される状態で挿入すると好ましい。当該プロモータの例として、宿主が大腸菌の場合は、trpプロモータ、tacプロモータ、trcプロモータ、lacプロモータ、T7プロモータ、recAプロモータ、lppプロモータ、さらにはλファージのλPLプロモータ、λPRプロモータがあげられ、宿主が動物細胞の場合は、SV40プロモーター、CMVプロモーター、CAGプロモーターがあげられる。 When transforming a host using the polynucleotide of the present invention, the polynucleotide of the present invention itself may be used, but an expression vector (for example, bacteriophage, cosmid, or the like commonly used for transformation of prokaryotic cells or eukaryotic cells) may be used. It is more preferable to use a plasmid or the like in which the polynucleotide of the present invention is inserted at an appropriate position. The expression vector is not particularly limited as long as it is stably present in the host to be transformed and can be replicated. When Escherichia coli is used as a host, pET plasmid vector, pUC plasmid vector, pTrc plasmid vector, pCDF plasmid vector A pBBR plasmid vector can be exemplified. The appropriate position means a position where the replication function of the expression vector, a desired antibiotic marker, and a region related to transmissibility are not destroyed. When inserting the polynucleotide of the present invention into the expression vector, it is preferable to insert it in a state linked to a functional polynucleotide such as a promoter required for expression. Examples of the promoter include trp promoter, tac promoter, trc promoter, lac promoter, T7 promoter, recA promoter, lpp promoter, λ phage λPL promoter, λPR promoter when the host is Escherichia coli. In the case of animal cells, examples include SV40 promoter, CMV promoter, and CAG promoter.
 前記方法により作製した、本発明のポリヌクレオチドを挿入した発現ベクター(以下、本発明の発現ベクターとする)を用いて宿主を形質転換するには、当業者が通常用いる方法で行なえばよい。例えば、宿主としてEscherichia属に属する微生物(大腸菌JM109株、大腸菌BL21(DE3)株、大腸菌W3110株等)を選択する場合には、公知の文献(例えば、Molecular Cloning,Cold Spring Harbor Laboratory,256,1992)に記載の方法等により形質転換すればよい。なお宿主が動物細胞である場合にはエレクトロポレーションやリポフェクションを用いればよい。前述した方法で形質転換して得られた形質転換体は、適切な方法でスクリーニングすることにより、本発明のFc結合性タンパク質を発現可能な形質転換体(以下、本発明の形質転換体とする)を取得することができる。 In order to transform a host using the expression vector inserted with the polynucleotide of the present invention (hereinafter referred to as the expression vector of the present invention) produced by the above-described method, a person skilled in the art may carry out the method. For example, when a microorganism belonging to the genus Escherichia (E. coli JM109 strain, E. coli BL21 (DE3) strain, E. coli W3110 strain, etc.) is selected as a host, known literature (eg, Molecular Cloning, Cold Spring Harbor Laboratory, 256, 1992). And the like. When the host is an animal cell, electroporation or lipofection may be used. By transforming the transformant obtained by the above-described method with an appropriate method, a transformant capable of expressing the Fc-binding protein of the present invention (hereinafter referred to as the transformant of the present invention). ) Can be obtained.
 本発明の形質転換体から本発明の発現ベクターを調製するには、形質転換に用いた宿主に適した方法で、本発明の形質転換体から本発明の発現ベクターを抽出し調製すればよい。
例えば、本発明の形質転換体の宿主が大腸菌の場合、形質転換体を培養して得られる培養物からアルカリ抽出法またはQIAprep Spin Miniprep kit(キアゲン製)等の市販の抽出キットを用いて調製すればよい。
In order to prepare the expression vector of the present invention from the transformant of the present invention, the expression vector of the present invention may be extracted from the transformant of the present invention and prepared by a method suitable for the host used for transformation.
For example, when the host of the transformant of the present invention is Escherichia coli, it can be prepared from a culture obtained by culturing the transformant using an alkaline extraction method or a commercially available extraction kit such as QIAprep Spin Miniprep kit (Qiagen). That's fine.
 本発明の形質転換体を培養し、得られた培養物から本発明のFc結合性タンパク質を回収することで、本発明のFc結合性タンパク質を製造することができる。なお本明細書において培養物とは、培養された本発明の形質転換体の細胞そのもののほか、培養に用いた培地も含まれる。本発明のタンパク質製造方法で用いる形質転換体は、対象宿主の培養に適した培地で培養すればよく、宿主が大腸菌の場合は、必要な栄養源を補ったLB(Luria-Bertani)培地が好ましい培地の一例としてあげられる。なお、本発明の発現ベクターの導入の有無により本発明の形質転換体を選択的に増殖させるために、培地に当該ベクターに含まれる薬剤耐性遺伝子に対応した薬剤を添加して培養すると好ましい。例えば、当該ベクターがカナマイシン耐性遺伝子を含んでいる場合は、培地にカナマイシンを添加すればよい。また培地には、炭素、窒素および無機塩供給源の他に、適当な栄養源を添加してもよく、所望により、グルタチオン、システイン、シスタミン、チオグリコレートおよびジチオスレイトールからなる群から選択される一種類以上の還元剤を含んでもよい。さらにグリシンといった前記形質転換体から培養液へのタンパク質分泌を促す試薬を添加してもよく、具体的には、宿主が大腸菌の場合、培地に対してグリシンを2%(w/v)以下で添加すると好ましい。培養温度は宿主が大腸菌の場合、一般に10℃から40℃、好ましくは20℃から37℃、より好ましくは25℃前後であるが、発現させるタンパク質の特性により選択すればよい。培地のpHは宿主が大腸菌の場合、pH6.8からpH7.4、好ましくはpH7.0前後である。また本発明のベクターに誘導性のプロモータが含まれている場合は、本発明のFc結合性タンパク質が良好に発現できるような条件下で誘導をかけると好ましい。誘導剤としてはIPTG(isopropyl-β-D-thiogalactopyranoside)を例示することができる。宿主が大腸菌の場合、培養液の濁度(600nmにおける吸光度)を測定し、約0.5から1.0となったときに適当量のIPTGを添加後、引き続き培養することで、Fc結合性タンパク質の発現を誘導することができる。IPTGの添加濃度は0.005から1.0mMの範囲から適宜選択すればよいが、0.01から0.5mMの範囲が好ましい。IPTG誘導に関する種々の条件は当該技術分野において周知の条件で行なえばよい。 The Fc-binding protein of the present invention can be produced by culturing the transformant of the present invention and recovering the Fc-binding protein of the present invention from the obtained culture. In the present specification, the culture includes not only the cultured cells of the transformant of the present invention itself but also a medium used for the culture. The transformant used in the protein production method of the present invention may be cultured in a medium suitable for culturing the target host. When the host is Escherichia coli, an LB (Luria-Bertani) medium supplemented with necessary nutrient sources is preferable. An example of the medium is given. In order to selectively proliferate the transformant of the present invention depending on the presence or absence of introduction of the expression vector of the present invention, it is preferable to add a drug corresponding to the drug resistance gene contained in the vector to the medium and culture. For example, when the vector contains a kanamycin resistance gene, kanamycin may be added to the medium. In addition to the carbon, nitrogen and inorganic salt sources, an appropriate nutrient source may be added to the medium, and if desired, the medium is selected from the group consisting of glutathione, cysteine, cystamine, thioglycolate and dithiothreitol. One or more reducing agents may be included. Furthermore, a reagent that promotes protein secretion from the transformant to the culture solution such as glycine may be added. Specifically, when the host is Escherichia coli, glycine is contained in the medium at 2% (w / v) or less. Addition is preferred. When the host is Escherichia coli, the culture temperature is generally 10 ° C. to 40 ° C., preferably 20 ° C. to 37 ° C., more preferably around 25 ° C., but may be selected depending on the characteristics of the protein to be expressed. When the host is Escherichia coli, the pH of the medium is pH 6.8 to pH 7.4, preferably around pH 7.0. In addition, when an inducible promoter is included in the vector of the present invention, it is preferable that the induction be performed under conditions that allow the Fc-binding protein of the present invention to be expressed well. Examples of the inducer include IPTG (isopropyl-β-D-thiogalactopyranoside). When the host is Escherichia coli, the turbidity (absorbance at 600 nm) of the culture solution is measured, and when it reaches about 0.5 to 1.0, an appropriate amount of IPTG is added, followed by further culturing, thereby allowing Fc binding. Protein expression can be induced. The addition concentration of IPTG may be appropriately selected from the range of 0.005 to 1.0 mM, but is preferably in the range of 0.01 to 0.5 mM. Various conditions relating to the IPTG induction may be performed under conditions well known in the art.
 本発明の形質転換体を培養して得られた培養物から本発明のFc結合性タンパク質を回収するには、本発明の形質転換体における本発明のFc結合性タンパク質の発現形態に適した方法で、当該培養物から分離/精製して本発明のFc結合性タンパク質を回収すればよい。例えば、培養上清に発現する場合は菌体を遠心分離操作によって分離し、得られる培養上清から本発明のFc結合性タンパク質を精製すればよい。また、細胞内(ペリプラズムを含む)に発現する場合には、遠心分離操作により菌体を集めた後、酵素処理剤や界面活性剤等を添加したり、超音波やフレンチプレス等を用いて菌体を破砕して本発明のFc結合性タンパク質を抽出した後、精製すればよい。本発明のFc結合性タンパク質を精製するには、当該技術分野において公知の方法を用いればよく、一例として液体クロマトグラフィーを用いた分離/精製があげられる。液体クロマトグラフィーには、イオン交換クロマトグラフィー、疎水性相互作用クロマトグラフィー、ゲルろ過クロマトグラフィー、アフィニティークロマトグラフィー等があり、これらのクロマトグラフィーを組み合わせて精製操作を行なうことにより、本発明のFc結合性タンパク質を高純度に調製することができる。 In order to recover the Fc-binding protein of the present invention from the culture obtained by culturing the transformant of the present invention, a method suitable for the expression form of the Fc-binding protein of the present invention in the transformant of the present invention Thus, the Fc-binding protein of the present invention may be recovered by separating / purifying from the culture. For example, when expressed in the culture supernatant, the cells are separated by centrifugation, and the Fc-binding protein of the present invention may be purified from the obtained culture supernatant. In the case of expression in cells (including periplasm), the bacterial cells are collected by centrifugation, and then added with an enzyme treatment agent, a surfactant, etc., or by using ultrasonic waves, a French press, etc. What is necessary is just to refine | purify, after crushing a body and extracting Fc binding protein of this invention. In order to purify the Fc-binding protein of the present invention, a method known in the art may be used, and an example is separation / purification using liquid chromatography. Liquid chromatography includes ion exchange chromatography, hydrophobic interaction chromatography, gel filtration chromatography, affinity chromatography, and the like. By performing a purification operation by combining these chromatography, the Fc binding property of the present invention can be obtained. Proteins can be prepared with high purity.
 得られた本発明のFc結合性タンパク質のIgGに対する結合活性を測定する方法としては、例えばIgGに対する結合活性をEnzyme-Linked ImmunoSorbent Assay(以下、ELISAと表記)法や表面プラズモン共鳴法などを用いて測定すればよい。結合活性の測定に使用するIgGは、ヒトIgGが好ましく、ヒトIgG1やヒトIgG3が特に好ましい。 As a method for measuring the binding activity of the obtained Fc-binding protein of the present invention to IgG, for example, the binding activity to IgG is measured using the Enzyme-Linked ImmunoSorbent Assay (hereinafter referred to as ELISA) method or the surface plasmon resonance method. Just measure. The IgG used for the measurement of the binding activity is preferably human IgG, and human IgG1 and human IgG3 are particularly preferable.
 本発明のFc結合性タンパク質を不溶性担体に結合させることで、本発明の吸着剤を製造することができる。前記不溶性担体には特に限定はなく、アガロース、アルギネート(アルギン酸塩)、カラゲナン、キチン、セルロース、デキストリン、デキストラン、デンプンといった多糖質を原料とした担体や、ポリビニルアルコール、ポリメタクレート、ポリ(2-ヒドロキシエチルメタクリレート)、ポリウレタン、ポリアクリル酸、ポリスチレン、ポリアクリルアミド、ポリメタクリルアミド、ビニルポリマーといった合成高分子を原料とした担体や、ジルコニア、ゼオライト、シリカ、皮膜シリカといったセラミックスを原料とした担体が例示できる。中でも、多糖質を原料とした担体や合成高分子を原料とした担体が不溶性担体として好ましい。前記好ましい担体の一例として、トヨパール(東ソー製)等の水酸基を導入したポリメタクリレートゲル、Sepharose(GEヘルスケア製)等のアガロースゲル、セルファイン(JNC製)等のセルロースゲルがあげられる。不溶性担体の形状については特に限定はなく、粒状物または非粒状物、多孔性または非多孔性、いずれであってもよい。 The adsorbent of the present invention can be produced by binding the Fc binding protein of the present invention to an insoluble carrier. The insoluble carrier is not particularly limited, and carriers made from polysaccharides such as agarose, alginate (alginate), carrageenan, chitin, cellulose, dextrin, dextran, starch, polyvinyl alcohol, polymethacrylate, poly (2- Examples include carriers made of synthetic polymers such as hydroxyethyl methacrylate), polyurethane, polyacrylic acid, polystyrene, polyacrylamide, polymethacrylamide, and vinyl polymers, and carriers made of ceramics such as zirconia, zeolite, silica, and coated silica. it can. Of these, carriers made from polysaccharides and carriers made from synthetic polymers are preferred as insoluble carriers. Examples of the preferred carrier include polymethacrylate gel introduced with a hydroxyl group such as Toyopearl (manufactured by Tosoh Corporation), agarose gel such as Sepharose (manufactured by GE Healthcare), and cellulose gel such as Cellufine (manufactured by JNC). The shape of the insoluble carrier is not particularly limited, and may be granular or non-particulate, porous or non-porous.
 Fc結合性タンパク質を不溶性担体に固定化するには、不溶性担体にN-ヒドロキシコハク酸イミド(NHS)活性化エステル基、エポキシ基、カルボキシル基、マレイミド基、ハロアセチル基、トレシル基、ホルミル基、ハロアセトアミド等の活性基を付与し、当該活性基を介してヒトFc結合性タンパク質と不溶性担体とを共有結合させることで固定化すればよい。活性基を付与した担体は市販の担体をそのまま用いてもよいし、適切な反応条件で担体表面に活性基を導入して調製してもよい。活性基を付与した市販の担体としてはTOYOPEARL AF-Epoxy-650M、TOYOPEARL AF-Tresyl-650M(いずれも東ソー製)、HiTrap NHS-activated HP Columns、NHS-activated Sepharose 4 Fast Flow、Epoxy-activated Sepharose 6B(いずれもGEヘルスケア製)、SulfoLink Coupling Resin(サーモサイエンティフィック製)が例示できる。 In order to immobilize the Fc binding protein on an insoluble carrier, N-hydroxysuccinimide (NHS) activated ester group, epoxy group, carboxyl group, maleimide group, haloacetyl group, tresyl group, formyl group, halo What is necessary is just to fix | immobilize by providing active groups, such as acetamide, and covalently bonding a human Fc binding protein and an insoluble carrier through the said active group. The carrier provided with the active group may be a commercially available carrier as it is, or may be prepared by introducing an active group on the surface of the carrier under appropriate reaction conditions. Commercially available carriers to which an active group has been added include TOYOPEARL AF-Epoxy-650M, TOYOPEARL AF-Tresyl-650M (all manufactured by Tosoh), HiTrap NHS-activated HP Columns, NHS-activated Sepharose 4F-SepacteF 4eFeSeFeSeFeSeFeSeFeSeFeSeFeSeFeSeFeSeFeSe? (Both manufactured by GE Healthcare) and SulfoLink Coupling Resin (manufactured by Thermo Scientific).
 一方、担体表面に活性基を導入する方法としては、担体表面に存在する水酸基やエポキシ基、カルボキシル基、アミノ基等に対して2個以上の活性部位を有する化合物の一方を反応させる方法が例示できる。当該化合物の一例のうち、担体表面の水酸基やアミノ基にエポキシ基を導入する化合物としては、エピクロロヒドリン、エタンジオールジグリシジルエーテル、ブタンジオールジグリシジルエーテル、ヘキサンジオールジグリシジルエーテルが例示できる。前記化合物により担体表面にエポキシ基を導入した後、担体表面にカルボキシル基を導入する化合物としては、2-メルカプト酢酸、3-メルカプトプロピオン酸、4-メルカプト酪酸、6-メルカプト酪酸、グリシン、3-アミノプロピオン酸、4-アミノ酪酸、6-アミノヘキサン酸を例示できる。 On the other hand, examples of the method for introducing an active group on the surface of the carrier include a method in which one of compounds having two or more active sites reacts with a hydroxyl group, an epoxy group, a carboxyl group, an amino group, etc. present on the surface of the carrier. it can. Among examples of the compound, examples of the compound that introduces an epoxy group into the hydroxyl group or amino group on the surface of the carrier include epichlorohydrin, ethanediol diglycidyl ether, butanediol diglycidyl ether, and hexanediol diglycidyl ether. Examples of the compound that introduces an epoxy group on the carrier surface with the compound and then introduces a carboxyl group on the carrier surface include 2-mercaptoacetic acid, 3-mercaptopropionic acid, 4-mercaptobutyric acid, 6-mercaptobutyric acid, glycine, 3- Examples thereof include aminopropionic acid, 4-aminobutyric acid, and 6-aminohexanoic acid.
 担体表面に存在する水酸基やエポキシ基、カルボキシル基、アミノ基にマレイミド基を導入する化合物としては、N-(ε-マレイミドカプロン酸)ヒドラジド、N-(ε-マレイミドプロピオン酸)ヒドラジド、4-[4-N-マレイミドフェニル]酢酸ヒドラジド、2-アミノマレイミド、3-アミノマレイミド、4-アミノマレイミド、6-アミノマレイミド、1-(4-アミノフェニル)マレイミド、1-(3-アミノフェニル)マレイミド、4-(マレイミド)フェニルイソシアナート、2-マレイミド酢酸、3-マレイミドプロピオン酸、4-マレイミド酪酸、6-マレイミドヘキサン酸、(N-[α―マレイミドアセトキシ]スクシンイミドエステル)、(m-マレイミドベンゾイル)N-ヒドロキシスクシンイミドエステル、(スクシンイミジル-4-[マレイミドメチル]シクロヘキサンー1-カルボニル-[6-アミノヘキサン酸])、(スクシンイミジル-4-[マレイミドメチル]シクロヘキサンー1-カルボン酸)、(p-マレイミドベンゾイル)N-ヒドロキシスクシンイミドエステル、(m-マレイミドベンゾイル)N-ヒドロキシスクシンイミドエステル、3-マレイミドプロピオン酸N-スクシンイミジルを例示できる。 Examples of the compound that introduces a maleimide group into the hydroxyl group, epoxy group, carboxyl group or amino group present on the surface of the carrier include N- (ε-maleimidocaproic acid) hydrazide, N- (ε-maleimidopropionic acid) hydrazide, 4- [ 4-N-maleimidophenyl] acetic acid hydrazide, 2-aminomaleimide, 3-aminomaleimide, 4-aminomaleimide, 6-aminomaleimide, 1- (4-aminophenyl) maleimide, 1- (3-aminophenyl) maleimide, 4- (maleimido) phenyl isocyanate, 2-maleimidoacetic acid, 3-maleimidopropionic acid, 4-maleimidobutyric acid, 6-maleimidohexanoic acid, (N- [α-maleimidoacetoxy] succinimide ester), (m-maleimidobenzoyl) N-hydroxysuccinimide ester (Succinimidyl-4- [maleimidomethyl] cyclohexane-1-carbonyl- [6-aminohexanoic acid]), (succinimidyl-4- [maleimidomethyl] cyclohexane-1-carboxylic acid), (p-maleimidobenzoyl) N-hydroxy Examples thereof include succinimide ester, (m-maleimidobenzoyl) N-hydroxysuccinimide ester, and 3-maleimidopropionate N-succinimidyl.
 担体表面に存在する水酸基やアミノ基にハロアセチル基を導入する化合物としては、クロロ酢酸、ブロモ酢酸、ヨード酢酸、クロロ酢酸クロリド、ブロモ酢酸クロリド、ブロモ酢酸ブロミド、クロロ酢酸無水物、ブロモ酢酸無水物、ヨード酢酸無水物、2-(ヨードアセトアミド)酢酸-N-ヒドロキシスクシンイミドエステル、3-(ブロモアセトアミド)プロピオン酸-N-ヒドロキシスクシンイミドエステル、4-(ヨードアセチル)アミノ安息香酸-N-ヒドロキシスクシンイミドエステルを例示できる。なお担体表面に存在する水酸基やアミノ基にω-アルケニルアルカングリシジルエーテルを反応させた後、ハロゲン化剤でω-アルケニル部位をハロゲン化し活性化する方法も例示できる。ω-アルケニルアルカングリシジルエーテルとしては、アリルグリシジルエーテル、3-ブテニルグリシジルエーテル、4-ペンテニルグリシジルエーテルを例示でき、ハロゲン化剤としてはN-クロロスクシンイミド、N-ブロモスクシンイミド、N-ヨードスクシンイミドを例示できる。 Compounds that introduce a haloacetyl group into the hydroxyl group or amino group present on the surface of the carrier include chloroacetic acid, bromoacetic acid, iodoacetic acid, chloroacetic acid chloride, bromoacetic acid chloride, bromoacetic acid bromide, chloroacetic acid anhydride, bromoacetic acid anhydride, Iodoacetic anhydride, 2- (iodoacetamido) acetic acid-N-hydroxysuccinimide ester, 3- (bromoacetamido) propionic acid-N-hydroxysuccinimide ester, 4- (iodoacetyl) aminobenzoic acid-N-hydroxysuccinimide ester It can be illustrated. An example is a method in which ω-alkenyl alkanglycidyl ether is reacted with a hydroxyl group or amino group present on the surface of the carrier, and then the ω-alkenyl moiety is halogenated with a halogenating agent to activate. Examples of ω-alkenyl alkanglycidyl ethers include allyl glycidyl ether, 3-butenyl glycidyl ether, and 4-pentenyl glycidyl ether. Examples of halogenating agents include N-chlorosuccinimide, N-bromosuccinimide, and N-iodosuccinimide. it can.
 担体表面に活性基を導入する方法の別の例として、担体表面に存在するカルボキシル基に対して縮合剤と添加剤を用いて活性化基を導入する方法がある。縮合剤としては1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド(EDC)、ジシクロヘキシルカルボジアミド、カルボニルジイミダゾールを例示できる。また添加剤としてはN-ヒドロキシコハク酸イミド(NHS)、4-ニトロフェノール、1-ヒドロキシベンズトリアゾールを例示できる。 As another example of the method for introducing an active group on the surface of the carrier, there is a method for introducing an activating group into the carboxyl group present on the surface of the carrier using a condensing agent and an additive. Examples of the condensing agent include 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide (EDC), dicyclohexylcarbodiamide, and carbonyldiimidazole. Examples of the additive include N-hydroxysuccinimide (NHS), 4-nitrophenol, and 1-hydroxybenztriazole.
 また前述した以外に、担体表面に活性基を導入する化合物としては、トレシルクロリド(活性化基としてトレシル基を形成)、ビニルブロミド(活性化基としてビニル基を形成)を例示することができる。 In addition to those described above, examples of the compound that introduces an active group on the surface of the carrier include tresyl chloride (forms a tresyl group as an activating group) and vinyl bromide (forms a vinyl group as an activating group). .
 本発明のFc結合性タンパク質を不溶性担体に固定化する際用いる緩衝液としては、酢酸緩衝液、リン酸緩衝液、MES緩衝液、HEPES緩衝液、トリス緩衝液、ホウ酸緩衝液を例示できる。固定化させるときの反応温度は、5℃から50℃までの温度範囲の中から活性基の反応性や本発明のFc結合性タンパク質の安定性を考慮の上、適宜設定すればよく、好ましくは10℃から35℃の範囲である。 Examples of the buffer used when the Fc-binding protein of the present invention is immobilized on an insoluble carrier include acetate buffer, phosphate buffer, MES buffer, HEPES buffer, Tris buffer, and borate buffer. The reaction temperature at the time of immobilization may be appropriately set in consideration of the reactivity of the active group and the stability of the Fc-binding protein of the present invention from the temperature range from 5 ° C. to 50 ° C., preferably It is in the range of 10 ° C to 35 ° C.
 本発明の分離方法は、Fc結合性タンパク質を固定化した不溶性担体を充填したカラムに平衡化液を添加してカラムを平衡化する工程と、前記平衡化したカラムに抗体を含む溶液を添加して前記抗体を前記担体に吸着させる工程と、前記担体に吸着した抗体を溶出液を用いて溶出させる工程とを含む、抗体の分離方法において、前記平衡化液が30mM以上の塩化物イオンまたは硫酸イオンを含むことを特徴としている。本発明により、抗体成分の分離度をRs値換算で1.1倍から1.8倍に向上させることができる。従って、今まで検出できなかった抗体分子構造の微小な差異も検出でき、分析の精度を向上させることができる。なお前記平衡化液に含まれる塩化物イオンまたは硫酸イオンの濃度は30mM以上であればよいが、30mM以上1500mM以下であると好ましく、30mM以上1000mM以下であるとより好ましく、30mM以上500mM以下であるとさらに好ましく、50mM以上500mM以下であるとさらにより好ましい。 The separation method of the present invention comprises a step of equilibrating a column by adding an equilibration solution to a column packed with an insoluble carrier on which an Fc-binding protein is immobilized, and a solution containing an antibody is added to the equilibrated column. In the antibody separation method, the step of adsorbing the antibody to the carrier and the step of eluting the antibody adsorbed to the carrier using an eluate, the equilibration solution is 30 mM or more of chloride ions or sulfuric acid. It is characterized by containing ions. According to the present invention, the degree of separation of antibody components can be improved from 1.1 times to 1.8 times in terms of Rs value. Therefore, minute differences in antibody molecular structures that could not be detected can be detected, and the accuracy of analysis can be improved. The concentration of chloride ion or sulfate ion contained in the equilibration solution may be 30 mM or more, preferably 30 mM or more and 1500 mM or less, more preferably 30 mM or more and 1000 mM or less, and 30 mM or more and 500 mM or less. And more preferably 50 mM or more and 500 mM or less.
 前記平衡化液を用いて前記吸着した抗体を溶出させるには、前記抗体とFc結合性タンパク質との親和性を弱める溶出液を用いて溶出させればよい。一例として、平衡化液として30mM以上の塩化物イオンまたは硫酸イオンを含むpH5.0から6.9の弱酸性緩衝液を、溶出液としてpH2.5から4.5の酸性緩衝液をそれぞれ用いたグラジエント溶出法があげられる。緩衝剤としては公知の緩衝剤の中から、作成する緩衝液のpHなどに基づき適宜選択すればよく、一例として、リン酸、酢酸、ギ酸、MES(2-Morpholinoethanesulfonic acid)、MOPS(3-Morpholinopropanesulfonic acid)、クエン酸、コハク酸、グリシン、ピペラジンがあげられる。 In order to elute the adsorbed antibody using the equilibration solution, it may be eluted using an elution solution that weakens the affinity between the antibody and the Fc-binding protein. As an example, a weakly acidic buffer solution having a pH of 5.0 to 6.9 containing 30 mM or more of chloride ions or sulfate ions was used as an equilibration solution, and an acidic buffer solution having a pH of 2.5 to 4.5 was used as an eluent. A gradient elution method is mentioned. The buffer may be appropriately selected from known buffers based on the pH of the buffer to be prepared. Examples of the buffer include phosphoric acid, acetic acid, formic acid, MES (2-Morpholinosulfonic acid), and MOPS (3-Morpholinosulfonic sulfonic acid). acid), citric acid, succinic acid, glycine, and piperazine.
 本発明の分離方法は、Fc結合性タンパク質と親和性を有する、糖鎖を付加した抗体のFc領域を少なくとも含んだ抗体であれば分離することができる。一例として、抗体医薬に用いる抗体として一般的に用いられているキメラ抗体、ヒト化抗体、ヒト抗体やそれらのアミノ酸置換体があげられる。また二重特異性抗体(バイスペシフィック抗体)、糖鎖を付加した抗体のFc領域と他のタンパク質との融合抗体、糖鎖を付加した抗体のFc領域と薬物との複合体(ADC)などの人工的に構造改変した抗体であっても、本発明の分離方法で分離することができる。 The separation method of the present invention can be separated if it is an antibody having at least the Fc region of an antibody to which a sugar chain is added and has an affinity for an Fc binding protein. Examples include chimeric antibodies, humanized antibodies, human antibodies, and amino acid substitutions thereof that are generally used as antibodies used in antibody pharmaceuticals. In addition, bispecific antibodies (bispecific antibodies), fusion antibodies of Fc regions of antibodies with added sugar chains and other proteins, complexes of Fc regions of drugs with added sugar chains and drugs (ADC), etc. Even an antibody whose structure has been artificially modified can be separated by the separation method of the present invention.
 また本発明の分離方法は、例えば、Fc結合性タンパク質を不溶性担体に固定化して得られる吸着剤を充填したカラムに、抗体を含む緩衝液をポンプ等の送液手段を用いて添加することで、抗体を前記吸着剤に特異的に吸着させた後、適切な溶出液をカラムに添加することで、前記吸着した抗体をADCC活性の強さに基づき抗体を分離することができる。なお、抗体を含む緩衝液をカラムに添加する前に、適切な緩衝液を用いてカラムを平衡化すると、抗体をより高純度に分離できるため好ましい。緩衝液としてはリン酸緩衝液等、無機塩を成分とした緩衝液を例示することができる。なお緩衝液のpHは、pH3から10、好ましくはpH5から8である。前記吸着剤に吸着した抗体を、ADCC活性の強さに基づき溶出させるには、抗体とリガンド(Fc結合性タンパク質)との相互作用を弱めればよく、具体的には、緩衝液によるpH変化、カウンターペプチド、温度変化、塩濃度変化が例示できる。前記吸着剤に吸着した抗体を、ADCC活性の強さに基づき溶出させるための溶出液の具体例として、前記吸着剤に抗体を吸着させる際に用いた溶液よりも酸性側の緩衝液があげられる。緩衝液の種類としては酸性側に緩衝能を有するクエン酸緩衝液、グリシン塩酸緩衝液、酢酸緩衝液を例示できる。緩衝液のpHは、抗体が有する機能を損なわない範囲で設定すればよく、好ましくはpH2.5から6.0、より好ましくはpH3.0から5.0、さらに好ましくはpH3.3から4.0である。 In addition, the separation method of the present invention includes, for example, adding a buffer solution containing an antibody to a column packed with an adsorbent obtained by immobilizing an Fc binding protein on an insoluble carrier using a liquid delivery means such as a pump. After the antibody is specifically adsorbed to the adsorbent, an appropriate eluate is added to the column, whereby the adsorbed antibody can be separated based on the strength of ADCC activity. Note that it is preferable to equilibrate the column with an appropriate buffer before adding the buffer containing the antibody to the column because the antibody can be separated with higher purity. Examples of the buffer solution include a buffer solution containing an inorganic salt as a component, such as a phosphate buffer solution. The pH of the buffer solution is pH 3 to 10, preferably pH 5 to 8. In order to elute the antibody adsorbed on the adsorbent based on the strength of ADCC activity, it is only necessary to weaken the interaction between the antibody and the ligand (Fc binding protein). , Counter peptide, temperature change, salt concentration change. A specific example of the eluate for eluting the antibody adsorbed on the adsorbent based on the strength of ADCC activity is a buffer solution on the acidic side of the solution used when the antibody is adsorbed on the adsorbent. . Examples of the buffer solution include a citrate buffer solution, a glycine hydrochloride buffer solution, and an acetate buffer solution having a buffer capacity on the acidic side. The pH of the buffer may be set within a range that does not impair the function of the antibody, preferably pH 2.5 to 6.0, more preferably pH 3.0 to 5.0, still more preferably pH 3.3 to 4. 0.
 本発明のFc結合性タンパク質を不溶性担体に固定化して得られる本発明の吸着剤を用いて、糖鎖を有した抗体を分離するには、例えば、本発明の吸着剤を充填したカラムに糖鎖を有した抗体を含む緩衝液をポンプ等の送液手段を用いて添加することで、糖鎖を有した抗体を本発明の吸着剤に特異的に吸着させた後、適切な溶出液をカラムに添加することで、糖鎖を有した抗体を溶出すればよい。なお、糖鎖を有した抗体を含む緩衝液をカラムに添加する前に、適切な緩衝液を用いてカラムを平衡化すると、糖鎖を有した抗体をより高純度に分離できるため好ましい。緩衝液としてはリン酸緩衝液等、無機塩を成分とした緩衝液を例示することができる。なお緩衝液のpHは、pH3から10、好ましくはpH5から8である。本発明の吸着剤に吸着した、糖鎖を有した抗体を溶出させるには、糖鎖を有した抗体とリガンド(本発明のFc結合性タンパク質)との相互作用を弱めればよく、具体的には、緩衝液によるpH変化、カウンターペプチド、温度変化、塩濃度変化が例示できる。本発明の吸着剤に吸着した、糖鎖を有した抗体を溶出させるための溶出液の具体例として、本発明の吸着剤に糖鎖を有した抗体を吸着させる際に用いた溶液よりも酸性側の緩衝液があげられる。緩衝液の種類としては酸性側に緩衝能を有するクエン酸緩衝液、グリシン塩酸緩衝液、酢酸緩衝液を例示できる。緩衝液のpHは、抗体が有する機能を損なわない範囲で設定すればよく、好ましくはpH2.5から6.0、より好ましくはpH3.0から5.0、さらに好ましくはpH3.3から4.0である。 In order to separate an antibody having a sugar chain using the adsorbent of the present invention obtained by immobilizing the Fc-binding protein of the present invention on an insoluble carrier, for example, a column packed with the adsorbent of the present invention is loaded with sugar. A buffer solution containing an antibody having a chain is added using a liquid delivery means such as a pump to specifically adsorb the antibody having a sugar chain to the adsorbent of the present invention, and then an appropriate eluate is added. By adding to the column, the antibody having a sugar chain may be eluted. Note that it is preferable to equilibrate the column with an appropriate buffer before adding a buffer containing an antibody having a sugar chain to the column, because the antibody having a sugar chain can be separated with higher purity. Examples of the buffer solution include a buffer solution containing an inorganic salt as a component, such as a phosphate buffer solution. The pH of the buffer solution is pH 3 to 10, preferably pH 5 to 8. In order to elute the antibody having a sugar chain adsorbed on the adsorbent of the present invention, it is only necessary to weaken the interaction between the antibody having the sugar chain and the ligand (Fc binding protein of the present invention). Examples thereof include pH change due to buffer, counter peptide, temperature change, and salt concentration change. As a specific example of the eluate for eluting the antibody having a sugar chain adsorbed to the adsorbent of the present invention, it is more acidic than the solution used for adsorbing the antibody having a sugar chain to the adsorbent of the present invention. Side buffer. Examples of the buffer solution include a citrate buffer solution, a glycine hydrochloride buffer solution, and an acetate buffer solution having a buffer capacity on the acidic side. The pH of the buffer may be set within a range that does not impair the function of the antibody, preferably pH 2.5 to 6.0, more preferably pH 3.0 to 5.0, still more preferably pH 3.3 to 4. 0.
 なお糖鎖を有した抗体を含む溶液から、本発明の吸着剤を用いて前記抗体を分離する際、前記抗体が有する糖鎖構造の違いにより、抗体の溶出位置(溶出フラクション)が異なる。従って、本発明の吸着剤を用いて抗体を分離することで、抗体が有する糖鎖構造の違いを識別することができる。識別可能な糖鎖の構造に特に限定はなく、一例として、CHO細胞といった動物由来の細胞や、ピキア酵母やサッカロミセス酵母といった酵母を宿主として抗体を発現させたときに付加される糖鎖や、ヒト抗体が有する糖鎖や、化学合成法で抗体に付加した糖鎖があげられる。また本発明の吸着剤は、抗体が有する糖鎖構造の違いに基づき分離できることから、糖鎖そのものの分離にも利用できる。 When the antibody is separated from the solution containing the antibody having a sugar chain using the adsorbent of the present invention, the elution position (elution fraction) of the antibody varies depending on the sugar chain structure of the antibody. Therefore, by separating the antibody using the adsorbent of the present invention, the difference in the sugar chain structure of the antibody can be identified. There are no particular limitations on the structure of the glycans that can be identified. For example, sugar chains added when antibodies are expressed using animal-derived cells such as CHO cells, yeasts such as Pichia yeast and Saccharomyces yeast, and humans. Examples include sugar chains possessed by antibodies and sugar chains added to antibodies by chemical synthesis methods. Moreover, since the adsorbent of the present invention can be separated based on the difference in the sugar chain structure of the antibody, it can also be used for separation of the sugar chain itself.
 なお本発明の吸着剤により抗体の分離、ADCC活性の強さに基づく抗体の分離および抗体の糖鎖構造の違いを識別できると前述したが、当該吸着剤に用いるFc結合性タンパク質として、FcγRIIIa以外のFcレセプター(FcγRI、FcγRIIa、FcγRIIb、FcγRIIIa、FcγRIIIb、FcRn)を用いた場合でも同様に糖鎖構造の違いを識別できる。 As described above, the adsorbent of the present invention can identify antibody separation, antibody separation based on the strength of ADCC activity, and the difference in the sugar chain structure of the antibody. Even when the Fc receptors (FcγRI, FcγRIIa, FcγRIIb, FcγRIIIa, FcγRIIIb, FcRn) are used, the difference in the sugar chain structure can be similarly identified.
 本発明のFc結合性タンパク質は、ヒトFcγRIIIaの細胞外領域中の特定位置におけるアミノ酸残基を他のアミノ酸残基に置換したタンパク質である。本発明のFc結合性タンパク質は野生型のヒトFcγRIIIaと比較し熱および酸に対する安定性が向上している。そのため、本発明のFc結合性タンパク質はイムノグロブリンを分離するための吸着剤のリガンドとして有用である。 The Fc-binding protein of the present invention is a protein in which an amino acid residue at a specific position in the extracellular region of human FcγRIIIa is substituted with another amino acid residue. The Fc-binding protein of the present invention has improved heat and acid stability compared to wild-type human FcγRIIIa. Therefore, the Fc binding protein of the present invention is useful as a ligand of an adsorbent for separating immunoglobulin.
 また本発明の分離方法は、薬効に基づく抗体または抗体のFc領域を含む分子の分離をクロマトグラフィーを用いて簡便、かつ精度よく分離することができる。従って本発明により、抗体医薬の製造工程管理や品質管理をより精度よく行なえる。 In addition, the separation method of the present invention can easily and accurately separate an antibody based on a medicinal effect or a molecule containing an Fc region of an antibody using chromatography. Therefore, according to the present invention, manufacturing process management and quality control of antibody drugs can be performed with higher accuracy.
 また本発明の分離方法は、Fc結合性タンパク質(例えば糖鎖が付加されていないヒトFcγRIIIa)を不溶性担体に固定化して得られる吸着剤を用いることで、抗体を抗体依存性細胞傷害活性(ADCC)の強さに基づいて分離することができる。 Further, the separation method of the present invention uses an adsorbent obtained by immobilizing an Fc-binding protein (for example, human FcγRIIIa to which a sugar chain is not added) on an insoluble carrier, so that the antibody is antibody-dependent cytotoxic activity (ADCC). ) Can be separated on the basis of strength.
ヒトFcγRIIIaの概略図である。図中の数字は配列番号1に記載のアミノ酸配列の番号を示している。図中のSはシグナル配列、ECは細胞外領域、TMは細胞膜貫通領域、Cは細胞内領域を示している。1 is a schematic diagram of human FcγRIIIa. The numbers in the figure indicate the amino acid sequence numbers described in SEQ ID NO: 1. In the figure, S represents a signal sequence, EC represents an extracellular region, TM represents a transmembrane region, and C represents an intracellular region. FcR5a固定化ゲルを用いた抗体の溶出パターンを示した図である。図中のFrA、FrBはそれぞれフラクションA、フラクションBの位置を示している。It is the figure which showed the elution pattern of the antibody using FcR5a fixed gel. FrA and FrB in the figure indicate the positions of fraction A and fraction B, respectively. FcR5a固定化ゲルで分離した抗体のADCC活性を測定した結果を示した図である。It is the figure which showed the result of having measured the ADCC activity of the antibody isolate | separated with the FcR5a fixed gel. 抗体に付加した糖鎖構造の一覧を示した図である。図中のN1からN6は表10のN1からN6に対応し、M1、M2およびD1は表11のM1、M2およびD1に対応している。It is the figure which showed the list | wrist of the sugar chain structure added to the antibody. N1 to N6 in the figure correspond to N1 to N6 in Table 10, and M1, M2 and D1 correspond to M1, M2 and D1 in Table 11, respectively. FcR9固定化ゲルを用いた抗体の溶出パターンを示した図である。図中のFrA、FrB、FrCはそれぞれフラクションA、フラクションB、フラクションCの位置を示している。It is the figure which showed the elution pattern of the antibody using FcR9 fixed gel. FrA, FrB, and FrC in the figure indicate the positions of fraction A, fraction B, and fraction C, respectively. FcR9固定化ゲルで分離した抗体のADCC活性を測定した結果を示した図である。It is the figure which showed the result of having measured the ADCC activity of the antibody isolate | separated with the FcR9 fixed gel. 塩化ナトリウムを添加した/または添加しない緩衝液(平衡化液)を用いてモノクローナル抗体を分離して得られたクロマトグラフである。It is the chromatograph obtained by isolate | separating a monoclonal antibody using the buffer solution (equilibration liquid) which added / does not add sodium chloride. 塩化カリウムを添加した緩衝液(平衡化液)を用いてモノクローナル抗体を分離して得られたクロマトグラフである。It is the chromatograph obtained by isolate | separating a monoclonal antibody using the buffer solution (equilibration liquid) which added potassium chloride. 硫酸ナトリウムおよび硫酸アンモニウムを添加した緩衝液(平衡化液)を用いてモノクローナル抗体を分離して得られたクロマトグラフである。It is the chromatograph obtained by isolate | separating a monoclonal antibody using the buffer solution (equilibration liquid) which added sodium sulfate and ammonium sulfate. 1アミノ酸置換したFc結合性タンパク質の抗体結合活性を評価した結果を示す図である。図中の野生型はアミノ酸置換の無いFc結合性タンパク質を示している。It is a figure which shows the result of having evaluated the antibody binding activity of Fc binding protein substituted by 1 amino acid. The wild type in the figure indicates an Fc binding protein without amino acid substitution. FcR固定化ゲルを用いた抗体の溶出パターンを示した図である。図中のFrA、FrBはそれぞれフラクションA、フラクションBの位置を示している。It is the figure which showed the elution pattern of the antibody using FcR fixed gel. FrA and FrB in the figure indicate the positions of fraction A and fraction B, respectively. FcR固定化ゲルで分離した抗体のADCC活性を測定した結果を示した図である。It is the figure which showed the result of having measured the ADCC activity of the antibody isolate | separated with the FcR fixed gel.
 以下、本発明をさらに詳細に説明するために実施例を示すが、本発明は実施例に限定されるものではない。 Hereinafter, examples will be shown to describe the present invention in more detail, but the present invention is not limited to the examples.
 実施例1 Fc結合性タンパク質発現ベクターの作製
(1)配列番号1に記載のヒトFcγRIIIaアミノ酸配列のうち、17番目のグリシン(Gly)から192番目のグルタミン(Gln)までのアミノ酸配列を基に、DNAworks法(Nucleic Acids Res.,30,e43,2002)を用いて、コドンをヒト型から大腸菌型に変換したヌクレオチド配列を設計した。設計したヌクレオチド配列を配列番号2に示す。
(2)配列番号2に記載の配列を含むポリヌクレオチドを作製するために、配列番号3から20に記載の配列からなるオリゴヌクレオチドを合成し、前記オリゴヌクレオチドを用いて、下記に示す二段階PCRを行なった。
(2-1)一段階目のPCRは、表1に示す組成の反応液を調製し、当該反応液を98℃で5分熱処理後、98℃で10秒間の第1ステップ、62℃で5秒間の第2ステップ、72℃で90秒間の第3ステップを1サイクルとする反応を10サイクル繰り返すことでポリヌクレオチドを合成し、これをFcRp1とした。なお表1中のDNAミックスとは、配列番号3から20に記載の配列からなる18種類のオリゴヌクレオチドをそれぞれ一定量サンプリングし混合した溶液を意味する。
Example 1 Preparation of Fc-binding protein expression vector (1) Based on the amino acid sequence from the 17th glycine (Gly) to the 192nd glutamine (Gln) of the human FcγRIIIa amino acid sequence described in SEQ ID NO: 1, Using the DNAworks method (Nucleic Acids Res., 30, e43, 2002), a nucleotide sequence in which a codon was converted from a human type to an E. coli type was designed. The designed nucleotide sequence is shown in SEQ ID NO: 2.
(2) In order to prepare a polynucleotide containing the sequence shown in SEQ ID NO: 2, an oligonucleotide consisting of the sequences shown in SEQ ID NO: 3 to 20 was synthesized, and the two-step PCR shown below using the oligonucleotide Was done.
(2-1) In the first stage PCR, a reaction solution having the composition shown in Table 1 was prepared, and the reaction solution was heat-treated at 98 ° C. for 5 minutes, then the first step at 98 ° C. for 10 seconds, and 5 ° C. at 62 ° C. A polynucleotide was synthesized by repeating a reaction in which the second step for 2 seconds and the third step for 90 seconds at 72 ° C. were repeated 10 cycles, and this was designated as FcRp1. The DNA mix in Table 1 means a solution obtained by sampling a predetermined amount of each of 18 types of oligonucleotides having the sequences described in SEQ ID NOs: 3 to 20 and mixing them.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(2-2)二段階目のPCRは、(2-1)で合成したFcRp1を鋳型とし、配列番号21(5’-TAGCCATGGGCATGCGTACCGAAGATCTGCCGAAAGC-3’)および配列番号22(5’-CCCAAGCTTAATGATGATGATGATGATGGCCCCCTTGGGTAATGGTAATATTCACGGTCTCGCTGC-3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとして実施した。具体的には、表2に示す組成の反応液を調製し、当該反応液を98℃で5分熱処理後、98℃で10秒間の第1ステップ、62℃で5秒間の第2ステップ、72℃で1.5分間の第3ステップを1サイクルとする反応を30サイクル繰り返すことで実施した。 (2-2) The second-stage PCR uses FcRp1 synthesized in (2-1) as a template, SEQ ID NO: 21 (5′-TAGCCATGGGCATGCCGTACGAGAATCTGCCCGAAAGCTCTGTGGATGTCCCTGTGGGTAATCTGTG An oligonucleotide consisting of the sequence described in 1 was used as a PCR primer. Specifically, a reaction solution having the composition shown in Table 2 was prepared, and the reaction solution was heat-treated at 98 ° C. for 5 minutes, then the first step at 98 ° C. for 10 seconds, the second step at 62 ° C. for 5 seconds, 72 The reaction was carried out by repeating 30 cycles of the third step of 1.5 minutes at ° C. for 30 cycles.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(3)(2)で得られたポリヌクレオチドを精製し、制限酵素NcoIとHindIIIで消化後、あらかじめ制限酵素NcoIとHindIIIで消化した発現ベクターpETMalE(特開2011-206046号公報)にライゲーションし、当該ライゲーション産物を用いて大腸菌BL21株(DE3)を形質転換した。
(4)得られた形質転換体を50μg/mLのカナマイシンンを含むLB培地にて培養後、QIAprep Spin Miniprep kit(キアゲン製)を用いて、発現ベクターpET-eFcRを抽出した。
(5)(4)で作製した発現ベクターpET-eFcRのうち、ヒトFcγRIIIaをコードするポリヌクレオチドおよびその周辺の領域について、チェーンターミネータ法に基づくBig Dye Terminator Cycle Sequencing FS read Reaction kit(ライフサイエンス製)を用いてサイクルシークエンス反応に供し、全自動DNAシークエンサーABI Prism 3700 DNA analyzer(ライフサイエンス製)にてヌクレオチド配列を解析した。なお当該解析の際、配列番号23(5’-TAATACGACTCACTATAGGG-3’)または配列番号24(5’-TATGCTAGTTATTGCTCAG-3’)に記載の配列からなるオリゴヌクレオチドをシークエンス用プライマーとして使用した。
(3) The polynucleotide obtained in (2) is purified, digested with restriction enzymes NcoI and HindIII, and then ligated to an expression vector pETmalE (Japanese Patent Laid-Open No. 2011-206046) previously digested with restriction enzymes NcoI and HindIII. Escherichia coli BL21 strain (DE3) was transformed with the ligation product.
(4) The obtained transformant was cultured in an LB medium containing 50 μg / mL kanamycin, and then the expression vector pET-eFcR was extracted using QIAprep Spin Miniprep kit (manufactured by Qiagen).
(5) Big Dye Terminator Cycle Sequencing FS read Reaction kit (manufactured by Life Science) based on the chain terminator method for the polynucleotide encoding human FcγRIIIa and its surrounding region in the expression vector pET-eFcR prepared in (4) The nucleotide sequence was analyzed with a fully automatic DNA sequencer ABI Prism 3700 DNA analyzer (manufactured by Life Science). In the analysis, an oligonucleotide having the sequence described in SEQ ID NO: 23 (5′-TAATACGACTCACTATAGGGG ′) or SEQ ID NO: 24 (5′-TATGCTAGTTATTGCTCAG-3 ′) was used as a sequencing primer.
 発現ベクターpET-eFcRで発現されるポリペプチドのアミノ酸配列を配列番号25に、当該ポリペプチドをコードするポリヌクレオチドの配列を配列番号26に、それぞれ示す。なお配列番号25において、1番目のメチオニン(Met)から26番目のアラニン(Ala)までがMalEシグナルペプチドであり、27番目のリジン(Lys)から32番目のメチオニン(Met)までがリンカー配列であり、33番目のグリシン(Gly)から208番目のグルタミン(Gln)までがヒトFcγRIIIaの細胞外領域(配列番号1の17番目から192番目までの領域)であり、209番目から210番目までのグリシン(Gly)がリンカー配列であり、211番目から216番目のヒスチジン(His)がタグ配列である。 The amino acid sequence of the polypeptide expressed by the expression vector pET-eFcR is shown in SEQ ID NO: 25, and the sequence of the polynucleotide encoding the polypeptide is shown in SEQ ID NO: 26, respectively. In SEQ ID NO: 25, the first methionine (Met) to the 26th alanine (Ala) are MalE signal peptides, and the 27th lysine (Lys) to the 32nd methionine (Met) are linker sequences. , From the 33rd glycine (Gly) to the 208th glutamine (Gln) is the extracellular region of human FcγRIIIa (the 17th to 192nd region of SEQ ID NO: 1), and the 209th to 210th glycine ( Gly) is a linker sequence, and 211 to 216th histidine (His) is a tag sequence.
 実施例2 Fc結合性タンパク質への変異導入およびライブラリーの作製
 実施例1で作製したFc結合性タンパク質発現ベクターpET-eFcRのうち、Fc結合性タンパク質をコードするポリヌクレオチド部分に、エラープローンPCRによりランダムに変異導入を施した。
(1)鋳型として実施例1で作製したpET-eFcRを用いてエラープローンPCRを行なった。エラープローンPCRは、表3に示す組成の反応液を調製後、当該反応液を95℃で2分間熱処理し、95℃で30秒間の第1ステップ、60℃で30秒間の第2ステップ、72℃で90秒間の第3ステップを1サイクルとする反応を35サイクル行ない、最後に72℃で7分間熱処理することで行なった。前記エラープローンPCRによりFc結合性タンパク質をコードするポリヌクレオチドに良好に変異が導入され、その平均変異導入率は1.26%であった。
Example 2 Mutation Introduction to Fc Binding Protein and Library Preparation Of the Fc binding protein expression vector pET-eFcR prepared in Example 1, the polynucleotide portion encoding the Fc binding protein was subjected to error-prone PCR. Mutation was randomly introduced.
(1) Error prone PCR was performed using pET-eFcR prepared in Example 1 as a template. In error-prone PCR, after preparing a reaction solution having the composition shown in Table 3, the reaction solution is heat-treated at 95 ° C. for 2 minutes, the first step at 95 ° C. for 30 seconds, the second step at 60 ° C. for 30 seconds, 72 The reaction was carried out by performing 35 cycles of the third step of 90 seconds at 90 ° C., and finally heat-treating at 72 ° C. for 7 minutes. By the error-prone PCR, mutations were successfully introduced into the polynucleotide encoding the Fc binding protein, and the average mutation introduction rate was 1.26%.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(2)(1)で得られたPCR産物を精製後、制限酵素NcoIとHindIIIで消化し、あらかじめ同制限酵素で消化した発現ベクターpETMalE(特開2011-206046号公報)にライゲーションした。
(3)ライゲーション反応終了後、反応液をエレクトロポレーション法により大腸菌BL21(DE3)株に導入し、50μg/mLのカナマイシンを含むLBプレート培地で培養(37℃で18時間)後、プレート上に形成したコロニーをランダム変異体ライブラリーとした。
実施例3 熱安定化Fc結合性タンパク質のスクリーニング
(1)実施例2で作製したランダム変異体ライブラリー(形質転換体)を、50μg/mLのカナマイシンを含む2YT液体培地(ペプトン16g/L、酵母エキス10g/L、塩化ナトリウム5g/L)200μLに接種し、96穴ディープウェルプレートを用いて、30℃で一晩振とう培養した。
(2)培養後、5μLの培養液を500μLの0.05mMのIPTG(isopropyl-β-D-thiogalactopyranoside)、0.3%のグリシンおよび50μg/mLのカナマイシンを含む2YT液体培地に植え継ぎ、96穴ディープウェルプレートを用いて、さらに20℃で一晩振とう培養した。
(3)培養後、遠心操作によって得られた培養上清を150mMの塩化ナトリウムを含む20mMのトリス塩酸緩衝液(pH7.4)で2倍に希釈した。希釈した溶液を45℃で10分間熱処理を行なった。
(4)(3)の熱処理を行なったときのFc結合性タンパク質の抗体結合活性と、(3)の熱処理を行なわなかったときのFc結合性タンパク質の抗体結合活性を、それぞれ下記に示すELISA法にて測定し、熱処理を行なった時のFc結合性タンパク質の抗体結合活性を、熱処理を行なわなかったときのFc結合性タンパク質の抗体結合活性で除することで、残存活性を算出した。
(4-1)ヒト抗体であるガンマグロブリン製剤(化学及血清療法研究所製)を、96穴マイクロプレートのウェルに1μg/wellで固定化し(4℃で18時間)、固定化終了後、2%(w/v)のSKIM MILK(BD製)および150mMの塩化ナトリウムを含んだ20mMのトリス塩酸緩衝液(pH7.4)によりブロッキングした。
(4-2)洗浄緩衝液(0.05%[w/v]のTween 20、150mMのNaClを含む20mM Tris-HCl緩衝液(pH7.4))で洗浄後、抗体結合活性を評価するFc結合性タンパク質を含む溶液を添加し、Fc結合性タンパク質と固定化ガンマグロブリンとを反応させた(30℃で1時間)。
(4-3)反応終了後、前記洗浄緩衝液で洗浄し、100ng/mLに希釈したAnti-6His抗体(Bethyl Laboratories製)を100μL/wellで添加した。
(4-4)30℃で1時間反応させ、前記洗浄緩衝液で洗浄した後、TMB Peroxidase Substrate(KPL製)を50μL/wellで添加した。1Mのリン酸を50μL/wellで添加することで発色を止め、マイクロプレートリーダー(テカン製)にて450nmの吸光度を測定した。
(5)(4)の方法で約2700株の形質転換体を評価し、その中から野生型(アミノ酸置換のない)Fc結合性タンパク質と比較して熱安定性が向上したFc結合性タンパク質を発現する形質転換体を選択した。前記選択した形質転換体を培養し、QIAprep Spin Miniprep kit(キアゲン製)を用いて発現ベクターを調製した。
