JP2020125280A - Antibody-adsorbing agents comprising an immobilized fc-binding protein, and methods for separating antibodies using the same - Google Patents

Antibody-adsorbing agents comprising an immobilized fc-binding protein, and methods for separating antibodies using the same Download PDF

Info

Publication number
JP2020125280A
JP2020125280A JP2019134708A JP2019134708A JP2020125280A JP 2020125280 A JP2020125280 A JP 2020125280A JP 2019134708 A JP2019134708 A JP 2019134708A JP 2019134708 A JP2019134708 A JP 2019134708A JP 2020125280 A JP2020125280 A JP 2020125280A
Authority
JP
Japan
Prior art keywords
amino acid
antibody
seq
acid sequence
protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019134708A
Other languages
Japanese (ja)
Other versions
JP7404689B2 (en
Inventor
遼子 渡邉
Ryoko Watanabe
遼子 渡邉
諭 遠藤
Satoshi Endo
諭 遠藤
陽介 寺尾
Yosuke Terao
陽介 寺尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Publication of JP2020125280A publication Critical patent/JP2020125280A/en
Application granted granted Critical
Publication of JP7404689B2 publication Critical patent/JP7404689B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Peptides Or Proteins (AREA)

Abstract

To provide antibody-adsorbing agents obtainable by immobilizing an affinity ligand capable of specifically binding to antibodies onto an insoluble carrier, which can adsorb a large amount of antibodies so that the agents are usable for antibody separation.SOLUTION: The invention provides an antibody-adsorbing agent obtainable by immobilizing an Fc-binding protein onto a porous hydrophilic polymer particle of which particle diameter is from 7 μm to 25 μm. The invention also provides a method for separating antibodies comprising the steps of: preparing a column filled with the adsorbing agent and equilibrating the column by passing an equilibrating buffer; adding to the equilibrated column a solution containing antibodies to adsorb the antibodies to the adsorbing agent; and eluting the adsorbed antibodies with an eluent.SELECTED DRAWING: Figure 2

Description

本発明は、Fc結合性タンパク質を固定化した抗体吸着剤、およびそれを用いた抗体分離法に関する。より詳しくは、本発明は、前記タンパク質を固定化させる担体を変更することで抗体吸着量が向上した吸着剤、およびそれを用いた抗体分離法に関する。 TECHNICAL FIELD The present invention relates to an antibody adsorbent having an Fc-binding protein immobilized thereon, and an antibody separation method using the same. More specifically, the present invention relates to an adsorbent in which the amount of adsorbed antibody is improved by changing the carrier for immobilizing the protein, and an antibody separation method using the adsorbent.

抗体医薬品の糖鎖構造は薬効や安定性に大きく関与する。そのため、抗体医薬品を製造する際、糖鎖構造の制御は極めて重要である。 The sugar chain structure of an antibody drug is greatly involved in the efficacy and stability. Therefore, control of sugar chain structure is extremely important when producing antibody drugs.

Fc結合性タンパク質のうちFcγRIIIaは、抗体(免疫グロブリン)の糖鎖構造を認識することが知られており、FcγRIIIaをアフィニティリガンドとして不溶性担体に固定化した吸着剤を用いることで、抗体を糖鎖構造に基づき分離できる(特許文献1)。したがって、前記吸着剤は、抗体医薬品製造時の工程分析に有用である。また、FcγRIIIaのうち細胞外領域(具体的には、配列番号1に記載のアミノ酸配列のうち17番目から192番目までの領域)中の特定位置にあるアミノ酸残基を他の特定のアミノ酸残基に置換することで、アフィニティリガンドとして必要な、熱安定性、酸安定性、アルカリ安定性を向上させている(特許文献1から3)。 Of the Fc-binding proteins, FcγRIIIa is known to recognize the sugar chain structure of an antibody (immunoglobulin). By using an adsorbent in which FcγRIIIa is immobilized as an affinity ligand on an insoluble carrier, the antibody can be bound to sugar chains. It can be separated based on the structure (Patent Document 1). Therefore, the adsorbent is useful for process analysis during production of antibody drugs. In addition, the amino acid residue at a specific position in the extracellular region (specifically, the region from the 17th position to the 192nd position in the amino acid sequence set forth in SEQ ID NO: 1) of FcγRIIIa is replaced with another specific amino acid residue. By substituting ##STR3## for heat stability, acid stability, and alkali stability required as affinity ligands (Patent Documents 1 to 3).

しかしながら、FcγRIIIaまたは前述したアミノ酸置換体を不溶性担体に固定化して得られる吸着剤を、糖鎖構造に基づく抗体の分取目的に適用しようとしたところ、抗体の吸着量が不十分であり、前記吸着剤を工業的な抗体医薬品の製造における抗体の分取目的に適用するのは困難であった。 However, when an adsorbent obtained by immobilizing FcγRIIIa or the above-mentioned amino acid substitution product on an insoluble carrier was applied for the purpose of fractionating an antibody based on a sugar chain structure, the adsorbed amount of the antibody was insufficient and It was difficult to apply the adsorbent to the purpose of fractionating antibodies in industrial production of antibody pharmaceuticals.

特開2015−086216号公報JP, 2005-0886216, A 特開2016−169197号公報JP, 2016-169197, A 特開2017−118871号公報JP, 2017-118871, A

本発明の課題は、抗体と特異的に結合可能なアフィニティリガンドを不溶性担体に固定化して得られる抗体吸着剤であって、抗体の分取目的にも利用可能な、抗体吸着量の高い吸着剤を提供することにある。 An object of the present invention is an antibody adsorbent obtained by immobilizing an affinity ligand capable of specifically binding to an antibody on an insoluble carrier, which adsorbent having a high antibody adsorption amount can also be used for the purpose of fractionating antibodies. Is to provide.

上記課題を解決するために、本発明者らが鋭意検討した結果、アフィニティリガンドであるFc結合性タンパク質を固定化させる不溶性担体を最適化することで、従来よりも抗体吸着量が向上した抗体吸着剤を得ることができた。具体的には、従来の抗体吸着剤において不溶性担体として用いていた非多孔質粒子に替え、粒子径の小さな多孔質粒子を用いることで、非多孔質粒子を不溶性担体として用いたときと比較し抗体吸着量が向上した。 In order to solve the above problems, as a result of diligent studies by the present inventors, by optimizing an insoluble carrier for immobilizing an Fc-binding protein that is an affinity ligand, the amount of antibody adsorbed is improved compared to the conventional antibody adsorption. I was able to get the agent. Specifically, instead of the non-porous particles used as the insoluble carrier in the conventional antibody adsorbent, by using porous particles having a small particle size, compared to when using the non-porous particles as the insoluble carrier The amount of antibody adsorbed was improved.

すなわち、本発明は以下の[1]から[8]に記載の態様を包含する。 That is, the present invention includes the embodiments described in [1] to [8] below.

[1]Fc結合性タンパク質を不溶性担体に固定化して得られる抗体吸着剤であって、不溶性担体が粒子径7μm以上25μm以下の多孔質親水性ポリマー粒子である、前記吸着剤。 [1] An antibody adsorbent obtained by immobilizing an Fc-binding protein on an insoluble carrier, wherein the insoluble carrier is porous hydrophilic polymer particles having a particle size of 7 μm or more and 25 μm or less.

[2]Fc結合性タンパク質がヒトFcγRIIIaである、[1]に記載の吸着剤。 [2] The adsorbent according to [1], wherein the Fc binding protein is human FcγRIIIa.

[3]ヒトFcγRIIIaが、以下の(a)から(f)のいずれかに記載のタンパク質である、[2]に記載の吸着剤。
(a)配列番号3に記載のアミノ酸配列の33番目から208番目までのアミノ酸残基を少なくとも含み、ただし当該33番目から208番目までのアミノ酸残基において、少なくとも192番目のバリンがフェニルアラニンにアミノ酸置換され、かつ抗体結合活性を有するタンパク質;
(b)配列番号3に記載のアミノ酸配列の33番目から208番目までのアミノ酸残基を少なくとも含み、ただし当該33番目から208番目までのアミノ酸残基において、少なくとも192番目のバリンがフェニルアラニンにアミノ酸置換され、さらに1もしくは数個の位置での1もしくは数個のアミノ酸残基の置換、欠失、挿入、または付加を含むアミノ酸配列を有し、かつFcR9のアミノ酸置換を保持し、かつ抗体結合活性を有するタンパク質;
(c)配列番号3に記載のアミノ酸配列の33番目から208番目までのアミノ酸残基を少なくとも含み、ただし当該33番目から208番目までのアミノ酸配列に対して80%以上の相同性を有し、かつFcR9のアミノ酸置換を保持し、かつ少なくとも192番目のバリンがフェニルアラニンにアミノ酸置換され、かつ抗体結合活性を有するタンパク質(d)配列番号13に記載のアミノ酸配列の33番目から208番目までのアミノ酸残基を少なくとも含み、かつ抗体結合活性を有するタンパク質;
(e)配列番号13に記載のアミノ酸配列の33番目から208番目までのアミノ酸残基を少なくとも含み、ただし当該33番目から208番目までのアミノ酸残基において、さらに1もしくは数個の位置での1もしくは数個のアミノ酸残基の置換、欠失、挿入、または付加を含むアミノ酸配列を有し、かつFcR36iのアミノ酸置換を保持し、かつ抗体結合活性を有するタンパク質;
(f)配列番号13に記載のアミノ酸配列の33番目から208番目までのアミノ酸残基を少なくとも含み、ただし当該33番目から208番目までのアミノ酸配列に対して80%以上の相同性を有し、かつFcR36iのアミノ酸置換を保持し、かつ抗体結合活性を
有するタンパク質
[4]多孔質親水性ポリマーが、ポリメタクリレートである、[1]から[3]のいずれかに記載の吸着剤。
[3] The adsorbent according to [2], wherein human FcγRIIIa is the protein described in any of (a) to (f) below.
(A) contains at least the 33rd to 208th amino acid residues of the amino acid sequence of SEQ ID NO: 3, provided that at least the 192nd valine in the 33rd to 208th amino acid residues is replaced with phenylalanine. And a protein having antibody binding activity;
(B) contains at least the 33rd to 208th amino acid residues of the amino acid sequence of SEQ ID NO: 3, provided that at least the 192nd valine in the 33rd to 208th amino acid residues is replaced with phenylalanine. And further has an amino acid sequence containing substitution, deletion, insertion, or addition of 1 or several amino acid residues at 1 or several positions, retains the amino acid substitution of FcR9, and has an antibody binding activity. A protein having
(C) contains at least the 33rd to 208th amino acid residues of the amino acid sequence set forth in SEQ ID NO: 3, but has 80% or more homology to the 33rd to 208th amino acid sequence, A protein (d) which retains the amino acid substitution of FcR9, has at least the 192nd valine amino acid substituted with phenylalanine, and has antibody binding activity (d) the amino acid residues 33 to 208 of the amino acid sequence of SEQ ID NO: 13. A protein containing at least a group and having antibody binding activity;
(E) At least the 33rd to 208th amino acid residues of the amino acid sequence set forth in SEQ ID NO: 13 are provided, provided that, in the 33rd to 208th amino acid residues, 1 or at 1 or several positions. Alternatively, a protein having an amino acid sequence containing substitutions, deletions, insertions, or additions of several amino acid residues, retaining the amino acid substitution of FcR36i, and having antibody binding activity;
(F) containing at least the 33rd to 208th amino acid residues of the amino acid sequence set forth in SEQ ID NO: 13, but having 80% or more homology to the 33rd to 208th amino acid sequence, Also, the adsorbent according to any one of [1] to [3], wherein the protein having an FcR36i amino acid substitution and having antibody binding activity is [4] the porous hydrophilic polymer is polymethacrylate.

[5][1]から[4]のいずれかに記載の吸着剤を充填したカラムに平衡化液を添加してカラムを平衡化する工程と、前記平衡化したカラムに抗体を含む溶液を添加して抗体を前記吸着剤に吸着させる工程と、前記吸着剤に吸着した抗体を溶出液を用いて溶出させる工程とを含む、抗体の分離法。 [5] A step of equilibrating the column by adding an equilibration liquid to the column packed with the adsorbent according to any one of [1] to [4], and adding a solution containing an antibody to the equilibrated column. And a method of adsorbing the antibody to the adsorbent and a step of eluting the antibody adsorbed to the adsorbent with an eluent.

[6][5]に記載の方法において、溶出液により溶出された抗体を含む画分を分取する工程をさらに含む、抗体医薬の製造方法。 [6] The method for producing an antibody drug according to [5], further comprising a step of collecting a fraction containing the antibody eluted with the eluent.

[7][5]の方法により、糖鎖構造の違いによって抗体を分離する方法。 [7] A method for separating an antibody by the method according to [5], depending on the difference in sugar chain structure.

[8]糖鎖構造の違いが、末端のガラクトースの量の違いによる[7]に記載の方法。 [8] The method according to [7], wherein the difference in sugar chain structure is due to the difference in the amount of galactose at the terminal.

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明において不溶性担体に固定化させるFc結合性タンパク質は、抗体(免疫グロブリン)のFc領域に結合性を有するタンパク質のことをいい、Fc受容体、Protein A、Protein Gが例示できる。Fc結合性タンパク質がヒトFc受容体である場合の具体例としては、ヒトFcγRI、ヒトFcγRIIa、ヒトFcγRIIb、ヒトFcγRIIIa、ヒトFcRnがあげられる。特にヒトFcγRIIIaは、抗体が有する糖鎖構造を認識可能なヒトFc受容体であり、ヒトFcγRIIIaを不溶性担体に固定化した抗体分離剤は、抗体を糖鎖構造に基づき分離できる(特開2015−086216号公報、特許文献1)ことから、本発明において不溶性担体に固定化させるFc結合性タンパク質として好ましい態様といえる。 In the present invention, the Fc-binding protein immobilized on the insoluble carrier refers to a protein having a binding property to the Fc region of an antibody (immunoglobulin), and examples thereof include Fc receptor, Protein A, and Protein G. Specific examples of the Fc-binding protein that is a human Fc receptor include human FcγRI, human FcγRIIa, human FcγRIIb, human FcγRIIIa, and human FcRn. In particular, human FcγRIIIa is a human Fc receptor capable of recognizing the sugar chain structure of an antibody, and an antibody separating agent in which human FcγRIIIa is immobilized on an insoluble carrier can separate the antibody based on the sugar chain structure (JP-A-2015-2015). From Japanese Patent No. 086216 and Patent Document 1), it can be said that the present invention is a preferred embodiment as an Fc-binding protein immobilized on an insoluble carrier.

