WO2019244901A1 - Method for separating antibody, and method for testing on disease - Google Patents

Method for separating antibody, and method for testing on disease Download PDF

Info

Publication number
WO2019244901A1
WO2019244901A1 PCT/JP2019/024160 JP2019024160W WO2019244901A1 WO 2019244901 A1 WO2019244901 A1 WO 2019244901A1 JP 2019024160 W JP2019024160 W JP 2019024160W WO 2019244901 A1 WO2019244901 A1 WO 2019244901A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
content
disease
peak
amino acid
Prior art date
Application number
PCT/JP2019/024160
Other languages
French (fr)
Japanese (ja)
Inventor
陽介 寺尾
泰之 秋山
諭 遠藤
遼子 渡邉
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Priority to EP19822237.4A priority Critical patent/EP3812759A4/en
Priority to US17/253,824 priority patent/US20210116445A1/en
Priority to CN201980040776.7A priority patent/CN112334768B/en
Publication of WO2019244901A1 publication Critical patent/WO2019244901A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/536Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase
    • G01N33/537Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase with separation of immune complex from unbound antigen or antibody
    • G01N33/538Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase with separation of immune complex from unbound antigen or antibody by sorbent column, particles or resin strip, i.e. sorbent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6854Immunoglobulins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/70535Fc-receptors, e.g. CD16, CD32, CD64 (CD2314/705F)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8813Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials
    • G01N2030/8831Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials involving peptides or proteins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/24Immunology or allergic disorders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/50Determining the risk of developing a disease
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/52Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/56Staging of a disease; Further complications associated with the disease
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/70Mechanisms involved in disease identification
    • G01N2800/7023(Hyper)proliferation
    • G01N2800/7028Cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/70Mechanisms involved in disease identification
    • G01N2800/7042Aging, e.g. cellular aging

Definitions

  • the present invention relates to a method for separating an antibody and its use.
  • the present invention specifically, for example, as an index the characteristics of the separation pattern when separating antibodies obtained from the subject, the presence or absence of the disease in the subject, the risk of developing the disease, the degree of disease progression, and And / or a method for detecting the degree of progress of aging.
  • antibody drugs drugs containing antibodies
  • Antibodies used for antibody drugs are purified to high purity using column chromatography or the like after culturing cells capable of expressing the antibody (eg, Chinese hamster ovary (CHO) cells) obtained by genetic engineering techniques. Manufactured.
  • cells capable of expressing the antibody eg, Chinese hamster ovary (CHO) cells
  • CHO cells Chinese hamster ovary
  • Non-patent Documents In particular, it has been reported that the sugar chain structure bound to an antibody greatly affects the activity, kinetics, and safety of an antibody drug, and detailed analysis of the sugar chain structure is important (Non-patent Documents) 1). In diseases such as rheumatism, changes in the sugar chain structure added to antibodies in blood are known (Non-Patent Documents 2 and 3), and the disease is analyzed by analyzing the sugar chain structure added to the antibodies. Diagnosis may be possible.
  • LC-MS analysis including cutting out of a sugar chain (Patent Documents 1 and 2) is mainly performed.
  • the analysis method involves a very complicated operation and requires a lot of time.
  • a simpler method for analyzing the molecular structure of an antibody is analysis by chromatography. Specifically, it is possible to separate and quantify aggregates and decomposed products by separating antibodies based on molecular weight using gel filtration chromatography. In addition, the difference in charge of the antibody molecule can be separated by ion exchange chromatography.
  • the analysis by the above-mentioned chromatography since a minute structural change of the antibody molecule such as a sugar chain structure cannot be identified, the obtained analysis result is limited.
  • Patent Document 3 it has been reported that the performance of an antibody can be measured and judged by an analysis based on the affinity between an antibody and an affinity ligand immobilized on an insoluble carrier.
  • Patent Document 3 separation of antibodies due to differences in sugar chain structure, particularly separation of human-derived antibodies due to differences in sugar chain structure, has not been performed.
  • JP 2016-194500 A JP 2016-099304 A WO2013 / 120929
  • An object of the present invention is to provide a method for separating an antibody. In one embodiment, an object of the present invention is to provide a method for detecting the presence or absence of a disease in a subject, the risk of developing the disease, the degree of progress of the disease, and / or the degree of progress of aging.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems. As a result, it was found that antibodies can be separated based on differences in sugar chain structure by using Fc-binding proteins, and that antibodies obtained from subjects can The present inventors have found that the presence / absence of a disease, the risk of developing the disease, the degree of progression of the disease, and / or the degree of progression of aging in the subject can be detected using the characteristics of the separation pattern obtained when separating using proteins as an index. The invention has been completed.
  • the present invention can be exemplified as follows.
  • the presence or absence of the disease, the risk of developing the disease, the degree of progress of the disease, and / or a method for detecting the degree of progress of aging The following step (c): (C) detecting the presence or absence of a disease in the subject, the risk of developing the disease, the degree of progression of the disease, and / or the degree of progression of aging in the subject using the data relating to the antibody separation pattern as an index, The data is characteristic of the separation pattern of the antibody,
  • the method wherein the data is obtained by the following steps (a) and (b): (A) adding a solution containing an antibody obtained from the subject to a column packed with an insoluble carrier having Fc-binding protein immobilized thereon, and adsorbing the antibody to the carrier; (B) a step of eluting the antibody adsorbed on the carrier using an eluent to obtain the data.
  • the method comprising the steps (a) and (b) before the step (c).
  • the above method comprising a step of adding an equilibration liquid to the column before the step (a) to equilibrate the column.
  • the method wherein the obtaining of the data comprises obtaining a separation pattern of the antibody, and extracting the feature from the separation pattern.
  • the method, wherein the characteristic is peak area and / or peak height.
  • the method wherein the characteristic is peak area% and / or peak height%.
  • the method, wherein the characteristic is a characteristic of one or more peaks selected from a first peak, a second peak, and a third peak.
  • the feature is a feature of a first peak.
  • the step (c) comprises comparing the data with data relating to an antibody separation pattern obtained from a control subject.
  • the disease is one or more diseases selected from cancer, autoimmune disease, infectious disease, allergy, inflammatory disease, cachexia, and age-related disease.
  • the disease is one or more diseases selected from pancreatic cancer, stomach cancer, breast cancer, colon cancer, kidney cancer, rheumatism, Sjogren's syndrome, and pancreatitis.
  • the Fc binding protein is any one of the following polypeptides (1) to (4): (1) It includes the 17th to 192nd amino acid residues of the amino acid sequence of SEQ ID NO: 1, provided that at least the 176th valine is substituted with phenylalanine in the 17th to 192nd amino acid residues.
  • Phenylalanine to isoleucine, 35th tyrosine to asparagine, 48th glutamine to arginine, 75th phenylalanine to leucine, 92nd asparagine to serine, 117th valine to glutamic acid, 121st glutamic acid Is a polypeptide in which is substituted with glycine, phenylalanine at position 171 with serine, and valine at position 176 with phenylalanine; (3) It includes the 17th to 192nd amino acid residues of the amino acid sequence of SEQ ID NO: 1, provided that at least the 17th to 192nd amino acid residues have at least 27th valine in glutamic acid and 29th in glutamic acid.
  • a value obtained by dividing the content of the antibody having G1Fa by the content of the antibody having G0F is 0.4 or less by weight; II. A value obtained by dividing the content of the antibody having G2F by the content of the antibody having G0F is 0.2 or less by weight; III. The content of the antibody with G2F + 2SA divided by the content of the antibody with G0F is less than or equal to 0.03 by weight; IV. The value obtained by dividing the content of the antibody having G1Fb by the content of the antibody having G1Fa is 0.5 or more by weight; V. A value obtained by dividing the content of the antibody having G2F by the content of the antibody having G1Fb is 0.6 or less by weight; VI.
  • a value obtained by dividing the content of the antibody having G2F + SA by the content of the antibody having G1Fb is 0.3 or less by weight; VII. The content of the antibody with G2F + 2SA divided by the content of the antibody with G1Fb is less than or equal to 0.12 by weight; VIII. The ratio of the content of the antibody having G2 + SA to the total content of the antibody is 0.2% or less by weight; IX. The ratio of the content of the antibody having G2 + 2SA to the total content of the antibody is 0.2% or less by weight. [14] A composition containing two or more antibodies, wherein the composition falls under two or more of the following I to IX: I.
  • a value obtained by dividing the content of the antibody having G1Fa by the content of the antibody having G0F is 1.8 or more by weight; II. A value obtained by dividing the content of the antibody having G2F by the content of the antibody having G0F is 0.6 or more by weight; III. The content of the antibody with G2F + 2SA divided by the content of the antibody with G0F is greater than or equal to 0.06 by weight; IV. A value obtained by dividing the content of the antibody having G1Fb by the content of the antibody having G1Fa is 0.3 or less by weight; V. The content of the antibody with G2F divided by the content of the antibody with G1Fb is greater than or equal to 3.0 by weight; VI.
  • a value obtained by dividing the content of the antibody having G2F + SA by the content of the antibody having G1Fb is 0.6 or more by weight; VII. The content of the antibody with G2F + 2SA divided by the content of the antibody with G1Fb is greater than or equal to 0.3 by weight; VIII. The ratio of the content of the antibody having G2 + SA to the total content of the antibody is 2% or more by weight; IX. The ratio of the content of the antibody having G2 + 2SA to the total content of the antibodies is 0.6% or more by weight.
  • the plot of the corrected first peak area% value and the third peak area when analyzing gamma globulin derived from pancreatic cancer and pancreatitis patients on a column packed with an Fc-binding protein-immobilized gel and the ROC curve for pancreatic cancer and pancreatitis are shown.
  • amendment 1st peak area% value when gamma globulin derived from a healthy person who smokes and does not smoke is analyzed by the column packed with the Fc-binding protein immobilized gel.
  • the figure which shows the plot of the 1st peak height% and the 1st peak area% value, when the human-derived gamma globulin of different ages is analyzed by the FcR9_F column or the FcR9_V column packed with the Fc binding protein immobilized gel.
  • the present invention provides a method for separating an antibody using an Fc-binding protein. This method is also referred to as “separation method of the present invention”.
  • the separation method of the present invention may specifically be a method for separating an antibody, comprising the following steps (a) and (b): (A) adding a solution containing an antibody to a column filled with an insoluble carrier having Fc-binding protein immobilized thereon, and adsorbing the antibody to the carrier; (B) a step of eluting the antibody adsorbed on the carrier using an eluate.
  • Steps (a) and (b) are also referred to as “adsorption step” and “elution step”, respectively.
  • a separated antibody may be obtained by the separation method of the present invention. That is, one embodiment of the separation method of the present invention may be a method of producing an isolated antibody by separating the antibody using an Fc-binding protein. That is, one embodiment of the elution step may be a step of eluting the antibody adsorbed on the carrier using an eluent to obtain the eluted antibody. In other words, one embodiment of the elution step may include a step of eluting the antibody adsorbed on the carrier using an eluate, and a step of obtaining the eluted antibody. This method is also referred to as “the antibody production method of the present invention”.
  • the antibody production method of the present invention may specifically be a method for producing an isolated antibody, comprising the following steps (a) and (b): (A) adding a solution containing an antibody to a column filled with an insoluble carrier having Fc-binding protein immobilized thereon, and adsorbing the antibody to the carrier; (B) a step of eluting the antibody adsorbed on the carrier using an eluate to obtain the eluted antibody.
  • ⁇ ⁇ ⁇ Data on the antibody separation pattern may be obtained by the separation method of the present invention. That is, one embodiment of the separation method of the present invention may be a method of producing data relating to an antibody separation pattern by separating an antibody using an Fc-binding protein. That is, one embodiment of the elution step may be a step of eluting the antibody adsorbed on the carrier using an eluate to obtain data relating to the antibody separation pattern. In other words, one embodiment of the elution step may include a step of eluting the antibody adsorbed on the carrier using an eluent, and a step of obtaining data relating to an antibody separation pattern. This method is also referred to as the “data manufacturing method of the present invention”. Data relating to the antibody separation pattern is also referred to as “separation data”. “Data measurement”, “data acquisition”, and “data production” may be used interchangeably.
  • the data production method of the present invention may specifically be a method for producing separation data, comprising the following steps (a) and (b): (A) adding a solution containing an antibody to a column filled with an insoluble carrier having Fc-binding protein immobilized thereon, and adsorbing the antibody to the carrier; (B) a step of eluting the antibody adsorbed on the carrier using an eluate to obtain separation data.
  • the separated data as an index, the presence / absence of a disease in the subject, the risk of developing the disease, the degree of progress of the disease, and / or the degree of progress of aging can be detected. That is, the separated data may be regarded as data used as an index for detecting the presence or absence of a disease, the risk of developing the disease, the degree of progress of the disease, and / or the degree of progress of aging in the subject. Specifically, the presence / absence of a disease, the risk of developing a disease, the progress of a disease, and the like in a subject are determined by using, as an index, separation data obtained by separating an antibody obtained from the subject using an Fc-binding protein.
  • the degree and / or the aging progress degree can be detected. That is, the present invention uses the separation data obtained by separating an antibody obtained from a subject using an Fc-binding protein as an index to determine the presence or absence of a disease, the risk of developing a disease, Provided is a method for detecting the degree of progress and / or the degree of progress of aging. This method is also referred to as “the detection method of the present invention”.
  • the presence or absence of a disease, the risk of developing the disease, the degree of progress of the disease, and / or the degree of progress of aging are collectively referred to as “risk”. “Detection of risk”, “evaluation of risk”, and “judgment of risk” may be used synonymously.
  • the detection method of the present invention may be a method for detecting the presence or absence of a disease, the risk of developing the disease, the degree of progress of the disease, and / or the degree of progress of aging, including the following step (c). : (C) a step of detecting the presence or absence of a disease, the risk of developing the disease, the degree of progress of the disease, and / or the degree of progress of aging in the subject using the separated data as an index, wherein the data comprises the following steps: Steps obtained according to (a) and (b): (A) adding a solution containing an antibody obtained from the subject to a column packed with an insoluble carrier having Fc-binding protein immobilized thereon, and adsorbing the antibody to the carrier; (B) a step of eluting the antibody adsorbed on the carrier using an eluent to obtain the data.
  • the detection method of the present invention may include steps (a) and (b). That is, the detection method of the present invention more specifically includes the following steps (a) to (c), the presence or absence of a disease, the risk of developing the disease, the degree of progress of the disease, and / or the degree of progress of aging.
  • the detection method may be: (A) adding a solution containing an antibody obtained from a subject to a column filled with an insoluble carrier having Fc-binding protein immobilized thereon, and adsorbing the antibody to the carrier; (B) a step of eluting the antibody adsorbed on the carrier using an eluate to obtain separation data; (C) detecting the presence or absence of a disease, the risk of developing the disease, the degree of progress of the disease, and / or the degree of progress of aging in the subject using the data as an index;
  • Step (c) is also referred to as “detection step”.
  • the adsorption step is a step of adding a solution containing an antibody to a column packed with an insoluble carrier having Fc-binding protein immobilized thereon and adsorbing the antibody to the carrier.
  • Antibody means a molecule containing an Fc region.
  • the antibody may be composed of an Fc region, and may contain other regions in addition to the Fc region. Examples of the Fc region include an Fc region of an immunoglobulin.
  • the antibody may have a sugar chain added thereto.
  • the antibody may have, for example, a sugar chain added to at least its Fc region.
  • the antibody may be a monoclonal antibody or a polyclonal antibody.
  • the origin of the antibody is not particularly limited.
  • Antibodies can be from a single organism or from a combination of two or more organisms.
  • the antibody may be, for example, a chimeric antibody, a humanized antibody, a human antibody, or a variant thereof (eg, an amino acid substitution).
  • Antibodies include immunoglobulins. Immunoglobulins include IgG, IgM, IgA, IgD and IgE. Immunoglobulins include in particular IgG. Examples of IgG include IgG1, IgG2, IgG3, and IgG4. Examples of the antibody also include bispecific antibodies (bispecific antibodies), fusion antibodies of the Fc region with other proteins, and antibodies with artificially modified structures such as a complex of the Fc region and a drug (ADC). Can be The antibody may be, for example, an antibody drug. Antibody drugs include infliximab, an anti-TNF- ⁇ antibody, tocilizumab, an anti-IL-6 antibody, and trastuzumab, an antibody to the oncogene HER2. Antibodies can be produced by, for example, production cells such as CHO cells, Sp2 / 0 cells, NS0 cells, and hybridoma cells.
  • sugar chain examples include the sugar chain structures described in FIGS.
  • G0, G0F, G1, G0F + GN, G1Fa, G1Fb, G1F + GN, G2, G2F, G1F + SA, G2F + SA, G2F + 2SA, G2F + GN, G2 + SA, G2 + 2SA, S1, S2 are sugar chains that can contribute to antibody separation.
  • Human-derived antibodies usually contain antibodies having sialic acid.
  • the content of an antibody having sialic acid in a human-derived antibody can be, for example, about 0.1 to 20% by weight based on the total content of the antibody.
  • two sialic acids often bind to the sugar chain terminal.
  • human-derived antibodies can usually contain bisecting GlcNAc (represented by "+ GN" in Table 5) in an amount of about 1 to 20% by weight based on the total content of the antibody.
  • antibodies derived from hamsters and mice usually do not contain bisecting GlcNAc, and the number of sialic acid bonds at the sugar chain terminals is 0 to 1.
  • the antibody to be subjected to the adsorption step may be a mixture containing a plurality of types of antibody molecules.
  • the antibody to be subjected to the adsorption step may be, specifically, a mixture containing a plurality of types of antibody molecules having different sugar chain structures. More specifically, the antibody subjected to the adsorption step may be a mixture containing a plurality of types of antibody molecules having different sugar chain structures added to the Fc region.
  • the method of the present invention may be performed using an antibody obtained from a subject.
  • Subject means a human individual whose risk is to be detected.
  • the subject referred to here is also referred to as a “target subject” to be distinguished from a control subject described later.
  • the subject is not particularly limited as long as an antibody sample derived therefrom can be used, that is, an antibody sample can be obtained or has already been obtained.
  • the subject may be male or female.
  • the subject may be an individual of any age, such as a child, a young person, a middle age, an old man, and the like.
  • the subject may or may not be a healthy subject.
  • Antibody sample means a sample containing an antibody.
  • Examples of antibody samples include blood samples such as blood (whole blood), diluted blood, serum, plasma, cerebrospinal fluid, umbilical cord blood, and component blood; urine, saliva, semen, feces, sputum, amniotic fluid, ascites, and other blood-derived components A fragment or a cell of a tissue such as a liver, a lung, a spleen, a kidney, a skin, a tumor, a lymph node or a cell; and an antibody separated therefrom.
  • the antibody sample may be used in the adsorption step as it is or after appropriately subjected to a pretreatment.
  • the pre-processing may be performed by, for example, a common method.
  • Examples of the pretreatment include centrifugation and purification by a column. Specifically, for example, gamma globulin may be purified and used in the adsorption step.
  • the antibody sample is used in the adsorption step in the form of a solution containing the antibody. That is, the antibody sample may be appropriately prepared in the form of a solution containing the antibody and used in the adsorption step.
  • the antibody sample as described above or a pretreated product thereof may be appropriately dissolved, suspended, dispersed, or solvent-exchanged in a liquid medium and used as a solution containing the antibody in the adsorption step.
  • a liquid medium for example, the description of an equilibration liquid described later can be applied mutatis mutandis.
  • the liquid medium may or may not be the same as the equilibration liquid.
  • antibodies obtained from a subject can be applied mutatis mutandis to the use of other antibodies.
  • any antibody other than the antibody obtained from the subject may be used in the adsorption step in the form of a solution containing the antibody as it is, or after appropriately subjecting it to a pretreatment.
  • Fc-binding protein means a protein that has the ability to bind to the Fc region of an antibody.
  • the Fc binding protein is not particularly limited as long as a desired antibody separation pattern can be obtained.
  • Antibodies can be separated based on, for example, differences in affinity for Fc-binding proteins based on differences in the sugar chain structure of the antibody (eg, the sugar chain structure of the Fc region).
  • the affinity (specifically, the sugar chain structure of the antibody) between the antibody and the Fc-binding protein can be correlated with, for example, the function of the antibody, such as its efficacy.
  • the affinity between the antibody and the Fc-binding protein (specifically, the sugar chain structure of the antibody) can be correlated with, for example, the risk in the subject.
  • the Fc-binding protein is preferably a protein that has, for example, an ability to bind to the Fc region of an antibody and can recognize a difference in the sugar chain structure of the antibody (eg, the sugar chain structure of the Fc region).
  • the Fc binding protein include a human Fc binding protein.
  • the human Fc-binding protein include an Fc-binding protein found in humans and variants thereof.
  • Specific examples of the human Fc-binding protein include proteins containing the full-length or partial amino acid sequence of the extracellular region of human Fc ⁇ RIIIa.
  • Examples of the amino acid sequence of the extracellular region of human Fc ⁇ RIIIa include, in the case of natural human Fc ⁇ RIIIa, the region from the 17th glycine to the 192nd glutamine in the amino acid sequence shown in SEQ ID NO: 1.
  • the partial sequence of the amino acid sequence of the extracellular region of human Fc ⁇ RIIIa includes, for example, the amino acid sequence of a region capable of expressing a function of binding to at least the Fc region (for example, the Fc region of human IgG) in the extracellular region of human Fc ⁇ RIIIa.
  • Can be Examples of the human Fc-binding protein include the following polypeptides (i) and (ii).
  • polypeptide comprising at least the 17th to 192nd amino acid residues in the amino acid sequence of SEQ ID NO: 1;
  • polypeptide contains at least the 17th to 192nd amino acid residues in the amino acid sequence of SEQ ID NO: 1, and includes substitution, insertion, or deletion of one or more amino acid residues in the amino acid residues Polypeptide.
  • the amino acid sequence includes the 17th to 192nd amino acid residues in the amino acid sequence of SEQ ID NO: 1 and the following (1) ) To (40), wherein the polypeptide has at least one amino acid substitution (JP-A-2015-086216).
  • SEQ ID NO: 1 18th methionine in SEQ ID NO: 1 is substituted with arginine (2) 27th valine in SEQ ID NO: 1 is substituted with glutamic acid (3) 29th phenylalanine in SEQ ID NO: 1 is substituted with leucine or serine (4) Leucine at position 30 in SEQ ID NO: 1 is substituted with glutamine (5) Tyrosine at position 35 in SEQ ID NO: 1 is substituted with aspartic acid, glycine, lysine, leucine, asparagine, proline, serine, threonine, or histidine (6) SEQ ID NO: Lys at position 46 of 1 is replaced with isoleucine or threonine (7) Glutamine at position 48 of SEQ ID NO: 1 is replaced with histidine or leucine (8) Alanine at position 50 of SEQ ID NO: 1 is replaced with histidine (9) SEQ ID NO: 1 No.
  • the amino acid sequence includes the 17th to 192nd amino acid residues in the amino acid sequence of SEQ ID NO: 1, and the 17th to 192nd amino acid residues include And polypeptides in which at least one amino acid of (41) to (57) has been substituted (JP-A-2016-169197).
  • the phenylalanine at position 29 in SEQ ID NO: 1 is substituted with isoleucine or leucine (42)
  • the glutamic acid at position 39 in SEQ ID NO: 1 is substituted with glycine (43)
  • the glutamine at position 48 in SEQ ID NO: 1 is substituted with arginine (44)
  • the tyrosine at position 51 in SEQ ID NO: 1 is substituted with serine (45)
  • the phenylalanine at position 61 in SEQ ID NO: 1 is substituted with tyrosine (46)
  • the aspartic acid at position 77 in SEQ ID NO: 1 is substituted with glycine (47)
  • the aspartic acid at position 82 is replaced with glutamic acid (48)
  • the glutamine at position 90 of SEQ ID NO: 1 is replaced with arginine (49)
  • the glutamine at position 112 of SEQ ID NO: 1 is replaced with leucine (50)
  • the lysine at position 119 in SEQ ID NO: 1 is asparagine or Substitution with glutamic acid (52) Threonine at position 140 in SEQ ID NO: 1 is substituted with isoleucine (53) Leucine at position 142 in SEQ ID NO: 1 is substituted with glutamine (54) Phenylalanine at position 171 in SEQ ID NO: 1 is substituted with serine ( 55) Leucine at position 175 of SEQ ID NO: 1 is substituted with arginine (56) Asparagine at position 180 of SEQ ID NO: 1 is substituted with serine (57) Isoleucine at position 188 of SEQ ID NO: 1 is substituted with valine
  • the amino acid sequence includes the 17th to 192nd amino acid residues in the amino acid sequence of SEQ ID NO: 1 and includes the 17th to 192nd amino acid residues.
  • a polypeptide in which at least one of the following amino acids (58) to (61) is substituted Japanese Patent Application Laid-Open No. 2016-169197.
  • the amino acid sequence includes the 17th to 192nd amino acid residues in the amino acid sequence of SEQ ID NO: 1 and includes the 17th to 192nd amino acid residues.
  • the above (ii) particularly includes the following polypeptides (ii-1) to (ii-3).
  • (Ii-1) the amino acid sequence represented by SEQ ID NO: 1 including the 17th to 192nd amino acid residues, with the proviso that at least the 176th valine is substituted with phenylalanine in the 17th to 192nd amino acid residues.
  • the phenylalanine at position 29 is isoleucine
  • the tyrosine at position 35 is asparagine
  • the glutamine at position 48 is arginine
  • the phenylalanine at position 75 is leucine
  • the asparagine at position 92 is serine
  • the valine at position 117 is glutamic acid
  • the 121st is glutamic acid.
  • the phenylalanine at position 29 is isoleucine
  • the tyrosine at position 35 is asparagine
  • the glutamine at position 48 is arginine
  • the phenylalanine at position 75 is leucine
  • the asparagine at position 92 is serine
  • the valine at position 117 is glutamic acid
  • the 121st is glutamic acid.
  • a polypeptide in which glutamic acid is replaced by glycine and phenylalanine at position 171 is replaced by serine.
  • the amino acid of the Fc-binding protein (for example, the polypeptide of (i) or (ii) above) is exemplified.
  • the sequence may be a polypeptide containing "one or several" amino acid mutations (eg, substitutions, insertions, or deletions). “One or several” may be, for example, 1 to 50, preferably 1 to 40, more preferably 1 to 30, still more preferably 1 to 20, and particularly preferably 1 to 10.
  • the “one or several” amino acid mutations may occur, for example, such that the amino acid substitutions of the above-exemplified Fc-binding proteins selected from the amino acid substitutions of (1) to (61) are conserved.
  • the “one or several” amino acid mutations may occur, for example, at positions other than the amino acid substitutions of the above-mentioned Fc-binding protein selected from the amino acid substitutions (1) to (61).
  • the amino acid of the Fc-binding protein (for example, the polypeptide of (i) or (ii) above) is exemplified. It may be a polypeptide containing an amino acid sequence having high homology to the sequence. “High homology” may mean 70% or more, 80% or more, 90% or more, or 95% or more homology. “Homology” may mean similarity or identity. “Homology” may particularly refer to identity. Amino acid sequence homology can be determined using an alignment program such as BLAST.
  • amino acid sequence identity may mean identity between amino acid sequences calculated using blastp, and specifically, between amino acid sequences calculated using blastp as default parameters. May be the same.
  • the change in the amino acid sequence within the range of homology as described above may be such that, for example, the amino acid substitution of the above-described exemplified Fc-binding protein selected from the amino acid substitutions of (1) to (61) is conserved. May occur.
  • the change in the amino acid sequence within the range of homology as described above is, for example, at a position other than the amino acid substitution of the above-described Fc-binding protein selected from the amino acid substitutions (1) to (61). May occur.
  • ⁇ Fc-binding protein can be produced, for example, by expressing the gene in a host having a gene encoding the Fc-binding protein.
  • the gene encoding the Fc binding protein can be obtained, for example, by cloning, chemical synthesis, mutagenesis, or a combination thereof.
  • the host is not particularly limited as long as it can express the Fc-binding protein.
  • Hosts include animal cells, insect cells, and microorganisms. Animal cells include COS cells, CHO cells, Hela cells, NIH3T3 cells, and HEK293 cells. Insect cells include Sf9 and BTI-TN-5B1-4. Microorganisms include yeasts and bacteria.
  • yeasts of the genus Saccharomyces such as Saccharomyces cerevisiae
  • yeasts of the genus Pichia such as Pichia Pastoris
  • yeasts of the genus Schizosaccharomyces such as Schizosaccharomyces @ pombe.
  • bacteria include bacteria belonging to the genus Escherichia such as Escherichia coli.
  • Escherichia coli include W3110 strain, JM109 strain, and BL21 (DE3) strain.
  • the Fc-binding protein can be produced, for example, by expressing a gene encoding the Fc-binding protein in a cell-free protein synthesis system.
  • insoluble carrier means a carrier that is insoluble in a liquid (for example, a liquid used for adsorbing or eluting an antibody, such as an equilibration solution or an eluate) passed through a column in the method of the present invention.
  • the insoluble carrier may have a functional group (for example, a hydroxy group) for covalently immobilizing the Fc-binding protein.
  • the insoluble carrier include zirconia, zeolite, silica, a carrier derived from an inorganic substance such as coated silica, a cellulose, agarose, a carrier derived from a natural organic polymer such as dextran, polyacrylic acid, polystyrene, polyacrylamide, and poly.
  • Carriers derived from synthetic organic high-molecular substances such as methacrylamide, polymethacrylate, and vinyl polymers are exemplified.
  • the Fc-binding protein can be immobilized on an insoluble carrier as appropriate.
  • the Fc-binding protein can be covalently immobilized on the insoluble carrier using, for example, a functional group (for example, a hydroxy group) for covalently immobilizing the Fc-binding protein provided on the insoluble carrier.
  • a functional group for example, a hydroxy group
  • an activating agent is used to form an activating group that can be covalently bonded to the Fc-binding protein from the hydroxy group, and the activating group and the Fc-binding protein are separated from each other. Can be covalently bonded.
  • the activator for the hydroxy group examples include epichlorohydrin (forming an epoxy group as an activating group), 1,4-butanediol diglycidyl ether (forming an epoxy group as an activating group), and tresyl chloride ( And an activated group (to form a tresyl group) and vinyl bromide (to form a vinyl group as an activating group). Further, after converting a hydroxy group into an amino group, a carboxyl group, or the like, activation can be performed by the action of an activating agent. Specific examples of the activator for an amino group, a carboxyl group, etc.
  • N-succinimidyl 3-maleimidopropionate forming a maleimide group as an activating group
  • 1,1′-carbonyldiimidazole a carbonylimidazole group as an activating group
  • halogenated acetic acid forming a halogenated acetyl group as an activating group
  • the antibody can be adsorbed to the carrier by adding a solution containing the antibody to a column packed with an insoluble carrier having Fc-binding protein immobilized thereon.
  • the solution containing the antibody can be added to the column using, for example, a liquid sending means such as a pump. Adding a liquid to the column is also referred to as "sending the liquid to the column".
  • the conditions for performing the adsorption step such as the amount of the solution containing the antibody, the type of the liquid phase, the liquid phase sending speed, and the column temperature, are not particularly limited as long as the antibody is adsorbed on the carrier.
  • the conditions for performing the adsorption step can be appropriately set according to various conditions such as the type of antibody, the type of Fc-binding protein, the type of insoluble carrier, and the scale of the column.
  • the liquid phase include an equilibration liquid described below.
  • the liquid sending speed is 0.1 mL / min to 1.5 mL / min, 0.2 mL / min to 1.0 mL / min, or 0.4 mL / min to 0 mL. .8 mL / min.
  • the liquid sending speed may be set, for example, so as to be proportional to the square of the inner diameter of the column.
  • the column temperature can be, for example, 0-50 ° C.
  • the column Before adding the solution containing the antibody to the column, the column may be equilibrated with the equilibration solution. That is, the method of the present invention may include a step of equilibrating the column by adding an equilibration liquid to the column before the adsorption step.
  • Equilibration solutions include aqueous buffers. Specific examples of the equilibration solution include a weakly acidic buffer having a pH of 4.0 to 6.9. The components of the buffer can be appropriately selected according to various conditions such as the pH of the buffer.
  • the components of the buffer include phosphoric acid, acetic acid, formic acid, MES (2-morpholinoethanesulphonic acid), MOPS (3-morpholinopropanesulphonic acid), citric acid, succinic acid, glycine, and piperazine.
  • the elution step is a step of eluting the antibody adsorbed on the carrier using an eluate.
  • the antibody adsorbed on the carrier can be eluted by adding the eluate to the column.
  • the conditions of the elution step such as the type of eluate, the eluate sending format, the liquid phase sending speed, and the column temperature, are as long as the antibody is separated in a desired manner.For example, desired separation data can be obtained. As long as it is not particularly limited.
  • the conditions for the elution step can be appropriately set according to various conditions such as the type of antibody, the type of Fc-binding protein, the type of insoluble carrier, and the scale of the column.
  • As the eluate one that weakens the affinity between the antibody and the Fc-binding protein can be used.
  • the eluate includes an aqueous buffer having a lower pH than the liquid phase before elution (for example, an equilibration solution).
  • an equilibration solution for example, an equilibration solution
  • Specific examples of the eluate include an acidic buffer having a pH of 2.5 to 4.5.
  • the eluate may be an acidic buffer having a pH of 2.5 to 4.5.
  • the components of the buffer can be appropriately selected according to various conditions such as the pH of the buffer.
  • the components of the buffer include phosphoric acid, acetic acid, formic acid, MES (2-morpholinoethanesulphonic acid), MOPS (3-morpholinopropanesulphonic acid), citric acid, succinic acid, glycine, and piperazine.
  • the delivery format of the eluate may be, for example, a gradient or an isocratic.
  • the delivery format of the eluate may be, in particular, a gradient. That is, elution may be performed, in particular, by increasing the proportion of eluate in the liquid phase.
  • the gradient may be, for example, a linear gradient, a stepwise gradient, or a combination thereof.
  • the gradient is, for example, from 10% (v / v) to 100% (v / v) of the eluate in the liquid phase in 10 to 60 minutes, 15 to 50 minutes, or 20 to 40 minutes. May be set to increase.
  • the liquid sending speed is 0.1 mL / min to 1.5 mL / min, 0.2 mL / min to 1.0 mL / min, or 0.4 mL / min to 0 mL. .8 mL / min.
  • the liquid sending speed may be set, for example, so as to be proportional to the square of the inner diameter of the column.
  • the column temperature can be, for example, 0-50 ° C.
  • the separated antibody may be obtained by the elution step.
  • the separated antibody may be obtained, for example, as an eluted fraction containing the antibody. That is, a separated antibody is obtained by collecting an eluted fraction containing the separated antibody.
  • the eluted fraction can be collected, for example, by a conventional method.
  • the eluted fraction can be specifically collected by, for example, an automatic fraction collector such as an autosampler.
  • the separated antibody may be recovered from the eluted fraction.
  • the separated antibody can be recovered from the eluted fraction by a conventional method, for example.
  • the separated antibody can be specifically recovered from the eluted fraction by, for example, a known method used for separating and purifying proteins.
  • Separation data (ie, data relating to the separation pattern of the antibody) may be obtained by the elution step.
  • the separation data is not particularly limited as long as it can be used as an index for detecting a risk in the subject, that is, as long as it is correlated with the risk in the subject.
  • the separation data includes characteristics of the separation pattern of the antibody.
  • the characteristics of the antibody separation pattern are also simply referred to as “characteristics”. That is, the step of obtaining separation data may include, for example, a step of obtaining an antibody separation pattern and a step of extracting characteristics of the antibody separation pattern (ie, extracting the characteristics from the antibody separation pattern). .
  • the antibody separation pattern can be obtained by detecting the antibody with a detector.
  • Examples of the detector include a UV detector and a mass detector.
  • Examples of the antibody separation pattern include a chromatogram at the time of elution of the antibody.
  • Features include parameters obtained from the antibody separation pattern that correlate with risk in the subject.
  • the characteristics include the characteristics of the elution peak (that is, the peak of the eluted antibody).
  • Specific characteristics of the elution peak include peak area, peak elution time, peak width, number of detected peaks, and peak height.
  • the elution peak from which features such as peak area and peak height are extracted is also referred to as “target peak”.
  • the characteristics of the elution peak particularly include the peak area and the peak height.
  • the antibody separation pattern may be used for feature extraction as it is or after appropriate correction such as correction of the baseline.