(6)得られた発現ベクターに挿入されたFc結合性タンパク質をコードするポリヌクレオチド領域の配列を実施例1(5)の記載と同様の方法によりヌクレオチド配列を解析し、アミノ酸の変異箇所を特定した。
(2) The PCR product obtained in (1) was purified, digested with restriction enzymes NcoI and HindIII, and ligated into an expression vector pETmalE (Japanese Patent Laid-Open No. 2011-206046) previously digested with the same restriction enzymes.
(3) After completion of the ligation reaction, the reaction solution was introduced into E. coli BL21 (DE3) strain by electroporation, cultured in LB plate medium containing 50 μg / mL kanamycin (18 hours at 37 ° C.), and then placed on the plate. The formed colonies were used as a random mutant library.
Example 3 Screening of heat-stabilized Fc binding protein (1) The random mutant library (transformant) prepared in Example 2 was subjected to 2YT liquid medium containing 50 μg / mL kanamycin (peptone 16 g / L, yeast). (Extract 10 g / L, sodium chloride 5 g / L) was inoculated into 200 μL, and cultured with shaking at 30 ° C. overnight using a 96-well deep well plate.
(2) After culturing, 5 μL of the culture broth was subcultured in 2 μT of 2YT liquid medium containing 500 μL of 0.05 mM IPTG (isopropyl-β-D-thiogalactopylanoside), 0.3% glycine and 50 μg / mL kanamycin. Further, the culture was further performed overnight at 20 ° C. using a well-well plate.
(3) After culture, the culture supernatant obtained by centrifugation was diluted 2-fold with 20 mM Tris-HCl buffer (pH 7.4) containing 150 mM sodium chloride. The diluted solution was heat-treated at 45 ° C. for 10 minutes.
(4) The ELISA method shown below for the antibody binding activity of the Fc binding protein when the heat treatment of (3) is performed and the antibody binding activity of the Fc binding protein when the heat treatment of (3) is not performed The residual activity was calculated by dividing the antibody binding activity of the Fc binding protein when subjected to heat treatment by the antibody binding activity of the Fc binding protein when not subjected to heat treatment.
(4-1) A gamma globulin preparation (manufactured by Chemistry and Serum Therapy Laboratories), which is a human antibody, was fixed to a well of a 96-well microplate at 1 μg / well (18 hours at 4 ° C.). Blocking was performed with 20 mM Tris-HCl buffer (pH 7.4) containing SKIM MILK (manufactured by BD) and 150 mM sodium chloride.
(4-2) Fc for evaluating antibody binding activity after washing with a washing buffer (20 mM Tris-HCl buffer (pH 7.4) containing 0.05% [w / v] Tween 20, 150 mM NaCl) A solution containing a binding protein was added to react the Fc binding protein with the immobilized gamma globulin (1 hour at 30 ° C.).
(4-3) After completion of the reaction, Anti-6His antibody (manufactured by Bethyl Laboratories) diluted with 100 ng / mL was washed with the washing buffer and added at 100 μL / well.
(4-4) The mixture was reacted at 30 ° C. for 1 hour, washed with the washing buffer, and then TMB Peroxidase Substrate (manufactured by KPL) was added at 50 μL / well. Color development was stopped by adding 1 M phosphoric acid at 50 μL / well, and absorbance at 450 nm was measured with a microplate reader (Tecan).
(5) About 2700 strains of transformants were evaluated by the method of (4), and an Fc binding protein having improved thermal stability compared to a wild type (without amino acid substitution) Fc binding protein was selected. Transformants that express were selected. The selected transformant was cultured, and an expression vector was prepared using QIAprep Spin Miniprep kit (manufactured by Qiagen).
(6) Analyzing the nucleotide sequence of the sequence of the polynucleotide region encoding the Fc binding protein inserted into the obtained expression vector in the same manner as described in Example 1 (5), and identifying the amino acid mutation site did.
 (5)で選択した形質転換体が発現するFc結合性タンパク質の、野生型(アミノ酸置換のない)Fc結合性タンパク質に対するアミノ酸置換位置および熱処理後の残存活性(%)をまとめたものを表4に示す。配列番号1に記載のアミノ酸配列のうち、17番目のグリシンから192番目のグルタミンまでのアミノ酸残基を含み、かつ当該17番目から192番目までのアミノ酸残基において、Met18Arg(この表記は、配列番号1の18番目のメチオニンがアルギニンに置換されていることを表す、以下同様)、Val27Glu、Phe29Leu、Phe29Ser、Leu30Gln、Tyr35Asn、Tyr35Asp、Tyr35Ser、Tyr35His、Lys46Ile、Lys46Thr、Gln48His、Gln48Leu、Ala50His、Tyr51Asp、Tyr51His、Glu54Asp、Glu54Gly、Asn56Thr、Gln59Arg、Phe61Tyr、Glu64Asp、Ser65Arg、Ala71Asp、Phe75Leu、Phe75Ser、Phe75Tyr、Asp77Asn、Ala78Ser、Asp82Glu、Asp82Val、Gln90Arg、Asn92Ser、Leu93Arg、Leu93Met、Thr95Ala、Thr95Ser、Leu110Gln、Arg115Gln、Trp116Leu、Phe118Tyr、Lys119Glu、Glu120Val、Glu121Asp、Glu121Gly、Phe151Ser、Phe151Tyr、Ser155Thr、Thr163Ser、Ser167Gly、Ser169Gly、Phe171Tyr、Asn180Lys、Asn180Ser、Asn180Ile、Thr185Ser、Gln192Lysのいずれかのアミノ酸置換が少なくとも1つ生じているFc結合性タンパク質は、野生型のFc結合性タンパク質と比較し熱安定性が向上しているといえる。 Table 4 summarizes the amino acid substitution position and the remaining activity (%) after heat treatment of the Fc binding protein expressed by the transformant selected in (5) with respect to the wild type (without amino acid substitution) Fc binding protein. Shown in Among the amino acid sequences described in SEQ ID NO: 1, the amino acid residues from the 17th glycine to the 192nd glutamine and the 17th to 192nd amino acid residues are Met18Arg (this notation is SEQ ID NO: 1 represents that 18th methionine of 1 is substituted with arginine, the same applies below), Val27Glu, Phe29Leu, Phe29Ser, Leu30Gln, Tyr35Asn, Tyr35Asp, Tyr35Sr, Tyr35His, Lys46Thr, Lys46Thr, Lys46Thr, , Glu54Asp, Glu54Gly, Asn56Thr, Gln59Arg, Phe61Tyr, Glu64Asp, Ser6 Arg, Ala71Asp, Phe75Leu, Phe75Ser, Phe75Tyr, Asp77Asn, Ala78Ser, Asp82Glu, Asp82Val, Gln90Arg, Asn92Ser, Leu93Arg, Leu93Met, Thr95Ala, Thr95Ser, Leu110Gln, Arg115Gln, Trp116Leu, Phe118Tyr, Lys119Glu, Glu120Val, Glu121Asp, Glu121Gly, Phe151Ser, Phe151Tyr, Any of Ser155Thr, Thr163Ser, Ser167Gly, Ser169Gly, Phe171Tyr, Asn180Lys, Asn180Ser, Asn180Ile, Thr185Ser, Gln192Lys Fc binding proteins Kano amino acid substitution is at least one occurs, it can be said that the thermal stability as compared to wild-type Fc binding protein is improved.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に示す、アミノ酸置換されたFc結合性タンパク質のうち、最も残存活性の高い、Val27GluおよびTyr35Asnのアミノ酸置換が生じたFc結合性タンパク質をFcR2と命名し、FcR2をコードするポリヌクレオチドを含む発現ベクターをpET-FcR2と命名した。FcR2のアミノ酸配列を配列番号27に、FcR2をコードするポリヌクレオチドの配列を配列番号28に示す。なお配列番号27において、1番目のメチオニン(Met)から26番目のアラニン(Ala)までがMalEシグナルペプチドであり、27番目のリジン(Lys)から32番目のメチオニン(Met)までがリンカー配列であり、33番目のグリシン(Gly)から208番目のグルタミン(Gln)までがFcR2のアミノ酸配列(配列番号1の17番目から192番目までの領域に相当)、209番目から210番目までのグリシン(Gly)がリンカー配列であり、211番目から216番目のヒスチジン(His)がタグ配列である。また配列番号27において、Val27Gluのグルタミン酸は43番目、Tyr35Asnのアスパラギンは51番目の位置にそれぞれ存在する。 Among the Fc-binding proteins with amino acid substitutions shown in Table 4, the Fc-binding protein with the highest residual activity, in which the amino acid substitution of Val27Glu and Tyr35Asn occurred, was named FcR2 and contained a polynucleotide encoding FcR2. The vector was named pET-FcR2. The amino acid sequence of FcR2 is shown in SEQ ID NO: 27, and the sequence of the polynucleotide encoding FcR2 is shown in SEQ ID NO: 28. In SEQ ID NO: 27, the first methionine (Met) to the 26th alanine (Ala) are MalE signal peptides, and the 27th lysine (Lys) to the 32nd methionine (Met) are linker sequences. From the 33rd glycine (Gly) to the 208th glutamine (Gln), the amino acid sequence of FcR2 (corresponding to the 17th to 192nd region of SEQ ID NO: 1), the 209th to 210th glycine (Gly) Is a linker sequence, and histidines (His) from 211 to 216 are tag sequences. In SEQ ID NO: 27, glutamic acid of Val27Glu is present at the 43rd position, and asparagine of Tyr35Asn is present at the 51st position.
 実施例4 アミノ酸置換Fc結合性タンパク質の作製
 実施例3で判明した、Fc結合性タンパク質の熱安定性向上に関与するアミノ酸置換を集積することで、さらなる安定性向上を図った。置換アミノ酸の集積は、主にPCRを用いて行ない、以下の(a)から(c)に示す3種類のFc結合性タンパク質を作製した。
(a)FcR2に対し、さらにPhe75Leuのアミノ酸置換を行なったFcR3
(b)FcR2に対し、さらにPhe75LeuおよびGlu121Glyのアミノ酸置換を行なったFcR4
(c)FcR4に対し、さらにAsn92Serのアミノ酸置換を行なったFcR5a
以下、各Fc結合性タンパク質の作製方法を詳細に説明する。
Example 4 Production of Amino Acid-Substituted Fc Binding Protein The stability was further improved by accumulating amino acid substitutions that were found in Example 3 and involved in improving the thermal stability of the Fc binding protein. Accumulation of substituted amino acids was mainly performed using PCR, and three types of Fc-binding proteins shown in (a) to (c) below were prepared.
(A) FcR3 obtained by further performing amino acid substitution of Phe75Leu on FcR2
(B) FcR4 obtained by further performing amino acid substitution of Phe75Leu and Glu121Gly on FcR2.
(C) FcR5a in which Asn92Ser amino acid substitution was further performed on FcR4
Hereinafter, a method for producing each Fc-binding protein will be described in detail.
 (a)FcR3
 実施例3で明らかになった、熱安定性向上に関与するアミノ酸置換の中から、Val27Glu、Tyr35AsnおよびPhe75Leuを選択し、それらの置換を野生型のFc結合性タンパク質に集積したFcR3を作製した。具体的には、FcR2をコードするポリヌクレオチドに対してPhe75Leuを生じさせる変異導入を行なうことにより、FcR3を作製した。
(a-1)実施例3で取得した、pET-FcR2を鋳型としてPCRを実施した。当該PCRにおけるプライマーは、配列番号24および配列番号29(5’-AGCCAGGCGAGCAGCTACCTTATTGATGCG-3’)に記載の配列からなるオリゴヌクレオチドを用いた。PCRは、表5に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行ない、最後に72℃で7分間熱処理することで行なった。増幅したPCR産物をアガロースゲル電気泳動に供し、そのゲルからQIAquick Gel Extraction kit(キアゲン製)を用いて精製した。精製したPCR産物をm3Fとした。
(A) FcR3
Val27Glu, Tyr35Asn, and Phe75Leu were selected from among the amino acid substitutions involved in improving thermal stability, which were revealed in Example 3, and FcR3 in which these substitutions were accumulated in a wild-type Fc-binding protein was prepared. Specifically, FcR3 was produced by introducing a mutation causing Phe75Leu into a polynucleotide encoding FcR2.
(A-1) PCR was performed using pET-FcR2 obtained in Example 3 as a template. As primers for the PCR, oligonucleotides having the sequences described in SEQ ID NO: 24 and SEQ ID NO: 29 (5′-AGCCAGGCGAGCAGCTACCCTTTATTGATGCG-3 ′) were used. In PCR, after preparing a reaction solution having the composition shown in Table 5, the reaction solution was heat-treated at 98 ° C. for 5 minutes, first step at 98 ° C. for 10 seconds, second step at 55 ° C. for 5 seconds, and at 72 ° C. 30 cycles of the reaction in which the third step for 1 minute was set to 1 cycle were performed by heat treatment at 72 ° C. for 7 minutes. The amplified PCR product was subjected to agarose gel electrophoresis, and purified from the gel using a QIAquick Gel Extraction kit (Qiagen). The purified PCR product was designated as m3F.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
(a-2)実施例3で取得した、pET-FcR2を鋳型とし、配列番号23および配列番号30(5’-CCACCGTCGCCGCATCAATAAGGTAGCTGC-3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、(a-1)と同様に行なった。精製したPCR産物をm3Rとした。
(a-3)(a-1)および(a-2)で得られた2種類のPCR産物(m3F、m3R)を混合し、表6に示す組成の反応液を調製した。当該反応液を98℃で5分間熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を5サイクル行なうPCRを行ない、m3Fとm3Rを連結したPCR産物m3pを得た。
(A-2) Except that pET-FcR2 obtained in Example 3 was used as a template, and an oligonucleotide having the sequences described in SEQ ID NO: 23 and SEQ ID NO: 30 (5′-CCACCGTCGCCCGCATCAATAAGGTTAGCTGC-3 ′) was used as a PCR primer. , (A-1). The purified PCR product was designated as m3R.
(A-3) Two types of PCR products (m3F and m3R) obtained in (a-1) and (a-2) were mixed to prepare a reaction solution having the composition shown in Table 6. The reaction solution is heat-treated at 98 ° C. for 5 minutes, followed by 5 cycles of reaction in which the first step is 98 ° C. for 10 seconds, the second step is 55 ° C. for 5 seconds, and the third step is 72 ° C. for 1 minute. PCR was performed, and a PCR product m3p in which m3F and m3R were linked was obtained.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
(a-4)(a-3)で得られたPCR産物m3pを鋳型とし、配列番号23および配列番号24に記載の配列からなるオリゴヌクレオチドをPCRプライマーとしてPCRを行なった。PCRは、表7に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行なった。これによりFcR2に1箇所アミノ酸置換を導入したFcR3をコードするポリヌクレオチドを作製した。 (A-4) PCR was performed using the PCR product m3p obtained in (a-3) as a template and oligonucleotides having the sequences described in SEQ ID NO: 23 and SEQ ID NO: 24 as PCR primers. In PCR, after preparing a reaction solution having the composition shown in Table 7, the reaction solution was heat-treated at 98 ° C. for 5 minutes, first step at 98 ° C. for 10 seconds, second step at 55 ° C. for 5 seconds, and at 72 ° C. The reaction with the third step of 1 minute as one cycle was performed 30 cycles. As a result, a polynucleotide encoding FcR3 in which an amino acid substitution at one site was introduced into FcR2 was prepared.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
(a-5)(a-4)で得られたポリヌクレオチドを精製後、制限酵素NcoIとHindIIIで消化し、あらかじめ制限酵素NcoIとHindIIIで消化した発現ベクターpETMalE(特開2011-206046号公報)にライゲーションし、これを用いて大腸菌BL21(DE3)株を形質転換した。
(a-6)得られた形質転換体を50μg/mLのカナマイシンを添加したLB培地で培養した。回収した菌体(形質転換体)からプラスミドを抽出することで、野生型Fc結合性タンパク質に対して3箇所アミノ酸置換したポリペプチドである、FcR3をコードするポリヌクレオチドを含むプラスミドpET-FcR3を得た。
(a-7)pET-FcR3のヌクレオチド配列の解析を、実施例1(5)と同様の方法で行なった。
(A-5) After purifying the polynucleotide obtained in (a-4), digested with restriction enzymes NcoI and HindIII, and previously digested with restriction enzymes NcoI and HindIII (Japanese Patent Laid-Open No. 2011-206046) Was used to transform Escherichia coli BL21 (DE3) strain.
(A-6) The obtained transformant was cultured in LB medium supplemented with 50 μg / mL kanamycin. By extracting a plasmid from the collected cells (transformants), a plasmid pET-FcR3 containing a polynucleotide encoding FcR3, which is a polypeptide obtained by substituting three amino acids for the wild-type Fc-binding protein, is obtained. It was.
(A-7) The nucleotide sequence of pET-FcR3 was analyzed in the same manner as in Example 1 (5).
 シグナル配列およびポリヒスチジンタグを付加したFcR3のアミノ酸配列を配列番号31に、前記FcR3をコードするポリヌクレオチドの配列を配列番号32に示す。なお配列番号31において、1番目のメチオニン(Met)から26番目のアラニン(Ala)までがMalEシグナルペプチドであり、27番目のリジン(Lys)から32番目のメチオニン(Met)までがリンカー配列であり、33番目のグリシン(Gly)から208番目のグルタミン(Gln)までがFcR3のアミノ酸配列(配列番号1の17番目から192番目までの領域に相当)、209番目から210番目までのグリシン(Gly)がリンカー配列であり、211番目から216番目のヒスチジン(His)がタグ配列である。また配列番号31において、Val27Gluのグルタミン酸は43番目、Tyr35Asnのアスパラギンは51番目、Phe75Leuのロイシンは91番目の位置にそれぞれ存在する。 The amino acid sequence of FcR3 added with a signal sequence and a polyhistidine tag is shown in SEQ ID NO: 31, and the sequence of the polynucleotide encoding the FcR3 is shown in SEQ ID NO: 32. In SEQ ID NO: 31, the first methionine (Met) to the 26th alanine (Ala) are MalE signal peptides, and the 27th lysine (Lys) to the 32nd methionine (Met) are linker sequences. From the 33rd glycine (Gly) to the 208th glutamine (Gln), the amino acid sequence of FcR3 (corresponding to the 17th to 192nd region of SEQ ID NO: 1), the 209th to 210th glycine (Gly) Is a linker sequence, and histidines (His) from 211 to 216 are tag sequences. In SEQ ID NO: 31, glutamic acid of Val27Glu is present at the 43rd position, asparagine of Tyr35Asn is present at the 51st position, and leucine of Phe75Leu is present at the 91st position.
 (b)FcR4
 実施例3で明らかになったFc結合性タンパク質の安定性向上に関与するアミノ酸置換の中から、Val27Glu、Tyr35Asn、Phe75LeuおよびGlu121Glyを選択し、それらの置換を野生型のFc結合性タンパク質に集積したFcR4を作製した。具体的には、FcR2をコードするポリヌクレオチドに対してPhe75LeuおよびGlu121Glyを生じさせる変異導入を行なうことにより、FcR4を作製した。
(b-1)(a-2)と同様の方法でPCR産物m3Rを得た。また実施例3で取得した、Ala71Asp、Phe75LeuおよびGlu121Glyのアミノ酸置換を含んだFc結合性タンパク質(表4)を発現するプラスミドを鋳型とし、配列番号24および配列番号29に記載の配列からなるオリゴヌクレオチドをPCRプライマーとして、(a-1)と同様の方法でPCRを行なうことでPCR産物m4Rを得た。
(b-2)(b-1)により得られた2種類のPCR産物(m3R、m4R)を混合後、(a-3)と同様の方法にてPCRを行ない、m3Rとm4Rを連結した。得られたPCR産物をm4pとした。
(b-3)(b-2)で得られたPCR産物m4pを鋳型とし、配列番号23および配列番号24に記載の配列からなるオリゴヌクレオチドをPCRプライマーとして、(a-4)と同様の方法でPCRを行なった。これによりFcR4をコードするポリヌクレオチドを作製した。
(b-4)(b-3)で得られたポリヌクレオチドを精製後、制限酵素NcoIとHindIIIで消化し、あらかじめ制限酵素NcoIとHindIIIで消化した発現ベクターpETMalE(特開2011-206046号公報)にライゲーションし、これを用いて大腸菌BL21(DE3)株を形質転換した。
(b-5)得られた形質転換体を50μg/mLのカナマイシンを添加したLB培地で培養した。回収した菌体(形質転換体)からプラスミドを抽出することで、野生型Fc結合性タンパク質に対して4箇所アミノ酸置換したポリペプチドである、FcR4をコードするポリヌクレオチドを含むプラスミドpET-FcR4を得た。
(b-6)pET-FcR4のヌクレオチド配列の解析を、実施例1(5)と同様の方法で行なった。
(B) FcR4
Val27Glu, Tyr35Asn, Phe75Leu and Glu121Gly were selected from the amino acid substitutions involved in improving the stability of the Fc binding protein revealed in Example 3, and these substitutions were accumulated in the wild-type Fc binding protein. FcR4 was produced. Specifically, FcR4 was produced by introducing a mutation that causes Phe75Leu and Glu121Gly to the polynucleotide encoding FcR2.
(B-1) A PCR product m3R was obtained in the same manner as (a-2). Further, an oligonucleotide comprising the sequences described in SEQ ID NO: 24 and SEQ ID NO: 29, which was obtained in Example 3, using the plasmid expressing Fc-binding protein (Table 4) containing amino acid substitutions of Ala71Asp, Phe75Leu and Glu121Gly as a template. PCR product m4R was obtained by PCR in the same manner as in (a-1) using as a PCR primer.
(B-2) After mixing the two types of PCR products (m3R, m4R) obtained in (b-1), PCR was performed in the same manner as in (a-3) to link m3R and m4R. The obtained PCR product was designated as m4p.
(B-3) A method similar to (a-4), using the PCR product m4p obtained in (b-2) as a template and an oligonucleotide comprising the sequences described in SEQ ID NO: 23 and SEQ ID NO: 24 as PCR primers PCR was performed. This produced a polynucleotide encoding FcR4.
(B-4) After purification of the polynucleotide obtained in (b-3), digestion with restriction enzymes NcoI and HindIII and expression vector pETmalE previously digested with restriction enzymes NcoI and HindIII (Japanese Patent Laid-Open No. 2011-206046) Was used to transform Escherichia coli BL21 (DE3) strain.
(B-5) The obtained transformant was cultured in an LB medium supplemented with 50 μg / mL kanamycin. By extracting a plasmid from the collected cells (transformants), a plasmid pET-FcR4 containing a polynucleotide encoding FcR4, which is a polypeptide obtained by substituting the wild-type Fc binding protein with 4 amino acids, is obtained. It was.
(B-6) The nucleotide sequence of pET-FcR4 was analyzed in the same manner as in Example 1 (5).
 シグナル配列およびポリヒスチジンタグを付加したFcR4のアミノ酸配列を配列番号33に、前記FcR4をコードするポリヌクレオチドの配列を配列番号34に示す。なお、配列番号33において、1番目のメチオニン(Met)から26番目のアラニン(Ala)までがMalEシグナルペプチドであり、27番目のリジン(Lys)から32番目のメチオニン(Met)までがリンカー配列であり、33番目のグリシン(Gly)から208番目のグルタミン(Gln)までがFcR4のアミノ酸配列(配列番号1の17番目から192番目までの領域に相当)、209番目から210番目までのグリシン(Gly)がリンカー配列であり、211番目から216番目のヒスチジン(His)がタグ配列である。また配列番号33において、Val27Gluのグルタミン酸は43番目、Tyr35Asnのアスパラギンは51番目、Phe75Leuのロイシンは91番目、Glu121Glyのグリシンは137番目の位置にそれぞれ存在する。 The amino acid sequence of FcR4 added with a signal sequence and a polyhistidine tag is shown in SEQ ID NO: 33, and the sequence of a polynucleotide encoding the FcR4 is shown in SEQ ID NO: 34. In SEQ ID NO: 33, the first methionine (Met) to the 26th alanine (Ala) are MalE signal peptides, and the 27th lysine (Lys) to the 32nd methionine (Met) are linker sequences. Yes, the amino acid sequence of FcR4 from the 33rd glycine (Gly) to the 208th glutamine (Gln) (corresponding to the 17th to 192nd region of SEQ ID NO: 1), the 209th to 210th glycine (Gly) ) Is a linker sequence, and 211 to 216th histidine (His) is a tag sequence. Further, in SEQ ID NO: 33, glutamic acid of Val27Glu exists at position 43, asparagine of Tyr35Asn exists at position 51, leucine of Phe75Leu exists at position 91, and glycine of Glu121Gly exists at position 137.
 (c)FcR5a
 実施例3で明らかになったFc結合性タンパク質の安定性向上に関与するアミノ酸置換の中から、Val27Glu、Tyr35Asn、Phe75Leu、Asn92SerおよびGlu121Glyを選択し、それらの置換を野生型のFc結合性タンパク質に集積したFcR5aを作製した。具体的には、(b)で作製したFcR4をコードするポリヌクレオチドに対してAsn92Serを生じさせる変異導入を行なうことにより、FcR5aを作製した。
(c-1)(b)で作製した、pET-FcR4を鋳型とし、配列番号22および配列番号35(5’-GAATATCGTTGCCAGACCAGCCTGAGCACC-3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、(a-1)と同様の方法でPCRを行なった。精製したPCR産物をm5aFとした。
(c-2)(b)で作製したpET-FcR4を鋳型とし、配列番号21および配列番号36(5’-GATCGCTCAGGGTGCTCAGGCTGGTCTGGC-3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、(a-1)と同様の方法でPCRを行なった。精製したPCR産物をm5aRとした。
(c-3)(c-1)および(c-2)で得られた2種類のPCR産物(m5aF、m5aR)を混合後、(a-3)と同様の方法にてPCRを行ない、m5aFとm5aRを連結した。得られたPCR産物をm5apとした。
(c-4)(c-3)で得られたPCR産物m5apを鋳型とし、配列番号21および配列番号22に記載の配列からなるオリゴヌクレオチドをPCRプライマーとして、(a-4)と同様の方法でPCRを行なった。これによりFcR5aをコードするポリヌクレオチドを作製した。
(c-5)(c-4)で得られたポリヌクレオチドを精製後、制限酵素NcoIとHindIIIで消化し、あらかじめ制限酵素NcoIとHindIIIで消化した発現ベクターpETMalE(特開2011-206046号公報)にライゲーションし、これを用いて大腸菌BL21(DE3)株を形質転換した。
(c-6)得られた形質転換体を50μg/mLのカナマイシンを添加したLB培地で培養した。回収した菌体(形質転換体)からプラスミドを抽出することで、野生型Fc結合性タンパク質に対して5箇所アミノ酸置換したポリペプチドである、FcR5aをコードするポリヌクレオチドを含むプラスミドpET-FcR5aを得た。
(c-7)pET-FcR5aのヌクレオチド配列の解析を、実施例1(5)と同様の方法で行なった。
(C) FcR5a
Val27Glu, Tyr35Asn, Phe75Leu, Asn92Ser, and Glu121Gly were selected from the amino acid substitutions involved in improving the stability of the Fc binding protein revealed in Example 3, and these substitutions were changed to the wild type Fc binding protein. Accumulated FcR5a was produced. Specifically, FcR5a was prepared by introducing a mutation that caused Asn92Ser to the polynucleotide encoding FcR4 prepared in (b).
(C-1) except that pET-FcR4 prepared in (b) was used as a template, and an oligonucleotide consisting of the sequences described in SEQ ID NO: 22 and SEQ ID NO: 35 (5′-GAATATCGTTGCCAGACCAGCCTGAGCACC-3 ′) was used as a PCR primer. PCR was performed in the same manner as in (a-1). The purified PCR product was designated as m5aF.
(C-2) except that pET-FcR4 prepared in (b) was used as a template, and an oligonucleotide having the sequence described in SEQ ID NO: 21 and SEQ ID NO: 36 (5′-GATCGCTCCAGGGTGCTCAGGCTGGTTCTGGC-3 ′) was used as a PCR primer, PCR was performed in the same manner as (a-1). The purified PCR product was designated as m5aR.
(C-3) After mixing the two kinds of PCR products (m5aF, m5aR) obtained in (c-1) and (c-2), PCR was performed in the same manner as in (a-3), and m5aF And m5aR were ligated. The obtained PCR product was designated as m5ap.
(C-4) A method similar to (a-4), using the PCR product m5ap obtained in (c-3) as a template and an oligonucleotide comprising the sequences shown in SEQ ID NO: 21 and SEQ ID NO: 22 as PCR primers PCR was performed. This produced a polynucleotide encoding FcR5a.
(C-5) After purifying the polynucleotide obtained in (c-4), digested with restriction enzymes NcoI and HindIII, and previously digested with restriction enzymes NcoI and HindIII (Japanese Patent Laid-Open No. 2011-206046) Was used to transform Escherichia coli BL21 (DE3) strain.
(C-6) The obtained transformant was cultured in LB medium supplemented with 50 μg / mL kanamycin. Plasmid pET-FcR5a containing a polynucleotide encoding FcR5a, which is a polypeptide obtained by substituting amino acid at five positions with respect to the wild-type Fc-binding protein, is obtained by extracting a plasmid from the collected bacterial cells (transformants). It was.
(C-7) The nucleotide sequence of pET-FcR5a was analyzed in the same manner as in Example 1 (5).
 シグナル配列およびポリヒスチジンタグを付加したFcR5aのアミノ酸配列を配列番号37に、前記FcR5aをコードするポリヌクレオチドの配列を配列番号38に示す。なお、配列番号37において、1番目のメチオニン(Met)から26番目のアラニン(Ala)までがMalEシグナルペプチドであり、27番目のリジン(Lys)から32番目のメチオニン(Met)までがリンカー配列であり、33番目のグリシン(Gly)から208番目のグルタミン(Gln)までがFcR5aのアミノ酸配列(配列番号1の17番目から192番目までの領域に相当)、209番目から210番目までのグリシン(Gly)がリンカー配列であり、211番目から216番目のヒスチジン(His)がタグ配列である。また配列番号37において、Val27Gluのグルタミン酸は43番目、Tyr35Asnのアスパラギンは51番目、Phe75Leuのロイシンは91番目、Asn92Serのセリンは108番目、Glu121Glyのグリシンは137番目の位置にそれぞれ存在する。 The amino acid sequence of FcR5a added with a signal sequence and a polyhistidine tag is shown in SEQ ID NO: 37, and the sequence of the polynucleotide encoding the FcR5a is shown in SEQ ID NO: 38. In SEQ ID NO: 37, the first methionine (Met) to the 26th alanine (Ala) are MalE signal peptides, and the 27th lysine (Lys) to the 32nd methionine (Met) are linker sequences. Yes, the amino acid sequence of FcR5a from the 33rd glycine (Gly) to the 208th glutamine (Gln) (corresponding to the 17th to 192nd region of SEQ ID NO: 1), the 209th to 210th glycine (Gly) ) Is a linker sequence, and 211 to 216th histidine (His) is a tag sequence. Also, in SEQ ID NO: 37, glutamic acid of Val27Glu is located at position 43, asparagine of Tyr35Asn is located at position 51, leucine of Phe75Leu is located at position 91, serine of Asn92Ser is located at position 108, and glycine of Glu121Gly is located at position 137.
 実施例5 FcR5aへの変異導入およびライブラリーの作製
 実施例4(c)で作製したFcR5aをコードするポリヌクレオチド部分に、エラープローンPCRによりランダムに変異導入を施した。
(1)鋳型として実施例4(c)で作製した発現ベクターpET-FcR5aを用いてエラープローンPCRを行なった。エラープローンPCRは、鋳型にpET-FcR5aを用いた以外は表3に示す組成と同様の反応液を調製後、当該反応液を95℃で2分間熱処理し、95℃で30秒間の第1ステップ、60℃で30秒間の第2ステップ、72℃で90秒間の第3ステップを1サイクルとする反応を35サイクル行ない、最後に72℃で7分間熱処理することで行なった。この反応によりFc結合性タンパク質をコードするポリヌクレオチドに良好に変異が導入された。
(2)(1)で得られたPCR産物を精製後、制限酵素NcoIとHindIIIで消化し、あらかじめ同制限酵素で消化した発現ベクターpETMalE(特開2011-206046号公報)にライゲーションした。
(3)ライゲーション反応終了後、反応液をエレクトロポレーション法により大腸菌BL21(DE3)株に導入し、50μg/mLのカナマイシンを含むLBプレート培地で培養後、プレート上に形成したコロニーをランダム変異ライブラリーとした。
Example 5 Mutation Introduction to FcR5a and Library Preparation Mutation was randomly introduced into the polynucleotide portion encoding FcR5a prepared in Example 4 (c) by error-prone PCR.
(1) Error-prone PCR was performed using the expression vector pET-FcR5a prepared in Example 4 (c) as a template. In error-prone PCR, after preparing a reaction solution having the same composition as shown in Table 3 except that pET-FcR5a was used as a template, the reaction solution was heat-treated at 95 ° C. for 2 minutes, and the first step at 95 ° C. for 30 seconds. The reaction was carried out by performing 35 cycles of a second step of 60 ° C. for 30 seconds and a third step of 72 ° C. for 90 seconds for one cycle, and finally heat treatment at 72 ° C. for 7 minutes. By this reaction, the mutation was successfully introduced into the polynucleotide encoding the Fc binding protein.
(2) The PCR product obtained in (1) was purified, digested with restriction enzymes NcoI and HindIII, and ligated into an expression vector pETmalE (Japanese Patent Laid-Open No. 2011-206046) previously digested with the same restriction enzymes.
(3) After completion of the ligation reaction, the reaction solution was introduced into Escherichia coli BL21 (DE3) strain by electroporation, cultured in LB plate medium containing 50 μg / mL kanamycin, and the colonies formed on the plate were randomly mutated. It was rally.
 実施例6 熱安定化Fc結合性タンパク質のスクリーニング
(1)実施例5で作製したランダム変異ライブラリーを実施例3(1)から(2)に記載の方法で培養することでFc結合性タンパク質を発現させた。
(2)培養後、遠心操作によって得られた、Fc結合性タンパク質を含む培養上清を純水にて20倍に希釈し、更に0.1Mの炭酸ナトリウム緩衝液(pH10.0)で20倍に希釈した。その後、希釈した溶液を40℃で15分間熱処理を行ない、1Mのトリス緩衝液(pH7.0)でpHを中性付近に戻した。
(3)(2)の熱処理を行なったときのFc結合性タンパク質の抗体結合活性と、(2)の熱処理を行なわなかったときのFc結合性タンパク質の抗体結合活性を、実施例3(4)に記載のELISA法にて測定し、熱処理を行なったときのFc結合性タンパク質の抗体結合活性を、熱処理を行なわなかったときのFc結合性タンパク質の抗体結合活性で除することで、残存活性を算出した。
(4)(3)の方法で約2700株の形質転換体を評価し、その中からFcR5aと比較して熱安定性が向上したFc結合性タンパク質を発現する形質転換体を選択した。選択した形質転換体を50μg/mLのカナマイシンを含む2YT液体培地にて培養し、QIAprep Spin Miniprep kit(キアゲン製)を用いて発現ベクターを調製した。
(5)得られた発現ベクターに挿入されたFc結合性タンパク質をコードするポリヌクレオチド領域の配列を実施例1(5)に記載の方法によりヌクレオチド配列を解析し、アミノ酸の変異箇所を特定した。
Example 6 Screening of Heat Stabilized Fc Binding Protein (1) By culturing the random mutation library prepared in Example 5 by the method described in Examples 3 (1) to (2), Fc binding protein was obtained. Expressed.
(2) After culture, the culture supernatant containing Fc-binding protein obtained by centrifugation is diluted 20-fold with pure water, and further 20-fold with 0.1 M sodium carbonate buffer (pH 10.0). Dilute to Thereafter, the diluted solution was heat-treated at 40 ° C. for 15 minutes, and the pH was returned to near neutral with 1M Tris buffer (pH 7.0).
(3) Example 3 (4) shows the antibody binding activity of the Fc binding protein when the heat treatment of (2) is performed and the antibody binding activity of the Fc binding protein when the heat treatment of (2) is not performed. By dividing the antibody-binding activity of the Fc-binding protein when subjected to heat treatment by the antibody-binding activity of the Fc-binding protein when not subjected to heat treatment, the residual activity was measured by the ELISA method described in 1. Calculated.
(4) About 2,700 strains of transformants were evaluated by the method of (3), and transformants expressing Fc-binding proteins with improved thermal stability compared to FcR5a were selected. The selected transformant was cultured in a 2YT liquid medium containing 50 μg / mL kanamycin, and an expression vector was prepared using QIAprep Spin Miniprep kit (manufactured by Qiagen).
(5) The nucleotide sequence of the sequence of the polynucleotide region encoding the Fc binding protein inserted into the obtained expression vector was analyzed by the method described in Example 1 (5), and amino acid mutation sites were identified.
 (4)で選択した形質転換体が発現するFc結合性タンパク質の、FcR5aに対するアミノ酸置換位置および熱処理後の残存活性(%)をまとめたものを表8に示す。配列番号37に記載のアミノ酸配列のうち、33番目のグリシンから208番目のグルタミンまでのアミノ酸残基を含み、かつ当該33番目から208番目までのアミノ酸残基において、Phe29Ile(この表記は、配列番号1の29番目(配列番号37では45番目)のフェニルアラニンがイソロイシンに置換されていることを表す、以下同様)、Phe29Leu、Glu39Gly、Gln48Arg、Tyr51Ser、Phe61Tyr、Asp77Gly、Asp82Glu、Gln90Arg、Gln112Leu、Val117Glu、Lys119Asn、Lys119Glu、Thr140Ile、Leu142Gln、Phe171Ser、Leu175Arg、Asn180SerおよびIle188Valのいずれかのアミノ酸置換が少なくとも1つ生じているFc結合性タンパク質は、FcR5aと比較し熱安定性が向上しているといえる。 Table 8 shows a summary of amino acid substitution positions for FcR5a and the residual activity (%) after heat treatment of the Fc-binding protein expressed by the transformant selected in (4). Among the amino acid sequences described in SEQ ID NO: 37, the amino acid residues from the 33rd glycine to the 208th glutamine, and the 33rd to 208th amino acid residues, Phe29Ile (this notation is SEQ ID NO: 1 represents that phenylalanine at position 29 (position 45 in SEQ ID NO: 37) is substituted with isoleucine, and so on), Phe29Leu, Glu39Gly, Gln48Arg, Tyr51Ser, Phe61Tyr, Asp77Gly, Asp82Glu, Gln90Alg, L Of Lys119Glu, Thr140Ile, Leu142Gln, Phe171Ser, Leu175Arg, Asn180Ser and Ile188Val Fc binding protein amino acid substitutions Zureka has at least one occurs, it can be said that the thermal stability as compared to FcR5a is improved.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表8に示した、FcR5aからアミノ酸置換されたFc結合性タンパク質のうち、Phe29IleおよびVal117Gluのアミノ酸置換が生じたFc結合性タンパク質をFcR7aと命名し、FcR7aをコードするポリヌクレオチドを含む発現ベクターをpET-FcR7aと命名した。FcR7aのアミノ酸配列を配列番号39に、FcR7aをコードするポリヌクレオチドの配列を配列番号40に示す。なお配列番号39において、1番目のメチオニン(Met)から26番目のアラニン(Ala)までがMalEシグナルペプチドであり、27番目のリジン(Lys)から32番目のメチオニン(Met)までがリンカー配列であり、33番目のグリシン(Gly)から208番目のグルタミン(Gln)までがFcR7aのアミノ酸配列(配列番号1の17番目から192番目までの領域に相当)、209番目から210番目までのグリシン(Gly)がリンカー配列であり、211番目から216番目のヒスチジン(His)がタグ配列である。また配列番号39において、Phe29Ileのイソロイシンは45番目、Val117Gluのグルタミン酸は133番目の位置にそれぞれ存在する。 Of the Fc binding proteins with amino acid substitutions from FcR5a shown in Table 8, the Fc binding protein in which Phe29Ile and Val117Glu amino acid substitutions were named FcR7a, and an expression vector containing a polynucleotide encoding FcR7a was designated as pET -It was named FcR7a. The amino acid sequence of FcR7a is shown in SEQ ID NO: 39, and the sequence of the polynucleotide encoding FcR7a is shown in SEQ ID NO: 40. In SEQ ID NO: 39, the first methionine (Met) to the 26th alanine (Ala) are MalE signal peptides, and the 27th lysine (Lys) to the 32nd methionine (Met) are linker sequences. From the 33rd glycine (Gly) to the 208th glutamine (Gln), the amino acid sequence of FcR7a (corresponding to the 17th to 192nd region of SEQ ID NO: 1), the 209th to 210th glycine (Gly) Is a linker sequence, and histidines (His) from 211 to 216 are tag sequences. In SEQ ID NO: 39, isoleucine of Phe29Ile is present at the 45th position and glutamic acid of Val117Glu is present at the 133rd position.
 実施例7 改良Fc結合性タンパク質の作製
 実施例6で判明した、Fc結合性タンパク質の熱安定性向上に関与するアミノ酸置換をFcR7aに集積することで、さらなる安定性向上を図った。置換アミノ酸の集積は、主にPCRを用いて行ない、以下の(a)から(d)に示す4種類の改良Fc結合性タンパク質を作製した。
(a)FcR7aに対し、さらにPhe171Serのアミノ酸置換を行なったFcR8
(b)FcR8に対し、さらにGln48Argのアミノ酸置換を行なったFcR9
(c)FcR8に対し、さらにGln48ArgおよびTyr51Serのアミノ酸置換を行なったFcR10
(d)FcR10に対し、さらにGln90Argのアミノ酸置換を行なったFcR11
 以下、各改良Fc結合性タンパク質の作製方法を詳細に説明する。
(a)FcR8
 実施例6で明らかとなった、熱安定性向上に関与するアミノ酸置換の中から、Phe29Ile、Val117GluおよびPhe171Serを選択し、それらの置換をFcR5a(実施例4(c))に集積したFcR8を作製した。具体的には、FcR7aをコードするポリヌクレオチドに対して、Phe171Serを生じさせる変異導入を行なうことにより、FcR8を作製した。
(a-1)実施例6で取得した、pET-FcR7aを鋳型としてPCRを実施した。当該PCRにおけるプライマーは、配列番号23および配列番号41(5’-ACCAGCCCACGGCAGGAATAGCTGCCGCTG-3’)に記載の配列からなるオリゴヌクレオチドを用いた。PCRは、表5に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行ない、最後に72℃で5分間熱処理することで行なった。増幅したPCR産物をアガロースゲル電気泳動に供し、そのゲルからQIAquick Gel Extraction kit(キアゲン製)を用いて精製した。精製したPCR産物をm8Fとした。
(a-2)実施例6で取得した、pET-FcR7aを鋳型とし、配列番号42(5’-GACAGCGGCAGCTATTCCTGCCGTGGGCTG-3’)および配列番号24に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、(a-1)と同様に行なった。精製したPCR産物をm8Rとした。
(a-3)(a-1)および(a-2)で得られた2種類のPCR産物(m8F、m8R)を混合し、表6に示す組成の反応液を調製した。当該反応液を98℃で5分間熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を5サイクル行なうPCRを行ない、m8Fとm8Rを連結したPCR産物m8pを得た。
(a-4)(a-3)で得られたPCR産物m8pを鋳型とし、配列番号23および配列番号24に記載の配列からなるオリゴヌクレオチドをPCRプライマーとしてPCRを行なった。PCRは、表7に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行なった。これによりFcR7aに1箇所アミノ酸置換を導入したFcR8をコードするポリヌクレオチドを作製した。
(a-5)(a-4)で得られたポリヌクレオチドを制限酵素NcoIとHindIIIで消化し、あらかじめ制限酵素NcoIとHindIIIで消化した発現ベクターpETMalE(特開2011-206046号公報)にライゲーションし、これを用いて大腸菌BL21(DE3)株を形質転換した。
(a-6)得られた形質転換体を50μg/mLのカナマイシンを添加したLB培地で培養した。回収した菌体(形質転換体)からプラスミドを抽出することで、FcR5aに対して3箇所(野生型Fc結合性タンパク質に対して8箇所)アミノ酸置換したポリペプチドである、FcR8をコードするポリヌクレオチドを含むプラスミドpET-FcR8を得た。
(a-7)pET-FcR8のヌクレオチド配列の解析を、実施例1(5)と同様の方法で行なった。
Example 7 Production of Improved Fc Binding Protein The stability was further improved by accumulating amino acid substitutions found in Example 6 involved in improving the thermal stability of Fc binding protein in FcR7a. Accumulation of substituted amino acids was mainly performed using PCR, and four types of improved Fc binding proteins shown in (a) to (d) below were prepared.
(A) FcR8 obtained by further performing amino acid substitution of Phe171Ser on FcR7a
(B) FcR9 obtained by further substituting Gln48Arg amino acid for FcR8
(C) FcR10 obtained by further performing amino acid substitution of Gln48Arg and Tyr51Ser on FcR8
(D) FcR11 obtained by further substituting amino acid substitution of Gln90Arg for FcR10
Hereinafter, a method for producing each improved Fc-binding protein will be described in detail.
(A) FcR8
Phe29Ile, Val117Glu, and Phe171Ser were selected from the amino acid substitutions involved in improving thermal stability, which were revealed in Example 6, and FcR8 in which these substitutions were accumulated in FcR5a (Example 4 (c)) was prepared. did. Specifically, FcR8 was produced by introducing a mutation that causes Phe171Ser into a polynucleotide encoding FcR7a.
(A-1) PCR was performed using pET-FcR7a obtained in Example 6 as a template. As a primer in the PCR, an oligonucleotide having a sequence described in SEQ ID NO: 23 and SEQ ID NO: 41 (5′-ACCAGCCCCACGGCAGGAAATAGCTGCCGCTG-3 ′) was used. In PCR, after preparing a reaction solution having the composition shown in Table 5, the reaction solution was heat-treated at 98 ° C. for 5 minutes, first step at 98 ° C. for 10 seconds, second step at 55 ° C. for 5 seconds, and at 72 ° C. 30 cycles of the reaction in which the third step for 1 minute was set to 1 cycle were performed by heat treatment at 72 ° C. for 5 minutes. The amplified PCR product was subjected to agarose gel electrophoresis, and purified from the gel using a QIAquick Gel Extraction kit (Qiagen). The purified PCR product was designated as m8F.
(A-2) Except that pET-FcR7a obtained in Example 6 was used as a template, and an oligonucleotide consisting of SEQ ID NO: 42 (5′-GACACGCGCAGCATTTCCTGCCCTGGGGCTG-3 ′) and the sequence shown in SEQ ID NO: 24 was used as a PCR primer. , (A-1). The purified PCR product was designated as m8R.
(A-3) Two types of PCR products (m8F, m8R) obtained in (a-1) and (a-2) were mixed to prepare a reaction solution having the composition shown in Table 6. The reaction solution is heat-treated at 98 ° C. for 5 minutes, followed by 5 cycles of reaction in which the first step is 98 ° C. for 10 seconds, the second step is 55 ° C. for 5 seconds, and the third step is 72 ° C. for 1 minute. PCR was performed, and a PCR product m8p in which m8F and m8R were linked was obtained.
(A-4) PCR was performed using the PCR product m8p obtained in (a-3) as a template and oligonucleotides having the sequences described in SEQ ID NO: 23 and SEQ ID NO: 24 as PCR primers. In PCR, after preparing a reaction solution having the composition shown in Table 7, the reaction solution was heat-treated at 98 ° C. for 5 minutes, first step at 98 ° C. for 10 seconds, second step at 55 ° C. for 5 seconds, and at 72 ° C. The reaction with the third step of 1 minute as one cycle was performed 30 cycles. As a result, a polynucleotide encoding FcR8 in which an amino acid substitution at one site was introduced into FcR7a was prepared.
(A-5) The polynucleotide obtained in (a-4) was digested with restriction enzymes NcoI and HindIII, and ligated to the expression vector pETmalE (Japanese Patent Laid-Open No. 2011-206046) previously digested with restriction enzymes NcoI and HindIII. This was used to transform E. coli BL21 (DE3) strain.
(A-6) The obtained transformant was cultured in LB medium supplemented with 50 μg / mL kanamycin. A polynucleotide encoding FcR8, which is a polypeptide in which amino acids are substituted at 3 positions on FcR5a (8 positions relative to a wild-type Fc-binding protein) by extracting a plasmid from the collected microbial cells (transformants) Plasmid pET-FcR8 containing was obtained.
(A-7) The nucleotide sequence of pET-FcR8 was analyzed in the same manner as in Example 1 (5).
 シグナル配列およびポリヒスチジンタグを付加したFcR8のアミノ酸配列を配列番号43に、前記FcR8をコードするポリヌクレオチドの配列を配列番号44に示す。なお配列番号43において、1番目のメチオニン(Met)から26番目のアラニン(Ala)までがMalEシグナルペプチドであり、27番目のリジン(Lys)から32番目のメチオニン(Met)までがリンカー配列であり、33番目のグリシン(Gly)から208番目のグルタミン(Gln)までがFcR8のアミノ酸配列(配列番号1の17番目から192番目までの領域に相当)、209番目から210番目までのグリシン(Gly)がリンカー配列であり、211番目から216番目のヒスチジン(His)がタグ配列である。また配列番号43において、Phe29Ileのイソロイシンは45番目、Val117Gluのグルタミン酸は133番目、Phe171Serのセリンは187番目の位置にそれぞれ存在する。
(b)FcR9
 実施例6で明らかとなった、熱安定性向上に関与するアミノ酸置換の中から、Phe29Ile、Gln48Arg、Val117GluおよびPhe171Serを選択し、それらの置換をFcR5a(実施例4(c))に集積したFcR9を作製した。具体的には、FcR8をコードするポリヌクレオチドに対して、Gln48Argを生じさせる変異導入を行なうことにより、FcR9を作製した。
(b-1)(a)で作製した、pET-FcR8を鋳型とし、配列番号24および配列番号45(5’-GTGACCCTTAAATGCCGGGGCGCGTATAGC-3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、(a-1)と同様の方法でPCRを行なった。精製したPCR産物をm9Fとした。
(b-2)(a)で作製したpET-FcR8を鋳型とし、配列番号23および配列番号46(5’-CCGGGCTATACGCGCCCCGGCATTTAAGGG-3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、(a-1)と同様の方法でPCRを行なった。精製したPCR産物をm9Rとした。
(b-3)(b-1)および(b-2)で得られた2種類のPCR産物(m9F、m9R)を混合後、(a-3)と同様の方法にてPCRを行ない、m9Fとm9Rを連結した。得られたPCR産物をm9pとした。
(b-4)(b-3)で得られたPCR産物m9pを鋳型とし、配列番号21および配列番号22に記載の配列からなるオリゴヌクレオチドをPCRプライマーとして、(a-4)と同様の方法でPCRを行なった。これによりFcR9をコードするポリヌクレオチドを作製した。
(b-5)(b-4)で得られたポリヌクレオチドを精製後、制限酵素NcoIとHindIIIで消化し、あらかじめ制限酵素NcoIとHindIIIで消化した発現ベクターpETMalE(特開2011-206046号公報)にライゲーションし、これを用いて大腸菌BL21(DE3)株を形質転換した。
(b-6)得られた形質転換体を50μg/mLのカナマイシンを添加したLB培地で培養した。回収した菌体(形質転換体)からプラスミドを抽出することで、FcR5aに対して4箇所(野生型Fc結合性タンパク質に対して9箇所)アミノ酸置換したポリペプチドである、FcR9をコードするポリヌクレオチドを含むプラスミドpET-FcR9を得た。
(b-7)pET-FcR9のヌクレオチド配列の解析を、実施例1(5)と同様の方法で行なった。
The amino acid sequence of FcR8 added with a signal sequence and a polyhistidine tag is shown in SEQ ID NO: 43, and the sequence of the polynucleotide encoding the FcR8 is shown in SEQ ID NO: 44. In SEQ ID NO: 43, the first methionine (Met) to the 26th alanine (Ala) are MalE signal peptides, and the 27th lysine (Lys) to the 32nd methionine (Met) are linker sequences. From the 33rd glycine (Gly) to the 208th glutamine (Gln), the amino acid sequence of FcR8 (corresponding to the 17th to 192nd region of SEQ ID NO: 1), the 209th to 210th glycine (Gly) Is a linker sequence, and histidines (His) from 211 to 216 are tag sequences. In SEQ ID NO: 43, isoleucine of Phe29Ile is present at the 45th position, glutamic acid of Val117Glu is located at the 133rd position, and serine of Phe171Ser is present at the 187th position.
(B) FcR9
Phe29Ile, Gln48Arg, Val117Glu and Phe171Ser were selected from the amino acid substitutions involved in improving thermal stability, which were revealed in Example 6, and FcR9 integrated in FcR5a (Example 4 (c)) was selected. Was made. Specifically, FcR9 was produced by introducing a mutation that caused Gln48Arg to the polynucleotide encoding FcR8.
(B-1) except that pET-FcR8 prepared in (a) was used as a template, and an oligonucleotide having the sequences described in SEQ ID NO: 24 and SEQ ID NO: 45 (5′-GTGACCCTTAAATGCCGGGGCGCGTAGTAGC-3 ′) was used as a PCR primer. PCR was performed in the same manner as in (a-1). The purified PCR product was designated as m9F.
(B-2) except that pET-FcR8 prepared in (a) was used as a template, and an oligonucleotide having the sequences described in SEQ ID NO: 23 and SEQ ID NO: 46 (5′-CCGGGCTATACGCGCCCCCGGCATTAAGGG-3 ′) was used as a PCR primer, PCR was performed in the same manner as (a-1). The purified PCR product was designated as m9R.
(B-3) After mixing the two types of PCR products (m9F, m9R) obtained in (b-1) and (b-2), PCR was performed in the same manner as in (a-3), and m9F And m9R were linked. The obtained PCR product was designated as m9p.
(B-4) A method similar to (a-4), using the PCR product m9p obtained in (b-3) as a template and an oligonucleotide consisting of the sequences of SEQ ID NO: 21 and SEQ ID NO: 22 as a PCR primer PCR was performed. This produced a polynucleotide encoding FcR9.
(B-5) After purifying the polynucleotide obtained in (b-4), digested with restriction enzymes NcoI and HindIII and previously digested with restriction enzymes NcoI and HindIII (Japanese Patent Laid-Open No. 2011-206046) Was used to transform Escherichia coli BL21 (DE3) strain.
(B-6) The obtained transformant was cultured in an LB medium supplemented with 50 μg / mL kanamycin. A polynucleotide encoding FcR9, which is a polypeptide in which amino acids are substituted at 4 positions (9 positions relative to a wild-type Fc binding protein) with respect to FcR5a by extracting a plasmid from the collected bacterial cells (transformants) Plasmid pET-FcR9 containing was obtained.
(B-7) The nucleotide sequence of pET-FcR9 was analyzed in the same manner as in Example 1 (5).
 シグナル配列およびポリヒスチジンタグを付加したFcR9のアミノ酸配列を配列番号47に、前記FcR9をコードするポリヌクレオチドの配列を配列番号48に示す。なお、配列番号47において、1番目のメチオニン(Met)から26番目のアラニン(Ala)までがMalEシグナルペプチドであり、27番目のリジン(Lys)から32番目のメチオニン(Met)までがリンカー配列であり、33番目のグリシン(Gly)から208番目のグルタミン(Gln)までがFcR9のアミノ酸配列(配列番号1の17番目から192番目までの領域に相当)、209番目から210番目までのグリシン(Gly)がリンカー配列であり、211番目から216番目のヒスチジン(His)がタグ配列である。また配列番号47において、Phe29Ileのイソロイシンは45番目、Gln48Argのアルギニンは64番目、Val117Gluのグルタミン酸は133番目、Phe171Serのセリンは187番目の位置にそれぞれ存在する。
(c)FcR10
 実施例6で明らかとなった、熱安定性向上に関与するアミノ酸置換の中から、Phe29Ile、Gln48Arg、Tyr51Ser、Val117GluおよびPhe171Serを選択し、それらの置換をFcR5a(実施例4(c))に集積したFcR10を作製した。具体的には、FcR8をコードするポリヌクレオチドに対して、Gln48ArgおよびTyr51Serを生じさせる変異導入を行なうことにより、FcR10を作製した。
(c-1)(a)で作製した、pET-FcR8を鋳型とし、配列番号22および配列番号49(5’-TGCCGGGGCGCGTCTAGCCCGGAAGATAAC-3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、(a-1)と同様の方法でPCRを行なった。精製したPCR産物をm10Fとした。
(c-2)(a)で作製したpET-FcR8を鋳型とし、配列番号21および配列番号50(5’-GCTAGACGCGCCCCGGCATTTAAGGGTCAC-3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、(a-1)と同様の方法でPCRを行なった。精製したPCR産物をm10Rとした。
(c-3)(c-1)および(c-2)で得られた2種類のPCR産物(m10F、m10R)を混合後、(a-3)と同様の方法にてPCRを行ない、m10Fとm10Rを連結した。得られたPCR産物をm10pとした。
(c-4)(c-3)で得られたPCR産物m10pを鋳型とし、配列番号21および配列番号22に記載の配列からなるオリゴヌクレオチドをPCRプライマーとして、(a-4)と同様の方法でPCRを行なった。これによりFcR10をコードするポリヌクレオチドを作製した。
(c-5)(c-4)で得られたポリヌクレオチドを精製後、制限酵素NcoIとHindIIIで消化し、あらかじめ制限酵素NcoIとHindIIIで消化した発現ベクターpETMalE(特開2011-206046号公報)にライゲーションし、これを用いて大腸菌BL21(DE3)株を形質転換した。
(c-6)得られた形質転換体を50μg/mLのカナマイシンを添加したLB培地で培養した。回収した菌体(形質転換体)からプラスミドを抽出することで、FcR5aに対して5箇所(野生型Fc結合性タンパク質に対して10箇所)アミノ酸置換したポリペプチドである、FcR10をコードするポリヌクレオチドを含むプラスミドpET-FcR10を得た。
(c-7)pET-FcR10のヌクレオチド配列の解析を、実施例1(5)と同様の方法で行なった。