ヒトFcγRIIIaの一例として、以下の(i)から(xiv)のいずれかに記載のタンパク質があげられる。
(i)配列番号1に記載の天然型ヒトFcγRIIIaのアミノ酸配列のうち、細胞外領域(図1ではEC領域)の一部である、17番目のグリシンから192番目のグルタミンまでのアミノ酸残基を少なくとも含むタンパク質;
(ii)配列番号1に記載のアミノ酸配列の17番目のグリシンから192番目のグルタミンまでのアミノ酸残基を少なくとも含み、ただし当該17番目から192番目までのアミノ酸残基において、少なくとも176番目のバリンがフェニルアラニンにアミノ酸置換され、かつ抗体結合活性を有するタンパク質;
(iii)配列番号1に記載のアミノ酸配列の17番目のグリシンから192番目のグルタミンまでのアミノ酸残基を少なくとも含み、ただし当該17番目から192番目までのアミノ酸残基において、少なくとも176番目のバリンがフェニルアラニンにアミノ酸置換され、さらに1もしくは数個の位置での1もしくは数個のアミノ酸残基の置換、欠失、挿入、または付加を含むアミノ酸配列を有し、かつ抗体結合活性を有するタンパク質;(iv)配列番号1に記載のアミノ酸配列の17番目のグリシンから192番目のグルタミンまでのアミノ酸残基を少なくとも含み、ただし当該17番目から208番目までのアミノ酸配列に対して70%以上、好ましくは80%以上、更に好ましくは90%以上、特に好ましくは95%以上、の相同性を有し、かつ少なくとも176番目のバリンがフェニルアラニンにアミノ酸置換され、かつ抗体結合活性を有するタンパク質;
(v)配列番号3に記載のアミノ酸配列の33番目から208番目までのアミノ酸残基(配列番号1に記載のアミノ酸配列の17番目のグリシンから192番目のグルタミンまでのアミノ酸残基のうち、9箇所アミノ酸置換したポリペプチド)を少なくとも含み、ただし当該33番目から208番目までのアミノ酸残基において、少なくとも192番目のバリンがフェニルアラニンにアミノ酸置換され、かつ抗体結合活性を有するタンパク質(vi)配列番号3に記載のアミノ酸配列の33番目から208番目までのアミノ酸残基を少なくとも含み、ただし当該33番目から208番目までのアミノ酸残基において、少なくとも192番目のバリンがフェニルアラニンにアミノ酸置換され、さらに1もしくは数個の位置での1もしくは数個のアミノ酸残基の置換、欠失、挿入、または付加を含むアミノ酸配列を有し、かつFcR9のアミノ酸置換を保持し、かつ抗体結合活性を有するタンパク質;
(vii)配列番号3に記載のアミノ酸配列の33番目から208番目までのアミノ酸残基を少なくとも含み、ただし当該33番目から208番目までのアミノ酸配列に対して80%以上、より好ましくは90%以上、更に好ましくは95%以上、の相同性を有し、かつFcR9のアミノ酸置換を保持し、かつ少なくとも192番目のバリンがフェニルアラニンにアミノ酸置換され、かつ抗体結合活性を有するタンパク質;
(viii)配列番号5に記載のアミノ酸配列のうち、33番目のグリシンから208番目のグルタミンまでのアミノ酸残基(配列番号3に記載のアミノ酸配列の33番目のグリシンから208番目のグルタミンまでのアミノ酸残基のうち、192番目のバリンをフェニルアラニンにアミノ酸置換したポリペプチド)を少なくとも含むタンパク質;
(ix)配列番号1に記載のアミノ酸配列の17番目のグリシンから192番目のグルタミンまでのアミノ酸残基を少なくとも含み、ただし当該17番目から192番目までのアミノ酸残基において、少なくとも176番目のバリンがイソロイシンにアミノ酸置換され、
かつ抗体結合活性を有するタンパク質;
(x)配列番号1に記載のアミノ酸配列の17番目のグリシンから192番目のグルタミンまでのアミノ酸残基を少なくとも含み、ただし当該17番目から192番目までのアミノ酸残基において、少なくとも176番目のバリンがイソロイシンにアミノ酸置換され、さらに1もしくは数個の位置での1もしくは数個のアミノ酸残基の置換、欠失、挿入、または付加を含むアミノ酸配列を有し、かつ抗体結合活性を有するタンパク質;;
(xi)配列番号1に記載のアミノ酸配列の17番目のグリシンから192番目のグルタミンまでのアミノ酸残基を少なくとも含み、ただし当該17番目から208番目までのアミノ酸配列に対して70%以上、好ましくは80%以上、更に好ましくは90%以上、特に好ましくは95%以上、の相同性を有し、かつ少なくとも176番目のバリンがイソロイシンにアミノ酸置換され、かつ抗体結合活性を有するタンパク質;
(xii)配列番号13に記載のアミノ酸配列の33番目から208番目までのアミノ酸残基(配列番号1に記載のアミノ酸配列の17番目のグリシンから192番目のグルタミンまでのアミノ酸残基のうち、36箇所アミノ酸置換したポリペプチド)を少なくとも含み、かつ抗体結合活性を有するタンパク質;
(xiii)配列番号13に記載のアミノ酸配列の33番目から208番目までのアミノ酸残基を少なくとも含み、さらに1もしくは数個の位置での1もしくは数個のアミノ酸残基の置換、欠失、挿入、または付加を含むアミノ酸配列を有し、かつFcR36iのアミノ酸置換を保持し、かつ抗体結合活性を有するタンパク質;
(xiv)配列番号13に記載のアミノ酸配列の33番目から208番目までのアミノ酸残基を少なくとも含み、ただし当該33番目から208番目までのアミノ酸配列に対して80%以上、より好ましくは90%以上、更に好ましくは95%以上、の相同性を有し、かつFcR36iのアミノ酸置換を保持し、かつ抗体結合活性を有するタンパク質。
Examples of human FcγRIIIa include the proteins described in any of (i) to (xiv) below.
(I) In the amino acid sequence of natural human FcγRIIIa set forth in SEQ ID NO: 1, amino acid residues from the 17th glycine to the 192nd glutamine, which are part of the extracellular region (EC region in FIG. 1), A protein containing at least;
(Ii) contains at least the amino acid residues from the 17th glycine to the 192nd glutamine of the amino acid sequence set forth in SEQ ID NO: 1, provided that at least the 176th valine is present in the 17th to 192nd amino acid residues. A protein which has an amino acid substitution with phenylalanine and has antibody binding activity;
(Iii) contains at least the amino acid residues from the 17th glycine to the 192nd glutamine of the amino acid sequence of SEQ ID NO: 1, provided that at least the 176th valine is present in the 17th to 192nd amino acid residues. A protein having an amino acid sequence substituted with phenylalanine and further having one or several amino acid residue substitutions, deletions, insertions or additions at one or several positions, and having antibody binding activity; iv) It contains at least an amino acid residue from the 17th glycine to the 192nd glutamine in the amino acid sequence of SEQ ID NO: 1, provided that the amino acid sequence from the 17th to 208th is 70% or more, preferably 80. % Or more, more preferably 90% or more, particularly preferably 95% or more homology, and at least the valine at position 176 is substituted with an amino acid phenylalanine, and has protein binding activity;
(V) Amino acid residues 33 to 208 of the amino acid sequence set forth in SEQ ID NO: 3 (of the amino acid residues from the 17th glycine to the 192nd glutamine of the amino acid sequence set forth in SEQ ID NO: 9, Protein (vi) SEQ ID NO: 3 containing at least the amino acid substitution of phenylalanine at the 192nd valine in the 33rd to 208th amino acid residues. Which includes at least the 33rd to 208th amino acid residues of the amino acid sequence of, wherein at least the 192nd valine is amino acid-substituted with phenylalanine in the 33rd to 208th amino acid residues, and further 1 or a number A protein having an amino acid sequence containing substitution, deletion, insertion, or addition of one or several amino acid residues at position 1, and having the amino acid substitution of FcR9 and having antibody binding activity;
(Vii) contains at least the 33rd to 208th amino acid residues of the amino acid sequence set forth in SEQ ID NO: 3, but 80% or more, and more preferably 90% or more of the 33rd to 208th amino acid sequence , A protein having homology of 95% or more, and having an amino acid substitution of FcR9, at least the valine at position 192 is substituted with a phenylalanine amino acid, and having antibody binding activity;
(Viii) Of the amino acid sequence of SEQ ID NO: 5, amino acid residues from the 33rd glycine to the 208th glutamine (amino acids from the 33rd glycine to the 208th glutamine of the amino acid sequence of SEQ ID NO: 3 Among the residues, a protein containing at least a polypeptide in which the 192nd valine is amino acid-substituted with phenylalanine);
(Ix) contains at least an amino acid residue from the 17th glycine to the 192nd glutamine of the amino acid sequence of SEQ ID NO: 1, provided that at least the 176th valine is present in the 17th to 192nd amino acid residues. Amino acid substitution to isoleucine,
And a protein having antibody binding activity;
(X) at least containing the amino acid residues from the 17th glycine to the 192nd glutamine of the amino acid sequence set forth in SEQ ID NO: 1, provided that at least the 176th valine is present in the 17th to 192nd amino acid residues. A protein which has an amino acid substitution to isoleucine and further has an amino acid sequence containing substitution, deletion, insertion or addition of one or several amino acid residues at one or several positions, and which has antibody binding activity;
(Xi) contains at least an amino acid residue from the 17th glycine to the 192nd glutamine of the amino acid sequence of SEQ ID NO: 1, but 70% or more, preferably 70% or more, with respect to the 17th to 208th amino acid sequence 80% or more, more preferably 90% or more, particularly preferably 95% or more homology, at least the valine at position 176 is amino acid substituted with isoleucine, and a protein having antibody binding activity;
(Xii) 33rd to 208th amino acid residues of the amino acid sequence shown in SEQ ID NO: 13 (of the amino acid residues from the 17th glycine to the 192nd glutamine of the amino acid sequence shown in SEQ ID NO: 36, 36 Protein having at least one amino acid substitution) and having antibody binding activity;
(Xiii) Substitution, deletion, insertion of 1 or several amino acid residues at 1 or several positions, containing at least the 33rd to 208th amino acid residues of the amino acid sequence set forth in SEQ ID NO: 13. , Or a protein having an amino acid sequence containing addition, and having an amino acid substitution of FcR36i and having antibody binding activity;
(Xiv) contains at least the 33rd to 208th amino acid residues of the amino acid sequence set forth in SEQ ID NO: 13, but 80% or more, and more preferably 90% or more of the 33rd to 208th amino acid sequence , More preferably 95% or more homology, retains FcR36i amino acid substitution, and has antibody binding activity.

なお前記(i)から(xiv)に記載のタンパク質は、いずれもヒトFcγRIIIaの細胞外領域(図1ではEC領域)の一部またはそのアミノ酸置換体を少なくとも含んでいればよく、細胞外領域のN末端側にあるシグナルペプチド領域(図1のS)の全てまたは一部を含んでもよいし、細胞外領域のC末端側にある細胞膜貫通領域(図1のTM)および細胞内領域(図1のC)の全てまたは一部を含んでもよい。また天然型ヒトFcγRIIIaには、Leu66His(この表記は、配列番号1の66番目(配列番号3では82番目)のロイシンがヒスチジンにアミノ酸置換されていることを表す、以下同様)、Leu66Arg、Gly147Asp、Tyr158Hisのうち、いずれか1つ以上のアミノ酸置換が生じた変異体が知られているが、これらアミノ酸置換を前記(ii)から(vii)、(ix)から(xi)、(xiii)および(xiv)に記載のタンパク質に有してもよい。さらに前記(ii)から(vii)、(ix)から(xi)、(xiii)および(xiv)に記載のタンパク質において、「1もしくは数個」とは、アミノ酸残基のタンパク質の立体構造における位置や種類によっても異なるが、好ましくは1〜50個、さらにより好ましくは1〜30個、最も好ましくは1〜20個または1〜10個(例、1、2、3、4または5個)である。特定位置のアミノ酸残基については、抗体結合活性を有する限り前述したアミノ酸以外のアミノ酸に置換してもよい。その一例として、両アミノ酸の物理的性質と化学的性質またはそのどちらかが類似したアミノ酸間で置換する保守的置換があげられる。保守的置換は、Fc結合性タンパク質に限らず一般に、置換が生じているものと置換が生じていないものとの間でタンパク質の機能が維持されることが当業者において知られている。保守的置換の一例としては、グリシンとアラニン間、アスパラギン酸とグルタミン酸間、セリンとプロリン間、またはグルタミン酸とアラニン間に生じる置換があげられる(タンパク質の構造と機能、メディカル・サイエンス・インターナショナル社、9、2005)。 The proteins described in (i) to (xiv) above all need to include at least a part of the extracellular region of human FcγRIIIa (EC region in FIG. 1) or an amino acid substitution product thereof. It may include all or part of the signal peptide region (S in FIG. 1) on the N-terminal side, or the cell transmembrane region (TM in FIG. 1) and intracellular region (FIG. 1) on the C-terminal side of the extracellular region. It may include all or part of C). Further, in natural human FcγRIIIa, Leu66His (this notation means that the leucine at the 66th position in SEQ ID NO: 1 (82nd position in SEQ ID NO: 3) has been replaced with histidine by amino acid, the same applies hereinafter), Leu66Arg, Gly147Asp, Among Tyr158His, mutants in which any one or more amino acid substitutions occur are known. These amino acid substitutions are (ii) to (vii), (ix) to (xi), (xiii) and ( The protein described in xiv) may have. Furthermore, in the proteins described in (ii) to (vii), (ix) to (xi), (xiii), and (xiv), “1 or several” means the position of the amino acid residue in the three-dimensional structure of the protein. The number is preferably 1 to 50, more preferably 1 to 30, most preferably 1 to 20 or 1 to 10 (eg, 1, 2, 3, 4 or 5), though it varies depending on the type and type. is there. The amino acid residue at a specific position may be replaced with an amino acid other than the above-mentioned amino acids as long as it has antibody binding activity. An example thereof is conservative substitution in which amino acids having similar physical properties and/or chemical properties to each other are substituted. It is known to those skilled in the art that conservative substitution is not limited to Fc-binding proteins, and generally the function of a protein is maintained between those with substitution and those without substitution. Examples of conservative substitutions include substitutions that occur between glycine and alanine, aspartic acid and glutamic acid, serine and proline, or glutamic acid and alanine (protein structure and function, Medical Science International, 9 , 2005).

本発明において不溶性担体に固定化させるFc結合性タンパク質は、そのN末端側またはC末端側に、夾雑物質存在下の溶液から目的の抗体を分離する際に有用なオリゴペプチドをさらに付加してもよい。前記オリゴペプチドとしては、ポリヒスチジン、ポリリジン、ポリアルギニン、ポリグルタミン酸、ポリアスパラギン酸等があげられる。また本発明のFc結合性タンパク質をクロマトグラフィー用の支持体等の固相に固定化する際に有用な、システインを含むオリゴペプチド(例えば、配列番号11に記載のアミノ酸配列の200番目から208番目までのアミノ酸残基からなるオリゴペプチド)を、Fc結合性タンパク質のN末端側またはC末端側にさらに付加してもよい。Fc結合性タンパク質のN末端側またはC末端側に付加するオリゴペプチドの長さは、特に制限はない。前記オリゴペプチドを本発明のFc結合性タンパク質に付加させる際は、前記オリゴペプチドをコードするポリヌクレオチドを作製後、当業者に周知の方法を用いて遺伝子工学的にFc結合性タンパク質のN末端側またはC末端側に付加させてもよいし、化学的に合成した前記オリゴペプチドを本発明のFc結合性タンパク質のN末端側またはC末端側に化学的に結合させて付加させてもよい。さらにFc結合性タンパク質のN末端側には、宿主での効率的な発現を促すためのシグナルペプチドを付加してもよい。宿主が大腸菌の場合における前記シグナルペプチドの例としては、PelB(UniProt No.P0C1C1の1番目から22番目までのアミノ酸残基からなるオリゴペプチド)、DsbA、MalE(UniProt No.P0AEX9の1番目から26番目までのアミノ酸残基からなるオリゴペプチド)、TorTなどのペリプラズムにタンパク質を分泌させるシグナルペプチドを例示することができる(特開2011−097898号公報)。 In the present invention, the Fc-binding protein to be immobilized on the insoluble carrier is further added to its N-terminal side or C-terminal side with an oligopeptide useful for separating an antibody of interest from a solution in the presence of a contaminant. Good. Examples of the oligopeptide include polyhistidine, polylysine, polyarginine, polyglutamic acid and polyaspartic acid. Further, an cysteine-containing oligopeptide useful for immobilizing the Fc-binding protein of the present invention on a solid phase such as a support for chromatography (for example, the 200th to the 208th amino acid sequence of SEQ ID NO: 11) Up to amino acid residues) may be further added to the N-terminal side or C-terminal side of the Fc-binding protein. The length of the oligopeptide added to the N-terminal side or C-terminal side of the Fc-binding protein is not particularly limited. When the oligopeptide is added to the Fc-binding protein of the present invention, a polynucleotide encoding the oligopeptide is prepared and then genetically engineered using a method well known to those skilled in the art to the N-terminal side of the Fc-binding protein. Alternatively, it may be added to the C-terminal side, or the chemically synthesized oligopeptide may be chemically bonded to the N-terminal side or C-terminal side of the Fc-binding protein of the present invention and added. Furthermore, a signal peptide for promoting efficient expression in a host may be added to the N-terminal side of the Fc-binding protein. When the host is E. coli, examples of the signal peptide include PelB (oligopeptide consisting of amino acid residues 1 to 22 of UniProt No. P0C1C1), DsbA, and MalE (UniProt No. P0AEX9 from 1 to 26). Examples thereof include oligopeptides consisting of amino acid residues up to the second) and signal peptides that secrete proteins into the periplasm such as TorT (JP 2011-097898 A).

本発明の吸着剤は前述したFc結合性タンパク質に固定化させる不溶性担体として、粒子径7μm以上25μm以下の多孔質親水性ポリマー粒子を用いることを特徴としている。親水性ポリマーの一例としては、ポリビニルアルコール、ポリメタクリレート、ポリ(2−ヒドロキシエチルメタクリレート)、ポリウレタン等の合成高分子があげられる。なお粒子径は7μm以上22μm以下が好ましく、7μm以上18μm以下がより好ましく、7μm以上15μm以下がさらに好ましく、8μm以上12μm以下が特により好ましい。本発明において粒子径は、体積平均粒子径を意味し、具体的にはコールターカウンター(コールター社製)にて粒度分布を測定することにより求めた。 The adsorbent of the present invention is characterized by using porous hydrophilic polymer particles having a particle diameter of 7 μm or more and 25 μm or less as an insoluble carrier for immobilizing the Fc-binding protein described above. Examples of hydrophilic polymers include synthetic polymers such as polyvinyl alcohol, polymethacrylate, poly(2-hydroxyethyl methacrylate), and polyurethane. The particle size is preferably 7 μm or more and 22 μm or less, more preferably 7 μm or more and 18 μm or less, further preferably 7 μm or more and 15 μm or less, and particularly preferably 8 μm or more and 12 μm or less. In the present invention, the particle size means a volume average particle size, and was specifically determined by measuring the particle size distribution with a Coulter counter (manufactured by Coulter Co.).