  • the feature may be an absolute value or a relative value.
  • the ratio or difference to the value of the other eluting peak that is, any eluting peak other than the target peak
  • the sum of the values of all the eluting peaks that is, all the eluting peaks including the target peak
  • Relative values include, in particular, ratios to the values of other eluting peaks and ratios to the sum of the values of all eluting peaks.
  • the other elution peak one elution peak may be used, or two or more elution peaks may be used in combination.
  • the peak area specifically includes peak area%.
  • the feature may be corrected, such as a correction based on a peak obtained from an internal standard substance or a correction based on a property of a subject.
  • the feature may be corrected based on the age of the subject. That is, for example, when the feature is affected by the age of the subject, the extracted feature may be corrected based on the age of the subject, and then used in the detection process.
  • the characteristics corrected based on the age of the subject can be used, for example, for detecting a risk for a condition other than aging.
  • the target peak can be appropriately selected according to various conditions such as the type of risk.
  • the target peak includes the first to fourth peaks.
  • the target peak includes a first peak, a second peak, and a third peak. More specifically, the target peak includes the first peak.
  • the first peak can be suitably used, for example, for evaluating the risk of symptoms other than pancreatitis.
  • the second peak can be suitably used, for example, for evaluating the risk of aging.
  • the third peak may be suitably used, for example, for assessing risk for pancreatitis.
  • the third peak can be suitably used, for example, for distinguishing between pancreatitis and pancreatic cancer.
  • the “first to fourth peaks” may respectively mean the first to fourth eluting peaks after the start of elution (for example, after the start of a gradient), unless otherwise specified.
  • the target peak may have a peak area% of 1% or more.
  • the “first to fourth peaks” may mean, in particular, peaks having a peak area% of 1% or more, respectively, which elute first to fourth after the start of elution.
  • first peak refers to a case where the elution step is performed by gradient elution, for example, when the pH of the liquid phase is 5.4 or less, 5.2 or less, 5.0 or less, or 4.8. It may mean the first peak to elute below.
  • first peak refers to a case where the elution step is performed by gradient elution, for example, when the pH of the liquid phase is 5.4 to 4.4, 5.2 to 4.5, or 5.5. It may mean a peak that elutes during a period that is between 0 and 4.6.
  • the detection step uses the separation data (ie, data relating to the separation pattern of the antibody) as an index to determine the risk (ie, the presence or absence of a disease, the risk of developing a disease, the degree of progress of a disease, and / or the progress of aging) in a subject. This is a step of detecting the degree.
  • Immune cells include natural killer cells, monocytes, and macrophages.
  • Examples of the disease include cancer, autoimmune disease, infectious disease, allergy, and inflammatory disease. Any of these diseases can be diseases affected by the activity of immune cells.
  • Cancers include brain, breast, endometrial, cervical, ovarian, esophageal, stomach, appendix, colon, liver, gallbladder, bile duct, pancreas Cancer, adrenal gland cancer, gastrointestinal stromal tumor (GIST), mesothelioma, head and neck cancer, kidney cancer, lung cancer, osteosarcoma, Ewing sarcoma, chondrosarcoma, prostate cancer, testicular tumor, renal cells Cancer, bladder cancer, rhabdomyosarcoma, skin cancer, and anal cancer.
  • Cancers include, in particular, pancreatic, stomach, breast, colon and kidney cancers.
  • Autoimmune diseases include Guillain-Barre syndrome, myasthenia gravis, multiple sclerosis, chronic gastritis, chronic atrophic gastritis, autoimmune hepatitis, primary biliary cholangitis, ulcerative colitis, Crohn's disease, primary Biliary cholangitis, autoimmune pancreatitis, Takayasu arteritis, Goodpasture's syndrome, rapidly progressive glomerulonephritis, megaloblastic anemia, autoimmune hemolytic anemia, autoimmune neutropenia, idiopathic Thrombocytopenic purpura, Basedow's disease, Hashimoto's disease, primary hypothyroidism, idiopathic Addison's disease, type 1 diabetes, chronic discoid lupus erythematosus, localized scleroderma, pemphigus, pustular psoriasis, vulgaris Psoriasis, pemphigus, gestational
  • Infections include bacterial infections, fungal infections, parasitic protozoal infections, parasitic helminth infections, and viral infections.
  • Bacterial infections include streptococci, Staphylococcus aureus, Staphylococcus epidermidis, Enterococci, Listeria, Meningococci, Neisseria gonorrhoeae, pathogenic Escherichia coli, Klebsiella, Proteus, Pertussis, Pseudomonas aeruginosa, Serratia, Citrobacter, Acinetobacter , Enterobacter, Mycoplasma, Clostridium, Rickettsia, Chlamydia, and other various bacterial infections; tuberculosis, nontuberculous mycobacteriosis, cholera, plague, diphtheria, dysentery, scarlet fever, anthrax, syphilis, tetanus, leprosy, Legionella pneumonia, Lepto
  • Fungal infections include aspergillosis, candidiasis, cryptococcosis, trichomycosis, histoplasmosis, pneumocystis pneumonia (Kalini pneumonia).
  • Parasitic protozoan infections include amoebic dysentery, malaria, toxoplasmosis, leishmaniasis, and cryptosporidiosis.
  • Parasitic helminth infections include echinococcosis, schistosomiasis japonica, filariasis, ascariasis, and broad-striped tapeworm infection.
  • Viral infections include influenza, viral hepatitis, viral meningitis, viral gastroenteritis, viral conjunctivitis, acquired immunodeficiency syndrome (AIDS), adult T-cell leukemia, Ebola hemorrhagic fever, yellow fever, cold syndrome, rabies , Cytomegalovirus infection, severe acute respiratory syndrome (SARS), middle east respiratory syndrome (MERS), progressive multifocal leukoencephalopathy, varicella / shingles, herpes simplex, hand-foot-and-mouth disease, dengue fever, Japanese encephalitis, transmission Erythema verruca, infectious mononucleosis, smallpox, rubella, acute poliomyelitis (polio), measles, pharyngeal conjunctival fever (pool fever), Marburg hemorrhagic fever, renal symptomatic hemorrhagic fever, Lassa fever, epidemic Adenitis, West Nile fever, Herpangina, Chikungunya fever.
  • Allergies include anaphylactic shock, allergic rhinitis, conjunctivitis, bronchial asthma, urticaria, atopic dermatitis, hemolytic anemia, idiopathic thrombocytopenic purpura, drug-induced hemolytic anemia, granulocytopenia, thrombocytopenia , Goodpasture syndrome, Serum disease, Systemic lupus erythematosus (SLE), Rheumatism, Glomerulonephritis, Irritable pneumonia, Allergic bronchopulmonary aspergillosis (ABPA), Contact dermatitis, Allergic encephalitis, Transplant rejection, Tuberculosis Cavity, epithelioid granulomas.
  • Inflammatory diseases include diseases induced by inflammatory cytokines.
  • Inflammatory cytokines include IL-6 and TNF- ⁇ .
  • Specific examples of inflammatory diseases include encephalitis, osteomyelitis, meningitis, neuritis, ocular inflammation (laminaritis, scleritis, episcleritis, keratitis, chorioretinitis, retinitis, chorioretinitis) , Blepharitis, conjunctivitis, uveitis, etc.), ear inflammation (otitis externa, otitis media, otitis media, etc.), mastitis, carditis (endocarditis, myocarditis, pericarditis, etc.), blood vessels Inflammation (arteritis, phlebitis, capillary inflammation, etc.), respiratory inflammation (sinusitis, rhinitis, pharyngitis, laryngitis, tracheitis,
  • Oral inflammation stomatitis, gingivitis, gingivostomatitis, glossitis, tonsillitis, siladenitis, parotitis, cheilitis, pulpitis, rhinitis, etc.
  • gastrointestinal inflammation esophagitis, gastritis, gastrointestinal tract
  • Inflammation enteritis, colitis, colitis, duodenitis, ileitis, appendicitis, proctitis, etc.
  • dermatitis cellulitis, sweat glanditis, arthritis, dermatomyositis, myositis, synovitis, tendinitis, Panniculitis, osteomyelitis, osteomyelitis, periosteitis, nephritis, ureteritis, cystitis, ureteritis, ovitis, salpingitis, endometritis, cervicitis, vaginitis, vulvitis, orchitis, Epididymitis, prostatitis
  • age-related diseases include frail (weak), sarcopenia, and locomotive syndrome. Cachexia and any of these age-related diseases can also be inflammatory diseases.
  • the detection of the risk in the subject includes determining whether the subject has a risk or not, and determining whether the subject has a high or low risk.
  • the detection of the presence or absence of a disease includes determining whether the subject may or may not be currently developing the disease, and determining whether or not the subject is currently likely to have the disease. No.
  • detection of the risk of developing a disease it is possible to determine whether or not a subject has the possibility of developing the disease in the future or if there is a possibility of becoming more severe, or that the subject will develop the disease in the future It is possible to determine whether sex or the likelihood of the onset of the disease when it develops is high or low.
  • the detection of the degree of progress of the disease includes determination of whether the current degree of progress of the disease (for example, severity) in the subject is large or small.
  • the detection of the degree of progress of aging includes determination of whether the current degree of progress of aging (for example, severity) in the subject is large or small.
  • “there is a risk in the subject” means, for example, that the subject may currently develop the disease, that the subject may develop the disease in the future, and / or Alternatively, it may mean that if the subject develops the disease in the future, the disease may become severe.
  • “No risk in the subject” means, for example, that the subject is not likely to develop the disease, that the subject is not likely to develop the disease in the future, and / or It may mean that there is no possibility that the examiner will become severe if the disease develops in the future.
  • High risk in the subject means, for example, that the subject is likely to develop the disease at present, that the subject is likely to develop the disease in the future, This means that if the disease develops in the future, it is more likely to be severe, that the subject has a greater progression of the current disease, and / or that the subject has a greater progression of the current aging. May be.
  • Low risk in the subject means, for example, that the subject is less likely to develop the disease at present, that the subject is less likely to develop the disease in the future, It means that if the disease develops in the future, it is unlikely to be severe, that the subject has a small progression of the current disease, and / or that the subject has a small progression of the current aging. May be.
  • the detection step can be performed using, for example, the level of the value of the separated data (that is, whether the value of the separated data is high or low) as an index.
  • the level of the value of the separated data can be determined, for example, by comparing the value of the separated data with a predetermined threshold.
  • the detecting step may include, for example, comparing the value of the separated data with the threshold value. That is, “the value of the separated data is high” may mean that, for example, the value of the separated data is high based on the threshold.
  • the value of the separated data is higher than the threshold value means, for example, that the value of the separated data is greater than or equal to the threshold value, that the value of the separated data is greater than the threshold value, or that the value of the separated data is statistically higher than the threshold value. May mean significantly higher.
  • the value of the separated data is higher based on the threshold value specifically means, for example, that the value of the separated data is 1.01 times or more, 1.02 times or more, 1.03 times or more, 1.05 times or more of the threshold value. Times or more, 1.07 times or more, 1.1 times or more, 1.2 times or more, 1.3 times or more, 1.5 times or more, 1.7 times or more, 2 times or more, 2.5 times or more, or It may mean three times or more.
  • the value of the separated data is low may mean, for example, that the value of the separated data is low based on a threshold.
  • “The value of the separated data is lower than the threshold value” means, for example, that the value of the separated data is less than or equal to the threshold value, that the value of the separated data is less than the threshold value, or that the value of the separated data is statistically lower than the threshold value. May mean significantly lower.
  • “The value of the separated data is low with reference to the threshold value” specifically means, for example, that the value of the separated data is 0.99 times or less, 0.98 times or less, 0.97 times or less, 0.95 times or less of the threshold value. Times or less, 0.93 times or less, 0.9 times or less, 0.85 times or less, 0.8 times or less, 0.7 times or less, 0.6 times or less, 0.5 times or less, 0.4 times or less Or 0.3 times or less.
  • the value of the separation data may be classified into a risk range based on, for example, a threshold.
  • the value of the separated data may be classified into a non-risk range based on a threshold.
  • the value of the separated data may be classified into a dangerous range and a non-critical range based on, for example, a threshold.
  • the “risk range” may mean a range in which there is a high possibility that the subject has a risk with respect to the value of the separated data.
  • non-risk range may mean a range in which there is a high possibility that the subject has no risk with respect to the value of the separated data.
  • the value of the separated data is within the risk range, it may be determined that the subject has a risk or has a high risk. On the other hand, if the value of the separated data is in the non-risk range, the subject may be determined to have no risk or low risk.
  • the value of the peak area (eg, peak area%) and / or peak height (eg, peak height%) of the first peak and / or the second peak is high, there is a risk in the subject.
  • the value of the peak area (for example, peak area%) and / or the peak height (for example, peak height%) of the first peak and / or the second peak is high with respect to the threshold value.
  • the subject may be determined to be at risk or high risk.
  • the range considered to be high based on the threshold value may be the dangerous range.
  • the first peak area% is 14% or more, 15% or more, 16% or more, 17% or more, 18% or more, 19% or more, 20% or more, 21% or more, 22% or more , 23% or more, 24% or more, 25% or more, 26% or more, 27% or more, 28% or more, 29% or more, or 30% or more, there is a risk or a high risk in the subject May be determined. Further, it is determined that the higher the value of the peak area (for example, peak area%) and / or the peak height (for example, peak height%) of the first peak and / or the second peak, the higher the risk in the subject. May be.
  • the value of the peak area (eg, peak area%) and / or peak height (eg, peak height%) of the first peak and / or the second peak is low, there is no risk in the subject.
  • the value of the peak area (for example, peak area%) and / or the peak height (for example, peak height%) of the first peak and / or the second peak is low with respect to the threshold,
  • the subject may be determined to have no or low risk.
  • the range considered to be low based on the threshold may be the non-risk range.
  • the first peak area% is 25% or less, 24% or less, 23% or less, 22% or less, 21% or less, 20% or less, 19% or less, 18% or less, 17% or less.
  • No or low risk in the subject when ⁇ 16%, ⁇ 15%, ⁇ 14%, ⁇ 13%, ⁇ 12%, ⁇ 11%, ⁇ 10%, or ⁇ 9% May be determined.
  • the value of the peak area (for example, peak area%) and / or the peak height (for example, peak height%) of the third peak is low, it is determined that the subject is at risk or has a high risk. You may. Specifically, for example, when the value of the peak area (for example, peak area%) and / or the peak height (for example, peak height%) of the third peak is low with respect to the threshold, the risk is low in the subject. It may be determined that there is or that the risk is high. In this case, a range considered to be low with respect to the threshold value may be a dangerous range. In addition, the lower the value of the peak area (for example, peak area%) and / or the peak height (for example, peak height%) of the third peak, the higher the risk may be determined in the subject.
  • the value of the peak area (for example, peak area%) and / or the peak height (for example, peak height%) of the third peak is high, it is determined that there is no risk or low risk in the subject. You may. Specifically, for example, when the value of the peak area (for example, peak area%) and / or the peak height (for example, peak height%) of the third peak is high with respect to the threshold value, the risk is low in the subject. It may be determined that there is no or low risk. In this case, the range considered to be high based on the threshold value may be the non-risk range. In addition, the risk may be determined to be lower in the subject as the value of the peak area (for example, peak area%) and / or the peak height (for example, peak height%) of the third peak is higher.
  • the risk may be selected, for example, from the risk of symptoms other than pancreatitis.
  • the risk may be selected from, for example, an aging risk.
  • the risk may be selected from, for example, the risk of pancreatitis.
  • determining that a subject is at risk, not, high, or low when a certain separated data meets a certain criterion for example, low or high, or within a certain range. It means that the subject is determined to be at risk, no, high, or low at least in the range that satisfies the criterion, and does not require that the risk be determined in the subject in the range that does not meet the criterion . However, in one aspect, a determination is made that a subject is at risk, absent, high, or low if certain separation data meets certain criteria (eg, low or high, or in a range). If "yes", the subject may be determined as having no, certain, low, or high risk within a range that does not satisfy the criterion, respectively.
  • the threshold value can be appropriately set by those skilled in the art according to various conditions such as the type of separated data and a desired determination accuracy.
  • the threshold may be set, for example, for each symptom to be determined such as a disease or aging.
  • the means for determining the threshold is not particularly limited.
  • the threshold value can be determined, for example, according to a known method used for data analysis for dividing a population into two groups.
  • the threshold value can be determined based on, for example, the value of separation data of an antibody sample obtained from a control subject.
  • the separation data of the antibody sample obtained from the control subject is also referred to as “control separation data”.
  • the control separation data may be used in the detection step by being used in determining the threshold.
  • the control separation data may be used for comparison with the separation data, specifically, by being used for determining a threshold value.
  • the detecting step may include, for example, comparing the separated data with the control separated data.
  • Control subjects include positive controls and negative controls.
  • "Positive control” may mean a subject that can be determined to be at risk or high.
  • a “negative control” may mean a subject that can be determined to be at no risk or low.
  • Examples of the positive control include individuals suffering from or having suffered from the above-mentioned diseases (particularly, the same diseases as those for which a risk is to be detected), individuals who have aged, Individuals having a combination property are included.
  • As a negative control an individual who does not suffer from or has not suffered from the disease exemplified above (particularly, the same disease as the disease whose risk is to be detected), an individual who has not experienced aging, Individuals having the properties of these combinations are included.
  • the threshold may be determined based solely on the value of the separated data measured for the positive control, may be determined based solely on the value of the separated data measured for the negative control, and may be determined based on both the positive and negative controls. May be determined based on the value of the separation data measured for.
  • the threshold may usually be determined based on the value of the separated data measured for both positive and negative controls.
  • the number of the positive control and the negative control is not particularly limited as long as a threshold value at which the risk can be determined with desired accuracy is obtained.
  • the number of positive and negative controls may be one, two or more, respectively. Each of the number of the positive control and the number of the negative control may usually be plural.
  • the number of positive and negative controls may be, for example, 5 or more, 10 or more, 20 or more, or 50 or more, respectively.
  • the number of positive and negative controls may be, for example, up to 10,000, up to 1000, or up to 100, respectively.
  • the threshold value When determining the threshold based on only the value of the separated data measured for the positive control, for example, a value selected from the range from the upper limit to the lower limit of the value of the separated data measured in multiple individuals of the positive control, For example, an average value may be set as the threshold. Further, for example, in the distribution of the values of the separated data measured by a plurality of individuals of the positive control, the threshold value may be determined so that a predetermined ratio of the positive control is included in the risk range. The predetermined ratio may be, for example, 70% or more, 80% or more, 90% or more, 95% or more, 97% or more, or 100%.
  • the threshold value When determining the threshold based on only the value of the separated data measured for the negative control, for example, a value selected from the range from the upper limit to the lower limit of the value of the separated data measured in multiple individuals of the negative control, For example, an average value may be set as the threshold. Further, for example, in the distribution of the values of the separated data measured in a plurality of negative control individuals, the threshold value may be determined so that a predetermined ratio of the negative control is included in the non-risk range. The predetermined ratio may be, for example, 70% or more, 80% or more, 90% or more, 95% or more, 97% or more, or 100%.
  • the threshold When determining the threshold based on both the value of the separated data measured for the positive control and the value of the separated data measured for the negative control, for example, a predetermined percentage of the positive control is included in the risk range, and , The threshold may be determined such that a predetermined percentage of the negative controls fall within the non-risk range. It is preferable that the ratio of the positive control included in the risk range and the ratio of the negative control included in the non-risk range are both higher. These proportions may be, for example, 70% or more, 80% or more, 90% or more, 95% or more, 97% or more, or 100%, respectively.
  • a threshold is set so that either ratio is preferentially increased. You may. For example, in order to reduce the false negative rate, a threshold value may be set so that the proportion of positive controls included in the risk range is preferentially increased.
  • the determination of the threshold may be performed using software, for example.
  • a statistical analysis software may be used to determine a threshold value at which a negative control and a positive control can be statistically most appropriately discriminated. Examples of such software include statistical analysis software such as “R”.
  • the control subject also includes the target subject itself. That is, for example, the risk in the subject may be determined using the fluctuation of the separation data in the subject as an index.
  • “The value of the separated data is high” may include a case where the value of the separated data increases.
  • “The value of the separated data has increased” may specifically mean that the value of the separated data has increased as compared with the past value.
  • “low value of separated data” may include a case where the value of separated data is reduced.
  • “The value of the separated data has decreased” may specifically mean that the value of the separated data has decreased as compared with the past value. That is, the threshold value may be a past value.
  • “Past value” means a value of separation data of an antibody sample obtained from a target subject at a certain point in the past. The target subject at some point in the past may be, for example, a positive control or a negative control.
  • the increase or decrease in the risk in the subject may be determined.
  • “At risk or high” may include an increased risk.
  • the risk has increased” may specifically mean that the risk has increased compared to a certain point in the past.
  • no or low risk may include a case where the risk is reduced.
  • Reduced risk may specifically mean that the risk has decreased compared to a certain point in the past.
  • obtaining certain separated data and using it as an index of risk detection is not limited to obtaining the value of the separated data itself and using it as an index of risk detection, but reflects the value of the separated data. Obtaining another value and using it as a detection index is also included.
  • the expression “obtain the peak area% of the first peak and use it as an index for risk detection” means obtaining the value of the peak area% of the first peak itself. It is not limited to the case where the index is used as a risk detection index, and other values that reflect the value of the peak area% of the first peak, such as the total value of the peak area% of the second to fourth peaks, are obtained. Is included.
  • the result of the risk detection may be used as an index for determining whether to perform a measure for reducing the risk to the subject (hereinafter, also referred to as “risk reduction measure”).
  • risk reduction measure a measure for reducing the risk to the subject
  • an index for determining whether to perform the risk reduction treatment on the subject can be obtained. That is, for example, when it is determined that the subject has a risk or is high by the detection method of the present invention, it may be determined that the subject is to be subjected to the risk reduction treatment.
  • the detection method of the present invention may be used, for example, alone or in combination with other means, as an index for determining whether to perform a risk reduction treatment on a subject.
  • a definitive diagnosis is performed by other means, and then it is determined that a risk reduction treatment is performed on the subject.
  • the risk mitigation action may be a medical action or a non-medical action.
  • Examples of the risk reduction treatment include prevention and treatment of the diseases and aging exemplified above. That is, the present invention may provide a method for preventing or treating a symptom such as a disease or aging.
  • the method of prevention or treatment includes, for example, a step of performing the detection method of the present invention, and a method of preventing or treating a subject when the risk is determined or high in the subject according to the detection method of the present invention.
  • It may be a method for preventing or treating a symptom such as a disease or aging, which includes a step of performing a treatment.
  • prevention or treatment may be performed for a symptom determined to be at risk or high in a subject by the detection method of the present invention.
  • Prevention or treatment can be performed by, for example, general means (for example, medication or surgery) for each symptom.
  • a separation data by separating the antibody of the subject based on a sugar chain structure characteristic of a risk for a symptom such as a specific disease or aging. By comparing with such separated data, such a risk can be easily detected. Also, by obtaining separated data before and / or after any treatment (medication, surgery, etc.) for the disease and comparing it with the reference separated data, monitoring of the treatment progress of the disease and determination of a policy for the treatment can be performed. Becomes possible.
  • the reference separation data includes separation data of a control subject.
  • the reference separated data specifically, separated data of the same subject at another time point (for example, at a normal time or at the time of developing the same disease), separated data of a healthy subject, and occurrence of the same disease
  • a risk such as a risk of having a disease or a risk of developing a disease by using separated data of a healthy person (model) as model separated data and comparing the separated data of a subject with the model separated data. It becomes. Furthermore, by separating the fraction of the peak that is the cause of the difference between the separation data of the model and the subject, the difference in the sugar chain pattern of the antibody between the healthy subject (model) and the subject can be extracted. In addition, it is also possible to monitor the disease of the patient by using the separated data at a certain point of the patient as model separated data and comparing the separated data of the same patient at another point of time with the model separated data.
  • sugar chain structure related to a specific disease include the presence or absence of addition of sialic acid, and differences in the amount of sialic acid added.
  • sialic acid and galactose added to the antibody decreases, and the presence or absence and content of sialic acid or galactose, It is possible to easily evaluate the difference from a person.
  • antibodies can be separated as a whole of sugar chain structures based on the function of Fc binding without specifying individual sugar chain structures.
  • a feature can be extracted as separated data based on the function of Fc binding as a whole sugar chain structure, which is not clarified by the known correlation between the amount of sialic acid and galactose and a disease. Therefore, it is possible to accurately evaluate the risk such as the presence or absence of the disease and the risk of developing the disease.
  • the type of sugar chain that binds to IgG is partially controlled by B cells that produce antibodies, and according to Non-Patent Document (Mol. ⁇ Cell. ⁇ Proteome., 10, M110.004655 (2011)), Since it has been reported that the sugar chain modification changes, the secretion of the cytokine can also be evaluated based on the pattern of the sugar chain binding to IgG.
  • Cytokines are substances released from cells and are associated with various diseases. For example, it is known that the secretion of inflammatory cytokines such as IL-6 and TNF- ⁇ increases with aging, which leads to a decrease in exercise and cognitive functions such as frail (weakness) and sarcopenia.
  • the method of the present invention It is also possible to evaluate the risk of developing these age-related diseases.
  • the inflammatory cytokines released in association with malignant tumors cause a debilitating state (cachexia) such as weight loss of cancer patients
  • the method of the present invention is also useful in evaluating cachexia. It is a useful method.
  • the strength of the affinity of the antibody for the Fc-binding protein according to the present invention affects the activity of natural killer cells and immune cells such as monocytes and macrophages that have damage or phagocytosis on the binding substance bound by the antibody. Therefore, by detecting the difference in the affinity, it becomes possible to evaluate the risk of developing a disease affected by natural killer cells, monocytes, or macrophages, or affected by phagocytosis.
  • diseases include cancer, autoimmune diseases, infectious diseases, allergies, and inflammatory diseases.
  • Infections include opportunistic infections.
  • Opportunistic infections are infections caused by pathogens that do not cause infection in a healthy state. Pathogens include viruses, bacteria, fungi, protozoa.
  • the effect of the antibody acquired by vaccination or disease on activation of immune cells can be evaluated from the strength of the affinity of the antibody for the Fc-binding protein.
  • the risk of developing an infectious disease can also be accurately predicted by measuring the affinity of the antibody for the Fc-binding protein.
  • Antibody mixture provides an antibody mixture having a specific composition. This mixture is also referred to as the antibody mixture of the present invention.
  • the antibody mixture of the present invention can be produced, for example, by the antibody producing method of the present invention.
  • the antibody mixture of the present invention can be produced, for example, as an eluted fraction containing the antibody.
  • the antibody mixture of the present invention is a composition containing two or more antibodies, and is at least two of the following I to IX (for example, 2, 3, 4, 5, 6, 7, 8) , Or 9): I. A value obtained by dividing the content of the antibody having G1Fa by the content of the antibody having G0F is 0.4 or less by weight; II. A value obtained by dividing the content of the antibody having G2F by the content of the antibody having G0F is 0.2 or less by weight; III. The content of the antibody with G2F + 2SA divided by the content of the antibody with G0F is less than or equal to 0.03 by weight; IV.
  • the value obtained by dividing the content of the antibody having G1Fb by the content of the antibody having G1Fa is 0.5 or more by weight; V. A value obtained by dividing the content of the antibody having G2F by the content of the antibody having G1Fb is 0.6 or less by weight; VI. A value obtained by dividing the content of the antibody having G2F + SA by the content of the antibody having G1Fb is 0.3 or less by weight; VII. The content of the antibody with G2F + 2SA divided by the content of the antibody with G1Fb is less than or equal to 0.12 by weight; VIII. The ratio of the content of the antibody having G2 + SA to the total content of the antibody is 0.2% or less by weight; IX. The ratio of the content of the antibody having G2 + 2SA to the total content of the antibody is 0.2% or less by weight.
  • the antibody mixture of the present invention is a composition containing two or more antibodies, and is at least two of the following I to IX (for example, 2, 3, 4, 5, 6, 7, 8) , Or 9): I. A value obtained by dividing the content of the antibody having G1Fa by the content of the antibody having G0F is 1.8 or more by weight; II. A value obtained by dividing the content of the antibody having G2F by the content of the antibody having G0F is 0.6 or more by weight; III. The content of the antibody with G2F + 2SA divided by the content of the antibody with G0F is greater than or equal to 0.06 by weight; IV.
  • a value obtained by dividing the content of the antibody having G1Fb by the content of the antibody having G1Fa is 0.3 or less by weight; V. The content of the antibody with G2F divided by the content of the antibody with G1Fb is greater than or equal to 3.0 by weight; VI. A value obtained by dividing the content of the antibody having G2F + SA by the content of the antibody having G1Fb is 0.6 or more by weight; VII. The content of the antibody with G2F + 2SA divided by the content of the antibody with G1Fb is greater than or equal to 0.3 by weight; VIII. The ratio of the content of the antibody having G2 + SA to the total content of the antibody is 2% or more by weight; IX. The ratio of the content of the antibody having G2 + 2SA to the total content of the antibodies is 0.6% or more by weight.
  • the use of the antibody mixture of the present invention is not particularly limited.
  • the antibody mixture of the present invention can be used, for example, for diagnostic applications. Diagnostic uses include detection of risks (ie, the presence or absence of a disease, the risk of developing a disease, the degree of progression of a disease, and / or the degree of progression of aging) in a subject. That is, when the antibody mixture of the present invention is obtained by separating the antibody obtained from the subject by the separation method of the present invention or the like, the present invention relates to the antibody separation pattern when the antibody mixture of the present invention is obtained.
  • the risk in the subject can be detected using the data as an index. Further, the risk in the subject may be detected using the pattern of the sugar chain structure in the antibody mixture of the present invention as an index.
  • Fc-Binding Protein-Immobilized Gel Example 1 Preparation of Val176 amino acid substitution of FcR9 For FcR9 (SEQ ID NO: 2) prepared by the method described in WO2015 / 199154, the 176th valine of the Fc-binding protein (SEQ ID NO: 2) An Fc-binding protein was prepared in which the 176th Val in the amino acid number of SEQ ID NO: 1 was substituted with phenylalanine.
  • the plasmid pET-FcR9 (WO2015 / 199154) containing a polynucleotide encoding FcR9 (SEQ ID NO: 3) was subjected to amino acid substitution using PCR, and FcR9 obtained by substituting Val176 for phenylalanine in FcR9.
  • a binding protein was made.
  • FcR9 (SEQ ID NO: 2) is an Fc-binding protein containing a wild-type Fc ⁇ RIII extracellular region shown in SEQ ID NO: 4, in which Val at position 43 is replaced with Glu (corresponding to position 27 in SEQ ID NO: 1) and Phe at position 45 To Ile (corresponding to position 29 in SEQ ID NO: 1), Tyr at position 51 to Asn (corresponding to position 35 in SEQ ID NO: 1), Gln at position 64 to Arg (corresponding to position 48 in SEQ ID NO: 1), The 91st Phe is Leu (corresponding to 75th in SEQ ID NO: 1), the 108th Asn is Ser (corresponding to 92nd in SEQ ID NO: 1), and the 133rd Val is Glu (117th in SEQ ID NO: 1) 137th Glu as Gly (corresponding to 121st in SEQ ID NO: 1) and 187th Phe as Ser (corresponding to 171th in SEQ ID NO: 1). ) Is an amino acid substituted Fc binding proteins.
  • FcR9 (SEQ ID NO: 2) prepared by the method described in WO2015 / 199154 in order to replace valine at position 176 of the Fc binding protein (Val at position 176 in the amino acid number of SEQ ID NO: 1) with phenylalanine )
  • plasmid pET-FcR9 (described in WO2015 / 199154) containing a polynucleotide (SEQ ID NO: 3) encoding SEQ ID NO: 5 (5′-TAATACGACTCACTATAGGGG-3 ′) and SEQ ID NO: 6 (5′-CATTTTTGCTGCCGAACAGCCCCACGCAGGG-).
  • the reaction solution is heat-treated at 95 ° C. for 2 minutes, and the first step is performed at 95 ° C. for 30 seconds.
  • the obtained PCR product was designated as V176p1.
  • Plasmid pET-FcR9 (described in WO2015 / 199154) containing a polynucleotide (SEQ ID NO: 3) encoding FcR9 (SEQ ID NO: 2) prepared by the method described in WO2015 / 199154 as a template, and SEQ ID NO: 7 (5′-TATGCTAGTTATTGCTCAG-3 ′) and a reaction solution similar to the composition shown in Table 1 was prepared using an oligo primer having the sequence described in SEQ ID NO: 8 (5′-cctgccgttgggctgTTCGGCAGCAAAAATG-3 ′). A heat treatment is performed at 95 ° C.
  • PCR was performed by heat treatment at 72 ° C. for 7 minutes.
  • the obtained PCR product was designated as V176p2.
  • PCR was performed using the PCR product V176p obtained in (3) as a template and oligonucleotides having the sequences of SEQ ID NOS: 5 and 7 as PCR primers.
  • the reaction solution was heat-treated at 98 ° C. for 5 minutes, a first step at 98 ° C. for 10 seconds, a second step at 55 ° C. for 5 seconds, and a reaction at 72 ° C. The reaction was performed for 30 cycles in which the 1st step was defined as one cycle.
  • the polynucleotide obtained in (4) is digested with restriction enzymes NcoI and HindIII, and ligated to an expression vector pETMalE (JP-A-2011-206046) which has been digested with restriction enzymes NcoI and HindIII in advance.
  • Escherichia coli BL21 (DE3) strain manufactured by Nippon Gene was transformed.
  • transformant was cultured in an LB medium supplemented with 50 ⁇ g / mL kanamycin. Plasmids were extracted from the recovered cells (transformants).
  • the polynucleotide encoding human Fc ⁇ RIIIa of the obtained plasmid and the region around the polynucleotide were subjected to a cycle sequencing reaction using BigDye Terminator v3.1 Cycle Sequencing Kit (manufactured by Life Technologies) based on the chain terminator method.
  • the nucleotide sequence was analyzed using an automated DNA sequencer Applied Biosystems 3130 Genetic Analyzer (manufactured by Life Technologies). In this analysis, an oligonucleotide consisting of the sequence of SEQ ID NO: 5 (5'-TAATACGACTCACTATAGGGG-3 ') or SEQ ID NO: 7 (5'-TATGCTAGTTATTGCTCAG-3') was used as a primer for sequencing.
  • SEQ ID NO: 9 a transformant expressing Fc-binding protein in which Val176 of FcR9 was replaced with Phe was obtained.
  • Example 2 Preparation of Fc-binding protein (FcR9_F_Cys) to which a cysteine tag is added
  • An expression vector containing the polynucleotide of SEQ ID NO: 10 encoding the amino acid sequence of SEQ ID NO: 9 prepared in Example 1 PCR was performed using pET-FcR9_F as a template.
  • the primers used in the PCR were SEQ ID NO: 11 (5'-TAGCCATGGGCCATGCGTACCGAAGATCTGCCGAAAGC-3 ') and SEQ ID NO: 12 (5'-CCCAAGCTTATCCCGCAGGTATCGTTGCGGCACCCTTGGG.
  • reaction solution was heat-treated at 98 ° C. for 5 minutes, a first step at 98 ° C. for 10 seconds, a second step at 55 ° C. for 5 seconds, and a reaction at 72 ° C.
  • the reaction was performed by repeating the reaction in which the third step of one minute was defined as one cycle was repeated 30 times.
  • the polynucleotide obtained in (1) is purified, digested with restriction enzymes NcoI and HindIII, and then digested with restriction enzymes NcoI and HindIII in advance, and the expression vector pTrc-PelBV3 prepared by the method described in WO2015 / 199154. And the ligation product was used to transform E. coli W3110 strain.
  • the region from the 1st methionine (Met) to the 22nd alanine (Ala) is an improved PelB signal peptide
  • the region from the 24th glycine (Gly) to the 199th glutamine (Gln) has Fc binding property.
  • the amino acid sequence of the protein corresponding to the region from position 17 to position 192 of SEQ ID NO: 1), and the glycine (Gly) at position 200 to glycine (Gly) at position 207 are cysteine tag sequences.
  • Example 3 Preparation of FcR9_F_Cys (1) 400 mL of 2YT liquid medium (peptone 16 g / L, yeast extract, containing 100 ⁇ g / mL carbenicillin in a 2 L baffle flask containing the transformant expressing FcR9_F_Cys prepared in Example 2) (10 g / L, 5 g / L sodium chloride), and precultured by aerobically shaking at 37 ° C. overnight.