The amino acid sequence of FcR9 added with a signal sequence and a polyhistidine tag is shown in SEQ ID NO: 47, and the sequence of the polynucleotide encoding the FcR9 is shown in SEQ ID NO: 48. In SEQ ID NO: 47, the first methionine (Met) to the 26th alanine (Ala) are MalE signal peptides, and the 27th lysine (Lys) to the 32nd methionine (Met) are linker sequences. There is an amino acid sequence of FcR9 from the 33rd glycine (Gly) to the 208th glutamine (Gln) (corresponding to the 17th to 192nd region of SEQ ID NO: 1), and the 209th to 210th glycine (Gly). ) Is a linker sequence, and 211 to 216th histidine (His) is a tag sequence. In SEQ ID NO: 47, isoleucine of Phe29Ile is present at the 45th position, arginine of Gln48Arg is present at the 64th position, glutamic acid of Val117Glu is present at the 133rd position, and serine of Phe171Ser is present at the 187th position.
(C) FcR10
Phe29Ile, Gln48Arg, Tyr51Ser, Val117Glu and Phe171Ser were selected from the amino acid substitutions involved in the improvement of thermal stability, which were revealed in Example 6, and these substitutions were accumulated in FcR5a (Example 4 (c)). FcR10 was prepared. Specifically, FcR10 was produced by introducing a mutation that caused Gln48Arg and Tyr51Ser into a polynucleotide encoding FcR8.
(C-1) except that pET-FcR8 prepared in (a) was used as a template, and an oligonucleotide consisting of the sequences described in SEQ ID NO: 22 and SEQ ID NO: 49 (5′-TGCCGGGGCGCGTCTAGCCCGGAAGATAAC-3 ′) was used as a PCR primer PCR was performed in the same manner as in (a-1). The purified PCR product was designated as m10F.
(C-2) except that pET-FcR8 prepared in (a) was used as a template, and an oligonucleotide having the sequences described in SEQ ID NO: 21 and SEQ ID NO: 50 (5′-GCTAGACCGCCCCGGCATTTAAGGGTCAC-3 ′) was used as a PCR primer, PCR was performed in the same manner as (a-1). The purified PCR product was designated as m10R.
(C-3) After mixing the two kinds of PCR products (m10F, m10R) obtained in (c-1) and (c-2), PCR was performed in the same manner as in (a-3), and m10F And m10R were linked. The obtained PCR product was designated as m10p.
(C-4) The same method as (a-4), using the PCR product m10p obtained in (c-3) as a template and the oligonucleotide consisting of the sequences shown in SEQ ID NO: 21 and SEQ ID NO: 22 as PCR primers PCR was performed. This produced a polynucleotide encoding FcR10.
(C-5) After purifying the polynucleotide obtained in (c-4), digested with restriction enzymes NcoI and HindIII, and previously digested with restriction enzymes NcoI and HindIII (Japanese Patent Laid-Open No. 2011-206046) Was used to transform Escherichia coli BL21 (DE3) strain.
(C-6) The obtained transformant was cultured in LB medium supplemented with 50 μg / mL kanamycin. A polynucleotide encoding FcR10, which is a polypeptide obtained by substituting amino acids for 5 positions in FcR5a (10 positions with respect to wild-type Fc binding protein) by extracting a plasmid from the collected bacterial cells (transformants) Plasmid pET-FcR10 containing was obtained.
(C-7) The nucleotide sequence of pET-FcR10 was analyzed in the same manner as in Example 1 (5).
 シグナル配列およびポリヒスチジンタグを付加したFcR10のアミノ酸配列を配列番号51に、前記FcR10をコードするポリヌクレオチドの配列を配列番号52に示す。なお、配列番号51において、1番目のメチオニン(Met)から26番目のアラニン(Ala)までがMalEシグナルペプチドであり、27番目のリジン(Lys)から32番目のメチオニン(Met)までがリンカー配列であり、33番目のグリシン(Gly)から208番目のグルタミン(Gln)までがFcR10のアミノ酸配列(配列番号1の17番目から192番目までの領域に相当)、209番目から210番目までのグリシン(Gly)がリンカー配列であり、211番目から216番目のヒスチジン(His)がタグ配列である。また配列番号51において、Phe29Ileのイソロイシンは45番目、Gln48Argのアルギニンは64番目、Tyr51Serのセリンは67番目、Val117Gluのグルタミン酸は133番目、Phe171Serのセリンは187番目の位置にそれぞれ存在する。
(d)FcR11
 実施例6で明らかとなった、熱安定性向上に関与するアミノ酸置換の中から、Phe29Ile、Gln48Arg、Tyr51Ser、Gln90Arg、Val117GluおよびPhe171Serを選択し、それらの置換をFcR5a(実施例4(c))に集積したFcR11を作製した。具体的には、FcR10をコードするポリヌクレオチドに対して、Gln90Argを生じさせる変異導入を行なうことにより、FcR11を作製した。
(d-1)(c)で作製した、pET-FcR10を鋳型とし、配列番号22および配列番号53(5’-GGCGAATATCGTTGCCGGACCAGCCTGAGC-3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、(a-1)と同様の方法でPCRを行なった。精製したPCR産物をm11Fとした。
(d-2)(c)で作製したpET-FcR10を鋳型とし、配列番号21および配列番号54(5’-GGTGCTCAGGCTGGTCCGGCAACGATATTC-3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、(a-1)と同様の方法でPCRを行なった。精製したPCR産物をm11Rとした。
(d-3)(d-1)および(d-2)で得られた2種類のPCR産物(m11F、m11R)を混合後、(a-3)と同様の方法にてPCRを行ない、m11Fとm11Rを連結した。得られたPCR産物をm11pとした。
(d-4)(d-3)で得られたPCR産物m11pを鋳型とし、配列番号21および配列番号22に記載の配列からなるオリゴヌクレオチドをPCRプライマーとして、(a-4)と同様の方法でPCRを行なった。これによりFcR11をコードするポリヌクレオチドを作製した。
(d-5)(d-4)で得られたポリヌクレオチドを精製後、制限酵素NcoIとHindIIIで消化し、あらかじめ制限酵素NcoIとHindIIIで消化した発現ベクターpETMalE(特開2011-206046号公報)にライゲーションし、これを用いて大腸菌BL21(DE3)株を形質転換した。
(d-6)得られた形質転換体を50μg/mLのカナマイシンを添加したLB培地で培養した。回収した菌体(形質転換体)からプラスミドを抽出することで、FcR5aに対して6箇所(野生型Fc結合性タンパク質に対して11箇所)アミノ酸置換したポリペプチドである、FcR11をコードするポリヌクレオチドを含むプラスミドpET-FcR11を得た。
(d-7)pET-FcR11のヌクレオチド配列の解析を、実施例1(5)と同様の方法で行なった。
The amino acid sequence of FcR10 to which a signal sequence and a polyhistidine tag are added is shown in SEQ ID NO: 51, and the sequence of the polynucleotide encoding the FcR10 is shown in SEQ ID NO: 52. In SEQ ID NO: 51, the first methionine (Met) to the 26th alanine (Ala) are MalE signal peptides, and the 27th lysine (Lys) to the 32nd methionine (Met) are linker sequences. There is an amino acid sequence of FcR10 from the 33rd glycine (Gly) to the 208th glutamine (Gln) (corresponding to the 17th to 192nd region of SEQ ID NO: 1), and the 209th to 210th glycine (Gly). ) Is a linker sequence, and 211 to 216th histidine (His) is a tag sequence. Further, in SEQ ID NO: 51, isoleucine of Phe29Ile is located at position 45, arginine of Gln48Arg is located at position 64, serine of Tyr51Ser is located at position 67, glutamic acid of Val117Glu is located at position 133, and serine of Phe171Ser is located at position 187.
(D) FcR11
Phe29Ile, Gln48Arg, Tyr51Ser, Gln90Arg, Val117Glu, and Phe171Ser were selected from the amino acid substitutions involved in improving the thermal stability, which were revealed in Example 6, and these substitutions were FcR5a (Example 4 (c)). FcR11 accumulated in the above was prepared. Specifically, FcR11 was produced by introducing a mutation that caused Gln90Arg to the polynucleotide encoding FcR10.
(D-1) except that pET-FcR10 prepared in (c) was used as a template, and an oligonucleotide consisting of the sequences described in SEQ ID NO: 22 and SEQ ID NO: 53 (5′-GGCGAAATACGTTGCCGGACCAGCCTGGAGC-3 ′) was used as a PCR primer. PCR was performed in the same manner as in (a-1). The purified PCR product was designated as m11F.
(D-2) Except that pET-FcR10 prepared in (c) was used as a template, and an oligonucleotide having the sequences described in SEQ ID NO: 21 and SEQ ID NO: 54 (5′-GGTGCTCAGGCTGGTCCGCACAGAATTTC-3 ′) was used as a PCR primer, PCR was performed in the same manner as (a-1). The purified PCR product was designated as m11R.
(D-3) After mixing the two types of PCR products (m11F, m11R) obtained in (d-1) and (d-2), PCR was performed in the same manner as in (a-3). And m11R were linked. The obtained PCR product was designated as m11p.
(D-4) A method similar to (a-4), using the PCR product m11p obtained in (d-3) as a template and an oligonucleotide comprising the sequences described in SEQ ID NO: 21 and SEQ ID NO: 22 as PCR primers PCR was performed. This produced a polynucleotide encoding FcR11.
(D-5) After purifying the polynucleotide obtained in (d-4), digested with restriction enzymes NcoI and HindIII, and previously digested with restriction enzymes NcoI and HindIII (Japanese Patent Laid-Open No. 2011-206046) Was used to transform Escherichia coli BL21 (DE3) strain.
(D-6) The obtained transformant was cultured in an LB medium supplemented with 50 μg / mL kanamycin. A polynucleotide encoding FcR11, which is a polypeptide in which amino acids are substituted at 6 positions on FcR5a (11 positions relative to a wild-type Fc-binding protein) by extracting a plasmid from the collected microbial cells (transformants) Plasmid pET-FcR11 containing was obtained.
(D-7) The nucleotide sequence of pET-FcR11 was analyzed in the same manner as in Example 1 (5).
 シグナル配列およびポリヒスチジンタグを付加したFcR11のアミノ酸配列を配列番号55に、前記FcR11をコードするポリヌクレオチドの配列を配列番号56に示す。なお、配列番号55において、1番目のメチオニン(Met)から26番目のアラニン(Ala)までがMalEシグナルペプチドであり、27番目のリジン(Lys)から32番目のメチオニン(Met)までがリンカー配列であり、33番目のグリシン(Gly)から208番目のグルタミン(Gln)までがFcR11のアミノ酸配列(配列番号1の17番目から192番目までの領域に相当)、209番目から210番目までのグリシン(Gly)がリンカー配列であり、211番目から216番目のヒスチジン(His)がタグ配列である。また配列番号55において、Phe29Ileのイソロイシンは45番目、Gln48Argのアルギニンは64番目、Tyr51Serのセリンは67番目、Gln90Argのアルギニンは106番目、Val117Gluのグルタミン酸は133番目、Phe171Serのセリンは187番目の位置にそれぞれ存在する。 The amino acid sequence of FcR11 to which a signal sequence and a polyhistidine tag are added is shown in SEQ ID NO: 55, and the sequence of the polynucleotide encoding the FcR11 is shown in SEQ ID NO: 56. In SEQ ID NO: 55, the first methionine (Met) to the 26th alanine (Ala) are MalE signal peptides, and the 27th lysine (Lys) to the 32nd methionine (Met) are linker sequences. Yes, from the 33rd glycine (Gly) to the 208th glutamine (Gln) is the amino acid sequence of FcR11 (corresponding to the 17th to 192nd region of SEQ ID NO: 1), the 209th to 210th glycine (Gly) ) Is a linker sequence, and 211 to 216th histidine (His) is a tag sequence. In SEQ ID NO: 55, isoleucine of Phe29Ile is at position 45, arginine of Gln48Arg is position 64, serine of Tyr51Ser is position 67, arginine of Gln90Arg is position 106, glutamic acid of Val117Glu is position 133, and serine of Phe171Ser is position 187. Each exists.
 実施例8 Fc結合性タンパク質の酸安定性評価
(1)実施例1で作製した野生型Fc結合性タンパク質、実施例6で選択したFc結合性タンパク質(FcR7a)、および実施例7で作製したFc結合性タンパク質(FcR8、FcR9、FcR10、FcR11)を発現する形質転換体を、それぞれ50μg/mLのカナマイシンを含む3mLの2YT液体培地に接種し、37℃で一晩、好気的に振とう培養することで前培養を行なった。
(2)50μg/mLのカナマイシンを添加した20mLの2YT液体培地(ペプトン16g/L、酵母エキス10g/L、塩化ナトリウム5g/L)に前培養液を200μL接種し、37℃で好気的に振とう培養を行なった。
(3)培養開始1.5時間後、培養温度を20℃に変更して30分間振とう培養した。その後、終濃度0.01mMとなるようIPTGを添加し、引き続き20℃で一晩、好気的に振とう培養した。
(4)培養終了後、遠心分離により集菌し、BugBuster Protein extraction kit(タカラバイオ製)を用いてタンパク質抽出液を調製した。
(5)(4)で調製したタンパク質抽出液中の野生型Fc結合性タンパク質、FcR7a、FcR8、FcR9、FcR10およびFcR11の抗体結合活性を、実施例3(4)に記載のELISA法を用いて測定した。この時、市販のFcγRIIIaの細胞外領域(R&Dテクノロジーズ製:4325-FC-050)を用いて検量線を作製し、濃度測定を行なった。
(6)各Fc結合性タンパク質の濃度が30μg/mLになるよう純水で希釈後、前記希釈した溶液100μLと0.1Mのグリシン塩酸緩衝液(pH3.0)200μLとを混合し、30℃で2時間静置した。
(7)グリシン塩酸緩衝液(pH3.0)による酸処理を行なった後のタンパク質の抗体結合活性と、前記酸処理を行なわなかったときのタンパク質の抗体結合活性を、実施例3(4)に記載のELISA法によって測定した。その後、酸処理を行なった場合の抗体結合活性を、酸処理を行なわなかったときの抗体結合活性で除することで、残存活性を算出した。
Example 8 Evaluation of acid stability of Fc binding protein (1) Wild type Fc binding protein prepared in Example 1, Fc binding protein selected in Example 6 (FcR7a), and Fc prepared in Example 7 Transformants expressing binding proteins (FcR8, FcR9, FcR10, FcR11) are inoculated into 3 mL of 2YT liquid medium each containing 50 μg / mL kanamycin and cultured aerobically at 37 ° C. overnight. Thus, preculture was performed.
(2) Inoculate 200 μL of the precultured solution in 20 mL of 2YT liquid medium (peptone 16 g / L, yeast extract 10 g / L, sodium chloride 5 g / L) supplemented with 50 μg / mL kanamycin, and aerobically at 37 ° C. Shaking culture was performed.
(3) 1.5 hours after the start of culture, the culture temperature was changed to 20 ° C., and the culture was shaken for 30 minutes. Thereafter, IPTG was added to a final concentration of 0.01 mM, followed by aerobic shaking culture at 20 ° C. overnight.
(4) After culturing, the cells were collected by centrifugation, and a protein extract was prepared using BugBuster Protein extraction kit (Takara Bio).
(5) Antibody binding activities of the wild-type Fc-binding proteins, FcR7a, FcR8, FcR9, FcR10, and FcR11 in the protein extract prepared in (4) were determined using the ELISA method described in Example 3 (4). It was measured. At this time, a calibration curve was prepared using the extracellular region of commercially available FcγRIIIa (R & D Technologies: 4325-FC-050), and the concentration was measured.
(6) After diluting with pure water so that the concentration of each Fc-binding protein becomes 30 μg / mL, 100 μL of the diluted solution and 200 μL of 0.1 M glycine hydrochloride buffer (pH 3.0) are mixed, and 30 ° C. And left for 2 hours.
(7) Example 3 (4) shows the antibody binding activity of the protein after acid treatment with glycine hydrochloride buffer (pH 3.0) and the antibody binding activity of the protein without acid treatment. It was measured by the described ELISA method. Thereafter, the residual activity was calculated by dividing the antibody binding activity when acid treatment was performed by the antibody binding activity when acid treatment was not performed.
 結果を表9に示す。今回評価したFc結合性タンパク質(FcR7a、FcR8、FcR9、FcR10、FcR11)は、野生型Fc結合性タンパク質と比較し残存活性が高かった。このことから、当該改良Fc結合性タンパク質の酸安定性が野生型に比べて向上していることが確認された。 The results are shown in Table 9. The Fc binding proteins evaluated this time (FcR7a, FcR8, FcR9, FcR10, FcR11) had higher residual activity than the wild type Fc binding proteins. From this, it was confirmed that the acid stability of the improved Fc-binding protein is improved as compared with the wild type.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 実施例9 システインタグを付加したFcR5a(FcR5aCys)の作製
(1)実施例4(c)で作製したpET-FcR5aを鋳型としてPCRを実施した。当該PCRにおけるプライマーは、配列番号21および配列番号57(5’-CCCAAGCTTATCCGCAGGTATCGTTGCGGCACCCTTGGGTAATGGTAATATTCACGGTCTCGCTGC-3’)に記載の配列からなるオリゴヌクレオチドを用いた。PCRは、表2に示す組成の反応液を調製後、当該反応液を98℃で5分熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル繰り返すことで実施した。
(2)(1)で得られたポリヌクレオチドを精製し、制限酵素NcoIとHindIIIで消化後、あらかじめ制限酵素NcoIとHindIIIで消化した発現ベクターpETMalE(特開2011-206046号公報)にライゲーションし、当該ライゲーション産物を用いて大腸菌BL21(DE3)株を形質転換した。
(3)得られた形質転換体を50μg/mLのカナマイシンを含むLB培地にて培養後、QIAprep Spin Miniprep kit(キアゲン製)を用いて、発現ベクターpET-FcR5aCysを抽出した。
(4)pET-FcR5aCysのヌクレオチド配列の解析を、実施例1(5)と同様の方法で行なった。発現ベクターpET-FcR5aCysで発現されるポリペプチドのアミノ酸配列を配列番号58に、当該ポリペプチドをコードするポリヌクレオチドの配列を配列番号59にそれぞれ示す。なお配列番号58において、1番目のメチオニン(Met)から26番目のアラニン(Ala)までがMalEシグナルペプチドであり、27番目のリジン(Lys)から32番目のメチオニン(Met)までがリンカー配列であり、33番目のグリシン(Gly)から208番目のグルタミン(Gln)までがFcR5aのアミノ酸配列(配列番号1の17番目から192番目までの領域に相当)、209番目のグリシン(Gly)から216番目のグリシン(Gly)までがシステインタグ配列である。
Example 9 Preparation of FcR5a (FcR5aCys) Added with Cysteine Tag (1) PCR was performed using pET-FcR5a prepared in Example 4 (c) as a template. As a primer in the PCR, an oligonucleotide having the sequence described in SEQ ID NO: 21 and SEQ ID NO: 57 (5′-CCCAAGCTTATCCGCAGGTATCGTTGCGGCACCCTTGGGTAATGGTAATATTCACGGTCTCGCTGC-3 ′) was used. In PCR, after preparing a reaction solution having the composition shown in Table 2, the reaction solution was heat-treated at 98 ° C. for 5 minutes, first step at 98 ° C. for 10 seconds, second step at 55 ° C. for 5 seconds, and at 72 ° C. The reaction with the third step of 1 minute as one cycle was repeated 30 times.
(2) The polynucleotide obtained in (1) is purified, digested with restriction enzymes NcoI and HindIII, and then ligated to an expression vector pETmalE (Japanese Patent Laid-Open No. 2011-206046) previously digested with restriction enzymes NcoI and HindIII. Escherichia coli BL21 (DE3) strain was transformed with the ligation product.
(3) The obtained transformant was cultured in an LB medium containing 50 μg / mL kanamycin, and then the expression vector pET-FcR5aCys was extracted using QIAprep Spin Miniprep kit (Qiagen).
(4) The nucleotide sequence of pET-FcR5aCys was analyzed in the same manner as in Example 1 (5). The amino acid sequence of the polypeptide expressed by the expression vector pET-FcR5aCys is shown in SEQ ID NO: 58, and the sequence of the polynucleotide encoding the polypeptide is shown in SEQ ID NO: 59, respectively. In SEQ ID NO: 58, the first methionine (Met) to the 26th alanine (Ala) are MalE signal peptides, and the 27th lysine (Lys) to the 32nd methionine (Met) are linker sequences. From the 33rd glycine (Gly) to the 208th glutamine (Gln), the amino acid sequence of FcR5a (corresponding to the 17th to 192nd region of SEQ ID NO: 1), the 209th glycine (Gly) to the 216th Up to glycine (Gly) is the cysteine tag sequence.
 実施例10 システインタグを付加したFcR9(FcR9Cys)の作製
(1)実施例7(b)で作製したpET-FcR9を鋳型とし、配列番号21および配列番号57に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、実施例9(1)と同様の方法でPCRを行なった。
(2)実施例9(2)と同様な方法で大腸菌BL21(DE3)株を形質転換した。
(3)得られた形質転換体を実施例9(3)と同様な方法で培養後、QIAprep Spin Miniprep kit(キアゲン製)を用いて、発現ベクターpET-FcR9Cysを抽出した。
(4)pET-FcR9Cysのヌクレオチド配列の解析を、実施例1(5)と同様の方法で行なった。
Example 10 Preparation of FcR9 (FcR9Cys) Added with Cysteine Tag (1) Using the pET-FcR9 prepared in Example 7 (b) as a template, an oligonucleotide comprising the sequences described in SEQ ID NO: 21 and SEQ ID NO: 57 was subjected to PCR. PCR was performed in the same manner as in Example 9 (1) except that primers were used.
(2) E. coli BL21 (DE3) strain was transformed by the same method as in Example 9 (2).
(3) After the obtained transformant was cultured in the same manner as in Example 9 (3), the expression vector pET-FcR9Cys was extracted using QIAprep Spin Miniprep kit (Qiagen).
(4) The nucleotide sequence of pET-FcR9Cys was analyzed in the same manner as in Example 1 (5).
 発現ベクターpET-FcR9Cysで発現されるポリペプチドのアミノ酸配列を配列番号60に、当該ポリペプチドをコードするポリヌクレオチドの配列を配列番号61に、それぞれ示す。なお配列番号60において、1番目のメチオニン(Met)から26番目のアラニン(Ala)までがMalEシグナルペプチドであり、27番目のリジン(Lys)から32番目のメチオニン(Met)までがリンカー配列であり、33番目のグリシン(Gly)から208番目のグルタミン(Gln)までがFcR9のアミノ酸配列(配列番号1の17番目から192番目までの領域に相当)、209番目のグリシン(Gly)から216番目のグリシン(Gly)までがシステインタグ配列である。 The amino acid sequence of the polypeptide expressed by the expression vector pET-FcR9Cys is shown in SEQ ID NO: 60, and the sequence of the polynucleotide encoding the polypeptide is shown in SEQ ID NO: 61, respectively. In SEQ ID NO: 60, the first methionine (Met) to the 26th alanine (Ala) are MalE signal peptides, and the 27th lysine (Lys) to the 32nd methionine (Met) are linker sequences. From the 33rd glycine (Gly) to the 208th glutamine (Gln), the amino acid sequence of FcR9 (corresponding to the 17th to 192nd region of SEQ ID NO: 1), the 209th glycine (Gly) to the 216th Up to glycine (Gly) is the cysteine tag sequence.
 実施例11 FcR5aCysの調製
(1)実施例9で作製したFcR5aCysを発現する形質転換体を2Lのバッフルフラスコに入った50μg/mLのカナマイシンを含む400mLの2YT液体培地(ペプトン16g/L、酵母エキス10g/L、塩化ナトリウム5g/L)に接種し、37℃で一晩、好気的に振とう培養することで前培養を行なった。
(2)グルコース10g/L、酵母エキス20g/L、リン酸三ナトリウム十二水和物3g/L、リン酸水素二ナトリウム十二水和物9g/L、塩化アンモニウム1g/Lおよび硫酸カナマイシン50mg/Lを含む液体培地1.8Lに、(1)の培養液180mLを接種し、3L発酵槽(バイオット製)を用いて本培養を行なった。温度30℃、pH6.9から7.1、通気量1VVM、溶存酸素濃度30%飽和濃度の条件に設定し、本培養を開始した。pHの制御には酸として50%リン酸、アルカリとして14%アンモニア水をそれぞれ使用し、溶存酸素の制御は撹拌速度を変化させることで制御し、撹拌回転数は下限500rpm、上限1000rpmに設定した。培養開始後、グルコース濃度が測定できなくなった時点で、流加培地(グルコース248.9g/L、酵母エキス83.3g/L、硫酸マグネシウム七水和物7.2g/L)を溶存酸素(DO)により制御しながら加えた。
(3)菌体量の目安として600nmの吸光度(OD600nm)が約150に達したところで培養温度を25℃に下げ、設定温度に到達したことを確認した後、終濃度が0.5mMになるようIPTGを添加し、引き続き25℃で培養を継続した。
(4)培養開始から約48時間後に培養を停止し、培養液を4℃で8000rpm、20分間の遠心分離により菌体を回収した。
(5)回収した菌体を20mMのトリス塩酸緩衝液(pH7.0)に5mL/1g(菌体)となるように懸濁し、超音波発生装置(インソネーター201M(商品名)、久保田商事製)を用いて、4℃で約10分間、約150Wの出力で菌体を破砕した。菌体破砕液は4℃で20分間、8000rpmの遠心分離を2回行ない、上清を回収した。
(6)(5)で得られた上清を、あらかじめ20mMのトリス塩酸緩衝液(pH7.0)で平衡化した140mLのTOYOPEARL CM-650M(東ソー製)を充填したVL32×250カラム(メルクミリポア製)に流速5mL/分でアプライした。平衡化に用いた緩衝液で洗浄後、0.5Mの塩化ナトリウムを含む20mMのトリス塩酸緩衝液(pH7.0)で溶出した。
(7)(6)で得られた溶出液を、あらかじめ150mMの塩化ナトリウムを含む20mMのトリス塩酸緩衝液(pH7.4)で平衡化したIgGセファロース(GEヘルスケア製)90mLを充填したXK26/20カラムカラム(GEヘルスケア製)にアプライした。平衡化に用いた緩衝液で洗浄後、0.1Mのグリシン塩酸緩衝液(pH3.0)で溶出した。なお溶出液は、溶出液量の1/4量の1Mトリス塩酸緩衝液(pH8.0)を加えることでpHを中性付近に戻した。
Example 11 Preparation of FcR5aCys (1) 400 mL of 2YT liquid medium containing 50 μg / mL kanamycin (peptone 16 g / L, yeast extract) containing the transformant expressing FcR5aCys prepared in Example 9 in a 2 L baffle flask 10 g / L, sodium chloride 5 g / L), and precultured by aerobic shaking culture at 37 ° C. overnight.
(2) Glucose 10 g / L, yeast extract 20 g / L, trisodium phosphate dodecahydrate 3 g / L, disodium hydrogen phosphate dodecahydrate 9 g / L, ammonium chloride 1 g / L and kanamycin sulfate 50 mg The liquid culture medium 1.8L containing / L was inoculated with 180 mL of the culture solution of (1), and main culture was performed using a 3 L fermenter (product of Biot). The main culture was started under the conditions of a temperature of 30 ° C., a pH of 6.9 to 7.1, an aeration rate of 1 VVM, and a dissolved oxygen concentration of 30% saturation. The pH was controlled by using 50% phosphoric acid as the acid and 14% ammonia water as the alkali. The dissolved oxygen was controlled by changing the stirring speed, and the stirring speed was set at the lower limit of 500 rpm and the upper limit of 1000 rpm. . When the glucose concentration could not be measured after the start of culture, fed-batch medium (glucose 248.9 g / L, yeast extract 83.3 g / L, magnesium sulfate heptahydrate 7.2 g / L) was dissolved in dissolved oxygen (DO ) Was added while controlling.
(3) When the absorbance at 600 nm (OD 600 nm) reaches about 150 as a measure of the amount of bacterial cells, the culture temperature is lowered to 25 ° C., and after confirming that the set temperature has been reached, the final concentration is 0.5 mM. IPTG was added, and the culture was continued at 25 ° C.
(4) The culture was stopped about 48 hours after the start of the culture, and the cells were collected by centrifugation at 8000 rpm for 20 minutes at 4 ° C.
(5) The collected cells are suspended in 20 mM Tris-HCl buffer (pH 7.0) so as to be 5 mL / 1 g (cells), and an ultrasonic generator (Insonator 201M (trade name), manufactured by Kubota Corporation) ) Was used to disrupt the cells at an output of about 150 W for about 10 minutes at 4 ° C. The cell disruption solution was centrifuged twice at 8000 rpm for 20 minutes at 4 ° C., and the supernatant was collected.
(6) The supernatant obtained in (5) is a VL32 × 250 column (Merck Millipore) packed with 140 mL of TOYOPEARL CM-650M (manufactured by Tosoh) equilibrated in advance with 20 mM Tris-HCl buffer (pH 7.0). Manufactured at a flow rate of 5 mL / min. After washing with the buffer used for equilibration, elution was performed with 20 mM Tris-HCl buffer (pH 7.0) containing 0.5 M sodium chloride.
(7) XK26 / filled with 90 mL of IgG Sepharose (manufactured by GE Healthcare) equilibrated with 20 mM Tris-HCl buffer (pH 7.4) containing 150 mM sodium chloride in advance. This was applied to a 20 column column (manufactured by GE Healthcare). After washing with the buffer used for equilibration, elution was performed with 0.1 M glycine hydrochloride buffer (pH 3.0). The eluate was returned to near neutrality by adding 1/4 volume of 1M Tris-HCl buffer (pH 8.0).
 前記精製により、高純度のFcR5aCysを約20mg得た。 About 20 mg of high-purity FcR5aCys was obtained by the purification.
 実施例12 FcR5a固定化ゲルの作製と抗体分離
(1)2mLの分離剤用親水性ビニルポリマー(東ソー製:トヨパール)の表面の水酸基をヨードアセチル基で活性化後、実施例11で調製したFcR5aCysを4mg反応させることにより、FcR5a固定化ゲルを得た。
(2)(1)で調製したFcR5a固定化ゲル0.5mLをφ4.6mm×75mmのステンレスカラムに充填した。
(3)FcR5a固定化ゲルを充填したカラムをAKTA Explorer(GEヘルスケア製)につなげ、20mMの酢酸緩衝液(pH4.6)で平衡化した。
(4)20mMの酢酸緩衝液(pH4.6)で0.5mg/mLに希釈したモノクローナル抗体(リツキサン、全薬工業製)を流速0.2mL/minにて0.4mLアプライした。
(5)流速0.2mL/minのまま平衡化緩衝液で25分洗浄後、20mMのグリシン塩酸緩衝液(pH3.0)によるpHグラジエント(25分で20mMのグリシン塩酸緩衝液(pH3.0)が100%となるグラジエント)で吸着したモノクローナル抗体を溶出した。
Example 12 Preparation of FcR5a Immobilized Gel and Antibody Separation (1) FcR5aCys prepared in Example 11 after activating the hydroxyl group on the surface of 2 mL of hydrophilic vinyl polymer for separation agent (Tosoh Pearl: Toyopearl) with iodoacetyl group Was reacted to obtain an FcR5a-immobilized gel.
(2) 0.5 mL of FcR5a-immobilized gel prepared in (1) was packed in a stainless steel column of φ4.6 mm × 75 mm.
(3) A column packed with FcR5a-immobilized gel was connected to AKTA Explorer (manufactured by GE Healthcare) and equilibrated with 20 mM acetate buffer (pH 4.6).
(4) A monoclonal antibody (Rituxan, manufactured by Zenyaku Kogyo Co., Ltd.) diluted to 0.5 mg / mL with 20 mM acetate buffer (pH 4.6) was applied at a flow rate of 0.2 mL / min.
(5) After washing with equilibration buffer for 25 minutes with a flow rate of 0.2 mL / min, pH gradient with 20 mM glycine hydrochloride buffer (pH 3.0) (20 mM glycine hydrochloride buffer (pH 3.0) over 25 minutes) The adsorbed monoclonal antibody was eluted with a gradient of 100%.
 結果(溶出パターン)を図2に示す。モノクローナル抗体はFcR5aと相互作用するため、ゲルろ過クロマトグラフイーのような単一のピークではなく、複数のピークに分離された。 The results (elution pattern) are shown in FIG. Since the monoclonal antibody interacts with FcR5a, it was separated into multiple peaks rather than a single peak as in gel filtration chromatography.
 実施例13 FcR5a固定化ゲルで分離した抗体のADCC(抗体依存性細胞傷害作用)活性測定
(1)実施例12に記載の溶出条件でモノクローナル抗体を分離し、図2に記載の溶出パターン中のフラクションA(FrA)およびフラクションB(FrB)の部分を分取した。
(2)分取したFrAおよびFrBを限外ろ過膜(メルクミリポア社)で濃縮しながら、PBS(Phosphate Buffered Saline)(pH7.4)に緩衝液を交換した。
(3)濃縮、緩衝液交換したFrAおよびFrBに含まれる抗体、ならびに分離前のモノクローナル抗体の濃度を280nmの吸光度で測定した。
(4)以下に示す方法で、FrAおよびFrBに含まれる抗体が有するADCC活性を測定した。
(4-1)1.4mLのLow IgG Serumと33.6mLのRPMI1640培地とを混合して調製したADCC Assay Bufferを用いて、FrAおよびFrBに含まれる抗体ならびに分離前のモノクローナル抗体を3μg/mLから1/3希釈で8段階の希釈系列を調製した。
(4-2)Raji細胞をADCC Assay Bufferにて約5×10cells/mLに調製し、96wellプレート(3917:コーニング社)に25μL/wellで加えた。
(4-3)Raji細胞を加えたwellに(4-1)で調製したフラクションA、フラクションB、分離前のモノクローナル抗体、ブランク(ADCC Assay Bufferのみ)を25μL/well加えた。
(4-4)Effector細胞(プロメガ製)をADCC Assay Bufferにて約3.0×10cells/mLに調製し、Raji細胞および抗体を加えたwellに25μL/wellで加えた。その後、COインキュベーター(5%CO、37℃)にて6時間静置した。
(4-5)96wellプレートを室温で5分から30分静置した後、Luciferase Assay Reagent(プロメガ製)を75μL/wellで加えた。室温で30分反応させたのち、GloMax Multi Detection System(プロメガ製)で発光を測定した。
Example 13 Measurement of ADCC (Antibody Dependent Cytotoxic Activity) Activity of Antibody Separated on FcR5a Immobilized Gel (1) Monoclonal antibodies were separated under the elution conditions described in Example 12, and the elution pattern shown in FIG. Fraction A (FrA) and fraction B (FrB) were fractionated.
(2) While concentrating the fractionated FrA and FrB with an ultrafiltration membrane (Merck Millipore), the buffer solution was exchanged with PBS (Phosphate Buffered Saline) (pH 7.4).
(3) The concentration of the antibody contained in the concentrated and buffer exchanged FrA and FrB, and the monoclonal antibody before separation was measured by absorbance at 280 nm.
(4) The ADCC activity of the antibodies contained in FrA and FrB was measured by the following method.
(4-1) Using ADCC Assay Buffer prepared by mixing 1.4 mL of Low IgG Serum and 33.6 mL of RPMI1640 medium, the antibody contained in FrA and FrB and the monoclonal antibody before separation were 3 μg / mL. 8 dilution series were prepared with 1/3 dilution.
(4-2) Raji cells were prepared to about 5 × 10 5 cells / mL with ADCC Assay Buffer and added to a 96-well plate (3917: Corning) at 25 μL / well.
(4-3) Fraction A, fraction B prepared in (4-1), monoclonal antibody before separation, and blank (ADCC Assay Buffer only) 25 μL / well were added to the well to which Raji cells were added.
(4-4) Effector cells (manufactured by Promega) were prepared to about 3.0 × 10 5 cells / mL with ADCC Assay Buffer, and added to wells containing Raji cells and antibodies at 25 μL / well. Then, it was left still for 6 hours in a CO 2 incubator (5% CO 2 , 37 ° C.).
(4-5) After allowing the 96-well plate to stand at room temperature for 5 to 30 minutes, Luciferase Assay Reagent (manufactured by Promega) was added at 75 μL / well. After reacting at room temperature for 30 minutes, luminescence was measured with a GloMax Multi Detection System (manufactured by Promega).
 実施例12に記載の溶出条件で分取したFrAおよびFrBならびに分離前のモノクローナル抗体の発光強度を比較した結果を図3に示す。なお図3の結果は、測定した発光強度からブランクの発光強度を引いた値を示しており、発光強度が高いほど、ADCC活性が高いことを意味している。 FIG. 3 shows the results of comparing the luminescence intensity of FrA and FrB fractionated under the elution conditions described in Example 12 and the monoclonal antibody before separation. The result of FIG. 3 shows a value obtained by subtracting the emission intensity of the blank from the measured emission intensity. The higher the emission intensity, the higher the ADCC activity.
 FrAは分離前のモノクローナル抗体とほぼ同程度の発光強度であることからADCC活性はほぼ同等といえる。一方、FrBは分離前のモノクローナル抗体と比べて約3.2倍、FrAに比べても2.5倍に向上していた。つまり、FrBは分離前のモノクローナル抗体およびFrAと比べてADCC活性が高いことが分かる。 Since FrA has almost the same luminescence intensity as that of the monoclonal antibody before separation, it can be said that the ADCC activity is almost the same. On the other hand, FrB was improved by about 3.2 times compared with the monoclonal antibody before separation and 2.5 times compared with FrA. That is, it can be seen that FrB has higher ADCC activity than the monoclonal antibody and FrA before separation.
 実施例14 FcR5a固定化ゲルで分離した抗体の糖鎖解析
(1)実施例13(1)で分取したFrAおよびFrB、ならびに分離前のモノクローナル抗体を100℃、10分の熱処理により変性後、グリコアミダーゼA/ペプシンおよびプロナーゼで順次処理し、ゲルろ過法による精製操作を経て糖鎖画分を取得した。
(2)(1)で得られた糖鎖をエバポレーターにて濃縮・乾燥後、酢酸溶媒下、2-アミノピリジン、次いでジメチルアミンボランを順次作用させて蛍光ラベル化糖鎖とし、ゲルろ過法により精製した。
(3)(2)で得られた蛍光ラベル化糖鎖を陰イオン交換カラム(TSKgel DEAE-5PW、φ7.5mm×7.5cm:東ソー製)にて、中性糖鎖画分とモノシアリル化糖鎖画分に分離した。
(4)(3)で得られた中性糖鎖画分とモノシアリル化糖鎖画分をODSカラムを用いて、個々の糖鎖に単離した。MALDI-TOF-MS分析により単離した糖鎖の分子量情報を取得後、ODSカラムクロマトグラフのリテンションタイムと照らし合わせて糖鎖構造を帰属した。
Example 14 Sugar chain analysis of antibody separated by FcR5a-immobilized gel (1) FrA and FrB fractionated in Example 13 (1) and the monoclonal antibody before separation were denatured by heat treatment at 100 ° C. for 10 minutes, Glycoamidase A / pepsin and pronase were sequentially treated, and a sugar chain fraction was obtained through purification by gel filtration.
(2) After concentrating and drying the sugar chain obtained in (1) with an evaporator, 2-aminopyridine and then dimethylamine borane are successively acted on in an acetic acid solvent to form a fluorescent labeled sugar chain. Purified.
(3) Using the anion exchange column (TSKgel DEAE-5PW, φ7.5 mm × 7.5 cm: manufactured by Tosoh), the neutral sugar chain fraction and the monosialylated sugar were obtained by using the fluorescently labeled sugar chain obtained in (2). Separated into chain fractions.
(4) The neutral sugar chain fraction and monosialylated sugar chain fraction obtained in (3) were isolated into individual sugar chains using an ODS column. After obtaining the molecular weight information of the sugar chain isolated by MALDI-TOF-MS analysis, the sugar chain structure was assigned in comparison with the retention time of the ODS column chromatograph.
 帰属した糖鎖構造(N1からN6、M1、M2およびD1)を図4に、中性糖鎖の組成比を表10に、モノシアリル化およびジシアリル化糖鎖の組成比を表11にそれぞれ示す。糖鎖構造N4+N4’およびN6を有した抗体は、分離前およびFrAと比較してFrBで増加していた。一方、N1、N2+N3’、N3およびN5を有した抗体は、分離前およびFrAと比較してFrBで減少していた。すなわちN4+N4’およびN6糖鎖を持つ抗体はFcR5aと強く結合し、N1、N2+N3’、N3およびN5を有した抗体はFcR5aとの結合が弱いことがわかる。またM1、M2およびD1を有した抗体は、分離前およびFrAと比較してFrBで増加していた。すなわちM1、M2およびD1糖鎖を持つ抗体はFcR5aと強く結合することがわかる。 The assigned sugar chain structures (N1 to N6, M1, M2 and D1) are shown in FIG. 4, the composition ratio of neutral sugar chains is shown in Table 10, and the composition ratio of monosialylated and disialylated sugar chains is shown in Table 11. Antibodies with sugar chain structures N4 + N4 'and N6 increased with FrB before separation and compared to FrA. On the other hand, antibodies with N1, N2 + N3 ', N3 and N5 were reduced in FrB before separation and compared to FrA. That is, it can be seen that antibodies having N4 + N4 ′ and N6 sugar chains strongly bind to FcR5a, and antibodies having N1, N2 + N3 ′, N3 and N5 have weak binding to FcR5a. In addition, antibodies with M1, M2 and D1 increased in FrB before separation and compared to FrA. That is, it can be seen that antibodies having M1, M2 and D1 sugar chains strongly bind to FcR5a.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 前記結果と実施例13の結果とを合わせると、分離前およびFrAと比較してFrBで増加した糖鎖構造を有する抗体はADCC活性が高いことがわかる。すなわち、FcR5a固定化ゲルは、抗体が有する糖鎖構造の違いを識別でき、かつ前記識別に基づきADCC活性の高い抗体を分離することができることがわかる。 When the above results and the results of Example 13 are combined, it can be seen that an antibody having a sugar chain structure increased by FrB before separation and FrA has higher ADCC activity. That is, it can be seen that the FcR5a-immobilized gel can identify the difference in the sugar chain structure of the antibody and can separate the antibody with high ADCC activity based on the identification.
 実施例15 FcR9固定化ゲルの作製と抗体分離
(1)実施例10で作製したFcR9Cysを発現する形質転換体を用いて、実施例11
(1)から(4)と同様な方法で培養を行なった。
(2)実施例11と同様な方法で精製し、高純度のFcR9Cysを約10mg得た。
(3)実施例12(1)と同様な方法でFcR9Cys固定化ゲルを得た後、当該ゲル0.5mLをφ4.0mm×40mmのステンレスカラムに充填した。
(4)FcR9固定化ゲルを充填したカラムを高速液体クロマトグラフィー装置(東ソー製)につなげ、20mMの酢酸緩衝液(pH4.5)で平衡化した。
(5)PBS(Phosphate Buffered Saline)(pH7.4)で4.0mg/mLに希釈したモノクローナル抗体(リツキサン、全薬工業製)を流速0.3mL/minにて0.15mLアプライした。
(6)流速0.3mL/minのまま平衡化緩衝液で2分洗浄後、10mMのグリシン塩酸緩衝液(pH3.0)によるpHグラジエント(38分で10mMのグリシン塩酸緩衝液(pH3.0)が100%となるグラジエント)で吸着したモノクローナル抗体を溶出した。
Example 15 Preparation of FcR9-immobilized gel and antibody separation (1) Using the transformant expressing FcR9Cys prepared in Example 10, Example 11
Incubation was carried out in the same manner as (1) to (4).
(2) Purification was performed in the same manner as in Example 11 to obtain about 10 mg of high-purity FcR9Cys.
(3) After obtaining an FcR9Cys-immobilized gel in the same manner as in Example 12 (1), 0.5 mL of the gel was packed into a stainless steel column of φ4.0 mm × 40 mm.
(4) A column packed with FcR9-immobilized gel was connected to a high performance liquid chromatography apparatus (manufactured by Tosoh Corporation) and equilibrated with 20 mM acetate buffer (pH 4.5).
(5) A monoclonal antibody (Rituxan, manufactured by Zenyaku Kogyo Co., Ltd.) diluted to 4.0 mg / mL with PBS (Phosphate Buffered Saline) (pH 7.4) was applied at 0.15 mL at a flow rate of 0.3 mL / min.
(6) After washing with equilibration buffer for 2 minutes with a flow rate of 0.3 mL / min, pH gradient with 10 mM glycine hydrochloride buffer (pH 3.0) (10 mM glycine hydrochloride buffer (pH 3.0) over 38 minutes) The adsorbed monoclonal antibody was eluted with a gradient of 100%.
 結果(溶出パターン)を図5に示す。モノクローナル抗体はFcR9と相互作用するため、ゲルろ過クロマトグラフィーのような単一のピークではなく、複数のピークに分離された。 The results (elution pattern) are shown in FIG. Since the monoclonal antibody interacts with FcR9, it was separated into multiple peaks rather than a single peak as in gel filtration chromatography.
 実施例16 FcR9固定化ゲルで分離した抗体のADCC活性測定
(1)実施例15の溶出条件でモノクローナル抗体を分離し、図5に記載の溶出パターン中のフラクションA(FrA)、フラクションB(FrB)およびフラクションC(FrC)の部分を分取した。
(2)FrA、FrBおよびFrCに含まれる抗体、ならびに分離前のモノクローナル抗体の濃度を280nmの吸光度で測定し、実施例13(4)と同様な方法でADCC活性を測定した。
Example 16 ADCC activity measurement of antibody separated on FcR9-immobilized gel (1) Monoclonal antibodies were separated under the elution conditions of Example 15, and fractions A (FrA) and B (FrB) in the elution pattern shown in FIG. ) And fraction C (FrC).
(2) The concentrations of the antibody contained in FrA, FrB and FrC, and the monoclonal antibody before separation were measured by absorbance at 280 nm, and ADCC activity was measured by the same method as in Example 13 (4).
 結果を図6に示す。なお図6の結果は、測定した発光強度からブランクの発光強度を引いた値を示しており、発光強度が高いほど、ADCC活性が高いことを意味している。 The results are shown in FIG. The result of FIG. 6 shows a value obtained by subtracting the blank emission intensity from the measured emission intensity. The higher the emission intensity, the higher the ADCC activity.
 FrAおよびFrBは分離前のモノクローナル抗体よりADCC活性がやや低いといえる。一方、FrCは分離前のモノクローナル抗体と比べてADCC活性が約1.6倍に向上していた。つまり溶出の遅いFrCは溶出の早いFrAおよびFrBならびに分離前のモノクローナル抗体と比べてADCC活性が高いことがわかる。また実施例14より、本発明のFc結合性タンパク質を固定化したゲルは、抗体が有する糖鎖構造の違いを識別できることから、FrCに含まれるFcR9と強く結合する抗体は、高いADCC活性を有した糖鎖構造を有する抗体であることが示唆される。 It can be said that FrA and FrB have slightly lower ADCC activity than the monoclonal antibody before separation. On the other hand, FrC improved ADCC activity by about 1.6 times compared with the monoclonal antibody before separation. That is, it can be seen that FrC that is slowly eluted has higher ADCC activity than FrA and FrB that are eluted quickly and the monoclonal antibody before separation. Further, from Example 14, the gel immobilized with the Fc-binding protein of the present invention can distinguish the difference in the sugar chain structure of the antibody. Therefore, an antibody that strongly binds to FcR9 contained in FrC has high ADCC activity. It is suggested that the antibody has a sugar chain structure.
 実施例17 FcR9への変異導入およびライブラリーの作製
 実施例7(b)で作製したFcR9をコードするポリヌクレオチド部分に、エラープローンPCRによりランダムに変異導入を施した。
(1)鋳型として実施例7(b)で作製した発現ベクターpET-FcR9を用いてエラープローンPCRを行なった。エラープローンPCRは、pET-FcR9を鋳型とし、配列番号23および配列番号24に記載の配列からなるオリゴヌクレオチドをプライマーとした他は表3に示す組成と同様の反応液を調製後、当該反応液を95℃で2分間熱処理し、95℃で30秒間の第1ステップ、50℃で30秒間の第2ステップ、72℃で90秒間の第3ステップを1サイクルとする反応を35サイクル行ない、最後に72℃で7分間熱処理することで行なった。この反応によりFc結合性タンパク質をコードするポリヌクレオチドに良好に変異が導入された。
(2)(1)で得られたPCR産物を精製後、制限酵素NcoIとHindIIIで消化し、あらかじめ同制限酵素で消化した発現ベクターpETMalE(特開2011-206046号公報)にライゲーションした。
(3)ライゲーション反応終了後、反応液をエレクトロポレーション法により大腸菌BL21(DE3)株に導入し、50μg/mLのカナマイシンを含むLBプレート培地で培養後、プレート上に形成したコロニーをランダム変異ライブラリーとした。
Example 17 Mutation Introduction to FcR9 and Library Preparation Mutation was randomly introduced into the polynucleotide portion encoding FcR9 prepared in Example 7 (b) by error-prone PCR.
(1) Error-prone PCR was performed using the expression vector pET-FcR9 prepared in Example 7 (b) as a template. In error-prone PCR, pET-FcR9 was used as a template, and a reaction solution having the same composition as shown in Table 3 was prepared except that oligonucleotides having the sequences shown in SEQ ID NO: 23 and SEQ ID NO: 24 were used as primers. Was subjected to a heat treatment at 95 ° C. for 2 minutes, 35 cycles of a reaction comprising a first step at 95 ° C. for 30 seconds, a second step at 50 ° C. for 30 seconds, and a third step at 72 ° C. for 90 seconds were performed for 35 cycles. The sample was heat treated at 72 ° C. for 7 minutes. By this reaction, the mutation was successfully introduced into the polynucleotide encoding the Fc binding protein.
(2) The PCR product obtained in (1) was purified, digested with restriction enzymes NcoI and HindIII, and ligated into an expression vector pETmalE (Japanese Patent Laid-Open No. 2011-206046) previously digested with the same restriction enzymes.
(3) After completion of the ligation reaction, the reaction solution was introduced into Escherichia coli BL21 (DE3) strain by electroporation, cultured in LB plate medium containing 50 μg / mL kanamycin, and the colonies formed on the plate were randomly mutated. It was rally.
 実施例18 アルカリ安定化Fc結合性タンパク質のスクリーニング
(1)実施例17で作製したランダム変異ライブラリーを実施例3(1)から(2)に記載の方法で培養することでFc結合性タンパク質を発現させた。
(2)培養後、遠心操作によって得られた、Fc結合性タンパク質を含む培養上清を純水にて10倍に希釈し、等量の60mMの水酸化ナトリウム溶液と混合し、30℃で1.5時間静置することでアルカリ処理した。その後、4倍量の1Mトリス緩衝液(pH7.0)でpHを中性付近に戻した。
(3)(2)に記載のアルカリ処理を行なったときのFc結合性タンパク質の抗体結合活性と、(2)に記載のアルカリ処理を行なわなかったときのFc結合性タンパク質の抗体結合活性を、実施例3(4)に記載のELISA法にてそれぞれ測定し、アルカリ処理を行なったときのFc結合性タンパク質の抗体結合活性を、アルカリ処理を行なわなかったときのFc結合性タンパク質の抗体結合活性で除することで、残存活性を算出した。
(4)(3)の方法で約2700株の形質転換体を評価し、その中からFcR9と比較して安定性が向上したFc結合性タンパク質を発現する形質転換体を選択した。選択した形質転換体を50μg/mLのカナマイシンを含む2YT液体培地にて培養し、QIAprep Spin Miniprep kit(キアゲン製)を用いて発現ベクターを調製した。
(5)得られた発現ベクターに挿入されたFc結合性タンパク質をコードするポリヌクレオチド領域の配列を実施例1(5)に記載の方法によりヌクレオチド配列を解析し、アミノ酸の変異箇所を特定した。
Example 18 Screening of Alkaline Stabilized Fc Binding Protein (1) The random mutation library prepared in Example 17 was cultured by the method described in Examples 3 (1) to (2) to obtain Fc binding protein. Expressed.
(2) After culturing, the culture supernatant containing Fc-binding protein obtained by centrifugation is diluted 10-fold with pure water, mixed with an equal volume of 60 mM sodium hydroxide solution, and 1 at 30 ° C. . Alkali treatment by standing for 5 hours. Thereafter, the pH was returned to near neutral with 4 volumes of 1 M Tris buffer (pH 7.0).
(3) The antibody binding activity of the Fc binding protein when the alkali treatment described in (2) is performed, and the antibody binding activity of the Fc binding protein when the alkali treatment described in (2) is not performed, The antibody binding activity of the Fc binding protein when measured by the ELISA method described in Example 3 (4) and subjected to alkali treatment, and the antibody binding activity of the Fc binding protein without alkali treatment. The residual activity was calculated by dividing by.
(4) About 2,700 strains of transformants were evaluated by the method of (3), and transformants expressing an Fc-binding protein with improved stability compared with FcR9 were selected. The selected transformant was cultured in a 2YT liquid medium containing 50 μg / mL kanamycin, and an expression vector was prepared using QIAprep Spin Miniprep kit (manufactured by Qiagen).
(5) The nucleotide sequence of the sequence of the polynucleotide region encoding the Fc binding protein inserted into the obtained expression vector was analyzed by the method described in Example 1 (5), and amino acid mutation sites were identified.
 (4)で選択した形質転換体が発現するFc結合性タンパク質の、FcR9に対するアミノ酸置換位置およびアルカリ処理後の残存活性(%)をまとめたものを表12に示す。配列番号37に記載のアミノ酸配列のうち、33番目のグリシンから208番目のグルタミンまでのアミノ酸残基を含み、かつ当該33番目から208番目までのアミノ酸残基において、Met18Ile(この表記は、配列番号1の18番目(配列番号37では34番目)のメチオニンがイソロイシンに置換されていることを表す、以下同様)、Glu21Lys、Glu21Gly、Leu23Met、Gln33Pro、Lys46Glu、Phe61Tyr、Glu64Gly、Ser65Arg、Ser68Pro、Asp77Val、Asp77Glu、Val81Met、Asp82Ala、Gln101Leu、Glu103Val、His105Arg、Glu120Val、Ser178ArgおよびAsn180Lysのいずれかのアミノ酸置換が少なくとも1つ生じているFc結合性タンパク質は、FcR9と比較しアルカリ安定性が向上しているといえる。 Table 12 shows a summary of amino acid substitution positions for FcR9 and residual activity (%) after alkali treatment of the Fc-binding protein expressed by the transformant selected in (4). Of the amino acid sequence set forth in SEQ ID NO: 37, the amino acid residue from the 33rd glycine to the 208th glutamine, and the 33rd to 208th amino acid residues, Met18Ile (this notation is SEQ ID NO: 1 represents that methionine at 18th position (34th in SEQ ID NO: 37) is substituted with isoleucine, the same applies to the following), Glu21Lys, Glu21Gly, Leu23Met, Gln33Pro, Lys46Glu, Phe61Tyr, Glu64Gly, Ser65Arg, Ser68Pro, Asp77V , Val81Met, Asp82Ala, Gln101Leu, Glu103Val, His105Arg, Glu120Val, Ser178Arg and Asn180Ly Fc binding proteins or amino acid substitutions are at least one occurs, it can be said that the alkaline stability as compared to FcR9 is improved.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 実施例19 改良Fc結合性タンパク質の作製
 実施例18で判明した、Fc結合性タンパク質のアルカリ安定性向上に関与するアミノ酸置換をFcR9に集積することで、さらなる安定性向上を図った。置換アミノ酸の集積は、主にPCRを用いて行ない、以下の(a)および(b)に示す2種類の改良Fc結合性タンパク質を作製した。
(a)FcR9に対し、さらにGlu21Gly、Leu23MetおよびSer178Argのアミノ酸置換を行なったFcR12
(b)FcR9に対し、さらにGlu21Gly、Leu23Met、Ser68ProおよびSer178Argのアミノ酸置換を行なったFcR13
 以下、各改良Fc結合性タンパク質の作製方法を詳細に説明する。
(a)FcR12
 実施例18で明らかとなった、アルカリ安定性向上に関与するアミノ酸置換の中から、Glu21Gly、Leu23MetおよびSer178Argを選択し、それらの置換をFcR9(実施例7(b))に集積したFcR12を作製した。具体的には、実施例18で得られたSer178Argの変異を含んだポリヌクレオチドに対して、Glu21GlyおよびLeu23Metを生じさせる変異導入を行なうことにより、FcR12
を作製した。    
(a-1)実施例18で取得した、FcR9にSer178Argの変異を含んだFc結合性タンパク質をコードするポリヌクレオチドを鋳型としてPCRを実施した。当該PCRにおけるプライマーは、配列番号24および配列番号62(5’-CTAGCCATGGGCATGCGTACCGGAGATATGCCGAAAGCGGAG-3’)に記載の配列からなるオリゴヌクレオチドを用いた。PCRは、鋳型とプライマー以外は表7に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行ない、最後に72℃で5分間熱処理することで行なった。増幅したPCR産物をアガロースゲル電気泳動に供し、そのゲルからQIAquick Gel Extraction kit(キアゲン製)を用いて精製した。精製したPCR産物をm12pとした。
(a-2)(a-1)で得られたm12pを制限酵素NcoIとHindIIIで消化し、あらかじめ制限酵素NcoIとHindIIIで消化した発現ベクターpETMalE(特開2011-206046号公報)にライゲーションし、これを用いて大腸菌BL21(DE3)株を形質転換した。
(a-3)得られた形質転換体を50μg/mLのカナマイシンを添加したLB培地で培養した。回収した菌体(形質転換体)からプラスミドを抽出することで、FcR9に対して3箇所(野生型Fc結合性タンパク質に対して12箇所)アミノ酸置換したポリペプチドである、FcR12をコードするポリヌクレオチドを含むプラスミドpET-FcR12を得た。
(a-4)pET-FcR12のヌクレオチド配列の解析を、実施例1(5)と同様の方法で行なった。
Example 19 Production of Improved Fc Binding Protein The stability was further improved by accumulating amino acid substitutions found in Example 18 involved in improving the alkali stability of Fc binding protein in FcR9. Accumulation of substituted amino acids was mainly performed using PCR, and two types of improved Fc-binding proteins shown in (a) and (b) below were prepared.
(A) FcR12 in which amino acid substitution of Glu21Gly, Leu23Met and Ser178Arg was further performed on FcR9
(B) FcR13 obtained by further performing amino acid substitution of Glu21Gly, Leu23Met, Ser68Pro and Ser178Arg to FcR9
Hereinafter, a method for producing each improved Fc-binding protein will be described in detail.
(A) FcR12
Glu21Gly, Leu23Met and Ser178Arg were selected from the amino acid substitutions involved in improving alkali stability, which were revealed in Example 18, and FcR12 in which these substitutions were accumulated in FcR9 (Example 7 (b)) was prepared. did. Specifically, FcR12 is obtained by introducing a mutation that causes Glu21Gly and Leu23Met to the polynucleotide containing the Ser178Arg mutation obtained in Example 18.