本明細書において多孔質粒子とは、表面にも孔があり中も空洞になっているスポンジ状のものを意味し、具体的には空孔率30%から95%の粒子のことをいい、空孔率50%以上であると、より好ましい。本発明の粒子の空孔率は、以下の(a)から(e)に記載の操作により測定されるものである。なお、当該測定方法は液体クロマトグラフィーの分野では多孔質粒子の空孔率測定法として一般的な方法である。 In the present specification, the porous particles mean sponge-like particles having pores on the surface and are hollow inside, specifically particles having a porosity of 30% to 95%, It is more preferable that the porosity is 50% or more. The porosity of the particles of the present invention is measured by the operations described in (a) to (e) below. The measurement method is a general method as a porosity measurement method for porous particles in the field of liquid chromatography.

(a)本発明の多孔質粒子をクロマトグラフィー用カラムに充填する。 (A) A column for chromatography is packed with the porous particles of the present invention.

(b)水を溶出液として、前記カラムからの分子量200万のブルーデキストランと塩化ナトリウムの溶出容積を測定する。 (B) Using water as an eluent, the elution volume of blue dextran having a molecular weight of 2,000,000 and sodium chloride from the column is measured.

(c)前記カラムのカラム容積から操作(b)で測定した分子量200万のブルーデキストランの溶出容積を引くことにより、ゲル容積を算出する。 (C) The gel volume is calculated by subtracting the elution volume of blue dextran having a molecular weight of 2,000,000 measured in step (b) from the column volume of the column.

(d)操作(b)で測定した塩化ナトリウムの溶出容積から、操作(b)で測定した分子量200万のブルーデキストランの溶出容積を引くことにより、細孔容積を算出する。 (D) The pore volume is calculated by subtracting the elution volume of blue dextran having a molecular weight of 2,000,000 measured in operation (b) from the elution volume of sodium chloride measured in operation (b).

(e)操作(d)で算出した細孔容積を操作(c)で算出したゲル容積で除することにより、空孔率を算出する。 (E) The porosity is calculated by dividing the pore volume calculated in operation (d) by the gel volume calculated in operation (c).

すなわち、塩化ナトリウムの溶出容積(Vn)、分子量200万のブルーデキストランの溶出容積(Vo)及びカラム容積(Vc)を用い、以下に示した計算式から空孔率を算出することができる
空孔率(%)=((Vn−Vo)/(Vc−Vo))x100。
That is, using the elution volume of sodium chloride (Vn), the elution volume of blue dextran having a molecular weight of 2,000,000 (Vo) and the column volume (Vc), the porosity can be calculated from the following formula. Rate (%)=((Vn−Vo)/(Vc−Vo))×100.

Fc結合性タンパク質を不溶性担体に固定化するには、当該不溶性担体にN−ヒドロキシコハク酸イミド(NHS)活性化エステル基、エポキシ基、カルボキシル基、マレイミド基、ハロアセチル基、トレシル基、ホルミル基、ハロアセトアミド等の活性基を付与し、当該活性基を介してFc結合性タンパク質と不溶性担体とを共有結合させることで固定化すればよい。活性基を付与した担体は、例えば適切な反応条件で担体表面に活性基を導入して調製すればよい。 To immobilize an Fc-binding protein on an insoluble carrier, an N-hydroxysuccinimide (NHS) activated ester group, epoxy group, carboxyl group, maleimide group, haloacetyl group, tresyl group, formyl group, It may be immobilized by providing an active group such as haloacetamide and covalently binding the Fc-binding protein and the insoluble carrier through the active group. The carrier to which the active group has been added may be prepared, for example, by introducing the active group onto the surface of the carrier under appropriate reaction conditions.

一方、担体表面に活性基を導入する方法としては、担体表面に存在する水酸基やエポキシ基、カルボキシル基、アミノ基等に対して2個以上の活性部位を有する化合物の一方を反応させる方法が例示できる。当該化合物の一例のうち、担体表面の水酸基やアミノ基にエポキシ基を導入する化合物としては、エピクロロヒドリン、エタンジオールジグリシジルエーテル、ブタンジオールジグリシジルエーテル、ヘキサンジオールジグリシジルエーテルが例示できる。前記化合物により担体表面にエポキシ基を導入した後、担体表面にカルボキシル基を導入する化合物としては、2−メルカプト酢酸、3−メルカプトプロピオン酸、4−メルカプト酪酸、6−メルカプト酪酸、グリシン、3−アミノプロピオン酸、4−アミノ酪酸、担体表面に存在する水酸基やエポキシ基、カルボキシル基、アミノ基にマレイミド基を導入する化合物としては、N−(ε−マレイミドカプロン酸)ヒドラジド、N−(ε−マレイミドプロピオン酸)ヒドラジド、4−[4−N−マレイミドフェニル]酢酸ヒドラジド、2−アミノマレイミド、3−アミノマレイミド、4−アミノマレイミド、6−アミノマレイミド、1−(4−アミノフェニル)マレイミド、1−(3−アミノフェニル)マレイミド、4−(マレイミド)フェニルイソシアナート、2−マレイミド酢酸、3−マレイミドプロピオン酸、4−マレイミド酪酸、6−マレイミドヘキサン酸、N−(α−マレイミドアセトキシ)スクシンイミドエステル、(m−マレイミドベンゾイル)N−ヒドロキシスクシンイミドエステル、スクシンイミジル−4−(マレイミドメチル)シクロヘキサン−1−カルボニル−(6−アミノヘキサン酸)、スクシンイミジル−4−(マレイミドメチル)シクロヘキサン−1−カルボン酸、(p−マレイミドベンゾイル)N−ヒドロキシスクシンイミドエステル、(m−マレイミドベンゾイル)N−ヒドロキシスクシンイミドエステルを例示できる。 On the other hand, as a method for introducing an active group onto the surface of a carrier, a method of reacting one of compounds having two or more active sites with a hydroxyl group, an epoxy group, a carboxyl group, an amino group or the like existing on the surface of the carrier is exemplified. it can. Among the examples of the compound, examples of a compound that introduces an epoxy group into a hydroxyl group or an amino group on the surface of a carrier include epichlorohydrin, ethanediol diglycidyl ether, butanediol diglycidyl ether, and hexanediol diglycidyl ether. After introducing an epoxy group on the surface of the carrier by the compound, as a compound for introducing a carboxyl group on the surface of the carrier, 2-mercaptoacetic acid, 3-mercaptopropionic acid, 4-mercaptobutyric acid, 6-mercaptobutyric acid, glycine, 3- Aminopropionic acid, 4-aminobutyric acid, a hydroxyl group or an epoxy group present on the surface of a carrier, a carboxyl group, as a compound for introducing a maleimide group into an amino group, N-(ε-maleimidocaproic acid) hydrazide, N-(ε- Maleimidopropionic acid) hydrazide, 4-[4-N-maleimidophenyl]acetic acid hydrazide, 2-aminomaleimide, 3-aminomaleimide, 4-aminomaleimide, 6-aminomaleimide, 1-(4-aminophenyl)maleimide, 1 -(3-Aminophenyl)maleimide, 4-(maleimide)phenylisocyanate, 2-maleimidoacetic acid, 3-maleimidopropionic acid, 4-maleimidobutyric acid, 6-maleimidohexanoic acid, N-(α-maleimidoacetoxy)succinimide ester , (M-maleimidobenzoyl)N-hydroxysuccinimide ester, succinimidyl-4-(maleimidomethyl)cyclohexane-1-carbonyl-(6-aminohexanoic acid), succinimidyl-4-(maleimidomethyl)cyclohexane-1-carboxylic acid, Examples include (p-maleimidobenzoyl)N-hydroxysuccinimide ester and (m-maleimidobenzoyl)N-hydroxysuccinimide ester.

担体表面に存在する水酸基やアミノ基にハロアセチル基を導入する化合物としては、クロロ酢酸、ブロモ酢酸、ヨード酢酸、クロロ酢酸クロリド、ブロモ酢酸クロリド、ブロモ酢酸ブロミド、クロロ酢酸無水物、ブロモ酢酸無水物、ヨード酢酸無水物、2−(ヨードアセトアミド)酢酸−N−ヒドロキシスクシンイミドエステル、3−(ブロモアセトアミド)プロピオン酸−N−ヒドロキシスクシンイミドエステル、4−(ヨードアセチル)アミノ安息香酸−N−ヒドロキシスクシンイミドエステルを例示できる。なお担体表面に存在する水酸基やアミノ基にω−アルケニルアルカングリシジルエーテルを反応させた後、ハロゲン化剤でω−アルケニル部位をハロゲン化し活性化する方法も例示できる。ω−アルケニルアルカングリシジルエーテルとしては、アリルグリシジルエーテル、3−ブテニルグリシジルエーテル、4−ペンテニルグリシジルエーテルを例示でき、ハロゲン化剤としてはN−クロロスクシンイミド、N−ブロモスクシンイミド、N−ヨードスクシンイミドを例示できる。 As a compound for introducing a haloacetyl group into a hydroxyl group or an amino group present on the surface of a carrier, chloroacetic acid, bromoacetic acid, iodoacetic acid, chloroacetic acid chloride, bromoacetic acid chloride, bromoacetic acid bromide, chloroacetic acid anhydride, bromoacetic acid anhydride, Iodoacetic anhydride, 2-(iodoacetamido)acetic acid-N-hydroxysuccinimide ester, 3-(bromoacetamido)propionic acid-N-hydroxysuccinimide ester, 4-(iodoacetyl)aminobenzoic acid-N-hydroxysuccinimide ester It can be illustrated. A method of reacting a hydroxyl group or an amino group existing on the surface of the carrier with a ω-alkenyl alkaneglycidyl ether and then halogenating the ω-alkenyl site with a halogenating agent to activate the alkenyl moiety is also exemplified. Examples of the ω-alkenyl alkaneglycidyl ether include allyl glycidyl ether, 3-butenyl glycidyl ether, and 4-pentenyl glycidyl ether, and examples of the halogenating agent include N-chlorosuccinimide, N-bromosuccinimide, and N-iodosuccinimide. it can.

担体表面に活性基を導入する方法の別の例として、担体表面に存在するカルボキシル基に対して縮合剤と添加剤を用いて活性化基を導入する方法がある。縮合剤としては1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド(EDC)、ジシクロヘキシルカルボジアミド、カルボニルジイミダゾールを例示できる。また添加剤としてはN−ヒドロキシコハク酸イミド(NHS)、4−ニトロフェノール、1−ヒドロキシベンズトリアゾールを例示できる。 As another example of the method of introducing an active group onto the surface of a carrier, there is a method of introducing an activating group into a carboxyl group existing on the surface of a carrier by using a condensing agent and an additive. Examples of the condensing agent include 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), dicyclohexylcarbodiamide, and carbonyldiimidazole. Examples of the additive include N-hydroxysuccinimide (NHS), 4-nitrophenol, and 1-hydroxybenztriazole.

本発明の方法において用いられる多孔質親水性ポリマー粒子の好適な例としては、Shodex(昭和電工社製)、Sepharose(GE社製)、Amberlite(オルガノ社製)、Cellufine(JN社製)、POROS(THermo Fisher SCIENTIFIC社製)、TOYOPEARL(東ソー社製)等が挙げられるが、これらに限定されない。 Suitable examples of the porous hydrophilic polymer particles used in the method of the present invention include Shodex (manufactured by Showa Denko KK), Sepharose (manufactured by GE), Amberlite (manufactured by Organo), Cellufine (manufactured by JN), and POROS. (Thermo Fisher SCIENTIFIC Co., Ltd.), TOYOPEARL (manufactured by Tosoh Corp.) and the like can be mentioned, but not limited thereto.

Fc結合性タンパク質を不溶性担体に固定化する際用いる緩衝液としては、酢酸緩衝液、リン酸緩衝液、MES(2−Morpholinoethanesulfonic acid)緩衝液、HEPES(4−(2−hydroxyethyl)−1−piperazineethanesulfonic acid)緩衝液、トリス緩衝液、ホウ酸緩衝液を例示できる。固定化させるときの反応温度は、5℃から50℃までの温度範囲の中から活性基の反応性やFc結合性タンパク質の安定性を考慮の上、適宜設定すればよく、好ましくは10℃から35℃の範囲である。 As a buffer solution used for immobilizing the Fc-binding protein on the insoluble carrier, an acetate buffer solution, a phosphate buffer solution, a MES (2-morpholinoethanesulfonic acid) buffer solution, and a HEPES (4-(2-hydroxyethyl)-l-piperazine ethenesulfonic acid) buffer, Tris buffer, and borate buffer. The reaction temperature for immobilization may be appropriately set within the temperature range of 5°C to 50°C in consideration of the reactivity of the active group and the stability of the Fc-binding protein, and preferably from 10°C. It is in the range of 35°C.

前述した方法でFc結合性タンパク質を不溶性担体に固定化し得られた本発明の抗体吸着剤を用いて抗体を分離するには、当該抗体吸着剤を充填したカラムにポンプ等の送液手段を用いて平衡化液を添加することでカラムを平衡化し、前記送液手段で抗体を含む溶液を添加することで前記抗体吸着剤に抗体を特異的に吸着させた後、適切な溶出液を前記送液手段で添加することで前記吸着した抗体を溶出させればよい。なお本発明において抗体の分離とは、夾雑物を含む溶液からの抗体分離(夾雑物除去)に限らず、構造・性質・活性等に基づく抗体間での分離も含まれる。 In order to separate an antibody using the antibody adsorbent of the present invention obtained by immobilizing an Fc-binding protein on an insoluble carrier by the method described above, a liquid-feeding means such as a pump is used in a column packed with the antibody adsorbent. The column is equilibrated by adding an equilibration solution to the column, and the solution containing the antibody is added by the solution sending means to specifically adsorb the antibody to the antibody adsorbent, and then an appropriate eluate is sent to the column. The adsorbed antibody may be eluted by adding it by liquid means. In the present invention, separation of antibodies is not limited to antibody separation (removal of impurities) from a solution containing contaminants, but also includes separation between antibodies based on structure, properties, activity and the like.

前記平衡化液としてはリン酸緩衝液、酢酸緩衝液、MES緩衝液、クエン酸緩衝液が例示でき、さらに前記緩衝液に、10mMから100mM(好ましくは40mMから60mM)の塩化ナトリウム等の無機塩を添加してもよい。平衡化液のpHは、pH4.0から7.0までの範囲から、緩衝液成分、カラム形状、吸着剤のカラムへの充填圧力などを考慮し、適宜最適値を決定すればよい。 Examples of the equilibration solution include a phosphate buffer solution, an acetate buffer solution, a MES buffer solution, and a citrate buffer solution. Further, the buffer solution contains 10 mM to 100 mM (preferably 40 mM to 60 mM) of an inorganic salt such as sodium chloride. May be added. The pH of the equilibration liquid may be appropriately determined from the range of pH 4.0 to 7.0 in consideration of the buffer component, the column shape, the packing pressure of the adsorbent into the column, and the like.

抗体吸着剤に吸着した抗体を溶出させるには、抗体とリガンド(Fc結合性タンパク質)との相互作用を弱めればよく、具体的には、緩衝液によるpHの低下、カウンターペプチドの添加、温度上昇、塩濃度変化が例示できる。抗体吸着剤に吸着した抗体を溶出させるための溶出液の具体例として、抗体吸着剤に抗体を吸着させる際に用いた溶液よりも酸性側の緩衝液があげられる。その緩衝液の種類としては酸性側に緩衝能を有するクエン酸緩衝液、グリシン塩酸緩衝液、酢酸緩衝液を例示できる。溶出液のpHは、抗体が有する機能(抗原への結合性等)を損なわない範囲で設定すればよく、一例としてpH2.5以上6.0以下、pH3.0以上5.0以下、pH3.0以上4.0以下、があげられる。 In order to elute the antibody adsorbed on the antibody adsorbent, it is sufficient to weaken the interaction between the antibody and the ligand (Fc binding protein). Specifically, the pH is lowered by the buffer solution, the counter peptide is added, and the temperature is increased. An increase and a change in salt concentration can be exemplified. A specific example of the eluent for eluting the antibody adsorbed on the antibody adsorbent is a buffer solution that is more acidic than the solution used for adsorbing the antibody on the antibody adsorbent. Examples of the buffer solution include a citrate buffer solution, a glycine hydrochloric acid buffer solution, and an acetic acid buffer solution, which have a buffering capacity on the acidic side. The pH of the eluate may be set within a range that does not impair the function of the antibody (binding property to antigen, etc.), and as an example, pH 2.5 to 6.0, pH 3.0 to 5.0, pH 3. It is 0 or more and 4.0 or less.