  • 2YT liquid medium peptone 16 g / L, yeast extract, containing 100 ⁇ g / mL carbenicillin in a 2 L baffle flask containing the transformant expressing FcR9_F_Cys prepared in Example 2
  • 2YT liquid medium peptone 16 g / L, yeast extract, containing 100 ⁇ g / mL carbenicillin in a 2 L baffle flask containing the transformant expressing FcR9_F_Cys prepared in Example 2
  • the feed medium (glucose 248.9 g / L, yeast extract 83.3 g / L, magnesium sulfate heptahydrate 7.2 g / L) is dissolved in dissolved oxygen (DO). ).
  • the collected cells were suspended in 20 mM Tris-HCl buffer (pH 7.0) at a concentration of 5 mL / 1 g (cells), and an ultrasonic generator (Insonator 201M (trade name), manufactured by Kubota Corporation) ) Was disrupted at 4 ° C. for about 10 minutes at an output of about 150 W.
  • the cell lysate was centrifuged twice at 8000 rpm for 20 minutes at 4 ° C., and the supernatant was recovered.
  • the eluate obtained in (6) was packed with 90 mL of IgG Sepharose (manufactured by GE Healthcare) previously equilibrated with 20 mM Tris-HCl buffer (pH 7.4) containing 150 mM sodium chloride. 20 columns (manufactured by GE Healthcare) were applied. After washing with the buffer used for equilibration, elution was performed with 0.1 M glycine hydrochloride buffer (pH 3.0). The pH of the eluate was returned to around neutral by adding 1/4 of the amount of the eluate to 1 M Tris-HCl buffer (pH 8.0).
  • An FcR9_F column was prepared by packing 1.2 mL of the FcR9_F-immobilized gel prepared in (1) into a ⁇ 4.6 mm ⁇ 75 mm stainless steel column.
  • Example 5 Separation of human-derived antibody using Fc-binding protein (FcR9_F) -immobilized gel
  • FcR9_F Fc-binding protein
  • each fraction was collected by repeatedly collecting peaks C and D in FIG. 2, which are characteristic separation peaks of human-derived antibodies.
  • Example 6 Analysis of Sugar Chain Structure of Monoclonal Antibody Structural analysis of the sugar chain of the antibody contained in the peak A and peak B fractions separated in Example 4 was carried out in the same manner as the method described in JP-A-2016-169197. It was carried out in. The results are shown in FIG. Man represents mannose, GlcNAc represents N-acetylglucosamine, Gal represents galactose, Fuc represents fucose, and NeuAc represents N-acetylneuraminic acid.
  • Example 7 Analysis of Sugar Chain Structure of Human-Derived Antibody Structural analysis of the sugar chain of the antibody contained in the fraction of peak C and peak D fractioned in Example 5 was performed in the same manner as in Example 6, The results of the analysis of the sugar chain structure of the antibody contained in the fraction of peak D are shown in FIG.
  • Example 6 and Example 7 From the results of Example 6 and Example 7, it was found that the presence or absence of galactose contributed to the separation of the antibody by using the FcR column packed with the gel on which the Fc binding protein was immobilized (see Table 3 for G0F). Comparison of the composition ratio of A and B, and similarly comparison of G1F and G2F. The number between the abbreviations G and F indicates the number of galactose.) Similarly, it is clear that antibodies are separated by the presence or absence of sialic acid. It became. Furthermore, comparison of FIG. 3 and FIG. 4 revealed that human-derived gamma globulin has a human-specific sugar chain structure unlike Rituxan, a mouse chimeric antibody that is a commercially available antibody drug.
  • an antibody having a sugar chain structure to which sialic acid is added can serve as an index of a specific disease, and therefore, by using the method of the present invention, simple measurement of disease can be achieved. In addition, early detection of abnormalities by comparison with healthy persons, prognostic management of affected patients, and the like can be performed.
  • Example 8 Separation of human-derived antibodies of different ages using Fc-binding protein (FcR9_F) -immobilized gel (1) Blood was collected from a healthy individual who obtained informed consent. The age and gender of healthy subjects are shown below. (A sample) 36 years old, woman (B sample) 44 years old, woman (C sample) 55 years old, woman
  • the separation pattern obtained in (3) is defined as a first peak, a second peak, a third peak, and a fourth peak in the order of the elution time which is shortest after the application of the pH gradient, and the third peak is defined.
  • the separation pattern obtained in (3) is defined as a first peak, a second peak, a third peak, and a fourth peak in the order of the elution time which is shortest after the application of the pH gradient, and the third peak is defined.
  • Example 8 The results of Example 8 are shown in FIG. It can be seen that as the age increases in the order of the B sample and the C sample as compared with the A sample, the proportion of gamma globulin which is eluted earlier increases. In particular, it can be seen that the peak area% of the first peak and the second peak is increased in the sample C as compared with the sample A and the sample B. The fact that the proportion of gamma globulin having a long elution time is large means that the gamma globulin has a high binding ability to natural killer cells, monocytes and macrophages, and can promote the activation of the cells.
  • Example 9 Separation of human-derived antibodies of different ages using an Fc-binding protein-immobilized gel (1) Blood was collected from a healthy subject who obtained informed consent. The age group and the number of samples of healthy subjects are shown below. 18-29: 23 specimens 30-39: 21 specimens 40-49: 21 specimens 50-59: 24 specimens 60-75: 15 specimens
  • Serum obtained by centrifuging the blood collected in (1) was diluted 10-fold with PBS, and then passed through a filter having a diameter of 0.2 ⁇ m (Merck @ Millipore) to prepare a measurement sample.
  • a gamma globulin separation pattern was obtained in the same manner as in Example 8 (3) except that 10 ⁇ L of the measurement sample obtained in (2) was added at a flow rate of 0.6 mL / min.
  • the separation pattern obtained in (3) is defined as a first peak, a second peak, a third peak, and a fourth peak in order of the elution time which is shortest after the application of the pH gradient, and the first peak is defined.
  • the value obtained by dividing the area value of by the total area value from the start of the application of the pH gradient to the end of the application of the pH gradient was defined as the first peak area%.
  • Example 9 The results of Example 9 are shown in FIG. Gamma globulin eluted earlier because the value of the first peak area% significantly increased as the age increased in the order of the sample in the 50's and the sample in the age of 60 or more as compared with the sample under the age of 50 It can be seen that the ratio of increases. Also, it can be seen that, even in a sample younger than 50 years old, a sample having a high value of the first peak area% exists at a low ratio. This result indicates that the immune activity decreases with aging when evaluated as a population, and indicates that the immune activity can be reduced even in young people when evaluated as an individual.
  • Example 10 Isolation of gamma globulin from cancer patients
  • Gamma globulin was isolated in the same manner as in Example 9, except that blood was collected from healthy subjects who obtained informed consent and pancreatic cancer, gastric cancer, and breast cancer patients. Then, the first peak area% was determined.
  • Example 11 Separation of gamma globulin from a patient with an autoimmune disease
  • Gamma globulin was separated by the same method as in Example 9 except that rheumatism from which informed consent was obtained and blood collected from a patient with Sjogren's syndrome were used. The area% was determined.
  • Example 10 and 11 are shown in FIGS.
  • pancreatic cancer panel a in FIG. 7
  • stomach cancer panel b in FIG. 7
  • breast cancer panel c in FIG. 7
  • rheumatism panel a in FIG. 8
  • Sjogren's syndrome In the patient of FIG. 8 panel b
  • the value of the first peak area% was significantly increased. Further, it was found that the value of the first peak area% increased depending on the stage of the cancer disease.
  • stage is based on the stage classification defined by the International Union for Cancer Control (UICC).
  • the immune activity related to the Fc-binding protein is reduced in patients with cancer diseases and autoimmune diseases, and the first peak area% is significantly increased especially in cancer diseases. This indicates that the immune activity is greatly reduced.
  • cancer diseases or autoimmune diseases it is considered that the decrease in the immune activity is a factor causing the onset or the onset decreases the immune activity. Since the value of the first peak area% of the healthy subject and the specimen is different between the disease specimen, it can be used for diagnosis of the disease, and the value of the first peak area% depending on the stage of the cancer disease. Can be used to evaluate the progression and malignancy of cancer.
  • Example 12 Evaluation of Gamma Globulin Separation Derived from Cancer Patients Corrected by Age (1) A method similar to that of Example 9 except that blood collected from renal and colon cancer patients who obtained informed consent was used. The gamma globulin was separated by the above, and the first peak area% was determined.
  • Example 12 The results of Example 12 are shown in FIG. Comparing a healthy subject's sample with pancreatic, renal, and colon cancer based on the corrected first peak area% obtained by correcting the first peak area% that increases with aging, The corrected first peak area% significantly increased as compared with the control.
  • the corrected first peak was similar to the significant increase in the first peak area% found in Example 10 in which a healthy subject sample was compared with pancreatic cancer based on the uncorrected first peak area%. Since the increase was also confirmed in the area%, it can be seen that the difference in the IgG separation pattern between the healthy subject and the cancer patient can be confirmed even when the correction considering the age is performed.
  • the separation pattern obtained in (1) is defined as a first peak, a second peak, and a third peak in order of a peak having a shorter elution time after the application of a pH gradient, and the area value of the first peak is defined as The value obtained by dividing by the total area value from the start to the end of the application of the pH gradient was defined as the first peak area%, and the corrected first peak area was corrected in the same manner as in Examples 12 (2) and (3). % And the area of the third peak was also determined.
  • Example 13 The results of Example 13 are shown in FIG. In panel (a) of FIG. 10, the value of the corrected first peak area% was significantly reduced in patients with pancreatitis as compared with the pancreatic cancer patient sample. In addition, when compared with the healthy subject sample of Example 12, the corrected first peak area% of the patient with pancreatitis has almost the same value, and it can be seen that the value of the corrected first peak area% does not change only when the healthy person has pancreatitis. . When the discrimination between pancreatic cancer and pancreatitis was evaluated by the AUC value based on the ROC curve using the corrected first peak area%, it was 0.83. On the other hand, in the panel (b) of FIG.
  • pancreatic cancer when compared with the third peak area, the value was significantly increased in pancreatitis patients as compared with pancreatic cancer patient samples.
  • AUC value When the discriminability between pancreatic cancer and pancreatitis is evaluated by the AUC value based on the ROC curve at the third peak area, it is 1.00. It is possible to determine whether or not it is accurate.
  • Example 14 Gamma Globulin Separation Evaluation from Healthy Smoking / Non-smoking Persons
  • Gamma globulin was separated in the same manner as in Example 12 except that blood collected from healthy persons who obtained informed consent from smoking and non-smoking were used. Then, the corrected first peak area% was determined.
  • Example 14 The results of Example 14 are shown in FIG.
  • the value of the corrected first peak area% was significantly increased in the healthy person who smoked compared to the healthy person who did not smoke.
  • the increase in the value of the corrected first peak area% is the same as the tendency detected from the cancer patient from Example 12, and it can be seen that smoking increases the risk of cancer.
  • Example 15 Separation of human-derived antibodies of different ages using different Fc binding protein (FcR9_F or FcR9_V) immobilized gel (1)
  • the amino acid sequence of the expressed polypeptide is represented by SEQ ID NO: 17, and the polypeptide encoding the polypeptide is represented by SEQ ID NO: 17.
  • a cysteine-tagged Fc-binding protein (FcR9_V_Cys) was prepared in the same manner as in Example 3, except that the expression vector whose nucleotide sequence was shown in SEQ ID NO: 18 was used.
  • the separation pattern obtained in (4) is defined as a first peak, a second peak, and a third peak in the order of elution time after the start of the application of the pH gradient, and the area value of the first peak is defined as The value obtained by dividing by the total area value from the start of the application of the pH gradient to the end thereof was defined as the first peak area%. Furthermore, the value obtained by dividing the height of the first peak by the total value of the heights of the respective peaks was defined as the first peak height%.
  • Example 15 The results of Example 15 are shown in FIG. In panel (a) of FIG. 12, it is a figure which shows the measured value of a healthy subject sample measured with the FcR9_F column or the FcR9_V column. From this figure, it can be seen that the value of the first peak height% increases with aging, and further, using a column packed with an insoluble carrier on which two types of Fc-binding proteins having different amino acid sequences are immobilized. Also, the same tendency that the first peak height% increased with aging was obtained. This result indicates that it is possible to detect the disease, the risk of developing the disease and / or the degree of progress of the disease, and the degree of progress of aging if the Fc-binding protein is not limited to the amino acid sequence. .
  • the first peak area% and the first peak height% are shown as the measured values of the healthy subject measured by the FcR9_V column, respectively. Comparing the area% and the height% respectively, it can be seen that the value increases with aging in both cases, and that it is possible to evaluate accurately using either value.
  • antibodies can be separated based on the difference in sugar chain structure.
  • the presence or absence of a disease in a subject, the risk of developing a disease, the degree of progression of a disease, and / or the degree of progression of aging can be detected using the characteristics of an antibody separation pattern as an index. .

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Peptides Or Proteins (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The present invention addresses the problem of providing a method for detecting the presence or absence of a disease, the risk of development of a disease, the degree of progression of a disease and/or the degree of progression of aging in a subject. The problem can be solved by a method comprising the following steps (a) to (c): (a) adding a solution containing an antibody obtained from a subject to a column filled with an insoluble carrier having an Fc-binding protein immobilized thereon, thereby causing the adsorption of the antibody onto the carrier; (b) eluting the antibody adsorbed on the carrier using an eluting solution, thereby obtaining data associated with a separation pattern of the antibody; and (c) detecting the presence or absence of a disease, the risk of development of a disease, the degree of progression of a disease and/or the degree of progression of aging in the subject employing the data as a measaure.

Description

抗体の分離方法および疾患の検査方法Antibody separation method and disease test method
 本発明は、抗体の分離方法およびその利用に関する。本発明は、具体的には、例えば、被検者から得た抗体を分離した際の分離パターンの特徴を指標として、被検者における疾患の有無、疾患の発症リスク、疾患の進行度合い、及び/又は加齢の進行度合いを検出する方法に関する。 (4) The present invention relates to a method for separating an antibody and its use. The present invention, specifically, for example, as an index the characteristics of the separation pattern when separating antibodies obtained from the subject, the presence or absence of the disease in the subject, the risk of developing the disease, the degree of disease progression, and And / or a method for detecting the degree of progress of aging.
 近年、ガンや免疫疾患等の治療に抗体を含む医薬品(抗体医薬品)が用いられている。抗体医薬品に用いる抗体は、遺伝子工学的手法により得られた、当該抗体を発現可能な細胞(たとえば、チャイニーズハムスター卵巣(CHO)細胞等)を培養後、カラムクロマトグラフィー等を用いて高純度に精製し製造されている。しかし、近年の研究により、そのようにして製造される抗体は酸化、還元、異性化、糖鎖付加等の修飾を受けることで多様な分子の集合体となっていることが判明しており、薬効や安全性への影響が懸念されている。特に、抗体に結合している糖鎖構造は、抗体医薬品の活性、動態、および安全性に大きな影響を与えることが報告されており、詳細な糖鎖構造の解析が重要である(非特許文献1)。また、リウマチ等の疾患では、血液中の抗体に付加される糖鎖構造の変化が知られており(非特許文献2および3)、抗体に付加された糖鎖構造を分析することで疾患を診断できる可能性がある。 In recent years, drugs containing antibodies (antibody drugs) have been used for the treatment of cancer and immune diseases. Antibodies used for antibody drugs are purified to high purity using column chromatography or the like after culturing cells capable of expressing the antibody (eg, Chinese hamster ovary (CHO) cells) obtained by genetic engineering techniques. Manufactured. However, recent studies have revealed that antibodies produced in such a manner are subjected to modifications such as oxidation, reduction, isomerization, and glycosylation to form aggregates of various molecules. There are concerns about the effects on drug efficacy and safety. In particular, it has been reported that the sugar chain structure bound to an antibody greatly affects the activity, kinetics, and safety of an antibody drug, and detailed analysis of the sugar chain structure is important (Non-patent Documents) 1). In diseases such as rheumatism, changes in the sugar chain structure added to antibodies in blood are known (Non-Patent Documents 2 and 3), and the disease is analyzed by analyzing the sugar chain structure added to the antibodies. Diagnosis may be possible.
 抗体医薬に用いる抗体の糖鎖構造を分析する方法として、糖鎖の切り出しを含むLC-MS分析(特許文献1および特許文献2)が主に実施されている。しかしながら、前記分析方法では非常に煩雑な操作を伴い、多大な時間を要する。より簡便な抗体の分子構造の分析方法としては、クロマトグラフィーによる分析が挙げられる。具体的には、ゲルろ過クロマトグラフィーを用いて、抗体を分子量に基づき分離することで凝集体や分解物を分離および定量することが可能である。また、イオン交換クロマトグラフィーにより、抗体分子が有する電荷の違いを分離することができる。しかしながら前述したクロマトグラフィーによる分析では、糖鎖構造等の抗体分子の微小な構造変化を識別できないため、得られる分析結果は限定的であった。 LC As a method for analyzing the sugar chain structure of an antibody used for an antibody drug, LC-MS analysis including cutting out of a sugar chain (Patent Documents 1 and 2) is mainly performed. However, the analysis method involves a very complicated operation and requires a lot of time. A simpler method for analyzing the molecular structure of an antibody is analysis by chromatography. Specifically, it is possible to separate and quantify aggregates and decomposed products by separating antibodies based on molecular weight using gel filtration chromatography. In addition, the difference in charge of the antibody molecule can be separated by ion exchange chromatography. However, in the analysis by the above-mentioned chromatography, since a minute structural change of the antibody molecule such as a sugar chain structure cannot be identified, the obtained analysis result is limited.
 一方、不溶性担体に固定化されたアフィニティーリガンドと抗体との親和性に基づく分析により抗体の性能を測定、判断することが可能であることが報告されている(特許文献3)。しかし、糖鎖構造の違いによる抗体の分離、特に糖鎖構造の違いによるヒト由来抗体の分離は行われていなかった。 On the other hand, it has been reported that the performance of an antibody can be measured and judged by an analysis based on the affinity between an antibody and an affinity ligand immobilized on an insoluble carrier (Patent Document 3). However, separation of antibodies due to differences in sugar chain structure, particularly separation of human-derived antibodies due to differences in sugar chain structure, has not been performed.
特開2016-194500号公報JP 2016-194500 A 特開2016-099304号公報JP 2016-099304 A WO2013/120929号公報WO2013 / 120929
 本発明は、抗体の分離方法を提供することを課題とする。本発明は、一態様において、被検者における疾患の有無、疾患の発症リスク、疾患の進行度合い、及び/又は加齢の進行度合いを検出する方法を提供することを課題とする。 は An object of the present invention is to provide a method for separating an antibody. In one embodiment, an object of the present invention is to provide a method for detecting the presence or absence of a disease in a subject, the risk of developing the disease, the degree of progress of the disease, and / or the degree of progress of aging.
 本発明者らは上記の課題を解決すべく鋭意検討した結果、Fc結合性タンパク質を利用することにより糖鎖構造の違いに基づき抗体を分離できること、および被検者から得た抗体をFc結合性タンパク質を利用して分離した際の分離パターンの特徴を指標として、被検者における疾患の有無、疾患の発症リスク、疾患の進行度合い、及び/又は加齢の進行度合いを検出できることを見出し、本発明を完成させるに至った。 The present inventors have conducted intensive studies to solve the above-mentioned problems. As a result, it was found that antibodies can be separated based on differences in sugar chain structure by using Fc-binding proteins, and that antibodies obtained from subjects can The present inventors have found that the presence / absence of a disease, the risk of developing the disease, the degree of progression of the disease, and / or the degree of progression of aging in the subject can be detected using the characteristics of the separation pattern obtained when separating using proteins as an index. The invention has been completed.
 すなわち、本発明は、以下の通り例示できる。
[1]
 疾患の有無、疾患の発症リスク、疾患の進行度合い、及び/又は加齢の進行度合いの検出方法であって、
 以下の工程(c):
(c)抗体の分離パターンに係るデータを指標として、被検者における疾患の有無、疾患の発症リスク、疾患の進行度合い、及び/又は加齢の進行度合いを検出する工程
 を含み、
 前記データが、抗体の分離パターンの特徴であり、
 前記データが、以下の工程(a)および(b)により得られたものである、方法:
(a)Fc結合性タンパク質を固定化した不溶性担体を充填したカラムに、前記被検者から得た抗体を含有する溶液を添加し、該抗体を該担体に吸着する工程;
(b)前記担体に吸着した抗体を溶出液を用いて溶出し、前記データを得る工程。
[2]
 前記工程(c)の前に、前記工程(a)および(b)を含む、前記方法。
[3]
 前記工程(a)の前に、前記カラムに平衡化液を添加して、該カラムを平衡化する工程を含む、前記方法。
[4]
 前記データの取得が、抗体の分離パターンを得る工程と、該分離パターンから前記特徴を抽出する工程を含む、前記方法。
[5]
 前記特徴が、ピーク面積及び/又はピーク高さである、前記方法。
[6]
 前記特徴が、ピーク面積%及び/又はピーク高さ%である、前記方法。
[7]
 前記特徴が、第1ピーク、第2ピーク、および第3ピークから選択される1種またはそれ以上のピークの特徴である、前記方法。
[8]
 前記特徴が、第1ピークの特徴である、前記方法。
[9]
 前記工程(c)が、前記データを、対照被検者から得た抗体の分離パターンに係るデータと比較する工程を含む、前記方法。
[10]
 前記疾患が、がん、自己免疫疾患、感染症、アレルギー、炎症疾患、悪液質、および加齢関連疾患から選択される1種またはそれ以上の疾患である、前記方法。
[11]
 前記疾患が、膵がん、胃がん、乳がん、大腸がん、腎がん、リウマチ、シェーグレン症候群、および膵炎から選択される1種またはそれ以上の疾患である、前記方法。
[12]
 Fc結合性タンパク質が、以下の(1)~(4)のいずれかのポリペプチドである、前記方法:
(1)配列番号1に記載のアミノ酸配列の17番目から192番目までのアミノ酸残基を含み、但し当該17番目から192番目までのアミノ酸残基において、少なくとも176番目のバリンがフェニルアラニンに置換されたポリペプチド;
(2)配列番号1に記載のアミノ酸配列の17番目から192番目までのアミノ酸残基を含み、但し当該17番目から192番目までのアミノ酸残基において、少なくとも27番目のバリンがグルタミン酸に、29番目のフェニルアラニンがイソロイシンに、35番目のチロシンがアスパラギンに、48番目のグルタミンがアルギニンに、75番目のフェニルアラニンがロイシンに、92番目のアスパラギンがセリンに、117番目のバリンがグルタミン酸に、121番目のグルタミン酸がグリシンに、171番目のフェニルアラニンがセリンに、および176番目のバリンがフェニルアラニンに置換されたポリペプチド;
(3)配列番号1に記載のアミノ酸配列の17番目から192番目までのアミノ酸残基を含み、但し当該17番目から192番目までのアミノ酸残基において、少なくとも27番目のバリンがグルタミン酸に、29番目のフェニルアラニンがイソロイシンに、35番目のチロシンがアスパラギンに、48番目のグルタミンがアルギニンに、75番目のフェニルアラニンがロイシンに、92番目のアスパラギンがセリンに、117番目のバリンがグルタミン酸に、121番目のグルタミン酸がグリシンに、および171番目のフェニルアラニンがセリンに置換されたポリペプチド;
(4)上記(1)~(3)のいずれかのポリペプチドのアミノ酸配列を含み、但し当該アミノ酸配列において、上記置換以外の位置において、1~10個のアミノ酸変異を含む、ポリペプチド。
[13]
 2種またはそれ以上の抗体を含有する組成物であって、以下のIからIXのうち2つ以上の項目に該当する組成物:
I. G1Faを有する抗体の含有量をG0Fを有する抗体の含有量で割った値が重量比で0.4以下である;
II. G2Fを有する抗体の含有量をG0Fを有する抗体の含有量で割った値が重量比で0.2以下である;
III. G2F+2SAを有する抗体の含有量をG0Fを有する抗体の含有量で割った値が重量比で0.03以下である;
IV. G1Fbを有する抗体の含有量をG1Faを有する抗体の含有量で割った値が重量比で0.5以上である;
V. G2Fを有する抗体の含有量をG1Fbを有する抗体の含有量で割った値が重量比で0.6以下である;
VI. G2F+SAを有する抗体の含有量をG1Fbを有する抗体の含有量で割った値が重量比で0.3以下である;
VII. G2F+2SAを有する抗体の含有量をG1Fbを有する抗体の含有量で割った値が重量比で0.12以下である;
VIII. 抗体の総含有量に対するG2+SAを有する抗体の含有量の比率が重量比で0.2%以下である;
IX. 抗体の総含有量に対するG2+2SAを有する抗体の含有量の比率が重量比で0.2%以下である。
[14]
 2種またはそれ以上の抗体を含有する組成物であって、以下のIからIXのうち2つ以上の項目に該当する組成物:
I. G1Faを有する抗体の含有量をG0Fを有する抗体の含有量で割った値が重量比で1.8以上である;
II. G2Fを有する抗体の含有量をG0Fを有する抗体の含有量で割った値が重量比で0.6以上である;
III. G2F+2SAを有する抗体の含有量をG0Fを有する抗体の含有量で割った値が重量比で0.06以上である;
IV. G1Fbを有する抗体の含有量をG1Faを有する抗体の含有量で割った値が重量比で0.3以下である;
V. G2Fを有する抗体の含有量をG1Fbを有する抗体の含有量で割った値が重量比で3.0以上である;
VI. G2F+SAを有する抗体の含有量をG1Fbを有する抗体の含有量で割った値が重量比で0.6以上である;
VII. G2F+2SAを有する抗体の含有量をG1Fbを有する抗体の含有量で割った値が重量比で0.3以上である;
VIII. 抗体の総含有量に対するG2+SAを有する抗体の含有量の比率が重量比で2%以上である;
IX. 抗体の総含有量に対するG2+2SAを有する抗体の含有量の比率が重量比で0.6%以上である。
That is, the present invention can be exemplified as follows.
[1]
The presence or absence of the disease, the risk of developing the disease, the degree of progress of the disease, and / or a method for detecting the degree of progress of aging,
The following step (c):
(C) detecting the presence or absence of a disease in the subject, the risk of developing the disease, the degree of progression of the disease, and / or the degree of progression of aging in the subject using the data relating to the antibody separation pattern as an index,
The data is characteristic of the separation pattern of the antibody,
The method wherein the data is obtained by the following steps (a) and (b):
(A) adding a solution containing an antibody obtained from the subject to a column packed with an insoluble carrier having Fc-binding protein immobilized thereon, and adsorbing the antibody to the carrier;
(B) a step of eluting the antibody adsorbed on the carrier using an eluent to obtain the data.
[2]
The method comprising the steps (a) and (b) before the step (c).
[3]
The above method, comprising a step of adding an equilibration liquid to the column before the step (a) to equilibrate the column.
[4]
The method wherein the obtaining of the data comprises obtaining a separation pattern of the antibody, and extracting the feature from the separation pattern.
[5]
The method, wherein the characteristic is peak area and / or peak height.
[6]
The method wherein the characteristic is peak area% and / or peak height%.
[7]
The method, wherein the characteristic is a characteristic of one or more peaks selected from a first peak, a second peak, and a third peak.
[8]
The method wherein the feature is a feature of a first peak.
[9]
The method wherein the step (c) comprises comparing the data with data relating to an antibody separation pattern obtained from a control subject.
[10]
The above method, wherein the disease is one or more diseases selected from cancer, autoimmune disease, infectious disease, allergy, inflammatory disease, cachexia, and age-related disease.
[11]
The above method, wherein the disease is one or more diseases selected from pancreatic cancer, stomach cancer, breast cancer, colon cancer, kidney cancer, rheumatism, Sjogren's syndrome, and pancreatitis.
[12]
The above method, wherein the Fc binding protein is any one of the following polypeptides (1) to (4):
(1) It includes the 17th to 192nd amino acid residues of the amino acid sequence of SEQ ID NO: 1, provided that at least the 176th valine is substituted with phenylalanine in the 17th to 192nd amino acid residues. A polypeptide;
(2) It includes the 17th to 192nd amino acid residues of the amino acid sequence of SEQ ID NO: 1, provided that at least the 27th valine is the glutamic acid and the 29th amino acid is the 17th to the 192nd amino acid residues. Phenylalanine to isoleucine, 35th tyrosine to asparagine, 48th glutamine to arginine, 75th phenylalanine to leucine, 92nd asparagine to serine, 117th valine to glutamic acid, 121st glutamic acid Is a polypeptide in which is substituted with glycine, phenylalanine at position 171 with serine, and valine at position 176 with phenylalanine;
(3) It includes the 17th to 192nd amino acid residues of the amino acid sequence of SEQ ID NO: 1, provided that at least the 17th to 192nd amino acid residues have at least 27th valine in glutamic acid and 29th in glutamic acid. Phenylalanine to isoleucine, 35th tyrosine to asparagine, 48th glutamine to arginine, 75th phenylalanine to leucine, 92nd asparagine to serine, 117th valine to glutamic acid, 121st glutamic acid Has been replaced by glycine and phenylalanine at position 171 by serine;
(4) A polypeptide comprising the amino acid sequence of the polypeptide of any of (1) to (3) above, provided that the amino acid sequence has 1 to 10 amino acid mutations at positions other than the above substitutions.
[13]
A composition containing two or more antibodies, wherein the composition falls under two or more of the following I to IX:
I. A value obtained by dividing the content of the antibody having G1Fa by the content of the antibody having G0F is 0.4 or less by weight;
II. A value obtained by dividing the content of the antibody having G2F by the content of the antibody having G0F is 0.2 or less by weight;
III. The content of the antibody with G2F + 2SA divided by the content of the antibody with G0F is less than or equal to 0.03 by weight;
IV. The value obtained by dividing the content of the antibody having G1Fb by the content of the antibody having G1Fa is 0.5 or more by weight;
V. A value obtained by dividing the content of the antibody having G2F by the content of the antibody having G1Fb is 0.6 or less by weight;
VI. A value obtained by dividing the content of the antibody having G2F + SA by the content of the antibody having G1Fb is 0.3 or less by weight;
VII. The content of the antibody with G2F + 2SA divided by the content of the antibody with G1Fb is less than or equal to 0.12 by weight;
VIII. The ratio of the content of the antibody having G2 + SA to the total content of the antibody is 0.2% or less by weight;
IX. The ratio of the content of the antibody having G2 + 2SA to the total content of the antibody is 0.2% or less by weight.
[14]
A composition containing two or more antibodies, wherein the composition falls under two or more of the following I to IX:
I. A value obtained by dividing the content of the antibody having G1Fa by the content of the antibody having G0F is 1.8 or more by weight;
II. A value obtained by dividing the content of the antibody having G2F by the content of the antibody having G0F is 0.6 or more by weight;
III. The content of the antibody with G2F + 2SA divided by the content of the antibody with G0F is greater than or equal to 0.06 by weight;
IV. A value obtained by dividing the content of the antibody having G1Fb by the content of the antibody having G1Fa is 0.3 or less by weight;
V. The content of the antibody with G2F divided by the content of the antibody with G1Fb is greater than or equal to 3.0 by weight;
VI. A value obtained by dividing the content of the antibody having G2F + SA by the content of the antibody having G1Fb is 0.6 or more by weight;
VII. The content of the antibody with G2F + 2SA divided by the content of the antibody with G1Fb is greater than or equal to 0.3 by weight;
VIII. The ratio of the content of the antibody having G2 + SA to the total content of the antibody is 2% or more by weight;
IX. The ratio of the content of the antibody having G2 + 2SA to the total content of the antibodies is 0.6% or more by weight.
モノクローナル抗体をFc結合性タンパク質固定化ゲルを充填したカラムで分析した際の分離パターンを示す図。The figure which shows the separation pattern at the time of analyzing a monoclonal antibody with the column packed with the Fc binding protein fixed gel. ヒト由来ガンマグロブリンをFc結合性タンパク質固定化ゲルを充填したカラムで分析した際の分離パターンを示す図。The figure which shows the separation pattern at the time of analyzing the gamma globulin derived from a human with the column packed with the Fc binding protein immobilized gel. モノクローナル抗体をFc結合性タンパク質固定化ゲルを充填したカラムで分離して分取した画分に含まれる抗体の糖鎖構造を示す図。The figure which shows the sugar chain structure of the antibody contained in the fraction isolate | separated and fractionated by the column packed with the Fc binding protein immobilized gel, and the monoclonal antibody. ヒト由来ガンマグロブリンをFc結合性タンパク質固定化ゲルを充填したカラムで分離して分取した画分に含まれる抗体の糖鎖構造を示す図。The figure which shows the sugar chain structure of the antibody contained in the fraction isolate | separated and fractionated by the column packed with the Fc binding protein immobilized gel from human-derived gamma globulin. 年齢の異なるヒト由来ガンマグロブリンをFc結合性タンパク質固定化ゲルを充填したカラムで分析した際の分離パターンを示す図。The figure which shows the separation pattern at the time of analyzing the gamma globulin derived from the human of different age with the column packed with the Fc binding protein fixed gel. 年齢の異なるヒト由来ガンマグロブリンをFc結合性タンパク質固定化ゲルを充填したカラムで分析した際の第1ピーク面積%値のプロットを示す図。The figure which shows the plot of the 1st peak area% value at the time of analyzing the gamma globulin from a human of different age with the column packed with the Fc binding protein immobilized gel. がん患者由来ガンマグロブリンをFc結合性タンパク質固定化ゲルを充填したカラムで分析した際の第1ピーク面積%値のプロットを示す図。The figure which shows the plot of the 1st peak area% value when the gamma globulin derived from a cancer patient is analyzed by the column packed with the Fc-binding protein immobilized gel. 自己免疫疾患患者由来ガンマグロブリンをFc結合性タンパク質固定化ゲルを充填したカラムで分析した際の第1ピーク面積%値のプロットを示す図。The figure which shows the plot of the 1st peak area% value at the time of analyzing the gamma globulin derived from a patient with an autoimmune disease with the column packed with the Fc binding protein immobilized gel. がん患者由来ガンマグロブリンをFc結合性タンパク質固定化ゲルを充填したカラムで分析した際の補正第1ピーク面積%値のプロットを示す図。The figure which shows the plot of the correction | amendment 1st peak area% value when the gamma globulin derived from a cancer patient is analyzed by the column packed with the Fc binding protein immobilized gel. 膵がんおよび膵炎患者由来ガンマグロブリンをFc結合性タンパク質固定化ゲルを充填したカラムで分析した際の補正第1ピーク面積%値および第3ピーク面積のプロットと膵がんおよび膵炎に対するROC曲線を示す図。The plot of the corrected first peak area% value and the third peak area when analyzing gamma globulin derived from pancreatic cancer and pancreatitis patients on a column packed with an Fc-binding protein-immobilized gel and the ROC curve for pancreatic cancer and pancreatitis are shown. FIG. 喫煙および非喫煙の健常者由来ガンマグロブリンをFc結合性タンパク質固定化ゲルを充填したカラムで分析した際の補正第1ピーク面積%値のプロットを示す図。The figure which shows the plot of the correction | amendment 1st peak area% value when gamma globulin derived from a healthy person who smokes and does not smoke is analyzed by the column packed with the Fc-binding protein immobilized gel. 年齢の異なるヒト由来ガンマグロブリンをFc結合性タンパク質固定化ゲルを充填したFcR9_FカラムもしくはFcR9_Vカラムで分析した際の第1ピーク高さ%および第1ピーク面積%値のプロットを示す図。The figure which shows the plot of the 1st peak height% and the 1st peak area% value, when the human-derived gamma globulin of different ages is analyzed by the FcR9_F column or the FcR9_V column packed with the Fc binding protein immobilized gel.
 以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.
<1>方法
 本発明は、Fc結合性タンパク質を利用して抗体を分離する方法を提供する。同方法を、「本発明の分離方法」ともいう。
<1> Method The present invention provides a method for separating an antibody using an Fc-binding protein. This method is also referred to as “separation method of the present invention”.