Was made.
(A-1) PCR was carried out using the polynucleotide obtained in Example 18 encoding Fc-binding protein containing Ser178Arg mutation in FcR9 as a template. As primers for the PCR, oligonucleotides having the sequences described in SEQ ID NO: 24 and SEQ ID NO: 62 (5′-CTAGCCATGGGGCATGCGTACCGAGATATGCCGAAAGCGGGAG-3 ′) were used. In PCR, after preparing a reaction solution having the composition shown in Table 7 except for the template and primer, the reaction solution was heat-treated at 98 ° C. for 5 minutes, the first step at 98 ° C. for 10 seconds, and the second step at 55 ° C. for 5 seconds. Step, 30 cycles of the third step of 1 minute at 72 ° C. were performed for 30 cycles, and finally heat treatment was performed at 72 ° C. for 5 minutes. The amplified PCR product was subjected to agarose gel electrophoresis, and purified from the gel using a QIAquick Gel Extraction kit (Qiagen). The purified PCR product was designated as m12p.
(A-2) m12p obtained in (a-1) was digested with restriction enzymes NcoI and HindIII, and ligated to an expression vector pETmalE (Japanese Patent Laid-Open No. 2011-206046) previously digested with restriction enzymes NcoI and HindIII. This was used to transform E. coli BL21 (DE3) strain.
(A-3) The obtained transformant was cultured in an LB medium supplemented with 50 μg / mL kanamycin. A polynucleotide encoding FcR12, which is a polypeptide in which amino acid substitution has been performed at three positions on FcR9 (12 positions relative to a wild-type Fc-binding protein) by extracting a plasmid from the collected bacterial cells (transformants) Plasmid pET-FcR12 containing was obtained.
(A-4) The nucleotide sequence of pET-FcR12 was analyzed in the same manner as in Example 1 (5).
 シグナル配列およびポリヒスチジンタグを付加したFcR12のアミノ酸配列を配列番号63に、前記FcR12をコードするポリヌクレオチドの配列を配列番号64に示す。なお配列番号63において、1番目のメチオニン(Met)から26番目のアラニン(Ala)までがMalEシグナルペプチドであり、27番目のリジン(Lys)から32番目のメチオニン(Met)までがリンカー配列であり、33番目のグリシン(Gly)から208番目のグルタミン(Gln)までがFcR12のアミノ酸配列(配列番号1の17番目から192番目までの領域に相当)、209番目から210番目までのグリシン(Gly)がリンカー配列であり、211番目から216番目のヒスチジン(His)がタグ配列である。また配列番号63において、Glu21Glyのグリシンは37番目、Leu23Metのメチオニンは39番目、Val27Gluのグルタミン酸は43番目、Phe29Ileのイソロイシンは45番目、Tyr35Asnのアスパラギンは51番目、Gln48Argのアルギニンは64番目、Phe75Leuのロイシンは91番目、Asn92Serのセリンは108番目、Val117Gluのグルタミン酸は133番目、Glu121Glyのグリシンは137番目、Phe171Serのセリンは187番目およびSer178Argのアルギニンは194番目の位置にそれぞれ存在する。
(b)FcR13
 実施例18で明らかとなった、アルカリ安定性向上に関与するアミノ酸置換の中から、Glu21Gly、Leu23Met、Ser68ProおよびSer178Argを選択し、それらの置換をFcR9(実施例7(b))に集積したFcR13を作製した。具体的には、FcR12をコードするポリヌクレオチドに対して、Ser68Proを生じさせる変異導入を行なうことにより、FcR13を作製した。
(b-1)(a)で作製した、pET-FcR12を鋳型とし、配列番号24および配列番号65(5’-CACAATGAAAGCCTGATTCCCAGCCAGGCG-3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、表5に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行ない、最後に72℃で5分間熱処理することで行なった。増幅したPCR産物をアガロースゲル電気泳動に供し、そのゲルからQIAquick Gel Extraction kit(キアゲン製)を用いて精製した。精製したPCR産物をm13Fとした。
(b-2)(a)で作製したpET-FcR12を鋳型とし、配列番号62および配列番号66(5’-GTAGCTGCTCGCCTGGCTGGGAATCAGGCT-3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、(b-1)と同様の方法でPCRを行なった。精製したPCR産物をm13Rとした。
(b-3)(b-1)および(b-2)で得られた2種類のPCR産物(m13F、m13R)を混合し、表6に示す組成の反応液を調製した。当該反応液を98℃で5分間熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を5サイクル行ない、最後に72℃で5分間熱処理するPCRを行ない、m13Fとm13Rを連結した。得られたPCR産物をm13pとした。
(b-4)(b-3)で得られたPCR産物m13pを鋳型とし、配列番号23および配列番号24に記載の配列からなるオリゴヌクレオチドをPCRプライマーとして、PCRを行なった。PCRは、表7に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行なった。これによりFcR12に1箇所アミノ酸置換を導入したFcR13をコードするポリヌクレオチドを作製した。
(b-5)(b-4)で得られたポリヌクレオチドを精製後、制限酵素NcoIとHindIIIで消化し、あらかじめ制限酵素NcoIとHindIIIで消化した発現ベクターpETMalE(特開2011-206046号公報)にライゲーションし、これを用いて大腸菌BL21(DE3)株を形質転換した。
(b-6)得られた形質転換体を50μg/mLのカナマイシンを添加したLB培地で培養した。回収した菌体(形質転換体)からプラスミドを抽出することで、FcR9に対して4箇所(野生型Fc結合性タンパク質に対して13箇所)アミノ酸置換したポリペプチドである、FcR13をコードするポリヌクレオチドを含むプラスミドpET-FcR13を得た。
(b-7)pET-FcR13のヌクレオチド配列の解析を、実施例1(5)と同様の方法で行なった。
The amino acid sequence of FcR12 to which a signal sequence and a polyhistidine tag are added is shown in SEQ ID NO: 63, and the sequence of the polynucleotide encoding the FcR12 is shown in SEQ ID NO: 64. In SEQ ID NO: 63, the first methionine (Met) to the 26th alanine (Ala) are MalE signal peptides, and the 27th lysine (Lys) to the 32nd methionine (Met) are linker sequences. From the 33rd glycine (Gly) to the 208th glutamine (Gln), the amino acid sequence of FcR12 (corresponding to the 17th to 192nd region of SEQ ID NO: 1), the 209th to 210th glycine (Gly) Is a linker sequence, and histidines (His) from 211 to 216 are tag sequences. In SEQ ID NO: 63, Glu21Gly glycine is position 37, Leu23Met methionine is position 39, Val27Glu glutamate is position 43, Phe29Ile isoleucine is position 45, Tyr35Asn asparagine is position 51, Gln48Arg arginine is position 64, Phe75Lu. Leucine is at position 91, Asn92Ser is at position 108, Val117Glu is at glutamic acid 133, Glu121Gly at 137th is glycine, Phe171Ser is at position 187, and Ser178Arg is at position 194.
(B) FcR13
Glu21Gly, Leu23Met, Ser68Pro and Ser178Arg were selected from the amino acid substitutions involved in improving the alkali stability, which were revealed in Example 18, and these substitutions were accumulated in FcR9 (Example 7 (b)). Was made. Specifically, FcR13 was produced by introducing a mutation that caused Ser68Pro to the polynucleotide encoding FcR12.
(B-1) except that pET-FcR12 prepared in (a) was used as a template, and an oligonucleotide consisting of the sequences described in SEQ ID NO: 24 and SEQ ID NO: 65 (5′-CACAATGAAAGCCCTGATTCCCACGCCAGCGCG-3 ′) was used as a PCR primer. After preparing a reaction solution having the composition shown in Table 5, the reaction solution was heat-treated at 98 ° C. for 5 minutes, first step at 98 ° C. for 10 seconds, second step at 55 ° C. for 5 seconds, and 72 ° C. for 1 minute. The reaction with the third step of 1 cycle as 30 cycles was performed by heat treatment at 72 ° C. for 5 minutes. The amplified PCR product was subjected to agarose gel electrophoresis, and purified from the gel using a QIAquick Gel Extraction kit (Qiagen). The purified PCR product was designated as m13F.
(B-2) except that pET-FcR12 prepared in (a) was used as a template, and an oligonucleotide having the sequences described in SEQ ID NO: 62 and SEQ ID NO: 66 (5′-GTAGCTGCTCGCCCTGCTGGGAATCAGGCT-3 ′) was used as a PCR primer, PCR was performed in the same manner as (b-1). The purified PCR product was designated as m13R.
(B-3) Two types of PCR products (m13F, m13R) obtained in (b-1) and (b-2) were mixed to prepare a reaction solution having the composition shown in Table 6. The reaction solution is heat-treated at 98 ° C. for 5 minutes, followed by 5 cycles of reaction in which the first step is 98 ° C. for 10 seconds, the second step is 55 ° C. for 5 seconds, and the third step is 72 ° C. for 1 minute. Finally, PCR was performed by heat treatment at 72 ° C. for 5 minutes, and m13F and m13R were linked. The obtained PCR product was designated as m13p.
(B-4) PCR was performed using the PCR product m13p obtained in (b-3) as a template and oligonucleotides having the sequences shown in SEQ ID NO: 23 and SEQ ID NO: 24 as PCR primers. In PCR, after preparing a reaction solution having the composition shown in Table 7, the reaction solution was heat-treated at 98 ° C. for 5 minutes, first step at 98 ° C. for 10 seconds, second step at 55 ° C. for 5 seconds, and at 72 ° C. The reaction with the third step of 1 minute as one cycle was performed 30 cycles. As a result, a polynucleotide encoding FcR13 in which an amino acid substitution at one position was introduced into FcR12 was prepared.
(B-5) After purifying the polynucleotide obtained in (b-4), digested with restriction enzymes NcoI and HindIII and previously digested with restriction enzymes NcoI and HindIII (Japanese Patent Laid-Open No. 2011-206046) Was used to transform Escherichia coli BL21 (DE3) strain.
(B-6) The obtained transformant was cultured in an LB medium supplemented with 50 μg / mL kanamycin. A polynucleotide encoding FcR13, which is a polypeptide in which amino acids are substituted at 4 positions (13 positions with respect to a wild-type Fc-binding protein) with respect to FcR9 by extracting a plasmid from the collected microbial cells (transformants) Plasmid pET-FcR13 containing was obtained.
(B-7) The nucleotide sequence of pET-FcR13 was analyzed in the same manner as in Example 1 (5).
 シグナル配列およびポリヒスチジンタグを付加したFcR13のアミノ酸配列を配列番号67に、前記FcR13をコードするポリヌクレオチドの配列を配列番号68に示す。なお、配列番号67において、1番目のメチオニン(Met)から26番目のアラニン(Ala)までがMalEシグナルペプチドであり、27番目のリジン(Lys)から32番目のメチオニン(Met)までがリンカー配列であり、33番目のグリシン(Gly)から208番目のグルタミン(Gln)までがFcR13のアミノ酸配列(配列番号1の17番目から192番目までの領域に相当)、209番目から210番目までのグリシン(Gly)がリンカー配列であり、211番目から216番目のヒスチジン(His)がタグ配列である。また配列番号67において、Glu21Glyのグリシンは37番目、Leu23Metのメチオニンは39番目、Val27Gluのグルタミン酸は43番目、Phe29Ileのイソロイシンは45番目、Tyr35Asnのアスパラギンは51番目、Gln48Argのアルギニンは64番目、Ser68Proのプロリンは84番目、Phe75Leuのロイシンは91番目、Asn92Serのセリンは108番目、Val117Gluのグルタミン酸は133番目、Glu121Glyのグリシンは137番目、Phe171Serのセリンは187番目およびSer178Argのアルギニンは194番目の位置にそれぞれ存在する。 The amino acid sequence of FcR13 added with a signal sequence and a polyhistidine tag is shown in SEQ ID NO: 67, and the sequence of the polynucleotide encoding the FcR13 is shown in SEQ ID NO: 68. In SEQ ID NO: 67, the first methionine (Met) to the 26th alanine (Ala) are MalE signal peptides, and the 27th lysine (Lys) to the 32nd methionine (Met) are linker sequences. Yes, the amino acid sequence of FcR13 from the 33rd glycine (Gly) to the 208th glutamine (Gln) (corresponding to the region from the 17th to the 192nd region of SEQ ID NO: 1), the 209th to the 210th glycine (Gly) ) Is a linker sequence, and 211 to 216th histidine (His) is a tag sequence. In SEQ ID NO: 67, Glu21Gly glycine is 37th, Leu23Met methionine is 39th, Val27Glu glutamate is 43rd, Phe29Ile isoleucine is 45th, Tyr35Asn asparagine is 51st, Gln48Arg arginine is 64th, Ser68Pro Proline at position 84, Phe75Leu leucine at position 91, Asn92Ser serine at position 108, Val117Glu glutamic acid at position 133, Glu121Gly glycine at position 137, Phe171Ser serine at position 187, and Ser178Arg arginine at position 194. Exists.
 実施例20 Fc結合性タンパク質のアルカリ安定性評価
(1)実施例4(c)で作製したFc結合性タンパク質(FcR5a)、実施例7(b)で作製したFc結合性タンパク質(FcR9)、および実施例19で作製したFc結合性タンパク質(FcR12、FcR13)を発現する形質転換体を、実施例8の(1)から(4)に記載の方法で培養し、タンパク質を抽出することでFcR5a、FcR9、FcR12およびFcR13を調製した。
(2)(1)で調製したタンパク質抽出液中のFcR5a、FcR9、FcR12およびFcR13の抗体結合活性を、実施例3(4)に記載のELISA法を用いて測定した。この時、精製し定量したFcR9を用いて検量線を作製し、濃度測定を行なった。
(3)各Fc結合性タンパク質の濃度が30μg/mLになるよう純水で希釈後、前記希釈した溶液50μLと40mMの水酸化ナトリウム溶液50μLとを混合し、30℃で2時間静置することでアルカリ処理した。その後、1Mトリス塩酸緩衝液(pH7.0)を4倍量加えることで中和し、Fc結合性タンパク質の抗体結合活性を、実施例3(4)に記載のELISA法によって測定した。
(4)アルカリ処理を行なった場合の抗体結合活性をアルカリ処理を行なわなかったときの抗体結合活性で除することで、残存活性を算出しアルカリ安定性を評価した。
Example 20 Evaluation of Alkali Stability of Fc Binding Protein (1) Fc binding protein (FcR5a) prepared in Example 4 (c), Fc binding protein (FcR9) prepared in Example 7 (b), and The transformant expressing the Fc binding protein (FcR12, FcR13) prepared in Example 19 was cultured by the method described in Example 8 (1) to (4), and FcR5a, FcR9, FcR12 and FcR13 were prepared.
(2) The antibody binding activity of FcR5a, FcR9, FcR12 and FcR13 in the protein extract prepared in (1) was measured using the ELISA method described in Example 3 (4). At this time, a calibration curve was prepared using FcR9 purified and quantified, and the concentration was measured.
(3) After diluting with pure water so that the concentration of each Fc-binding protein is 30 μg / mL, 50 μL of the diluted solution and 50 μL of 40 mM sodium hydroxide solution are mixed and allowed to stand at 30 ° C. for 2 hours. Treated with alkali. Thereafter, the solution was neutralized by adding 4 volumes of 1M Tris-HCl buffer (pH 7.0), and the antibody binding activity of the Fc binding protein was measured by the ELISA method described in Example 3 (4).
(4) The residual activity was calculated by dividing the antibody binding activity when the alkali treatment was performed by the antibody binding activity when the alkali treatment was not performed, and the alkali stability was evaluated.
 結果を表13に示す。実施例19で作製したFcR12、FcR13はFcR5a、FcR9と比較し残存活性が高いことから、FcR12およびFcR13のアルカリ安定性がFcR5a、FcR9に比べて向上していることが確認された。 The results are shown in Table 13. Since FcR12 and FcR13 prepared in Example 19 had higher residual activity compared to FcR5a and FcR9, it was confirmed that the alkali stability of FcR12 and FcR13 was improved compared to FcR5a and FcR9.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 実施例21 FcR13への変異導入およびライブラリーの作製
 実施例19(b)で作製したFcR13をコードするポリヌクレオチド部分に、エラープローンPCRによりランダムに変異導入を施した。
(1)鋳型として実施例19(b)で作製した発現ベクターpET-FcR13を用いてエラープローンPCRを行なった。エラープローンPCRは、pET-FcR13を鋳型とし、配列番号23および配列番号24に記載の配列からなるオリゴヌクレオチドをプライマーとした他は表3に示す組成と同様の反応液を調製後、当該反応液を95℃で2分間熱処理し、95℃で30秒間の第1ステップ、50℃で30秒間の第2ステップ、72℃で90秒間の第3ステップを1サイクルとする反応を35サイクル行ない、最後に72℃で7分間熱処理することで行なった。この反応によりFc結合性タンパク質をコードするポリヌクレオチドに良好に変異が導入された。
(2)(1)で得られたPCR産物を精製後、制限酵素NcoIとHindIIIで消化し、あらかじめ同制限酵素で消化した発現ベクターpETMalE(特開2011-206046号公報)にライゲーションした。
(3)ライゲーション反応終了後、反応液をエレクトロポレーション法により大腸菌BL21(DE3)株に導入し、50μg/mLのカナマイシンを含むLBプレート培地で培養後、プレート上に形成したコロニーをランダム変異ライブラリーとした。
Example 21 Mutation Introduction to FcR13 and Library Preparation Mutation was randomly introduced into the polynucleotide part encoding FcR13 prepared in Example 19 (b) by error-prone PCR.
(1) Error-prone PCR was performed using the expression vector pET-FcR13 prepared in Example 19 (b) as a template. In error-prone PCR, a reaction solution similar to the composition shown in Table 3 was prepared except that pET-FcR13 was used as a template and oligonucleotides having the sequences shown in SEQ ID NO: 23 and SEQ ID NO: 24 were used as primers. Was subjected to a heat treatment at 95 ° C. for 2 minutes, 35 cycles of a reaction comprising a first step at 95 ° C. for 30 seconds, a second step at 50 ° C. for 30 seconds, and a third step at 72 ° C. for 90 seconds were performed for 35 cycles. The sample was heat treated at 72 ° C. for 7 minutes. By this reaction, the mutation was successfully introduced into the polynucleotide encoding the Fc binding protein.
(2) The PCR product obtained in (1) was purified, digested with restriction enzymes NcoI and HindIII, and ligated into an expression vector pETmalE (Japanese Patent Laid-Open No. 2011-206046) previously digested with the same restriction enzymes.
(3) After completion of the ligation reaction, the reaction solution was introduced into Escherichia coli BL21 (DE3) strain by electroporation, cultured in LB plate medium containing 50 μg / mL kanamycin, and the colonies formed on the plate were randomly mutated. It was rally.
 実施例22 アルカリ安定化Fc結合性タンパク質のスクリーニング
(1)実施例21で作製したランダム変異ライブラリーを実施例3(1)から(2)に記載の方法で培養することでFc結合性タンパク質を発現させた。
(2)培養後、遠心操作によって得られた、Fc結合性タンパク質を含む培養上清を以下に示す方法でアルカリ処理した。なおアルカリ処理後は、4倍量の1Mトリス緩衝液(pH7.0)でpHを中性付近に戻した。
(i)純水にて5倍に希釈し、等量の80mMの水酸化ナトリウム溶液と混合した後、30℃で2時間静置
(ii)純水にて20倍に希釈し、等量の60mMの水酸化ナトリウム溶液と混合した後、30℃で2時間静置
(3)(2)に記載のアルカリ処理を行なったときのFc結合性タンパク質の抗体結合活性と、(2)に記載のアルカリ処理を行なわなかったときのFc結合性タンパク質の抗体結合活性を、実施例3(4)に記載のELISA法にてそれぞれ測定した。その後、アルカリ処理を行なったときのFc結合性タンパク質の抗体結合活性を、アルカリ処理を行なわなかったときのFc結合性タンパク質の抗体結合活性で除することで、残存活性を算出した。
(4)(3)の方法で約2700株の形質転換体を評価し、その中からFcR13と比較して安定性が向上したFc結合性タンパク質を発現する形質転換体を選択した。選択した形質転換体を50μg/mLのカナマイシンを含む2YT液体培地にて培養し、QIAprep Spin Miniprep kit(キアゲン製)を用いて発現ベクターを調製した。
(5)得られた発現ベクターに挿入されたFc結合性タンパク質をコードするポリヌクレオチド領域の配列を実施例1(5)に記載の方法によりヌクレオチド配列を解析し、アミノ酸の変異箇所を特定した。
Example 22 Screening of alkali-stabilized Fc-binding protein (1) The random mutation library prepared in Example 21 was cultured by the method described in Examples 3 (1) to (2) to obtain an Fc-binding protein. Expressed.
(2) After culture, the culture supernatant containing Fc-binding protein obtained by centrifugation was treated with alkali by the method shown below. After the alkali treatment, the pH was returned to near neutral with 4 volumes of 1M Tris buffer (pH 7.0).
(I) Dilute 5 times with pure water and mix with an equal amount of 80 mM sodium hydroxide solution, then stand at 30 ° C. for 2 hours (ii) Dilute 20 times with pure water, After mixing with 60 mM sodium hydroxide solution, left at 30 ° C. for 2 hours (3) The antibody binding activity of the Fc-binding protein when subjected to alkali treatment as described in (2), and as described in (2) The antibody binding activity of the Fc binding protein when not subjected to alkali treatment was measured by the ELISA method described in Example 3 (4). Thereafter, the residual activity was calculated by dividing the antibody binding activity of the Fc binding protein when the alkali treatment was performed by the antibody binding activity of the Fc binding protein when the alkali treatment was not performed.
(4) About 2,700 strains of transformants were evaluated by the method of (3), and transformants expressing an Fc-binding protein with improved stability compared to FcR13 were selected. The selected transformant was cultured in a 2YT liquid medium containing 50 μg / mL kanamycin, and an expression vector was prepared using QIAprep Spin Miniprep kit (manufactured by Qiagen).
(5) The nucleotide sequence of the sequence of the polynucleotide region encoding the Fc binding protein inserted into the obtained expression vector was analyzed by the method described in Example 1 (5), and amino acid mutation sites were identified.
 (4)で選択した形質転換体が発現するFc結合性タンパク質の、FcR13に対するアミノ酸置換位置およびアルカリ処理後の残存活性(%)をまとめたものを表14(アルカリ処理は(i)の条件)および表15(アルカリ処理は(ii)の条件)に示す。配列番号37に記載のアミノ酸配列のうち、33番目のグリシンから208番目のグルタミンまでのアミノ酸残基(配列番号1の17番目から192番目に該当)を含み、かつ当該33番目から208番目までのアミノ酸残基において、Met18Lys(この表記は、配列番号1の18番目(配列番号37では34番目)のメチオニンがリジンに置換されていることを表す、以下同様)、Met18Thr、Leu(Met)23Arg(この表記は配列番号1番の23番目(配列番号37では39番目)のロイシンが一度メチオニンに置換されさらにアルギニンに置換されたことを表す、以下同様)、Lys46Ile、Gln(Arg)48Trp、Tyr51His、Tyr51Asn、Glu54Asp、Glu54Gly、Asn56Ser、Asn56Ile、Phe61Leu、Phe61Tyr、Glu64Gly、Ile67Leu、Ser69Asn、Ala71Thr、Tyr74Phe、Phe(Leu)75Arg、Ala78Glu、Val81Glu、Asp82Glu、Glu86Asp、Gln90Leu、Leu93Gln、Pro114Leu、Lys119Asn、Lys119Tyr、His125Gln、Ser130Thr、Lys138Arg、Gln143His、Gly147Val、Lys149Met、Phe151Tyr、His153Tyr、Tyr158Phe、Lys161Arg、Ser169Gly、Asn180Ser、Thr185Ala、Asn187Ile、Asn187LysおよびThr191Alaのいずれかのアミノ酸置換が少なくとも1つ生じているFc結合性タンパク質は、FcR13と比較しアルカリ安定性が向上しているといえる。 Table 14 summarizes the amino acid substitution positions for FcR13 and the residual activity (%) after alkali treatment of the Fc-binding protein expressed by the transformant selected in (4) (alkaline treatment is the conditions of (i)). And Table 15 (alkali treatment is the condition (ii)). Of the amino acid sequence described in SEQ ID NO: 37, the amino acid residue from the 33rd glycine to the 208th glutamine (corresponding to the 17th to 192nd of SEQ ID NO: 1), and the 33rd to 208th In amino acid residues, Met18Lys (this notation indicates that the 18th methionine of SEQ ID NO: 1 (34th in SEQ ID NO: 37) is substituted with lysine, the same applies hereinafter), Met18Thr, Leu (Met) 23Arg ( This notation shows that the 23rd leucine of SEQ ID NO: 1 (39th in SEQ ID NO: 37) was once substituted with methionine and further substituted with arginine, and so on), Lys46Ile, Gln (Arg) 48Trp, Tyr51His, Tyr51Asn, Glu54Asp, Glu54Gly, As 56Ser, Asn56Ile, Phe61Leu, Phe61Tyr, Glu64Gly, Ile67Leu, Ser69Asn, Ala71Thr, Tyr74Phe, Phe (Leu) 75Arg, Ala78Glu, Val81Glu, Asp82Glu, Glu86Asp, Gln90Leu, Leu93Gln, Pro114Leu, Lys119Asn, Lys119Tyr, His125Gln, Ser130Thr, Lys138Arg, Gln143His, Gly147Val, Lys149Met, Phe151Tyr, His153Tyr, Tyr158Phe, Lys161Arg, Ser169Gly, Asn180Ser, Thr185Ala, Asn187Ile, Asn187Lys and Thr1 Fc binding proteins or amino acid substitutions 1Ala has at least one occurs, it can be said that the alkaline stability as compared to FcR13 is improved.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 表15に示した、FcR13からアミノ酸置換されたFc結合性タンパク質のうち、Gly147Valのアミノ酸置換が生じたFc結合性タンパク質をFcR14と命名し、FcR14をコードするポリヌクレオチドを含む発現ベクターをpET-FcR14と命名した。FcR14のアミノ酸配列を配列番号69に、FcR14をコードするポリヌクレオチドの配列を配列番号70に示す。なお配列番号69において、1番目のメチオニン(Met)から26番目のアラニン(Ala)までがMalEシグナルペプチドであり、27番目のリジン(Lys)から32番目のメチオニン(Met)までがリンカー配列であり、33番目のグリシン(Gly)から208番目のグルタミン(Gln)までがFcR14のアミノ酸配列(配列番号1の17番目から192番目までの領域に相当)、209番目から210番目までのグリシン(Gly)がリンカー配列であり、211番目から216番目のヒスチジン(His)がタグ配列である。また配列番号69において、Glu21Glyのグリシンは37番目、Leu23Metのメチオニンは39番目、Val27Gluのグルタミン酸は43番目、Phe29Ileのイソロイシンは45番目、Tyr35Asnのアスパラギンは51番目、Gln48Argのアルギニンは64番目、Ser68Proのプロリンは84番目、Phe75Leuのロイシンは91番目、Asn92Serのセリンは108番目、Val117Gluのグルタミン酸は133番目、Glu121Glyのグリシンは137番目、Gly147Valのバリンは163番目、Phe171Serのセリンは187番目およびSer178Argのアルギニンは194番目の位置にそれぞれ存在する。 Of the Fc binding proteins with amino acid substitutions from FcR13 shown in Table 15, the Fc binding protein in which amino acid substitution of Gly147Val occurred was named FcR14, and an expression vector containing a polynucleotide encoding FcR14 was designated as pET-FcR14. Named. The amino acid sequence of FcR14 is shown in SEQ ID NO: 69, and the sequence of the polynucleotide encoding FcR14 is shown in SEQ ID NO: 70. In SEQ ID NO: 69, the first methionine (Met) to the 26th alanine (Ala) are MalE signal peptides, and the 27th lysine (Lys) to the 32nd methionine (Met) are linker sequences. From the 33rd glycine (Gly) to the 208th glutamine (Gln), the amino acid sequence of FcR14 (corresponding to the 17th to 192nd region of SEQ ID NO: 1), 209th to 210th glycine (Gly) Is a linker sequence, and histidines (His) from 211 to 216 are tag sequences. Also, in SEQ ID NO: 69, Glu21Gly glycine is position 37, Leu23Met methionine is position 39, Val27Glu glutamate is position 43, Phe29Ile isoleucine is position 45, Tyr35Asn asparagine is position 51, Gln48Arg arginine is position 64, Ser68Pro. Proline 84th, Phe75Leu leucine 91st, Asn92Ser serine 108th, Val117Glu glutamic acid 133rd, Glu121Gly glycine 137th, Gly147Val valine 163rd, Phe171Ser serine 187th and Ser178Arg Exists at the 194th position.
 実施例23 改良Fc結合性タンパク質の作製
 実施例22で明らかとなった、Fc結合性タンパク質のアルカリ安定性向上に関与するアミノ酸置換の中から、Tyr51HisおよびGlu54Aspを選択し、それらの置換をFcR14に集積することで、改良Fc結合性タンパク質(FcR16)を作製した。以下、作製方法を詳細に説明する。
(1)実施例22で得られた、pET-FcR14を鋳型とし、配列番号24および配列番号71(5’-TGCCGGGGCGCGCATAGCCCGGATGATAAC-3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、表5に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行ない、最後に72℃で5分間熱処理することで行なった。増幅したPCR産物をアガロースゲル電気泳動に供し、そのゲルからQIAquick Gel Extraction kit(キアゲン製)を用いて精製した。精製したPCR産物をm16Fとした。
(2)実施例22で得られたpET-FcR14を鋳型とし、配列番号23および配列番号72(5’-GGTGCTGTTATCATCCGGGCTATGCGCGCC-3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、(1)と同様の方法でPCRを行なった。精製したPCR産物をm16Rとした。
(3)(1)および(2)で得られた2種類のPCR産物(m16F、m16R)を混合し、表6に示す組成の反応液を調製した。当該反応液を98℃で5分間熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を5サイクル行ない最後に72℃で5分間熱処理するPCRを行ない、m16Fとm16Rを連結したPCR産物m16pを得た。
(4)(3)で得られたPCR産物m16pを鋳型とし、配列番号23および配列番号24に記載の配列からなるオリゴヌクレオチドをPCRプライマーとして、PCRを行なった。PCRは、表7に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行ない最後に72℃で5分間熱処理するPCRを行なった。これによりFcR14に2箇所アミノ酸置換を導入したFcR16をコードするポリヌクレオチドを作製した。
(5)(4)で得られたポリヌクレオチドを精製後、制限酵素NcoIとHindIIIで消化し、あらかじめ制限酵素NcoIとHindIIIで消化した発現ベクターpETMalE(特開2011-206046号公報)にライゲーションし、これを用いて大腸菌BL21(DE3)株を形質転換した。
(6)得られた形質転換体を50μg/mLのカナマイシンを添加したLB培地で培養した。回収した菌体(形質転換体)からプラスミドを抽出することで、FcR14に対して2箇所(野生型Fc結合性タンパク質に対して16箇所)アミノ酸置換したポリペプチドである、FcR16をコードするポリヌクレオチドを含むプラスミドpET-FcR16を得た。
(7)pET-FcR16のヌクレオチド配列の解析を、実施例1(5)と同様の方法で行なった。
Example 23 Production of Improved Fc Binding Protein Tyr51His and Glu54Asp were selected from among the amino acid substitutions involved in improving the alkali stability of Fc binding protein revealed in Example 22, and these substitutions were changed to FcR14. By accumulating, an improved Fc binding protein (FcR16) was produced. Hereinafter, the production method will be described in detail.
(1) Except that pET-FcR14 obtained in Example 22 was used as a template, and an oligonucleotide having the sequence described in SEQ ID NO: 24 and SEQ ID NO: 71 (5′-TGCCGGGGCGCGCATAGCCCGGATGATAAC-3 ′) was used as a PCR primer, After preparing the reaction solution having the composition shown in Table 5, the reaction solution was heat-treated at 98 ° C for 5 minutes, first step at 98 ° C for 10 seconds, second step at 55 ° C for 5 seconds, and 72 ° C for 1 minute. The reaction with the third step as one cycle was performed for 30 cycles, and finally, heat treatment was performed at 72 ° C. for 5 minutes. The amplified PCR product was subjected to agarose gel electrophoresis, and purified from the gel using a QIAquick Gel Extraction kit (Qiagen). The purified PCR product was designated as m16F.
(2) Except that pET-FcR14 obtained in Example 22 was used as a template, and an oligonucleotide having the sequence described in SEQ ID NO: 23 and SEQ ID NO: 72 (5′-GGTGCTGTTTATCATCCGGGCTATGCGCGCC-3 ′) was used as a PCR primer, PCR was performed in the same manner as in 1). The purified PCR product was designated as m16R.
(3) The two types of PCR products (m16F and m16R) obtained in (1) and (2) were mixed to prepare a reaction solution having the composition shown in Table 6. The reaction solution is heat-treated at 98 ° C. for 5 minutes, followed by 5 cycles of reaction in which the first step is 98 ° C. for 10 seconds, the second step is 55 ° C. for 5 seconds, and the third step is 72 ° C. for 1 minute. Finally, PCR was performed by heat treatment at 72 ° C. for 5 minutes to obtain a PCR product m16p in which m16F and m16R were ligated.
(4) PCR was performed using the PCR product m16p obtained in (3) as a template and oligonucleotides having the sequences described in SEQ ID NO: 23 and SEQ ID NO: 24 as PCR primers. In PCR, after preparing a reaction solution having the composition shown in Table 7, the reaction solution was heat-treated at 98 ° C. for 5 minutes, first step at 98 ° C. for 10 seconds, second step at 55 ° C. for 5 seconds, and at 72 ° C. 30 cycles of the reaction with the third step of 1 minute as one cycle were performed, and finally PCR was performed by heat treatment at 72 ° C. for 5 minutes. As a result, a polynucleotide encoding FcR16 in which two amino acid substitutions were introduced into FcR14 was prepared.
(5) After purification of the polynucleotide obtained in (4), digestion with restriction enzymes NcoI and HindIII, ligation to an expression vector pETmalE (Japanese Patent Laid-Open No. 2011-206046) previously digested with restriction enzymes NcoI and HindIII, This was used to transform E. coli BL21 (DE3) strain.
(6) The obtained transformant was cultured in an LB medium supplemented with 50 μg / mL kanamycin. A polynucleotide encoding FcR16, which is a polypeptide in which amino acid substitution has been performed at two positions on FcR14 (16 positions relative to a wild-type Fc-binding protein) by extracting a plasmid from the collected cells (transformants) Plasmid pET-FcR16 containing was obtained.
(7) The nucleotide sequence of pET-FcR16 was analyzed in the same manner as in Example 1 (5).
 シグナル配列およびポリヒスチジンタグを付加したFcR16のアミノ酸配列を配列番号73に、前記FcR16をコードするポリヌクレオチドの配列を配列番号74に示す。なお、配列番号73において、1番目のメチオニン(Met)から26番目のアラニン(Ala)までがMalEシグナルペプチドであり、27番目のリジン(Lys)から32番目のメチオニン(Met)までがリンカー配列であり、33番目のグリシン(Gly)から208番目のグルタミン(Gln)までがFcR13のアミノ酸配列(配列番号1の17番目から192番目までの領域に相当)、209番目から210番目までのグリシン(Gly)がリンカー配列であり、211番目から216番目のヒスチジン(His)がタグ配列である。また配列番号73において、Glu21Glyのグリシンは37番目、Leu23Metのメチオニンは39番目、Val27Gluのグルタミン酸は43番目、Phe29Ileのイソロイシンは45番目、Tyr35Asnのアスパラギンは51番目、Gln48Argのアルギニンは64番目、Tyr51Hisのヒスチジンは67番目、Glu54Aspのアスパラギン酸は70番目、Ser68Proのプロリンは84番目、Phe75Leuのロイシンは91番目、Asn92Serのセリンは108番目、Val117Gluのグルタミン酸は133番目、Glu121Glyのグリシンは137番目、Gly147Valのバリンは163番目、Phe171Serのセリンは187番目およびSer178Argのアルギニンは194番目の位置にそれぞれ存在する。 The amino acid sequence of FcR16 added with a signal sequence and a polyhistidine tag is shown in SEQ ID NO: 73, and the sequence of the polynucleotide encoding the FcR16 is shown in SEQ ID NO: 74. In SEQ ID NO: 73, the first methionine (Met) to the 26th alanine (Ala) are MalE signal peptides, and the 27th lysine (Lys) to the 32nd methionine (Met) are linker sequences. Yes, the amino acid sequence of FcR13 from the 33rd glycine (Gly) to the 208th glutamine (Gln) (corresponding to the region from the 17th to the 192nd region of SEQ ID NO: 1), the 209th to the 210th glycine (Gly) ) Is a linker sequence, and 211 to 216th histidine (His) is a tag sequence. In SEQ ID NO: 73, Glu21Gly glycine is position 37, Leu23Met methionine is position 39, Val27Glu glutamate is position 43, Phe29Ile isoleucine is position 45, Tyr35Asn asparagine is position 51, Gln48Arg arginine is position 64, and Tyr51His. Histidine 67th, Glu54Asp aspartic acid 70th, Ser68Pro proline 84th, Phe75Leu leucine 91th, Asn92Ser serine 108th, Val117Glu glutamic acid 133rd, Glu121Gly glycine 137th, Gly147Val Valine is 163rd, Phe171Ser serine is 187th, Ser178Arg Argy Emissions are present respectively in 194th position.
 実施例24 Fc結合性タンパク質のアルカリ安定性評価
(1)実施例19(b)で作製したFc結合性タンパク質(FcR13)、実施例22で取得したFc結合性タンパク質(FcR14)、および実施例23で作製したFc結合性タンパク質(FcR16)を発現する形質転換体を、実施例8の(1)から(4)に記載の方法で培養し、タンパク質を抽出することでFcR13、FcR14およびFcR16を調製した。
(2)(1)で調製したタンパク質抽出液中のFcR13、FcR14およびFcR16の抗体結合活性を、実施例3(4)に記載のELISA法を用いて測定した。この時、精製し定量したFcR9を用いて検量線を作製し、濃度測定を行なった。
(3)各Fc結合性タンパク質の濃度が10μg/mLになるよう純水で希釈後、前記希釈した溶液50μLと60mMの水酸化ナトリウム溶液50μLとを混合し、30℃で2時間静置することでアルカリ処理した。その後、1Mトリス塩酸緩衝液(pH7.0)を4倍量加えることで中和し、Fc結合性タンパク質の抗体結合活性を、実施例3(4)に記載のELISA法によって測定した。
(4)アルカリ処理を行なった場合の抗体結合活性をアルカリ処理を行なわなかったときの抗体結合活性で除することで、残存活性を算出しアルカリ安定性を評価した。
Example 24 Alkali Stability Evaluation of Fc Binding Protein (1) Fc binding protein (FcR13) prepared in Example 19 (b), Fc binding protein (FcR14) obtained in Example 22, and Example 23 FcR13, FcR14, and FcR16 were prepared by culturing the transformant expressing Fc-binding protein (FcR16) prepared in step 1 by culturing by the method described in (1) to (4) of Example 8 and extracting the protein. did.
(2) The antibody binding activity of FcR13, FcR14 and FcR16 in the protein extract prepared in (1) was measured using the ELISA method described in Example 3 (4). At this time, a calibration curve was prepared using FcR9 purified and quantified, and the concentration was measured.
(3) After diluting with pure water so that the concentration of each Fc-binding protein becomes 10 μg / mL, 50 μL of the diluted solution and 50 μL of 60 mM sodium hydroxide solution are mixed and allowed to stand at 30 ° C. for 2 hours. Treated with alkali. Thereafter, the solution was neutralized by adding 4 volumes of 1M Tris-HCl buffer (pH 7.0), and the antibody binding activity of the Fc binding protein was measured by the ELISA method described in Example 3 (4).
(4) The residual activity was calculated by dividing the antibody binding activity when the alkali treatment was performed by the antibody binding activity when the alkali treatment was not performed, and the alkali stability was evaluated.
 結果を表16に示す。実施例22で作製したFcR14、FcR16はFcR13と比較し残存活性が高いことから、FcR13に比べてアルカリ安定性が向上していることが確認された。 The results are shown in Table 16. Since FcR14 and FcR16 produced in Example 22 had higher residual activity than FcR13, it was confirmed that the alkali stability was improved compared to FcR13.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 実施例25 FcR16への変異導入およびライブラリーの作製
 実施例23で作製したFcR16をコードするポリヌクレオチド部分に、エラープローンPCRによりランダムに変異導入を施した。
(1)鋳型として実施例23で作製した発現ベクターpET-FcR16を用いてエラープローンPCRを行なった。エラープローンPCRは、pET-FcR16を鋳型とし、配列番号23および24に記載の配列からなるオリゴヌクレオチドをプライマーとして用いた他は表3に示す組成と同様の反応液を調製後、当該反応液を95℃で2分間熱処理し、95℃で30秒間の第1ステップ、50℃で30秒間の第2ステップ、72℃で90秒間の第3ステップを1サイクルとする反応を35サイクル行ない、最後に72℃で7分間熱処理することで行なった。この反応によりFc結合性タンパク質をコードするポリヌクレオチドに良好に変異が導入された。
(2)(1)で得られたPCR産物を精製後、制限酵素NcoIとHindIIIで消化し、あらかじめ同制限酵素で消化した発現ベクターpETMalE(特開2011-206046号公報)にライゲーションした。
(3)ライゲーション反応終了後、反応液をエレクトロポレーション法により大腸菌BL21(DE3)株に導入し、50μg/mLのカナマイシンを含むLBプレート培地で培養後、プレート上に形成したコロニーをランダム変異ライブラリーとした。
Example 25 Mutation Introduction to FcR16 and Library Preparation Mutation was randomly introduced into the polynucleotide portion encoding FcR16 prepared in Example 23 by error-prone PCR.
(1) Error-prone PCR was performed using the expression vector pET-FcR16 prepared in Example 23 as a template. In error-prone PCR, pET-FcR16 was used as a template, and a reaction solution having the same composition as shown in Table 3 was prepared, except that oligonucleotides having the sequences shown in SEQ ID NOs: 23 and 24 were used as primers. Heat treatment at 95 ° C. for 2 minutes, 35 cycles of reaction with 95 ° C. for 30 seconds for the first step, 50 ° C. for 30 seconds for the second step, 72 ° C. for 90 seconds for the third step for 35 cycles, and finally The heat treatment was performed at 72 ° C. for 7 minutes. By this reaction, the mutation was successfully introduced into the polynucleotide encoding the Fc binding protein.
(2) The PCR product obtained in (1) was purified, digested with restriction enzymes NcoI and HindIII, and ligated into an expression vector pETmalE (Japanese Patent Laid-Open No. 2011-206046) previously digested with the same restriction enzymes.
(3) After completion of the ligation reaction, the reaction solution was introduced into Escherichia coli BL21 (DE3) strain by electroporation, cultured in LB plate medium containing 50 μg / mL kanamycin, and the colonies formed on the plate were randomly mutated. It was rally.
 実施例26 アルカリ安定化Fc結合性タンパク質のスクリーニング
(1)実施例25で作製したランダム変異ライブラリーを実施例3(1)から(2)に記載の方法で培養することでFc結合性タンパク質を発現させた。
(2)培養後、遠心操作によって得られた、Fc結合性タンパク質を含む培養上清を純水にて20倍に希釈し、等量の80mMの水酸化ナトリウム溶液と混合した後、30℃で2時間静置することでアルカリ処理した。アルカリ処理後は、4倍量の1Mトリス緩衝液(pH7.0)でpHを中性付近に戻した。
(3)(2)に記載のアルカリ処理を行なったときのFc結合性タンパク質の抗体結合活性と、(2)に記載のアルカリ処理を行なわなかったときのFc結合性タンパク質の抗体結合活性を、実施例3(4)に記載のELISA法にてそれぞれ測定した。その後、アルカリ処理を行なったときのFc結合性タンパク質の抗体結合活性を、アルカリ処理を行なわなかったときのFc結合性タンパク質の抗体結合活性で除することで、残存活性を算出した。
(4)(3)の方法で約2700株の形質転換体を評価し、その中からFcR16と比較して安定性が向上したFc結合性タンパク質を発現する形質転換体を選択した。選択した形質転換体を50μg/mLのカナマイシンを含む2YT液体培地にて培養し、QIAprep Spin Miniprep kit(キアゲン製)を用いて発現ベクターを調製した。
(5)得られた発現ベクターに挿入されたFc結合性タンパク質をコードするポリヌクレオチド領域の配列を実施例1(5)に記載の方法によりヌクレオチド配列を解析し、アミノ酸の変異箇所を特定した。
Example 26 Screening of alkali-stabilized Fc-binding protein (1) The random mutation library prepared in Example 25 was cultured by the method described in Examples 3 (1) to (2) to obtain an Fc-binding protein. Expressed.
(2) After culture, the culture supernatant containing Fc-binding protein obtained by centrifugation is diluted 20-fold with pure water, mixed with an equal amount of 80 mM sodium hydroxide solution, and then at 30 ° C. The alkali treatment was carried out by leaving still for 2 hours. After the alkali treatment, the pH was returned to near neutral with 4 volumes of 1 M Tris buffer (pH 7.0).
(3) The antibody binding activity of the Fc binding protein when the alkali treatment described in (2) is performed, and the antibody binding activity of the Fc binding protein when the alkali treatment described in (2) is not performed, Each was measured by the ELISA method described in Example 3 (4). Thereafter, the residual activity was calculated by dividing the antibody binding activity of the Fc binding protein when the alkali treatment was performed by the antibody binding activity of the Fc binding protein when the alkali treatment was not performed.
(4) About 2,700 strains of transformants were evaluated by the method of (3), and transformants expressing an Fc-binding protein with improved stability compared to FcR16 were selected from the transformants. The selected transformant was cultured in a 2YT liquid medium containing 50 μg / mL kanamycin, and an expression vector was prepared using QIAprep Spin Miniprep kit (manufactured by Qiagen).
(5) The nucleotide sequence of the sequence of the polynucleotide region encoding the Fc binding protein inserted into the obtained expression vector was analyzed by the method described in Example 1 (5), and amino acid mutation sites were identified.
 (4)で選択した形質転換体が発現するFc結合性タンパク質の、FcR13に対するアミノ酸置換位置およびアルカリ処理後の残存活性(%)をまとめたものを表17に示す。配列番号37に記載のアミノ酸配列のうち、33番目のグリシンから208番目のグルタミンまでのアミノ酸残基(配列番号1の17番目から192番目に該当)を含み、かつ当該33番目から208番目までのアミノ酸残基において、Ala78Ser(この表記は、配列番号1の78番目(配列番号37では94番目)のアラニンがセリンに置換されていることを表す、以下同様)、Asp82Glu、Gln101Leu、Gln101Arg、Thr140Ile、Gln143His、Tyr158His、Lys161Arg、Lys165Glu、Thr185Ala、Asn187Asp、Asn187Tyrのいずれかのアミノ酸置換が少なくとも1つ生じているFc結合性タンパク質は、FcR16と比較しアルカリ安定性が向上しているといえる。 Table 17 shows a summary of amino acid substitution positions for FcR13 and residual activity (%) after alkali treatment of the Fc-binding protein expressed by the transformant selected in (4). Of the amino acid sequence described in SEQ ID NO: 37, the amino acid residue from the 33rd glycine to the 208th glutamine (corresponding to the 17th to 192nd of SEQ ID NO: 1), and the 33rd to 208th In the amino acid residue, Ala78Ser (this notation indicates that the 78th alanine in SEQ ID NO: 1 (94th in SEQ ID NO: 37) is substituted with serine, the same applies hereinafter), Asp82Glu, Gln101Leu, Gln101Arg, Thr140Ile, An Fc-binding protein in which at least one amino acid substitution of any one of Gln143His, Tyr158His, Lys161Arg, Lys165Glu, Thr185Ala, Asn187Asp, Asn187Tyr has occurred is more stable than FcR16. It can be said that the nature has improved.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 実施例27 改良Fc結合性タンパク質の作製
 実施例26で判明した、Fc結合性タンパク質のアルカリ安定性向上に関与するアミノ酸置換をFcR16に集積することで、さらなる安定性向上を図った。置換アミノ酸の集積は、主にPCRを用いて行ない、以下の(a)から(c)に示す3種類の改良Fc結合性タンパク質を作製した。
(a)FcR16に対し、さらにThr140Ile、Tyr158HisおよびLys165Gluのアミノ酸置換を行なったFcR19
(b)FcR16に対し、さらにAsp82Glu、Gln101Leu、Thr140Ile、Tyr158HisおよびLys165Gluのアミノ酸置換を行なったFcR21
(c)FcR16に対し、さらにAla78Ser、Asp82Glu、Gln101Leu、Thr140Ile、Tyr158His、Lys165Glu、Thr185AlaおよびAsn187Aspのアミノ酸置換を行なったFcR24
以下、各改良Fc結合性タンパク質の作製方法を詳細に説明する。
(a)FcR19
 実施例26で明らかとなった、アルカリ安定性向上に関与するアミノ酸置換の中から、Thr140Ile、Tyr158HisおよびLys165Gluを選択し、それらの置換をFcR16(実施例23)に集積したFcR19を作製した。具体的には、実施例26で得られたThr140IleおよびTyr158Hisの変異を含んだポリヌクレオチドに対して、Lys165Gluを生じさせる変異導入を行なうことにより、FcR19を作製した。   
(a-1)実施例26で取得した、FcR16にThr140IleおよびTyr158Hisの変異を含んだFc結合性タンパク質をコードするポリヌクレオチドを鋳型とし、配列番号24および配列番号75(5’-ATTCCCAAAGCGACGCTGGAGGACAGCGGC-3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、表5に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行ない、最後に72℃で5分間熱処理することで行なった。増幅したPCR産物をアガロースゲル電気泳動に供し、そのゲルからQIAquick Gel Extraction kit(キアゲン製)を用いて精製した。精製したPCR産物をm19Fとした。
(a-2)実施例26で取得した、FcR16にThr140IleおよびTyr158Hisの変異を含んだFc結合性タンパク質をコードするポリヌクレオチドを鋳型とし、配列番号23および配列番号76(5’-ATAGCTGCCGCTGTCCTCCAGCGTCGCTTT-3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、(a-1)と同様の方法でPCRを行なった。精製したPCR産物をm19Rとした。
(a-3)(a-1)および(a-2)で得られた2種類のPCR産物(m19F、m19R)を混合し、表6に示す組成の反応液を調製した。当該反応液を98℃で5分間熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を5サイクル行なうPCRを行ない、m19Fとm19Rを連結したPCR産物m19pを得た。
(a-4)(a-3)で得られたPCR産物m19pを鋳型とし、配列番号23および配列番号24に記載の配列からなるオリゴヌクレオチドをPCRプライマーとしてPCRを行なった。PCRは、表7に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行なった。これによりFcR16に3箇所アミノ酸置換を導入したFcR19をコードするポリヌクレオチドを作製した。
(a-5)(a-4)で得られたポリヌクレオチドを精製後、制限酵素NcoIとHindIIIで消化し、あらかじめ制限酵素NcoIとHindIIIで消化した発現ベクターpETMalE(特開2011-206046号公報)にライゲーションし、これを用いて大腸菌BL21(DE3)株を形質転換した。
(a-6)得られた形質転換体を50μg/mLのカナマイシンを添加したLB培地で培養した。回収した菌体(形質転換体)からプラスミドを抽出することで、FcR16に対して3箇所(野生型Fc結合性タンパク質に対して19箇所)アミノ酸置換したポリペプチドである、FcR19をコードするポリヌクレオチドを含むプラスミドpET-FcR19を得た。
(a-7)pET-FcR19のヌクレオチド配列の解析を、実施例1(5)と同様の方法で行なった。
Example 27 Production of Improved Fc Binding Protein The stability was further improved by accumulating amino acid substitutions found in Example 26 involved in improving the alkali stability of Fc binding protein in FcR16. Accumulation of substituted amino acids was mainly performed using PCR, and three types of improved Fc-binding proteins shown in (a) to (c) below were prepared.
(A) FcR19 in which Thr140Ile, Tyr158His and Lys165Glu were further substituted for FcR16
(B) FcR21 in which Asp82Glu, Gln101Leu, Thr140Ile, Tyr158His and Lys165Glu were further substituted for FcR16
(C) FcR24 in which Ala78Ser, Asp82Glu, Gln101Leu, Thr140Ile, Tyr158His, Lys165Glu, Thr185Ala, and Asn187Asp were further substituted for FcR16
Hereinafter, a method for producing each improved Fc-binding protein will be described in detail.
(A) FcR19
Thr140Ile, Tyr158His and Lys165Glu were selected from the amino acid substitutions involved in improving alkali stability, which were revealed in Example 26, and FcR19 in which these substitutions were accumulated in FcR16 (Example 23) was prepared. Specifically, FcR19 was produced by carrying out mutation introduction | transduction which produces Lys165Glu with respect to the polynucleotide containing the mutation of Thr140Ile and Tyr158His obtained in Example 26.
(A-1) SEQ ID NO: 24 and SEQ ID NO: 75 (5′-ATTCCCAAAGCGACCGCTGGAGGACACGCGGC-3 ′), using as a template the polynucleotide obtained in Example 26 that encodes an Fc-binding protein containing Thr140Ile and Tyr158His mutations in FcR16 The reaction solution having the composition shown in Table 5 was prepared, and the reaction solution was heat-treated at 98 ° C. for 5 minutes, and then the first step at 98 ° C. for 10 seconds. The reaction was performed by 30 cycles of the second step at 55 ° C. for 5 seconds and the third step at 72 ° C. for 1 minute for 30 cycles, and finally by heat treatment at 72 ° C. for 5 minutes. The amplified PCR product was subjected to agarose gel electrophoresis, and purified from the gel using a QIAquick Gel Extraction kit (Qiagen). The purified PCR product was designated as m19F.
(A-2) SEQ ID NO: 23 and SEQ ID NO: 76 (5′-ATAGCTGCCGCTGTCTCCCCACGGTCGCTTT-3 ′) using, as a template, a polynucleotide encoding an Fc-binding protein containing Thr140Ile and Tyr158His mutations in FcR16 obtained in Example 26 PCR was performed in the same manner as (a-1) except that the oligonucleotide having the sequence described in (1) was used as a PCR primer. The purified PCR product was designated as m19R.
(A-3) Two types of PCR products (m19F and m19R) obtained in (a-1) and (a-2) were mixed to prepare a reaction solution having the composition shown in Table 6. The reaction solution is heat-treated at 98 ° C. for 5 minutes, followed by 5 cycles of reaction in which the first step is 98 ° C. for 10 seconds, the second step is 55 ° C. for 5 seconds, and the third step is 72 ° C. for 1 minute. PCR was carried out to obtain a PCR product m19p in which m19F and m19R were linked.
(A-4) PCR was performed using the PCR product m19p obtained in (a-3) as a template and oligonucleotides having the sequences shown in SEQ ID NO: 23 and SEQ ID NO: 24 as PCR primers. In PCR, after preparing a reaction solution having the composition shown in Table 7, the reaction solution was heat-treated at 98 ° C. for 5 minutes, first step at 98 ° C. for 10 seconds, second step at 55 ° C. for 5 seconds, and at 72 ° C. The reaction with the third step of 1 minute as one cycle was performed 30 cycles. As a result, a polynucleotide encoding FcR19 having three amino acid substitutions introduced into FcR16 was prepared.
(A-5) After purifying the polynucleotide obtained in (a-4), digested with restriction enzymes NcoI and HindIII, and previously digested with restriction enzymes NcoI and HindIII (Japanese Patent Laid-Open No. 2011-206046) Was used to transform Escherichia coli BL21 (DE3) strain.
(A-6) The obtained transformant was cultured in LB medium supplemented with 50 μg / mL kanamycin. A polynucleotide encoding FcR19, which is a polypeptide in which amino acid substitution has been performed on FcR16 at three positions (19 positions relative to a wild-type Fc-binding protein) by extracting a plasmid from the collected bacterial cells (transformants) Plasmid pET-FcR19 containing was obtained.
(A-7) The nucleotide sequence of pET-FcR19 was analyzed in the same manner as in Example 1 (5).
 シグナル配列およびポリヒスチジンタグを付加したFcR19のアミノ酸配列を配列番号77に、前記FcR19をコードするポリヌクレオチドの配列を配列番号78に示す。なお、配列番号77において、1番目のメチオニン(Met)から26番目のアラニン(Ala)までがMalEシグナルペプチドであり、27番目のリジン(Lys)から32番目のメチオニン(Met)までがリンカー配列であり、33番目のグリシン(Gly)から208番目のグルタミン(Gln)までがFcR19のアミノ酸配列(配列番号1の17番目から192番目までの領域に相当)、209番目から210番目までのグリシン(Gly)がリンカー配列であり、211番目から216番目のヒスチジン(His)がタグ配列である。また配列番号73において、Glu21Glyのグリシンは37番目、Leu23Metのメチオニンは39番目、Val27Gluのグルタミン酸は43番目、Phe29Ileのイソロイシンは45番目、Tyr35Asnのアスパラギンは51番目、Gln48Argのアルギニンは64番目、Tyr51Hisのヒスチジンは67番目、Glu54Aspのアスパラギン酸は70番目、Ser68Proのプロリンは84番目、Phe75Leuのロイシンは91番目、Asn92Serのセリンは108番目、Val117Gluのグルタミン酸は133番目、Glu121Glyのグリシンは137番目、Thr140Ileのイソロイシンは156番目、Gly147Valのバリンは163番目、Tyr158Hisのヒスチジンは174番目、Lys165Gluのグルタミン酸は181番目、Phe171Serのセリンは187番目およびSer178Argのアルギニンは194番目の位置にそれぞれ存在する。