塩濃度の変化で抗体を溶出させる場合、高濃度の塩を含む緩衝液(溶出液)で一段階に溶出してもよく、任意に塩濃度を段階的に上昇させてもよく(ステップグラジエント)、直線的濃度勾配で塩濃度を上昇させてもよい(リニアグラジエント)が、リニアグラジエントで溶出させると好ましい。例えば水溶性の塩として塩化ナトリウムを用いる場合、塩化ナトリウム濃度0Mから1Mまでのリニアグラジエントで溶出させればよい。また、pH変化で抗体を溶出させる場合、平衡化緩衝液よりpHが低下した酸性緩衝液(溶出液)で一段階に溶出してもよく、任意に緩衝液のpHを段階的に低下させてもよく(ステップグラジエント)、直線的濃度勾配で緩衝液のpHを低下させてもよい(リニアグラジエント)が、リニアグラジエントで溶出させると好ましい。例えば抗体が吸着する中性から弱酸性の緩衝液から抗体が溶離する酸性の緩衝液へと、リニアグラジエントで溶出させればよい。 When an antibody is eluted with a change in salt concentration, it may be eluted in a single step with a buffer solution containing a high concentration of salt (eluent), or the salt concentration may be increased stepwise (step gradient). The salt concentration may be increased with a linear concentration gradient (linear gradient), but it is preferable to elute with a linear gradient. For example, when sodium chloride is used as the water-soluble salt, it may be eluted with a linear gradient of sodium chloride concentration from 0M to 1M. When the antibody is eluted by changing the pH, it may be eluted in one step with an acidic buffer solution (elution solution) having a pH lower than that of the equilibration buffer solution, and the pH of the buffer solution may be optionally decreased stepwise. The pH of the buffer solution may be lowered with a linear gradient (linear gradient), but it is preferable to elute with a linear gradient. For example, a neutral to weakly acidic buffer solution in which the antibody is adsorbed may be eluted with a linear gradient from an acidic buffer solution in which the antibody is eluted.

前述した方法で溶出された、抗体が含まれる画分を分取することで当該抗体を得ることができる。分取は常法により行なってよい。具体的には、例えば、一定の時間ごとや、一定の容量ごとに回収容器を交換する方法や、溶出液のクロマトグラムの形状に合わせて回収容器を換える方法や、自動フラクションコレクター等により画分の分取をすることが挙げられる。 The antibody can be obtained by collecting the fraction containing the antibody eluted by the above-mentioned method. The preparative collection may be performed by a conventional method. Specifically, for example, a method of exchanging the collection container at fixed time intervals or a fixed volume, a method of changing the collection container according to the shape of the chromatogram of the eluate, an automatic fraction collector, etc. It can be mentioned that the sample is collected.

本発明は、Fc結合性タンパク質を不溶性担体に固定化して得られる抗体吸着剤において、不溶性担体が粒子径7μm以上25μm以下の多孔質親水性ポリマー粒子であることを特徴としている。本発明の吸着剤は、不溶性担体として非多孔質粒子を用いた従来の吸着剤と比較し、抗体吸着量が増加している。従って、本発明は工業的な抗体医薬品の製造における抗体の分取に有用である。 The present invention is characterized in that, in an antibody adsorbent obtained by immobilizing an Fc-binding protein on an insoluble carrier, the insoluble carrier is porous hydrophilic polymer particles having a particle size of 7 μm or more and 25 μm or less. The adsorbent of the present invention has an increased amount of antibody adsorbed as compared with the conventional adsorbent using non-porous particles as the insoluble carrier. Therefore, the present invention is useful for fractionating antibodies in industrial production of antibody pharmaceuticals.

特にFc結合性タンパク質として、ヒトFcγRIIIaを用いた場合、これらタンパク質を不溶性担体に固定化して得られる抗体分離剤は、糖鎖構造に基づく分離(特開2015−086216号公報)や、抗体依存性細胞傷害活性の強さに基づいた分離(特開2016−023152号公報)ができるため、特定の糖鎖構造を有した抗体や、抗体依存性細胞傷害活性の高い(または低い)抗体を、選択的かつ大量に調製できる。 In particular, when human FcγRIIIa is used as the Fc-binding protein, the antibody separating agent obtained by immobilizing these proteins on an insoluble carrier is separated based on the sugar chain structure (JP-A-2015-0886216) or antibody-dependent. An antibody having a specific sugar chain structure or an antibody having a high (or low) antibody-dependent cytotoxic activity can be selected because separation can be performed based on the strength of the cytotoxic activity (JP-A-2016-023152). Target and can be prepared in large quantities.

ヒトFcγRIIIaの概略図である。図中の数字は配列番号1に記載のアミノ酸配列の番号を示している。図中のSはシグナル配列、ECは細胞外領域、TMは細胞膜貫通領域、Cは細胞内領域を示している。FIG. 3 is a schematic diagram of human FcγRIIIa. The numbers in the figure show the numbers of the amino acid sequences described in SEQ ID NO:1. In the figure, S is a signal sequence, EC is an extracellular region, TM is a cell transmembrane region, and C is an intracellular region. 実施例9の結果を示す溶出パターンである。9 is an elution pattern showing the results of Example 9. 実施例10の結果を示す溶出パターンである。11 is an elution pattern showing the results of Example 10. 比較例3の結果を示す溶出パターンである。5 is an elution pattern showing the results of Comparative Example 3. 比較例4の結果を示す溶出パターンである。9 is an elution pattern showing the results of Comparative Example 4. 実施例11の結果を示す溶出パターンである。It is an elution pattern showing the results of Example 11. 実施例12の結果を示す溶出パターンである。9 is an elution pattern showing the results of Example 12. 実施例13の結果を示す溶出パターンである。9 is an elution pattern showing the results of Example 13. 実施例14の結果を示す溶出パターンである。9 is an elution pattern showing the results of Example 14. 実施例15の結果を示す溶出パターンである。16 is an elution pattern showing the results of Example 15. 実施例16の結果を示す溶出パターンである。17 is an elution pattern showing the results of Example 16. 実施例17の結果を示す各抗体医薬品に含まれる糖鎖構造の割合である。It is a ratio of the sugar chain structure contained in each antibody drug showing the results of Example 17. 実施例18の結果を示す各抗体医薬品に含まれる糖鎖構造の割合である。It is a ratio of the sugar chain structure contained in each antibody drug showing the results of Example 18. 実施例19の結果を示す各抗体医薬品に含まれる糖鎖構造の割合である。It is a ratio of the sugar chain structure contained in each antibody drug showing the results of Example 19. 実施例20の結果を示す各抗体医薬品に含まれる糖鎖構造の割合である。It is a ratio of the sugar chain structure contained in each antibody drug showing the results of Example 20. 実施例21の結果を示す各抗体医薬品に含まれる糖鎖構造の割合である。It is a ratio of the sugar chain structure contained in each antibody drug showing the results of Example 21. 実施例22の結果を示す各抗体医薬品に含まれる糖鎖構造の割合である。It is a ratio of the sugar chain structure contained in each antibody drug showing the results of Example 22. 実施例23の結果を示す各抗体医薬品に含まれる糖鎖構造の割合である。It is a ratio of the sugar chain structure contained in each antibody drug showing the results of Example 23.

以下、実施例および比較例を用いて本発明をさらに詳細に説明するが、本発明はこれら例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to these examples.

実施例1 FcR9アミノ酸置換体の作製
WO2015/199154号に記載の方法で作製したFc結合性タンパク質FcR9(配列番号3)に対し、192番目のバリン(配列番号1に記載のアミノ酸配列からなる天然型ヒトFcγRIIIaでは176番目のバリンに相当)をフェニルアラニンにアミノ酸置換したFc結合性タンパク質FcR9_Fを作製した。
Example 1 Preparation of FcR9 Amino Acid Substitution For the Fc binding protein FcR9 (SEQ ID NO: 3) prepared by the method described in WO2015/199154, the 192nd valine (natural type consisting of the amino acid sequence described in SEQ ID NO: 1 For human FcγRIIIa, an Fc-binding protein FcR9_F was prepared by substituting phenylalanine for 176th valine).

具体的にはFcR9をコードするポリヌクレオチド(配列番号4)を含むプラスミドpET−FcR9(WO2015/199154号)から、PCRを用いて前記アミノ酸置換を有したポリヌクレオチドを作製し、当該ポリヌクレオチドを発現ベクターpETMalE(特開2011−206046号公報)にライゲーション後、当該ライゲーション産物で大腸菌BL21(DE3)株を形質転換することで、FcR9_Fを発現する形質転換体を得た。なおFcR9(配列番号3)は、配列番号2に示す天然型ヒトFcγRIIIa細胞外領域を含むFc結合性タンパク質において、43番目(配列番号1では27番目に相当)のバリンをグルタミン酸に、45番目(配列番号1では29番目に相当)のフェニルアラニンをイソロイシンに、51番目(配列番号1では35番目に相当)のチロシンをアスパラギンに、64番目(配列番号1では48番目に相当)のグルタミンをアルギニンに、91番目(配列番号1では75番目に相当)のフェニルアラニンをロイシンに、108番目(配列番号1では92番目に相当)のアスパラギンをセリンに、133番目(配列番号1では117番目に相当)のバリンをグルタミン酸に、137番目(配列番号1では121番目に相当)のグルタミン酸をグリシンに、および187番目(配列番号1では171番目に相当)のフェニルアラニンをセリンに、それぞれアミノ酸置換したFc結合性タンパク質である。本明細書では、前記FcR9(配列番号3)が天然型ヒトFcγRIIIa細胞外領域を含むFc結合性タンパク質(配列番号2)に対して保有する前記9箇所のアミノ酸置換を、「FcR9のアミノ酸置換」と称することがある。 Specifically, a polynucleotide having the amino acid substitution is prepared from a plasmid pET-FcR9 (WO2015/199154) containing a polynucleotide encoding FcR9 (SEQ ID NO: 4) by PCR, and the polynucleotide is expressed. After ligation to the vector pETMalE (JP 2011-206046 A), E. coli BL21(DE3) strain was transformed with the ligation product to obtain a transformant expressing FcR9_F. In addition, FcR9 (SEQ ID NO: 3) is the Fc-binding protein containing the extracellular region of human FcγRIIIa shown in SEQ ID NO: 2 in which the 43rd valine (corresponding to the 27th in SEQ ID NO: 1) is glutamic acid and the 45th ( Phenylalanine at position 29 in SEQ ID NO: 1 is isoleucine, tyrosine at position 51 (corresponding to position 35 in SEQ ID NO: 1) is asparagine, and glutamine at position 64 (corresponding to position 48 in SEQ ID NO: 1) is arginine. , The 91st (corresponding to the 75th in SEQ ID NO: 1) phenylalanine to leucine, the 108th (corresponding to the 92nd in SEQ ID NO: 1) asparagine to serine, the 133rd (corresponding to 117th in SEQ ID NO: 1) Fc-binding protein in which valine is replaced by glutamic acid, 137th (corresponding to 121st in SEQ ID NO: 1) glutamic acid is glycine, and 187th (corresponding to 171st in SEQ ID NO: 1) phenylalanine is serine. Is. In the present specification, the 9 amino acid substitutions carried by the FcR9 (SEQ ID NO: 3) with respect to the Fc-binding protein (SEQ ID NO: 2) containing the native human FcγRIIIa extracellular region are referred to as “FcR9 amino acid substitutions”. Sometimes called.

FcR9_Fのアミノ酸配列を配列番号5に、FcR9_Fをコードするポリヌクレオチドの配列を配列番号6に、それぞれ示す。配列番号5において、1番目のメチオニン(Met)から26番目のアラニン(Ala)までがMalEシグナルペプチド(UniProt No.P0AEX9の1番目から26番目までのアミノ酸残基からなるオリゴペプチド)であり、27番目のリジン(Lys)から32番目のメチオニン(Met)までがリンカー配列であり、33番目のグリシン(Gly)から208番目のグルタミン(Gln)までがFcR9_Fのアミノ酸配列(配列番号1の17番目から192番目までの領域に相当)、209番目から210番目までのグリシン(Gly)がリンカー配列であり、211番目から216番目のヒスチジン(His)がタグ配列である。 The amino acid sequence of FcR9_F is shown in SEQ ID NO:5, and the sequence of the polynucleotide encoding FcR9_F is shown in SEQ ID NO:6. In SEQ ID NO: 5, the 1st methionine (Met) to the 26th alanine (Ala) are MalE signal peptides (oligopeptides consisting of amino acid residues 1 to 26 of UniProt No. P0AEX9), and 27 The lysine (Lys) to the 32nd methionine (Met) is a linker sequence, and the 33rd glycine (Gly) to the 208th glutamine (Gln) is the amino acid sequence of FcR9_F (from 17th of SEQ ID NO: 1 to (Corresponding to the 192nd region), 209th to 210th glycines (Gly) are linker sequences, and the 211st to 216th histidines (His) are tag sequences.

実施例2 システインタグを付加したFc結合性タンパク質(FcR9_F_Cys)の作製
(1)実施例1で作製したFcR9_F(配列番号5)をコードするポリヌクレオチド(配列番号6)を含む発現ベクターpET−FcR9_Fを鋳型としてPCRを実施した。当該PCRにおけるプライマーは、配列番号7(5’−TAGCCATGGGCATGCGTACCGAAGATCTGCCGAAAGC−3’)および配列番号8(5’−CCCAAGCTTATCCGCAGGTATCGTTGCGGCACCCTTGGGTAATGGTAATATTCACGGTCTCGCTGC−3’)に記載の配列からなるオリゴヌクレオチドを用いた。PCRは、表1に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル繰り返すことで実施した。
Example 2 Preparation of Fc binding protein (FcR9_F_Cys) with cysteine tag added (1) Expression vector pET-FcR9_F containing the polynucleotide (SEQ ID NO: 6) encoding FcR9_F (SEQ ID NO: 5) prepared in Example 1 PCR was performed as a template. The primers in the PCR are SEQ ID NO: 7 (5′-TAGCCATGGGGCATGCGTACCAGAGATCTGCCCGAAAGC-3′) and SEQ ID NO: 8 (5′-CCCAAGCTTTATCCGCAGGTATCGTTGCCGGCACCCTTGGGTAATGGTAATATTCACGCGTCTCGG-3) from the nucleotide sequence used to oligo sequence-3'). For PCR, after preparing a reaction solution having the composition shown in Table 1, the reaction solution was heat-treated at 98° C. for 5 minutes, the first step at 98° C. for 10 seconds, the second step at 55° C. for 5 seconds, and the temperature at 72° C. It was carried out by repeating 30 cycles of the reaction in which the third step of 1 minute was defined as one cycle.

(2)(1)で得られたポリヌクレオチドを精製し、制限酵素NcoIとHindIIIで消化後、あらかじめ制限酵素NcoIとHindIIIで消化したWO2015/199154号に記載の方法で作製の発現ベクターpTrc−PelBV3にライゲーションし、当該ライゲーション産物を用いて大腸菌W3110株を形質転換した。 (2) The expression vector pTrc-PelBV3 prepared by the method described in WO2015/199154, which is obtained by purifying the polynucleotide obtained in (1), digesting it with restriction enzymes NcoI and HindIII, and then previously digesting it with restriction enzymes NcoI and HindIII. The E. coli W3110 strain was transformed with the ligation product.

(3)得られた形質転換体を100μg/mLのカルベニシリンを含むLB培地にて培養後、QIAprep Spin Miniprep kit(キアゲン製)を用いて、発現ベクターpTrc−FcR9_F_Cysを得た。 (3) The obtained transformant was cultured in an LB medium containing 100 μg/mL carbenicillin, and then the expression vector pTrc-FcR9_F_Cys was obtained using the QIAprep Spin Miniprep kit (manufactured by Qiagen).

(4)pTrc−FcR9_F_Cysのヌクレオチド配列の解析を、配列番号9(5’−TGTGGTATGGCTGTGCAGG−3’)または配列番号10(5’−TCGGCATGGGGTCAGGTG−3’)に記載の配列からなるオリゴヌクレオチドを用いて行なった。 (4) The nucleotide sequence of pTrc-FcR9_F_Cys is analyzed using an oligonucleotide consisting of the sequence described in SEQ ID NO: 9 (5′-TGTGGTATGCGTGTGCAGG-3′) or SEQ ID NO: 10 (5′-TCGGCATGGGGTCAGGTG-3′). It was

発現ベクターpTrc−FcR9_F_Cysで発現されるポリペプチドのアミノ酸配列を配列番号11に、当該ポリペプチドをコードするポリヌクレオチドの配列を配列番号12にそれぞれ示す。なお配列番号11において、1番目のメチオニン(Met)から22番目のアラニン(Ala)までが改良PelBシグナルペプチド(UniProt No.P0C1C1の1番目から22番目までのアミノ酸残基からなるオリゴペプチドであって、ただし6番目のプロリンをセリンにアミノ酸置換したオリゴペプチド)であり、24番目のグリシン(Gly)から199番目のグルタミン(Gln)までがFc結合性タンパク質FcR9_Fのアミノ酸配列(配列番号5の33番目から208番目までの領域)であり、200番目のグリシン(Gly)から207番目のグリシン(Gly)までがシステインタグ配列である。 The amino acid sequence of the polypeptide expressed by the expression vector pTrc-FcR9_F_Cys is shown in SEQ ID NO: 11, and the sequence of the polynucleotide encoding the polypeptide is shown in SEQ ID NO: 12, respectively. In SEQ ID NO: 11, the 1st methionine (Met) to the 22nd alanine (Ala) is an improved PelB signal peptide (olipropeptide consisting of the 1st to 22nd amino acid residues of UniProt No. P0C1C1). However, it is an oligopeptide obtained by substituting the 6th proline with serine as an amino acid, and the 24th glycine (Gly) to the 199th glutamine (Gln) is the amino acid sequence of the Fc binding protein FcR9_F (33rd of SEQ ID NO: 5). To the 208th region), and the 200th glycine (Gly) to the 207th glycine (Gly) is a cysteine tag sequence.