 本発明の分離方法は、具体的には、以下の工程(a)および(b)を含む、抗体を分離する方法であってよい:
(a)Fc結合性タンパク質を固定化した不溶性担体を充填したカラムに抗体を含有する溶液を添加し、該抗体を該担体に吸着する工程;
(b)前記担体に吸着した抗体を溶出液を用いて溶出する工程。
The separation method of the present invention may specifically be a method for separating an antibody, comprising the following steps (a) and (b):
(A) adding a solution containing an antibody to a column filled with an insoluble carrier having Fc-binding protein immobilized thereon, and adsorbing the antibody to the carrier;
(B) a step of eluting the antibody adsorbed on the carrier using an eluate.
 工程(a)および(b)を、それぞれ、「吸着工程」および「溶出工程」ともいう。 Steps (a) and (b) are also referred to as “adsorption step” and “elution step”, respectively.
 本発明の分離方法により、分離された抗体が得られてよい。すなわち、本発明の分離方法の一態様は、Fc結合性タンパク質を利用して抗体を分離することにより分離された抗体を製造する方法であってもよい。すなわち、溶出工程の一態様は、担体に吸着した抗体を溶出液を用いて溶出し、溶出された抗体を得る工程であってもよい。言い換えると、溶出工程の一態様は、担体に吸着した抗体を溶出液を用いて溶出する工程と、溶出された抗体を得る工程を含んでいてもよい。同方法を、「本発明の抗体製造方法」ともいう。 抗体 A separated antibody may be obtained by the separation method of the present invention. That is, one embodiment of the separation method of the present invention may be a method of producing an isolated antibody by separating the antibody using an Fc-binding protein. That is, one embodiment of the elution step may be a step of eluting the antibody adsorbed on the carrier using an eluent to obtain the eluted antibody. In other words, one embodiment of the elution step may include a step of eluting the antibody adsorbed on the carrier using an eluate, and a step of obtaining the eluted antibody. This method is also referred to as “the antibody production method of the present invention”.
 本発明の抗体製造方法は、具体的には、以下の工程(a)および(b)を含む、分離された抗体を製造する方法であってよい:
(a)Fc結合性タンパク質を固定化した不溶性担体を充填したカラムに抗体を含有する溶液を添加し、該抗体を該担体に吸着する工程;
(b)前記担体に吸着した抗体を溶出液を用いて溶出し、溶出された抗体を得る工程。
The antibody production method of the present invention may specifically be a method for producing an isolated antibody, comprising the following steps (a) and (b):
(A) adding a solution containing an antibody to a column filled with an insoluble carrier having Fc-binding protein immobilized thereon, and adsorbing the antibody to the carrier;
(B) a step of eluting the antibody adsorbed on the carrier using an eluate to obtain the eluted antibody.
 本発明の分離方法により、抗体の分離パターンに係るデータが得られてよい。すなわち、本発明の分離方法の一態様は、Fc結合性タンパク質を利用して抗体を分離することにより抗体の分離パターンに係るデータを製造する方法であってもよい。すなわち、溶出工程の一態様は、担体に吸着した抗体を溶出液を用いて溶出し、抗体の分離パターンに係るデータを得る工程であってもよい。言い換えると、溶出工程の一態様は、担体に吸着した抗体を溶出液を用いて溶出する工程と、抗体の分離パターンに係るデータを得る工程を含んでいてもよい。同方法を、「本発明のデータ製造方法」ともいう。抗体の分離パターンに係るデータを、「分離データ」ともいう。「データの測定」、「データの取得」、および「データの製造」は、同義に用いられてよい。 デ ー タ Data on the antibody separation pattern may be obtained by the separation method of the present invention. That is, one embodiment of the separation method of the present invention may be a method of producing data relating to an antibody separation pattern by separating an antibody using an Fc-binding protein. That is, one embodiment of the elution step may be a step of eluting the antibody adsorbed on the carrier using an eluate to obtain data relating to the antibody separation pattern. In other words, one embodiment of the elution step may include a step of eluting the antibody adsorbed on the carrier using an eluent, and a step of obtaining data relating to an antibody separation pattern. This method is also referred to as the “data manufacturing method of the present invention”. Data relating to the antibody separation pattern is also referred to as “separation data”. “Data measurement”, “data acquisition”, and “data production” may be used interchangeably.
 本発明のデータ製造方法は、具体的には、以下の工程(a)および(b)を含む、分離データを製造する方法であってよい:
(a)Fc結合性タンパク質を固定化した不溶性担体を充填したカラムに抗体を含有する溶液を添加し、該抗体を該担体に吸着する工程;
(b)前記担体に吸着した抗体を溶出液を用いて溶出し、分離データを得る工程。
The data production method of the present invention may specifically be a method for producing separation data, comprising the following steps (a) and (b):
(A) adding a solution containing an antibody to a column filled with an insoluble carrier having Fc-binding protein immobilized thereon, and adsorbing the antibody to the carrier;
(B) a step of eluting the antibody adsorbed on the carrier using an eluate to obtain separation data.
 分離データを指標として、被検者における疾患の有無、疾患の発症リスク、疾患の進行度合い、及び/又は加齢の進行度合いを検出することができる。すなわち、分離データは、被検者における疾患の有無、疾患の発症リスク、疾患の進行度合い、及び/又は加齢の進行度合いを検出するための指標として用いられるデータとみなしてよい。具体的には、被検者から得た抗体をFc結合性タンパク質を利用して分離することにより得られる分離データを指標として、該被検者における疾患の有無、疾患の発症リスク、疾患の進行度合い、及び/又は加齢の進行度合いを検出することができる。すなわち、本発明は、被検者から得た抗体をFc結合性タンパク質を利用して分離することにより得られる分離データを指標として、該被検者における疾患の有無、疾患の発症リスク、疾患の進行度合い、及び/又は加齢の進行度合いを検出する方法を提供する。同方法を、「本発明の検出方法」ともいう。疾患の有無、疾患の発症リスク、疾患の進行度合い、及び/又は加齢の進行度合いを総称して、「リスク」ともいう。「リスクの検出」、「リスクの評価」、および「リスクの判定」は、同義に用いられてよい。 と し て Using the separated data as an index, the presence / absence of a disease in the subject, the risk of developing the disease, the degree of progress of the disease, and / or the degree of progress of aging can be detected. That is, the separated data may be regarded as data used as an index for detecting the presence or absence of a disease, the risk of developing the disease, the degree of progress of the disease, and / or the degree of progress of aging in the subject. Specifically, the presence / absence of a disease, the risk of developing a disease, the progress of a disease, and the like in a subject are determined by using, as an index, separation data obtained by separating an antibody obtained from the subject using an Fc-binding protein. The degree and / or the aging progress degree can be detected. That is, the present invention uses the separation data obtained by separating an antibody obtained from a subject using an Fc-binding protein as an index to determine the presence or absence of a disease, the risk of developing a disease, Provided is a method for detecting the degree of progress and / or the degree of progress of aging. This method is also referred to as “the detection method of the present invention”. The presence or absence of a disease, the risk of developing the disease, the degree of progress of the disease, and / or the degree of progress of aging are collectively referred to as “risk”. “Detection of risk”, “evaluation of risk”, and “judgment of risk” may be used synonymously.
 本発明の検出方法は、具体的には、以下の工程(c)を含む、疾患の有無、疾患の発症リスク、疾患の進行度合い、及び/又は加齢の進行度合いの検出方法であってよい:
(c)分離データを指標として、被検者における疾患の有無、疾患の発症リスク、疾患の進行度合い、及び/又は加齢の進行度合いを検出する工程であって、前記データが、以下の工程(a)および(b)により得られたものである工程:
(a)Fc結合性タンパク質を固定化した不溶性担体を充填したカラムに、前記被検者から得た抗体を含有する溶液を添加し、該抗体を該担体に吸着する工程;
(b)前記担体に吸着した抗体を溶出液を用いて溶出し、前記データを得る工程。
Specifically, the detection method of the present invention may be a method for detecting the presence or absence of a disease, the risk of developing the disease, the degree of progress of the disease, and / or the degree of progress of aging, including the following step (c). :
(C) a step of detecting the presence or absence of a disease, the risk of developing the disease, the degree of progress of the disease, and / or the degree of progress of aging in the subject using the separated data as an index, wherein the data comprises the following steps: Steps obtained according to (a) and (b):
(A) adding a solution containing an antibody obtained from the subject to a column packed with an insoluble carrier having Fc-binding protein immobilized thereon, and adsorbing the antibody to the carrier;
(B) a step of eluting the antibody adsorbed on the carrier using an eluent to obtain the data.
 本発明の検出方法は、工程(a)および(b)を含んでいてもよい。すなわち、本発明の検出方法は、より具体的には、以下の工程(a)~(c)を含む、疾患の有無、疾患の発症リスク、疾患の進行度合い、及び/又は加齢の進行度合いの検出方法であってもよい:
(a)Fc結合性タンパク質を固定化した不溶性担体を充填したカラムに、被検者から得た抗体を含有する溶液を添加し、該抗体を該担体に吸着する工程;
(b)前記担体に吸着した抗体を溶出液を用いて溶出し、分離データを得る工程;
(c)前記データを指標として、前記被検者における疾患の有無、疾患の発症リスク、疾患の進行度合い、及び/又は加齢の進行度合いを検出する工程。
The detection method of the present invention may include steps (a) and (b). That is, the detection method of the present invention more specifically includes the following steps (a) to (c), the presence or absence of a disease, the risk of developing the disease, the degree of progress of the disease, and / or the degree of progress of aging. The detection method may be:
(A) adding a solution containing an antibody obtained from a subject to a column filled with an insoluble carrier having Fc-binding protein immobilized thereon, and adsorbing the antibody to the carrier;
(B) a step of eluting the antibody adsorbed on the carrier using an eluate to obtain separation data;
(C) detecting the presence or absence of a disease, the risk of developing the disease, the degree of progress of the disease, and / or the degree of progress of aging in the subject using the data as an index;
 工程(c)を、「検出工程」ともいう。 Step (c) is also referred to as “detection step”.
 これらの方法を総称して、「本発明の方法」ともいう。 These methods are collectively referred to as “method of the present invention”.
<吸着工程>
 吸着工程は、Fc結合性タンパク質を固定化した不溶性担体を充填したカラムに抗体を含有する溶液を添加し、該抗体を該担体に吸着する工程である。
<Adsorption process>
The adsorption step is a step of adding a solution containing an antibody to a column packed with an insoluble carrier having Fc-binding protein immobilized thereon and adsorbing the antibody to the carrier.
 「抗体」とは、Fc領域を含む分子を意味する。抗体は、Fc領域からなるものであってもよく、Fc領域に加えて他の領域を含んでいてもよい。Fc領域としては、免疫グロブリンのFc領域が挙げられる。抗体は、糖鎖が付加されていてよい。抗体は、例えば、少なくともそのFc領域に糖鎖が付加されていてよい。抗体は、モノクローナル抗体であってもよく、ポリクローナル抗体であってもよい。抗体の由来は、特に制限されない。抗体は、単一の生物に由来するものであってもよく、2種またはそれ以上の生物の組み合わせに由来するものであってもよい。抗体は、例えば、キメラ抗体、ヒト化抗体、ヒト抗体、またはそれらのバリアント(例えばアミノ酸置換体)であってもよい。抗体としては、免疫グロブリンが挙げられる。免疫グロブリンとしては、IgG、IgM、IgA、IgD、IgEが挙げられる。免疫グロブリンとしては、特に、IgGが挙げられる。IgGとしては、IgG1、IgG2、IgG3、IgG4が挙げられる。また、抗体としては、二重特異性抗体(バイスペシフィック抗体)、Fc領域と他のタンパク質との融合抗体、Fc領域と薬物との複合体(ADC)等の人工的に構造改変した抗体も挙げられる。抗体は、例えば、抗体医薬であってもよい。抗体医薬としては、抗TNF-α抗体であるインフリキシマブや抗IL-6抗体であるトシリズマブ、癌遺伝子HER2に対する抗体であるトラスツズマブが挙げられる。抗体は、例えば、CHO細胞、Sp2/0細胞、NS0細胞、ハイブリドーマ細胞等の生産細胞により生産できる。 “Antibody” means a molecule containing an Fc region. The antibody may be composed of an Fc region, and may contain other regions in addition to the Fc region. Examples of the Fc region include an Fc region of an immunoglobulin. The antibody may have a sugar chain added thereto. The antibody may have, for example, a sugar chain added to at least its Fc region. The antibody may be a monoclonal antibody or a polyclonal antibody. The origin of the antibody is not particularly limited. Antibodies can be from a single organism or from a combination of two or more organisms. The antibody may be, for example, a chimeric antibody, a humanized antibody, a human antibody, or a variant thereof (eg, an amino acid substitution). Antibodies include immunoglobulins. Immunoglobulins include IgG, IgM, IgA, IgD and IgE. Immunoglobulins include in particular IgG. Examples of IgG include IgG1, IgG2, IgG3, and IgG4. Examples of the antibody also include bispecific antibodies (bispecific antibodies), fusion antibodies of the Fc region with other proteins, and antibodies with artificially modified structures such as a complex of the Fc region and a drug (ADC). Can be The antibody may be, for example, an antibody drug. Antibody drugs include infliximab, an anti-TNF-α antibody, tocilizumab, an anti-IL-6 antibody, and trastuzumab, an antibody to the oncogene HER2. Antibodies can be produced by, for example, production cells such as CHO cells, Sp2 / 0 cells, NS0 cells, and hybridoma cells.
 糖鎖としては、図3および図4に記載の糖鎖構造が挙げられる。特に、抗体の分離に寄与し得る糖鎖としては、G0、G0F、G1、G0F+GN、G1Fa、G1Fb、G1F+GN、G2、G2F、G1F+SA、G2F+SA、G2F+2SA、G2F+GN、G2+SA、G2+2SA、S1、S2、S3が挙げられる。 Examples of the sugar chain include the sugar chain structures described in FIGS. In particular, G0, G0F, G1, G0F + GN, G1Fa, G1Fb, G1F + GN, G2, G2F, G1F + SA, G2F + SA, G2F + 2SA, G2F + GN, G2 + SA, G2 + 2SA, S1, S2 are sugar chains that can contribute to antibody separation. No.
 ヒト由来の抗体は、通常、シアル酸を有する抗体を含有する。ヒト由来の抗体におけるシアル酸を有する抗体の含有量は、例えば、抗体の総含有量に対して、重量比で、0.1~20%程度であり得る。ヒト由来の抗体においては、シアル酸が糖鎖末端に2つ結合することが多い。さらに、ヒト由来の抗体は、通常、バイセクティングGlcNAc(表5における「+GN」の表記)を、抗体の総含有量に対して、重量比で、1~20%程度含有し得る。一方、ハムスターおよびマウス由来の抗体には、通常、バイセクティングGlcNAcは存在せず、糖鎖末端のシアル酸結合数は0~1個である。 Human-derived antibodies usually contain antibodies having sialic acid. The content of an antibody having sialic acid in a human-derived antibody can be, for example, about 0.1 to 20% by weight based on the total content of the antibody. In human-derived antibodies, two sialic acids often bind to the sugar chain terminal. Furthermore, human-derived antibodies can usually contain bisecting GlcNAc (represented by "+ GN" in Table 5) in an amount of about 1 to 20% by weight based on the total content of the antibody. On the other hand, antibodies derived from hamsters and mice usually do not contain bisecting GlcNAc, and the number of sialic acid bonds at the sugar chain terminals is 0 to 1.
 吸着工程に供される抗体は、複数種類の抗体分子を含有する混合物であってよい。吸着工程に供される抗体は、具体的には、糖鎖構造の異なる複数種類の抗体分子を含有する混合物であってよい。吸着工程に供される抗体は、より具体的には、Fc領域に付加された糖鎖構造の異なる複数種類の抗体分子を含有する混合物であってよい。 抗体 The antibody to be subjected to the adsorption step may be a mixture containing a plurality of types of antibody molecules. The antibody to be subjected to the adsorption step may be, specifically, a mixture containing a plurality of types of antibody molecules having different sugar chain structures. More specifically, the antibody subjected to the adsorption step may be a mixture containing a plurality of types of antibody molecules having different sugar chain structures added to the Fc region.
 リスクの検出を目的とする場合は、被検者から得た抗体を用いて本発明の方法を実施すればよい。 場合 When the purpose is to detect a risk, the method of the present invention may be performed using an antibody obtained from a subject.
 「被検者」とは、リスクの検出の対象とするヒト個体を意味する。ここでいう被検者を、後述する対照被検者と区別して、「標的被検者」ともいう。被検者は、それに由来する抗体試料を利用できるものであれば、すなわち、抗体試料を取得できるか、既に取得したものであれば、特に制限されない。被検者は、男性であってもよく、女性であってもよい。被検者は、子供、若者、中年、老人等、いずれの年代の個体であってもよい。被検者は、健常者であってもよく、そうでなくてもよい。 "Subject" means a human individual whose risk is to be detected. The subject referred to here is also referred to as a “target subject” to be distinguished from a control subject described later. The subject is not particularly limited as long as an antibody sample derived therefrom can be used, that is, an antibody sample can be obtained or has already been obtained. The subject may be male or female. The subject may be an individual of any age, such as a child, a young person, a middle age, an old man, and the like. The subject may or may not be a healthy subject.
 「抗体試料」とは、抗体を含有する試料を意味する。抗体試料としては、血液(全血)、希釈血液、血清、血漿、髄液、臍帯血、成分採血液等の血液試料;尿、唾液、精液、糞便、痰、羊水、腹水等の血液由来成分を含み得る試料;肝臓、肺、脾臓、腎臓、皮膚、腫瘍、リンパ節等の組織の断片(組織片)や細胞;それらから分離された抗体が挙げられる。抗体試料は、そのまま、あるいは適宜前処理に供してから、吸着工程に用いてよい。前処理は、例えば、定法により実施してよい。前処理としては、遠心分離やカラムによる精製が挙げられる。具体的には、例えば、ガンマグロブリンを精製して吸着工程に用いてもよい。抗体試料は、抗体を含有する溶液の形態で吸着工程に用いられる。すなわち、抗体試料は、適宜、抗体を含有する溶液の形態に調製して吸着工程に用いてよい。例えば、上記例示したような抗体試料またはその前処理物を、適宜、液体媒体で溶解、懸濁、分散、または溶媒交換等して、抗体を含有する溶液として吸着工程に用いてよい。そのような液体媒体については、例えば、後述する平衡化液についての記載を準用できる。液体媒体は、平衡化液と同一であってもよく、なくてもよい。 "Antibody sample" means a sample containing an antibody. Examples of antibody samples include blood samples such as blood (whole blood), diluted blood, serum, plasma, cerebrospinal fluid, umbilical cord blood, and component blood; urine, saliva, semen, feces, sputum, amniotic fluid, ascites, and other blood-derived components A fragment or a cell of a tissue such as a liver, a lung, a spleen, a kidney, a skin, a tumor, a lymph node or a cell; and an antibody separated therefrom. The antibody sample may be used in the adsorption step as it is or after appropriately subjected to a pretreatment. The pre-processing may be performed by, for example, a common method. Examples of the pretreatment include centrifugation and purification by a column. Specifically, for example, gamma globulin may be purified and used in the adsorption step. The antibody sample is used in the adsorption step in the form of a solution containing the antibody. That is, the antibody sample may be appropriately prepared in the form of a solution containing the antibody and used in the adsorption step. For example, the antibody sample as described above or a pretreated product thereof may be appropriately dissolved, suspended, dispersed, or solvent-exchanged in a liquid medium and used as a solution containing the antibody in the adsorption step. For such a liquid medium, for example, the description of an equilibration liquid described later can be applied mutatis mutandis. The liquid medium may or may not be the same as the equilibration liquid.
 被検者から得た抗体についての記載は、他の抗体の利用にも準用できる。例えば、被検者から得た抗体以外の任意の抗体も、同様に、そのまま、あるいは適宜前処理に供してから、抗体を含有する溶液の形態で吸着工程に用いてよい。 記載 The description of antibodies obtained from a subject can be applied mutatis mutandis to the use of other antibodies. For example, any antibody other than the antibody obtained from the subject may be used in the adsorption step in the form of a solution containing the antibody as it is, or after appropriately subjecting it to a pretreatment.
 「Fc結合性タンパク質」とは、抗体のFc領域に対する結合能を有するタンパク質を意味する。Fc結合性タンパク質は、所望の抗体分離パターンが得られるものであれば、特に制限されない。抗体は、例えば、抗体の糖鎖構造(例えば、Fc領域の糖鎖構造)の違いに基づくFc結合性タンパク質との親和性の違いに基づき、分離することができる。抗体とFc結合性タンパク質の親和性(具体的には、抗体の糖鎖構造)は、例えば、抗体の薬効等の機能と相関し得る。また、抗体とFc結合性タンパク質の親和性(具体的には、抗体の糖鎖構造)は、例えば、被検者におけるリスクと相関し得る。すなわち、Fc結合性タンパク質は、例えば、抗体のFc領域に対する結合能を有し、かつ抗体の糖鎖構造(例えば、Fc領域の糖鎖構造)の違いを認識できるタンパク質であるのが好ましい。Fc結合性タンパク質としては、ヒトFc結合性タンパク質が挙げられる。ヒトFc結合性タンパク質としては、ヒトに見出されるFc結合性タンパク質やそのバリアントが挙げられる。ヒトFc結合性タンパク質として、具体的には、ヒトFcγRIIIaの細胞外領域のアミノ酸配列の全長配列または部分配列を含むタンパク質が挙げられる。ヒトFcγRIIIaの細胞外領域のアミノ酸配列としては、天然型ヒトFcγRIIIaの場合、配列番号1に記載のアミノ酸配列のうち17番目のグリシンから192番目までのグルタミンまでの領域が挙げられる。ヒトFcγRIIIaの細胞外領域のアミノ酸配列の部分配列としては、ヒトFcγRIIIaの細胞外領域のうち、少なくともFc領域(例えば、ヒトIgGのFc領域)に結合する機能を発現し得る領域のアミノ酸配列が挙げられる。ヒトFc結合性タンパク質の一例として、以下の(i)や(ii)のポリペプチドが挙げられる。
(i)配列番号1に記載のアミノ酸配列のうち少なくとも17番目から192番目までのアミノ酸残基を含むポリペプチド;
(ii)配列番号1に記載のアミノ酸配列のうち少なくとも17番目から192番目までのアミノ酸残基を含み、かつ前記アミノ酸残基において1つ以上のアミノ酸残基の置換、挿入、または欠失を含むポリペプチド。
“Fc-binding protein” means a protein that has the ability to bind to the Fc region of an antibody. The Fc binding protein is not particularly limited as long as a desired antibody separation pattern can be obtained. Antibodies can be separated based on, for example, differences in affinity for Fc-binding proteins based on differences in the sugar chain structure of the antibody (eg, the sugar chain structure of the Fc region). The affinity (specifically, the sugar chain structure of the antibody) between the antibody and the Fc-binding protein can be correlated with, for example, the function of the antibody, such as its efficacy. Further, the affinity between the antibody and the Fc-binding protein (specifically, the sugar chain structure of the antibody) can be correlated with, for example, the risk in the subject. That is, the Fc-binding protein is preferably a protein that has, for example, an ability to bind to the Fc region of an antibody and can recognize a difference in the sugar chain structure of the antibody (eg, the sugar chain structure of the Fc region). Examples of the Fc binding protein include a human Fc binding protein. Examples of the human Fc-binding protein include an Fc-binding protein found in humans and variants thereof. Specific examples of the human Fc-binding protein include proteins containing the full-length or partial amino acid sequence of the extracellular region of human FcγRIIIa. Examples of the amino acid sequence of the extracellular region of human FcγRIIIa include, in the case of natural human FcγRIIIa, the region from the 17th glycine to the 192nd glutamine in the amino acid sequence shown in SEQ ID NO: 1. The partial sequence of the amino acid sequence of the extracellular region of human FcγRIIIa includes, for example, the amino acid sequence of a region capable of expressing a function of binding to at least the Fc region (for example, the Fc region of human IgG) in the extracellular region of human FcγRIIIa. Can be Examples of the human Fc-binding protein include the following polypeptides (i) and (ii).
(I) a polypeptide comprising at least the 17th to 192nd amino acid residues in the amino acid sequence of SEQ ID NO: 1;
(Ii) contains at least the 17th to 192nd amino acid residues in the amino acid sequence of SEQ ID NO: 1, and includes substitution, insertion, or deletion of one or more amino acid residues in the amino acid residues Polypeptide.
 前記(ii)の一態様としては、配列番号1に記載のアミノ酸配列のうち17番目から192番目までのアミノ酸残基を含み、かつ当該17番目から192番目までのアミノ酸残基において以下の(1)から(40)のうち少なくともいずれか1つのアミノ酸置換が生じている、ポリペプチド(特開2015-086216)が挙げられる。
(1)配列番号1の18番目のメチオニンがアルギニンに置換
(2)配列番号1の27番目のバリンがグルタミン酸に置換
(3)配列番号1の29番目のフェニルアラニンがロイシンまたはセリンに置換
(4)配列番号1の30番目のロイシンがグルタミンに置換
(5)配列番号1の35番目のチロシンがアスパラギン酸、グリシン、リジン、ロイシン、アスパラギン、プロリン、セリン、スレオニン、またはヒスチジンに置換
(6)配列番号1の46番目のリジンがイソロイシンまたはスレオニンに置換
(7)配列番号1の48番目のグルタミンがヒスチジンまたはロイシンに置換
(8)配列番号1の50番目のアラニンがヒスチジンに置換
(9)配列番号1の51番目のチロシンがアスパラギン酸またはヒスチジンに置換
(10)配列番号1の54番目のグルタミン酸がアスパラギン酸またはグリシンに置換
(11)配列番号1の56番目のアスパラギンがスレオニンに置換
(12)配列番号1の59番目のグルタミンがアルギニンに置換
(13)配列番号1の61番目のフェニルアラニンがチロシンに置換
(14)配列番号1の64番目のグルタミン酸がアスパラギン酸に置換
(15)配列番号1の65番目のセリンがアルギニンに置換
(16)配列番号1の71番目のアラニンがアスパラギン酸に置換
(17)配列番号1の75番目のフェニルアラニンがロイシン、セリン、またはチロシンに置換
(18)配列番号1の77番目のアスパラギン酸がアスパラギンに置換
(19)配列番号1の78番目のアラニンがセリンに置換
(20)配列番号1の82番目のアスパラギン酸がグルタミン酸またはバリンに置換
(21)配列番号1の90番目のグルタミンがアルギニンに置換
(22)配列番号1の92番目のアスパラギンがセリンに置換
(23)配列番号1の93番目のロイシンがアルギニンまたはメチオニンに置換
(24)配列番号1の95番目のスレオニンがアラニンまたはセリンに置換
(25)配列番号1の110番目のロイシンがグルタミンに置換
(26)配列番号1の115番目のアルギニンがグルタミンに置換
(27)配列番号1の116番目のトリプトファンがロイシンに置換
(28)配列番号1の118番目のフェニルアラニンがチロシンに置換
(29)配列番号1の119番目のリジンがグルタミン酸に置換
(30)配列番号1の120番目のグルタミン酸がバリンに置換
(31)配列番号1の121番目のグルタミン酸がアスパラギン酸またはグリシンに置換
(32)配列番号1の151番目のフェニルアラニンがセリンまたはチロシンに置換
(33)配列番号1の155番目のセリンがスレオニンに置換
(34)配列番号1の163番目のスレオニンがセリンに置換
(35)配列番号1の167番目のセリンがグリシンに置換
(36)配列番号1の169番目のセリンがグリシンに置換
(37)配列番号1の171番目のフェニルアラニンがチロシンに置換
(38)配列番号1の180番目のアスパラギンがリジン、セリン、またはイソロイシンに置換
(39)配列番号1の185番目のスレオニンがセリンに置換
(40)配列番号1の192番目のグルタミンがリジンに置換
As one embodiment of (ii), the amino acid sequence includes the 17th to 192nd amino acid residues in the amino acid sequence of SEQ ID NO: 1 and the following (1) ) To (40), wherein the polypeptide has at least one amino acid substitution (JP-A-2015-086216).
(1) 18th methionine in SEQ ID NO: 1 is substituted with arginine (2) 27th valine in SEQ ID NO: 1 is substituted with glutamic acid (3) 29th phenylalanine in SEQ ID NO: 1 is substituted with leucine or serine (4) Leucine at position 30 in SEQ ID NO: 1 is substituted with glutamine (5) Tyrosine at position 35 in SEQ ID NO: 1 is substituted with aspartic acid, glycine, lysine, leucine, asparagine, proline, serine, threonine, or histidine (6) SEQ ID NO: Lys at position 46 of 1 is replaced with isoleucine or threonine (7) Glutamine at position 48 of SEQ ID NO: 1 is replaced with histidine or leucine (8) Alanine at position 50 of SEQ ID NO: 1 is replaced with histidine (9) SEQ ID NO: 1 No. 51 tyrosine is replaced with aspartic acid or histidine (10) The glutamic acid at position 54 of No. 1 is substituted with aspartic acid or glycine (11) The asparagine at position 56 of SEQ ID NO: 1 is substituted with threonine (12) The glutamine at position 59 of SEQ ID NO: 1 is substituted with arginine (13) Substitution of phenylalanine at position 61 with tyrosine (14) Substitution of glutamic acid at position 64 of SEQ ID NO: 1 with aspartic acid (15) Substitution of serine at position 65 of SEQ ID NO: 1 with arginine (16) Alanine at position 71 of SEQ ID NO: 1 Is substituted with aspartic acid (17) The phenylalanine at position 75 of SEQ ID NO: 1 is substituted with leucine, serine or tyrosine (18) The aspartic acid at position 77 of SEQ ID NO: 1 is substituted with asparagine (19) Position 78 of SEQ ID NO: 1 (20) Asparagine at position 82 of SEQ ID NO: 1 Is substituted with glutamic acid or valine (21) Glutamine at position 90 in SEQ ID NO: 1 is substituted with arginine (22) Asparagine at position 92 in SEQ ID NO: 1 is substituted with serine (23) Leucine at position 93 in SEQ ID NO: 1 is substituted with arginine or (24) Threonine at position 95 in SEQ ID NO: 1 is substituted with alanine or serine (25) Leucine at position 110 in SEQ ID NO: 1 is substituted with glutamine (26) Arginine at position 115 in SEQ ID NO: 1 is substituted with glutamine (27) Substitution of tryptophan at position 116 of SEQ ID NO: 1 with leucine (28) Substitution of phenylalanine at position 118 of SEQ ID NO: 1 with tyrosine (29) Substitution of lysine at position 119 of SEQ ID NO: 1 with glutamic acid (30) SEQ ID NO: Glutamic acid at position 120 of 1 is replaced with valine (31) The glutamic acid at position 121 is substituted with aspartic acid or glycine (32) The phenylalanine at position 151 of SEQ ID NO: 1 is substituted with serine or tyrosine (33) The serine at position 155 of SEQ ID NO: 1 is substituted with threonine (34) The threonine at position 163 is substituted with serine (35) The serine at position 167 of SEQ ID NO: 1 is substituted with glycine (36) The serine at position 169 of SEQ ID NO: 1 is substituted with glycine (37) The phenylalanine at position 171 of SEQ ID NO: 1 is substituted with glycine Substitution with tyrosine (38) Substitution of asparagine at position 180 of SEQ ID NO: 1 with lysine, serine, or isoleucine (39) Substitution of 185 at threonine of SEQ ID NO: 1 with serine (40) Substitution of 192 at glutamine of SEQ ID NO: 1 Replace with lysine
 また、前記(ii)の別の態様としては、配列番号1に記載のアミノ酸配列のうち17番目から192番目までのアミノ酸残基を含み、かつ当該17番目から192番目までのアミノ酸残基において以下の(41)から(57)のうち少なくともいずれか1つのアミノ酸置換が生じている、ポリペプチド(特開2016-169197)が挙げられる。
(41)配列番号1の29番目のフェニルアラニンがイソロイシンまたはロイシンに置換
(42)配列番号1の39番目のグルタミン酸がグリシンに置換
(43)配列番号1の48番目のグルタミンがアルギニンに置換
(44)配列番号1の51番目のチロシンがセリンに置換
(45)配列番号1の61番目のフェニルアラニンがチロシンに置換
(46)配列番号1の77番目のアスパラギン酸がグリシンに置換
(47)配列番号1の82番目のアスパラギン酸がグルタミン酸に置換
(48)配列番号1の90番目のグルタミンがアルギニンに置換
(49)配列番号1の112番目のグルタミンがロイシンに置換
(50)配列番号1の117番目のバリンがグルタミン酸に置換
(51)配列番号1の119番目のリジンがアスパラギンまたはグルタミン酸に置換
(52)配列番号1の140番目のスレオニンがイソロイシンに置換
(53)配列番号1の142番目のロイシンがグルタミンに置換
(54)配列番号1の171番目のフェニルアラニンがセリンに置換
(55)配列番号1の175番目のロイシンがアルギニンに置換
(56)配列番号1の180番目のアスパラギンがセリンに置換
(57)配列番号1の188番目のイソロイシンがバリンに置換
In another embodiment of (ii), the amino acid sequence includes the 17th to 192nd amino acid residues in the amino acid sequence of SEQ ID NO: 1, and the 17th to 192nd amino acid residues include And polypeptides in which at least one amino acid of (41) to (57) has been substituted (JP-A-2016-169197).
(41) The phenylalanine at position 29 in SEQ ID NO: 1 is substituted with isoleucine or leucine (42) The glutamic acid at position 39 in SEQ ID NO: 1 is substituted with glycine (43) The glutamine at position 48 in SEQ ID NO: 1 is substituted with arginine (44) The tyrosine at position 51 in SEQ ID NO: 1 is substituted with serine (45) The phenylalanine at position 61 in SEQ ID NO: 1 is substituted with tyrosine (46) The aspartic acid at position 77 in SEQ ID NO: 1 is substituted with glycine (47) The aspartic acid at position 82 is replaced with glutamic acid (48) The glutamine at position 90 of SEQ ID NO: 1 is replaced with arginine (49) The glutamine at position 112 of SEQ ID NO: 1 is replaced with leucine (50) The valine at position 117 of SEQ ID NO: 1 Is replaced with glutamic acid. (51) The lysine at position 119 in SEQ ID NO: 1 is asparagine or Substitution with glutamic acid (52) Threonine at position 140 in SEQ ID NO: 1 is substituted with isoleucine (53) Leucine at position 142 in SEQ ID NO: 1 is substituted with glutamine (54) Phenylalanine at position 171 in SEQ ID NO: 1 is substituted with serine ( 55) Leucine at position 175 of SEQ ID NO: 1 is substituted with arginine (56) Asparagine at position 180 of SEQ ID NO: 1 is substituted with serine (57) Isoleucine at position 188 of SEQ ID NO: 1 is substituted with valine
 また、前記(ii)のさらに別の態様としては、配列番号1に記載のアミノ酸配列のうち17番目から192番目までのアミノ酸残基を含み、かつ当該17番目から192番目までのアミノ酸残基において以下の(58)から(61)のうち少なくともいずれか1つのアミノ酸置換が生じている、ポリペプチド(特開2016-169197)が挙げられる。
(58)配列番号1の66番目のロイシンがヒスチジンまたはアルギニンに置換
(59)配列番号1の147番目のグリシンがアスパラギン酸に置換
(60)配列番号1の158番目のチロシンがヒスチジンに置換
(61)配列番号1の176番目のバリンがフェニルアラニンに置換
In still another embodiment of the above (ii), the amino acid sequence includes the 17th to 192nd amino acid residues in the amino acid sequence of SEQ ID NO: 1 and includes the 17th to 192nd amino acid residues. A polypeptide in which at least one of the following amino acids (58) to (61) is substituted (Japanese Patent Application Laid-Open No. 2016-169197).
(58) Leucine at position 66 in SEQ ID NO: 1 is substituted with histidine or arginine (59) Glycine at position 147 in SEQ ID NO: 1 is substituted with aspartic acid (60) Tyrosine at position 158 of SEQ ID NO: 1 is substituted with histidine (61) ) The valine at position 176 of SEQ ID NO: 1 is substituted with phenylalanine
 また、前記(ii)のさらに別の態様としては、配列番号1に記載のアミノ酸配列のうち17番目から192番目までのアミノ酸残基を含み、かつ当該17番目から192番目までのアミノ酸残基において上記(1)から(61)のうち少なくともいずれか1つのアミノ酸置換が生じている、ポリペプチドが挙げられる。 In still another embodiment of the above (ii), the amino acid sequence includes the 17th to 192nd amino acid residues in the amino acid sequence of SEQ ID NO: 1 and includes the 17th to 192nd amino acid residues. Polypeptides in which at least one amino acid substitution among the above (1) to (61) has occurred.