(b)FcR21
 実施例26で得られたAsp82Glu、Gln101LeuおよびAsn187Aspの変異を含んだポリヌクレオチドに対して、Thr140Ile、Tyr158HisおよびLys165Gluを生じさせる変異導入を行ない、改良Fc結合性タンパク質を得た。なお前記変異のうちAsn187Aspは後述の(b-9)の操作で欠失したため、本実験で実際に得られた改良Fc結合性タンパク質はAsp82Glu、Gln101Leu、Thr140Ile、Tyr158HisおよびLys165Gluの置換をFcR16(実施例23)に集積したFc結合性タンパク質(FcR21)である。
(b-1)実施例26で取得した、FcR16にAsp82Glu、Gln101LeuおよびAsn187Aspの変異を含んだFc結合性タンパク質をコードするポリヌクレオチドを鋳型とし、配列番号24および配列番号79(5’-ACCGCCCTGCATAAAGTGATCTACCTGCAA-3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、表5に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行ない、最後に72℃で5分間熱処理することで行なった。増幅したPCR産物をアガロースゲル電気泳動に供し、そのゲルからQIAquick Gel Extraction kit(キアゲン製)を用いて精製した。精製したPCR産物をm21-2Fとした。
(b-2)実施例26で取得した、FcR16にAsp82Glu、Gln101LeuおよびAsn187Aspの変異を含んだFc結合性タンパク質をコードするポリヌクレオチドを鋳型とし、配列番号23および配列番号80(5’-TTGCAGGTAGATCACTTTATGCAGGGCGGT-3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、(b-1)と同様の方法でPCRを行なった。精製したPCR産物をm21-2Rとした。
(b-3)(b-1)および(b-2)で得られた2種類のPCR産物(m21-2F、m21-2R)を混合し、表6に示す組成の反応液を調製した。当該反応液を98℃で5分間熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を5サイクル行なうPCRを行ない、m21-2Fとm21-2Rを連結したPCR産物m21-2pを得た。
(b-4)(b-3)で得られたPCR産物m21-2pを鋳型とし、配列番号23および配列番号24に記載の配列からなるオリゴヌクレオチドをPCRプライマーとしてPCRを行なった。PCRは、表7に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行なった。これによりFcR16にAsp82Glu、Gln101Leu、Thr140IleおよびAsn187Aspの変異を含んだFcR21-2をコードするポリヌクレオチドを作製した。
(b-5)(b-4)で取得した、FcR16にAsp82Glu、Gln101Leu、Thr140IleおよびAsn187Aspの変異を含んだFcR21-2をコードするポリヌクレオチドを鋳型とし、配列番号24および配列番号81(5’-CACCACAACTCCGACTTCCATATTCCCAAA-3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、表5に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行ない、最後に72℃で5分間熱処理することで行なった。増幅したPCR産物をアガロースゲル電気泳動に供し、そのゲルからQIAquick Gel Extraction kit(キアゲン製)を用いて精製した。精製したPCR産物をm21-1Fとした。
(b-6)(b-4)で取得した、FcR16にAsp82Glu、Gln101Leu、Thr140IleおよびAsn187Aspの変異を含んだFcR21-2をコードするポリヌクレオチドを鋳型とし、配列番号23および配列番号82(5’-CAGCGTCGCTTTGGGAATATGGAAGTCGGA-3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、(b-5)と同様の方法でPCRを行なった。精製したPCR産物をm21-1Rとした。
(b-7)(b-5)および(b-6)で得られた2種類のPCR産物(m21-1F、m21-1R)を混合し、表6に示す組成の反応液を調製した。当該反応液を98℃で5分間熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を5サイクル行なうPCRを行ない、m21-1Fとm21-1Rを連結したPCR産物m21-1pを得た。
(b-8)(b-7)で得られたPCR産物m21-1pを鋳型とし、配列番号23および配列番号24に記載の配列からなるオリゴヌクレオチドをPCRプライマーとしてPCRを行なった。PCRは、表7に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行なった。これによりFcR16にAsp82Glu、Gln101Leu、Thr140Ile、Tyr158HisおよびAsn187Aspの変異を含んだFcR21-1をコードするポリヌクレオチドを作製した。
(b-9)(b-8)で取得した、FcR16にAsp82Glu、Gln101Leu、Thr140Ile、Tyr158HisおよびAsn187Aspの変異を含んだFcR21-1をコードするポリヌクレオチドを鋳型とし、配列番号22および配列番号75に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、表5に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行ない、最後に72℃で5分間熱処理することで行なった。増幅したPCR産物をアガロースゲル電気泳動に供し、そのゲルからQIAquick Gel Extraction kit(キアゲン製)を用いて精製した。精製したPCR産物をm21Fとした(本操作によりAsn187Aspの変異が欠失している)。
(b-10)(b-8)で取得した、FcR16にAsp82Glu、Gln101Leu、Thr140Ile、Tyr158HisおよびAsn187Aspの変異を含んだFcR21-1をコードするポリヌクレオチドを鋳型とし、配列番号62および配列番号76に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、(b-9)と同様の方法でPCRを行なった。精製したPCR産物をm21Rとした。
(b-11)(b-9)および(b-10)で得られた2種類のPCR産物(m21F、m21R)を混合し、表6に示す組成の反応液を調製した。当該反応液を98℃で5分間熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を5サイクル行なうPCRを行ない、m21Fとm21Rを連結したPCR産物m21pを得た。
(b-12)(b-11)で得られたPCR産物m21pを鋳型とし、配列番号62および配列番号22に記載の配列からなるオリゴヌクレオチドをPCRプライマーとしてPCRを行なった。PCRは、表7に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行なった。これによりFcR16に5箇所(Asp82Glu、Gln101Leu、Thr140Ile、Tyr158HisおよびLys165Glu)(野生型Fc結合性タンパク質に対して21箇所)アミノ酸置換を導入したFcR21をコードするポリヌクレオチドを作製した。
(b-13)(a-12)で得られたポリヌクレオチドを精製後、制限酵素NcoIとHindIIIで消化し、あらかじめ制限酵素NcoIとHindIIIで消化した発現ベクターpETMalE(特開2011-206046号公報)にライゲーションし、これを用いて大腸菌BL21(DE3)株を形質転換した。
(b-14)得られた形質転換体を50μg/mLのカナマイシンを添加したLB培地で培養した。回収した菌体(形質転換体)からプラスミドを抽出することで、FcR16に対して5箇所アミノ酸置換したポリペプチドである、FcR21をコードするポリヌクレオチドを含むプラスミドpET-FcR21を得た。
(b-15)pET-FcR21のヌクレオチド配列の解析を、実施例1(5)と同様の方法で行なった。
The amino acid sequence of FcR19 added with a signal sequence and a polyhistidine tag is shown in SEQ ID NO: 77, and the sequence of the polynucleotide encoding the FcR19 is shown in SEQ ID NO: 78. In SEQ ID NO: 77, the first methionine (Met) to the 26th alanine (Ala) are MalE signal peptides, and the 27th lysine (Lys) to the 32nd methionine (Met) are linker sequences. Yes, from the 33rd glycine (Gly) to the 208th glutamine (Gln) amino acid sequence of FcR19 (corresponding to the 17th to 192nd region of SEQ ID NO: 1), 209th to 210th glycine (Gly) ) Is a linker sequence, and 211 to 216th histidine (His) is a tag sequence. In SEQ ID NO: 73, Glu21Gly glycine is position 37, Leu23Met methionine is position 39, Val27Glu glutamate is position 43, Phe29Ile isoleucine is position 45, Tyr35Asn asparagine is position 51, Gln48Arg arginine is position 64, and Tyr51His. Histidine 67th, Glu54Asp aspartic acid 70th, Ser68Pro proline 84th, Phe75Leu leucine 91th, Asn92Ser serine 108th, Val117Glu glutamic acid 133rd, Glu121Gly glycine 137th, Thr140Ile Isoleucine is 156th, Gly147Val valine is 163rd, Tyr158His hiss Gin 174 th, glutamic acid Lys165Glu 181 th, serine Phe171Ser arginine of 187th and Ser178Arg are present respectively in 194th position.
(B) FcR21
The polynucleotide containing Asp82Glu, Gln101Leu and Asn187Asp mutations obtained in Example 26 was subjected to mutagenesis to produce Thr140Ile, Tyr158His and Lys165Glu to obtain an improved Fc-binding protein. Of these mutations, Asn187Asp was deleted by the operation (b-9) described later, and the improved Fc-binding protein actually obtained in this experiment was replaced with Asp82Glu, Gln101Leu, Thr140Ile, Tyr158His and Lys165Glu. Fc-binding protein (FcR21) accumulated in Example 23).
(B-1) Using the polynucleotide encoding Fc-binding protein obtained in Example 26 and containing FspR16 mutations Asp82Glu, Gln101Leu and Asn187Asp as a template, SEQ ID NO: 24 and SEQ ID NO: 79 (5′-ACCGCCCCTGCCATAAAGTGATCTACCTGCAA- 3 ′), except that the reaction mixture having the composition shown in Table 5 was prepared, and the reaction solution was heat-treated at 98 ° C. for 5 minutes, followed by a 10-second reaction at 98 ° C. for 10 seconds. The reaction was carried out by 30 cycles of 1 step, the second step at 55 ° C. for 5 seconds, and the third step at 72 ° C. for 1 minute for 30 cycles, and finally heat treatment at 72 ° C. for 5 minutes. The amplified PCR product was subjected to agarose gel electrophoresis, and purified from the gel using a QIAquick Gel Extraction kit (Qiagen). The purified PCR product was designated as m21-2F.
(B-2) SEQ ID NO: 23 and SEQ ID NO: 80 (5′-TTGCAGGGTAGACTACTTTATGCAGGGCGGT-) using as a template a polynucleotide encoding an Fc-binding protein obtained in Example 26 and containing Asp82Glu, Gln101Leu and Asn187Asp mutations in FcR16 PCR was performed in the same manner as (b-1) except that the oligonucleotide having the sequence described in 3 ′) was used as a PCR primer. The purified PCR product was designated as m21-2R.
(B-3) Two types of PCR products (m21-2F, m21-2R) obtained in (b-1) and (b-2) were mixed to prepare a reaction solution having the composition shown in Table 6. The reaction solution is heat-treated at 98 ° C. for 5 minutes, followed by 5 cycles of reaction in which the first step is 98 ° C. for 10 seconds, the second step is 55 ° C. for 5 seconds, and the third step is 72 ° C. for 1 minute. PCR was performed to obtain a PCR product m21-2p in which m21-2F and m21-2R were ligated.
(B-4) PCR was performed using the PCR product m21-2p obtained in (b-3) as a template and oligonucleotides having the sequences described in SEQ ID NO: 23 and SEQ ID NO: 24 as PCR primers. In PCR, after preparing a reaction solution having the composition shown in Table 7, the reaction solution was heat-treated at 98 ° C. for 5 minutes, first step at 98 ° C. for 10 seconds, second step at 55 ° C. for 5 seconds, and at 72 ° C. The reaction with the third step of 1 minute as one cycle was performed 30 cycles. As a result, a polynucleotide encoding FcR21-2 containing Asp82Glu, Gln101Leu, Thr140Ile and Asn187Asp mutations in FcR16 was prepared.
(B-5) The polynucleotide encoding FcR21-2 containing the mutations Asp82Glu, Gln101Leu, Thr140Ile, and Asn187Asp obtained in (b-4) in FcR16 as a template, SEQ ID NO: 24 and SEQ ID NO: 81 (5 ′ -CACCACAACTCCGAACTTCCATATTCCCAAA-3 ') except that oligonucleotides having the sequence described in the above were used as PCR primers, a reaction solution having the composition shown in Table 5 was prepared, and the reaction solution was heat-treated at 98 ° C for 5 minutes, The reaction was carried out by performing 30 cycles of the first step for 2 seconds, the second step for 55 seconds at 55 ° C., and the third step for 1 minute at 72 ° C. for 30 cycles, and finally heat treatment at 72 ° C. for 5 minutes. The amplified PCR product was subjected to agarose gel electrophoresis, and purified from the gel using a QIAquick Gel Extraction kit (Qiagen). The purified PCR product was designated as m21-1F.
(B-6) The polynucleotide encoding FcR21-2 containing the mutations of Asp82Glu, Gln101Leu, Thr140Ile and Asn187Asp obtained in (b-4) in FcR16 was used as a template, and SEQ ID NO: 23 and SEQ ID NO: 82 (5 ′ PCR was carried out in the same manner as in (b-5) except that the oligonucleotide consisting of the sequence described in CAGCGTCGCTTTGGGAATATGGAAGTCCGGA-3 ′) was used as a PCR primer. The purified PCR product was designated as m21-1R.
(B-7) Two types of PCR products (m21-1F, m21-1R) obtained in (b-5) and (b-6) were mixed to prepare a reaction solution having the composition shown in Table 6. The reaction solution is heat-treated at 98 ° C. for 5 minutes, followed by 5 cycles of reaction in which the first step is 98 ° C. for 10 seconds, the second step is 55 ° C. for 5 seconds, and the third step is 72 ° C. for 1 minute. PCR was performed to obtain a PCR product m21-1p in which m21-1F and m21-1R were ligated.
(B-8) PCR was performed using the PCR product m21-1p obtained in (b-7) as a template and oligonucleotides having the sequences described in SEQ ID NO: 23 and SEQ ID NO: 24 as PCR primers. In PCR, after preparing a reaction solution having the composition shown in Table 7, the reaction solution was heat-treated at 98 ° C. for 5 minutes, first step at 98 ° C. for 10 seconds, second step at 55 ° C. for 5 seconds, and at 72 ° C. The reaction with the third step of 1 minute as one cycle was performed 30 cycles. Thus, a polynucleotide encoding FcR21-1 containing Asp82Glu, Gln101Leu, Thr140Ile, Tyr158His, and Asn187Asp mutations in FcR16 was prepared.
(B-9) The polynucleotide encoding FcR21-1 containing the mutations of Asp82Glu, Gln101Leu, Thr140Ile, Tyr158His and Asn187Asp obtained in (b-8) in FcR16 is used as a template. SEQ ID NO: 22 and SEQ ID NO: 75 The reaction solution having the composition shown in Table 5 was prepared except that the oligonucleotide having the sequence described above was used as a PCR primer, and then the reaction solution was heat-treated at 98 ° C. for 5 minutes, and the first step at 98 ° C. for 10 seconds, 55 The reaction was carried out by performing 30 cycles of the second step of 5 seconds at ° C and the third step of 1 minute at 72 ° C for 30 cycles, and finally heat treating at 72 ° C for 5 minutes. The amplified PCR product was subjected to agarose gel electrophoresis, and purified from the gel using a QIAquick Gel Extraction kit (Qiagen). The purified PCR product was designated as m21F (Asn187Asp mutation was deleted by this operation).
(B-10) A polynucleotide encoding FcR21-1 containing the mutations of Asp82Glu, Gln101Leu, Thr140Ile, Tyr158His, and Asn187Asp obtained in (b-8) in FcR16 is used as a template. SEQ ID NO: 62 and SEQ ID NO: 76 PCR was carried out in the same manner as in (b-9) except that oligonucleotides having the sequences described were used as PCR primers. The purified PCR product was designated as m21R.
(B-11) Two types of PCR products (m21F, m21R) obtained in (b-9) and (b-10) were mixed to prepare a reaction solution having the composition shown in Table 6. The reaction solution is heat-treated at 98 ° C. for 5 minutes, followed by 5 cycles of reaction in which the first step is 98 ° C. for 10 seconds, the second step is 55 ° C. for 5 seconds, and the third step is 72 ° C. for 1 minute. PCR was performed to obtain a PCR product m21p in which m21F and m21R were linked.
(B-12) PCR was performed using the PCR product m21p obtained in (b-11) as a template and oligonucleotides having the sequences described in SEQ ID NO: 62 and SEQ ID NO: 22 as PCR primers. In PCR, after preparing a reaction solution having the composition shown in Table 7, the reaction solution was heat-treated at 98 ° C. for 5 minutes, first step at 98 ° C. for 10 seconds, second step at 55 ° C. for 5 seconds, and at 72 ° C. The reaction with the third step of 1 minute as one cycle was performed 30 cycles. As a result, a polynucleotide encoding FcR21 having 5 amino acid substitutions (Asp82Glu, Gln101Leu, Thr140Ile, Tyr158His, and Lys165Glu) (21 sites relative to the wild-type Fc-binding protein) in FcR16 was prepared.
(B-13) After purifying the polynucleotide obtained in (a-12), it is digested with restriction enzymes NcoI and HindIII and previously digested with restriction enzymes NcoI and HindIII (Japanese Patent Laid-Open No. 2011-206046) Was used to transform Escherichia coli BL21 (DE3) strain.
(B-14) The obtained transformant was cultured in an LB medium supplemented with 50 μg / mL kanamycin. By extracting a plasmid from the collected bacterial cells (transformants), a plasmid pET-FcR21 containing a polynucleotide encoding FcR21, which is a polypeptide obtained by substituting FcR16 with 5 amino acids, was obtained.
(B-15) The nucleotide sequence of pET-FcR21 was analyzed in the same manner as in Example 1 (5).
 シグナル配列およびポリヒスチジンタグを付加したFcR21のアミノ酸配列を配列番号83に、前記FcR21をコードするポリヌクレオチドの配列を配列番号84に示す。なお、配列番号83において、1番目のメチオニン(Met)から26番目のアラニン(Ala)までがMalEシグナルペプチドであり、27番目のリジン(Lys)から32番目のメチオニン(Met)までがリンカー配列であり、33番目のグリシン(Gly)から208番目のグルタミン(Gln)までがFcR21のアミノ酸配列(配列番号1の17番目から192番目までの領域に相当)、209番目から210番目までのグリシン(Gly)がリンカー配列であり、211番目から216番目のヒスチジン(His)がタグ配列である。また配列番号83において、Glu21Glyのグリシンは37番目、Leu23Metのメチオニンは39番目、Val27Gluのグルタミン酸は43番目、Phe29Ileのイソロイシンは45番目、Tyr35Asnのアスパラギンは51番目、Gln48Argのアルギニンは64番目、Tyr51Hisのヒスチジンは67番目、Glu54Aspのアスパラギン酸は70番目、Ser68Proのプロリンは84番目、Phe75Leuのロイシンは91番目、Asp82Gluのグルタミン酸は98番目、Asn92Serのセリンは108番目、Gln101Leuのロイシンは117番目、Val117Gluのグルタミン酸は133番目、Glu121Glyのグリシンは137番目、Thr140Ileのイソロイシンは156番目、Gly147Valのバリンは163番目、Tyr158Hisのヒスチジンは174番目、Lys165Gluのグルタミン酸は181番目、Phe171Serのセリンは187番目およびSer178Argのアルギニンは194番目の位置にそれぞれ存在する。
(c)FcR24
 実施例26で明らかとなった、アルカリ安定性向上に関与するアミノ酸置換の中から、Ala78Ser、Asp82Glu、Gln101Leu、Thr140Ile、Tyr158His、Lys165Glu、Thr185AlaおよびAsn187Aspを選択し、それらの置換をFcR16(実施例23)に集積したFcR24を作製した。具体的には、FcR21をコードするポリヌクレオチドに対して、Ala78Ser、Thr185AlaおよびAsn187Aspを生じさせる変異導入を行なうことにより、FcR24を作製した。
(c-1)(b)で作製した、pET-FcR21を鋳型とし、配列番号24および配列番号85(5’-AGCAGCTACCTTATTGATTCGGCGACGGTG-3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、表5に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行ない、最後に72℃で5分間熱処理することで行なった。増幅したPCR産物をアガロースゲル電気泳動に供し、そのゲルからQIAquick Gel Extraction kit(キアゲン製)を用いて精製した。精製したPCR産物をm24-2Fとした。
(c-2)(b)で作製した、pET-FcR21を鋳型とし、配列番号23および配列番号86(5’-GCTATCTTCCACCGTCGCCGAATCAATAAG-3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、(c-1)と同様の方法でPCRを行なった。精製したPCR産物をm24-2Rとした。
(c-3)(c-1)および(c-2)で得られた2種類のPCR産物(m24-2F、m24-2R)を混合し、表6に示す組成の反応液を調製した。当該反応液を98℃で5分間熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を5サイクル行なうPCRを行ない、m21-2Fとm21-2Rを連結したPCR産物m24-2pを得た。
(c-4)(c-3)で得られたPCR産物m24-2pを鋳型とし、配列番号23および配列番号24に記載の配列からなるオリゴヌクレオチドをPCRプライマーとしてPCRを行なった。PCRは、表7に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行なった。これによりFcR16にAla78Ser、Asp82Glu、Gln101Leu、Thr140Ile、Tyr158HisおよびLys165Gluの変異を含んだFcR24-2をコードするポリヌクレオチドを作製した。
(c-5)(c-4)で取得した、FcR16にAla78Ser、Asp82Glu、Gln101Leu、Thr140Ile、Tyr158HisおよびLys165Gluの変異を含んだFcR24-2をコードするポリヌクレオチドを鋳型とし、配列番号24および配列番号87(5’-AAAAATGTGAGCAGCGAGGCCGTGGATATT-3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、表5に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行ない、最後に72℃で5分間熱処理することで行なった。増幅したPCR産物をアガロースゲル電気泳動に供し、そのゲルからQIAquick Gel Extraction kit(キアゲン製)を用いて精製した。精製したPCR産物をm24Fとした。
(c-6)(c-4)で取得した、FcR16にAla78Ser、Asp82Glu、Gln101Leu、Thr140Ile、Tyr158HisおよびLys165Gluの変異を含んだFcR24-2をコードするポリヌクレオチドを鋳型とし、配列番号62および配列番号88(5’-GGTAATGGTAATATCCACGGCCTCGCTGCT-3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、(c-5)と同様の方法でPCRを行なった。精製したPCR産物をm24Rとした。
(c-7)(c-5)および(c-6)で得られた2種類のPCR産物(m24F、m24R)を混合し、表6に示す組成の反応液を調製した。当該反応液を98℃で5分間熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を5サイクル行なうPCRを行ない、m24Fとm24Rを連結したPCR産物m24pを得た。
(c-8)(c-7)で得られたPCR産物m24pを鋳型とし、配列番号62および配列番号24に記載の配列からなるオリゴヌクレオチドをPCRプライマーとしてPCRを行なった。PCRは、表7に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行なった。これによりFcR16に8箇所(野生型Fc結合性タンパク質に対して24箇所)アミノ酸置換を導入したFcR24をコードするポリヌクレオチドを作製した。
(c-9)(c-8)で得られたポリヌクレオチドを精製後、制限酵素NcoIとHindIIIで消化し、あらかじめ制限酵素NcoIとHindIIIで消化した発現ベクターpETMalE(特開2011-206046号公報)にライゲーションし、これを用いて大腸菌BL21(DE3)株を形質転換した。
(c-10)得られた形質転換体を50μg/mLのカナマイシンを添加したLB培地で培養した。回収した菌体(形質転換体)からプラスミドを抽出することで、FcR16に対して8箇所アミノ酸置換したポリペプチドである、FcR24をコードするポリヌクレオチドを含むプラスミドpET-FcR24を得た。
(c-11)pET-FcR24のヌクレオチド配列の解析を、実施例1(5)と同様の方法で行なった。
The amino acid sequence of FcR21 added with a signal sequence and a polyhistidine tag is shown in SEQ ID NO: 83, and the sequence of a polynucleotide encoding the FcR21 is shown in SEQ ID NO: 84. In SEQ ID NO: 83, the first methionine (Met) to the 26th alanine (Ala) are MalE signal peptides, and the 27th lysine (Lys) to the 32nd methionine (Met) are linker sequences. Yes, from the 33rd glycine (Gly) to the 208th glutamine (Gln) amino acid sequence of FcR21 (corresponding to the 17th to 192nd region of SEQ ID NO: 1), the 209th to 210th glycine (Gly) ) Is a linker sequence, and 211 to 216th histidine (His) is a tag sequence. Also, in SEQ ID NO: 83, Glu21Gly glycine is position 37, Leu23Met methionine is position 39, Val27Glu glutamate is position 43, Phe29Ile isoleucine is position 45, Tyr35Asn asparagine is position 51, Gln48Arg arginine is position 64, and Tyr51His. Histidine 67th, Glu54Asp aspartic acid 70th, Ser68Pro proline 84th, Phe75Leu leucine 91th, Asp82Glu glutamic acid 98th, Asn92Ser serine 108th, Gln101Leu leucine 117th, Val117Glu Glutamic acid is 133th, Glu121Gly glycine is 137th, Thr140Ile isologue Singh 156 th, valine Gly147Val 163 th, histidine Tyr158His 174 th, glutamic acid Lys165Glu 181 th, serine Phe171Ser is arginine 187th and Ser178Arg present respectively 194th position.
(C) FcR24
Among the amino acid substitutions involved in improving the alkali stability revealed in Example 26, Ala78Ser, Asp82Glu, Gln101Leu, Thr140Ile, Tyr158His, Lys165Glu, Thr185Ala and Asn187Asp were selected, and these substitutions were selected as FcR16 (Example 23). FcR24 accumulated in (1) was prepared. Specifically, FcR24 was prepared by introducing a mutation that causes Ala78Ser, Thr185Ala and Asn187Asp to the polynucleotide encoding FcR21.
(C-1) except that pET-FcR21 prepared in (b) was used as a template, and an oligonucleotide having the sequences described in SEQ ID NO: 24 and SEQ ID NO: 85 (5′-AGCAGCTCACTTTATTGATTCGGCGACGGGTG-3 ′) was used as a PCR primer. After preparing a reaction solution having the composition shown in Table 5, the reaction solution was heat-treated at 98 ° C. for 5 minutes, first step at 98 ° C. for 10 seconds, second step at 55 ° C. for 5 seconds, and 72 ° C. for 1 minute. The reaction with the third step of 1 cycle as 30 cycles was performed by heat treatment at 72 ° C. for 5 minutes. The amplified PCR product was subjected to agarose gel electrophoresis, and purified from the gel using a QIAquick Gel Extraction kit (Qiagen). The purified PCR product was designated as m24-2F.
(C-2) except that pET-FcR21 prepared in (b) was used as a template, and an oligonucleotide consisting of the sequences described in SEQ ID NO: 23 and SEQ ID NO: 86 (5′-GCTATCTCCCACCGTCGCCGAATCAATAAG-3 ′) was used as a PCR primer. PCR was performed in the same manner as in (c-1). The purified PCR product was designated m24-2R.
(C-3) Two types of PCR products (m24-2F and m24-2R) obtained in (c-1) and (c-2) were mixed to prepare a reaction solution having the composition shown in Table 6. The reaction solution is heat-treated at 98 ° C. for 5 minutes, followed by 5 cycles of reaction in which the first step is 98 ° C. for 10 seconds, the second step is 55 ° C. for 5 seconds, and the third step is 72 ° C. for 1 minute. PCR was performed to obtain a PCR product m24-2p in which m21-2F and m21-2R were ligated.
(C-4) PCR was performed using the PCR product m24-2p obtained in (c-3) as a template and oligonucleotides having the sequences described in SEQ ID NO: 23 and SEQ ID NO: 24 as PCR primers. In PCR, after preparing a reaction solution having the composition shown in Table 7, the reaction solution was heat-treated at 98 ° C. for 5 minutes, first step at 98 ° C. for 10 seconds, second step at 55 ° C. for 5 seconds, and at 72 ° C. The reaction with the third step of 1 minute as one cycle was performed 30 cycles. As a result, a polynucleotide encoding FcR24-2 containing Ala78Ser, Asp82Glu, Gln101Leu, Thr140Ile, Tyr158His and Lys165Glu mutations in FcR16 was prepared.
(C-5) The polynucleotide obtained by (c-4) and encoding FcR24-2 containing mutations of Ala78Ser, Asp82Glu, Gln101Leu, Thr140Ile, Tyr158His and Lys165Glu in FcR16 as a template, SEQ ID NO: 24 and SEQ ID NO: 87 (5′-AAAAATGTGAGCAGCGAGGCCCGTGGATTT-3 ′) except that the PCR primer was used as a PCR primer, a reaction solution having the composition shown in Table 5 was prepared, and the reaction solution was heat-treated at 98 ° C. for 5 minutes. Perform 30 cycles of the first step at 98 ° C for 10 seconds, the second step at 55 ° C for 5 seconds, and the third step at 72 ° C for 1 minute, and finally heat-treat at 72 ° C for 5 minutes. It was done in. The amplified PCR product was subjected to agarose gel electrophoresis, and purified from the gel using a QIAquick Gel Extraction kit (Qiagen). The purified PCR product was designated as m24F.
(C-6) The polynucleotide obtained by (c-4) and encoding FcR24-2 containing mutations of Ala78Ser, Asp82Glu, Gln101Leu, Thr140Ile, Tyr158His and Lys165Glu in FcR16 was used as a template, and SEQ ID NO: 62 and SEQ ID NO: PCR was carried out in the same manner as in (c-5), except that an oligonucleotide having the sequence described in No. 88 (5′-GGTAATGGTAATATCCCACGCCCCGCGTGCT-3 ′) was used as a PCR primer. The purified PCR product was designated as m24R.
(C-7) Two types of PCR products (m24F and m24R) obtained in (c-5) and (c-6) were mixed to prepare a reaction solution having the composition shown in Table 6. The reaction solution is heat-treated at 98 ° C. for 5 minutes, followed by 5 cycles of reaction in which the first step is 98 ° C. for 10 seconds, the second step is 55 ° C. for 5 seconds, and the third step is 72 ° C. for 1 minute. PCR was carried out to obtain a PCR product m24p in which m24F and m24R were linked.
(C-8) PCR was performed using the PCR product m24p obtained in (c-7) as a template and oligonucleotides having the sequences described in SEQ ID NO: 62 and SEQ ID NO: 24 as PCR primers. In PCR, after preparing a reaction solution having the composition shown in Table 7, the reaction solution was heat-treated at 98 ° C. for 5 minutes, first step at 98 ° C. for 10 seconds, second step at 55 ° C. for 5 seconds, and at 72 ° C. The reaction with the third step of 1 minute as one cycle was performed 30 cycles. As a result, a polynucleotide encoding FcR24 in which amino acid substitution was introduced into FcR16 at 8 positions (24 positions relative to the wild-type Fc binding protein) was prepared.
(C-9) After purifying the polynucleotide obtained in (c-8), digested with restriction enzymes NcoI and HindIII, and previously digested with restriction enzymes NcoI and HindIII (Japanese Patent Laid-Open No. 2011-206046) Was used to transform Escherichia coli BL21 (DE3) strain.
(C-10) The obtained transformant was cultured in an LB medium supplemented with 50 μg / mL kanamycin. By extracting a plasmid from the collected bacterial cells (transformants), a plasmid pET-FcR24 containing a polynucleotide encoding FcR24, which is a polypeptide obtained by substituting eight amino acids for FcR16, was obtained.
(C-11) The nucleotide sequence of pET-FcR24 was analyzed in the same manner as in Example 1 (5).
 シグナル配列およびポリヒスチジンタグを付加したFcR24のアミノ酸配列を配列番号89に、前記FcR24をコードするポリヌクレオチドの配列を配列番号90に示す。なお、配列番号89において、1番目のメチオニン(Met)から26番目のアラニン(Ala)までがMalEシグナルペプチドであり、27番目のリジン(Lys)から32番目のメチオニン(Met)までがリンカー配列であり、33番目のグリシン(Gly)から208番目のグルタミン(Gln)までがFcR24のアミノ酸配列(配列番号1の17番目から192番目までの領域に相当)、209番目から210番目までのグリシン(Gly)がリンカー配列であり、211番目から216番目のヒスチジン(His)がタグ配列である。また配列番号89において、Glu21Glyのグリシンは37番目、Leu23Metのメチオニンは39番目、Val27Gluのグルタミン酸は43番目、Phe29Ileのイソロイシンは45番目、Tyr35Asnのアスパラギンは51番目、Gln48Argのアルギニンは64番目、Tyr51Hisのヒスチジンは67番目、Glu54Aspのアスパラギン酸は70番目、Ser68Proのプロリンは84番目、Phe75Leuのロイシンは91番目、Ala78Serのセリンは94番目、Asp82Gluのグルタミン酸は98番目、Asn92Serのセリンは108番目、Gln101Leuのロイシンは117番目、Val117Gluのグルタミン酸は133番目、Glu121Glyのグリシンは137番目、Thr140Ileのイソロイシンは156番目、Gly147Valのバリンは163番目、Tyr158Hisのヒスチジンは174番目、Lys165Gluのグルタミン酸は181番目、Phe171Serのセリンは187番目、Ser178Argのアルギニンは194番目、Thr185Alaのアラニンは201番目およびAsn187Aspのアスパラギン酸は203番目の位置にそれぞれ存在する。 The amino acid sequence of FcR24 added with a signal sequence and a polyhistidine tag is shown in SEQ ID NO: 89, and the sequence of the polynucleotide encoding the FcR24 is shown in SEQ ID NO: 90. In SEQ ID NO: 89, the first methionine (Met) to the 26th alanine (Ala) are MalE signal peptides, and the 27th lysine (Lys) to the 32nd methionine (Met) are linker sequences. Yes, the amino acid sequence of FcR24 (corresponding to the 17th to 192nd region of SEQ ID NO: 1) from the 33rd glycine (Gly) to the 208th glutamine (Gln), and the 209th to 210th glycine (Gly) ) Is a linker sequence, and 211 to 216th histidine (His) is a tag sequence. Also, in SEQ ID NO: 89, Glu21Gly glycine is position 37, Leu23Met methionine is position 39, Val27Glu glutamate is position 43, Phe29Ile isoleucine is position 45, Tyr35Asn asparagine is position 51, Gln48Arg arginine is position 64, and Tyr51His. Histidine 67th, Glu54Asp aspartic acid 70th, Ser68Pro proline 84th, Phe75Leu leucine 91th, Ala78Ser serine 94th, Asp82Glu glutamic acid 98th, Asn92Ser serine 108th, Gln101Leu Leucine is 117th, Val117Glu glutamic acid is 133th, Glu121Gly glycine is 1 7th, Thr140Ile isoleucine is 156th, Gly147Val valine is 163rd, Tyr158His histidine is 174th, Lys165Glu glutamic acid is 181st, Phe171Ser serine is 187th, Ser178Arg arginine is 194th, Arhine is 194th Th and Asn187Asp aspartic acid is present at position 203, respectively.
 実施例28 Fc結合性タンパク質のアルカリ安定性評価
(1)実施例23で作製したFc結合性タンパク質(FcR16)、ならびに実施例27で取得したFc結合性タンパク質(FcR19、FcR21およびFcR24)を発現する形質転換体を、実施例8の(1)から(4)に記載の方法で培養し、タンパク質を抽出することでFcR16、FcR19、FcR21およびFcR24を調製した。
(2)(1)で調製したタンパク質抽出液中のFcR16、FcR19、FcR21およびFcR24の抗体結合活性を、実施例3(4)に記載のELISA法を用いて測定した。この時、精製し定量したFcR13を用いて検量線を作製し、濃度測定を行なった。
(3)各Fc結合性タンパク質の濃度が10μg/mLになるよう純水で希釈後、前記希釈した溶液50μLと80mMの水酸化ナトリウム溶液50μLとを混合し、30℃で2時間静置することでアルカリ処理した。その後、1Mトリス塩酸緩衝液(pH7.0)を4倍量加えることで中和し、Fc結合性タンパク質の抗体結合活性を、実施例3(4)に記載のELISA法によって測定した。
(4)アルカリ処理を行なった場合の抗体結合活性をアルカリ処理を行なわなかったときの抗体結合活性で除することで、残存活性を算出しアルカリ安定性を評価した。
Example 28 Evaluation of Alkali Stability of Fc Binding Protein (1) Expression of Fc binding protein (FcR16) prepared in Example 23 and Fc binding proteins (FcR19, FcR21 and FcR24) obtained in Example 27 FcR16, FcR19, FcR21 and FcR24 were prepared by culturing the transformant by the method described in Example 8 (1) to (4) and extracting the protein.
(2) The antibody binding activity of FcR16, FcR19, FcR21 and FcR24 in the protein extract prepared in (1) was measured using the ELISA method described in Example 3 (4). At this time, a calibration curve was prepared using FcR13 purified and quantified, and the concentration was measured.
(3) After diluting with pure water so that the concentration of each Fc-binding protein becomes 10 μg / mL, 50 μL of the diluted solution and 50 μL of 80 mM sodium hydroxide solution are mixed and allowed to stand at 30 ° C. for 2 hours. Treated with alkali. Thereafter, the solution was neutralized by adding 4 volumes of 1M Tris-HCl buffer (pH 7.0), and the antibody binding activity of the Fc binding protein was measured by the ELISA method described in Example 3 (4).
(4) The residual activity was calculated by dividing the antibody binding activity when the alkali treatment was performed by the antibody binding activity when the alkali treatment was not performed, and the alkali stability was evaluated.
 結果を表18に示す。実施例27で作製したFcR19、FcR21およびFcR24はFcR16と比較し残存活性が高いことから、FcR16に比べてアルカリ安定性が向上していることが確認された。 The results are shown in Table 18. Since FcR19, FcR21 and FcR24 prepared in Example 27 have higher residual activity than FcR16, it was confirmed that the alkali stability was improved compared to FcR16.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 実施例29 FcR24への変異導入およびライブラリーの作製
 実施例27(c)で作製したFcR24をコードするポリヌクレオチド部分に、エラープローンPCRによりランダムに変異導入を施した。
(1)鋳型として実施例27(c)で作製した発現ベクターpET-FcR24を用いてエラープローンPCRを行なった。エラープローンPCRは、pET-FcR24を鋳型とし、配列番号23および24に記載の配列からなるオリゴヌクレオチドをプライマーとして用いた他は表3に示す組成と同様の反応液を調製後、当該反応液を95℃で2分間熱処理し、95℃で30秒間の第1ステップ、50℃で30秒間の第2ステップ、72℃で90秒間の第3ステップを1サイクルとする反応を35サイクル行ない、最後に72℃で7分間熱処理することで行なった。この反応によりFc結合性タンパク質をコードするポリヌクレオチドに良好に変異が導入された。
(2)(1)で得られたPCR産物を精製後、制限酵素NcoIとHindIIIで消化し、あらかじめ同制限酵素で消化した発現ベクターpETMalE(特開2011-206046号公報)にライゲーションした。
(3)ライゲーション反応終了後、反応液をエレクトロポレーション法により大腸菌BL21(DE3)株に導入し、50μg/mLのカナマイシンを含むLBプレート培地で培養後、プレート上に形成したコロニーをランダム変異ライブラリーとした。
Example 29 Mutation Introduction to FcR24 and Library Preparation Mutation was randomly introduced into the polynucleotide portion encoding FcR24 prepared in Example 27 (c) by error-prone PCR.
(1) Error prone PCR was performed using the expression vector pET-FcR24 prepared in Example 27 (c) as a template. In error-prone PCR, pET-FcR24 was used as a template, and a reaction solution having the same composition as shown in Table 3 was prepared except that oligonucleotides having the sequences shown in SEQ ID NOs: 23 and 24 were used as primers. Heat treatment at 95 ° C. for 2 minutes, 35 cycles of reaction with 95 ° C. for 30 seconds for the first step, 50 ° C. for 30 seconds for the second step, 72 ° C. for 90 seconds for the third step for 35 cycles, and finally The heat treatment was performed at 72 ° C. for 7 minutes. By this reaction, the mutation was successfully introduced into the polynucleotide encoding the Fc binding protein.
(2) The PCR product obtained in (1) was purified, digested with restriction enzymes NcoI and HindIII, and ligated into an expression vector pETmalE (Japanese Patent Laid-Open No. 2011-206046) previously digested with the same restriction enzymes.
(3) After completion of the ligation reaction, the reaction solution was introduced into E. coli BL21 (DE3) strain by electroporation, cultured in LB plate medium containing 50 μg / mL kanamycin, and the colonies formed on the plate were randomly mutated. It was rally.
 実施例30 アルカリ安定化Fc結合性タンパク質のスクリーニング
(1)実施例29で作製したランダム変異ライブラリーを実施例3(1)から(2)に記載の方法で培養することでFc結合性タンパク質を発現させた。
(2)培養後、遠心操作によって得られた、Fc結合性タンパク質を含む培養上清を純水にて20倍に希釈し、等量の300mMの水酸化ナトリウム溶液と混合した後、30℃で2時間静置することでアルカリ処理した。アルカリ処理後は、4倍量の1Mトリス緩衝液(pH7.0)でpHを中性付近に戻した。
(3)(2)に記載のアルカリ処理を行なったときのFc結合性タンパク質の抗体結合活性と、(2)に記載のアルカリ処理を行なわなかったときのFc結合性タンパク質の抗体結合活性を、実施例3(4)に記載のELISA法にてそれぞれ測定した。その後、アルカリ処理を行なったときのFc結合性タンパク質の抗体結合活性を、アルカリ処理を行なわなかったときのFc結合性タンパク質の抗体結合活性で除することで、残存活性を算出した。
(4)(3)の方法で約2700株の形質転換体を評価し、その中からFcR24と比較して安定性が向上したFc結合性タンパク質を発現する形質転換体を選択した。選択した形質転換体を50μg/mLのカナマイシンを含む2YT液体培地にて培養し、QIAprep Spin Miniprep kit(キアゲン製)を用いて発現ベクターを調製した。
(5)得られた発現ベクターに挿入されたFc結合性タンパク質をコードするポリヌクレオチド領域の配列を実施例1(5)に記載の方法によりヌクレオチド配列を解析し、アミノ酸の変異箇所を特定した。
Example 30 Screening of alkali-stabilized Fc binding protein (1) Random mutation library prepared in Example 29 was cultured by the method described in Example 3 (1) to (2) to thereby obtain Fc binding protein. Expressed.
(2) After culture, the culture supernatant containing Fc-binding protein obtained by centrifugation is diluted 20-fold with pure water, mixed with an equal amount of 300 mM sodium hydroxide solution, and then at 30 ° C. The alkali treatment was carried out by leaving still for 2 hours. After the alkali treatment, the pH was returned to near neutral with 4 volumes of 1 M Tris buffer (pH 7.0).
(3) The antibody binding activity of the Fc binding protein when the alkali treatment described in (2) is performed, and the antibody binding activity of the Fc binding protein when the alkali treatment described in (2) is not performed, Each was measured by the ELISA method described in Example 3 (4). Thereafter, the residual activity was calculated by dividing the antibody binding activity of the Fc binding protein when the alkali treatment was performed by the antibody binding activity of the Fc binding protein when the alkali treatment was not performed.
(4) About 2,700 strains of transformants were evaluated by the method of (3), and transformants expressing an Fc-binding protein with improved stability compared to FcR24 were selected from the transformants. The selected transformant was cultured in a 2YT liquid medium containing 50 μg / mL kanamycin, and an expression vector was prepared using QIAprep Spin Miniprep kit (manufactured by Qiagen).
(5) The nucleotide sequence of the sequence of the polynucleotide region encoding the Fc binding protein inserted into the obtained expression vector was analyzed by the method described in Example 1 (5), and amino acid mutation sites were identified.
 (4)で選択した形質転換体が発現するFc結合性タンパク質の、FcR24に対するアミノ酸置換位置およびアルカリ処理後の残存活性(%)をまとめたものを表19に示す。配列番号89に記載のアミノ酸配列のうち、33番目のグリシンから208番目のグルタミンまでのアミノ酸残基(配列番号1の17番目から192番目に該当)を含み、かつ当該33番目から208番目までのアミノ酸残基において、Lys40Gln(この表記は、配列番号1の40番目(配列番号37では56番目)のリジンがグルタミンに置換されていることを表す、以下同様)、Lys46Asn、Ala50Thr、Asn56Tyr、His62Leu、Ser65Gly、Tyr74His、Asp77Val、Gln90Leu、Lys119Thr、Lys119Glu、Asp122Glu、His137Gln、Thr(Ile)140Met(この表記は、配列番号1の140番目(配列番号37では156番目)のスレオニンが一度イソロイシンに置換されさらにメチオニンに置換されたことを示す、以下同様)、Tyr141Phe、Tyr(His)158Leu、Leu175Arg、Asn180Lys、Asn180Ser、Ile190Val、Thr191Ileのいずれかのアミノ酸置換が少なくとも1つ生じているFc結合性タンパク質は、FcR24と比較しアルカリ安定性が向上しているといえる。 Table 19 shows a summary of amino acid substitution positions for FcR24 and residual activity (%) after alkali treatment of the Fc-binding protein expressed by the transformant selected in (4). Of the amino acid sequence set forth in SEQ ID NO: 89, the amino acid residues from the 33rd glycine to the 208th glutamine (corresponding to the 17th to 192nd of SEQ ID NO: 1), and from the 33rd to 208th Among amino acid residues, Lys40Gln (this notation represents that 40th lysine in SEQ ID NO: 1 (56th in SEQ ID NO: 37) is substituted with glutamine, the same applies hereinafter), Lys46Asn, Ala50Thr, Asn56Tyr, His62Leu, Ser65Gly, Tyr74His, Asp77Val, Gln90Leu, Lys119Thr, Lys119Glu, Asp122Glu, His137Gln, Thr (Ile) 140Met (This notation is the 140th position of SEQ ID NO: 1 (156th position of SEQ ID NO: 37) Threonine once substituted with isoleucine and further substituted with methionine, the same applies below), and at least one amino acid substitution of Tyr141Phe, Tyr (His) 158Leu, Leu175Arg, Asn180Lys, Asn180Ser, Ile190Val, Thr191Ile occurs It can be said that the Fc-binding protein has improved alkali stability compared to FcR24.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 実施例31 Thr140またはTyr158アミノ酸置換体の作製
 実施例26で明らかになったFc結合性タンパク質のアルカリ安定性向上に寄与するアミノ酸置換のうち、配列番号1の140番目(配列番号37では156番目)のスレオニン(Thr140)がイソロイシン(Ile)に、158番目(配列番号37では174番目)のチロシン(Tyr158)がヒスチジンにそれぞれ置換されることでアルカリ安定性が特に向上した。そこで、Thr140およびTyr158の他のアミノ酸への置換の有用性を確認するため、実施例27(c)で作製したFcR24(配列番号89)のうちThr140(配列番号89では156番目)またはTyr158(配列番号89では174番目)を他のアミノ酸に置換したFc結合性タンパク質を作製した。
(a)Thr140アミノ酸置換体の作製
(a-1)実施例27(c)で作製した、pET-FcR24を鋳型とし、配列番号24および配列番号91(5’-CCTGCATAAAGTGNNKTACCTGCAAAACGG-3’)に記載の配列からなるオリゴヌクレオチドをプライマーとして用いた他は表3に示す組成と同様の反応液を調製後、当該反応液を95℃で2分間熱処理し、95℃で30秒間の第1ステップ、50℃で30秒間の第2ステップ、72℃で90秒間の第3ステップを1サイクルとする反応を35サイクル行ない、最後に72℃で7分間熱処理することでPCRを行なった。得られたPCR産物をT140p1とした。
(a-2)実施例27(c)で作製した、pET-FcR24を鋳型とし、配列番号23および配列番号92(5’-CCGTTTTGCAGGTAMNNCACTTTATGCAGG-3’)に記載の配列からなるオリゴヌクレオチドをプライマーとして用いた他は表3に示す組成と同様の反応液を調製後、当該反応液を95℃で2分間熱処理し、95℃で30秒間の第1ステップ、50℃で30秒間の第2ステップ、72℃で90秒間の第3ステップを1サイクルとする反応を35サイクル行ない、最後に72℃で7分間熱処理することでPCRを行なった。得られたPCR産物をT140p2とした。
(a-3)(a-1)および(a-2)で得られた2種類のPCR産物(T140p1、T140p2)を混合し、表6に示す組成の反応液を調製した。当該反応液を98℃で5分間熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を5サイクル行なうPCRを行ない、T140p1とT140p2を連結したPCR産物T140pを得た。
(a-4)(a-3)で得られたPCR産物T140pを鋳型とし、配列番号23および配列番号24に記載の配列からなるオリゴヌクレオチドをPCRプライマーとしてPCRを行なった。PCRは、表7に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行なった。これによりFc結合性タンパク質(FcR24)の140番目のアミノ酸が任意のアミノ酸に置換されたFc結合性タンパク質をコードするポリヌクレオチドを得た。得られたポリヌクレオチドをT140p3とした。
(a-5)(a-4)で得られたポリヌクレオチドを精製後、制限酵素NcoIとHindIIIで消化し、あらかじめ制限酵素NcoIとHindIIIで消化した発現ベクターpETMalE(特開2011-206046号公報)にライゲーションし、これを用いて大腸菌BL21(DE3)株を形質転換した。
(a-6)得られた形質転換体を50μg/mLのカナマイシンを添加したLB培地で培養した。
Example 31 Production of Thr140 or Tyr158 Amino Acid Substituted Of the amino acid substitutions that contribute to the improvement of alkali stability of the Fc binding protein revealed in Example 26, the 140th position of SEQ ID NO: 1 (156th position of SEQ ID NO: 37) In particular, threonine (Thr140) was replaced with isoleucine (Ile) and 158th (174th in SEQ ID NO: 37) tyrosine (Tyr158) was replaced with histidine, whereby alkali stability was particularly improved. Therefore, in order to confirm the usefulness of substitution of Thr140 and Tyr158 with other amino acids, Thr140 (156th in SEQ ID NO: 89) or Tyr158 (SEQ ID NO: 89) of FcR24 (SEQ ID NO: 89) prepared in Example 27 (c) Fc-binding protein was prepared by substituting 174th in number 89 with another amino acid.
(A) Preparation of Thr140 amino acid substitution product (a-1) Using pET-FcR24 prepared in Example 27 (c) as a template, SEQ ID NO: 24 and SEQ ID NO: 91 (5′-CCTGCATAAAGTGNKNKTACTCGCCAAAACGG-3 ′) After preparing a reaction solution similar to the composition shown in Table 3 except that the oligonucleotide consisting of the sequence was used as a primer, the reaction solution was heat-treated at 95 ° C. for 2 minutes, first step at 95 ° C. for 30 seconds, 50 ° C. PCR was performed by performing 35 cycles of the second step of 30 seconds at 72 ° C and the third step of 90 seconds at 72 ° C for one cycle, and finally heat treating at 72 ° C for 7 minutes. The obtained PCR product was designated as T140p1.
(A-2) Using, as a primer, an oligonucleotide having the sequence described in SEQ ID NO: 23 and SEQ ID NO: 92 (5′-CCGTTTTGCAGGTAMNNCACTTTATGCAGGG-3 ′), which was prepared in Example 27 (c), using pET-FcR24 as a template After preparing a reaction solution having the same composition as shown in Table 3, the reaction solution was heat-treated at 95 ° C. for 2 minutes, first step at 95 ° C. for 30 seconds, second step at 50 ° C. for 30 seconds, 72 PCR was carried out by performing 35 cycles of a reaction in which the third step of 90 seconds at 90 ° C. was carried out, and finally heat treating at 72 ° C. for 7 minutes. The obtained PCR product was designated as T140p2.
(A-3) Two types of PCR products (T140p1, T140p2) obtained in (a-1) and (a-2) were mixed to prepare a reaction solution having the composition shown in Table 6. The reaction solution is heat-treated at 98 ° C. for 5 minutes, followed by 5 cycles of reaction in which the first step is 98 ° C. for 10 seconds, the second step is 55 ° C. for 5 seconds, and the third step is 72 ° C. for 1 minute. PCR was performed, and a PCR product T140p in which T140p1 and T140p2 were ligated was obtained.
(A-4) PCR was performed using the PCR product T140p obtained in (a-3) as a template and oligonucleotides having the sequences described in SEQ ID NO: 23 and SEQ ID NO: 24 as PCR primers. In PCR, after preparing a reaction solution having the composition shown in Table 7, the reaction solution was heat-treated at 98 ° C. for 5 minutes, first step at 98 ° C. for 10 seconds, second step at 55 ° C. for 5 seconds, and at 72 ° C. The reaction with the third step of 1 minute as one cycle was performed 30 cycles. As a result, a polynucleotide encoding an Fc binding protein in which the 140th amino acid of the Fc binding protein (FcR24) was substituted with an arbitrary amino acid was obtained. The obtained polynucleotide was designated as T140p3.
(A-5) After purifying the polynucleotide obtained in (a-4), digested with restriction enzymes NcoI and HindIII, and previously digested with restriction enzymes NcoI and HindIII (Japanese Patent Laid-Open No. 2011-206046) Was used to transform Escherichia coli BL21 (DE3) strain.
(A-6) The obtained transformant was cultured in LB medium supplemented with 50 μg / mL kanamycin.
 回収した菌体(形質転換体)からプラスミドを抽出し、ポリヌクレオチド領域の配列を実施例1(5)に記載の方法によりヌクレオチド配列を解析したところ、Fc結合性タンパク質FcR24のThr140(配列番号89では156番目のイソロイシン)がAla、Arg、Gly、Leu、Lys、Phe、Thr、SerまたはValに置換されたFc結合性タンパク質を発現する形質転換体を得た。
(b)Tyr158アミノ酸置換体の作製
(b-1)実施例27(c)で作製した、pET-FcR24を鋳型とし、配列番号24および配列番号93(5’-CAACTCCGACTTCNNKATTCCCAAAGCGAC-3’)に記載の配列からなるオリゴヌクレオチドをプライマーとして用いた他は表3に示す組成と同様の反応液を調製後、当該反応液を95℃で2分間熱処理し、95℃で30秒間の第1ステップ、50℃で30秒間の第2ステップ、72℃で90秒間の第3ステップを1サイクルとする反応を35サイクル行ない、最後に72℃で7分間熱処理することでPCRを行なった。得られたPCR産物をY158p1とした。
(b-2)実施例27(c)で作製した、pET-FcR24を鋳型とし、配列番号23および配列番号94(5’-GTCGCTTTGGGAATMNNGAAGTCGGAGTTG-3’)に記載の配列からなるオリゴヌクレオチドをプライマーとして用いた他は表3に示す組成と同様の反応液を調製後、当該反応液を95℃で2分間熱処理し、95℃で30秒間の第1ステップ、50℃で30秒間の第2ステップ、72℃で90秒間の第3ステップを1サイクルとする反応を35サイクル行ない、最後に72℃で7分間熱処理することでPCRを行なった。得られたPCR産物をY158p2とした。
(b-3)(b-1)および(b-2)で得られた2種類のPCR産物(Y158p1、Y158p2)を混合し、表6に示す組成の反応液を調製した。当該反応液を98℃で5分間熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を5サイクル行なうPCRを行ない、Y140p1とY140p2を連結したPCR産物Y140pを得た。
(b-4)(b-3)で得られたPCR産物Y140pを鋳型とし、配列番号23および配列番号24に記載の配列からなるオリゴヌクレオチドをPCRプライマーとしてPCRを行なった。PCRは、表7に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行なった。これによりFc結合性タンパク質(FcR24)の158番目のアミノ酸が任意のアミノ酸に置換されたFc結合性タンパク質をコードするポリヌクレオチドを得た。得られたポリヌクレオチドをY158p3とした。
(b-5)(b-4)で得られたポリヌクレオチドを精製後、制限酵素NcoIとHindIIIで消化し、あらかじめ制限酵素NcoIとHindIIIで消化した発現ベクターpETMalE(特開2011-206046号公報)にライゲーションし、これを用いて大腸菌BL21(DE3)株を形質転換した。
(b-6)得られた形質転換体を50μg/mLのカナマイシンを添加したLB培地で培養した。
A plasmid was extracted from the collected cells (transformants), and the nucleotide sequence of the polynucleotide region was analyzed by the method described in Example 1 (5). As a result, Thr140 (SEQ ID NO: 89) of the Fc-binding protein FcR24 was analyzed. Then, a transformant expressing an Fc-binding protein in which 156th isoleucine) was substituted with Ala, Arg, Gly, Leu, Lys, Phe, Thr, Ser or Val was obtained.
(B) Preparation of Tyr158 amino acid substitution product (b-1) Using pET-FcR24 prepared in Example 27 (c) as a template, SEQ ID NO: 24 and SEQ ID NO: 93 (5′-CAACTCCGAACTTCNKNATCTCCAAAGCGAC-3 ′) After preparing a reaction solution similar to the composition shown in Table 3 except that the oligonucleotide consisting of the sequence was used as a primer, the reaction solution was heat-treated at 95 ° C. for 2 minutes, first step at 95 ° C. for 30 seconds, 50 ° C. PCR was performed by performing 35 cycles of the second step of 30 seconds at 72 ° C and the third step of 90 seconds at 72 ° C for one cycle, and finally heat treating at 72 ° C for 7 minutes. The obtained PCR product was designated as Y158p1.