実施例3 FcR9_F_Cysの調製
(1)実施例2で作製したFcR9_F_Cysを発現する形質転換体を2Lのバッフルフラスコに入った100μg/mLのカルベニシリンを含む400mLの2YT液体培地(ペプトン16g/L、酵母エキス10g/L、塩化ナトリウム5g/L)に接種し、37℃で一晩、好気的に振とう培養することで前培養を行なった。
Example 3 Preparation of FcR9_F_Cys (1) 400 mL of 2YT liquid medium containing 100 μg/mL carbenicillin (Peptone 16 g/L, yeast extract) containing the transformant expressing FcR9_F_Cys produced in Example 2 in a 2 L baffle flask. (10 g/L, 5 g/L of sodium chloride) and precultured by aerobically shaking culture at 37° C. overnight.

(2)グルコース10g/L、酵母エキス20g/L、リン酸三ナトリウム十二水和物3g/L、リン酸水素二ナトリウム十二水和物9g/L、塩化アンモニウム1g/Lおよびカルベニシリン100mg/Lを含む液体培地1.8Lに、(1)の培養液180mLを接種し、3L発酵槽(バイオット製)を用いて本培養を行なった。温度30℃、pH6.9から7.1、通気量1VVM、溶存酸素濃度30%飽和濃度の条件に設定し、本培養を開始した。pHの制御には酸として50%リン酸、アルカリとして14%アンモニア水をそれぞれ使用し、溶存酸素の制御は撹拌速度を変化させることで制御し、撹拌回転数は下限500rpm、上限1000rpmに設定した。培養開始後、グルコース濃度が測定できなくなった時点で、流加培地(グルコース248.9g/L、酵母エキス83.3g/L、硫酸マグネシウム七水和物7.2g/L)を溶存酸素(DO)により制御しながら加えた。 (2) Glucose 10 g/L, yeast extract 20 g/L, trisodium phosphate dodecahydrate 3 g/L, disodium hydrogen phosphate dodecahydrate 9 g/L, ammonium chloride 1 g/L and carbenicillin 100 mg/ 180 L of the liquid culture medium of (1) was inoculated into 1.8 L of liquid medium containing L, and main culture was performed using a 3 L fermenter (manufactured by Biot). The main culture was started under the conditions of a temperature of 30° C., a pH of 6.9 to 7.1, an aeration rate of 1 VVM, and a dissolved oxygen concentration of 30% saturation concentration. 50% phosphoric acid was used as an acid and 14% ammonia water was used as an alkali for controlling the pH, and dissolved oxygen was controlled by changing the stirring speed. The stirring speed was set to a lower limit of 500 rpm and an upper limit of 1000 rpm. .. After the start of the culture, when the glucose concentration could not be measured, the fed-batch medium (glucose 248.9 g/L, yeast extract 83.3 g/L, magnesium sulfate heptahydrate 7.2 g/L) was dissolved oxygen (DO). ) Under control.

(3)菌体量の目安として600nmの吸光度(OD600nm)が約150に達したところで培養温度を25℃に下げ、設定温度に到達したことを確認した後、終濃度が0.5mMになるようIPTG(Isopropyl β−D−1−thiogalactopyranoside)を添加し、引き続き25℃で培養を継続した。 (3) When the absorbance at 600 nm (OD600 nm) reaches about 150, the culture temperature is lowered to 25°C as a guide for the amount of cells, and after confirming that the set temperature has been reached, the final concentration should be 0.5 mM. IPTG (Isopropyl β-D-1-thiogalactopyranoside) was added, and the culture was continued at 25°C.

(4)培養開始から約48時間後に培養を停止し、培養液を4℃で8000rpm、20分間の遠心分離により菌体を回収した。 (4) The culture was stopped about 48 hours after the start of the culture, and the culture solution was centrifuged at 4° C. at 8000 rpm for 20 minutes to collect the bacterial cells.

(5)回収した菌体を20mMのトリス塩酸緩衝液(pH7.0)に5mL/1g(菌体)となるように懸濁し、超音波発生装置(インソネーター201M(商品名)、久保田商事製)を用いて、4℃で約10分間、約150Wの出力で菌体を破砕した。菌体破砕液は4℃で20分間、8000rpmの遠心分離を2回行ない、上清を回収した。 (5) The collected cells were suspended in 20 mM Tris-HCl buffer (pH 7.0) at 5 mL/1 g (cells), and an ultrasonic generator (Insonator 201M (trade name), manufactured by Kubota Shoji) was used. ) Was used to crush the cells at 4° C. for about 10 minutes at an output of about 150 W. The disrupted cell suspension was centrifuged twice at 8000 rpm for 20 minutes at 4°C, and the supernatant was collected.

(6)(5)で得られた上清を、あらかじめ20mMのリン酸緩衝液(8mMリン酸二水素ナトリウム、12mMリン酸水素二ナトリウム)(pH7.0)で平衡化した140mLのTOYOPEARL CM−650M(東ソー製)を充填したVL32×250カラム(メルクミリポア製)に流速5mL/分でアプライした。平衡化に用いた緩衝液で洗浄後、0.5Mの塩化ナトリウムを含む20mMのリン酸緩衝液(pH7.0)で溶出した。 (6) The supernatant obtained in (5) was equilibrated with 20 mM phosphate buffer (8 mM sodium dihydrogen phosphate, 12 mM disodium hydrogen phosphate) (pH 7.0) in advance to 140 mL of TOYOPEARL CM-. It was applied to a VL32×250 column (manufactured by Merck Millipore) packed with 650 M (manufactured by Tosoh Corporation) at a flow rate of 5 mL/min. After washing with the buffer used for equilibration, elution was carried out with a 20 mM phosphate buffer (pH 7.0) containing 0.5 M sodium chloride.

(7)(6)で得られた溶出液を、あらかじめ150mMの塩化ナトリウムを含む20mMのトリス塩酸緩衝液(pH7.4)で平衡化したIgGセファロース(GEヘルスケア製)90mLを充填したXK26/20カラム(GEヘルスケア製)にアプライした。平衡化に用いた緩衝液で洗浄後、0.1Mのグリシン塩酸緩衝液(pH3.0)で溶出した。なお溶出液は、溶出液量の1/4量の1Mトリス塩酸緩衝液(pH8.0)を加えることでpHを中性にした。 (7) XK26/ which was loaded with 90 mL of IgG sepharose (manufactured by GE Healthcare) equilibrated with the eluate obtained in (6) in advance in 20 mM Tris-HCl buffer (pH 7.4) containing 150 mM sodium chloride. It was applied to 20 columns (manufactured by GE Healthcare). After washing with the buffer used for equilibration, elution was performed with 0.1 M glycine-hydrochloric acid buffer (pH 3.0). The pH of the eluate was neutralized by adding 1M Tris-HCl buffer (pH 8.0) in an amount of 1/4 of the eluate.

前記精製により、高純度のFcR9_F_Cysを約20mg得た。 About 20 mg of highly pure FcR9_F_Cys was obtained by the purification.

実施例4 FcR36iアミノ酸置換体の作製
配列番号2に示す天然型ヒトFcγRIIIa細胞外領域を含むFc結合性タンパク質に対し、36箇所のアミノ酸置換したFc結合性タンパク質FcR36iを作製した。FcR36iは、配列番号2に示す天然型ヒトFcγRIIIa細胞外領域を含むFc結合性タンパク質において、37番目(配列番号1では21番目に相当)のグルタミン酸をグリシンに、39番目(配列番号1では23番目に相当)のロイシンをメチオニンに、43番目(配列番号1では27番目に相当)のバリンをグルタミン酸に、45番目(配列番号1では29番目に相当)のフェニルアラニンをイソロイシンに、49番目(配列番号1では33番目に相当)のグルタミンをプロリンに、51番目(配列番号1では35番目に相当)のチロシンをアスパラギンに、56番目(配列番号1では40番目に相当)のリジンをグルタミンに、64番目(配列番号1では48番目に相当)のグルタミンをアルギニンに、67番目(配列番号1では51番目に相当)のチロシンをヒスチジンに、70番目(配列番号1では54番目に相当)のグルタミン酸のアスパラギン酸に、72番目(配列番号1では56番目に相当)のアスパラギンをアスパラギン酸に、81番目(配列番号1では65番目に相当)のセリンをアルギニンに、84番目(配列番号1では68番目に相当)のセリンをプロリンに、90番目(配列番号1では74番目に相当)のチロシンをフェニルアラニンに、91番目(配列番号1では75番目に相当)のフェニルアラニンをイソロイシンに、94番目(配列番号1では78番目に相当)のアラニンをセリンに、96番目(配列番号1では80番目に相当)のスレオニンをセリンに、108番目(配列番号1では92番目に相当)のアスパラギンをセリンに、133番目(配列番号1では117番目に相当)のバリンをグルタミン酸に、135番目(配列番号1では119番目に相当)のリジンをバリンに、137番目(配列番号1では121番目に相当)のグルタミン酸をグリシンに、138番目(配列番号1では122番目に相当)のアスパラギン酸をグルタミン酸に、148番目(配列番号1では132番目に相当)のリジンをアルギニン に、156番目(配列番号1では140番目に相当)のスレオニンをメチオニンに、157番目(配列番号1では141番目に相当)のチロシンをフェニルアラニンに、163番目(配列番号1では147番目に相当)のグリシンをバリンに、174番目(配列番号1では158番目に相当)のチロシンをバリンに、181番目(配列番号1では165番目に相当)のリジンをグルタミン酸に、187番目(配列番号1では171番目に相当)のフェニルアラニンをセリンに、192番目(配列番号1では176番目に相当)のバリンをイソロイシンに、194番目(配列番号1では178番目に相当)のセリンをアルギニンに、196番目(配列番号1では180番目に相当)のアスパラギンをリジンに、200番目(配列番号1では184番目に相当)のグルタミン酸をグリシンに、201番目(配列番号1では185番目に相当)のスレオニンをアラニンに、203番目(配列番号1では187番目に相当)のアスパラギンをアスパラギン酸に、206番目(配列番号1では190番目に相当)のイソロイシンをバリンに、それぞれアミノ酸置換したFc結合性タンパク質である。本明細書では、前記の特定位置の36箇所のアミノ酸置換を「FcR36iのアミノ酸置換」と称することがある。
Example 4 Preparation of FcR36i Amino Acid Substitution The Fc binding protein FcR36i in which 36 amino acid substitutions were made to the Fc binding protein containing the native human FcγRIIIa extracellular region shown in SEQ ID NO: 2 was prepared. FcR36i is a Fc-binding protein containing the extracellular region of natural human FcγRIIIa shown in SEQ ID NO: 2, in which the glutamic acid at position 37 (corresponding to position 21 in SEQ ID NO: 1) is changed to glycine and the position at position 39 (23 position in SEQ ID NO: 1). Leucine is equivalent to methionine, 43th (corresponding to 27th in SEQ ID NO: 1) valine is glutamic acid, 45th (corresponding to 29th in SEQ ID NO: 1) isoleucine, and 49th (SEQ ID NO:). 1 corresponds to the 33rd glutamine to proline, 51st (corresponding to the 35th in SEQ ID NO: 1) tyrosine to asparagine, 56th (corresponding to the 40th in SEQ ID NO: 1) to glutamine, 64 The glutamine at position th (corresponding to position 48 in SEQ ID NO: 1) is arginine, the tyrosine at position 67 (corresponding to position 51 in SEQ ID NO: 1) is histidine, and the glutamine at position 70 (corresponding to position 54 in SEQ ID NO: 1) is For aspartic acid, the 72nd (corresponding to the 56th position in SEQ ID NO: 1) asparagine, the 81st (corresponding to the 65th position in SEQ ID NO: 1) arginine, the 84th position (68th position in SEQ ID NO: 1) Serine to proline, 90th (corresponding to 74th in SEQ ID NO: 1) tyrosine to phenylalanine, 91st (corresponding to 75th in SEQ ID NO: 1) to isoleucine, 94th (SEQ ID NO: 1 corresponds to the 78th alanine to serine, the 96th (corresponding to the 80th in SEQ ID NO: 1) threonine to serine, and the 108th (corresponding to the 92nd in SEQ ID NO: 1) asparagine to serine, 133 The 13th (corresponding to 117th in SEQ ID NO: 1) valine is glutamic acid, the 135th (corresponding to 119th in SEQ ID NO: 1) lysine is valine, and the 137th (corresponding to 121st in SEQ ID NO: 1) glutamic acid is For glycine, the 138th (corresponding to the 122nd in SEQ ID NO: 1) aspartic acid, the 148th (corresponding to the 132nd in SEQ ID NO: 1) arginine to the 156th (140th in SEQ ID NO: 1) (Corresponding) threonine to methionine, 157th (corresponding to 141st in SEQ ID NO: 1) tyrosine to phenylalanine, 163rd (corresponding to 147th in SEQ ID NO: 1) to valine, 174th (SEQ ID NO: 1) Then, the tyrosine of 158th corresponds to valine, and the 181st (165th in SEQ ID NO: 1) Lysine to glutamic acid, 187th (corresponding to 171st in SEQ ID NO: 1) phenylalanine to serine, 192nd (corresponding to 176th in SEQ ID NO: 1) to isoleucine, 194th (SEQ ID NO: 1) Serine at position 178) is arginine, 196th (corresponding to position 180 in SEQ ID NO: 1) asparagine is lysine, 200th (corresponding to position 184 in SEQ ID NO: 1) is glycine, and position 201 is glycine. Threonine (corresponding to the 185th position in SEQ ID NO: 1) is alanine, 203th (corresponding to the 187th position in SEQ ID NO: 1) asparagine, and 206th (corresponding to the 190th position in SEQ ID NO: 1) isoleucine It is an Fc-binding protein in which valine has amino acid substitutions. In the present specification, the 36 amino acid substitutions at the specific position may be referred to as “FcR36i amino acid substitution”.

FcR36iのアミノ酸配列を配列番号13に、FcR36iをコードするポリヌクレオチドの配列を配列番号14に、それぞれ示す。FcR36iのアミノ酸配列(配列番号13)をコードするポリヌクレオチド配列(配列番号14)に制限酵素(NcoIおよびHindIII)サイトを結合させたポリヌクレオチド配列を全合成(ファスマック社)により作製し、常法により制限酵素処理後、pETMalE(特開2011−206046号公報)にライゲーション後、当該ライゲーション産物で大腸菌BL21(DE3)株を形質転換することで、FcR36iを発現する形質転換体を得た。当該形質転換体から発現ベクターを抽出することで、FcR36i発現ベクターpET−FcR36iを得た。配列番号13において、1番目のメチオニン(Met)から26番目のアラニン(Ala)までがMalEシグナルペプチド(UniProt No.P0AEX9の1番目から26番目までのアミノ酸残基からなるオリゴペプチド)であり、27番目のリジン(Lys)から32番目のメチオニン(Met)までがリンカー配列であり、33番目のグリシン(Gly)から208番目のグルタミン(Gln)までがFcR36iのアミノ酸配列(配列番号1の17番目から192番目までの領域に相当)、209番目から210番目までのグリシン(Gly)がリンカー配列であり、211番目から216番目のヒスチジン(His)がタグ配列である。 The amino acid sequence of FcR36i is shown in SEQ ID NO: 13, and the sequence of the polynucleotide encoding FcR36i is shown in SEQ ID NO: 14, respectively. A polynucleotide sequence in which restriction enzyme (NcoI and HindIII) sites were linked to a polynucleotide sequence (SEQ ID NO: 14) encoding the amino acid sequence of FcR36i (SEQ ID NO: 13) was prepared by total synthesis (Fasmac Co., Ltd.), and a conventional method was used. After treatment with a restriction enzyme, the product was ligated to pETMalE (JP 2011-206046A), and E. coli BL21(DE3) strain was transformed with the ligation product to obtain a transformant expressing FcR36i. An FcR36i expression vector pET-FcR36i was obtained by extracting an expression vector from the transformant. In SEQ ID NO: 13, the 1st methionine (Met) to the 26th alanine (Ala) are MalE signal peptides (oligopeptides consisting of amino acid residues 1 to 26 of UniProt No. P0AEX9), and 27 The lysine (Lys) to the methionine (Met) at the 32nd position is a linker sequence, and the 33rd glycine (Gly) to glutamine (Gln) at the 208th position is the amino acid sequence of FcR36i (from 17th position in SEQ ID NO: 1). (Corresponding to the 192nd region), 209th to 210th glycines (Gly) are linker sequences, and the 211st to 216th histidines (His) are tag sequences.