 前記(ii)としては、特に、以下の(ii-1)~(ii-3)のポリペプチドが挙げられる。
(ii-1)配列番号1に記載のアミノ酸配列の17番目から192番目までのアミノ酸残基を含み、但し当該17番目から192番目までのアミノ酸残基において、少なくとも176番目のバリンがフェニルアラニンに置換されたポリペプチド;
(ii-2)配列番号1に記載のアミノ酸配列の17番目から192番目までのアミノ酸残基を含み、但し当該17番目から192番目までのアミノ酸残基において、少なくとも27番目のバリンがグルタミン酸に、29番目のフェニルアラニンがイソロイシンに、35番目のチロシンがアスパラギンに、48番目のグルタミンがアルギニンに、75番目のフェニルアラニンがロイシンに、92番目のアスパラギンがセリンに、117番目のバリンがグルタミン酸に、121番目のグルタミン酸がグリシンに、171番目のフェニルアラニンがセリンに、および176番目のバリンがフェニルアラニンに置換されたポリペプチド;
(ii-3)配列番号1に記載のアミノ酸配列の17番目から192番目までのアミノ酸残基を含み、但し当該17番目から192番目までのアミノ酸残基において、少なくとも27番目のバリンがグルタミン酸に、29番目のフェニルアラニンがイソロイシンに、35番目のチロシンがアスパラギンに、48番目のグルタミンがアルギニンに、75番目のフェニルアラニンがロイシンに、92番目のアスパラギンがセリンに、117番目のバリンがグルタミン酸に、121番目のグルタミン酸がグリシンに、および171番目のフェニルアラニンがセリンに置換されたポリペプチド。
The above (ii) particularly includes the following polypeptides (ii-1) to (ii-3).
(Ii-1) the amino acid sequence represented by SEQ ID NO: 1 including the 17th to 192nd amino acid residues, with the proviso that at least the 176th valine is substituted with phenylalanine in the 17th to 192nd amino acid residues. An isolated polypeptide;
(Ii-2) the amino acid sequence of SEQ ID NO: 1 including the 17th to 192nd amino acid residues, provided that at least the 17th to 192nd amino acid residues have at least 27th valine as glutamic acid, The phenylalanine at position 29 is isoleucine, the tyrosine at position 35 is asparagine, the glutamine at position 48 is arginine, the phenylalanine at position 75 is leucine, the asparagine at position 92 is serine, the valine at position 117 is glutamic acid, and the 121st is glutamic acid. A polypeptide in which glutamic acid is replaced with glycine, phenylalanine at position 171 with serine, and valine at position 176 with phenylalanine;
(Ii-3) comprising the amino acid residues from position 17 to position 192 of the amino acid sequence of SEQ ID NO: 1, with the proviso that at least the valine at position 27 is glutamic acid in the amino acid residues from position 17 to position 192; The phenylalanine at position 29 is isoleucine, the tyrosine at position 35 is asparagine, the glutamine at position 48 is arginine, the phenylalanine at position 75 is leucine, the asparagine at position 92 is serine, the valine at position 117 is glutamic acid, and the 121st is glutamic acid. A polypeptide in which glutamic acid is replaced by glycine and phenylalanine at position 171 is replaced by serine.
 Fc結合性タンパク質は、Fc領域(例えば、ヒトIgGのFc領域)に結合する機能を有する限りにおいて、上記例示したFc結合性タンパク質(例えば、前記(i)または(ii)のポリペプチド)のアミノ酸配列において、「一または数個」のアミノ酸変異(例えば、置換、挿入、または欠失)を含むポリペプチドであってもよい。「一または数個」とは、例えば、1~50個、好ましくは1~40個、より好ましくは1~30、更に好ましくは1~20個、特に好ましくは1~10個であってよい。「一または数個」のアミノ酸変異は、例えば、上記(1)から(61)のアミノ酸置換から選択される上記例示したFc結合性タンパク質が有するアミノ酸置換が保存されるように生じてよい。言い換えると、「一または数個」のアミノ酸変異は、例えば、上記(1)から(61)のアミノ酸置換から選択される上記例示したFc結合性タンパク質が有するアミノ酸置換以外の位置に生じてよい。 As long as the Fc-binding protein has a function of binding to an Fc region (for example, the Fc region of human IgG), the amino acid of the Fc-binding protein (for example, the polypeptide of (i) or (ii) above) is exemplified. The sequence may be a polypeptide containing "one or several" amino acid mutations (eg, substitutions, insertions, or deletions). “One or several” may be, for example, 1 to 50, preferably 1 to 40, more preferably 1 to 30, still more preferably 1 to 20, and particularly preferably 1 to 10. The “one or several” amino acid mutations may occur, for example, such that the amino acid substitutions of the above-exemplified Fc-binding proteins selected from the amino acid substitutions of (1) to (61) are conserved. In other words, the “one or several” amino acid mutations may occur, for example, at positions other than the amino acid substitutions of the above-mentioned Fc-binding protein selected from the amino acid substitutions (1) to (61).
 Fc結合性タンパク質は、Fc領域(例えば、ヒトIgGのFc領域)に結合する機能を有する限りにおいて、上記例示したFc結合性タンパク質(例えば、前記(i)または(ii)のポリペプチド)のアミノ酸配列に対し高い相同性を有するアミノ酸配列を含むポリペプチドであってもよい。「高い相同性」とは、70%以上、80%以上、90%以上、または95%以上の相同性を意味してよい。「相同性」とは、類似性(similarity)または同一性(identity)を意味してよい。「相同性」とは、特に、同一性(identity)を意味してよい。アミノ酸配列の相同性は、BLAST等のアラインメントプログラムを利用して決定することができる。例えば、「アミノ酸配列の同一性」とは、blastpを用いて算出されるアミノ酸配列間の同一性を意味してよく、具体的には、blastpをデフォルトのパラメータで用いて算出されるアミノ酸配列間の同一性を意味してもよい。上記のような相同性の範囲でのアミノ酸配列の変化は、例えば、上記(1)から(61)のアミノ酸置換から選択される上記例示したFc結合性タンパク質が有するアミノ酸置換が保存されるように生じてよい。言い換えると、上記のような相同性の範囲でのアミノ酸配列の変化は、例えば、上記(1)から(61)のアミノ酸置換から選択される上記例示したFc結合性タンパク質が有するアミノ酸置換以外の位置に生じてよい。 As long as the Fc-binding protein has a function of binding to an Fc region (for example, the Fc region of human IgG), the amino acid of the Fc-binding protein (for example, the polypeptide of (i) or (ii) above) is exemplified. It may be a polypeptide containing an amino acid sequence having high homology to the sequence. “High homology” may mean 70% or more, 80% or more, 90% or more, or 95% or more homology. “Homology” may mean similarity or identity. “Homology” may particularly refer to identity. Amino acid sequence homology can be determined using an alignment program such as BLAST. For example, “amino acid sequence identity” may mean identity between amino acid sequences calculated using blastp, and specifically, between amino acid sequences calculated using blastp as default parameters. May be the same. The change in the amino acid sequence within the range of homology as described above may be such that, for example, the amino acid substitution of the above-described exemplified Fc-binding protein selected from the amino acid substitutions of (1) to (61) is conserved. May occur. In other words, the change in the amino acid sequence within the range of homology as described above is, for example, at a position other than the amino acid substitution of the above-described Fc-binding protein selected from the amino acid substitutions (1) to (61). May occur.
 Fc結合性タンパク質は、例えば、Fc結合性タンパク質をコードする遺伝子を有する宿主に同遺伝子を発現させることにより製造できる。Fc結合性タンパク質をコードする遺伝子は、例えば、クローニング、化学合成、変異導入、またはそれらの組み合わせにより取得できる。宿主は、Fc結合性タンパク質を発現できるものであれば、特に制限されない。宿主としては、動物細胞、昆虫細胞、微生物が挙げられる。動物細胞としては、COS細胞、CHO細胞、Hela細胞、NIH3T3細胞、HEK293細胞が挙げられる。昆虫細胞としては、Sf9、BTI-TN-5B1-4が挙げられる。微生物としては、酵母や細菌が挙げられる。酵母としては、Saccharomyces cerevisiae等のSaccharomyces属酵母、Pichia Pastoris等のPichia属酵母、Schizosaccharomyces pombe等のSchizosaccharomyces属酵母が挙げられる。細菌としては、エシェリヒア・コリ等のエシェリヒア属細菌が挙げられる。エシェリヒア・コリとしては、W3110株、JM109株、BL21(DE3)株が挙げられる。また、Fc結合性タンパク質は、例えば、Fc結合性タンパク質をコードする遺伝子を無細胞タンパク質合成系で発現させることによっても製造できる。 ΔFc-binding protein can be produced, for example, by expressing the gene in a host having a gene encoding the Fc-binding protein. The gene encoding the Fc binding protein can be obtained, for example, by cloning, chemical synthesis, mutagenesis, or a combination thereof. The host is not particularly limited as long as it can express the Fc-binding protein. Hosts include animal cells, insect cells, and microorganisms. Animal cells include COS cells, CHO cells, Hela cells, NIH3T3 cells, and HEK293 cells. Insect cells include Sf9 and BTI-TN-5B1-4. Microorganisms include yeasts and bacteria. Examples of the yeast include yeasts of the genus Saccharomyces such as Saccharomyces cerevisiae, yeasts of the genus Pichia such as Pichia Pastoris, and yeasts of the genus Schizosaccharomyces such as Schizosaccharomyces @ pombe. Examples of the bacteria include bacteria belonging to the genus Escherichia such as Escherichia coli. Examples of Escherichia coli include W3110 strain, JM109 strain, and BL21 (DE3) strain. Further, the Fc-binding protein can be produced, for example, by expressing a gene encoding the Fc-binding protein in a cell-free protein synthesis system.
 「不溶性担体」とは、本発明の方法においてカラムに通液される液体(例えば、平衡化液や溶出液等の、抗体の吸着または溶出に用いる液体)に対して不溶性である担体を意味する。不溶性担体は、Fc結合性タンパク質を共有結合で固定化するための官能基(例えばヒドロキシ基)を備えていてよい。不溶性担体としては、ジルコニア、ゼオライト、シリカ、皮膜シリカ等の無機系物質に由来した担体、セルロース、アガロース、デキストラン等の天然有機高分子物質に由来した担体、ポリアクリル酸、ポリスチレン、ポリアクリルアミド、ポリメタクリルアミド、ポリメタクリレート、ビニルポリマー等の合成有機高分子物質に由来した担体が挙げられる。 The term “insoluble carrier” means a carrier that is insoluble in a liquid (for example, a liquid used for adsorbing or eluting an antibody, such as an equilibration solution or an eluate) passed through a column in the method of the present invention. . The insoluble carrier may have a functional group (for example, a hydroxy group) for covalently immobilizing the Fc-binding protein. Examples of the insoluble carrier include zirconia, zeolite, silica, a carrier derived from an inorganic substance such as coated silica, a cellulose, agarose, a carrier derived from a natural organic polymer such as dextran, polyacrylic acid, polystyrene, polyacrylamide, and poly. Carriers derived from synthetic organic high-molecular substances such as methacrylamide, polymethacrylate, and vinyl polymers are exemplified.
 Fc結合性タンパク質は、適宜、不溶性担体に固定化することができる。Fc結合性タンパク質は、例えば、不溶性担体に備わるFc結合性タンパク質を共有結合で固定化するための官能基(例えばヒドロキシ基)を利用して、共有結合で不溶性担体に固定化することができる。例えば、不溶性担体が表面にヒドロキシ基を備える場合、活性化剤を用いて当該ヒドロキシ基からFc結合性タンパク質と共有結合可能な活性化基を形成し、当該活性化基とFc結合性タンパク質とを共有結合することができる。ヒドロキシ基に対する活性化剤の具体例として、エピクロロヒドリン(活性化基としてエポキシ基を形成)、1,4-ブタンジオールジグリシジルエーテル(活性化基としてエポキシ基を形成)、トレシルクロリド(活性化基としてトレシル基を形成)、ビニルブロミド(活性化基としてビニル基を形成)が挙げられる。また、ヒドロキシ基をアミノ基やカルボキシル基等に変換した後、活性化剤を作用させて活性化することもできる。アミノ基やカルボキシル基等に対する活性化剤の具体例として、3-マレイミドプロピオン酸N-スクシンイミジル(活性化基としてマレイミド基を形成)、1,1’-カルボニルジイミダゾール(活性化基としてカルボニルイミダゾール基を形成)、ハロゲン化酢酸(活性化基としてハロゲン化アセチル基を形成)が挙げられる。 The Fc-binding protein can be immobilized on an insoluble carrier as appropriate. The Fc-binding protein can be covalently immobilized on the insoluble carrier using, for example, a functional group (for example, a hydroxy group) for covalently immobilizing the Fc-binding protein provided on the insoluble carrier. For example, when the insoluble carrier has a hydroxy group on the surface, an activating agent is used to form an activating group that can be covalently bonded to the Fc-binding protein from the hydroxy group, and the activating group and the Fc-binding protein are separated from each other. Can be covalently bonded. Specific examples of the activator for the hydroxy group include epichlorohydrin (forming an epoxy group as an activating group), 1,4-butanediol diglycidyl ether (forming an epoxy group as an activating group), and tresyl chloride ( And an activated group (to form a tresyl group) and vinyl bromide (to form a vinyl group as an activating group). Further, after converting a hydroxy group into an amino group, a carboxyl group, or the like, activation can be performed by the action of an activating agent. Specific examples of the activator for an amino group, a carboxyl group, etc. include N-succinimidyl 3-maleimidopropionate (forming a maleimide group as an activating group), 1,1′-carbonyldiimidazole (a carbonylimidazole group as an activating group) ) And halogenated acetic acid (forming a halogenated acetyl group as an activating group).
 Fc結合性タンパク質を固定化した不溶性担体を充填したカラムに抗体を含有する溶液を添加することにより、抗体を担体に吸着することができる。抗体を含有する溶液は、例えば、ポンプ等の送液手段を用いてカラムに添加することができる。液体をカラムに添加することを、「液体をカラムに送液する」ともいう。抗体を含有する溶液の添加量、液相の種類、液相の送液速度、カラム温度等の吸着工程の実施条件は、抗体が担体に吸着する限り、特に制限されない。吸着工程の実施条件は、抗体の種類、Fc結合性タンパク質の種類、不溶性担体の種類、カラムのスケール等の諸条件に応じて適宜設定できる。液相としては、後述する平衡化液が挙げられる。送液速度は、例えば、カラムの内径が4.6mmの場合に、0.1mL/分~1.5mL/分、0.2mL/分~1.0mL/分、または0.4mL/分~0.8mL/分であってよい。送液速度は、例えば、カラムの内径の2乗に比例するように設定してよい。カラム温度は、例えば、0~50℃であってよい。 The antibody can be adsorbed to the carrier by adding a solution containing the antibody to a column packed with an insoluble carrier having Fc-binding protein immobilized thereon. The solution containing the antibody can be added to the column using, for example, a liquid sending means such as a pump. Adding a liquid to the column is also referred to as "sending the liquid to the column". The conditions for performing the adsorption step, such as the amount of the solution containing the antibody, the type of the liquid phase, the liquid phase sending speed, and the column temperature, are not particularly limited as long as the antibody is adsorbed on the carrier. The conditions for performing the adsorption step can be appropriately set according to various conditions such as the type of antibody, the type of Fc-binding protein, the type of insoluble carrier, and the scale of the column. Examples of the liquid phase include an equilibration liquid described below. For example, when the inner diameter of the column is 4.6 mm, the liquid sending speed is 0.1 mL / min to 1.5 mL / min, 0.2 mL / min to 1.0 mL / min, or 0.4 mL / min to 0 mL. .8 mL / min. The liquid sending speed may be set, for example, so as to be proportional to the square of the inner diameter of the column. The column temperature can be, for example, 0-50 ° C.
 抗体を含有する溶液をカラムに添加する前に、平衡化液を用いてカラムを平衡化してよい。すなわち、本発明の方法は、吸着工程の前に、カラムに平衡化液を添加し、カラムを平衡化する工程を含んでいてよい。平衡化液としては、水性緩衝液が挙げられる。平衡化液として、具体的には、pH4.0から6.9の弱酸性緩衝液が挙げられる。緩衝液の成分は、緩衝液のpH等の諸条件に応じて適宜選択できる。緩衝液の成分としては、リン酸、酢酸、ギ酸、MES(2-Morpholinoethanesulfonic acid)、MOPS(3-Morpholinopropanesulfonic acid)、クエン酸、コハク酸、グリシン、ピペラジンが挙げられる。 カ ラ ム Before adding the solution containing the antibody to the column, the column may be equilibrated with the equilibration solution. That is, the method of the present invention may include a step of equilibrating the column by adding an equilibration liquid to the column before the adsorption step. Equilibration solutions include aqueous buffers. Specific examples of the equilibration solution include a weakly acidic buffer having a pH of 4.0 to 6.9. The components of the buffer can be appropriately selected according to various conditions such as the pH of the buffer. The components of the buffer include phosphoric acid, acetic acid, formic acid, MES (2-morpholinoethanesulphonic acid), MOPS (3-morpholinopropanesulphonic acid), citric acid, succinic acid, glycine, and piperazine.
<溶出工程>
 溶出工程は、担体に吸着した抗体を溶出液を用いて溶出する工程である。
<Elution process>
The elution step is a step of eluting the antibody adsorbed on the carrier using an eluate.
 すなわち、カラムに溶出液を添加することにより、担体に吸着した抗体を溶出することができる。溶出液の種類、溶出液の送液形式、液相の送液速度、カラム温度等の溶出工程の実施条件は、所望の態様で抗体が分離される限り、例えば、所望の分離データが得られる限り、特に制限されない。溶出工程の実施条件は、抗体の種類、Fc結合性タンパク質の種類、不溶性担体の種類、カラムのスケール等の諸条件に応じて適宜設定できる。溶出液としては、抗体とFc結合性タンパク質との親和性を弱めるものを用いることができる。溶出液としては、溶出前の液相(例えば、平衡化液)よりもpHが低い水性緩衝液が挙げられる。溶出液として、具体的には、pH2.5から4.5の酸性緩衝液が挙げられる。例えば、溶出前の液相(例えば、平衡化液)がpH4.0から6.9の弱酸性緩衝液である場合に、溶出液がpH2.5から4.5の酸性緩衝液であってよい。緩衝液の成分は、緩衝液のpH等の諸条件に応じて適宜選択できる。緩衝液の成分としては、リン酸、酢酸、ギ酸、MES(2-Morpholinoethanesulfonic acid)、MOPS(3-Morpholinopropanesulfonic acid)、クエン酸、コハク酸、グリシン、ピペラジンが挙げられる。溶出液の送液形式は、例えば、グラジエントであってもよく、イソクラティックであってもよい。溶出液の送液形式は、特に、グラジエントであってよい。すなわち、溶出は、特に、液相中の溶出液の比率を増大させることにより実施されてよい。グラジエントは、例えば、リニアグラジエントであってもよく、ステップワイズグラジエントであってもよく、それらの組み合わせであってもよい。グラジエントは、具体的には、例えば、10~60分、15~50分、または20~40分で液相中の溶出液の比率が0%(v/v)から100%(v/v)に増大するように設定されてよい。送液速度は、例えば、カラムの内径が4.6mmの場合に、0.1mL/分~1.5mL/分、0.2mL/分~1.0mL/分、または0.4mL/分~0.8mL/分であってよい。送液速度は、例えば、カラムの内径の2乗に比例するように設定してよい。カラム温度は、例えば、0~50℃であってよい。 That is, the antibody adsorbed on the carrier can be eluted by adding the eluate to the column. The conditions of the elution step, such as the type of eluate, the eluate sending format, the liquid phase sending speed, and the column temperature, are as long as the antibody is separated in a desired manner.For example, desired separation data can be obtained. As long as it is not particularly limited. The conditions for the elution step can be appropriately set according to various conditions such as the type of antibody, the type of Fc-binding protein, the type of insoluble carrier, and the scale of the column. As the eluate, one that weakens the affinity between the antibody and the Fc-binding protein can be used. The eluate includes an aqueous buffer having a lower pH than the liquid phase before elution (for example, an equilibration solution). Specific examples of the eluate include an acidic buffer having a pH of 2.5 to 4.5. For example, when the liquid phase (e.g., equilibration solution) before elution is a weakly acidic buffer having a pH of 4.0 to 6.9, the eluate may be an acidic buffer having a pH of 2.5 to 4.5. . The components of the buffer can be appropriately selected according to various conditions such as the pH of the buffer. The components of the buffer include phosphoric acid, acetic acid, formic acid, MES (2-morpholinoethanesulphonic acid), MOPS (3-morpholinopropanesulphonic acid), citric acid, succinic acid, glycine, and piperazine. The delivery format of the eluate may be, for example, a gradient or an isocratic. The delivery format of the eluate may be, in particular, a gradient. That is, elution may be performed, in particular, by increasing the proportion of eluate in the liquid phase. The gradient may be, for example, a linear gradient, a stepwise gradient, or a combination thereof. Specifically, the gradient is, for example, from 10% (v / v) to 100% (v / v) of the eluate in the liquid phase in 10 to 60 minutes, 15 to 50 minutes, or 20 to 40 minutes. May be set to increase. For example, when the inner diameter of the column is 4.6 mm, the liquid sending speed is 0.1 mL / min to 1.5 mL / min, 0.2 mL / min to 1.0 mL / min, or 0.4 mL / min to 0 mL. .8 mL / min. The liquid sending speed may be set, for example, so as to be proportional to the square of the inner diameter of the column. The column temperature can be, for example, 0-50 ° C.
 溶出工程により、分離された抗体が得られてよい。分離された抗体は、例えば、同抗体を含有する溶出画分として得られてよい。すなわち、分離された抗体を含有する溶出画分を分取することにより、分離された抗体が得られる。溶出画分は、例えば、常法により分取することができる。溶出画分は、具体的には、例えば、オートサンプラー等の自動フラクションコレクター等により分取することができる。さらに、分離された抗体を溶出画分から回収してもよい。分離された抗体は、例えば、常法により溶出画分から回収することができる。分離された抗体は、具体的には、例えば、タンパク質の分離精製に用いられる公知の方法により溶出画分から回収することができる。 分離 The separated antibody may be obtained by the elution step. The separated antibody may be obtained, for example, as an eluted fraction containing the antibody. That is, a separated antibody is obtained by collecting an eluted fraction containing the separated antibody. The eluted fraction can be collected, for example, by a conventional method. The eluted fraction can be specifically collected by, for example, an automatic fraction collector such as an autosampler. Further, the separated antibody may be recovered from the eluted fraction. The separated antibody can be recovered from the eluted fraction by a conventional method, for example. The separated antibody can be specifically recovered from the eluted fraction by, for example, a known method used for separating and purifying proteins.
 溶出工程により、分離データ(すなわち、抗体の分離パターンに係るデータ)が得られてよい。分離データは、被検者におけるリスクを検出するための指標として用いることができるものであれば、すなわち、被検者におけるリスクと相関するものであれば、特に制限されない。分離データとしては、抗体の分離パターンの特徴が挙げられる。抗体の分離パターンの特徴を、単に、「特徴」ともいう。すなわち、分離データを得る工程は、例えば、抗体の分離パターンを得る工程と、抗体の分離パターンの特徴を抽出する(すなわち、抗体の分離パターンからその特徴を抽出する)工程を含んでいてもよい。抗体の分離パターンは、検出器により抗体を検出することにより得られる。検出器としては、UV検出器や質量検出器が挙げられる。抗体の分離パターンとしては、抗体の溶出時のクロマトグラムが挙げられる。特徴としては、抗体の分離パターンから得られる、被検者におけるリスクと相関するパラメータが挙げられる。特徴として、具体的には、溶出ピーク(すなわち、溶出した抗体のピーク)の特徴が挙げられる。溶出ピークの特徴として、具体的には、ピーク面積、ピーク溶出時間、ピーク幅、ピーク検出数、ピーク高さが挙げられる。ピーク面積やピーク高さ等の特徴の抽出の対象となる溶出ピークを、「対象ピーク」ともいう。溶出ピークの特徴としては、特に、ピーク面積やピーク高さが挙げられる。抗体の分離パターンは、そのまま、あるいは適宜、ベースラインの補正等の補正を実施してから、特徴の抽出に用いてよい。特徴は、絶対値であってもよく、相対値であってもよい。相対値としては、他の溶出ピーク(すなわち、対象ピーク以外のいずれかの溶出ピーク)の値に対する比率または差分や、全溶出ピーク(すなわち、対象ピークを含む全ての溶出ピーク)の値の合計に対する比率または差分が挙げられる。相対値としては、特に、他の溶出ピークの値に対する比率や、全溶出ピークの値の合計に対する比率が挙げられる。他の溶出ピークとしては、1つの溶出ピークを用いてもよく、2つまたはそれ以上の溶出ピークを組み合わせて用いてもよい。例えば、ピーク面積として、具体的には、ピーク面積%が挙げられる。「ピーク面積%」とは、全溶出ピークの面積の合計値に対する対象ピークの面積の比率(%)を意味する。また、例えば、ピーク高さとして、具体的には、ピーク高さ%が挙げられる。「ピーク高さ%」とは、全溶出ピークの高さの合計値に対する対象ピークの高さの比率(%)を意味する。特徴は、内部標準物質で得られたピークに基づく補正や被検者の性質に基づく補正等の、補正がなされていてもよい。例えば、特徴は、被検者の年齢に基づいて補正がなされていてもよい。すなわち、例えば、特徴が被検者の年齢に影響を受ける場合、抽出された特徴を被検者の年齢に基づいて補正してから、検出工程に用いてよい。被検者の年齢に基づいて補正された特徴は、例えば、加齢以外の症状についてのリスクの検出に利用でき得る。 (4) Separation data (ie, data relating to the separation pattern of the antibody) may be obtained by the elution step. The separation data is not particularly limited as long as it can be used as an index for detecting a risk in the subject, that is, as long as it is correlated with the risk in the subject. The separation data includes characteristics of the separation pattern of the antibody. The characteristics of the antibody separation pattern are also simply referred to as “characteristics”. That is, the step of obtaining separation data may include, for example, a step of obtaining an antibody separation pattern and a step of extracting characteristics of the antibody separation pattern (ie, extracting the characteristics from the antibody separation pattern). . The antibody separation pattern can be obtained by detecting the antibody with a detector. Examples of the detector include a UV detector and a mass detector. Examples of the antibody separation pattern include a chromatogram at the time of elution of the antibody. Features include parameters obtained from the antibody separation pattern that correlate with risk in the subject. Specifically, the characteristics include the characteristics of the elution peak (that is, the peak of the eluted antibody). Specific characteristics of the elution peak include peak area, peak elution time, peak width, number of detected peaks, and peak height. The elution peak from which features such as peak area and peak height are extracted is also referred to as “target peak”. The characteristics of the elution peak particularly include the peak area and the peak height. The antibody separation pattern may be used for feature extraction as it is or after appropriate correction such as correction of the baseline. The feature may be an absolute value or a relative value. As the relative value, the ratio or difference to the value of the other eluting peak (that is, any eluting peak other than the target peak) or the sum of the values of all the eluting peaks (that is, all the eluting peaks including the target peak) is calculated. Ratio or difference. Relative values include, in particular, ratios to the values of other eluting peaks and ratios to the sum of the values of all eluting peaks. As the other elution peak, one elution peak may be used, or two or more elution peaks may be used in combination. For example, the peak area specifically includes peak area%. "Peak area%" means the ratio (%) of the area of the target peak to the total value of the areas of all eluting peaks. Also, for example, the peak height specifically includes the peak height%. "Peak height%" means the ratio (%) of the height of the target peak to the sum of the heights of all the eluting peaks. The feature may be corrected, such as a correction based on a peak obtained from an internal standard substance or a correction based on a property of a subject. For example, the feature may be corrected based on the age of the subject. That is, for example, when the feature is affected by the age of the subject, the extracted feature may be corrected based on the age of the subject, and then used in the detection process. The characteristics corrected based on the age of the subject can be used, for example, for detecting a risk for a condition other than aging.
 対象ピークは、リスクの種類等の諸条件に応じて適宜選択できる。対象ピークとしては、第1~第4ピークが挙げられる。対象ピークとしては、特に、第1ピーク、第2ピーク、第3ピークが挙げられる。対象ピークとして、さらに特には、第1ピークが挙げられる。第1ピークは、例えば、膵炎以外の症状についてのリスクの評価に好適に利用でき得る。第2ピークは、例えば、加齢についてのリスクの評価に好適に利用でき得る。第3ピークは、例えば、膵炎についてのリスクの評価に好適に利用でき得る。第3ピークは、具体的には、例えば、膵炎と膵がんの区別に好適に利用でき得る。対象ピークとしては、1つの溶出ピークを用いてもよく、2つまたはそれ以上の溶出ピークを組み合わせて用いてもよい。「第1~第4ピーク」とは、それぞれ、特記しない限り、溶出の開始後(例えば、グラジエントの開始後)に1~4番目に溶出するピークを意味してよい。なお、対象ピークは、特に、ピーク面積%が1%以上のものであってもよい。言い換えると、「第1~第4ピーク」とは、特に、それぞれ、溶出の開始後に1~4番目に溶出する、ピーク面積%が1%以上のピークを意味してもよい。また、「第1ピーク」とは、溶出工程をグラジエント溶出により実施する場合にあっては、例えば、液相のpHが5.4以下、5.2以下、5.0以下、または4.8以下になって最初に溶出するピークを意味してもよい。また、「第1ピーク」とは、溶出工程をグラジエント溶出により実施する場合にあっては、例えば、液相のpHが5.4~4.4、5.2~4.5、または5.0~4.6である期間に溶出するピークを意味してもよい。なお、液相のpHは、溶出の開始前の液相(例えば、平衡化液)のpHがX、溶出液のpHがY、液相中の溶出液の比率がZ%である場合、下記式(I)で算出されるものとする。また、ピークが溶出したpHは、カラムの容積等の流路の容積を考慮して、適宜補正されるものとする。
 液相のpH=X-((X-Y)×Z/100) ・・・ (I)
The target peak can be appropriately selected according to various conditions such as the type of risk. The target peak includes the first to fourth peaks. Particularly, the target peak includes a first peak, a second peak, and a third peak. More specifically, the target peak includes the first peak. The first peak can be suitably used, for example, for evaluating the risk of symptoms other than pancreatitis. The second peak can be suitably used, for example, for evaluating the risk of aging. The third peak may be suitably used, for example, for assessing risk for pancreatitis. Specifically, the third peak can be suitably used, for example, for distinguishing between pancreatitis and pancreatic cancer. As the target peak, one elution peak may be used, or two or more elution peaks may be used in combination. The “first to fourth peaks” may respectively mean the first to fourth eluting peaks after the start of elution (for example, after the start of a gradient), unless otherwise specified. The target peak may have a peak area% of 1% or more. In other words, the “first to fourth peaks” may mean, in particular, peaks having a peak area% of 1% or more, respectively, which elute first to fourth after the start of elution. The term “first peak” refers to a case where the elution step is performed by gradient elution, for example, when the pH of the liquid phase is 5.4 or less, 5.2 or less, 5.0 or less, or 4.8. It may mean the first peak to elute below. The “first peak” refers to a case where the elution step is performed by gradient elution, for example, when the pH of the liquid phase is 5.4 to 4.4, 5.2 to 4.5, or 5.5. It may mean a peak that elutes during a period that is between 0 and 4.6. The pH of the liquid phase is as follows when the pH of the liquid phase (for example, the equilibration liquid) before the start of elution is X, the pH of the eluate is Y, and the ratio of the eluate in the liquid phase is Z%. It shall be calculated by the formula (I). Further, the pH at which the peak elutes is appropriately corrected in consideration of the volume of the flow channel such as the volume of the column.
PH of liquid phase = X − ((XY) × Z / 100) (I)
<検出工程>
 検出工程は、分離データ(すなわち、抗体の分離パターンに係るデータ)を指標として、被検者におけるリスク(すなわち、疾患の有無、疾患の発症リスク、疾患の進行度合い、及び/又は加齢の進行度合い)を検出する工程である。
<Detection process>
The detection step uses the separation data (ie, data relating to the separation pattern of the antibody) as an index to determine the risk (ie, the presence or absence of a disease, the risk of developing a disease, the degree of progress of a disease, and / or the progress of aging) in a subject. This is a step of detecting the degree.
 疾患としては、免疫細胞の活性(例えば、損傷作用や貪食作用)に影響を受ける疾患が挙げられる。免疫細胞としては、ナチュラルキラー細胞、単球、マクロファージが挙げられる。 Diseases include those affected by the activity of immune cells (eg, damaging and phagocytic effects). Immune cells include natural killer cells, monocytes, and macrophages.
 疾患として、具体的には、がん、自己免疫疾患、感染症、アレルギー、炎症疾患が挙げられる。これらの疾患は、いずれも、免疫細胞の活性に影響を受ける疾患であり得る。 Examples of the disease include cancer, autoimmune disease, infectious disease, allergy, and inflammatory disease. Any of these diseases can be diseases affected by the activity of immune cells.
 がんとしては、脳腫瘍、乳がん、子宮体がん、子宮頚がん、卵巣がん、食道がん、胃がん、虫垂がん、大腸がん、肝がん、胆嚢がん、胆管がん、膵がん、副腎がん、消化管間質腫瘍(GIST)、中皮腫、頭頚部がん、腎がん、肺がん、骨肉腫、ユーイング肉腫、軟骨肉腫、前立腺がん、精巣腫瘍、腎細胞がん、膀胱がん、横紋筋肉腫、皮膚がん、肛門がんが挙げられる。がんとしては、特に、膵がん、胃がん、乳がん、大腸がん、腎がんが挙げられる。 Cancers include brain, breast, endometrial, cervical, ovarian, esophageal, stomach, appendix, colon, liver, gallbladder, bile duct, pancreas Cancer, adrenal gland cancer, gastrointestinal stromal tumor (GIST), mesothelioma, head and neck cancer, kidney cancer, lung cancer, osteosarcoma, Ewing sarcoma, chondrosarcoma, prostate cancer, testicular tumor, renal cells Cancer, bladder cancer, rhabdomyosarcoma, skin cancer, and anal cancer. Cancers include, in particular, pancreatic, stomach, breast, colon and kidney cancers.
 自己免疫疾患としては、ギラン・バレー症候群、重症筋無力症、多発性硬化症、慢性胃炎、慢性萎縮性胃炎、自己免疫性肝炎、原発性胆汁性胆管炎、潰瘍性大腸炎、クローン病、原発性胆汁性胆管炎、自己免疫性膵炎、高安動脈炎、グッドパスチャー症候群、急速進行性糸球体腎炎、巨赤芽球性貧血、自己免疫性溶血性貧血、自己免疫性好中球減少症、特発性血小板減少性紫斑病、バセドウ病、橋本病、原発性甲状腺機能低下症、特発性アジソン病、1型糖尿病、慢性円板状エリテマトーデス、限局性強皮症、天疱瘡、膿疱性乾癬、尋常性乾癬、類天疱瘡、妊娠性疱疹、線状IgA水疱性皮膚症、後天性表皮水疱症、円形脱毛症、尋常性白斑、サットン後天性遠心性白斑・サットン母斑、原田病、自己免疫性視神経症、自己免疫性内耳障害、特発性無精子症、習慣性流産、リウマチ、全身性エリテマトーデス、抗リン脂質抗体症候群、多発性筋炎、皮膚筋炎、強皮症、シェーグレン症候群、IgG4関連疾患、血管炎症候群、混合性結合組織病が挙げられる。自己免疫疾患としては、特に、リウマチやシェーグレン症候群が挙げられる。 Autoimmune diseases include Guillain-Barre syndrome, myasthenia gravis, multiple sclerosis, chronic gastritis, chronic atrophic gastritis, autoimmune hepatitis, primary biliary cholangitis, ulcerative colitis, Crohn's disease, primary Biliary cholangitis, autoimmune pancreatitis, Takayasu arteritis, Goodpasture's syndrome, rapidly progressive glomerulonephritis, megaloblastic anemia, autoimmune hemolytic anemia, autoimmune neutropenia, idiopathic Thrombocytopenic purpura, Basedow's disease, Hashimoto's disease, primary hypothyroidism, idiopathic Addison's disease, type 1 diabetes, chronic discoid lupus erythematosus, localized scleroderma, pemphigus, pustular psoriasis, vulgaris Psoriasis, pemphigus, gestational herpes, linear IgA bullous dermatosis, acquired epidermolysis bullosa, alopecia areata, vitiligo vulgaris, Sutton's acquired efferent vitiligo / Sutton's nevus, Harada's disease, autoimmune optic nerve Disease, autoimmune inner ear disorder, idiopathic Azoospermia, habitual abortion, rheumatism, systemic lupus erythematosus, antiphospholipid antibody syndrome, polymyositis, dermatomyositis, scleroderma, Sjogren's syndrome, IgG4-related disease, vasculitis syndrome, mixed connective tissue disease Can be Autoimmune diseases include, in particular, rheumatism and Sjogren's syndrome.