(B-2) An oligonucleotide having the sequence described in SEQ ID NO: 23 and SEQ ID NO: 94 (5′-GTCGCTTTGGGAATNNNGAAGTCGGAGTTG-3 ′) prepared in Example 27 (c) as a template and used as a primer After preparing a reaction solution having the same composition as shown in Table 3, the reaction solution was heat-treated at 95 ° C. for 2 minutes, first step at 95 ° C. for 30 seconds, second step at 50 ° C. for 30 seconds, 72 PCR was carried out by performing 35 cycles of a reaction in which the third step of 90 seconds at 90 ° C. was carried out, and finally heat treating at 72 ° C. for 7 minutes. The obtained PCR product was designated as Y158p2.
(B-3) Two types of PCR products (Y158p1, Y158p2) obtained in (b-1) and (b-2) were mixed to prepare a reaction solution having the composition shown in Table 6. The reaction solution is heat-treated at 98 ° C. for 5 minutes, followed by 5 cycles of reaction in which the first step is 98 ° C. for 10 seconds, the second step is 55 ° C. for 5 seconds, and the third step is 72 ° C. for 1 minute. PCR was performed to obtain a PCR product Y140p in which Y140p1 and Y140p2 were ligated.
(B-4) PCR was performed using the PCR product Y140p obtained in (b-3) as a template and oligonucleotides having the sequences described in SEQ ID NO: 23 and SEQ ID NO: 24 as PCR primers. In PCR, after preparing a reaction solution having the composition shown in Table 7, the reaction solution was heat-treated at 98 ° C. for 5 minutes, first step at 98 ° C. for 10 seconds, second step at 55 ° C. for 5 seconds, and at 72 ° C. The reaction with the third step of 1 minute as one cycle was performed 30 cycles. As a result, a polynucleotide encoding an Fc binding protein in which the 158th amino acid of the Fc binding protein (FcR24) was substituted with an arbitrary amino acid was obtained. The obtained polynucleotide was designated as Y158p3.
(B-5) After purifying the polynucleotide obtained in (b-4), digested with restriction enzymes NcoI and HindIII, and previously digested with restriction enzymes NcoI and HindIII (Japanese Unexamined Patent Publication No. 2011-206046) Was used to transform Escherichia coli BL21 (DE3) strain.
(B-6) The obtained transformant was cultured in an LB medium supplemented with 50 μg / mL kanamycin.
 回収した菌体(形質転換体)からプラスミドを抽出し、ポリヌクレオチド領域の配列を実施例1(5)に記載の方法によりヌクレオチド配列を解析したところ、Fc結合性タンパク質FcR24のTyr158(配列番号89では174番目のヒスチジン)がAla、Arg、Asn、Cys、Gln、Glu、Gly、Ile、Leu、Lys、Met、Phe、Pro、Ser、Thr、Trp、TyrまたはValに置換されたFc結合性タンパク質を発現する形質転換体を得た。 A plasmid was extracted from the collected cells (transformants), and the nucleotide sequence of the polynucleotide region was analyzed by the method described in Example 1 (5). As a result, Tyr158 (SEQ ID NO: 89) of the Fc-binding protein FcR24 was analyzed. Fc-binding protein in which 174th histidine is substituted with Ala, Arg, Asn, Cys, Gln, Glu, Gly, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr or Val A transformant expressing was obtained.
 実施例32 Thr140またはTyr158アミノ酸置換体の評価
(1)実施例31で作製したFc結合性タンパク質を発現する形質転換体を、実施例8の(1)から(4)に記載の方法で培養し、タンパク質を抽出した。
(2)(1)で調製したタンパク質抽出液中のFc結合タンパク質の抗体結合活性を、実施例3(4)に記載のELISA法を用いて測定した。この時、精製し定量したFcR24を用いて検量線を作製し、濃度測定を行なった。
(3)各Fc結合性タンパク質の濃度が10μg/mLになるよう純水で希釈後、前記希釈した溶液50μLと、300mM(Thr140アミノ酸置換体の場合)または350mM(Tyr158アミノ酸置換体の場合)の水酸化ナトリウム溶液50μLとを混合し、30℃で2時間静置することでアルカリ処理した。その後、1Mトリス塩酸緩衝液(pH7.0)を4倍量加えることで中和し、Fc結合性タンパク質の抗体結合活性を、実施例3(4)に記載のELISA法によって測定した。
(4)アルカリ処理を行なった場合の抗体結合活性をアルカリ処理を行なわなかったときの抗体結合活性で除することで、残存活性を算出しアルカリ安定性を評価した。
Example 32 Evaluation of Thr140 or Tyr158 Amino Acid Substitution (1) The transformant expressing the Fc-binding protein prepared in Example 31 was cultured by the method described in Example 8 (1) to (4). The protein was extracted.
(2) The antibody binding activity of the Fc binding protein in the protein extract prepared in (1) was measured using the ELISA method described in Example 3 (4). At this time, a calibration curve was prepared using FcR24 purified and quantified, and the concentration was measured.
(3) After dilution with pure water so that the concentration of each Fc-binding protein becomes 10 μg / mL, 50 μL of the diluted solution and 300 mM (in the case of Thr140 amino acid substitution product) or 350 mM (in the case of Tyr158 amino acid substitution product) Sodium hydroxide solution (50 μL) was mixed and allowed to stand at 30 ° C. for 2 hours for alkali treatment. Thereafter, the solution was neutralized by adding 4 volumes of 1M Tris-HCl buffer (pH 7.0), and the antibody binding activity of the Fc binding protein was measured by the ELISA method described in Example 3 (4).
(4) The residual activity was calculated by dividing the antibody binding activity when the alkali treatment was performed by the antibody binding activity when the alkali treatment was not performed, and the alkali stability was evaluated.
 得られた結果を表20(Thr140アミノ酸置換体の結果)および表21(Tyr158アミノ酸置換体の結果)に示した。なお表20のうちIleの結果、および表21のうちHisの結果はFcR24の結果である。Thr140の場合(表20)は、Ala、Arg、Ile、Leu、Lys、Phe、SerまたはValに置換することで、Tyr158の場合(表21)は、Cys、His、Ile、Leu、Lys、Phe、TrpまたはValに置換することで、それぞれアルカリ安定性が向上することを確認した。 The results obtained are shown in Table 20 (result of Thr140 amino acid substitution product) and Table 21 (Result of Tyr158 amino acid substitution product). In Table 20, the result of Ile and the result of His in Table 21 are the results of FcR24. In the case of Thr140 (Table 20), by replacing with Ala, Arg, Ile, Leu, Lys, Phe, Ser or Val, in the case of Tyr158 (Table 21), Cys, His, Ile, Leu, Lys, Phe. It was confirmed that the alkali stability was improved by substituting with Trp or Val.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 実施例33 Fc結合性タンパク質固定化ゲルの調製
(1)配列番号60に記載のアミノ酸配列からなるヒトFc結合性タンパク質をコードするポリヌクレオチドを含むプラスミドで大腸菌を形質転換して得られた形質転換体を培養し、得られた菌体から前記Fc受容体タンパク質を精製することで、不溶性担体に固定化させるリガンドを調製した。なお配列番号60に記載のアミノ酸配列からなるヒトFc結合性タンパク質は、配列番号58に記載のアミノ酸配列からなるヒトFc結合性タンパク質において、以下の(a)から(d)のアミノ酸置換が生じたタンパク質である。
(a)配列番号58の45番目のフェニルアラニンがイソロイシンに置換
(b)配列番号58の64番目のグルタミンがアルギニンに置換
(c)配列番号58の133番目のバリンがグルタミン酸に置換
(d)配列番号58の187番目のフェニルアラニンがセリンに置換
(2)ビニルポリマーゲル(粒子径10μm、東ソー社製)が有するヒドロキシ基を常法により官能基変換を行なうことで、ヨードアセチル基にて活性化されたビニルポリマーゲルを得た。
(3)得られた前記活性化されたゲルに(1)で調製したリガンドを反応させることにより、ヒトFc結合性タンパク質固定化ゲルを作製した。
(4)得られたゲルをφ4.6×75mmのステンレスカラムに充填し、分離カラムを作製した。
Example 33 Preparation of Fc-binding protein-immobilized gel (1) Transformation obtained by transforming Escherichia coli with a plasmid containing a polynucleotide encoding a human Fc-binding protein consisting of the amino acid sequence set forth in SEQ ID NO: 60 The body was cultured, and the Fc receptor protein was purified from the obtained cells to prepare a ligand to be immobilized on an insoluble carrier. The human Fc binding protein consisting of the amino acid sequence set forth in SEQ ID NO: 60 had the following amino acid substitutions (a) to (d) in the human Fc binding protein consisting of the amino acid sequence set forth in SEQ ID NO: 58. It is a protein.
(A) 45th phenylalanine of SEQ ID NO: 58 is replaced with isoleucine (b) 64th glutamine of SEQ ID NO: 58 is replaced with arginine (c) 133rd valine of SEQ ID NO: 58 is replaced with glutamic acid (d) SEQ ID NO: The 187th phenylalanine in 58 was substituted with serine. (2) The hydroxy group of the vinyl polymer gel (particle size: 10 μm, manufactured by Tosoh Corporation) was activated with an iodoacetyl group by performing functional group conversion by a conventional method. A vinyl polymer gel was obtained.
(3) A human Fc-binding protein-immobilized gel was prepared by reacting the obtained activated gel with the ligand prepared in (1).
(4) The obtained gel was packed into a φ4.6 × 75 mm stainless steel column to produce a separation column.
 比較例1 モノクローナル抗体の分離
(1)市販のモノクローナル抗体(リツキサン、全薬工業社製)をPBS(Phosphate Buffered Saline)で1mg/mLに調製し、これをモノクローナル抗体溶液として用いた。
(2)実施例1で作製した分離カラムを20mMの酢酸ナトリウム緩衝液(pH5.0)(緩衝液A)で平衡化後、(1)で調製したモノクローナル抗体溶液を5μL添加した。
(3)モノクローナル抗体溶液添加後2分間は緩衝液Aを流し、2分から40分までの間は、緩衝液A100%-10mMのグリシン塩酸緩衝液(pH3.0)(緩衝液B)0%から、緩衝液A0%-緩衝液B100%とするグラジエントにより、カラムに添加したモノクローナル抗体を分離し溶出した。溶出したモノクローナル抗体の検出はUV検出器(280nmの吸収)で行なった。
Comparative Example 1 Separation of Monoclonal Antibody (1) A commercially available monoclonal antibody (Rituxan, Zenyaku Kogyo Co., Ltd.) was prepared to 1 mg / mL with PBS (Phosphate Buffered Saline), and this was used as a monoclonal antibody solution.
(2) The separation column prepared in Example 1 was equilibrated with 20 mM sodium acetate buffer (pH 5.0) (buffer A), and 5 μL of the monoclonal antibody solution prepared in (1) was added.
(3) Buffer A is allowed to flow for 2 minutes after the addition of the monoclonal antibody solution, and from 2% to 40 minutes, from Buffer A 100% -10 mM glycine hydrochloride buffer (pH 3.0) (Buffer B) 0% The monoclonal antibody added to the column was separated and eluted with a gradient of Buffer A 0%-Buffer B 100%. The eluted monoclonal antibody was detected with a UV detector (absorption at 280 nm).
 モノクローナル抗体を分離した結果(クロマトグラム)を図1に示す。3つの大きなピークが検出され、溶出時間の早いピークからピーク1、ピーク2、ピーク3とした。また、それぞれのピークの分離度(Rs値)を下記の式に従って算出したところ、ピーク1とピーク2との分離度は0.63に、ピーク2とピーク3との分離度は0.61に、それぞれなった。 The results (chromatogram) of the monoclonal antibody separation are shown in FIG. Three large peaks were detected, and the peak with the earlier elution time was designated as peak 1, peak 2, and peak 3. Moreover, when the separation degree (Rs value) of each peak was calculated according to the following formula, the separation degree between peak 1 and peak 2 was 0.63, and the separation degree between peak 2 and peak 3 was 0.61. , Each became.
  Rs値=1.18×(溶出時間の遅いピークの溶出時間-溶出時間の早いピークの溶出時間)/(溶出時間の早いピークの半値幅+溶出時間の遅いピークの半値幅)
 実施例34 本発明によるモノクローナル抗体の分離(その1)
 緩衝液Aとして、塩化ナトリウムを50mM、100mM、200mM、500mMまたは1000mM添加した20mMの酢酸ナトリウム緩衝液(pH5.0)を用いた他は、比較例1と同様な実験を行なった。結果を図7に示す。溶出時間の早いピークからピーク1、ピーク2、ピーク3とし、比較例1と同様な方法でRs値を算出したところ、表22に示す結果となった。20mMの酢酸ナトリウム緩衝液(pH5.0)に塩化ナトリウム(塩化物イオン)を添加することで、ピーク1とピーク2とのRs値、および/またはピーク2とピーク3とのRs値が向上していることがわかる。特に50mMから500mMの塩化ナトリウム(塩化物イオン)を添加した緩衝液では、ピーク1とピーク2とのRs値、およびピーク2とピーク3とのRs値が向上しているため特に好ましいといえる。
Rs value = 1.18 × (elution time of peak with late elution time−elution time of peak with early elution time) / (half width of peak with early elution time + half width of peak with late elution time)
Example 34 Separation of monoclonal antibody according to the present invention (Part 1)
The same experiment as Comparative Example 1 was performed, except that 20 mM sodium acetate buffer (pH 5.0) supplemented with 50 mM, 100 mM, 200 mM, 500 mM, or 1000 mM sodium chloride was used as buffer A. The results are shown in FIG. When the Rs value was calculated in the same manner as in Comparative Example 1 from the peak with the earlier elution time to Peak 1, Peak 2, and Peak 3, the results shown in Table 22 were obtained. By adding sodium chloride (chloride ion) to 20 mM sodium acetate buffer (pH 5.0), the Rs value between peak 1 and peak 2 and / or the Rs value between peak 2 and peak 3 is improved. You can see that In particular, a buffer solution to which 50 mM to 500 mM sodium chloride (chloride ion) is added is particularly preferable because the Rs value between peak 1 and peak 2 and the Rs value between peak 2 and peak 3 are improved.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 実施例35 本発明によるモノクローナル抗体の分離(その2)
 緩衝液Aとして、塩化カリウムを100mMまたは200mM添加した20mMの酢酸ナトリウム緩衝液(pH5.0)を用いた他は、比較例1と同様な実験を行なった。結果を図8に示す。溶出時間の早いピークからピーク1、ピーク2、ピーク3とし、比較例1と同様な方法でRs値を算出したところ、表23に示す結果となった。この結果から塩化ナトリウムの代わりに塩化カリウムを用いても、実施例34の結果と同様、ピーク1とピーク2とのRs値、および/またはピーク2とピーク3とのRs値が向上していることがわかる。
Example 35 Separation of monoclonal antibody according to the present invention (part 2)
The same experiment as in Comparative Example 1 was performed except that 20 mM sodium acetate buffer (pH 5.0) supplemented with 100 mM or 200 mM potassium chloride was used as buffer A. The results are shown in FIG. When the Rs value was calculated in the same manner as in Comparative Example 1 from the peak with the earlier elution time to Peak 1, Peak 2, and Peak 3, the results shown in Table 23 were obtained. From this result, even when potassium chloride was used instead of sodium chloride, the Rs value between peak 1 and peak 2 and / or the Rs value between peak 2 and peak 3 was improved as in the result of Example 34. I understand that.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
 実施例36 本発明によるモノクローナル抗体の分離(その3)
 緩衝液Aとして、硫酸ナトリウムまたは硫酸アンモニウムを100mM添加した20mMの酢酸ナトリウム緩衝液(pH5.0)を用いた他は、比較例1と同様な実験を行なった。結果を図9に示す。溶出時間の早いピークからピーク1、ピーク2、ピーク3とし、比較例1と同様な方法でRs値を算出したところ、表24に示す結果となった。この結果から塩化物イオンの代わりに硫酸イオンを用いても、実施例34の結果と同様、ピーク1とピーク2とのRs値、またはピーク2とピーク3とのRs値が向上していることがわかる。
Example 36 Separation of monoclonal antibody according to the present invention (part 3)
The same experiment as Comparative Example 1 was performed except that 20 mM sodium acetate buffer (pH 5.0) to which 100 mM sodium sulfate or ammonium sulfate was added as buffer A was used. The results are shown in FIG. When the Rs value was calculated in the same manner as in Comparative Example 1 from the peak with the earlier elution time to Peak 1, Peak 2, and Peak 3, the results shown in Table 24 were obtained. From this result, even when sulfate ion is used instead of chloride ion, the Rs value between peak 1 and peak 2 or the Rs value between peak 2 and peak 3 is improved as in the result of Example 34. I understand.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
 実施例37 1箇所アミノ酸置換したFc結合性タンパク質の作製
 実施例3で明らかになったFc結合性タンパク質の安定性向上に関与するアミノ酸置換のうち、配列番号1の27番目のバリン(Val)、35番目のチロシン(Tyr)および121番目のグルタミン酸(Glu)について、他のアミノ酸に置換したFc結合性タンパク質を、それぞれ下記の方法で作製した。
Example 37 Production of Fc binding protein with amino acid substitution at one position Among the amino acid substitutions involved in improving the stability of Fc binding protein revealed in Example 3, the 27th valine (Val) of SEQ ID NO: 1, Regarding the 35th tyrosine (Tyr) and the 121st glutamic acid (Glu), Fc binding proteins substituted with other amino acids were prepared by the following methods, respectively.
 (A)配列番号1の27番目のバリン(Val)を他のアミノ酸に置換したFc結合性タンパク質の作製
(A-1)実施例1で作製したpET-eFcRを鋳型とし、配列番号24および配列番号95(5’-CTGCCGAAAGCGNNKGTGTTTCTGGAACCG-3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、実施例4(a-1)と同様の方法でPCRを行なった。精製したPCR産物を27pFとした。
(A-2)実施例1で作製したpET-eFcRを鋳型とし、配列番号23および配列番号96(5’-TTCCAGAAACACMNNCGCTTTCGGCAGATC-3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、実施例4(a-1)と同様の方法でPCRを行なった。精製したPCR産物を27pRとした。
(A-3)(A-1)および(A-2)で得られた2種類のPCR産物(27pF、27pR)を混合後、実施例4(a-3)と同様の方法でPCRを行ない、27pFと27pRを連結した。得られたPCR産物を27pとした。
(A-4)(A-3)で得られたPCR産物27pを鋳型とし、配列番号23および配列番号24に記載の配列からなるオリゴヌクレオチドをPCRプライマーとして、実施例4(a-4)と同様の方法でPCRを行なった。これにより配列番号1の27番目のバリンを任意のアミノ酸に置換したFc結合性タンパク質をコードするポリヌクレオチドを作製した。
(A-5)(A-4)で得られたポリヌクレオチドを精製後、制限酵素NcoIとHindIIIで消化し、あらかじめ制限酵素NcoIとHindIIIで消化した発現ベクターpETMalE(特開2011-206046号公報)にライゲーションし、これを用いて大腸菌BL21(DE3)株を形質転換した。
(A-6)得られた形質転換体を50μg/mLのカナマイシンを添加したLB培地で培養した。回収した菌体(形質転換体)からプラスミドを抽出し、実施例1(5)と同様の方法でヌクレオチド配列解析を行なった。
(A) Preparation of Fc-binding protein in which 27th valine (Val) in SEQ ID NO: 1 is substituted with another amino acid (A-1) Using pET-eFcR prepared in Example 1 as a template, SEQ ID NO: 24 and sequence PCR was performed in the same manner as in Example 4 (a-1) except that an oligonucleotide having the sequence described in No. 95 (5′-CTGCCGAAAGCGNNKGTGTTTCTGGGAACCG-3 ′) was used as a PCR primer. The purified PCR product was 27 pF.
(A-2) Except that pET-eFcR prepared in Example 1 was used as a template, and an oligonucleotide having the sequences described in SEQ ID NO: 23 and SEQ ID NO: 96 (5′-TTCCGAAAACACNCNCGCTTTCGGCAGATC-3 ′) was used as a PCR primer, PCR was performed in the same manner as in Example 4 (a-1). The purified PCR product was 27 pR.
(A-3) After mixing the two PCR products (27pF, 27pR) obtained in (A-1) and (A-2), PCR was performed in the same manner as in Example 4 (a-3). 27pF and 27pR were ligated. The obtained PCR product was designated as 27p.
(A-4) Example 4 (a-4) and the PCR product 27p obtained in (A-3) as a template and oligonucleotides having the sequences shown in SEQ ID NO: 23 and SEQ ID NO: 24 as PCR primers PCR was performed in the same manner. Thus, a polynucleotide encoding an Fc-binding protein in which the 27th valine of SEQ ID NO: 1 was substituted with an arbitrary amino acid was prepared.
(A-5) After purifying the polynucleotide obtained in (A-4), digested with restriction enzymes NcoI and HindIII, and previously digested with restriction enzymes NcoI and HindIII (Japanese Patent Laid-Open No. 2011-206046) Was used to transform Escherichia coli BL21 (DE3) strain.
(A-6) The obtained transformant was cultured in an LB medium supplemented with 50 μg / mL kanamycin. A plasmid was extracted from the collected microbial cells (transformants), and nucleotide sequence analysis was performed in the same manner as in Example 1 (5).
 結果、Val27Gly(V27G)、Val27Lys(V27K)、Val27Thr(V27T)、Val27Ala(V27A)、Val27Trp(V27W)、またはVal27Arg(V27R)のアミノ酸置換が生じたFc結合性タンパク質をコードするポリヌクレオチドを得た。 As a result, a polynucleotide encoding an Fc binding protein in which an amino acid substitution of Val27Gly (V27G), Val27Lys (V27K), Val27Thr (V27T), Val27Ala (V27A), Val27Trp (V27W) or Val27Arg (V27R) occurred was obtained. .
 (B)配列番号1の35番目のチロシン(Tyr)を他のアミノ酸に置換したFc結合性タンパク質の作製
(B-1)実施例1で作製したpET-eFcRを鋳型とし、配列番号24および配列番号97(5’-AACCGCAGTGGNNKCGCGTGCTGGAGAAAG-3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、実施例4(a-1)と同様の方法でPCRを行なった。精製したPCR産物を35pFとした。
(B-2)実施例1で作製したpET-eFcRを鋳型とし、配列番号23および配列番号98(5’-AGCACGCGMNNCCACTGCGGTTCCAGAAAC-3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、実施例4(a-1)と同様の方法でPCRを行なった。精製したPCR産物を35pRとした。
(B-3)(B-1)および(B-2)で得られた2種類のPCR産物(35pF、35pR)を混合後、実施例4(a-3)と同様の方法にてPCRを行ない、35pFと35pRを連結した。得られたPCR産物を35pとした。
(B-4)(B-3)で得られたPCR産物35pを鋳型とし、配列番号23および配列番号24に記載の配列からなるオリゴヌクレオチドをPCRプライマーとして、実施例4(a-4)と同様の方法でPCRを行なった。これにより配列番号1の35番目のチロシンを任意のアミノ酸に置換したFc結合性タンパク質をコードするポリヌクレオチドを作製した。
(B-5)(B-4)で得られたポリヌクレオチドを精製後、制限酵素NcoIとHindIIIで消化し、あらかじめ制限酵素NcoIとHindIIIで消化した発現ベクターpETMalE(特開2011-206046号公報)にライゲーションし、これを用いて大腸菌BL21(DE3)株を形質転換した。
(B-6)得られた形質転換体を50μg/mLのカナマイシンを添加したLB培地で培養した。回収した菌体(形質転換体)からプラスミドを抽出し、実施例1(5)と同様の方法でヌクレオチド配列解析を行なった。
(B) Preparation of Fc-binding protein in which 35th tyrosine (Tyr) of SEQ ID NO: 1 is substituted with another amino acid (B-1) Using pET-eFcR prepared in Example 1 as a template, SEQ ID NO: 24 and sequence PCR was performed in the same manner as in Example 4 (a-1) except that the oligonucleotide having the sequence described in No. 97 (5′-AACCGCAGTGGNNKCGCGGTCGTGGAGAAAG-3 ′) was used as a PCR primer. The purified PCR product was 35 pF.
(B-2) Except that pET-eFcR prepared in Example 1 was used as a template, and an oligonucleotide having the sequences described in SEQ ID NO: 23 and SEQ ID NO: 98 (5′-AGCACGCGMNNCCACTGCGGTTCCAGAAAC-3 ′) was used as a PCR primer, PCR was performed in the same manner as in Example 4 (a-1). The purified PCR product was 35 pR.
(B-3) After mixing the two types of PCR products (35pF, 35pR) obtained in (B-1) and (B-2), PCR was performed in the same manner as in Example 4 (a-3). And 35 pF and 35 pR were ligated. The obtained PCR product was 35p.
(B-4) Example 4 (a-4) and the PCR product 35p obtained in (B-3) as a template and oligonucleotides having the sequences shown in SEQ ID NO: 23 and SEQ ID NO: 24 as PCR primers PCR was performed in the same manner. Thereby, a polynucleotide encoding an Fc-binding protein in which the 35th tyrosine of SEQ ID NO: 1 was substituted with an arbitrary amino acid was prepared.
(B-5) After purifying the polynucleotide obtained in (B-4), digested with restriction enzymes NcoI and HindIII, and previously digested with restriction enzymes NcoI and HindIII (Japanese Patent Laid-Open No. 2011-206046) Was used to transform Escherichia coli BL21 (DE3) strain.
(B-6) The obtained transformant was cultured in an LB medium supplemented with 50 μg / mL kanamycin. A plasmid was extracted from the collected microbial cells (transformants), and nucleotide sequence analysis was performed in the same manner as in Example 1 (5).
 結果、Tyr35Cys(Y35C)、Tyr35Asp(Y35D)、Tyr35Phe(Y35F)、Tyr35Gly(Y35G)、Tyr35Lys(Y35K)、Tyr35Leu(Y35L)、Tyr35Asn(Y35N)、Tyr35Pro(Y35P)、Tyr35Arg(Y35R)、Tyr35Ser(Y35S)、Tyr35Thr(Y35T)、Tyr35Val(Y35V)、またはTyr35Trp(Y35W)のアミノ酸置換が生じたFc結合性タンパク質をコードするポリヌクレオチドを得た。 As a result, Tyr35Cys (Y35C), Tyr35Asp (Y35D), Tyr35Phe (Y35F), Tyr35Gly (Y35G), Tyr35Lys (Y35K), Tyr35Leu (Y35L), Tyr35Asn (Y35N), Tyr35Tr35Yr, YrN ), Tyr35Thr (Y35T), Tyr35Val (Y35V), or Tyr35Trp (Y35W), a polynucleotide encoding an Fc-binding protein in which an amino acid substitution occurred was obtained.
 (C)配列番号1の121番目のグルタミン酸(Glu)を他のアミノ酸に置換したFc結合性タンパク質の作製
(C-1)実施例1で作製したpET-eFcRを鋳型とし、配列番号24および配列番号99(5’-GTGTTCAAAGAGNNKGATCCGATTCATCTG-3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、実施例4(a-1)と同様の方法でPCRを行なった。精製したPCR産物を121pFとした。
(C-2)実施例1で作製したpET-eFcRを鋳型とし、配列番号23および配列番号100(5’-AATCGGATCMNNCTCTTTGAACACCCACCG-3’)に記載の配列からなるオリゴヌクレオチドをPCRプライマーとした他は、実施例4(a-1)と同様の方法でPCRを行なった。精製したPCR産物を121pRとした。
(C-3)(C-1)および(C-2)により得られた2種類のPCR産物(121pF、121pR)を混合後、実施例4(a-3)と同様の方法にてPCRを行ない、121pFと121pRを連結した。得られたPCR産物を121pとした。
(C-4)(C-3)で得られたPCR産物121pを鋳型とし、配列番号23および配列番号24に記載の配列からなるオリゴヌクレオチドをPCRプライマーとして実施例4(a-4)と同様のPCRを行なった。これにより配列番号1の121番目のグルタミン酸が任意のアミノ酸に置換されたFc結合性タンパク質をコードするポリヌクレオチドを作製した。
(C-5)(C-4)で得られたポリヌクレオチドを精製後、制限酵素NcoIとHindIIIで消化し、制限酵素NcoIとHindIIIで消化した発現ベクターpETMalE(特開2011-206046号公報)にライゲーションし、当該ライゲーション産物を用いて大腸菌BL21(DE3)株を形質転換した。
(C-6)得られた形質転換体を50μg/mLのカナマイシンを添加したLB培地で培養した。回収した菌体(形質転換体)からプラスミドを抽出し、実施例1(5)と同様の方法でヌクレオチド配列解析を行なった。
(C) Preparation of an Fc binding protein in which the 121st glutamic acid (Glu) of SEQ ID NO: 1 is substituted with another amino acid (C-1) Using pET-eFcR prepared in Example 1 as a template, SEQ ID NO: 24 and PCR was carried out in the same manner as in Example 4 (a-1) except that an oligonucleotide having the sequence described in No. 99 (5′-GTGTTCAAAGAGNKNKATCCGATTCATCTG-3 ′) was used as a PCR primer. The purified PCR product was 121 pF.
(C-2) except that pET-eFcR prepared in Example 1 was used as a template, and an oligonucleotide having the sequences described in SEQ ID NO: 23 and SEQ ID NO: 100 (5′-AATCGGATCMNNCTCTTTGAACACCCCACCG-3 ′) was used as a PCR primer, PCR was performed in the same manner as in Example 4 (a-1). The purified PCR product was 121 pR.
(C-3) After mixing the two kinds of PCR products (121pF, 121pR) obtained by (C-1) and (C-2), PCR was performed in the same manner as in Example 4 (a-3). In practice, 121pF and 121pR were ligated. The obtained PCR product was designated as 121p.
(C-4) The same as in Example 4 (a-4), using the PCR product 121p obtained in (C-3) as a template and the oligonucleotide consisting of the sequences shown in SEQ ID NO: 23 and SEQ ID NO: 24 as PCR primers PCR was performed. Thus, a polynucleotide encoding an Fc binding protein in which the 121st glutamic acid of SEQ ID NO: 1 was substituted with an arbitrary amino acid was prepared.
(C-5) After purifying the polynucleotide obtained in (C-4), digested with restriction enzymes NcoI and HindIII, and digested with restriction enzymes NcoI and HindIII into expression vector pETmalE (Japanese Patent Laid-Open No. 2011-206046) After ligation, the ligation product was used to transform E. coli BL21 (DE3) strain.
(C-6) The obtained transformant was cultured in an LB medium supplemented with 50 μg / mL kanamycin. A plasmid was extracted from the collected microbial cells (transformants), and nucleotide sequence analysis was performed in the same manner as in Example 1 (5).
 結果、Glu121Lys(E121K)、Glu121Pro(E121P)、Glu121Arg(E121R)、Glu121Gly(E121G)、Glu121His(E121H)、またはGlu121Val(E121V)のアミノ酸置換が生じたFc結合性タンパク質をコードするポリヌクレオチドを得た。 As a result, a polynucleotide encoding an Fc-binding protein in which an amino acid substitution of Glu121Lys (E121K), Glu121Pro (E121P), Glu121Arg (E121R), Glu121Gly (E121G), Glu121His (E121H), or Glu121Val (E121V) occurred was obtained. .
 実施例38 1アミノ酸置換Fc結合性タンパク質の抗体結合活性評価
(1)実施例1で作製した野生型Fc結合性タンパク質、および実施例37で作製した1箇所アミノ酸置換したFc結合性タンパク質を発現する形質転換体を、実施例3(1)および(2)と同様の方法でそれぞれ培養を行ない、野生型Fc結合性タンパク質および1アミノ酸置換したFc結合性タンパク質を発現させた。
(2)発現した1アミノ酸置換したFc結合性タンパク質を実施例3(3)および(4)に記載のELISA法にて抗体との結合活性を調べた。
Example 38 Evaluation of Antibody Binding Activity of 1 Amino Acid-Substituted Fc Binding Protein (1) Expressing the wild-type Fc binding protein prepared in Example 1 and the Fc binding protein with one amino acid substitution prepared in Example 37 The transformant was cultured in the same manner as in Example 3 (1) and (2), and wild type Fc binding protein and Fc binding protein substituted with 1 amino acid were expressed.
(2) The binding activity of the expressed Fc binding protein with one amino acid substitution was examined by the ELISA method described in Example 3 (3) and (4).
 結果を図10に示す。配列番号1の27番目のバリンをグリシン(V27G)、リジン(V27K)、スレオニン(V27T)、アラニン(V27A)、アルギニン(V27R)、に置換することで、野生型Fc結合性タンパク質と比較し抗体結合活性が向上した。一方、配列番号1の27番目のValがトリプトファン(V27W)へ置換すると、野生型Fc結合性タンパク質と比較し抗体結合活性が低下した。 The results are shown in FIG. By replacing the 27th valine of SEQ ID NO: 1 with glycine (V27G), lysine (V27K), threonine (V27T), alanine (V27A), arginine (V27R), antibody compared to the wild type Fc binding protein The binding activity was improved. On the other hand, when the 27th Val in SEQ ID NO: 1 was substituted with tryptophan (V27W), the antibody binding activity was reduced as compared with the wild-type Fc binding protein.
 配列番号1の35番目のチロシンを、アスパラギン酸(Y35D)、フェニルアラニン(Y35F)、グリシン(Y35G)、リジン(Y35K)、ロイシン(Y35L)、アスパラギン(Y35N)、プロリン(Y35P)、セリン(Y35S)、スレオニン(Y35T)、バリン(Y35V)、トリプトファン(Y35W)に置換することで、野生型Fc結合性タンパク質と比較し抗体結合活性が向上した。中でもY35D、Y35G、Y35K、Y35L、Y35N、Y35P、Y35S、Y35T、Y35Wは、野生型Fc結合性タンパク質に比較し大幅に抗体結合活性が向上した。一方、配列番号1の35番目のチロシンを、システイン(Y35C)、アルギニン(Y35R)に置換した場合は、野生型Fc結合性タンパク質とほぼ同等の抗体結合活性であった。 The 35th tyrosine of SEQ ID NO: 1 is converted to aspartic acid (Y35D), phenylalanine (Y35F), glycine (Y35G), lysine (Y35K), leucine (Y35L), asparagine (Y35N), proline (Y35P), serine (Y35S). By substituting threonine (Y35T), valine (Y35V), and tryptophan (Y35W), the antibody binding activity was improved as compared with the wild-type Fc-binding protein. Among them, Y35D, Y35G, Y35K, Y35L, Y35N, Y35P, Y35S, Y35T, and Y35W have significantly improved antibody binding activity compared to the wild-type Fc-binding protein. On the other hand, when the 35th tyrosine of SEQ ID NO: 1 was substituted with cysteine (Y35C) or arginine (Y35R), the antibody binding activity was almost equivalent to that of the wild type Fc binding protein.
 配列番号1の121番目のグルタミン酸を、リジン(E121K)、アルギニン(E121R)、グリシン(E121G)、ヒスチジン(E121H)に置換することで、野生型Fc結合性タンパク質と比較し抗体結合活性が向上した。中でもE121Gは、野生型Fc結合性タンパク質と比較し大幅に抗体結合活性が向上した。一方、配列番号1の121番目のグルタミン酸を、バリン(E121V)に置換した場合は野生型Fc結合性タンパク質とほぼ同等の抗体結合活性であり、プロリン(E121P)に置換した場合は野生型Fc結合性タンパク質と比較し抗体結合活性が低下した。 By replacing the 121st glutamic acid of SEQ ID NO: 1 with lysine (E121K), arginine (E121R), glycine (E121G), and histidine (E121H), the antibody binding activity was improved compared to the wild-type Fc-binding protein. . Among them, E121G showed significantly improved antibody binding activity as compared with wild-type Fc binding protein. On the other hand, when the glutamic acid at position 121 of SEQ ID NO: 1 was substituted with valine (E121V), the antibody-binding activity was almost equivalent to that of wild-type Fc binding protein, and when substituted with proline (E121P), wild-type Fc binding Antibody binding activity was reduced compared to the sex protein.
 実施例39 Fc結合性タンパク質発現ベクターの作製
 発現ベクターpTrc99aに、配列番号101(MKYLLPTAAAGLLLLAAQPAMA)に記載のPelBシグナルペプチドのうち6番目のプロリン(P)がセリン(S)に置換されたシグナルペプチドをコードするポリヌクレオチドを挿入し、シグナルペプチドを含む発現ベクターを作製した。
(1)配列番号102(5’-CATGAAATACCTGCTGTCGACCGCTGCTGCTGGTCTGCTGCTCCTCGCTGCCCAGCCGGCGATGGC-3’)および配列番号103(5’-CATGGCCATCGCCGGCTGGGCAGCGAGGAGCAGCAGACCAGCAGCAGCGGTCGACAGCAGGTATTT-3’)に記載の配列からなるオリゴヌクレオチドを等量混合し、95℃に5分間加熱後、1分間で1℃毎に温度を下げ、15℃に達したところで保持することで二本鎖オリゴヌクレオチドを作製した。
(2)(1)で作製した二本鎖オリゴヌクレオチドを、あらかじめ制限酵素NcoIで処理した発現ベクターpTrc99aにライゲーションし、これを用いて大腸菌JM109株(タカラバイオ製)を形質転換した。
(3)得られた形質転換体を100μg/mLのカルベニシリンを含むLB培地により培養後、QIAprep Spin Miniprep kit(キアゲン製)を用いて発現ベクターpTrc-PelBV3を得た。
Example 39 Preparation of Fc-binding protein expression vector The expression vector pTrc99a encodes a signal peptide in which the sixth proline (P) of the PelB signal peptide described in SEQ ID NO: 101 (MKYLLPTAAAGLLLLAAQPAMA) is substituted with serine (S) An expression vector containing a signal peptide was prepared.
(1) SEQ ID NO: 102 (5′-CATGAAATACCTGCTGTCGCACCGCTGCTGCTGTGTCTGCTGCTCCCTCGCTGCCCAGCCGGCGGATGGCGCGCGCGCTCGC The temperature was lowered every 1 ° C. in 1 minute, and a double-stranded oligonucleotide was prepared by holding when the temperature reached 15 ° C.
(2) The double-stranded oligonucleotide prepared in (1) was ligated to the expression vector pTrc99a previously treated with the restriction enzyme NcoI, and this was used to transform Escherichia coli JM109 strain (Takara Bio).
(3) The obtained transformant was cultured in an LB medium containing 100 μg / mL carbenicillin, and an expression vector pTrc-PelBV3 was obtained using QIAprep Spin Miniprep kit (manufactured by Qiagen).
 実施例40 システインタグを付加したFc結合性タンパク質(FcRCys)の作製
(1)実施例1で作製したpET-eFcRを鋳型としてPCRを実施した。当該PCRにおけるプライマーは、配列番号21および配列番号57(5’-CCCAAGCTTATCCGCAGGTATCGTTGCGGCACCCTTGGGTAATGGTAATATTCACGGTCTCGCTGC-3’)に記載の配列からなるオリゴヌクレオチドを用いた。PCRは、表2に示す組成の反応液を調製後、当該反応液を98℃で5分熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル繰り返すことで実施した。
(2)(1)で得られたポリヌクレオチドを精製し、制限酵素NcoIとHindIIIで消化後、あらかじめ制限酵素NcoIとHindIIIで消化した実施例39で作製の発現ベクターpTrc-PelBV3にライゲーションし、当該ライゲーション産物を用いて大腸菌W3110株を形質転換した。
(3)得られた形質転換体を100μg/mLのカルベニシリンを含むLB培地にて培養後、QIAprep Spin Miniprep kit(キアゲン製)を用いて、発現ベクターpTrc-eFcRCysを得た。
(4)pTrc-eFcRCysのヌクレオチド配列の解析を、配列番号104(5’-TGTGGTATGGCTGTGCAGG-3’)または配列番号105(5’-TCGGCATGGGGTCAGGTG-3’)に記載の配列からなるオリゴヌクレオチドをシーケンス用プライマーに使用した以外は、実施例1(5)と同様の方法で行なった。
Example 40 Preparation of Fc Binding Protein (FcRCys) Added with Cysteine Tag (1) PCR was performed using pET-eFcR prepared in Example 1 as a template. As a primer in the PCR, an oligonucleotide having the sequence described in SEQ ID NO: 21 and SEQ ID NO: 57 (5′-CCCAAGCTTATCCGCAGGTATCGTTGCGGCACCCTTGGGTAATGGTAATATTCACGGTCTCGCTGC-3 ′) was used. In PCR, after preparing a reaction solution having the composition shown in Table 2, the reaction solution was heat-treated at 98 ° C. for 5 minutes, first step at 98 ° C. for 10 seconds, second step at 55 ° C. for 5 seconds, and at 72 ° C. The reaction with the third step of 1 minute as one cycle was repeated 30 times.
(2) The polynucleotide obtained in (1) was purified, digested with restriction enzymes NcoI and HindIII, and then ligated to the expression vector pTrc-PelBV3 prepared in Example 39 previously digested with restriction enzymes NcoI and HindIII. Escherichia coli W3110 was transformed with the ligation product.
(3) The obtained transformant was cultured in an LB medium containing 100 μg / mL carbenicillin, and then an expression vector pTrc-eFcRCys was obtained using QIAprep Spin Miniprep kit (Qiagen).
(4) Analysis of the nucleotide sequence of pTrc-eFcRCys was carried out by using an oligonucleotide consisting of the sequence described in SEQ ID NO: 104 (5′-TGTGGTTATGGCTGTGCAGG-3 ′) or SEQ ID NO: 105 (5′-TCGGCATGGGGTCAGGGTG-3 ′) as a sequencing primer. The procedure was the same as in Example 1 (5) except that the procedure was used for the above.
 発現ベクターpTrc-eFcRCysで発現されるポリペプチドのアミノ酸配列を配列番号106に、当該ポリペプチドをコードするポリヌクレオチドの配列を配列番号107にそれぞれ示す。なお配列番号107において、1番目のメチオニン(Met)から22番目のアラニン(Ala)までが6番目のプロリンがセリンに置換されたPelBシグナルペプチドであり、24番目のグリシン(Gly)から199番目のグルタミン(Gln)までがFc結合性タンパク質のアミノ酸配列(配列番号1の17番目から192番目までの領域に相当)、200番目のグリシン(Gly)から207番目のグリシン(Gly)までがシステインタグ配列である。 The amino acid sequence of the polypeptide expressed by the expression vector pTrc-eFcRCys is shown in SEQ ID NO: 106, and the sequence of the polynucleotide encoding the polypeptide is shown in SEQ ID NO: 107, respectively. In SEQ ID NO: 107, from the first methionine (Met) to the 22nd alanine (Ala) is a PelB signal peptide in which the 6th proline is substituted with serine, and the 199th from the 24th glycine (Gly). Up to glutamine (Gln) is the amino acid sequence of the Fc binding protein (corresponding to the 17th to 192nd region of SEQ ID NO: 1), and the cysteine tag sequence is from the 200th glycine (Gly) to the 207th glycine (Gly). It is.
 実施例41 FcRCysの調製
(1)実施例40で作製したFcRCysを発現する形質転換体を2Lのバッフルフラスコに入った100μg/mLのカルベニシリンを含む400mLの2YT液体培地(ペプトン16g/L、酵母エキス10g/L、塩化ナトリウム5g/L)に接種し、37℃で一晩、好気的に振とう培養することで前培養を行なった。
(2)グルコース10g/L、酵母エキス20g/L、リン酸三ナトリウム十二水和物3g/L、リン酸水素二ナトリウム十二水和物9g/L、塩化アンモニウム1g/Lおよび硫酸カナマイシン50mg/Lを含む液体培地1.8Lに、(1)の培養液180mLを接種し、3L発酵槽(バイオット製)を用いて本培養を行なった。温度30℃、pH6.9から7.1、通気量1VVM、溶存酸素濃度30%飽和濃度の条件に設定し、本培養を開始した。pHの制御には酸として50%リン酸、アルカリとして14%アンモニア水をそれぞれ使用し、溶存酸素の制御は撹拌速度を変化させることで制御し、撹拌回転数は下限500rpm、上限1000rpmに設定した。培養開始後、グルコース濃度が測定できなくなった時点で、流加培地(グルコース248.9g/L、酵母エキス83.3g/L、硫酸マグネシウム七水和物7.2g/L)を溶存酸素(DO)により制御しながら加えた。
(3)菌体量の目安として600nmの吸光度(OD600nm)が約150に達したところで培養温度を25℃に下げ、設定温度に到達したことを確認した後、終濃度が0.5mMになるようIPTGを添加し、引き続き25℃で培養を継続した。
(4)培養開始から約48時間後に培養を停止し、培養液を4℃で8000rpm、20分間の遠心分離により菌体を回収した。
(5)回収した菌体を20mMのトリス塩酸緩衝液(pH7.0)に5mL/1g(菌体)となるように懸濁し、超音波発生装置(インソネーター201M(商品名)、久保田商事製)を用いて、4℃で約10分間、約150Wの出力で菌体を破砕した。菌体破砕液は4℃で20分間、8000rpmの遠心分離を2回行ない、上清を回収した。
(6)(5)で得られた上清を、あらかじめ20mMのリン酸緩衝液(8mMリン酸二水素ナトリウム、12mMリン酸水素二ナトリウム)(pH7.0)で平衡化した140mLのTOYOPEARL CM-650M(東ソー製)を充填したVL32×250カラム(メルクミリポア製)に流速5mL/分でアプライした。平衡化に用いた緩衝液で洗浄後、0.5Mの塩化ナトリウムを含む20mMのリン酸緩衝液(pH7.0)で溶出した。
(7)(6)で得られた溶出液を、あらかじめ150mMの塩化ナトリウムを含む20mMのトリス塩酸緩衝液(pH7.4)で平衡化したIgGセファロース(GEヘルスケア製)90mLを充填したXK26/20カラム(GEヘルスケア製)にアプライした。平衡化に用いた緩衝液で洗浄後、0.1Mのグリシン塩酸緩衝液(pH3.0)で溶出した。なお溶出液は、溶出液量の1/4量の1Mトリス塩酸緩衝液(pH8.0)を加えることでpHを中性付近に戻した。
Example 41 Preparation of FcRCys (1) 400 mL of 2YT liquid medium (peptone 16 g / L, yeast extract) containing 100 μg / mL carbenicillin in a 2 L baffle flask containing the transformant expressing FcRCys produced in Example 40 10 g / L, sodium chloride 5 g / L), and precultured by aerobic shaking culture at 37 ° C. overnight.
(2) Glucose 10 g / L, yeast extract 20 g / L, trisodium phosphate dodecahydrate 3 g / L, disodium hydrogen phosphate dodecahydrate 9 g / L, ammonium chloride 1 g / L and kanamycin sulfate 50 mg The liquid culture medium 1.8L containing / L was inoculated with 180 mL of the culture solution of (1), and main culture was performed using a 3 L fermenter (manufactured by Biot). The main culture was started under the conditions of a temperature of 30 ° C., a pH of 6.9 to 7.1, an aeration rate of 1 VVM, and a dissolved oxygen concentration of 30% saturation. The pH was controlled by using 50% phosphoric acid as the acid and 14% ammonia water as the alkali. The dissolved oxygen was controlled by changing the stirring speed, and the stirring speed was set at the lower limit of 500 rpm and the upper limit of 1000 rpm. . When the glucose concentration could not be measured after the start of culture, fed-batch medium (glucose 248.9 g / L, yeast extract 83.3 g / L, magnesium sulfate heptahydrate 7.2 g / L) was dissolved in dissolved oxygen (DO ) Was added while controlling.
(3) When the absorbance at 600 nm (OD 600 nm) reaches about 150 as a measure of the amount of bacterial cells, the culture temperature is lowered to 25 ° C., and after confirming that the set temperature has been reached, the final concentration is 0.5 mM. IPTG was added, and the culture was continued at 25 ° C.
(4) The culture was stopped about 48 hours after the start of the culture, and the cells were collected by centrifugation at 8000 rpm for 20 minutes at 4 ° C.
(5) The collected cells are suspended in 20 mM Tris-HCl buffer (pH 7.0) so as to be 5 mL / 1 g (cells), and an ultrasonic generator (Insonator 201M (trade name), manufactured by Kubota Corporation) ) Was used to disrupt the cells at an output of about 150 W for about 10 minutes at 4 ° C. The cell disruption solution was centrifuged twice at 8000 rpm for 20 minutes at 4 ° C., and the supernatant was collected.
(6) The supernatant obtained in (5) was previously equilibrated with 20 mM phosphate buffer (8 mM sodium dihydrogen phosphate, 12 mM disodium hydrogen phosphate) (pH 7.0) in 140 mL of TOYOPEARL CM- This was applied to a VL32 × 250 column (Merck Millipore) packed with 650M (Tosoh) at a flow rate of 5 mL / min. After washing with the buffer used for equilibration, elution was performed with 20 mM phosphate buffer (pH 7.0) containing 0.5 M sodium chloride.
(7) XK26 / filled with 90 mL of IgG Sepharose (manufactured by GE Healthcare) equilibrated with 20 mM Tris-HCl buffer (pH 7.4) containing 150 mM sodium chloride in advance. 20 columns (manufactured by GE Healthcare) were applied. After washing with the buffer used for equilibration, elution was performed with 0.1 M glycine hydrochloride buffer (pH 3.0). The eluate was returned to near neutrality by adding 1/4 volume of 1M Tris-HCl buffer (pH 8.0).
 前記精製により、高純度のFcRCysを約12mg得た。 About 12 mg of high-purity FcRCys was obtained by the purification.
 実施例42 Fc結合性タンパク質(FcR)固定化ゲルの作製と抗体分離
(1)2mLの分離剤用親水性ビニルポリマー(東ソー製:トヨパール)の表面の水酸基をヨードアセチル基で活性化後、実施例41で調製したFcRCysを4mg反応させることにより、FcR固定化ゲルを得た。
(2)(1)で作製したFcR固定化ゲル0.5mLをφ4.6mm×75mmのステンレスカラムに充填してFcRカラムを作製した。
(3)(2)で作製したFcRカラムを高速液体クロマトグラフィー装置(東ソー製)につなげ、20mMの酢酸緩衝液(pH4.5)で平衡化した。
(4)PBS(Phosphate Buffered Saline)(pH7.4)で4.0mg/mLに希釈したモノクローナル抗体(リツキサン、全薬工業製)を流速0.3mL/minにて0.15mLアプライした。
(5)流速0.3mL/minのまま平衡化緩衝液で2分洗浄後、10mMのグリシン塩酸緩衝液(pH3.0)によるpHグラジエント(38分で10mMのグリシン塩酸緩衝液(pH3.0)が100%となるグラジエント)で吸着したモノクローナル抗体を溶出した。
Example 42 Preparation of Fc Binding Protein (FcR) Immobilized Gel and Antibody Separation (1) After activation of the hydroxyl group on the surface of 2 mL of a hydrophilic vinyl polymer for separation agent (Toyopearl: Toyopearl) with an iodoacetyl group An FcR-immobilized gel was obtained by reacting 4 mg of FcRCys prepared in Example 41.
(2) An FcR column was prepared by filling 0.5 mL of the FcR-immobilized gel prepared in (1) into a φ4.6 mm × 75 mm stainless steel column.
(3) The FcR column prepared in (2) was connected to a high performance liquid chromatography apparatus (manufactured by Tosoh Corporation), and equilibrated with 20 mM acetate buffer (pH 4.5).
(4) A monoclonal antibody (Rituxan, manufactured by Zenyaku Kogyo Co., Ltd.) diluted to 4.0 mg / mL with PBS (Phosphate Buffered Saline) (pH 7.4) was applied at 0.15 mL at a flow rate of 0.3 mL / min.
(5) After washing with equilibration buffer for 2 minutes with a flow rate of 0.3 mL / min, pH gradient with 10 mM glycine hydrochloride buffer (pH 3.0) (10 mM glycine hydrochloride buffer (pH 3.0) over 38 minutes) The adsorbed monoclonal antibody was eluted with a gradient of 100%.
 結果(溶出パターン)を図11に示す。モノクローナル抗体はFcRと相互作用するため、ゲルろ過クロマトグラフィーのような単一のピークではなく、複数のピークに分離された。 The results (elution pattern) are shown in FIG. Since the monoclonal antibody interacts with FcR, it was separated into multiple peaks rather than a single peak as in gel filtration chromatography.
 実施例43 FcR固定化ゲルで分離した抗体の抗体依存性細胞傷害(ADCC)活性測定
(1)実施例42に記載の溶出条件でモノクローナル抗体を分離し、図2に記載の溶出パターン中のフラクションA(FrA)およびフラクションB(FrB)の領域を分取した。
(2)分取したFrAおよびFrBを限外ろ過膜(メルクミリポア製)で濃縮しながらPBS(10mMリン酸水素二ナトリウム、1.76mMリン酸二水素カリウム、137mM塩化ナトリウム、2.7mM塩化カリウム)(pH7.4)に緩衝液を交換した。
(3)濃縮、緩衝液交換したFrAおよびFrBに含まれる抗体、ならびに分離前のモノクローナル抗体の濃度を280nmの吸光で測定した。
(4)以下に示す方法で、FrAおよびFrBに含まれる抗体ならびに分離前のモノクローナル抗体が有するADCC活性を測定した。
(4-1)1.4mLのLow IgG Serumと33.6mLのRPMI1640培地とを混合して調製したADCC Assay Bufferを用いてFrA、FrBに含まれるモノクローナル抗体ならびに分離前のモノクローナル抗体を3μg/mLから1/3希釈で8段階の希釈系列を調製した。
(4-2)Raji細胞をADCC Assay Bufferにて約5×10cells/mLに調製し、96ウェルプレート(3917:コーニング社)に25μL/wellで加えた。
(4-3)Raji細胞を加えたwellに(2)で調整したFrA、FrB、分離前のモノクローナル抗体、ブランクのADCC Assay Bufferのみを25μL/well加えた。
(4-4)Effector細胞(プロメガ社)をADCC Assay Bufferにて約3.0×10cells/mLに調製し、Raji細胞および抗体を加えたwellに25μL/wellで加えた。その後、COインキュベーター(5%CO、37℃)に6時間静置した。
(4-5)96穴プレートを室温で5分から30分間静置した後、Luciferase Assay Reagent(プロメガ製)を75μL/wellで加えた。室温で30分反応させたのち、GloMax Multi Detection System(プロメガ社)で発光を測定した。
Example 43 Antibody Dependent Cytotoxicity (ADCC) Activity Measurement of Antibody Separated on FcR-Immobilized Gel (1) Monoclonal antibody was separated under the elution conditions described in Example 42, and fractions in the elution pattern described in FIG. The region of A (FrA) and fraction B (FrB) was fractionated.
(2) PBS (10 mM disodium hydrogen phosphate, 1.76 mM potassium dihydrogen phosphate, 137 mM sodium chloride, 2.7 mM potassium chloride) while concentrating the fractionated FrA and FrB with an ultrafiltration membrane (Merck Millipore) ) The buffer solution was exchanged to pH 7.4.
(3) The concentrations of the antibody contained in the concentrated and buffer exchanged FrA and FrB and the monoclonal antibody before separation were measured by absorbance at 280 nm.
(4) The ADCC activity of the antibody contained in FrA and FrB and the monoclonal antibody before separation was measured by the method described below.
(4-1) Using ADCC Assay Buffer prepared by mixing 1.4 mL of Low IgG Serum and 33.6 mL of RPMI1640 medium, 3 μg / mL of the monoclonal antibody contained in FrA and FrB and the monoclonal antibody before separation 8 dilution series were prepared with 1/3 dilution.
(4-2) Raji cells were prepared to about 5 × 10 5 cells / mL with ADCC Assay Buffer and added to a 96-well plate (3917: Corning) at 25 μL / well.
(4-3) Only 25 μL / well of FrA and FrB prepared in (2), the monoclonal antibody before separation, and blank ADCC Assay Buffer were added to the well to which Raji cells were added.
(4-4) Effector cells (Promega) were prepared to about 3.0 × 10 5 cells / mL using ADCC Assay Buffer, and added to wells containing Raji cells and antibodies at 25 μL / well. Then, it was left still for 6 hours in a CO 2 incubator (5% CO 2 , 37 ° C.).
(4-5) After allowing the 96-well plate to stand at room temperature for 5 to 30 minutes, Luciferase Assay Reagent (manufactured by Promega) was added at 75 μL / well. After reacting at room temperature for 30 minutes, luminescence was measured with GloMax Multi Detection System (Promega).
 実施例42に記載の溶出条件で分取したFrAおよびFrBならびに分離前のモノクローナル抗体の発光強度を比較した結果を図12に示す。なお図12の結果は、測定した発光強度からブランクの発光強度を引いた値を示しており、発光強度が高いほど、ADCC活性が高いことを意味している。 FIG. 12 shows the results of comparing the luminescence intensities of FrA and FrB fractionated under the elution conditions described in Example 42 and the monoclonal antibody before separation. The result of FIG. 12 shows a value obtained by subtracting the blank emission intensity from the measured emission intensity. The higher the emission intensity, the higher the ADCC activity.
 分離前のモノクローナル抗体と比較し、FrAの発光強度は低下している一方、FrBの発光強度は約1.4倍に向上していた。つまり、FrBは分離前のモノクローナル抗体およびFcAと比べてADCC活性が高いことがわかる。またFcR固定化ゲルからの溶出が遅い(カラムに保持される時間が長い)フラクション(FrB)にADCC活性の強い抗体が含まれていることから、FcR固定化ゲルはADCC活性の強さに基づいて分離できることがわかる。 Compared with the monoclonal antibody before separation, the emission intensity of FrA was decreased, while the emission intensity of FrB was improved about 1.4 times. That is, FrB has higher ADCC activity than the monoclonal antibody and FcA before separation. In addition, since an antibody with strong ADCC activity is contained in the fraction (FrB), which is eluted slowly from the FcR-immobilized gel (long time held in the column), the FcR-immobilized gel is based on the strength of ADCC activity. Can be separated.
 なお、2014年6月27日に出願された特願2014-133181号、2014年7月17日に出願された特願2014-147206号、2014年7月17日に出願された特願2014-147207号、2014年12月25日に出願された特願2014-263407号、2015年3月10日に出願された特願2015-047462号、ならびに2015年6月5日に出願された特願2015-115078号の明細書、配列表、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものとする。 Japanese Patent Application No. 2014-133181 filed on June 27, 2014, Japanese Patent Application No. 2014-147206 filed on July 17, 2014, Japanese Patent Application No. 2014-2014 filed on July 17, 2014 No. 147207, Japanese Patent Application No. 2014-263407 filed on December 25, 2014, Japanese Patent Application No. 2015-047462 filed on Mar. 10, 2015, and Japanese Patent Application filed on June 5, 2015 The entire contents of the specification, sequence listing, claims, drawings and abstract of 2015-115078 are hereby incorporated by reference as the disclosure of the specification of the present invention.