実施例5 システインタグを付加した本発明のFc結合性タンパク質(FcR36i_Cys)の作製
(1)実施例4で作製したFcR36i(配列番号13)をコードするポリヌクレオチド(配列番号14)を含む発現ベクターpET−FcR36iを鋳型として、実施例2(1)と同様の方法でPCRを実施した。なお、PCRにおけるプライマーは、配列番号15(5’− CATATGAAAATAAAAACAGGTGCACGCATCCTCGCATTATCCGCATTAACGAC−3’)および配列番号16(5’− CCCAAGCTTATCCGCAGGTATCGTTGCGGCACCCTTGGGTAACGGTAATGTCCACGGCCCCGCTG−3’)に記載の配列からなるオリゴヌクレオチドを用いた。
Example 5 Production of Fc-binding protein (FcR36i_Cys) of the present invention to which a cysteine tag is added (1) Expression vector pET containing the polynucleotide (SEQ ID NO: 14) encoding FcR36i (SEQ ID NO: 13) produced in Example 4 PCR was performed in the same manner as in Example 2(1) using -FcR36i as a template. In addition, the primer in PCR is SEQ ID NO: 15 (5'-CATATGAAAATAAAAAACAGGTGCACCGCATCCTCCGCATTTATCCCGCATTAACGAC-3') and SEQ ID NO: 16 (5'-CCCAAGCTTTCCGCAGGTTATCGGTCGCGGCACCCTTGGGCCTAGCTGTAGGAGACACCTGTAGGTAGACGTAGTAGCTAGGTAG).

(2)(1)で得られたポリヌクレオチドを精製し、実施例2(2)および(3)と同様の方法で、発現ベクターpTrc−FcR36i_CysおよびFcR36i_Cysを発現する形質転換体を得た。 (2) The polynucleotide obtained in (1) was purified, and transformants expressing the expression vectors pTrc-FcR36i_Cys and FcR36i_Cys were obtained by the same method as in Examples 2(2) and (3).

(3)実施例2(4)と同様の方法で、pTrc−FcR36i_Cysヌクレオチド配列の解析を行った。 (3) The pTrc-FcR36i_Cys nucleotide sequence was analyzed by the same method as in Example 2(4).

発現ベクターpTrc−FcR36i_Cysで発現されるポリペプチドのアミノ酸配列を配列番号17に、当該ポリペプチドをコードするポリヌクレオチドの配列を配列番号18にそれぞれ示す。 The amino acid sequence of the polypeptide expressed by the expression vector pTrc-FcR36i_Cys is shown in SEQ ID NO:17, and the sequence of the polynucleotide encoding the polypeptide is shown in SEQ ID NO:18.

なお配列番号17において、1番目のメチオニン(Met)から22番目のアラニン(Ala)までが改良PelBシグナルペプチド(UniProt No.P0C1C1の1番目から22番目までのアミノ酸残基からなるオリゴペプチドであって、ただし6番目のプロリンをセリンにアミノ酸置換したオリゴペプチド)であり、24番目のグリシン(Gly)から199番目のグルタミン(Gln)までがFc結合性タンパク質FcR36iのアミノ酸配列(配列番号13の33番目から208番目までの領域)であり、200番目のグリシン(Gly)から207番目のグリシン(Gly)までがシステインタグ配列である。 In SEQ ID NO: 17, the 1st methionine (Met) to the 22nd alanine (Ala) are modified PelB signal peptides (olipropeptides consisting of amino acid residues 1 to 22 of UniProt No. P0C1C1). However, it is an oligopeptide in which 6th proline is replaced with serine as an amino acid, and the 24th glycine (Gly) to the 199th glutamine (Gln) is the amino acid sequence of the Fc-binding protein FcR36i (33rd of SEQ ID NO: 13). To the 208th region), and the 200th glycine (Gly) to the 207th glycine (Gly) is a cysteine tag sequence.

実施例6 FcR36i_Cysの調製
実施例5で作製したFcR36i_Cysを発現する形質転換体を用いたこと以外は、実施例3(1)から(7)と同様の方法により行い、高純度のFcR36i_Cysを約20mg得た。
Example 6 Preparation of FcR36i_Cys The procedure of Example 3 (1) to (7) was repeated except that the transformant expressing FcR36i_Cys prepared in Example 5 was used, and about 20 mg of highly pure FcR36i_Cys was prepared. Obtained.

実施例7 Fc結合性タンパク質(FcR9_F)を固定化した多孔質親水性ポリマー粒子(本発明の抗体吸着剤)による抗体吸着量の測定
(1)粒子径10μmの多孔質親水性ポリマー粒子表面に存在する水酸基をヨードアセチル基で活性化後、当該活性化ゲルに実施例3で調製したFcR9_F_Cysを反応させることにより、FcR9_F固定化ゲルを得た。
Example 7 Measurement of antibody adsorption amount with porous hydrophilic polymer particles (FcR9_F)-immobilized porous hydrophilic polymer particles (antibody adsorbent of the present invention) (1) Presence on the surface of porous hydrophilic polymer particles having a particle diameter of 10 μm The activated hydroxyl group was activated with an iodoacetyl group, and then the activated gel was reacted with FcR9_F_Cys prepared in Example 3 to obtain an FcR9_F-immobilized gel.

(2)(1)で作製した固定化ゲル1mLに対し50%スラリーとなるよう、PBS(Phosphate Buffered Saline)(pH7.4)を添加した。 (2) PBS (Phosphate Buffered Saline) (pH 7.4) was added so as to form a 50% slurry with respect to 1 mL of the immobilized gel prepared in (1).

(3)作製したスラリーを均一化後、当該スラリー100μL(固定化ゲルとしては5
0μL)をスピンカラム(コスモスピンフィルターH 0.45μm、ナカライテスク製)へ添加し、3000rpmで1分間遠心することで、サクションドライゲルを調製した。
(3) After homogenizing the prepared slurry, 100 μL of the slurry (5 for the immobilized gel)
0 μL) was added to a spin column (Cosmo Spin Filter H 0.45 μm, manufactured by Nacalai Tesque) and centrifuged at 3000 rpm for 1 minute to prepare a suction dry gel.

(4)サクションドライゲルにPBSを150μL添加し、3000rpmで1分間遠心した。本操作を3回繰り返すことでゲルを洗浄した。 (4) 150 μL of PBS was added to the suction dry gel, and the mixture was centrifuged at 3000 rpm for 1 minute. The gel was washed by repeating this operation three times.

(5)洗浄後のゲルにPBSを150μLおよび人免疫グロブリン(グロブリン筋注1500mg/10mL「JB」、日本血液製剤機構製)を順次添加し、25℃にて2時間撹拌することで、ゲルに免疫グロブリン(抗体)を吸着させた。 (5) To the gel after washing, 150 μL of PBS and human immunoglobulin (globulin muscle injection 1500 mg/10 mL “JB”, manufactured by Japan Blood Products Organization) were sequentially added, and the gel was obtained by stirring at 25° C. for 2 hours. Immunoglobulin (antibody) was adsorbed.

(6)(5)の吸着操作後、スピンカラムを3000rpmで1分間遠心することによ
り未吸着の抗体を含んだ溶液とゲルを分離した。
(6) After the adsorption operation of (5), the spin column was centrifuged at 3000 rpm for 1 minute to separate the solution containing the unadsorbed antibody and the gel.

(7)ゲルにPBSを150μL添加し、3000rpmで1分間遠心した。本操作を
3回繰り返すことでゲルを洗浄した。
(7) 150 μL of PBS was added to the gel, and the gel was centrifuged at 3000 rpm for 1 minute. The gel was washed by repeating this operation three times.

(8)ゲルに50mMクエン酸緩衝液(pH3.0)を150μL添加し、3000r
pmで1分間遠心した。本操作を3回繰り返すことでゲルに吸着した抗体を溶出した。溶
出液の吸光度を測定することで抗体の濃度を算出し、FcR9_F固定化ゲルへの抗体の
吸着量を求めた。
(8) Add 150 μL of 50 mM citrate buffer (pH 3.0) to the gel, and add 3000 r
It was centrifuged at pm for 1 minute. By repeating this operation three times, the antibody adsorbed on the gel was eluted. The concentration of the antibody was calculated by measuring the absorbance of the eluate, and the amount of the antibody adsorbed on the FcR9_F-immobilized gel was determined.

結果を表2に示す。固定化ゲル1gに対する抗体の吸着量は9.4mgであった。 The results are shown in Table 2. The amount of antibody adsorbed on 1 g of the immobilized gel was 9.4 mg.

実施例8 Fc結合性タンパク質(FcR36i)を固定化した多孔質親水性ポリマー粒子(本発明の抗体吸着剤)による抗体吸着量の測定
(1)実施例6で調製したFcR36i_Cysを用いたこと以外は実施例7(1)と同様の方法により、FcR36i固定化ゲルを得た。
Example 8 Measurement of antibody adsorption amount with porous hydrophilic polymer particles (FcR36i)-immobilized porous hydrophilic polymer particles (antibody adsorbent of the present invention) (1) Except that FcR36i_Cys prepared in Example 6 was used An FcR36i-immobilized gel was obtained by the same method as in Example 7(1).

(2)(1)で作製したFcR36i固定化ゲルを用いて、実施例7(2)から(8)と同様の方法によりFcR36i固定化ゲルへの抗体の吸着量を求めた。 (2) Using the FcR36i-immobilized gel prepared in (1), the amount of antibody adsorbed on the FcR36i-immobilized gel was determined by the same method as in Example 7 (2) to (8).

結果を表2に示す。固定化ゲル1gに対する抗体の吸着量は10.7mgであった。 The results are shown in Table 2. The amount of antibody adsorbed on 1 g of the immobilized gel was 10.7 mg.

比較例1 Fc結合性タンパク質(FcR9_F)を固定化した非多孔質親水性ポリマ
ー粒子による抗体吸着量の測定
(1)粒子径5.8μmの非多孔質親水性ポリマー粒子を用いたこと以外は、実施例7(1)と同様の方法によりFcR9_F固定化ゲルを得た。
Comparative Example 1 Measurement of Antibody Adsorption by Non-Porous Hydrophilic Polymer Particles Immobilized with Fc Binding Protein (FcR9_F) (1) Other than using non-porous hydrophilic polymer particles having a particle size of 5.8 μm, An FcR9_F-immobilized gel was obtained by the same method as in Example 7(1).

(2)(1)で作製した固定化ゲルを用いて、実施例7(2)から(8)に記載と同様な方法により、FcR9_F固定化ゲルへの抗体吸着量を求めた。 (2) Using the immobilized gel prepared in (1), the amount of antibody adsorbed on the FcR9_F immobilized gel was determined by the same method as described in Example 7(2) to (8).

結果を表2に示す。固定化ゲル1gに対する抗体の吸着量は1mg以下と、実施例7で作製した固定化ゲルと比較し低かった。実施例7および比較例1の結果より、Fc結合性タンパク質に固定化させる不溶性担体として、粒子径5.8μmの非多孔質親水性ポリマー
粒子(比較例1)よりも粒子径10μmの多孔質親水性ポリマー粒子(実施例7、本発明の一態様)を用いたほうが、抗体吸着量が高いことがわかる。
The results are shown in Table 2. The amount of antibody adsorbed on 1 g of the immobilized gel was 1 mg or less, which was lower than that of the immobilized gel prepared in Example 7. From the results of Example 7 and Comparative Example 1, as an insoluble carrier to be immobilized on the Fc-binding protein, a non-porous hydrophilic polymer particle having a particle diameter of 5.8 μm (Comparative Example 1) and a porous hydrophilic having a particle diameter of 10 μm were used. It can be seen that the amount of antibody adsorbed is higher when the hydrophilic polymer particles (Example 7, one aspect of the present invention) are used.

比較例2 Fc結合性タンパク質(FcR36i)を固定化した非多孔質親水性ポリマー粒子による抗体吸着量の測定
(1)実施例6で調製したFcR36i_Cysを用いたこと以外は、比較例1(1)と同様の方法によりFcR36i固定化ゲルを得た。
Comparative Example 2 Measurement of antibody adsorption amount by non-porous hydrophilic polymer particles having Fc binding protein (FcR36i) immobilized (1) Comparative Example 1(1) except that FcR36i_Cys prepared in Example 6 was used. An FcR36i-immobilized gel was obtained by the same method as described above.

(2)(1)で作製した固定化ゲルを用いて、実施例7(2)から(8)と同様な方法により、固定化ゲルへの抗体吸着量を求めた。 (2) Using the immobilized gel prepared in (1), the amount of antibody adsorbed on the immobilized gel was determined by the same method as in Examples 7(2) to (8).

結果を表2に示す。固定化ゲル1gに対する抗体の吸着量は1mg以下と、実施例8で作製した固定化ゲルと比較し低かった。実施例7および比較例1の結果と同様に、実施例8および比較例2の結果より、Fc結合性タンパク質に固定化させる不溶性担体として、粒子径5.8μmの非多孔質親水性ポリマー粒子(比較例2)よりも粒子径10μmの多孔質親水性ポリマー粒子(実施例8、本発明の一態様)を用いたほうが、抗体吸着量が高いことがわかる。 The results are shown in Table 2. The amount of the antibody adsorbed on 1 g of the immobilized gel was 1 mg or less, which was lower than that of the immobilized gel prepared in Example 8. Similar to the results of Example 7 and Comparative Example 1, from the results of Example 8 and Comparative Example 2, as the insoluble carrier to be immobilized on the Fc-binding protein, non-porous hydrophilic polymer particles having a particle diameter of 5.8 μm ( It can be seen that the amount of adsorbed antibody is higher when the porous hydrophilic polymer particles having a particle diameter of 10 μm (Example 8, one aspect of the present invention) are used than in Comparative Example 2).

実施例9 本発明の抗体吸着剤(FcR9_F、粒子径10μm)による抗体(リツキサン(登録商標))分離
(1)実施例7(1)で作製したFcR9_F固定化ゲル3.3mLをステンレスカラム(東ソー製、内径7.5mm)に充填し、当該カラムをHPLC装置(AKTA Avant、GEヘルスケア製)に接続後、pH5.8の50mMのクエン酸緩衝液(BufferA)を用いて平衡化した。
Example 9 Separation of antibody (Rituxan (registered trademark)) by the antibody adsorbent of the present invention (FcR9_F, particle diameter 10 μm) (1) 3.3 mL of the FcR9_F-immobilized gel prepared in Example 7(1) was placed on a stainless steel column (Tosoh Corporation). The column was connected to an HPLC device (AKTA Avant, manufactured by GE Healthcare) and equilibrated with a 50 mM citrate buffer solution (Buffer A) having a pH of 5.8.

(2)(1)の平衡化に用いた緩衝液で濃度調製した1mg/mLのモノクローナル抗体(リツキサン、全薬工業製)を、流速0.5mL/minにて5mLアプライし、前記抗体を固定化ゲルに吸着させた。 (2) Apply 5 mL of a 1 mg/mL monoclonal antibody (Rituxan, manufactured by Zenyaku Kogyo) whose concentration was adjusted with the buffer used for equilibration of (1) at a flow rate of 0.5 mL/min to immobilize the antibody. It was adsorbed on a gel.

(3)流速0.5mL/minのまま(1)の平衡化に用いた緩衝液で30分洗浄後、pH4.36の50mMのクエン酸緩衝液(BufferB)によるpHグラジエント(40分でpH4.4の50mMのクエン酸緩衝液(BufferB)が100%となる
グラジエント)で、固定化ゲルに吸着したモノクローナル抗体を溶出した。
(3) After washing with the buffer used for equilibration in (1) at a flow rate of 0.5 mL/min for 30 minutes, a pH gradient of 50 mM citrate buffer (Buffer B) having a pH of 4.36 (pH 4.40 at 40 minutes). The monoclonal antibody adsorbed on the immobilized gel was eluted with a 4 mM 50 mM citrate buffer (Buffer B) gradient of 100%).

溶出パターンを図2に示す。3つのピークに分かれた状態で抗体が溶出された。これまでに、FcγRIIIaをアフィニティリガンドとして不溶性担体に固定化した吸着剤を用いることで、抗体を糖鎖構造に基づき分離できることが示されており(特許文献1)、本結果より本発明の分離剤が糖鎖構造の違いに基づく抗体分離ができることを確認した。また、図2に示す4つのフラクションFrA、FrB、FrCおよびFrDを分取し、糖鎖構造解析(実施例17)に用いた。 The elution pattern is shown in FIG. The antibody was eluted in the state of being divided into three peaks. So far, it has been shown that an antibody can be separated based on the sugar chain structure by using an adsorbent in which FcγRIIIa is immobilized as an affinity ligand on an insoluble carrier (Patent Document 1), and from the results, the separating agent of the present invention can be separated. Confirmed that antibody separation was possible based on the difference in sugar chain structure. Further, four fractions FrA, FrB, FrC and FrD shown in FIG. 2 were fractionated and used for sugar chain structure analysis (Example 17).

実施例10 本発明の抗体吸着剤(FcR36i、粒子径10μm)による抗体(リツキサン)分離
実施例8(1)で作製したFcR36i固定化ゲルを用いたこと以外は、実施例9(1)から(3)と同様の方法で抗体を分離した。
Example 10 Separation of antibody (Rituxan) by the antibody adsorbent (FcR36i, particle diameter 10 μm) of the present invention From Example 9(1), except that the FcR36i-immobilized gel prepared in Example 8(1) was used ( The antibody was separated by the same method as 3).