 感染症としては、細菌感染症、真菌感染症、寄生性原虫感染症、寄生性蠕虫感染症、ウイルス感染症が挙げられる。細菌感染症としては、レンサ球菌、黄色ブドウ球菌、表皮ブドウ球菌、腸球菌、リステリア、髄膜炎菌、淋菌、病原性大腸菌、クレブシエラ、プロテウス、百日咳菌、緑膿菌、セラチア、シトロバクター、アシネトバクター、エンテロバクター、マイコプラズマ、クロストリジウム、リケッチア、クラミジア等の各種細菌による感染症;結核、非結核性抗酸菌症、コレラ、ペスト、ジフテリア、赤痢、猩紅熱、炭疽、梅毒、破傷風、ハンセン病、レジオネラ肺炎、レプトスピラ症、ライム病、野兎病、Q熱が挙げられる。真菌感染症としては、アスペルギルス症、カンジダ症、クリプトコッカス症、白癬菌症、ヒストプラズマ症、ニューモシスチス肺炎(カリニ肺炎)が挙げられる。寄生性原虫感染症としては、アメーバ赤痢、マラリア、トキソプラズマ症、リーシュマニア症、クリプトスポリジウム症が挙げられる。寄生性蠕虫感染症としては、エキノコックス症、日本住血吸虫症、フィラリア症、回虫症、広節裂頭条虫症が挙げられる。ウイルス感染症としては、インフルエンザ、ウイルス性肝炎、ウイルス性髄膜炎、ウイルス性胃腸炎、ウイルス性結膜炎、後天性免疫不全症候群(AIDS)、成人T細胞白血病、エボラ出血熱、黄熱、風邪症候群、狂犬病、サイトメガロウイルス感染症、重症急性呼吸器症候群(SARS)、中東呼吸器症候群(MERS)、進行性多巣性白質脳症、水痘・帯状疱疹、単純疱疹、手足口病、デング熱、日本脳炎、伝染性紅斑、伝染性単核球症、天然痘、風疹、急性灰白髄炎(ポリオ)、麻疹、咽頭結膜熱(プール熱)、マールブルグ出血熱、腎症候性出血熱、ラッサ熱、流行性耳下腺炎、ウエストナイル熱、ヘルパンギーナ、チクングニア熱が挙げられる。感染症は、例えば、日和見感染症であってもよい。 Infections include bacterial infections, fungal infections, parasitic protozoal infections, parasitic helminth infections, and viral infections. Bacterial infections include streptococci, Staphylococcus aureus, Staphylococcus epidermidis, Enterococci, Listeria, Meningococci, Neisseria gonorrhoeae, pathogenic Escherichia coli, Klebsiella, Proteus, Pertussis, Pseudomonas aeruginosa, Serratia, Citrobacter, Acinetobacter , Enterobacter, Mycoplasma, Clostridium, Rickettsia, Chlamydia, and other various bacterial infections; tuberculosis, nontuberculous mycobacteriosis, cholera, plague, diphtheria, dysentery, scarlet fever, anthrax, syphilis, tetanus, leprosy, Legionella pneumonia, Leptospirosis, Lyme disease, tularemia, Q fever. Fungal infections include aspergillosis, candidiasis, cryptococcosis, trichomycosis, histoplasmosis, pneumocystis pneumonia (Kalini pneumonia). Parasitic protozoan infections include amoebic dysentery, malaria, toxoplasmosis, leishmaniasis, and cryptosporidiosis. Parasitic helminth infections include echinococcosis, schistosomiasis japonica, filariasis, ascariasis, and broad-striped tapeworm infection. Viral infections include influenza, viral hepatitis, viral meningitis, viral gastroenteritis, viral conjunctivitis, acquired immunodeficiency syndrome (AIDS), adult T-cell leukemia, Ebola hemorrhagic fever, yellow fever, cold syndrome, rabies , Cytomegalovirus infection, severe acute respiratory syndrome (SARS), middle east respiratory syndrome (MERS), progressive multifocal leukoencephalopathy, varicella / shingles, herpes simplex, hand-foot-and-mouth disease, dengue fever, Japanese encephalitis, transmission Erythema verruca, infectious mononucleosis, smallpox, rubella, acute poliomyelitis (polio), measles, pharyngeal conjunctival fever (pool fever), Marburg hemorrhagic fever, renal symptomatic hemorrhagic fever, Lassa fever, epidemic Adenitis, West Nile fever, Herpangina, Chikungunya fever. The infection may be, for example, an opportunistic infection.
 アレルギーとしては、アナフィラキシーショック、アレルギー性鼻炎、結膜炎、気管支喘息、蕁麻疹、アトピー性皮膚炎、溶血性貧血、特発性血小板減少性紫斑病、薬剤性溶血性貧血、顆粒球減少症、血小板減少症、グッドパスチャー症候群、血清病、全身性エリテマトーデス(SLE)、リウマチ、糸球体腎炎、過敏性肺炎、アレルギー性気管支肺アスペルギルス症(ABPA)、接触性皮膚炎、アレルギー性脳炎、移植拒絶反応、結核性空洞、類上皮細胞性肉芽腫が挙げられる。 Allergies include anaphylactic shock, allergic rhinitis, conjunctivitis, bronchial asthma, urticaria, atopic dermatitis, hemolytic anemia, idiopathic thrombocytopenic purpura, drug-induced hemolytic anemia, granulocytopenia, thrombocytopenia , Goodpasture syndrome, Serum disease, Systemic lupus erythematosus (SLE), Rheumatism, Glomerulonephritis, Irritable pneumonia, Allergic bronchopulmonary aspergillosis (ABPA), Contact dermatitis, Allergic encephalitis, Transplant rejection, Tuberculosis Cavity, epithelioid granulomas.
 炎症疾患としては、炎症性サイトカインにより誘導される疾患が挙げられる。炎症性サイトカインとしては、IL-6やTNF-αが挙げられる。炎症疾患として、具体的には、脳炎、骨髄炎、髄膜炎、神経炎、眼の炎症(涙腺炎、強膜炎、上強膜炎、角膜炎、脈絡網膜炎、網膜炎、脈絡網膜炎、眼瞼炎、結膜炎、ぶどう膜炎、等)、耳の炎症(外耳炎、中耳炎、内耳炎、等)、乳腺炎、心炎(心内膜炎、心筋炎、心膜炎、等)、血管炎(動脈炎、静脈炎、毛細血管炎、等)、呼吸器の炎症(副鼻腔炎、鼻炎、咽頭炎、喉頭炎、気管炎、気管支炎、細気管支炎、肺炎、胸膜炎、縦隔炎、等)、口腔の炎症(口内炎、歯肉炎、歯肉口内炎、舌炎、扁桃炎、シラデン炎、耳下腺炎、口唇炎、歯髄炎、鼻炎、等)、消化器の炎症(食道炎、胃炎、胃腸炎、腸炎、小腸炎、大腸炎、十二指腸炎、回腸炎、虫垂炎、直腸炎、等)、皮膚炎、蜂巣炎、汗腺炎、関節炎、皮膚筋炎、筋炎、滑膜炎、腱炎、脂肪織炎、骨炎、骨髄炎、骨膜炎、腎炎、輸尿管炎、膀胱炎、尿管炎、卵巣炎、卵管炎、子宮内膜炎、子宮頸管炎、膣炎、外陰炎、精巣炎、精巣上体炎、前立腺炎、精嚢膀胱炎、亀頭炎、包皮炎、絨毛膜羊膜炎、臍帯炎、臍炎、肝炎、上行性胆管炎、胆嚢炎、膵炎、腹膜炎、下垂体炎、甲状腺炎、副甲状腺炎、副腎炎、リンパ管炎、リンパ節炎が挙げられる。炎症疾患としては、特に、膵炎が挙げられる。 Inflammatory diseases include diseases induced by inflammatory cytokines. Inflammatory cytokines include IL-6 and TNF-α. Specific examples of inflammatory diseases include encephalitis, osteomyelitis, meningitis, neuritis, ocular inflammation (laminaritis, scleritis, episcleritis, keratitis, chorioretinitis, retinitis, chorioretinitis) , Blepharitis, conjunctivitis, uveitis, etc.), ear inflammation (otitis externa, otitis media, otitis media, etc.), mastitis, carditis (endocarditis, myocarditis, pericarditis, etc.), blood vessels Inflammation (arteritis, phlebitis, capillary inflammation, etc.), respiratory inflammation (sinusitis, rhinitis, pharyngitis, laryngitis, tracheitis, bronchitis, bronchiolitis, pneumonia, pleurisy, mediastinitis, etc. ), Oral inflammation (stomatitis, gingivitis, gingivostomatitis, glossitis, tonsillitis, siladenitis, parotitis, cheilitis, pulpitis, rhinitis, etc.), gastrointestinal inflammation (esophagitis, gastritis, gastrointestinal tract) Inflammation, enteritis, colitis, colitis, duodenitis, ileitis, appendicitis, proctitis, etc.), dermatitis, cellulitis, sweat glanditis, arthritis, dermatomyositis, myositis, synovitis, tendinitis, Panniculitis, osteomyelitis, osteomyelitis, periosteitis, nephritis, ureteritis, cystitis, ureteritis, ovitis, salpingitis, endometritis, cervicitis, vaginitis, vulvitis, orchitis, Epididymitis, prostatitis, seminal vesicle cystitis, balanitis, foreskinitis, chorioamnionitis, umbilical cord, umbilitis, hepatitis, ascending cholangitis, cholecystitis, pancreatitis, peritonitis, hypophysitis, thyroiditis , Parathyroiditis, adrenalitis, lymphangitis, lymphadenitis. Inflammatory diseases include, in particular, pancreatitis.
 疾患として、具体的には、悪液質や加齢関連疾患も挙げられる。加齢関連疾患としては、フレイル(虚弱)、サルコペニア、ロコモティブシンドロームが挙げられる。悪液質やこれらの加齢関連疾患は、いずれも、炎症疾患でもあり得る。 Specific examples of the disease include cachexia and an aging-related disease. Age-related diseases include frail (weak), sarcopenia, and locomotive syndrome. Cachexia and any of these age-related diseases can also be inflammatory diseases.
 被検者におけるリスクの検出としては、被検者においてリスクがあるかないかの判定や、被検者においてリスクが高いか低いかの判定が挙げられる。 リ ス ク The detection of the risk in the subject includes determining whether the subject has a risk or not, and determining whether the subject has a high or low risk.
 疾患の有無の検出としては、被検者が現在疾患を発症している可能性があるかないかの判定や、被検者が現在疾患を発症している可能性が高いか低いかの判定が挙げられる。また、疾患の発症リスクの検出としては、被検者が将来疾患を発症する可能性または発症した場合に重症化する可能性があるかないかの判定や、被検者が将来疾患を発症する可能性または発症した場合に重症化する可能性が高いか低いかの判定が挙げられる。また、疾患の進行度合いの検出としては、被検者における現在の疾患の進行度合い(例えば重症度)が大きいか小さいかの判定が挙げられる。また、加齢の進行度合いの検出としては、被検者における現在の加齢の進行度合い(例えば重症度)が大きいか小さいかの判定が挙げられる。 The detection of the presence or absence of a disease includes determining whether the subject may or may not be currently developing the disease, and determining whether or not the subject is currently likely to have the disease. No. In addition, as detection of the risk of developing a disease, it is possible to determine whether or not a subject has the possibility of developing the disease in the future or if there is a possibility of becoming more severe, or that the subject will develop the disease in the future It is possible to determine whether sex or the likelihood of the onset of the disease when it develops is high or low. The detection of the degree of progress of the disease includes determination of whether the current degree of progress of the disease (for example, severity) in the subject is large or small. In addition, the detection of the degree of progress of aging includes determination of whether the current degree of progress of aging (for example, severity) in the subject is large or small.
 すなわち、「被検者においてリスクがある」とは、例えば、被検者が現在疾患を発症している可能性があること、被検者が将来疾患を発症する可能性があること、および/または被検者が将来疾患を発症した場合に重症化する可能性があることを意味してよい。「被検者においてリスクがない」とは、例えば、被検者が現在疾患を発症している可能性がないこと、被検者が将来疾患を発症する可能性がないこと、および/または被検者が将来疾患を発症した場合に重症化する可能性がないことを意味してよい。「被検者においてリスクが高い」とは、例えば、被検者が現在疾患を発症している可能性が高いこと、被検者が将来疾患を発症する可能性が高いこと、被検者が将来疾患を発症した場合に重症化する可能性が高いこと、被検者における現在の疾患の進行度合いが大きいこと、および/または被検者における現在の加齢の進行度合いが大きいことを意味してよい。「被検者においてリスクが低い」とは、例えば、被検者が現在疾患を発症している可能性が低いこと、被検者が将来疾患を発症する可能性が低いこと、被検者が将来疾患を発症した場合に重症化する可能性が低いこと、被検者における現在の疾患の進行度合いが小さいこと、および/または被検者における現在の加齢の進行度合いが小さいことを意味してよい。 That is, “there is a risk in the subject” means, for example, that the subject may currently develop the disease, that the subject may develop the disease in the future, and / or Alternatively, it may mean that if the subject develops the disease in the future, the disease may become severe. "No risk in the subject" means, for example, that the subject is not likely to develop the disease, that the subject is not likely to develop the disease in the future, and / or It may mean that there is no possibility that the examiner will become severe if the disease develops in the future. "High risk in the subject" means, for example, that the subject is likely to develop the disease at present, that the subject is likely to develop the disease in the future, This means that if the disease develops in the future, it is more likely to be severe, that the subject has a greater progression of the current disease, and / or that the subject has a greater progression of the current aging. May be. "Low risk in the subject" means, for example, that the subject is less likely to develop the disease at present, that the subject is less likely to develop the disease in the future, It means that if the disease develops in the future, it is unlikely to be severe, that the subject has a small progression of the current disease, and / or that the subject has a small progression of the current aging. May be.
 検出工程は、例えば、分離データの値の高低(すなわち、分離データの値が高いか低いか)を指標として実施できる。分離データの値の高低は、例えば、分離データの値を所定の閾値と比較することにより決定できる。言い換えると、検出工程は、例えば、分離データの値を閾値と比較する工程を含んでいてよい。すなわち、「分離データの値が高い」とは、例えば、分離データの値が閾値を基準として高いことを意味してよい。「分離データの値が閾値を基準として高い」とは、例えば、分離データの値が閾値以上であること、分離データの値が閾値超であること、または分離データの値が閾値よりも統計学的に有意に高いことを意味してよい。「分離データの値が閾値を基準として高い」とは、具体的には、例えば、分離データの値が閾値の1.01倍以上、1.02倍以上、1.03倍以上、1.05倍以上、1.07倍以上、1.1倍以上、1.2倍以上、1.3倍以上、1.5倍以上、1.7倍以上、2倍以上、2.5倍以上、または3倍以上であることを意味してもよい。また、「分離データの値が低い」とは、例えば、分離データの値が閾値を基準として低いことを意味してよい。「分離データの値が閾値を基準として低い」とは、例えば、分離データの値が閾値以下であること、分離データの値が閾値未満であること、または分離データの値が閾値よりも統計学的に有意に低いことを意味してよい。「分離データの値が閾値を基準として低い」とは、具体的には、例えば、分離データの値が閾値の0.99倍以下、0.98倍以下、0.97倍以下、0.95倍以下、0.93倍以下、0.9倍以下、0.85倍以下、0.8倍以下、0.7倍以下、0.6倍以下、0.5倍以下、0.4倍以下、または0.3倍以下であることを意味してもよい。 The detection step can be performed using, for example, the level of the value of the separated data (that is, whether the value of the separated data is high or low) as an index. The level of the value of the separated data can be determined, for example, by comparing the value of the separated data with a predetermined threshold. In other words, the detecting step may include, for example, comparing the value of the separated data with the threshold value. That is, “the value of the separated data is high” may mean that, for example, the value of the separated data is high based on the threshold. "The value of the separated data is higher than the threshold value" means, for example, that the value of the separated data is greater than or equal to the threshold value, that the value of the separated data is greater than the threshold value, or that the value of the separated data is statistically higher than the threshold value. May mean significantly higher. "The value of the separated data is higher based on the threshold value" specifically means, for example, that the value of the separated data is 1.01 times or more, 1.02 times or more, 1.03 times or more, 1.05 times or more of the threshold value. Times or more, 1.07 times or more, 1.1 times or more, 1.2 times or more, 1.3 times or more, 1.5 times or more, 1.7 times or more, 2 times or more, 2.5 times or more, or It may mean three times or more. Further, “the value of the separated data is low” may mean, for example, that the value of the separated data is low based on a threshold. “The value of the separated data is lower than the threshold value” means, for example, that the value of the separated data is less than or equal to the threshold value, that the value of the separated data is less than the threshold value, or that the value of the separated data is statistically lower than the threshold value. May mean significantly lower. "The value of the separated data is low with reference to the threshold value" specifically means, for example, that the value of the separated data is 0.99 times or less, 0.98 times or less, 0.97 times or less, 0.95 times or less of the threshold value. Times or less, 0.93 times or less, 0.9 times or less, 0.85 times or less, 0.8 times or less, 0.7 times or less, 0.6 times or less, 0.5 times or less, 0.4 times or less Or 0.3 times or less.
 分離データの値は、例えば、閾値を基準に、危険範囲に区分されてよい。分離データの値は、例えば、閾値を基準に、非危険範囲に区分されてよい。分離データの値は、具体的には、例えば、閾値を基準に、危険範囲と非危険範囲とに区分されてもよい。「危険範囲」とは、分離データの値について、被検者においてリスクがある可能性が高い範囲を意味してよい。「非危険範囲」とは、分離データの値について、被検者においてリスクがない可能性が高い範囲を意味してよい。すなわち、分離データの値が危険範囲にあれば、被検者においてリスクがある、またはリスクが高いと判定してよい。一方、分離データの値が非危険範囲にあれば、被検者においてリスクがない、またはリスクが低いと判定してよい。 The value of the separation data may be classified into a risk range based on, for example, a threshold. For example, the value of the separated data may be classified into a non-risk range based on a threshold. Specifically, the value of the separated data may be classified into a dangerous range and a non-critical range based on, for example, a threshold. The “risk range” may mean a range in which there is a high possibility that the subject has a risk with respect to the value of the separated data. The “non-risk range” may mean a range in which there is a high possibility that the subject has no risk with respect to the value of the separated data. That is, if the value of the separated data is within the risk range, it may be determined that the subject has a risk or has a high risk. On the other hand, if the value of the separated data is in the non-risk range, the subject may be determined to have no risk or low risk.
 例えば、第1ピークおよび/または第2ピークのピーク面積(例えば、ピーク面積%)および/またはピーク高さ(例えば、ピーク高さ%)の値が高い場合に、被検者においてリスクがある、またはリスクが高いと判定してよい。具体的には、例えば、第1ピークおよび/または第2ピークのピーク面積(例えば、ピーク面積%)および/またはピーク高さ(例えば、ピーク高さ%)の値が閾値を基準として高い場合に被検者においてリスクがある、またはリスクが高いと判定してよい。この場合、閾値を基準として高いとみなされる範囲が危険範囲であってよい。より具体的には、例えば、第1ピーク面積%が、14%以上、15%以上、16%以上、17%以上、18%以上、19%以上、20%以上、21%以上、22%以上、23%以上、24%以上、25%以上、26%以上、27%以上、28%以上、29%以上、または30%以上である場合に、被検者においてリスクがある、またはリスクが高いと判定してもよい。また、第1ピークおよび/または第2ピークのピーク面積(例えば、ピーク面積%)および/またはピーク高さ(例えば、ピーク高さ%)の値が高いほど、被検者においてリスクが高いと判定してもよい。 For example, if the value of the peak area (eg, peak area%) and / or peak height (eg, peak height%) of the first peak and / or the second peak is high, there is a risk in the subject. Alternatively, it may be determined that the risk is high. Specifically, for example, when the value of the peak area (for example, peak area%) and / or the peak height (for example, peak height%) of the first peak and / or the second peak is high with respect to the threshold value, The subject may be determined to be at risk or high risk. In this case, the range considered to be high based on the threshold value may be the dangerous range. More specifically, for example, the first peak area% is 14% or more, 15% or more, 16% or more, 17% or more, 18% or more, 19% or more, 20% or more, 21% or more, 22% or more , 23% or more, 24% or more, 25% or more, 26% or more, 27% or more, 28% or more, 29% or more, or 30% or more, there is a risk or a high risk in the subject May be determined. Further, it is determined that the higher the value of the peak area (for example, peak area%) and / or the peak height (for example, peak height%) of the first peak and / or the second peak, the higher the risk in the subject. May be.
 例えば、第1ピークおよび/または第2ピークのピーク面積(例えば、ピーク面積%)および/またはピーク高さ(例えば、ピーク高さ%)の値が低い場合に、被検者においてリスクがない、またはリスクが低いと判定してよい。具体的には、例えば、第1ピークおよび/または第2ピークのピーク面積(例えば、ピーク面積%)および/またはピーク高さ(例えば、ピーク高さ%)の値が閾値を基準として低い場合に被検者においてリスクがない、またはリスクが低いと判定してよい。この場合、閾値を基準として低いとみなされる範囲が非危険範囲であってよい。より具体的には、例えば、第1ピーク面積%が、25%以下、24%以下、23%以下、22%以下、21%以下、20%以下、19%以下、18%以下、17%以下、16%以下、15%以下、14%以下、13%以下、12%以下、11%以下、10%以下、または9%以下である場合に、被検者においてリスクがない、またはリスクが低いと判定してもよい。また、第1ピークおよび/または第2ピークのピーク面積(例えば、ピーク面積%)および/またはピーク高さ(例えば、ピーク高さ%)の値が低いほど、被検者においてリスクが低いと判定してもよい。 For example, if the value of the peak area (eg, peak area%) and / or peak height (eg, peak height%) of the first peak and / or the second peak is low, there is no risk in the subject. Alternatively, it may be determined that the risk is low. Specifically, for example, when the value of the peak area (for example, peak area%) and / or the peak height (for example, peak height%) of the first peak and / or the second peak is low with respect to the threshold, The subject may be determined to have no or low risk. In this case, the range considered to be low based on the threshold may be the non-risk range. More specifically, for example, the first peak area% is 25% or less, 24% or less, 23% or less, 22% or less, 21% or less, 20% or less, 19% or less, 18% or less, 17% or less. No or low risk in the subject when ≤16%, ≤15%, ≤14%, ≤13%, ≤12%, ≤11%, ≤10%, or ≤9% May be determined. In addition, it is determined that the lower the value of the peak area (for example, peak area%) and / or the peak height (for example, peak height%) of the first peak and / or the second peak, the lower the risk in the subject. May be.
 例えば、第3ピークのピーク面積(例えば、ピーク面積%)および/またはピーク高さ(例えば、ピーク高さ%)の値が低い場合に、被検者においてリスクがある、またはリスクが高いと判定してよい。具体的には、例えば、第3ピークのピーク面積(例えば、ピーク面積%)および/またはピーク高さ(例えば、ピーク高さ%)の値が閾値を基準として低い場合に被検者においてリスクがある、またはリスクが高いと判定してよい。この場合、閾値を基準として低いとみなされる範囲が危険範囲であってよい。また、第3ピークのピーク面積(例えば、ピーク面積%)および/またはピーク高さ(例えば、ピーク高さ%)の値が低いほど、被検者においてリスクが高いと判定してもよい。 For example, when the value of the peak area (for example, peak area%) and / or the peak height (for example, peak height%) of the third peak is low, it is determined that the subject is at risk or has a high risk. You may. Specifically, for example, when the value of the peak area (for example, peak area%) and / or the peak height (for example, peak height%) of the third peak is low with respect to the threshold, the risk is low in the subject. It may be determined that there is or that the risk is high. In this case, a range considered to be low with respect to the threshold value may be a dangerous range. In addition, the lower the value of the peak area (for example, peak area%) and / or the peak height (for example, peak height%) of the third peak, the higher the risk may be determined in the subject.
 例えば、第3ピークのピーク面積(例えば、ピーク面積%)および/またはピーク高さ(例えば、ピーク高さ%)の値が高い場合に、被検者においてリスクがない、またはリスクが低いと判定してよい。具体的には、例えば、第3ピークのピーク面積(例えば、ピーク面積%)および/またはピーク高さ(例えば、ピーク高さ%)の値が閾値を基準として高い場合に被検者においてリスクがない、またはリスクが低いと判定してよい。この場合、閾値を基準として高いとみなされる範囲が非危険範囲であってよい。また、第3ピークのピーク面積(例えば、ピーク面積%)および/またはピーク高さ(例えば、ピーク高さ%)の値が高いほど、被検者においてリスクが低いと判定してもよい。 For example, when the value of the peak area (for example, peak area%) and / or the peak height (for example, peak height%) of the third peak is high, it is determined that there is no risk or low risk in the subject. You may. Specifically, for example, when the value of the peak area (for example, peak area%) and / or the peak height (for example, peak height%) of the third peak is high with respect to the threshold value, the risk is low in the subject. It may be determined that there is no or low risk. In this case, the range considered to be high based on the threshold value may be the non-risk range. In addition, the risk may be determined to be lower in the subject as the value of the peak area (for example, peak area%) and / or the peak height (for example, peak height%) of the third peak is higher.
 第1ピークを対象ピークとする分離データを指標とする場合、リスクは、例えば、膵炎以外の症状についてのリスクから選択されてよい。第2ピークを対象ピークとする分離データを指標とする場合、リスクは、例えば、加齢についてのリスクから選択されてよい。第3ピークを対象ピークとする分離データを指標とする場合、リスクは、例えば、膵炎についてのリスクから選択されてよい。 場合 When using the separated data with the first peak as the target peak as an index, the risk may be selected, for example, from the risk of symptoms other than pancreatitis. When the separation data having the second peak as the target peak is used as an index, the risk may be selected from, for example, an aging risk. When the separation data with the third peak as the target peak is used as an index, the risk may be selected from, for example, the risk of pancreatitis.
 なお、「或る分離データが或る基準を満たす(例えば、低いもしくは高い、または或る範囲にある)場合に被検者においてリスクがある、ない、高い、または低いと判定する」とは、少なくとも当該基準を満たす範囲において被検者においてリスクがある、ない、高い、または低いと判定されることを意味し、当該基準を満たさない範囲において被検者においてリスクが判定されることを要求しない。しかし、一態様においては、「或る分離データが或る基準を満たす(例えば、低いもしくは高い、または或る範囲にある)場合に被検者においてリスクがある、ない、高い、または低いと判定する」場合、当該基準を満たさない範囲において、それぞれ、被検者においてリスクがない、ある、低い、または高いと判定してもよい。 Note that “determining that a subject is at risk, not, high, or low when a certain separated data meets a certain criterion (for example, low or high, or within a certain range)” It means that the subject is determined to be at risk, no, high, or low at least in the range that satisfies the criterion, and does not require that the risk be determined in the subject in the range that does not meet the criterion . However, in one aspect, a determination is made that a subject is at risk, absent, high, or low if certain separation data meets certain criteria (eg, low or high, or in a range). If "yes", the subject may be determined as having no, certain, low, or high risk within a range that does not satisfy the criterion, respectively.
 閾値は、例えば、分離データの種類や所望の判定精度等の諸条件に応じて、当業者が適宜設定することができる。閾値は、例えば、疾患や加齢等の判定対象の症状ごとに設定されてよい。閾値を決定する手段は、特に制限されない。閾値は、例えば、集団を2群に区分するためのデータ解析に利用される公知の手法に従って決定することができる。 The threshold value can be appropriately set by those skilled in the art according to various conditions such as the type of separated data and a desired determination accuracy. The threshold may be set, for example, for each symptom to be determined such as a disease or aging. The means for determining the threshold is not particularly limited. The threshold value can be determined, for example, according to a known method used for data analysis for dividing a population into two groups.
 閾値は、例えば、対照被検者から得た抗体試料の分離データの値に基づいて決定することができる。対照被検者から得た抗体試料の分離データを、「対照分離データ」ともいう。対照分離データは、閾値の決定に用いられることにより、検出工程に用いられてよい。対照分離データは、具体的には、閾値の決定に用いられることにより、分離データとの比較に用いられてよい。言い換えると、検出工程は、例えば、分離データを対照分離データと比較する工程を含んでいてよい。 The threshold value can be determined based on, for example, the value of separation data of an antibody sample obtained from a control subject. The separation data of the antibody sample obtained from the control subject is also referred to as “control separation data”. The control separation data may be used in the detection step by being used in determining the threshold. The control separation data may be used for comparison with the separation data, specifically, by being used for determining a threshold value. In other words, the detecting step may include, for example, comparing the separated data with the control separated data.
 対照被検者としては、陽性対照や陰性対照が挙げられる。「陽性対照」とは、リスクがある、または高いと判定され得る被検者を意味してよい。「陰性対照」とは、リスクがない、または低いと判定され得る被検者を意味してよい。陽性対照としては、上記例示したような疾患(特に、リスクの検出対象となる疾患と同一の疾患)に罹患している、または罹患したことがある個体や、加齢が進行した個体、それらの組み合わせの性質を有する個体が挙げられる。陰性対照としては、上記例示したような疾患(特に、リスクの検出対象となる疾患と同一の疾患)に罹患していない、または罹患したことがない個体や、加齢が進行していない個体、それらの組み合わせの性質を有する個体が挙げられる。閾値は、陽性対照について測定された分離データの値のみに基づいて決定してもよく、陰性対照について測定された分離データの値のみに基づいて決定してもよく、陽性対照と陰性対照の両方について測定された分離データの値に基づいて決定してもよい。閾値は、通常、陽性対照と陰性対照の両方について測定された分離データの値に基づいて決定してよい。陽性対照と陰性対照の人数は、リスクの判定が所望の精度で可能となる閾値が得られる限り、特に制限されない。陽性対照と陰性対照の人数は、それぞれ、1人であってもよく、2人またはそれ以上であってもよい。陽性対照と陰性対照の人数は、それぞれ、通常、複数名であってよい。陽性対照と陰性対照の人数は、それぞれ、例えば、5人以上、10人以上、20人以上、または50人以上であってもよい。陽性対照と陰性対照の人数は、それぞれ、例えば、10000人以下、1000人以下、または100人以下であってもよい。 Control subjects include positive controls and negative controls. "Positive control" may mean a subject that can be determined to be at risk or high. A “negative control” may mean a subject that can be determined to be at no risk or low. Examples of the positive control include individuals suffering from or having suffered from the above-mentioned diseases (particularly, the same diseases as those for which a risk is to be detected), individuals who have aged, Individuals having a combination property are included. As a negative control, an individual who does not suffer from or has not suffered from the disease exemplified above (particularly, the same disease as the disease whose risk is to be detected), an individual who has not experienced aging, Individuals having the properties of these combinations are included. The threshold may be determined based solely on the value of the separated data measured for the positive control, may be determined based solely on the value of the separated data measured for the negative control, and may be determined based on both the positive and negative controls. May be determined based on the value of the separation data measured for. The threshold may usually be determined based on the value of the separated data measured for both positive and negative controls. The number of the positive control and the negative control is not particularly limited as long as a threshold value at which the risk can be determined with desired accuracy is obtained. The number of positive and negative controls may be one, two or more, respectively. Each of the number of the positive control and the number of the negative control may usually be plural. The number of positive and negative controls may be, for example, 5 or more, 10 or more, 20 or more, or 50 or more, respectively. The number of positive and negative controls may be, for example, up to 10,000, up to 1000, or up to 100, respectively.
 陽性対照について測定された分離データの値のみに基づいて閾値を決定する場合には、例えば、陽性対照の複数個体で測定された分離データの値の上限から下限までの範囲から選択される値、例えば平均値、を閾値として設定してもよい。また、例えば、陽性対照の複数個体で測定された分離データの値の分布において、陽性対照の所定の割合が危険範囲に含まれるように閾値を決定してもよい。所定の割合とは、例えば、70%以上、80%以上、90%以上、95%以上、97%以上、または100%であってよい。 When determining the threshold based on only the value of the separated data measured for the positive control, for example, a value selected from the range from the upper limit to the lower limit of the value of the separated data measured in multiple individuals of the positive control, For example, an average value may be set as the threshold. Further, for example, in the distribution of the values of the separated data measured by a plurality of individuals of the positive control, the threshold value may be determined so that a predetermined ratio of the positive control is included in the risk range. The predetermined ratio may be, for example, 70% or more, 80% or more, 90% or more, 95% or more, 97% or more, or 100%.
 陰性対照について測定された分離データの値のみに基づいて閾値を決定する場合には、例えば、陰性対照の複数個体で測定された分離データの値の上限から下限までの範囲から選択される値、例えば平均値、を閾値として設定してもよい。また、例えば、陰性対照の複数個体で測定された分離データの値の分布において、陰性対照の所定の割合が非危険範囲に含まれるように閾値を決定してもよい。所定の割合とは、例えば、70%以上、80%以上、90%以上、95%以上、97%以上、または100%であってよい。 When determining the threshold based on only the value of the separated data measured for the negative control, for example, a value selected from the range from the upper limit to the lower limit of the value of the separated data measured in multiple individuals of the negative control, For example, an average value may be set as the threshold. Further, for example, in the distribution of the values of the separated data measured in a plurality of negative control individuals, the threshold value may be determined so that a predetermined ratio of the negative control is included in the non-risk range. The predetermined ratio may be, for example, 70% or more, 80% or more, 90% or more, 95% or more, 97% or more, or 100%.
 陽性対照について測定された分離データの値と陰性対照について測定された分離データの値の両方に基づいて閾値を決定する場合には、例えば、陽性対照の所定の割合が危険範囲に含まれ、且つ、陰性対照の所定の割合が非危険範囲に含まれるように閾値を決定してもよい。陽性対照の内の危険範囲に含まれるものの割合、および、陰性対照の内の非危険範囲に含まれるものの割合は、いずれも高い方が好ましい。これらの割合は、それぞれ、例えば、70%以上、80%以上、90%以上、95%以上、97%以上、または100%であってよい。これらの割合の両方を高くすることが難しい場合は、例えば、本発明の方法による判定結果の利用目的等の諸条件に応じて、いずれかの割合が優先的に高くなるように閾値を設定してもよい。例えば、偽陰性率を下げるためには、陽性対照の内の危険範囲に含まれるものの割合が優先的に高くなるように閾値を設定してよい。 When determining the threshold based on both the value of the separated data measured for the positive control and the value of the separated data measured for the negative control, for example, a predetermined percentage of the positive control is included in the risk range, and , The threshold may be determined such that a predetermined percentage of the negative controls fall within the non-risk range. It is preferable that the ratio of the positive control included in the risk range and the ratio of the negative control included in the non-risk range are both higher. These proportions may be, for example, 70% or more, 80% or more, 90% or more, 95% or more, 97% or more, or 100%, respectively. If it is difficult to increase both of these ratios, for example, according to various conditions such as the purpose of using the determination result by the method of the present invention, a threshold is set so that either ratio is preferentially increased. You may. For example, in order to reduce the false negative rate, a threshold value may be set so that the proportion of positive controls included in the risk range is preferentially increased.
 閾値の決定は、例えば、ソフトウェアを用いて実施してもよい。例えば、統計解析ソフトウェアを用い、陰性対照と陽性対照とを統計学的に最も適切に判別できるような閾値を決定してもよい。そのようなソフトウェアとしては、「R」等の統計解析ソフトウェアが挙げられる。 The determination of the threshold may be performed using software, for example. For example, a statistical analysis software may be used to determine a threshold value at which a negative control and a positive control can be statistically most appropriately discriminated. Examples of such software include statistical analysis software such as “R”.