Claims (17)

  1. 配列番号37に記載のアミノ酸配列のうち33番目から208番目までのアミノ酸残基を含み、かつ当該33番目から208番目までのアミノ酸残基において以下の(1)から(84)のうち少なくともいずれか1つのアミノ酸置換が生じている、Fc結合性タンパク質。
    (1)配列番号37の45番目のフェニルアラニンがイソロイシンまたはロイシンに置換
    (2)配列番号37の55番目のグルタミン酸がグリシンに置換
    (3)配列番号37の64番目のグルタミンがアルギニンに置換
    (4)配列番号37の67番目のチロシンがセリンに置換
    (5)配列番号37の77番目のフェニルアラニンがチロシンに置換
    (6)配列番号37の93番目のアスパラギン酸がグリシンに置換
    (7)配列番号37の98番目のアスパラギン酸がグルタミン酸に置換
    (8)配列番号37の106番目のグルタミンがアルギニンに置換
    (9)配列番号37の128番目のグルタミンがロイシンに置換
    (10)配列番号37の133番目のバリンがグルタミン酸に置換
    (11)配列番号37の135番目のリジンがアスパラギンまたはグルタミン酸に置換
    (12)配列番号37の156番目のスレオニンがイソロイシンに置換
    (13)配列番号37の158番目のロイシンがグルタミンに置換
    (14)配列番号37の187番目のフェニルアラニンがセリンに置換
    (15)配列番号37の191番目のロイシンがアルギニンに置換
    (16)配列番号37の196番目のアスパラギンがセリンに置換
    (17)配列番号37の204番目のイソロイシンがバリンに置換
    (18)配列番号37の34番目のメチオニンがイソロイシン、リジンまたはスレオニンに置換
    (19)配列番号37の37番目のグルタミン酸がグリシンまたはリジンに置換
    (20)配列番号37の39番目のロイシンがメチオニンまたはアルギニンに置換
    (21)配列番号37の49番目のグルタミンがプロリンに置換
    (22)配列番号37の62番目のリジンがイソロイシンまたはグルタミン酸に置換
    (23)配列番号37の64番目のグルタミンがトリプトファンに置換
    (24)配列番号37の67番目のチロシンがヒスチジンまたはアスパラギンに置換
    (25)配列番号37の70番目のグルタミン酸がグリシンまたはアスパラギン酸に置換
    (26)配列番号37の72番目のアスパラギンがセリンまたはイソロイシンに置換
    (27)配列番号37の77番目のフェニルアラニンがロイシンに置換
    (28)配列番号37の80番目のグルタミン酸がグリシンに置換
    (29)配列番号37の81番目のセリンがアルギニンに置換
    (30)配列番号37の83番目のイソロイシンがロイシンに置換
    (31)配列番号37の84番目のセリンがプロリンに置換
    (32)配列番号37の85番目のセリンがアスパラギンに置換
    (33)配列番号37の87番目のアラニンがスレオニンに置換
    (34)配列番号37の90番目のチロシンがフェニルアラニンに置換
    (35)配列番号37の91番目のフェニルアラニンがアルギニンに置換
    (36)配列番号37の93番目のアスパラギン酸がバリンまたはグルタミン酸に置換
    (37)配列番号37の94番目のアラニンがグルタミン酸に置換
    (38)配列番号37の97番目のバリンがメチオニンとグルタミン酸に置換
    (39)配列番号37の98番目のアスパラギン酸がアラニンに置換
    (40)配列番号37の102番目のグルタミン酸がアスパラギン酸に置換
    (41)配列番号37の106番目のグルタミンがロイシンに置換
    (42)配列番号37の109番目のロイシンがグルタミンに置換
    (43)配列番号37の117番目のグルタミンがロイシンに置換
    (44)配列番号37の119番目のグルタミン酸がバリンに置換
    (45)配列番号37の121番目のヒスチジンがアルギニンに置換
    (46)配列番号37の130番目のプロリンがロイシンに置換
    (47)配列番号37の135番目のリジンがチロシンに置換
    (48)配列番号37の136番目のグルタミン酸がバリンに置換
    (49)配列番号37の141番目のヒスチジンがグルタミンに置換
    (50)配列番号37の146番目のセリンがスレオニンに置換
    (51)配列番号37の154番目のリジンがアルギニンに置換
    (52)配列番号37の159番目のグルタミンがヒスチジンに置換
    (53)配列番号37の163番目のグリシンがバリンに置換
    (54)配列番号37の165番目のリジンがメチオニンに置換
    (55)配列番号37の167番目のフェニルアラニンがチロシンに置換
    (56)配列番号37の169番目のヒスチジンがチロシンに置換
    (57)配列番号37の174番目のチロシンがフェニルアラニンに置換
    (58)配列番号37の177番目のリジンがアルギニンに置換
    (59)配列番号37の185番目のセリンがグリシンに置換
    (60)配列番号37の194番目のセリンがアルギニンに置換
    (61)配列番号37の196番目のアスパラギンがリジンに置換
    (62)配列番号37の201番目のスレオニンがアラニンに置換
    (63)配列番号37の203番目のアスパラギンがイソロイシンまたはリジンに置換
    (64)配列番号37の207番目のスレオニンがアラニンに置換
    (65)配列番号37の94番目のアラニンがセリンに置換
    (66)配列番号37の98番目のアスパラギン酸がグルタミン酸に置換
    (67)配列番号37の117番目のグルタミンがアルギニンに置換
    (68)配列番号37の174番目のチロシンがヒスチジンに置換
    (69)配列番号37の181番目のリジンがグルタミン酸に置換
    (70)配列番号37の203番目のアスパラギンがアスパラギン酸またはチロシンに置換
    (71)配列番号37の56番目のリジンがグルタミンに置換
    (72)配列番号37の62番目のリジンがアスパラギンに置換
    (73)配列番号37の66番目のアラニンがスレオニンに置換
    (74)配列番号37の72番目のアスパラギンがチロシンに置換
    (75)配列番号37の78番目のヒスチジンがロイシンに置換
    (76)配列番号37の81番目のセリンがグリシンに置換
    (77)配列番号37の90番目のチロシンがヒスチジンに置換
    (78)配列番号37の138番目のアスパラギン酸がグルタミン酸に置換
    (79)配列番号37の153番目のヒスチジンがグルタミンに置換
    (80)配列番号37の156番目のスレオニンがアラニン、アルギニン、ロイシン、リジン、フェニルアラニン、セリン、バリンまたはメチオニンに置換
    (81)配列番号37の157番目のチロシンがフェニルアラニンに置換
    (82)配列番号37の174番目のチロシンがロイシン、システイン、イソロイシン、リジン、トリプトファンまたはバリンに置換
    (83)配列番号37の206番目のイソロイシンがバリンに置換
    (84)配列番号37の207番目のスレオニンがイソロイシンに置換
    The amino acid sequence of SEQ ID NO: 37 comprises the amino acid residues from the 33rd to the 208th, and the amino acid residues from the 33rd to the 208th are at least any one of the following (1) to (84) An Fc binding protein in which one amino acid substitution has occurred.
    (1) 45th phenylalanine of SEQ ID NO: 37 is replaced with isoleucine or leucine (2) 55th glutamic acid of SEQ ID NO: 37 is replaced with glycine (3) 64th glutamine of SEQ ID NO: 37 is replaced with arginine (4) The 67th tyrosine of SEQ ID NO: 37 is replaced with serine (5) The 77th phenylalanine of SEQ ID NO: 37 is replaced with tyrosine (6) The 93rd aspartic acid of SEQ ID NO: 37 is replaced with glycine (7) of SEQ ID NO: 37 98th aspartic acid replaced with glutamic acid (8) 106th glutamine of SEQ ID NO: 37 replaced with arginine (9) 128th glutamine of SEQ ID NO: 37 replaced with leucine (10) 133rd valine of SEQ ID NO: 37 Is replaced with glutamic acid (11) The 135th lysine of SEQ ID NO: 37 is asparagine Or substituted with glutamic acid (12) 156th threonine of SEQ ID NO: 37 replaced with isoleucine (13) 158th leucine of SEQ ID NO: 37 replaced with glutamine (14) 187th phenylalanine of SEQ ID NO: 37 replaced with serine (15) 191st leucine of SEQ ID NO: 37 is replaced with arginine (16) 196th asparagine of SEQ ID NO: 37 is replaced with serine (17) 204th isoleucine of SEQ ID NO: 37 is replaced with valine (18) SEQ ID NO: 37th methionine of 37 was replaced with isoleucine, lysine or threonine (19) 37th glutamic acid of SEQ ID NO: 37 was replaced with glycine or lysine (20) 39th leucine of SEQ ID NO: 37 was replaced with methionine or arginine (21 49th glutamine of SEQ ID NO: 37 Replacement with proline (22) Replacement of 62nd lysine of SEQ ID NO: 37 with isoleucine or glutamic acid (23) Replacement of 64th glutamine of SEQ ID NO: 37 with tryptophan (24) Replacement of 67th tyrosine of SEQ ID NO: 37 with histidine or asparagine (25) The 70th glutamic acid of SEQ ID NO: 37 is replaced with glycine or aspartic acid (26) The 72nd asparagine of SEQ ID NO: 37 is replaced with serine or isoleucine (27) The 77th phenylalanine of SEQ ID NO: 37 is leucine (28) The 80th glutamic acid of SEQ ID NO: 37 is replaced with glycine (29) The 81st serine of SEQ ID NO: 37 is replaced with arginine (30) The 83rd isoleucine of SEQ ID NO: 37 is replaced with leucine (31) 84th serine of SEQ ID NO: 37 Replacement with proline (32) Replacement of 85th serine of SEQ ID NO: 37 with asparagine (33) Replacement of 87th alanine of SEQ ID NO: 37 with threonine (34) Replacement of 90th tyrosine of SEQ ID NO: 37 with phenylalanine (35 ) The 91st phenylalanine of SEQ ID NO: 37 is replaced with arginine (36) The 93rd aspartic acid of SEQ ID NO: 37 is replaced with valine or glutamic acid (37) The 94th alanine of SEQ ID NO: 37 is replaced with glutamic acid (38) The 97th valine of No. 37 is substituted with methionine and glutamic acid (39) The 98th aspartic acid of SEQ ID NO: 37 is substituted with alanine (40) The 102nd glutamic acid of SEQ ID NO: 37 is substituted with aspartic acid (41) 37 of 106th glutamine replaced by leucine (42) The 109th leucine in column No. 37 is replaced with glutamine (43) The 117th glutamine in SEQ ID NO: 37 is replaced with leucine (44) The 119th glutamic acid in SEQ ID NO: 37 is replaced with valine (45) 121 of SEQ ID NO: 37 The histidine is replaced with arginine (46) The 130th proline of SEQ ID NO: 37 is replaced with leucine (47) The 135th lysine of SEQ ID NO: 37 is replaced with tyrosine (48) The 136th glutamic acid of SEQ ID NO: 37 is valine (49) The 141st histidine of SEQ ID NO: 37 is replaced with glutamine (50) The 146th serine of SEQ ID NO: 37 is replaced with threonine (51) The 154th lysine of SEQ ID NO: 37 is replaced with arginine (52) The 159th glutamine of SEQ ID NO: 37 was replaced with histidine (53) SEQ ID NO: 3 The 163rd glycine of SEQ ID NO: 37 is replaced with methineine (55) the 167th phenylalanine of SEQ ID NO: 37 is replaced with tyrosine (56) the 169th histidine of SEQ ID NO: 37 (57) 174th tyrosine of SEQ ID NO: 37 replaced with phenylalanine (58) 177th lysine of SEQ ID NO: 37 replaced with arginine (59) 185th serine of SEQ ID NO: 37 replaced with glycine ( 60) 194th serine of SEQ ID NO: 37 is replaced with arginine (61) 196th asparagine of SEQ ID NO: 37 is replaced with lysine (62) 201st threonine of SEQ ID NO: 37 is replaced with alanine (63) SEQ ID NO: 37 The asparagine at position 203 is substituted with isoleucine or lysine (64) 207 threonine of column number 37 is replaced with alanine (65) 94th alanine of SEQ ID NO: 37 is replaced with serine (66) 98th aspartic acid of SEQ ID NO: 37 is replaced with glutamic acid (67) 117th glutamine is replaced with arginine (68) 174th tyrosine of SEQ ID NO: 37 is replaced with histidine (69) 181st lysine of SEQ ID NO: 37 is replaced with glutamic acid (70) 203rd asparagine of SEQ ID NO: 37 is Substitution with aspartic acid or tyrosine (71) Replacement of 56th lysine of SEQ ID NO: 37 with glutamine (72) Replacement of 62nd lysine of SEQ ID NO: 37 with asparagine (73) Replacement of 66th alanine of SEQ ID NO: 37 with threonine Substitution (74) Asparagine at position 72 in SEQ ID NO: 37 replaced with tyrosine 75) 78th histidine of SEQ ID NO: 37 is replaced with leucine (76) 81st serine of SEQ ID NO: 37 is replaced with glycine (77) 90th tyrosine of SEQ ID NO: 37 is replaced with histidine (78) SEQ ID NO: 37 138th aspartic acid is replaced with glutamic acid (79) 153rd histidine of SEQ ID NO: 37 is replaced with glutamine (80) 156th threonine of SEQ ID NO: 37 is alanine, arginine, leucine, lysine, phenylalanine, serine, valine Alternatively, methionine is substituted (81) 157th tyrosine of SEQ ID NO: 37 is replaced with phenylalanine (82) 174th tyrosine of SEQ ID NO: 37 is replaced with leucine, cysteine, isoleucine, lysine, tryptophan or valine (83) SEQ ID NO: 37 The 206th isoro Substituted Singh is 207th threonine substitution valine (84) SEQ ID NO: 37 with isoleucine
  2. 配列番号39、配列番号43、配列番号47、配列番号51、配列番号55、配列番号63、配列番号67、配列番号69、配列番号73、配列番号77、配列番号83、配列番号89のいずれかに記載のアミノ酸配列のうち33番目から208番目までのアミノ酸残基を含む、請求項1に記載のFc結合性タンパク質。 Sequence number 39, sequence number 43, sequence number 47, sequence number 51, sequence number 55, sequence number 63, sequence number 67, sequence number 69, sequence number 73, sequence number 77, sequence number 83, or sequence number 89 The Fc-binding protein according to claim 1, comprising amino acid residues from the 33rd to the 208th in the amino acid sequence described in 1.
  3. 配列番号39、配列番号43、配列番号47、配列番号51、配列番号55、配列番号63、配列番号67、配列番号69、配列番号73、配列番号77、配列番号83、配列番号89のいずれかに記載のアミノ酸配列からなる、請求項2に記載のFc結合性タンパク質。 Sequence number 39, sequence number 43, sequence number 47, sequence number 51, sequence number 55, sequence number 63, sequence number 67, sequence number 69, sequence number 73, sequence number 77, sequence number 83, or sequence number 89 The Fc-binding protein according to claim 2, comprising the amino acid sequence according to claim 2.
  4. 請求項1に記載のFc結合性タンパク質において、さらに以下の(85)から(88)のうち少なくともいずれか1つのアミノ酸置換が生じている、Fc結合性タンパク質。
    (85)配列番号37の82番目のロイシンがヒスチジンまたはアルギニンに置換
    (86)配列番号37の163番目のグリシンがアスパラギン酸に置換
    (87)配列番号37の174番目のチロシンがヒスチジンに置換
    (88)配列番号37の192番目のバリンがフェニルアラニンに置換
    The Fc-binding protein according to claim 1, wherein at least one of the following (85) to (88) is substituted.
    (85) 82nd leucine of SEQ ID NO: 37 was replaced with histidine or arginine (86) 163rd glycine of SEQ ID NO: 37 was replaced with aspartic acid (87) 174th tyrosine of SEQ ID NO: 37 was replaced with histidine (88 ) The 192nd valine of SEQ ID NO: 37 is substituted with phenylalanine.
  5. 請求項1から4のいずれかに記載のFc結合性タンパク質を不溶性担体に固定化して得られる吸着剤。 An adsorbent obtained by immobilizing the Fc-binding protein according to any one of claims 1 to 4 on an insoluble carrier.
  6. 請求項5に記載の吸着剤を充填したカラムに平衡化液を添加してカラムを平衡化する工程と、前記平衡化したカラムに抗体を含む溶液を添加して前記抗体を前記担体に吸着させる工程と、前記担体に吸着した抗体を溶出液を用いて溶出させる工程とを含む、抗体の分離方法。 6. A step of adding an equilibration solution to the column packed with the adsorbent according to claim 5 to equilibrate the column; and adding a solution containing an antibody to the equilibrated column to adsorb the antibody to the carrier. A method for separating an antibody, comprising: a step; and a step of eluting the antibody adsorbed on the carrier using an eluent.
  7. 平衡化液が30mM以上の塩化物イオンまたは硫酸イオンを含む、請求項6に記載の分離方法。 The separation method according to claim 6, wherein the equilibration liquid contains chloride ions or sulfate ions of 30 mM or more.
  8. 請求項5に記載の吸着剤を用いた、抗体依存性細胞傷害活性の強さに基づき抗体を分離する方法。 A method for separating antibodies based on the strength of antibody-dependent cytotoxic activity using the adsorbent according to claim 5.
  9. 請求項6から8のいずれかに記載の分離方法で得られる抗体。 An antibody obtained by the separation method according to any one of claims 6 to 8.
  10. 請求項5に記載の吸着剤を用いて抗体を分離することで、抗体が有する糖鎖構造の違いを識別する方法。 A method for identifying a difference in sugar chain structure of an antibody by separating the antibody using the adsorbent according to claim 5.
  11. 請求項5に記載の吸着剤を用いた糖鎖の分離方法。 A method for separating sugar chains using the adsorbent according to claim 5.
  12. 請求項11に記載の分離方法で得られる糖鎖。 A sugar chain obtained by the separation method according to claim 11.
  13. 請求項1から4のいずれかに記載のFc結合性タンパク質をコードするポリヌクレオチド。 A polynucleotide encoding the Fc-binding protein according to any one of claims 1 to 4.
  14. 請求項13に記載のポリヌクレオチドを含む発現ベクター。 An expression vector comprising the polynucleotide according to claim 13.
  15. 請求項14に記載の発現ベクターで宿主を形質転換して得られる形質転換体。 A transformant obtained by transforming a host with the expression vector according to claim 14.
  16. 宿主が大腸菌である、請求項15に記載の形質転換体。 The transformant according to claim 15, wherein the host is Escherichia coli.
  17. 請求項15または16に記載の形質転換体を培養することによりFc結合性タンパク質を発現させ、その培養物から発現されたFc結合性タンパク質を回収する、Fc結合性タンパク質の製造方法。 A method for producing an Fc-binding protein, wherein the Fc-binding protein is expressed by culturing the transformant according to claim 15 or 16, and the Fc-binding protein expressed from the culture is recovered.
PCT/JP2015/068259 2014-06-27 2015-06-24 IMPROVED Fc-BINDING PROTEIN, METHOD FOR PRODUCING SAID PROTEIN, ANTIBODY ADSORBENT USING SAID PROTEIN, AND METHOD FOR SEPARATING ANTIBODY USING SAID ADSORBENT WO2015199154A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580045734.4A CN106574261B (en) 2014-06-27 2015-06-24 Improved Fc binding protein, method for producing same, antibody adsorbent using same, and method for separating antibody using same
EP15811514.7A EP3162895B1 (en) 2014-06-27 2015-06-24 Improved fc-binding protein, method for producing said protein, antibody adsorbent using said protein, and method for separating antibody using said adsorbent
US15/321,916 US10815289B2 (en) 2014-06-27 2015-06-24 Fc-binding protein, method for producing said protein, antibody adsorbent using said protein, and method for separating antibody using said adsorbent