溶出パターンを図3に示す。3つのピークに分かれた状態で抗体が溶出されており、本発明の分離剤が糖鎖構造の違いに基づく抗体分離ができることを確認した。 The elution pattern is shown in FIG. The antibody was eluted in the state of being divided into three peaks, and it was confirmed that the separating agent of the present invention can separate antibodies based on the difference in sugar chain structure.

比較例3 Fc結合性タンパク質固定化ゲル(FcR9_F、粒子径30から60μm)による抗体(リツキサン)分離
(1)粒子径30から60μmの多孔質親水性ポリマー粒子を用いたこと以外は実施例7(1)と同様の方法によりFcR9_F固定化ゲルを得た。
Comparative Example 3 Antibody (Rituxan) Separation by Fc-Binding Protein-Immobilized Gel (FcR9_F, Particle Diameter 30 to 60 μm) (1) Example 7 (except that porous hydrophilic polymer particles having a particle diameter of 30 to 60 μm were used An FcR9_F-immobilized gel was obtained by the same method as in 1).

(2)(1)で作製した固定化ゲルを用いて、実施例9(1)から(3)と同様の方法で抗体を分離した。 (2) Using the immobilized gel prepared in (1), the antibody was separated in the same manner as in Example 9 (1) to (3).

溶出パターンを図4に示す。抗体は分離せず1つのピークとして溶出されたことから、粒子径が30から60μmの多孔質親水性ポリマー(比較例3)よりも、粒子径が10μ
mの多孔質親水性ポリマー(実施例9、本発明の一態様)を使用したほうが、分離能が高いことがわかる。
The elution pattern is shown in FIG. Since the antibody was not separated and was eluted as one peak, the particle size was 10 μm smaller than that of the porous hydrophilic polymer having a particle size of 30 to 60 μm (Comparative Example 3).
It can be seen that the separation ability is higher when the porous hydrophilic polymer of m (Example 9, one aspect of the present invention) is used.

比較例4 Fc結合性タンパク質固定化ゲル(FcR36i、粒子径30から60μm)による抗体(リツキサン)分離
(1)実施例6で調製したFcR36i_Cysを用いたこと以外は比較例3(1)と同様の方法によりFcR36i固定化ゲルを得た。
Comparative Example 4 Separation of antibody (Rituxan) by Fc-binding protein-immobilized gel (FcR36i, particle size 30 to 60 μm) (1) Same as Comparative Example 3 (1) except that FcR36i_Cys prepared in Example 6 was used. By the method, FcR36i-immobilized gel was obtained.

(2)(1)で作製した固定化ゲルを用いて、実施例9(1)から(3)と同様の方法で抗体を分離した。 (2) Using the immobilized gel prepared in (1), the antibody was separated in the same manner as in Example 9 (1) to (3).

溶出パターンを図5に示す。比較例3の結果と同様に、抗体は分離せず1つのピークとして溶出されたことから、粒子径が30から60μmの多孔質親水性ポリマー(比較例4)よりも、粒子径が10μmの多孔質親水性ポリマー(実施例10、本発明の一態様)を使用したほうが、分離能が高いことがわかる。 The elution pattern is shown in FIG. Similar to the result of Comparative Example 3, since the antibody was not separated and was eluted as one peak, it was more porous than the porous hydrophilic polymer having a particle diameter of 30 to 60 μm (Comparative Example 4) and having a particle diameter of 10 μm. It can be seen that the use of the hydrophilic polymer (Example 10, one aspect of the present invention) has higher separation ability.

実施例11 本発明の抗体吸着剤(FcR9_F、粒子径10μm)による抗体(アービタックス(登録商標))分離
抗体としてアービタックス(メルクセローノ製)を用いたこと以外は、実施例9(1)から(3)と同様の方法で抗体を分離した。
溶出パターンを図6に示す。重なり合ったおよそ3つのピークに抗体を分離した。
また、図6に示す3つのフラクションFrE、FrFおよびFrGを分取し、糖鎖構造解析(実施例18)に用いた。
Example 11 Separation of antibody (Erbitux (registered trademark)) by the antibody adsorbent of the present invention (FcR9_F, particle diameter 10 μm) Except that Arbitux (manufactured by Merck Serono) was used as the antibody, Examples 9(1) to (3) were used. The antibody was separated in the same manner as in (1).
The elution pattern is shown in FIG. The antibody was separated into approximately three overlapping peaks.
Further, three fractions FrE, FrF and FrG shown in FIG. 6 were fractionated and used for sugar chain structure analysis (Example 18).

実施例12 本発明の抗体吸着剤(FcR9_F、粒子径10μm)による抗体(ハーセプチン(登録商標))分離
抗体としてハーセプチン(ロシュ製)を用いたこと以外は、実施例9(1)から(3)と同様の方法で抗体を分離した。
溶出パターンを図7に示す。3つのピークに抗体を分離した。
また、図7に示す3つのフラクションFrH、FrIおよびFrJを分取し、糖鎖構造解析(実施例19)に用いた。
Example 12 Separation of antibody (Herceptin (registered trademark)) by the antibody adsorbent of the present invention (FcR9_F, particle diameter 10 μm) Except that Herceptin (manufactured by Roche) was used as the antibody, Examples 9(1) to (3) The antibody was separated in the same manner as in.
The elution pattern is shown in FIG. 7. The antibody was separated into three peaks.
Further, three fractions FrH, FrI and FrJ shown in FIG. 7 were fractionated and used for sugar chain structure analysis (Example 19).

実施例13 本発明の抗体吸着剤(FcR9_F、粒子径10μm)による抗体(カドサイラ(登録商標))分離
抗体としてカドサイラ(ロシュ製)を用いたこと以外は、実施例9(1)から(3)と同様の方法で抗体を分離した。
溶出パターンを図8に示す。抗体は1つの大きなブロードなピークとして溶出された。
また、図8に示す3つのフラクションFrK、FrLおよびFrMを分取し、糖鎖構造解析(実施例20)に用いた。
Example 13 Separation of antibody (Cadsyla (registered trademark)) by the antibody adsorbent of the present invention (FcR9_F, particle diameter 10 μm) Examples 9(1) to (3) except that Kadsyla (manufactured by Roche) was used as the antibody. The antibody was separated in the same manner as in.
The elution pattern is shown in FIG. The antibody eluted as one large, broad peak.
Further, three fractions FrK, FrL and FrM shown in FIG. 8 were fractionated and used for sugar chain structure analysis (Example 20).

実施例14 本発明の抗体吸着剤(FcR9_F、粒子径10μm)による抗体(アバスチン(登録商標))分離
抗体としてアバスチン(ロシュ製)を用いたこと以外は、実施例9(1)から(3)と同様の方法で抗体を分離した。
溶出パターンを図9に示す。抗体は大きな1つのピークとそのピークと重なった2つのピークとして溶出された。
また、図9に示す3つのフラクションFrN、FrOおよびFrPを分取し、糖鎖構造解析(実施例21)に用いた。
Example 14 Separation of antibody (Avastin (registered trademark)) by the antibody adsorbent of the present invention (FcR9_F, particle diameter 10 μm) Except that Avastin (manufactured by Roche) was used as the antibody, Examples 9(1) to (3) were used. The antibody was separated in the same manner as in.
The elution pattern is shown in FIG. The antibody was eluted as one large peak and two overlapping peaks.
Further, three fractions FrN, FrO and FrP shown in FIG. 9 were fractionated and used for sugar chain structure analysis (Example 21).

実施例15 本発明の抗体吸着剤(FcR9_F、粒子径10μm)による抗体(ヒュミラ(登録商標))分離
抗体としてヒュミラ(アッヴィ合同製)を用いたこと以外は、実施例9(1)から(3)と同様の方法で抗体を分離した。
溶出パターンを図10に示す。抗体は大きな1つのピークとそのピークと重なった2つのピークとして溶出された。
また、図10に示す4つのフラクションFrQ、FrR、FrSおよびFrTを分取し、糖鎖構造解析(実施例22)に用いた。
Example 15 Separation of antibody (Humira (registered trademark)) by the antibody adsorbent of the present invention (FcR9_F, particle size 10 μm) Except for using Humira (Abvi Godo) as the antibody, the results of Examples 9(1) to (3) The antibody was separated in the same manner as in (1).
The elution pattern is shown in FIG. The antibody was eluted as one large peak and two overlapping peaks.
Further, four fractions FrQ, FrR, FrS and FrT shown in FIG. 10 were fractionated and used for sugar chain structure analysis (Example 22).

実施例16 本発明の抗体吸着剤(FcR9_F、粒子径10μm)による抗体(アクテムラ(登録商標))分離
抗体としてアクテムラ(ロシュ製)を用いたこと以外は、実施例9(1)から(3)と同様の方法で抗体を分離した。
溶出パターンを図11に示す。抗体は重なり合った3つのピークとして溶出された。
また、図11に示す3つのフラクションFrU、FrVおよびFrWを分取し、糖鎖構造解析(実施例23)に用いた。
Example 16 Separation of antibody (Actemra (registered trademark)) by the antibody adsorbent of the present invention (FcR9_F, particle diameter 10 μm) Example 9(1) to (3) except that Actemra (manufactured by Roche) was used as the antibody. The antibody was separated in the same manner as in.
The elution pattern is shown in FIG. The antibody eluted as three overlapping peaks.
Further, three fractions FrU, FrV and FrW shown in FIG. 11 were fractionated and used for sugar chain structure analysis (Example 23).

実施例9、実施例11から16より、本発明の抗体吸着剤(FcR9_F、粒子径10μm)により、様々な種類の抗体医薬品を分離できることを示した。また、抗体医薬品の種類によって、抗体医薬品の分離のパターンが異なることがわかった。 From Examples 9 and 11 to 16, it was shown that various kinds of antibody drugs can be separated by the antibody adsorbent of the present invention (FcR9_F, particle diameter 10 μm). It was also found that the pattern of antibody drug separation differs depending on the type of antibody drug.

実施例17 本発明の抗体吸着剤(FcR9_F、粒子径10μm)を用いてリニアグラジエント溶出により分離した抗体の糖鎖構造解析(リツキサン)
(1)実施例9で分取した図2のFrA、FrB、FrCおよびFrDにそれぞれ含まれる抗体を100℃、10分の熱処理により変性後、グリコアミダーゼA/ペプシンおよびプロナーゼで順次処理し、ゲルろ過法による精製操作を経て糖鎖画分を取得した。
Example 17 Sugar chain structure analysis of an antibody separated by linear gradient elution using the antibody adsorbent of the present invention (FcR9_F, particle size 10 μm) (Rituxan)
(1) The antibodies contained in FrA, FrB, FrC, and FrD of FIG. 2 collected in Example 9 were denatured by heat treatment at 100° C. for 10 minutes, and then sequentially treated with glycoamidase A/pepsin and pronase, and gel A sugar chain fraction was obtained through a purification operation by a filtration method.

(2)(1)で得られた糖鎖をエバポレーターにて濃縮・乾燥後、酢酸溶媒下、2−アミノピリジン、次いでジメチルアミンボランを順次作用させて蛍光ラベル化糖鎖とし、ゲルろ過法により精製した。 (2) After concentrating and drying the sugar chain obtained in (1) with an evaporator, 2-aminopyridine and then dimethylamineborane are allowed to act sequentially in an acetic acid solvent to give a fluorescent labeled sugar chain, which is then subjected to gel filtration. Purified.

(3)(2)で得られた蛍光ラベル化糖鎖を陰イオン交換カラム(TSKgel DEAE−5PW、φ7.5mm×7.5cm:東ソー製)にて、中性糖鎖画分とモノシアリル化糖鎖画分に分離した。 (3) The fluorescent labeled sugar chain obtained in (2) was subjected to an anion exchange column (TSKgel DEAE-5PW, φ7.5 mm×7.5 cm: manufactured by Tosoh Corporation) to give a neutral sugar chain fraction and monosialylated sugar. The chain fraction was separated.

(4)(3)で得られた中性糖鎖画分とモノシアリル化糖鎖画分をODSカラムを用いて、個々の糖鎖に単離した。MALDI−TOF−MS分析により単離した糖鎖の分子量情報を取得後、ODSカラムクロマトグラフのリテンションタイムと照らし合わせて糖鎖構造を帰属した。 (4) The neutral sugar chain fraction and the monosialylated sugar chain fraction obtained in (3) were isolated into individual sugar chains using an ODS column. After obtaining the molecular weight information of the sugar chain isolated by MALDI-TOF-MS analysis, the sugar chain structure was assigned in comparison with the retention time of the ODS column chromatograph.

帰属した糖鎖構造の結果を図12および表3、糖鎖構造の概略図を表4に示す。FrAに含まれる抗体と比較してFrDに含まれる抗体では末端にガラクトースを含む糖鎖構造(G1FaおよびG2F)を有した抗体の割合が高く、末端にガラクトースを含まない糖鎖構造(G0F)を有した抗体の割合が低かった。 The results of the assigned sugar chain structure are shown in FIG. 12 and Table 3, and a schematic diagram of the sugar chain structure is shown in Table 4. Compared with the antibody contained in FrA, the antibody contained in FrD had a higher proportion of the antibodies having a galactose-containing sugar chain structure (G1Fa and G2F), and the galactose-free sugar chain structure (G0F) was contained in the terminal. The percentage of antibodies that they had was low.


実施例18 本発明の抗体吸着剤(FcR9_F、粒子径10μm)を用いてリニアグラジエント溶出により分離した抗体の糖鎖構造解析(アービタックス)
実施例11で分取した図6のFrE、FrFおよびFrGにそれぞれ含まれる抗体を用いたこと以外は、実施例17の(1)から(4)と同様の方法で糖鎖構造の解析を行った。
帰属した糖鎖構造の結果を図13および表5に示す。FrEに含まれる抗体と比較してFrGに含まれる抗体では末端にガラクトースを含む糖鎖構造(G1FaおよびG2F)を有した抗体の割合が高く、末端にガラクトースを含まない糖鎖構造(G0F)を有した抗体の割合が低かった。

Example 18 Sugar chain structure analysis of an antibody separated by linear gradient elution using the antibody adsorbent of the present invention (FcR9_F, particle size 10 μm) (Arbitux)
The sugar chain structure was analyzed in the same manner as in (1) to (4) of Example 17, except that the antibodies contained in FrE, FrF, and FrG of FIG. 6 collected in Example 11 were used. It was
The results of the assigned sugar chain structure are shown in FIG. 13 and Table 5. Compared to the antibody contained in FrE, the antibody contained in FrG had a higher proportion of the antibodies having a galactose-containing sugar chain structure (G1Fa and G2F), and the galactose-free sugar chain structure (G0F) was contained in the terminal. The percentage of antibodies that they had was low.

実施例19 本発明の抗体吸着剤(FcR9_F、粒子径10μm)を用いてリニアグラジエント溶出により分離した抗体の糖鎖構造解析(ハーセプチン)
実施例12で分取した図7のFrH、FrIおよびFrJにそれぞれ含まれる抗体を用いたこと以外は、実施例17の(1)から(4)と同様の方法で糖鎖構造の解析を行った。
帰属した糖鎖構造の結果を図14および表6に示す。FrHに含まれる抗体と比較してFrJに含まれる抗体では末端にガラクトースを含む糖鎖構造(G1FaおよびG2F)を有した抗体の割合が高く、末端にガラクトースを含まない糖鎖構造(G0F)を有した抗体の割合が低かった。
Example 19 Sugar chain structure analysis of antibodies separated by linear gradient elution using the antibody adsorbent of the present invention (FcR9_F, particle size 10 μm) (Herceptin)
The sugar chain structure was analyzed in the same manner as in (1) to (4) of Example 17, except that the antibodies contained in FrH, FrI, and FrJ of FIG. 7 collected in Example 12 were used. It was
The results of the assigned sugar chain structure are shown in FIG. 14 and Table 6. Compared with the antibody contained in FrH, the antibody contained in FrJ contained a higher proportion of antibodies having a galactose-containing sugar chain structure (G1Fa and G2F), and had a galactose-free sugar chain structure (G0F) at the end. The percentage of antibodies that they had was low.

実施例20 本発明の抗体吸着剤(FcR9_F、粒子径10μm)を用いてリニアグラジエント溶出により分離した抗体の糖鎖構造解析(カドサイラ)
実施例13で分取した図8のFrK、FrLおよびFrMにそれぞれ含まれる抗体を用いたこと以外は、実施例17の(1)から(4)と同様の方法で糖鎖構造の解析を行った。
帰属した糖鎖構造の結果を図15および表7に示す。FrKに含まれる抗体と比較してFrMに含まれる抗体では末端にガラクトースを含む糖鎖構造(G1Fa)を有した抗体の割合が高く、末端にガラクトースを含まない糖鎖構造(G0F)を有した抗体の割合が低かった。
Example 20 Sugar chain structure analysis of antibodies separated by linear gradient elution using the antibody adsorbent of the present invention (FcR9_F, particle size 10 μm) (cadsaila)
The sugar chain structure was analyzed in the same manner as in (1) to (4) of Example 17, except that the antibodies contained in FrK, FrL, and FrM of FIG. 8 collected in Example 13 were used. It was
The results of the assigned sugar chain structure are shown in FIG. 15 and Table 7. Compared with the antibody contained in FrK, the antibody contained in FrM had a higher ratio of the antibody having a galactose-containing sugar chain structure (G1Fa), and the terminal contained a galactose-free sugar chain structure (G0F). The percentage of antibody was low.