 また、対照被検者としては、標的被検者自体も挙げられる。すなわち、例えば、被検者における分離データの変動を指標として、被検者におけるリスクを判定してもよい。「分離データの値が高い」ことには、分離データの値が増大した場合が包含されてよい。「分離データの値が増大した」とは、具体的には、分離データの値が過去の値と比較して増大したことを意味してよい。また、「分離データの値が低い」ことには、分離データの値が低下した場合が包含されてよい。「分離データの値が低下した」とは、具体的には、分離データの値が過去の値と比較して低下したことを意味してよい。すなわち、閾値としては、過去の値も挙げられる。「過去の値」とは、標的被検者から過去の或る時点で得た抗体試料の分離データの値を意味する。過去の或る時点における標的被検者は、例えば、陽性対照であってもよく、陰性対照であってもよい。 対 照 The control subject also includes the target subject itself. That is, for example, the risk in the subject may be determined using the fluctuation of the separation data in the subject as an index. “The value of the separated data is high” may include a case where the value of the separated data increases. “The value of the separated data has increased” may specifically mean that the value of the separated data has increased as compared with the past value. In addition, "low value of separated data" may include a case where the value of separated data is reduced. “The value of the separated data has decreased” may specifically mean that the value of the separated data has decreased as compared with the past value. That is, the threshold value may be a past value. “Past value” means a value of separation data of an antibody sample obtained from a target subject at a certain point in the past. The target subject at some point in the past may be, for example, a positive control or a negative control.
 被検者における分離データの変動を指標とする場合、被検者におけるリスクの増減を判定してもよい。「リスクがある、または高い」ことには、リスクが増大した場合が包含されてよい。「リスクが増大した」とは、具体的には、リスクが過去の或る時点と比較して増大したことを意味してよい。また、「リスクがない、または低い」ことには、リスクが低下した場合が包含されてよい。「リスクが低下した」とは、具体的には、リスクが過去の或る時点と比較して低下したことを意味してよい。 (4) When the change in the separation data in the subject is used as an index, the increase or decrease in the risk in the subject may be determined. “At risk or high” may include an increased risk. “The risk has increased” may specifically mean that the risk has increased compared to a certain point in the past. Further, “no or low risk” may include a case where the risk is reduced. “Reduced risk” may specifically mean that the risk has decreased compared to a certain point in the past.
 なお、「或る分離データを得てリスクの検出の指標とする」とは、当該分離データの値そのものを得てリスクの検出の指標とする場合に限られず、当該分離データの値を反映する他の値を得て検出の指標とすることも包含される。例えば、溶出ピークが第1~第4ピークからなる場合、「第1ピークのピーク面積%を得てリスクの検出の指標とする」とは、第1ピークのピーク面積%の値そのものを得てリスクの検出の指標とする場合に限られず、第2~第4ピークのピーク面積%の合計値等の、第1ピークのピーク面積%の値を反映する他の値を得て検出の指標とすることも包含される。いずれの場合にも、リスクの検出に用いられる測定値や閾値等の数値は、分離データの種類に応じて、適宜補正して用いられる。例えば、溶出ピークが第1~第4ピークからなる場合、第1ピークのピーク面積%の値をX、第2~第4ピークのピーク面積%の合計値をYとすると、「X=100%-Y」の関係が成立する。よって、第1ピークのピーク面積%の値そのもの(すなわち、「X」)に代えて第2~第4ピークのピーク面積%の合計値(すなわち、「Y」)を検出の指標とする場合、「Xが或る基準を満たす(例えば、低いもしくは高い、または或る範囲にある)」とは、「Yの補正値(すなわち、「100%-Y」)が当該基準を満たす」と読み替えるものとする。 Note that “obtaining certain separated data and using it as an index of risk detection” is not limited to obtaining the value of the separated data itself and using it as an index of risk detection, but reflects the value of the separated data. Obtaining another value and using it as a detection index is also included. For example, when the eluting peak is composed of the first to fourth peaks, the expression “obtain the peak area% of the first peak and use it as an index for risk detection” means obtaining the value of the peak area% of the first peak itself. It is not limited to the case where the index is used as a risk detection index, and other values that reflect the value of the peak area% of the first peak, such as the total value of the peak area% of the second to fourth peaks, are obtained. Is included. In any case, numerical values such as measured values and threshold values used for detecting a risk are appropriately corrected and used according to the type of separated data. For example, when the eluting peak is composed of the first to fourth peaks, if the value of the peak area% of the first peak is X and the total value of the peak area% of the second to fourth peaks is Y, “X = 100% −Y ”holds. Therefore, when the sum of the peak area% of the second to fourth peaks (ie, “Y”) is used as the detection index instead of the value of the peak area% of the first peak itself (ie, “X”), “X satisfies a certain criterion (for example, low or high or in a certain range)” should be read as “the correction value of Y (ie,“ 100% −Y ”) satisfies the criterion”. And
 リスクの検出結果は、被検者に対してリスクを低減するための処置(以下、「リスク軽減処置」ともいう)を実施するかを決定するための指標として用いてもよい。言い換えると、本発明の検出方法を実施することにより、被検者に対してリスク軽減処置を実施するかを決定するための指標が得られる。すなわち、例えば、本発明の検出方法により被検者においてリスクがある、または高いと判定された場合に、被検者に対してリスク軽減処置を実施すると決定してよい。本発明の検出方法は、例えば、単独で、あるいは他の手段と組み合わせて、被検者に対してリスク軽減処置を実施するかを決定するための指標として用いてよい。例えば、本発明の検出方法により被検者においてリスクがある、または高いと判定された症状について、他の手段により確定診断を実施してから、被検者に対してリスク軽減処置を実施すると決定してもよい。リスク軽減処置は、医療行為であってもよく、非医療行為であってもよい。リスク軽減処置としては、上記例示したような疾患や加齢の予防や治療が挙げられる。すなわち、本発明は、例えば、疾患や加齢等の症状の予防または治療方法を提供してよい。予防または治療方法は、例えば、本発明の検出方法を実施する工程、および本発明の検出方法により被検者においてリスクがある、または高いと判定された場合に、被検者に対して予防または治療を実施する工程を含む、疾患や加齢等の症状の予防または治療方法であってよい。具体的には、本発明の検出方法により被検者においてリスクがある、または高いと判定された症状について予防または治療を実施してよい。予防または治療は、例えば、各症状についての一般的な手段(例えば、投薬や外科手術)により実施することができる。 The result of the risk detection may be used as an index for determining whether to perform a measure for reducing the risk to the subject (hereinafter, also referred to as “risk reduction measure”). In other words, by performing the detection method of the present invention, an index for determining whether to perform the risk reduction treatment on the subject can be obtained. That is, for example, when it is determined that the subject has a risk or is high by the detection method of the present invention, it may be determined that the subject is to be subjected to the risk reduction treatment. The detection method of the present invention may be used, for example, alone or in combination with other means, as an index for determining whether to perform a risk reduction treatment on a subject. For example, for a symptom determined to be at risk or high in a subject by the detection method of the present invention, a definitive diagnosis is performed by other means, and then it is determined that a risk reduction treatment is performed on the subject. May be. The risk mitigation action may be a medical action or a non-medical action. Examples of the risk reduction treatment include prevention and treatment of the diseases and aging exemplified above. That is, the present invention may provide a method for preventing or treating a symptom such as a disease or aging. The method of prevention or treatment includes, for example, a step of performing the detection method of the present invention, and a method of preventing or treating a subject when the risk is determined or high in the subject according to the detection method of the present invention. It may be a method for preventing or treating a symptom such as a disease or aging, which includes a step of performing a treatment. Specifically, prevention or treatment may be performed for a symptom determined to be at risk or high in a subject by the detection method of the present invention. Prevention or treatment can be performed by, for example, general means (for example, medication or surgery) for each symptom.
 以下、具体例について記載する。 Specific examples are described below.
 本発明の方法により、例えば、被検者の抗体を特定の疾患や加齢等の症状についてのリスクに特徴的な糖鎖構造に基づいて分離して分離データを取得することができ、基準となる分離データとの比較することにより、簡便にそのようなリスクを検出することが可能となる。また、疾患に対する何らかの処置(投薬、手術等)の前及び/又は後において分離データを取得して、基準となる分離データと比較することにより、疾患の治療経過のモニタリングや当該処置に対する方針の決定が可能となる。基準となる分離データとしては、対照被検者の分離データが挙げられる。基準となる分離データとして、具体的には、同一被検者の別の時点(例えば、健常時や同一疾患を発症している時点)での分離データ、健常者の分離データ、同一疾患を発症している異なる患者の分離データ、前記処置に対して奏効性の違いが得られる2群もしくはそれ以上の群に分ける際の基準となる分離データが挙げられる。 According to the method of the present invention, for example, it is possible to obtain a separation data by separating the antibody of the subject based on a sugar chain structure characteristic of a risk for a symptom such as a specific disease or aging. By comparing with such separated data, such a risk can be easily detected. Also, by obtaining separated data before and / or after any treatment (medication, surgery, etc.) for the disease and comparing it with the reference separated data, monitoring of the treatment progress of the disease and determination of a policy for the treatment can be performed. Becomes possible. The reference separation data includes separation data of a control subject. As the reference separated data, specifically, separated data of the same subject at another time point (for example, at a normal time or at the time of developing the same disease), separated data of a healthy subject, and occurrence of the same disease Separation data of different patients, and separation data serving as a reference when dividing into two groups or more groups in which a difference in response to the treatment is obtained.
 例えば、健常者(モデル)の分離データをモデル分離データとし、被験者の分離データをモデル分離データと比較することによって、何らかの疾病を有するリスクや疾病を発症するリスク等のリスクを評価することが可能となる。さらに、モデルと被験者の分離データの差の要因となるピークの画分を分取することで、健常者(モデル)と被験者との抗体の糖鎖パターンの差が抽出できる。また、患者本人のある時点での分離データをモデル分離データとし、同一患者の別の時点での分離データとモデル分離データとを比較することで、当該患者の疾患のモニタリングを行うこともできる。なお、2つの異なる検体群を比較する場合、統計的確率(P値)を用いて2つの異なる検体群から得られた前記分離データの差が有意な差であるかを評価することができる。P値が小さくなると、前記評価結果は有意になるといわれており、P値が有意水準未満の場合、前記評価結果は統計的に有意な差があるといえる。有意水準は一般的に5%である。 For example, it is possible to evaluate a risk such as a risk of having a disease or a risk of developing a disease by using separated data of a healthy person (model) as model separated data and comparing the separated data of a subject with the model separated data. It becomes. Furthermore, by separating the fraction of the peak that is the cause of the difference between the separation data of the model and the subject, the difference in the sugar chain pattern of the antibody between the healthy subject (model) and the subject can be extracted. In addition, it is also possible to monitor the disease of the patient by using the separated data at a certain point of the patient as model separated data and comparing the separated data of the same patient at another point of time with the model separated data. When comparing two different specimen groups, it is possible to evaluate whether the difference between the separated data obtained from the two different specimen groups is a significant difference using a statistical probability (P value). It is said that the smaller the P value is, the more significant the evaluation result is. When the P value is less than the significance level, it can be said that the evaluation result has a statistically significant difference. The significance level is generally 5%.
 特定の疾患に関係する糖鎖構造の特徴として、シアル酸の付加の有無や、シアル酸の付加量の違い等が挙げられる。特に、リウマチ患者では、抗体に付加したシアル酸およびガラクトースの量が減少することが知られており、Fc結合性タンパク質との相互作用の違いにより、シアル酸やガラクトースの有無や含有量、および健常人との違いを簡便に評価することが可能である。さらに、本発明の方法によれば、個々の糖鎖構造を特定することなくFc結合性という機能に基づいた糖鎖構造の総体として抗体を分離することができる。すなわち、本発明の方法によれば、シアル酸およびガラクトースの結合量と疾患との既知の相関では解明されていない糖鎖構造全体としてのFc結合性という機能を基に分離データとして特徴を抽出できるため、精度高く疾患の有無や疾患の発症リスク等のリスクを評価することができる。 特 徴 Features of the sugar chain structure related to a specific disease include the presence or absence of addition of sialic acid, and differences in the amount of sialic acid added. In particular, in rheumatic patients, it is known that the amount of sialic acid and galactose added to the antibody decreases, and the presence or absence and content of sialic acid or galactose, It is possible to easily evaluate the difference from a person. Further, according to the method of the present invention, antibodies can be separated as a whole of sugar chain structures based on the function of Fc binding without specifying individual sugar chain structures. That is, according to the method of the present invention, a feature can be extracted as separated data based on the function of Fc binding as a whole sugar chain structure, which is not clarified by the known correlation between the amount of sialic acid and galactose and a disease. Therefore, it is possible to accurately evaluate the risk such as the presence or absence of the disease and the risk of developing the disease.
 IgGに結合する糖鎖の種類が、抗体を産生するB細胞によって一部制御されており、非特許文献(Mol. Cell. Proteom.、10、M110.004655(2011))によれば、サイトカインにより糖鎖修飾が変化することが報告されているため、当該サイトカインの分泌をIgGに結合する糖鎖のパターンに基づき評価することもできる。サイトカインは細胞から放出される物質であり、様々な疾患と関連性がある。例えば、老化に伴いIL-6やTNF-αといった炎症性サイトカインの分泌が増え、フレイル(虚弱)やサルコペニアといった運動や認知機能の低下に繋がることが知られており、本発明の方法によれば、これらの加齢関連疾患の発症リスクを評価することも可能となる。また、悪性腫瘍に関連して放出される炎症性サイトカインは、がん患者の体重減少といった衰弱状態(悪液質)の原因となるため、本発明の方法は、悪液質を評価する上でも有用な方法となる。 The type of sugar chain that binds to IgG is partially controlled by B cells that produce antibodies, and according to Non-Patent Document (Mol. {Cell.} Proteome., 10, M110.004655 (2011)), Since it has been reported that the sugar chain modification changes, the secretion of the cytokine can also be evaluated based on the pattern of the sugar chain binding to IgG. Cytokines are substances released from cells and are associated with various diseases. For example, it is known that the secretion of inflammatory cytokines such as IL-6 and TNF-α increases with aging, which leads to a decrease in exercise and cognitive functions such as frail (weakness) and sarcopenia. According to the method of the present invention, It is also possible to evaluate the risk of developing these age-related diseases. In addition, since the inflammatory cytokines released in association with malignant tumors cause a debilitating state (cachexia) such as weight loss of cancer patients, the method of the present invention is also useful in evaluating cachexia. It is a useful method.
 本発明によるFc結合性タンパク質に対する抗体の親和性の強さは、当該抗体が結合した結合性物質に対する損傷もしくは貪食作用を持つナチュラルキラー細胞および単球、マクロファージ等の免疫細胞の活性に影響を与えるため、当該親和性の違いを検出することで、ナチュラルキラー細胞および単球、マクロファージによる損傷もしくは貪食作用に影響を受ける疾患の発症リスクを評価することが可能となる。当該疾患としては、がん、自己免疫疾患、感染症、アレルギー、炎症疾患が挙げられる。感染症としては、日和見感染症が挙げられる。日和見感染症とは健康な状態では感染症を起こさないような病原体が原因で発症する感染症である。病原体としては、ウイルス、細菌、真菌、原虫が挙げられる。また、ワクチン接種や罹患によって獲得した抗体の免疫細胞に対する活性化への効果も、Fc結合性タンパク質に対する抗体の親和性の強さから評価することが可能である。当該獲得した抗体の血液中の量を測定する他に、当該抗体のFc結合性タンパク質に対する親和性の強さを測定することで、感染症に対する発症のリスクを精度よく予測することもできる。 The strength of the affinity of the antibody for the Fc-binding protein according to the present invention affects the activity of natural killer cells and immune cells such as monocytes and macrophages that have damage or phagocytosis on the binding substance bound by the antibody. Therefore, by detecting the difference in the affinity, it becomes possible to evaluate the risk of developing a disease affected by natural killer cells, monocytes, or macrophages, or affected by phagocytosis. Such diseases include cancer, autoimmune diseases, infectious diseases, allergies, and inflammatory diseases. Infections include opportunistic infections. Opportunistic infections are infections caused by pathogens that do not cause infection in a healthy state. Pathogens include viruses, bacteria, fungi, protozoa. In addition, the effect of the antibody acquired by vaccination or disease on activation of immune cells can be evaluated from the strength of the affinity of the antibody for the Fc-binding protein. In addition to measuring the amount of the obtained antibody in the blood, the risk of developing an infectious disease can also be accurately predicted by measuring the affinity of the antibody for the Fc-binding protein.
<2>抗体混合物
 本発明は、特定の組成の抗体混合物を提供する。同混合物を、本発明の抗体混合物ともいう。本発明の抗体混合物は、例えば、本発明の抗体製造方法により製造できる。本発明の抗体混合物は、例えば、抗体を含有する溶出画分として製造できる。
<2> Antibody mixture The present invention provides an antibody mixture having a specific composition. This mixture is also referred to as the antibody mixture of the present invention. The antibody mixture of the present invention can be produced, for example, by the antibody producing method of the present invention. The antibody mixture of the present invention can be produced, for example, as an eluted fraction containing the antibody.
 本発明の抗体混合物としては、2種またはそれ以上の抗体を含有する組成物であって、以下のIからIXのうち2つ以上(例えば、2、3、4、5、6、7、8、または9つ)の項目に該当するものが挙げられる:
I. G1Faを有する抗体の含有量をG0Fを有する抗体の含有量で割った値が重量比で0.4以下である;
II. G2Fを有する抗体の含有量をG0Fを有する抗体の含有量で割った値が重量比で0.2以下である;
III. G2F+2SAを有する抗体の含有量をG0Fを有する抗体の含有量で割った値が重量比で0.03以下である;
IV. G1Fbを有する抗体の含有量をG1Faを有する抗体の含有量で割った値が重量比で0.5以上である;
V. G2Fを有する抗体の含有量をG1Fbを有する抗体の含有量で割った値が重量比で0.6以下である;
VI. G2F+SAを有する抗体の含有量をG1Fbを有する抗体の含有量で割った値が重量比で0.3以下である;
VII. G2F+2SAを有する抗体の含有量をG1Fbを有する抗体の含有量で割った値が重量比で0.12以下である;
VIII. 抗体の総含有量に対するG2+SAを有する抗体の含有量の比率が重量比で0.2%以下である;
IX. 抗体の総含有量に対するG2+2SAを有する抗体の含有量の比率が重量比で0.2%以下である。
The antibody mixture of the present invention is a composition containing two or more antibodies, and is at least two of the following I to IX (for example, 2, 3, 4, 5, 6, 7, 8) , Or 9):
I. A value obtained by dividing the content of the antibody having G1Fa by the content of the antibody having G0F is 0.4 or less by weight;
II. A value obtained by dividing the content of the antibody having G2F by the content of the antibody having G0F is 0.2 or less by weight;
III. The content of the antibody with G2F + 2SA divided by the content of the antibody with G0F is less than or equal to 0.03 by weight;
IV. The value obtained by dividing the content of the antibody having G1Fb by the content of the antibody having G1Fa is 0.5 or more by weight;
V. A value obtained by dividing the content of the antibody having G2F by the content of the antibody having G1Fb is 0.6 or less by weight;
VI. A value obtained by dividing the content of the antibody having G2F + SA by the content of the antibody having G1Fb is 0.3 or less by weight;
VII. The content of the antibody with G2F + 2SA divided by the content of the antibody with G1Fb is less than or equal to 0.12 by weight;
VIII. The ratio of the content of the antibody having G2 + SA to the total content of the antibody is 0.2% or less by weight;
IX. The ratio of the content of the antibody having G2 + 2SA to the total content of the antibody is 0.2% or less by weight.
 本発明の抗体混合物としては、2種またはそれ以上の抗体を含有する組成物であって、以下のIからIXのうち2つ以上(例えば、2、3、4、5、6、7、8、または9つ)の項目に該当するものも挙げられる:
I. G1Faを有する抗体の含有量をG0Fを有する抗体の含有量で割った値が重量比で1.8以上である;
II. G2Fを有する抗体の含有量をG0Fを有する抗体の含有量で割った値が重量比で0.6以上である;
III. G2F+2SAを有する抗体の含有量をG0Fを有する抗体の含有量で割った値が重量比で0.06以上である;
IV. G1Fbを有する抗体の含有量をG1Faを有する抗体の含有量で割った値が重量比で0.3以下である;
V. G2Fを有する抗体の含有量をG1Fbを有する抗体の含有量で割った値が重量比で3.0以上である;
VI. G2F+SAを有する抗体の含有量をG1Fbを有する抗体の含有量で割った値が重量比で0.6以上である;
VII. G2F+2SAを有する抗体の含有量をG1Fbを有する抗体の含有量で割った値が重量比で0.3以上である;
VIII. 抗体の総含有量に対するG2+SAを有する抗体の含有量の比率が重量比で2%以上である;
IX. 抗体の総含有量に対するG2+2SAを有する抗体の含有量の比率が重量比で0.6%以上である。
The antibody mixture of the present invention is a composition containing two or more antibodies, and is at least two of the following I to IX (for example, 2, 3, 4, 5, 6, 7, 8) , Or 9):
I. A value obtained by dividing the content of the antibody having G1Fa by the content of the antibody having G0F is 1.8 or more by weight;
II. A value obtained by dividing the content of the antibody having G2F by the content of the antibody having G0F is 0.6 or more by weight;
III. The content of the antibody with G2F + 2SA divided by the content of the antibody with G0F is greater than or equal to 0.06 by weight;
IV. A value obtained by dividing the content of the antibody having G1Fb by the content of the antibody having G1Fa is 0.3 or less by weight;
V. The content of the antibody with G2F divided by the content of the antibody with G1Fb is greater than or equal to 3.0 by weight;
VI. A value obtained by dividing the content of the antibody having G2F + SA by the content of the antibody having G1Fb is 0.6 or more by weight;
VII. The content of the antibody with G2F + 2SA divided by the content of the antibody with G1Fb is greater than or equal to 0.3 by weight;
VIII. The ratio of the content of the antibody having G2 + SA to the total content of the antibody is 2% or more by weight;
IX. The ratio of the content of the antibody having G2 + 2SA to the total content of the antibodies is 0.6% or more by weight.
 上記項目における糖鎖構造の表記は、図3および図4に記載の通りである。 表 記 The description of the sugar chain structure in the above items is as described in FIG. 3 and FIG.
 本発明の抗体混合物の用途は、特に制限されない。本発明の抗体混合物は、例えば、診断用途に利用できる。診断用途としては、被検者におけるリスク(すなわち、疾患の有無、疾患の発症リスク、疾患の進行度合い、及び/又は加齢の進行度合い)の検出が挙げられる。すなわち、本発明の抗体混合物が被検者から得た抗体を本発明の分離方法等により分離して得られたものである場合、本発明の抗体混合物を得た際の抗体の分離パターンに係るデータを指標として、被検者におけるリスクを検出することができる。また、本発明の抗体混合物における糖鎖構造のパターンを指標として、被検者におけるリスクを検出してもよい。 用途 The use of the antibody mixture of the present invention is not particularly limited. The antibody mixture of the present invention can be used, for example, for diagnostic applications. Diagnostic uses include detection of risks (ie, the presence or absence of a disease, the risk of developing a disease, the degree of progression of a disease, and / or the degree of progression of aging) in a subject. That is, when the antibody mixture of the present invention is obtained by separating the antibody obtained from the subject by the separation method of the present invention or the like, the present invention relates to the antibody separation pattern when the antibody mixture of the present invention is obtained. The risk in the subject can be detected using the data as an index. Further, the risk in the subject may be detected using the pattern of the sugar chain structure in the antibody mixture of the present invention as an index.
 以下、非限定的な実施例を参照して本発明をより具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to non-limiting examples.
 Fc結合性タンパク質固定化ゲルの調製
 実施例1 FcR9のVal176アミノ酸置換体の作製
 WO2015/199154号に記載の方法で作製したFcR9(配列番号2)に対し、Fc結合性タンパク質の176番目のバリン(配列番号1に記載のアミノ酸番号で176番目のVal)をフェニルアラニンに置換したFc結合性タンパク質を作製した。具体的にはFcR9をコードするポリヌクレオチド(配列番号3)を含むプラスミドpET-FcR9(WO2015/199154号)に対し、PCRを用いてアミノ酸の置換を行ない、FcR9のうちVal176をフェニルアラニンに置換したFc結合性タンパク質を作製した。
Preparation of Fc-Binding Protein-Immobilized Gel Example 1 Preparation of Val176 amino acid substitution of FcR9 For FcR9 (SEQ ID NO: 2) prepared by the method described in WO2015 / 199154, the 176th valine of the Fc-binding protein (SEQ ID NO: 2) An Fc-binding protein was prepared in which the 176th Val in the amino acid number of SEQ ID NO: 1 was substituted with phenylalanine. Specifically, the plasmid pET-FcR9 (WO2015 / 199154) containing a polynucleotide encoding FcR9 (SEQ ID NO: 3) was subjected to amino acid substitution using PCR, and FcR9 obtained by substituting Val176 for phenylalanine in FcR9. A binding protein was made.
 なおFcR9(配列番号2)は、配列番号4に示す野生型FcγRIII細胞外領域を含むFc結合性タンパク質において、43番目のValをGluに(配列番号1では27番目に相当)、45番目のPheをIleに(配列番号1では29番目に相当)、51番目のTyrをAsnに(配列番号1では35番目に相当)、64番目のGlnをArgに(配列番号1では48番目に相当)、91番目のPheをLeuに(配列番号1では75番目に相当)、108番目のAsnをSerに(配列番号1では92番目に相当)、133番目のValをGluに(配列番号1では117番目に相当)、137番目のGluをGlyに(配列番号1では121番目に相当)および187番目のPheをSerに(配列番号1では171番目に相当)アミノ酸置換したFc結合性タンパク質である。 In addition, FcR9 (SEQ ID NO: 2) is an Fc-binding protein containing a wild-type FcγRIII extracellular region shown in SEQ ID NO: 4, in which Val at position 43 is replaced with Glu (corresponding to position 27 in SEQ ID NO: 1) and Phe at position 45 To Ile (corresponding to position 29 in SEQ ID NO: 1), Tyr at position 51 to Asn (corresponding to position 35 in SEQ ID NO: 1), Gln at position 64 to Arg (corresponding to position 48 in SEQ ID NO: 1), The 91st Phe is Leu (corresponding to 75th in SEQ ID NO: 1), the 108th Asn is Ser (corresponding to 92nd in SEQ ID NO: 1), and the 133rd Val is Glu (117th in SEQ ID NO: 1) 137th Glu as Gly (corresponding to 121st in SEQ ID NO: 1) and 187th Phe as Ser (corresponding to 171th in SEQ ID NO: 1). ) Is an amino acid substituted Fc binding proteins.
 以下、各Fc結合性タンパク質の作製方法を詳細に説明する。 方法 Hereinafter, the method for producing each Fc-binding protein will be described in detail.
(1)Fc結合性タンパク質の176番目のバリン(配列番号1に記載のアミノ酸番号で176番目のVal)をフェニルアラニンへ置換するため、WO2015/199154号に記載の方法で作製したFcR9(配列番号2)をコードするポリヌクレオチド(配列番号3)を含むプラスミドpET-FcR9(WO2015/199154号記載)を鋳型とし、配列番号5(5‘-TAATACGACTCACTATAGGG-3’)および配列番号6(5’-CATTTTTGCTGCCGAACAGCCCACGGCAGG-3’)に記載の配列からなるオリゴプライマーを用い表1に示す組成と同様の反応液を調製後、当該反応液を95℃で2分間熱処理し、95℃で30秒間の第1ステップ、50℃で30秒間の第2ステップ、72℃で90秒間の第3ステップを1サイクルとする反応を30サイクル行ない、最後に72℃で7分間熱処理することでPCRを行なった。得られたPCR産物をV176p1とした。 (1) FcR9 (SEQ ID NO: 2) prepared by the method described in WO2015 / 199154 in order to replace valine at position 176 of the Fc binding protein (Val at position 176 in the amino acid number of SEQ ID NO: 1) with phenylalanine ) Using the plasmid pET-FcR9 (described in WO2015 / 199154) containing a polynucleotide (SEQ ID NO: 3) encoding SEQ ID NO: 5 (5′-TAATACGACTCACTATAGGGG-3 ′) and SEQ ID NO: 6 (5′-CATTTTTGCTGCCGAACAGCCCCACGCAGGG-). After preparing a reaction solution similar to the composition shown in Table 1 using an oligo primer having the sequence described in 3 ′), the reaction solution is heat-treated at 95 ° C. for 2 minutes, and the first step is performed at 95 ° C. for 30 seconds. A second step at 30 ° C. for 30 seconds, 30 cycles no rows react with one cycle of the third step for 90 seconds at 2 ° C., and PCR was carried out by a heat treatment and finally with 72 ° C. 7 minutes. The obtained PCR product was designated as V176p1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(2)WO2015/199154号に記載の方法で作製したFcR9(配列番号2)をコードするポリヌクレオチド(配列番号3)を含むプラスミドpET-FcR9(WO2015/199154号記載)を鋳型とし、配列番号7(5‘-TATGCTAGTTATTGCTCAG-3’)および配列番号8(5’-cctgccgtgggctgTTCGGCAGCAAAAATG-3’)に記載の配列からなるオリゴプライマーを用い表1に示す組成と同様の反応液を調製後、当該反応液を95℃で2分間熱処理し、95℃で30秒間の第1ステップ、50℃で30秒間の第2ステップ、72℃で90秒間の第3ステップを1サイクルとする反応を30サイクル行ない、最後に72℃で7分間熱処理することでPCRを行なった。得られたPCR産物をV176p2とした。 (2) Plasmid pET-FcR9 (described in WO2015 / 199154) containing a polynucleotide (SEQ ID NO: 3) encoding FcR9 (SEQ ID NO: 2) prepared by the method described in WO2015 / 199154 as a template, and SEQ ID NO: 7 (5′-TATGCTAGTTATTGCTCAG-3 ′) and a reaction solution similar to the composition shown in Table 1 was prepared using an oligo primer having the sequence described in SEQ ID NO: 8 (5′-cctgccgttgggctgTTCGGCAGCAAAAATG-3 ′). A heat treatment is performed at 95 ° C. for 2 minutes, and a reaction is performed for 30 cycles in which a first step at 95 ° C. for 30 seconds, a second step at 50 ° C. for 30 seconds, and a third step at 72 ° C. for 90 seconds as one cycle. PCR was performed by heat treatment at 72 ° C. for 7 minutes. The obtained PCR product was designated as V176p2.
(3)(1)および(2)で得られた2種類のPCR産物(V176p1、V176p2)を混合し、表2に示す組成の反応液を調製した。当該反応液を98℃で5分間熱処理後、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を5サイクル行なうPCRを行ない、V176p1とV176p2を連結したPCR産物V176pを得た。 (3) The two PCR products (V176p1 and V176p2) obtained in (1) and (2) were mixed to prepare a reaction solution having the composition shown in Table 2. After the heat treatment of the reaction solution at 98 ° C. for 5 minutes, 5 cycles of a reaction including a first step at 98 ° C. for 10 seconds, a second step at 55 ° C. for 5 seconds, and a third step at 72 ° C. for 1 minute as one cycle. Performed PCR was performed to obtain a PCR product V176p in which V176p1 and V176p2 were ligated.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(4)(3)で得られたPCR産物V176pを鋳型とし、配列番号5および7に記載の配列からなるオリゴヌクレオチドをPCRプライマーとしてPCRを行なった。PCRは、表3に示す組成の反応液を調製後、当該反応液を98℃で5分間熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル行なった。これによりFc結合性タンパク質(FcR9)の176番目のアミノ酸がフェニルアラニンに置換されたFc結合性タンパク質をコードするポリヌクレオチドを得た。得られたポリヌクレオチドをV176p3とした。 (4) PCR was performed using the PCR product V176p obtained in (3) as a template and oligonucleotides having the sequences of SEQ ID NOS: 5 and 7 as PCR primers. In PCR, after preparing a reaction solution having the composition shown in Table 3, the reaction solution was heat-treated at 98 ° C. for 5 minutes, a first step at 98 ° C. for 10 seconds, a second step at 55 ° C. for 5 seconds, and a reaction at 72 ° C. The reaction was performed for 30 cycles in which the 1st step was defined as one cycle. As a result, a polynucleotide encoding the Fc-binding protein in which the 176th amino acid of the Fc-binding protein (FcR9) was substituted with phenylalanine was obtained. The obtained polynucleotide was designated as V176p3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(5)(4)で得られたポリヌクレオチドを精製後、制限酵素NcoIとHindIIIで消化し、あらかじめ制限酵素NcoIとHindIIIで消化した発現ベクターpETMalE(特開2011-206046号公報)にライゲーションし、これを用いて大腸菌BL21(DE3)株(ニッポンジーン製)を形質転換した。 (5) After purifying the polynucleotide obtained in (4), the polynucleotide is digested with restriction enzymes NcoI and HindIII, and ligated to an expression vector pETMalE (JP-A-2011-206046) which has been digested with restriction enzymes NcoI and HindIII in advance. Using this, Escherichia coli BL21 (DE3) strain (manufactured by Nippon Gene) was transformed.
(6)得られた形質転換体を50μg/mLのカナマイシンを添加したLB培地で培養した。回収した菌体(形質転換体)からプラスミドを抽出した。 (6) The obtained transformant was cultured in an LB medium supplemented with 50 μg / mL kanamycin. Plasmids were extracted from the recovered cells (transformants).
(7)得られたプラスミドのヒトFcγRIIIaをコードするポリヌクレオチドおよびその周辺の領域について、チェーンターミネータ法に基づくBigDye Terminator v3.1 Cycle Sequencing Kit(ライフテクノロジーズ製)を用いてサイクルシークエンス反応に供し、全自動DNAシークエンサーApplied Biosystems 3130 Genetic Analyzer(ライフテクノロジーズ製)にてヌクレオチド配列を解析した。なお当該解析の際、配列番号5(5’-TAATACGACTCACTATAGGG-3’)または配列番号7(5’-TATGCTAGTTATTGCTCAG-3’)に記載の配列からなるオリゴヌクレオチドをシークエンス用プライマーとして使用した。配列解析の結果、Fc結合性タンパク質FcR9のVal176がPheに置換されたFc結合性タンパク質(配列番号9)を発現する形質転換体を得た。 (7) The polynucleotide encoding human FcγRIIIa of the obtained plasmid and the region around the polynucleotide were subjected to a cycle sequencing reaction using BigDye Terminator v3.1 Cycle Sequencing Kit (manufactured by Life Technologies) based on the chain terminator method. The nucleotide sequence was analyzed using an automated DNA sequencer Applied Biosystems 3130 Genetic Analyzer (manufactured by Life Technologies). In this analysis, an oligonucleotide consisting of the sequence of SEQ ID NO: 5 (5'-TAATACGACTCACTATAGGGG-3 ') or SEQ ID NO: 7 (5'-TATGCTAGTTATTGCTCAG-3') was used as a primer for sequencing. As a result of sequence analysis, a transformant expressing Fc-binding protein (SEQ ID NO: 9) in which Val176 of FcR9 was replaced with Phe was obtained.
 実施例2 システインタグを付加したFc結合性タンパク質(FcR9_F_Cys)の作製
(1)実施例1で作製した配列番号9に記載のアミノ酸配列をコードする配列番号10に記載のポリヌクレオチドを含んだ発現ベクターpET-FcR9_Fを鋳型としてPCRを実施した。当該PCRにおけるプライマーは、配列番号11(5’-TAGCCATGGGCATGCGTACCGAAGATCTGCCGAAAGC-3’)および配列番号12(5’-CCCAAGCTTATCCGCAGGTATCGTTGCGGCACCCTTGGGTAATGGTAATATTCACGGTCTCGCTGC-3’)に記載の配列からなるオリゴヌクレオチドを用いた。PCRは、表3に示す組成の反応液を調製後、当該反応液を98℃で5分熱処理し、98℃で10秒間の第1ステップ、55℃で5秒間の第2ステップ、72℃で1分間の第3ステップを1サイクルとする反応を30サイクル繰り返すことで実施した。
Example 2 Preparation of Fc-binding protein (FcR9_F_Cys) to which a cysteine tag is added (1) An expression vector containing the polynucleotide of SEQ ID NO: 10 encoding the amino acid sequence of SEQ ID NO: 9 prepared in Example 1 PCR was performed using pET-FcR9_F as a template. The primers used in the PCR were SEQ ID NO: 11 (5'-TAGCCATGGGCCATGCGTACCGAAGATCTGCCGAAAGC-3 ') and SEQ ID NO: 12 (5'-CCCAAGCTTATCCCGCAGGTATCGTTGCGGCACCCTTGGG. In PCR, after preparing a reaction solution having the composition shown in Table 3, the reaction solution was heat-treated at 98 ° C. for 5 minutes, a first step at 98 ° C. for 10 seconds, a second step at 55 ° C. for 5 seconds, and a reaction at 72 ° C. The reaction was performed by repeating the reaction in which the third step of one minute was defined as one cycle was repeated 30 times.