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2014-133181 2014-06-27
JP2014133181 2014-06-27
JP2014-147206 2014-07-17
JP2014-147207 2014-07-17
JP2014147207A JP6451119B2 (en) 2014-07-17 2014-07-17 Method for separating antibodies based on the strength of antibody-dependent cytotoxic activity
JP2014147206A JP6451118B2 (en) 2014-07-17 2014-07-17 Antibody separation method
JP2014263407 2014-12-25
JP2014-263407 2014-12-25
JP2015-047462 2015-03-10
JP2015047462 2015-03-10
JP2015115078A JP6699096B2 (en) 2014-06-27 2015-06-05 Improved Fc-binding protein, method for producing the protein, and antibody adsorbent using the protein
JP2015-115078 2015-06-05

Publications (1)

Publication Number Publication Date
WO2015199154A1 true WO2015199154A1 (en) 2015-12-30

Family

ID=54938232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068259 WO2015199154A1 (en) 2014-06-27 2015-06-24 IMPROVED Fc-BINDING PROTEIN, METHOD FOR PRODUCING SAID PROTEIN, ANTIBODY ADSORBENT USING SAID PROTEIN, AND METHOD FOR SEPARATING ANTIBODY USING SAID ADSORBENT

Country Status (1)

Country Link
WO (1) WO2015199154A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3048112A1 (en) * 2013-09-18 2016-07-27 Tosoh Corporation Fc-BINDING PROTEIN, METHOD FOR PRODUCING SAID PROTEIN, AND ANTIBODY ADSORBENT USING SAID PROTEIN, AND METHODS FOR PURIFYING AND IDENTIFYING ANTIBODY USING SAID ADSORBENT
JP2017178908A (en) * 2016-03-31 2017-10-05 東ソー株式会社 MODIFICATION TYPE RECOMBINANT FcγRIIb
JP2018011515A (en) * 2016-07-19 2018-01-25 東ソー株式会社 Method for producing recombinant protein using Escherichia coli
JP2018016552A (en) * 2016-07-25 2018-02-01 東ソー株式会社 Method for purifying igg1 using fc binding protein
JP2018039735A (en) * 2016-09-05 2018-03-15 東ソー株式会社 Method for separating antibodies having differing complement dependent cytotoxic activities
WO2018056374A1 (en) * 2016-09-23 2018-03-29 東ソー株式会社 IMPROVED RECOMBINANT FcγRII
WO2018150973A1 (en) 2017-02-20 2018-08-23 東ソー株式会社 Fc-binding protein having improved antibody separation ability, and method for separating antibody using same
WO2018198817A1 (en) * 2017-04-26 2018-11-01 東ソー株式会社 Stable fc binding protein, method for producing said protein, and antibody adsorbent in which said protein is used
WO2019083048A1 (en) 2017-10-27 2019-05-02 東ソー株式会社 Fc-BINDING PROTEIN EXHIBITING IMPROVED ALKALINE RESISTANCE, METHOD FOR PRODUCING SAID PROTEIN, ANTIBODY ADSORBENT USING SAID PROTEIN, AND METHOD FOR SEPARATING ANTIBODY USING SAID ANTIBODY ADSORBENT
WO2019163919A1 (en) * 2018-02-22 2019-08-29 東ソー株式会社 Fc-binding protein having improved acid stability, production method for said protein, and antibody-adsorbing agent using said protein
WO2019244901A1 (en) 2018-06-20 2019-12-26 東ソー株式会社 Method for separating antibody, and method for testing on disease
JP2020028285A (en) * 2018-02-22 2020-02-27 東ソー株式会社 Fc binding protein with improved acid stability, method for producing protein and antibody adsorbent using protein
JP2020125280A (en) * 2018-08-06 2020-08-20 東ソー株式会社 Antibody-adsorbing agents comprising an immobilized fc-binding protein, and methods for separating antibodies using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11511649A (en) * 1995-05-03 1999-10-12 アプライド リサーチ システムズ アーズ ホールディング エヌ.ヴィ. CD16-II mutant
JP2002531086A (en) * 1998-12-03 2002-09-24 マックス−プランク−ゲゼルシャフト ツール フォーデルング デル ヴィッセンシャフテン エー.ヴェー. Recombinant soluble Fc receptor
WO2011111393A1 (en) * 2010-03-10 2011-09-15 公益財団法人相模中央化学研究所 Fc binding protein and method for producing same
WO2015041303A1 (en) * 2013-09-18 2015-03-26 東ソー株式会社 Fc-BINDING PROTEIN, METHOD FOR PRODUCING SAID PROTEIN, AND ANTIBODY ADSORBENT USING SAID PROTEIN, AND METHODS FOR PURIFYING AND IDENTIFYING ANTIBODY USING SAID ADSORBENT

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11511649A (en) * 1995-05-03 1999-10-12 アプライド リサーチ システムズ アーズ ホールディング エヌ.ヴィ. CD16-II mutant
JP2002531086A (en) * 1998-12-03 2002-09-24 マックス−プランク−ゲゼルシャフト ツール フォーデルング デル ヴィッセンシャフテン エー.ヴェー. Recombinant soluble Fc receptor
WO2011111393A1 (en) * 2010-03-10 2011-09-15 公益財団法人相模中央化学研究所 Fc binding protein and method for producing same
WO2015041303A1 (en) * 2013-09-18 2015-03-26 東ソー株式会社 Fc-BINDING PROTEIN, METHOD FOR PRODUCING SAID PROTEIN, AND ANTIBODY ADSORBENT USING SAID PROTEIN, AND METHODS FOR PURIFYING AND IDENTIFYING ANTIBODY USING SAID ADSORBENT

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GUOZHANG ZOU ET AL.: "Chemoenzymatic Synthesis and Fcy Receptor Binding of Homogeneous Glycoforms of Antibody Fc Domain. Presence of a Bisecting Sugar Moiety Enhances the Affinity of Fc to FcyIIIa Receptor", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 133, no. 46, 2011, pages 18975 - 18991, XP055061687 *
KENNETH A. ROGERS ET AL.: "IgG Fc Receptor III Homologues in Nonhuman Primate Species: Genetic Characterization and Ligand Interactions", THE JOURNAL OF IMMUNOLOGY, vol. 177, no. 6, 2006, pages 3848 - 3856, XP055248767, ISSN: 0022-1767 *

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3048112A4 (en) * 2013-09-18 2017-07-26 Tosoh Corporation Fc-BINDING PROTEIN, METHOD FOR PRODUCING SAID PROTEIN, AND ANTIBODY ADSORBENT USING SAID PROTEIN, AND METHODS FOR PURIFYING AND IDENTIFYING ANTIBODY USING SAID ADSORBENT
US10611817B2 (en) 2013-09-18 2020-04-07 Tosoh Corporation Fc-binding protein, method for producing said protein, and antibody adsorbent using said protein, and methods for purifying and identifying antibody using said adsorbent
EP3048112A1 (en) * 2013-09-18 2016-07-27 Tosoh Corporation Fc-BINDING PROTEIN, METHOD FOR PRODUCING SAID PROTEIN, AND ANTIBODY ADSORBENT USING SAID PROTEIN, AND METHODS FOR PURIFYING AND IDENTIFYING ANTIBODY USING SAID ADSORBENT
JP2017178908A (en) * 2016-03-31 2017-10-05 東ソー株式会社 MODIFICATION TYPE RECOMBINANT FcγRIIb
JP2018011515A (en) * 2016-07-19 2018-01-25 東ソー株式会社 Method for producing recombinant protein using Escherichia coli
JP2018016552A (en) * 2016-07-25 2018-02-01 東ソー株式会社 Method for purifying igg1 using fc binding protein
JP2018039735A (en) * 2016-09-05 2018-03-15 東ソー株式会社 Method for separating antibodies having differing complement dependent cytotoxic activities
JPWO2018056374A1 (en) * 2016-09-23 2019-07-04 東ソー株式会社 Improved recombinant FcγRII
WO2018056374A1 (en) * 2016-09-23 2018-03-29 東ソー株式会社 IMPROVED RECOMBINANT FcγRII
US11414475B2 (en) 2016-09-23 2022-08-16 Tosoh Corporation Recombinant FcγRII
JP7030702B2 (en) 2016-09-23 2022-03-07 東ソー株式会社 Improved recombinant FcγRII
CN110312734A (en) * 2017-02-20 2019-10-08 东曹株式会社 The separation method of Fc binding proteins matter and the antibody using it that antibody separating capacity improves
CN110312734B (en) * 2017-02-20 2023-10-10 东曹株式会社 Fc binding protein with improved antibody separation ability and method for separating antibody using same
US11542301B2 (en) 2017-02-20 2023-01-03 Tosoh Corporation Fc-binding protein having improved antibody separation ability, and method for separating antibody using same
WO2018150973A1 (en) 2017-02-20 2018-08-23 東ソー株式会社 Fc-binding protein having improved antibody separation ability, and method for separating antibody using same
JP7047425B2 (en) 2017-02-20 2022-04-05 東ソー株式会社 Fc-binding protein with improved antibody separation ability and antibody separation method using it
JP2018197224A (en) * 2017-02-20 2018-12-13 東ソー株式会社 Fc-BINDING PROTEIN HAVING IMPROVED ANTIBODY SEPARATION ABILITY, AND METHOD FOR SEPARATING ANTIBODY USING THE SAME
CN110573621B (en) * 2017-04-26 2023-09-08 东曹株式会社 Stable Fc binding protein, method for producing the same, and antibody adsorbent using the same
JP2018183087A (en) * 2017-04-26 2018-11-22 東ソー株式会社 Stable fc-binding protein, method for producing protein and antibody adsorbent prepared with protein
WO2018198817A1 (en) * 2017-04-26 2018-11-01 東ソー株式会社 Stable fc binding protein, method for producing said protein, and antibody adsorbent in which said protein is used
CN110573621A (en) * 2017-04-26 2019-12-13 东曹株式会社 Stable Fc binding protein, method for producing said protein, and antibody adsorbent using said protein
US11427828B2 (en) 2017-04-26 2022-08-30 Tosoh Corporation Stable Fc binding protein, method for producing said protein, and antibody adsorbent in which said protein is used
CN111263813A (en) * 2017-10-27 2020-06-09 东曹株式会社 Fc-binding protein having improved alkali resistance, method for producing the protein, antibody adsorbent using the protein, and method for separating antibody using the antibody adsorbent
CN111263813B (en) * 2017-10-27 2023-10-17 东曹株式会社 Fc binding protein having improved alkali resistance, method for producing same, antibody adsorbent using same, and method for separating antibody
WO2019083048A1 (en) 2017-10-27 2019-05-02 東ソー株式会社 Fc-BINDING PROTEIN EXHIBITING IMPROVED ALKALINE RESISTANCE, METHOD FOR PRODUCING SAID PROTEIN, ANTIBODY ADSORBENT USING SAID PROTEIN, AND METHOD FOR SEPARATING ANTIBODY USING SAID ANTIBODY ADSORBENT
US11603548B2 (en) 2017-10-27 2023-03-14 Tosoh Corporation Fc-binding protein exhibiting improved alkaline resistance, method for producing said protein, antibody adsorbent using said protein, and method for separating antibody using said antibody adsorbent
JP2020028285A (en) * 2018-02-22 2020-02-27 東ソー株式会社 Fc binding protein with improved acid stability, method for producing protein and antibody adsorbent using protein
JP7293657B2 (en) 2018-02-22 2023-06-20 東ソー株式会社 Fc-binding protein with improved acid stability, method for producing said protein, and antibody adsorbent using said protein
WO2019163919A1 (en) * 2018-02-22 2019-08-29 東ソー株式会社 Fc-binding protein having improved acid stability, production method for said protein, and antibody-adsorbing agent using said protein
WO2019244901A1 (en) 2018-06-20 2019-12-26 東ソー株式会社 Method for separating antibody, and method for testing on disease
EP3812759A4 (en) * 2018-06-20 2022-07-27 Tosoh Corporation Method for separating antibody, and method for testing on disease
CN112334768A (en) * 2018-06-20 2021-02-05 东曹株式会社 Method for separating antibody and method for examining disease
CN112334768B (en) * 2018-06-20 2024-03-05 东曹株式会社 Method for separating antibody and method for examining disease
JP2020125280A (en) * 2018-08-06 2020-08-20 東ソー株式会社 Antibody-adsorbing agents comprising an immobilized fc-binding protein, and methods for separating antibodies using the same
JP7404689B2 (en) 2018-08-06 2023-12-26 東ソー株式会社 Antibody adsorbent with immobilized Fc-binding protein and antibody separation method using the same

Similar Documents

Publication Publication Date Title
WO2015199154A1 (en) IMPROVED Fc-BINDING PROTEIN, METHOD FOR PRODUCING SAID PROTEIN, ANTIBODY ADSORBENT USING SAID PROTEIN, AND METHOD FOR SEPARATING ANTIBODY USING SAID ADSORBENT
WO2015041303A1 (en) Fc-BINDING PROTEIN, METHOD FOR PRODUCING SAID PROTEIN, AND ANTIBODY ADSORBENT USING SAID PROTEIN, AND METHODS FOR PURIFYING AND IDENTIFYING ANTIBODY USING SAID ADSORBENT
JP6507522B2 (en) Improved Fc binding protein, method for producing the protein and antibody adsorbent using the protein
US10815289B2 (en) Fc-binding protein, method for producing said protein, antibody adsorbent using said protein, and method for separating antibody using said adsorbent
JP5812627B2 (en) Improved Fc receptor and method for producing the same
EP3048112B1 (en) Fc-BINDING PROTEIN, METHOD FOR PRODUCING SAID PROTEIN, AND ANTIBODY ADSORBENT USING SAID PROTEIN, AND METHODS FOR PURIFYING AND IDENTIFYING ANTIBODY USING SAID ADSORBENT
JP2017118871A (en) Improved fc-binding protein, method for producing the protein and antibody adsorbent prepared with the protein
JP6699096B2 (en) Improved Fc-binding protein, method for producing the protein, and antibody adsorbent using the protein
US11603548B2 (en) Fc-binding protein exhibiting improved alkaline resistance, method for producing said protein, antibody adsorbent using said protein, and method for separating antibody using said antibody adsorbent
EP3517609A1 (en) IMPROVED RECOMBINANT Fc GAMA RII
JP2015083558A (en) Antibody sorbent, and antibody purifying method and antibody identifying method using same
WO2018150973A1 (en) Fc-binding protein having improved antibody separation ability, and method for separating antibody using same
WO2019163919A1 (en) Fc-binding protein having improved acid stability, production method for said protein, and antibody-adsorbing agent using said protein
JP6848241B2 (en) Method for Purifying IgG1 Using Fc-Binding Protein
JP7009913B2 (en) Amino acid-substituted Fc-binding protein
JP7310142B2 (en) Fc-binding protein with improved alkali tolerance, method for producing the protein, antibody adsorbent using the protein, and method for separating antibodies using the antibody adsorbent
WO2018198817A1 (en) Stable fc binding protein, method for producing said protein, and antibody adsorbent in which said protein is used
JP7293657B2 (en) Fc-binding protein with improved acid stability, method for producing said protein, and antibody adsorbent using said protein
JP7363134B2 (en) immunoglobulin binding protein
JP2021136967A (en) Fc-binding proteins with improved heat stability, methods for producing same and antibody adsorbing agents using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15811514

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15321916

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015811514

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015811514

Country of ref document: EP