実施例21 本発明の抗体吸着剤(FcR9_F、粒子径10μm)を用いてリニアグラジエント溶出により分離した抗体の糖鎖構造解析(アバスチン)
実施例14で分取した図9のFrN、FrOおよびFrPにそれぞれ含まれる抗体を用いたこと以外は、実施例17の(1)から(4)と同様の方法で糖鎖構造の解析を行った。
帰属した糖鎖構造の結果を図16および表8に示す。FrNに含まれる抗体と比較してFrPに含まれる抗体では末端にガラクトースを含む糖鎖構造(G1FaおよびG2F)を有した抗体の割合が高く、末端にガラクトースを含まない糖鎖構造(G0F)を有した抗体の割合が低かった。
Example 21 Analysis of sugar chain structure of antibody separated by linear gradient elution using the antibody adsorbent of the present invention (FcR9_F, particle diameter 10 μm) (Avastin)
The sugar chain structure was analyzed in the same manner as in (1) to (4) of Example 17, except that the antibodies contained in FrN, FrO, and FrP of FIG. 9 collected in Example 14 were used. It was
The results of the assigned sugar chain structure are shown in FIG. 16 and Table 8. In the antibody contained in FrP, the ratio of the antibody having a galactose-containing sugar chain structure (G1Fa and G2F) is higher in the antibody contained in FrP than in the antibody contained in FrN, and the sugar chain structure not containing a galactose at the end (G0F) is contained. The percentage of antibodies that they had was low.

実施例22 本発明の抗体吸着剤(FcR9_F、粒子径10μm)を用いてリニアグラジエント溶出により分離した抗体の糖鎖構造解析(ヒュミラ)
実施例15で分取した図10のFrQ、FrR、FrSおよびFrTにそれぞれ含まれる抗体を用いたこと以外は、実施例17の(1)から(4)と同様の方法で糖鎖構造の解析を行った。
Example 22 Sugar chain structure analysis of antibodies separated by linear gradient elution using the antibody adsorbent of the present invention (FcR9_F, particle size 10 μm) (Humira)
Analysis of sugar chain structure by the same method as in (1) to (4) of Example 17 except that the antibodies contained in FrQ, FrR, FrS and FrT of FIG. 10 collected in Example 15 were used. I went.

帰属した糖鎖構造の結果を図17および表9に示す。FrQ、FrRに含まれる抗体と比較してFrPに含まれる抗体では末端にガラクトースを含む糖鎖構造(G1FaおよびG2F)を有した抗体の割合が高く、末端にガラクトースを含まない糖鎖構造(G0F)を有した抗体の割合が低かった。 The results of the assigned sugar chain structure are shown in FIG. 17 and Table 9. Compared with the antibodies contained in FrQ and FrR, the antibodies contained in FrP have a higher proportion of the antibodies having a galactose-containing sugar chain structure (G1Fa and G2F), and the sugar chains having no galactose in the terminal (G0F ) Had a low proportion of antibodies.

実施例23 本発明の抗体吸着剤(FcR9_F、粒子径10μm)を用いてリニアグラジエント溶出により分離した抗体の糖鎖構造解析(アクテムラ)
実施例16で分取した図11のFrU、FrVおよびFrWにそれぞれ含まれる抗体を用いたこと以外は、実施例17の(1)から(4)と同様の方法で糖鎖構造の解析を行った。
帰属した糖鎖構造の結果を図18および表10に示す。FrUに含まれる抗体と比較してFrWに含まれる抗体では末端にガラクトースを含む糖鎖構造(G1Fa)を有した抗体の割合が高く、末端にガラクトースを含まない糖鎖構造(G0F)を有した抗体の割合が低かった。
Example 23 Sugar chain structure analysis of an antibody separated by linear gradient elution using the antibody adsorbent of the present invention (FcR9_F, particle diameter 10 μm) (Actemra)
The sugar chain structure was analyzed in the same manner as in (1) to (4) of Example 17, except that the antibodies contained in FrU, FrV, and FrW of FIG. 11 collected in Example 16 were used. It was
The results of the assigned sugar chain structure are shown in FIG. 18 and Table 10. Compared with the antibody contained in FrU, the antibody contained in FrW had a higher ratio of the antibody having a galactose-containing sugar chain structure (G1Fa), and had the galactose-free sugar chain structure (G0F) at the end. The percentage of antibody was low.

実施例17から23より、本発明の抗体吸着剤(FcR9_F、粒子径10μm)により分離した抗体医薬品の糖鎖構造を解析した結果、早く溶出された抗体の糖鎖よりも遅く溶出された抗体の糖鎖の方が、末端にガラクトースを含む糖鎖構造の割合が高いことが分かった。 From Examples 17 to 23, as a result of analyzing the sugar chain structure of the antibody drug separated by the antibody adsorbent of the present invention (FcR9_F, particle diameter 10 μm), it was found that the antibody eluted later than the sugar chain of the antibody eluted earlier It was found that the sugar chain had a higher proportion of sugar chain structures containing galactose at the end.

このことより、末端にガラクトースを含む糖鎖構造を有した抗体はFcR9_Fと強く結合し、Fc9_F固定化ゲルで分離した際に遅い溶出時間で溶出され(すなわち、低いpHにて溶出される)、末端にガラクトースを含まない糖鎖構造を有した抗体はFcR9_Fとの結合が弱いこと、および本発明の抗体吸着剤(FcR9_F、粒子径10μm)で分離する際に早く溶出される(すなわち、高いpHにて溶出される)ことがわかる。 From this, an antibody having a sugar chain structure containing galactose at the end strongly binds to FcR9_F and is eluted with a slow elution time when separated on an Fc9_F-immobilized gel (that is, eluted at a low pH), An antibody having a sugar chain structure containing no galactose at the end has weak binding to FcR9_F, and is rapidly eluted when separated with the antibody adsorbent of the present invention (FcR9_F, particle diameter 10 μm) (ie, at a high pH). It will be eluted).

Claims (8)

Fc結合性タンパク質を不溶性担体に固定化して得られる抗体吸着剤であって、不溶性担体が粒子径7μm以上25μm以下の多孔質親水性ポリマー粒子である、前記吸着剤。 An antibody adsorbent obtained by immobilizing an Fc-binding protein on an insoluble carrier, wherein the insoluble carrier is a porous hydrophilic polymer particle having a particle size of 7 μm or more and 25 μm or less. Fc結合性タンパク質がヒトFcγRIIIaである、請求項1に記載の吸着剤。 The adsorbent according to claim 1, wherein the Fc-binding protein is human FcγRIIIa. ヒトFcγRIIIaが、以下の(a)から(f)のいずれかに記載のタンパク質である、請求項2に記載の吸着剤。
(a)配列番号3に記載のアミノ酸配列の33番目から208番目までのアミノ酸残基を少なくとも含み、ただし当該33番目から208番目までのアミノ酸残基において、少なくとも192番目のバリンがフェニルアラニンにアミノ酸置換され、かつ抗体結合活性を有するタンパク質;
(b)配列番号3に記載のアミノ酸配列の33番目から208番目までのアミノ酸残基を少なくとも含み、ただし当該33番目から208番目までのアミノ酸残基において、少なくとも192番目のバリンがフェニルアラニンにアミノ酸置換され、さらに1もしくは数個の位置での1もしくは数個のアミノ酸残基の置換、欠失、挿入、または付加を含むアミノ酸配列を有し、かつFcR9のアミノ酸置換を保持し、かつ抗体結合活性を有するタンパク質;
(c)配列番号3に記載のアミノ酸配列の33番目から208番目までのアミノ酸残基を少なくとも含み、ただし当該33番目から208番目までのアミノ酸配列に対して80%以上の相同性を有し、かつFcR9のアミノ酸置換を保持し、かつ少なくとも192番目のバリンがフェニルアラニンにアミノ酸置換され、かつ抗体結合活性を有するタンパク質(d)配列番号13に記載のアミノ酸配列の33番目から208番目までのアミノ酸残基を少なくとも含み、かつ抗体結合活性を有するタンパク質;
(e)配列番号13に記載のアミノ酸配列の33番目から208番目までのアミノ酸残基を少なくとも含み、ただし当該33番目から208番目までのアミノ酸残基において、さらに1もしくは数個の位置での1もしくは数個のアミノ酸残基の置換、欠失、挿入、または付加を含むアミノ酸配列を有し、かつFcR36iのアミノ酸置換を保持し、かつ抗体結合活性を有するタンパク質;
(f)配列番号13に記載のアミノ酸配列の33番目から208番目までのアミノ酸残基を少なくとも含み、ただし当該33番目から208番目までのアミノ酸配列に対して80%以上の相同性を有し、かつFcR36iのアミノ酸置換を保持し、かつ抗体結合活性を有するタンパク質
The adsorbent according to claim 2, wherein human FcγRIIIa is the protein according to any one of (a) to (f) below.
(A) contains at least the 33rd to 208th amino acid residues of the amino acid sequence of SEQ ID NO: 3, provided that at least the 192nd valine in the 33rd to 208th amino acid residues is replaced with phenylalanine. And a protein having antibody binding activity;
(B) contains at least the 33rd to 208th amino acid residues of the amino acid sequence of SEQ ID NO: 3, provided that at least the 192nd valine in the 33rd to 208th amino acid residues is replaced with phenylalanine. And further has an amino acid sequence containing substitution, deletion, insertion, or addition of 1 or several amino acid residues at 1 or several positions, retains the amino acid substitution of FcR9, and has an antibody binding activity. A protein having
(C) contains at least the 33rd to 208th amino acid residues of the amino acid sequence set forth in SEQ ID NO: 3, but has 80% or more homology to the 33rd to 208th amino acid sequence, A protein (d) which retains the amino acid substitution of FcR9, has at least the 192nd valine amino acid substituted with phenylalanine, and has antibody binding activity (d) the amino acid residues 33 to 208 of the amino acid sequence of SEQ ID NO: 13. A protein containing at least a group and having antibody binding activity;
(E) At least the 33rd to 208th amino acid residues of the amino acid sequence set forth in SEQ ID NO: 13 are provided, provided that, in the 33rd to 208th amino acid residues, 1 or at 1 or several positions. Alternatively, a protein having an amino acid sequence containing substitutions, deletions, insertions, or additions of several amino acid residues, having the amino acid substitution of FcR36i, and having antibody binding activity;
(F) containing at least the 33rd to 208th amino acid residues of the amino acid sequence set forth in SEQ ID NO: 13, but having 80% or more homology to the 33rd to 208th amino acid sequence, A protein having an FcR36i amino acid substitution and having antibody binding activity
多孔質親水性ポリマーが、ポリメタクリレートである、請求項1から3のいずれかに記載の吸着剤。 The adsorbent according to claim 1, wherein the porous hydrophilic polymer is polymethacrylate. 請求項1から4のいずれかに記載の吸着剤を充填したカラムに平衡化液を添加してカラムを平衡化する工程と、前記平衡化したカラムに抗体を含む溶液を添加して抗体を前記吸着剤に吸着させる工程と、前記吸着剤に吸着した抗体を溶出液を用いて溶出させる工程とを含む、抗体の分離法。 A step of equilibrating a column by adding an equilibration liquid to a column packed with the adsorbent according to any one of claims 1 to 4, and adding a solution containing an antibody to the equilibrated column to add the antibody to the column. A method for separating an antibody, comprising a step of adsorbing to an adsorbent and a step of eluting the antibody adsorbed to the adsorbent with an eluent. 請求項5に記載の方法において、溶出液により溶出された抗体を含む画分を分取する工程をさらに含む、抗体医薬の製造方法。 The method for producing an antibody drug according to claim 5, further comprising a step of collecting a fraction containing an antibody eluted with an eluent. 請求項5の方法により、糖鎖構造の違いによって抗体を分離する方法。 A method for separating an antibody according to the method of claim 5 depending on the difference in sugar chain structure. 糖鎖構造の違いが、末端のガラクトースの量の違いによる請求項7に記載の方法。 The method according to claim 7, wherein the difference in sugar chain structure is due to the difference in the amount of galactose at the terminal.
JP2019134708A 2018-08-06 2019-07-22 Antibody adsorbent with immobilized Fc-binding protein and antibody separation method using the same Active JP7404689B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018147413 2018-08-06
JP2018147413 2018-08-06
JP2019024265 2019-02-14
JP2019024265 2019-02-14

Publications (2)

Publication Number Publication Date
JP2020125280A true JP2020125280A (en) 2020-08-20
JP7404689B2 JP7404689B2 (en) 2023-12-26

Family

ID=72084675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019134708A Active JP7404689B2 (en) 2018-08-06 2019-07-22 Antibody adsorbent with immobilized Fc-binding protein and antibody separation method using the same

Country Status (1)

Country Link
JP (1) JP7404689B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015199154A1 (en) * 2014-06-27 2015-12-30 東ソー株式会社 IMPROVED Fc-BINDING PROTEIN, METHOD FOR PRODUCING SAID PROTEIN, ANTIBODY ADSORBENT USING SAID PROTEIN, AND METHOD FOR SEPARATING ANTIBODY USING SAID ADSORBENT
US20170073394A1 (en) * 2014-03-04 2017-03-16 Merck Patent Gmbh Robust antibody purification

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170073394A1 (en) * 2014-03-04 2017-03-16 Merck Patent Gmbh Robust antibody purification
WO2015199154A1 (en) * 2014-06-27 2015-12-30 東ソー株式会社 IMPROVED Fc-BINDING PROTEIN, METHOD FOR PRODUCING SAID PROTEIN, ANTIBODY ADSORBENT USING SAID PROTEIN, AND METHOD FOR SEPARATING ANTIBODY USING SAID ADSORBENT

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TOSOH RESEARCH & TECHNOLOGY REVIEW, vol. 60, JPN6023020111, 2016, pages 59 - 63, ISSN: 0005063469 *
TSKGEL PW | HTTPS://WWW.SEPARATIONS.ASIA.TOSOHBIOSCIENCE.COM, JPN6023020110, pages 1, ISSN: 0005063470 *

Also Published As

Publication number Publication date
JP7404689B2 (en) 2023-12-26

Similar Documents

Publication Publication Date Title
CN107108701B (en) Modified kappa light chain-binding polypeptides
JP6507522B2 (en) Improved Fc binding protein, method for producing the protein and antibody adsorbent using the protein
KR20170078693A (en) Mutated immunoglobulin-binding polypeptides
JP2016523959A (en) Mutant immunoglobulin binding polypeptide
JP2019034963A (en) Novel antibody purification method using cation exchanger
WO2015041303A1 (en) Fc-BINDING PROTEIN, METHOD FOR PRODUCING SAID PROTEIN, AND ANTIBODY ADSORBENT USING SAID PROTEIN, AND METHODS FOR PURIFYING AND IDENTIFYING ANTIBODY USING SAID ADSORBENT
US10611817B2 (en) Fc-binding protein, method for producing said protein, and antibody adsorbent using said protein, and methods for purifying and identifying antibody using said adsorbent
JP7306270B2 (en) immunoglobulin binding protein
JP6932923B2 (en) Improved Fc-binding protein, method for producing the protein, and antibody adsorbent using the protein
WO2017195641A1 (en) Method for producing affinity separation matrix, and affinity separation matrix
JP6699096B2 (en) Improved Fc-binding protein, method for producing the protein, and antibody adsorbent using the protein
EP3517609B1 (en) Improved recombinant fc gamma rii
JP2015083558A (en) Antibody sorbent, and antibody purifying method and antibody identifying method using same
WO2019083048A1 (en) Fc-BINDING PROTEIN EXHIBITING IMPROVED ALKALINE RESISTANCE, METHOD FOR PRODUCING SAID PROTEIN, ANTIBODY ADSORBENT USING SAID PROTEIN, AND METHOD FOR SEPARATING ANTIBODY USING SAID ANTIBODY ADSORBENT
JP6848241B2 (en) Method for Purifying IgG1 Using Fc-Binding Protein
JP2013059313A (en) Fc-BINDING PROTEIN ADDED WITH CYSTEINE TAG, AND ADSORBENT USING THE PROTEIN
JP7404689B2 (en) Antibody adsorbent with immobilized Fc-binding protein and antibody separation method using the same
JP2012072091A (en) Purification method for antibody
JP7009913B2 (en) Amino acid-substituted Fc-binding protein
JP7310142B2 (en) Fc-binding protein with improved alkali tolerance, method for producing the protein, antibody adsorbent using the protein, and method for separating antibodies using the antibody adsorbent
JP7363134B2 (en) immunoglobulin binding protein
WO2018198817A1 (en) Stable fc binding protein, method for producing said protein, and antibody adsorbent in which said protein is used
JP6136452B2 (en) Oligopeptide for immobilizing protein on carrier
JP7414106B2 (en) Protein with immunoglobulin binding activity
JP7432813B2 (en) immunoglobulin binding protein

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231127

R151 Written notification of patent or utility model registration

Ref document number: 7404689

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151