(2)(1)で得られたポリヌクレオチドを精製し、制限酵素NcoIとHindIIIで消化後、あらかじめ制限酵素NcoIとHindIIIで消化したWO2015/199154号に記載の方法で作製の発現ベクターpTrc-PelBV3にライゲーションし、当該ライゲーション産物を用いて大腸菌W3110株を形質転換した。 (2) The polynucleotide obtained in (1) is purified, digested with restriction enzymes NcoI and HindIII, and then digested with restriction enzymes NcoI and HindIII in advance, and the expression vector pTrc-PelBV3 prepared by the method described in WO2015 / 199154. And the ligation product was used to transform E. coli W3110 strain.
(3)得られた形質転換体を100μg/mLのカルベニシリンを含むLB培地にて培養後、QIAprep Spin Miniprep kit(キアゲン製)を用いて、発現ベクターpTrc-FcR9_F_Cysを得た。 (3) The resulting transformant was cultured in an LB medium containing 100 μg / mL carbenicillin, and the expression vector pTrc-FcR9_F_Cys was obtained using QIAprep \ Spin \ Miniprep \ kit (manufactured by Qiagen).
(4)pTrc-FcR9_F_Cysのヌクレオチド配列の解析を、配列番号13(5’-TGTGGTATGGCTGTGCAGG-3’)または配列番号14(5’-TCGGCATGGGGTCAGGTG-3’)に記載の配列からなるオリゴヌクレオチドをシーケンス用プライマーに使用した以外は、実施例1(7)と同様の方法で行なった。 発現ベクターpTrc-FcR9_F_Cysで発現されるポリペプチドのアミノ酸配列を配列番号15に、当該ポリペプチドをコードするポリヌクレオチドの配列を配列番号16にそれぞれ示す。なお配列番号15において、1番目のメチオニン(Met)から22番目のアラニン(Ala)までが改良PelBシグナルペプチドであり、24番目のグリシン(Gly)から199番目のグルタミン(Gln)までがFc結合性タンパク質のアミノ酸配列(配列番号1の17番目から192番目までの領域に相当)、200番目のグリシン(Gly)から207番目のグリシン(Gly)までがシステインタグ配列である。 (4) Analysis of the nucleotide sequence of pTrc-FcR9_F_Cys was performed by sequencing an oligonucleotide comprising the sequence described in SEQ ID NO: 13 (5′-TGTGGTATGGCTGTGCAGGG-3 ′) or SEQ ID NO: 14 (5′-TCGGCATGGGGTCAGGGTG-3 ′). , Except that it was used in Example 1.ア ミ ノ 酸 The amino acid sequence of the polypeptide expressed by the expression vector pTrc-FcR9_F_Cys is shown in SEQ ID NO: 15, and the sequence of the polynucleotide encoding the polypeptide is shown in SEQ ID NO: 16. In SEQ ID NO: 15, the region from the 1st methionine (Met) to the 22nd alanine (Ala) is an improved PelB signal peptide, and the region from the 24th glycine (Gly) to the 199th glutamine (Gln) has Fc binding property. The amino acid sequence of the protein (corresponding to the region from position 17 to position 192 of SEQ ID NO: 1), and the glycine (Gly) at position 200 to glycine (Gly) at position 207 are cysteine tag sequences.
 実施例3 FcR9_F_Cysの調製
(1)実施例2で作製したFcR9_F_Cysを発現する形質転換体を2Lのバッフルフラスコに入った100μg/mLのカルベニシリンを含む400mLの2YT液体培地(ペプトン16g/L、酵母エキス10g/L、塩化ナトリウム5g/L)に接種し、37℃で一晩、好気的に振とう培養することで前培養を行なった。
Example 3 Preparation of FcR9_F_Cys (1) 400 mL of 2YT liquid medium (peptone 16 g / L, yeast extract, containing 100 μg / mL carbenicillin in a 2 L baffle flask containing the transformant expressing FcR9_F_Cys prepared in Example 2) (10 g / L, 5 g / L sodium chloride), and precultured by aerobically shaking at 37 ° C. overnight.
(2)グルコース10g/L、酵母エキス20g/L、リン酸三ナトリウム十二水和物3g/L、リン酸水素二ナトリウム十二水和物9g/L、塩化アンモニウム1g/Lおよびカルベニシリン100mg/Lを含む液体培地1.8Lに、(1)の培養液180mLを接種し、3L発酵槽(バイオット製)を用いて本培養を行なった。温度30℃、pH6.9から7.1、通気量1VVM、溶存酸素濃度30%飽和濃度の条件に設定し、本培養を開始した。pHの制御には酸として50%リン酸、アルカリとして14%アンモニア水をそれぞれ使用し、溶存酸素の制御は撹拌速度を変化させることで制御し、撹拌回転数は下限500rpm、上限1000rpmに設定した。培養開始後、グルコース濃度が測定できなくなった時点で、流加培地(グルコース248.9g/L、酵母エキス83.3g/L、硫酸マグネシウム七水和物7.2g/L)を溶存酸素(DO)により制御しながら加えた。 (2) Glucose 10 g / L, yeast extract 20 g / L, trisodium phosphate dodecahydrate 3 g / L, disodium hydrogen phosphate dodecahydrate 9 g / L, ammonium chloride 1 g / L and carbenicillin 100 mg / L 180 mL of the culture solution of (1) was inoculated into 1.8 L of a liquid medium containing L, and main culture was performed using a 3 L fermenter (manufactured by Biot). Main culture was started under the conditions of a temperature of 30 ° C., a pH of 6.9 to 7.1, an aeration of 1 VVM, and a dissolved oxygen concentration of 30% saturation. To control the pH, 50% phosphoric acid was used as the acid and 14% ammonia water was used as the alkali, and the dissolved oxygen was controlled by changing the stirring speed, and the stirring rotation speed was set to a lower limit of 500 rpm and an upper limit of 1000 rpm. . After the start of the culture, when the glucose concentration cannot be measured, the feed medium (glucose 248.9 g / L, yeast extract 83.3 g / L, magnesium sulfate heptahydrate 7.2 g / L) is dissolved in dissolved oxygen (DO). ).
(3)菌体量の目安として600nmの吸光度(OD600nm)が約150に達したところで培養温度を25℃に下げ、設定温度に到達したことを確認した後、終濃度が0.5mMになるようIPTGを添加し、引き続き25℃で培養を継続した。 (3) When the absorbance at 600 nm (OD600 nm) reaches about 150, the culture temperature is lowered to 25 ° C., and after confirming that the set temperature has been reached, the final concentration is adjusted to 0.5 mM. IPTG was added, and the culture was continued at 25 ° C.
(4)培養開始から約48時間後に培養を停止し、培養液を4℃で8000rpm、20分間の遠心分離により菌体を回収した。 (4) After about 48 hours from the start of the culture, the culture was stopped, and the culture was centrifuged at 8,000 rpm at 4 ° C. for 20 minutes to collect the cells.
(5)回収した菌体を20mMのトリス塩酸緩衝液(pH7.0)に5mL/1g(菌体)となるように懸濁し、超音波発生装置(インソネーター201M(商品名)、久保田商事製)を用いて、4℃で約10分間、約150Wの出力で菌体を破砕した。菌体破砕液は4℃で20分間、8000rpmの遠心分離を2回行ない、上清を回収した。 (5) The collected cells were suspended in 20 mM Tris-HCl buffer (pH 7.0) at a concentration of 5 mL / 1 g (cells), and an ultrasonic generator (Insonator 201M (trade name), manufactured by Kubota Corporation) ) Was disrupted at 4 ° C. for about 10 minutes at an output of about 150 W. The cell lysate was centrifuged twice at 8000 rpm for 20 minutes at 4 ° C., and the supernatant was recovered.
(6)(5)で得られた上清を、あらかじめ20mMのリン酸緩衝液(8mMリン酸二水素ナトリウム、12mMリン酸水素二ナトリウム)(pH7.0)で平衡化した140mLのTOYOPEARL CM-650M(東ソー製)を充填したVL32×250カラム(メルクミリポア製)に流速5mL/分でアプライした。平衡化に用いた緩衝液で洗浄後、0.5Mの塩化ナトリウムを含む20mMのリン酸緩衝液(pH7.0)で溶出した。 (6) The supernatant obtained in (5) was previously equilibrated with 20 mM phosphate buffer (8 mM sodium dihydrogen phosphate, 12 mM disodium hydrogen phosphate) (pH 7.0) to 140 mL of TOYOPEARL @ CM- A VL32 × 250 column (manufactured by Merck Millipore) packed with 650M (manufactured by Tosoh Corporation) was applied at a flow rate of 5 mL / min. After washing with the buffer used for equilibration, elution was carried out with a 20 mM phosphate buffer (pH 7.0) containing 0.5 M sodium chloride.
(7)(6)で得られた溶出液を、あらかじめ150mMの塩化ナトリウムを含む20mMのトリス塩酸緩衝液(pH7.4)で平衡化したIgGセファロース(GEヘルスケア製)90mLを充填したXK26/20カラム(GEヘルスケア製)にアプライした。平衡化に用いた緩衝液で洗浄後、0.1Mのグリシン塩酸緩衝液(pH3.0)で溶出した。なお溶出液は、溶出液量の1/4量の1Mトリス塩酸緩衝液(pH8.0)を加えることでpHを中性付近に戻した。 (7) The eluate obtained in (6) was packed with 90 mL of IgG Sepharose (manufactured by GE Healthcare) previously equilibrated with 20 mM Tris-HCl buffer (pH 7.4) containing 150 mM sodium chloride. 20 columns (manufactured by GE Healthcare) were applied. After washing with the buffer used for equilibration, elution was performed with 0.1 M glycine hydrochloride buffer (pH 3.0). The pH of the eluate was returned to around neutral by adding 1/4 of the amount of the eluate to 1 M Tris-HCl buffer (pH 8.0).
 前記精製により、高純度のFcR9_F_Cysを約20mg得た。 約 About 20 mg of high-purity FcR9_F_Cys was obtained by the purification.
実施例4 Fc結合性タンパク質(FcR9_F)固定化ゲルの作製と抗体の分離
(1)2mLの分離剤用親水性ビニルポリマー(東ソー製:液体クロマトグラフィー用充填剤)の表面の水酸基をヨードアセチル基で活性化後、実施例3で調製したFcR9_F_Cysを4mg反応させることにより、FcR9_F固定化ゲルを得た。
Example 4 Preparation of Fc-Binding Protein (FcR9_F) -Immobilized Gel and Separation of Antibodies (1) Hydroxyl groups on the surface of 2 mL of hydrophilic vinyl polymer for separating agent (manufactured by Tosoh: packing material for liquid chromatography) were converted to iodoacetyl groups. After activating with FcR9_F_Cys prepared in Example 3, 4 mg was reacted to obtain an FcR9_F-immobilized gel.
(2)(1)で作製したFcR9_F固定化ゲル1.2mLをφ4.6mm×75mmのステンレスカラムに充填してFcR9_Fカラムを作製した。 (2) An FcR9_F column was prepared by packing 1.2 mL of the FcR9_F-immobilized gel prepared in (1) into a φ4.6 mm × 75 mm stainless steel column.
(3)(2)で作製したFcR9_Fカラムを高速液体クロマトグラフィー装置(東ソー製)に接続し、50mMの塩化ナトリウムを含む20mMの酢酸緩衝液(pH5.5)の平衡化緩衝液で平衡化した。 (3) The FcR9_F column prepared in (2) was connected to a high performance liquid chromatography apparatus (manufactured by Tosoh Corporation), and equilibrated with an equilibration buffer of 20 mM acetate buffer (pH 5.5) containing 50 mM sodium chloride. .
(4)PBS(Phosphate Buffered Saline)(pH7.4)で1.0mg/mLに希釈したモノクローナル抗体(リツキサン、全薬工業製、マウスとヒトのキメラ抗体)を流速0.6mL/minにて5μL添加した。 (4) 5 μL of a monoclonal antibody (Rituxan, manufactured by Zenyaku Kogyo, mouse and human chimeric antibody) diluted to 1.0 mg / mL with PBS (Phosphate Buffered Saline) (pH 7.4) at a flow rate of 0.6 mL / min. Was added.
(5)流速0.6mL/minのまま平衡化緩衝液で2分洗浄後、10mMのグリシン塩酸緩衝液(pH3.0)によるpHグラジエント(28分で10mMのグリシン塩酸緩衝液(pH3.0)が100%となるグラジエント)で吸着したモノクローナル抗体を溶出した。 (5) After washing with an equilibration buffer solution at a flow rate of 0.6 mL / min for 2 minutes, a pH gradient with 10 mM glycine hydrochloride buffer (pH 3.0) (10 mM glycine hydrochloride buffer (pH 3.0) in 28 minutes) The adsorbed monoclonal antibody was eluted with a gradient of 100%.
 結果(溶出パターン)を図1に示す。モノクローナル抗体はFc結合性タンパク質と相互作用するため、ゲルろ過クロマトグラフィーのような単一のピークではなく、複数のピークに分離された。溶出時間の早い1番目のピークをピークAとし、溶出時間の遅い3番目のピークをピークBとした。 The results (elution pattern) are shown in FIG. Because the monoclonal antibody interacts with the Fc binding protein, it was separated into multiple peaks instead of a single peak as in gel filtration chromatography. The first peak with the earlier elution time was designated as peak A, and the third peak with the later elution time was designated as peak B.
 実施例5 Fc結合性タンパク質(FcR9_F)固定化ゲルを用いたヒト由来抗体の分離
 抗体として、ヒト由来ガンマグロブリン製剤(化学及血清療法研究所製)を用いた以外は実施例4と同様に実施し、ヒト由来ガンマグロブリン製剤の分離パターンを図2に示した。実施例4のモノクローナル抗体(リツキサン)の分離結果(図1)とは異なる分離パターンを得た。
Example 5 Separation of human-derived antibody using Fc-binding protein (FcR9_F) -immobilized gel The same operation as in Example 4 was carried out except that a human-derived gamma globulin preparation (manufactured by Chemistry and Serological Therapy Laboratory) was used as the antibody. FIG. 2 shows the separation pattern of the human-derived gamma globulin preparation. A separation pattern different from that of the monoclonal antibody (Rituxan) of Example 4 (FIG. 1) was obtained.
 また、ヒト由来抗体に特徴的な分離ピークである、図2におけるピークCおよびピークDを繰返し分取することで、各分画に含まれるヒト由来抗体を分取した。 In addition, the human-derived antibody contained in each fraction was collected by repeatedly collecting peaks C and D in FIG. 2, which are characteristic separation peaks of human-derived antibodies.
 実施例6 モノクローナル抗体の糖鎖構造解析
 実施例4で分離したピークA、およびピークB画分に含まれる抗体が有する糖鎖の構造解析を、特開2016-169197号記載の方法と同様な方法で実施した。結果を図3および表4に示した。Manはマンノースを表し、GlcNAcはN-アセチルグルコサミン、Galはガラクトース、Fucはフコース、NeuAcはN-アセチルノイラミン酸を表す。
Example 6 Analysis of Sugar Chain Structure of Monoclonal Antibody Structural analysis of the sugar chain of the antibody contained in the peak A and peak B fractions separated in Example 4 was carried out in the same manner as the method described in JP-A-2016-169197. It was carried out in. The results are shown in FIG. Man represents mannose, GlcNAc represents N-acetylglucosamine, Gal represents galactose, Fuc represents fucose, and NeuAc represents N-acetylneuraminic acid.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例7 ヒト由来抗体の糖鎖構造解析
 実施例5で分取したピークCおよびピークDの画分に含まれる抗体が有する糖鎖の構造解析を実施例6と同様に実施し、ピークCおよびピークDの画分に含まれる抗体の有する糖鎖構造解析の結果を図4および表5に示した。
Example 7 Analysis of Sugar Chain Structure of Human-Derived Antibody Structural analysis of the sugar chain of the antibody contained in the fraction of peak C and peak D fractioned in Example 5 was performed in the same manner as in Example 6, The results of the analysis of the sugar chain structure of the antibody contained in the fraction of peak D are shown in FIG.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 実施例6および実施例7の結果から、Fc結合性タンパク質を固定化したゲルを充填したFcRカラムを用いることで、ガラクトースの有無が抗体の分離に寄与していること(表3のG0Fに関するピークAとBの組成割合の比較、同様にG1FおよびG2Fの比較。略号GとFの間の数字はガラクトースの数を表す)、また同様にシアル酸の有無で抗体を分離していることが明らかとなった。さらに、図3と図4の比較から、ヒト由来ガンマグロブリンは、市販抗体医薬品であるマウスキメラ抗体のリツキサンとは異なり、ヒト特有の糖鎖構造を持つことが明らかとなった。これらのヒト特有糖鎖構造のなかでも、シアル酸の付加した糖鎖構造を持つ抗体は、特定の疾患の指標と成り得ることから、本発明の方法を利用することで、疾患の簡便な測定や、健常人との比較による異常の早期発見、罹患患者の予後管理等が可能となる。 From the results of Example 6 and Example 7, it was found that the presence or absence of galactose contributed to the separation of the antibody by using the FcR column packed with the gel on which the Fc binding protein was immobilized (see Table 3 for G0F). Comparison of the composition ratio of A and B, and similarly comparison of G1F and G2F. The number between the abbreviations G and F indicates the number of galactose.) Similarly, it is clear that antibodies are separated by the presence or absence of sialic acid. It became. Furthermore, comparison of FIG. 3 and FIG. 4 revealed that human-derived gamma globulin has a human-specific sugar chain structure unlike Rituxan, a mouse chimeric antibody that is a commercially available antibody drug. Among these human-specific sugar chain structures, an antibody having a sugar chain structure to which sialic acid is added can serve as an index of a specific disease, and therefore, by using the method of the present invention, simple measurement of disease can be achieved. In addition, early detection of abnormalities by comparison with healthy persons, prognostic management of affected patients, and the like can be performed.
 実施例8 Fc結合性タンパク質(FcR9_F)固定化ゲルを用いた年齢の異なるヒト由来抗体の分離
(1)インフォームドコンセントを得た健常者から血液を採取した。健常者の年齢および性別を以下に示す。
(A検体)36歳、女性
(B検体)44歳、女性
(C検体)55歳、女性
Example 8 Separation of human-derived antibodies of different ages using Fc-binding protein (FcR9_F) -immobilized gel (1) Blood was collected from a healthy individual who obtained informed consent. The age and gender of healthy subjects are shown below.
(A sample) 36 years old, woman (B sample) 44 years old, woman (C sample) 55 years old, woman
(2)(1)で採取した血液を遠心することで得た血清を、ProteinGが固相上に固定化されたガンマグロブリンG精製キット(Thermo Fisher Scientific社製)を用いて、ガンマグロブリンを精製した。 (2) Purification of gamma globulin from serum obtained by centrifuging the blood collected in (1) using a gamma globulin G purification kit (manufactured by Thermo @ Fisher @ Scientific) having Protein G immobilized on a solid phase. did.
(3)(2)で得られたガンマグロブリンを用いて、溶出条件として、流速0.6mL/minのまま平衡化緩衝液で5分洗浄後、10mMのグリシン塩酸緩衝液(pH3.0)によるpHグラジエント(30分で10mMのグリシン塩酸緩衝液(pH3.0)が100%となるグラジエント)で吸着したガンマグロブリンを溶出した他は、実施例4と同様の方法でガンマグロブリンの分離パターンを得た。 (3) Using the gamma globulin obtained in (2) as an elution condition, wash with an equilibration buffer at a flow rate of 0.6 mL / min for 5 minutes, and then use a 10 mM glycine hydrochloride buffer (pH 3.0). A gamma globulin separation pattern was obtained in the same manner as in Example 4, except that the adsorbed gamma globulin was eluted with a pH gradient (a gradient in which 10 mM glycine hydrochloride buffer (pH 3.0) becomes 100% in 30 minutes). Was.
(4)(3)で得られた分離パターンを、pHグラジエントをかけ始めてから溶出時間の早いピーク順に、第1ピーク、第2ピーク、第3ピーク、第4ピークと定義し、当該第3ピークの検出値を1として正規化した。 (4) The separation pattern obtained in (3) is defined as a first peak, a second peak, a third peak, and a fourth peak in the order of the elution time which is shortest after the application of the pH gradient, and the third peak is defined. Was normalized with the detected value of 1 as 1.
 実施例8の結果を図5に示す。A検体と比較して、B検体およびC検体の順に年齢が増加するに従って、早く溶出されるガンマグロブリンの割合が増えていることがわかる。特にA検体およびB検体と比較してC検体では第1ピークおよび第2ピークのピーク面積%が増大していることがわかる。溶出時間の長いガンマグロブリンの割合が多いということは、当該ガンマグロブリンのナチュラルキラー細胞および単球、マクロファージに対する結合能が高いことを意味しており、当該細胞の活性化を促進できる。一方、溶出時間の短いガンマグロブリンの割合が多い場合は、前記細胞の活性化が十分得られず、前記細胞の活性に影響を受ける疾患の発症リスクが高まる。このような疾患としては、例えばウイルスや細菌等による感染症やがん、アレルギー、炎症疾患等が挙げられる。実施例8のガンマグロブリンの分離パターンの変動から、当該発症リスクは年齢の増加により高まることがわかる。 結果 The results of Example 8 are shown in FIG. It can be seen that as the age increases in the order of the B sample and the C sample as compared with the A sample, the proportion of gamma globulin which is eluted earlier increases. In particular, it can be seen that the peak area% of the first peak and the second peak is increased in the sample C as compared with the sample A and the sample B. The fact that the proportion of gamma globulin having a long elution time is large means that the gamma globulin has a high binding ability to natural killer cells, monocytes and macrophages, and can promote the activation of the cells. On the other hand, when the proportion of gamma globulin having a short elution time is large, activation of the cells cannot be sufficiently obtained, and the risk of developing a disease affected by the activity of the cells increases. Examples of such diseases include infectious diseases caused by viruses and bacteria, cancers, allergies, and inflammatory diseases. The fluctuation of the gamma globulin separation pattern in Example 8 shows that the risk of onset increases with an increase in age.
 実施例9 Fc結合性タンパク質固定化ゲルを用いた年齢の異なるヒト由来抗体の分離
(1)インフォームドコンセントを得た健常者から血液を採取した。健常者の年齢層および検体数を以下に示す。
18-29歳:23検体
30-39歳:21検体
40-49歳:21検体
50-59歳:24検体
60-75歳:15検体
Example 9 Separation of human-derived antibodies of different ages using an Fc-binding protein-immobilized gel (1) Blood was collected from a healthy subject who obtained informed consent. The age group and the number of samples of healthy subjects are shown below.
18-29: 23 specimens 30-39: 21 specimens 40-49: 21 specimens 50-59: 24 specimens 60-75: 15 specimens
(2)(1)で採取した血液を遠心することで得た血清をPBSで10倍希釈した後、0.2μm径のフィルター(Merck Millipore社製)に通すことで測定サンプルを調製した。 (2) Serum obtained by centrifuging the blood collected in (1) was diluted 10-fold with PBS, and then passed through a filter having a diameter of 0.2 μm (Merck @ Millipore) to prepare a measurement sample.
(3)(2)で得られた測定サンプルを流速0.6mL/minにて10μL添加した他は、実施例8(3)と同様な方法でガンマグロブリンの分離パターンを得た。 (3) A gamma globulin separation pattern was obtained in the same manner as in Example 8 (3) except that 10 μL of the measurement sample obtained in (2) was added at a flow rate of 0.6 mL / min.
(4)(3)で得られた分離パターンを、pHグラジエントをかけ始めてから溶出時間の早いピーク順に、第1ピーク、第2ピーク、第3ピーク、第4ピークと定義し、当該第1ピークの面積値をpHグラジエントをかけ始めてからかけ終わるまでの全体の面積値で除することで得た値を第1ピーク面積%とした。 (4) The separation pattern obtained in (3) is defined as a first peak, a second peak, a third peak, and a fourth peak in order of the elution time which is shortest after the application of the pH gradient, and the first peak is defined. The value obtained by dividing the area value of by the total area value from the start of the application of the pH gradient to the end of the application of the pH gradient was defined as the first peak area%.
 実施例9の結果を図6に示す。50歳未満の検体と比較して、50歳代の検体および60歳以上の検体の順に年齢が増加するに従って、第1ピーク面積%の値が有意に上がったことから、早く溶出されるガンマグロブリンの割合が増えていくことがわかる。また、50歳未満の検体においても、第1ピーク面積%の値が高い検体も低い割合ながら存在することもわかる。この結果は、集団として評価した場合、加齢に従って免疫活性が低下することを意味しており、また個々人として評価した場合、若年層においても免疫活性が低下し得ることを示している。 結果 The results of Example 9 are shown in FIG. Gamma globulin eluted earlier because the value of the first peak area% significantly increased as the age increased in the order of the sample in the 50's and the sample in the age of 60 or more as compared with the sample under the age of 50 It can be seen that the ratio of increases. Also, it can be seen that, even in a sample younger than 50 years old, a sample having a high value of the first peak area% exists at a low ratio. This result indicates that the immune activity decreases with aging when evaluated as a population, and indicates that the immune activity can be reduced even in young people when evaluated as an individual.
 実施例10 がん患者由来のガンマグロブリン分離
 インフォームドコンセントを得た健常者および膵がん、胃がん、乳がん患者から採取した血液を用いた他は、実施例9と同様な方法でガンマグロブリンを分離し、第1ピーク面積%を求めた。
Example 10 Isolation of gamma globulin from cancer patients Gamma globulin was isolated in the same manner as in Example 9, except that blood was collected from healthy subjects who obtained informed consent and pancreatic cancer, gastric cancer, and breast cancer patients. Then, the first peak area% was determined.
 実施例11 自己免疫疾患患者由来のガンマグロブリン分離
 インフォームドコンセントを得たリウマチ、シェーグレン症候群患者から採取した血液を用いた他は、実施例9と同様な方法でガンマグロブリンを分離し、第1ピーク面積%を求めた。
Example 11 Separation of gamma globulin from a patient with an autoimmune disease Gamma globulin was separated by the same method as in Example 9 except that rheumatism from which informed consent was obtained and blood collected from a patient with Sjogren's syndrome were used. The area% was determined.
 実施例10、11の結果をそれぞれ図7、8に示す。健常者の検体と比較して、膵がん(図7のパネルa)、胃がん(図7のパネルb)、乳がん(図7のパネルc)、リウマチ(図8のパネルa)、シェーグレン症候群(図8のパネルb)の患者では第1ピーク面積%の値が有意に上がった。またがん疾患においては病期によっても第1ピーク面積%の値が上がることがわかった。なお前記病期とは、国際対がん連合(UICC)により定められた病期分類によるものである。この結果は、がん疾患および自己免疫疾患患者ではFc結合性タンパク質に関与する免疫活性が低下していることを意味しており、特にがん疾患において第1ピーク面積%が顕著に上がっていることから免疫活性が大きく低下していることがわかる。がん疾患もしくは自己免疫疾患において、前記免疫活性の低下が発症する要因であるか、もしくは発症により前記免疫活性が低下したと考えられる。健常者と検体の第1ピーク面積%の値が疾患検体との間で異なることから、疾患の診断に用いることが可能であり、またがん疾患において病期によっても第1ピーク面積%の値が変化することから、がんの進行性や悪性度の評価に用いることもできる。 結果 The results of Examples 10 and 11 are shown in FIGS. Compared with a sample of a healthy subject, pancreatic cancer (panel a in FIG. 7), stomach cancer (panel b in FIG. 7), breast cancer (panel c in FIG. 7), rheumatism (panel a in FIG. 8), Sjogren's syndrome ( In the patient of FIG. 8 panel b), the value of the first peak area% was significantly increased. Further, it was found that the value of the first peak area% increased depending on the stage of the cancer disease. The term “stage” is based on the stage classification defined by the International Union for Cancer Control (UICC). This result indicates that the immune activity related to the Fc-binding protein is reduced in patients with cancer diseases and autoimmune diseases, and the first peak area% is significantly increased especially in cancer diseases. This indicates that the immune activity is greatly reduced. In cancer diseases or autoimmune diseases, it is considered that the decrease in the immune activity is a factor causing the onset or the onset decreases the immune activity. Since the value of the first peak area% of the healthy subject and the specimen is different between the disease specimen, it can be used for diagnosis of the disease, and the value of the first peak area% depending on the stage of the cancer disease. Can be used to evaluate the progression and malignancy of cancer.
 実施例12 年齢で補正したがん患者由来のガンマグロブリン分離評価
(1)インフォームドコンセントを得た腎がん、大腸がん患者から採取した血液を用いた他は、実施例9と同様な方法でガンマグロブリンを分離し、第1ピーク面積%を求めた。
Example 12 Evaluation of Gamma Globulin Separation Derived from Cancer Patients Corrected by Age (1) A method similar to that of Example 9 except that blood collected from renal and colon cancer patients who obtained informed consent was used. The gamma globulin was separated by the above, and the first peak area% was determined.
(2)実施例9の健常者検体の測定で得た第1ピーク面積%と年齢との相関曲線を多項式近似により求め、検体の各年齢を当該相関曲線の当該式に導入することにより導かれる値を補正値として算出した。 (2) A correlation curve between the first peak area% obtained in the measurement of the healthy subject sample of Example 9 and age is determined by polynomial approximation, and each age of the sample is introduced into the equation of the correlation curve. The value was calculated as a correction value.
(3)(2)より算出した値を、実施例9の健常者、実施例10の膵がん、および(1)により求めた第1ピーク面積%から減ずることで、補正第1ピーク面積%を求めた。 (3) Corrected first peak area% by subtracting the value calculated from (2) from the healthy subject of Example 9, the pancreatic cancer of Example 10, and the first peak area% determined by (1). I asked.
 実施例12の結果を図9に示す。加齢に伴い増加する第1ピーク面積%を補正することで得た補正第1ピーク面積%を基に健常者の検体と、膵がん、腎がん、大腸がんとを比較すると、健常者と比較して有意に補正第1ピーク面積%が増加した。補正を行っていない第1ピーク面積%を基に健常者の検体と、膵がんとを比較した実施例10で見られた第1ピーク面積%の有意な増加と同様に、補正第1ピーク面積%でも増加が確認されたことから、年齢を加味した補正を行っても健常者とがん患者でIgG分離パターンの違いが確認できることがわかる。 結果 The results of Example 12 are shown in FIG. Comparing a healthy subject's sample with pancreatic, renal, and colon cancer based on the corrected first peak area% obtained by correcting the first peak area% that increases with aging, The corrected first peak area% significantly increased as compared with the control. The corrected first peak was similar to the significant increase in the first peak area% found in Example 10 in which a healthy subject sample was compared with pancreatic cancer based on the uncorrected first peak area%. Since the increase was also confirmed in the area%, it can be seen that the difference in the IgG separation pattern between the healthy subject and the cancer patient can be confirmed even when the correction considering the age is performed.
 実施例13 膵がんおよび膵炎患者由来のガンマグロブリン分離評価
(1)インフォームドコンセントを得た膵がん、膵炎患者から採取した血液を用いた他は、実施例9(2)および(3)と同様な方法でガンマグロブリンを分離した。
Example 13 Evaluation of Gamma Globulin Separation Derived from Pancreatic Cancer and Pancreatitis Patients (1) Except that pancreatic cancer from which informed consent was obtained and blood collected from pancreatitis patients were used, Examples 9 (2) and (3) Gamma globulin was separated in the same manner as described above.
(2)(1)で得られた分離パターンを、pHグラジエントをかけ始めてから溶出時間の早いピーク順に、第1ピーク、第2ピーク、第3ピークと定義し、当該第1ピークの面積値をpHグラジエントをかけ始めてからかけ終わるまでの全体の面積値で除することで得た値を第1ピーク面積%とし、実施例12(2)および(3)と同様な方法で補正第1ピーク面積%を求め、さらに第3ピークの面積も求めた。 (2) The separation pattern obtained in (1) is defined as a first peak, a second peak, and a third peak in order of a peak having a shorter elution time after the application of a pH gradient, and the area value of the first peak is defined as The value obtained by dividing by the total area value from the start to the end of the application of the pH gradient was defined as the first peak area%, and the corrected first peak area was corrected in the same manner as in Examples 12 (2) and (3). % And the area of the third peak was also determined.
 実施例13の結果を図10に示す。図10のパネル(a)では膵がん患者検体と比較して、膵炎の患者では補正第1ピーク面積%の値が有意に低下した。また、実施例12の健常者検体と比較すると、膵炎患者の補正第1ピーク面積%はほぼ同じ値となり、健常者が膵炎になるだけでは補正第1ピーク面積%の値は変化しないことがわかる。補正第1ピーク面積%で膵がんと膵炎の識別性をROC曲線によるAUCの値で評価すると0.83となった。一方、図10のパネル(b)では第3ピーク面積で比較すると、膵がん患者検体と比較して、膵炎の患者では値が有意に増加した。第3ピーク面積で膵がんと膵炎の識別性をROC曲線によるAUCの値で評価すると1.00となり、補正第1ピーク面積%による評価より膵臓の病変を識別する際に悪性腫瘍であるか否かを精度よく見分けることが可能である。 結果 The results of Example 13 are shown in FIG. In panel (a) of FIG. 10, the value of the corrected first peak area% was significantly reduced in patients with pancreatitis as compared with the pancreatic cancer patient sample. In addition, when compared with the healthy subject sample of Example 12, the corrected first peak area% of the patient with pancreatitis has almost the same value, and it can be seen that the value of the corrected first peak area% does not change only when the healthy person has pancreatitis. . When the discrimination between pancreatic cancer and pancreatitis was evaluated by the AUC value based on the ROC curve using the corrected first peak area%, it was 0.83. On the other hand, in the panel (b) of FIG. 10, when compared with the third peak area, the value was significantly increased in pancreatitis patients as compared with pancreatic cancer patient samples. When the discriminability between pancreatic cancer and pancreatitis is evaluated by the AUC value based on the ROC curve at the third peak area, it is 1.00. It is possible to determine whether or not it is accurate.
実施例14 喫煙・非喫煙健常者由来のガンマグロブリン分離評価
 インフォームドコンセントを得た喫煙および非喫煙の健常者から採取した血液を用いた他は、実施例12と同様な方法でガンマグロブリンを分離し、補正第1ピーク面積%を求めた。
Example 14 Gamma Globulin Separation Evaluation from Healthy Smoking / Non-smoking Persons Gamma globulin was separated in the same manner as in Example 12 except that blood collected from healthy persons who obtained informed consent from smoking and non-smoking were used. Then, the corrected first peak area% was determined.
 実施例14の結果を図11に示す。非喫煙の健常者と比較して、喫煙している健常者では補正第1ピーク面積%の値が有意に増加した。補正第1ピーク面積%の値の増加は、実施例12からがん患者から検出される傾向と同一であり、喫煙することでがんへの罹患リスクを高めていることがわかる。 結果 The results of Example 14 are shown in FIG. The value of the corrected first peak area% was significantly increased in the healthy person who smoked compared to the healthy person who did not smoke. The increase in the value of the corrected first peak area% is the same as the tendency detected from the cancer patient from Example 12, and it can be seen that smoking increases the risk of cancer.
実施例15 異なるFc結合性タンパク質(FcR9_FもしくはFcR9_V)固定化ゲル用いた年齢の異なるヒト由来抗体の分離
(1)発現されるポリペプチドのアミノ酸配列を配列番号17に、当該ポリペプチドをコードするポリヌクレオチドの配列を配列番号18にそれぞれ示す発現ベクターを用いた他は、実施例3と同様な方法を用いてシステインタグを付加したFc結合性タンパク質(FcR9_V_Cys)を調製した。
Example 15 Separation of human-derived antibodies of different ages using different Fc binding protein (FcR9_F or FcR9_V) immobilized gel (1) The amino acid sequence of the expressed polypeptide is represented by SEQ ID NO: 17, and the polypeptide encoding the polypeptide is represented by SEQ ID NO: 17. A cysteine-tagged Fc-binding protein (FcR9_V_Cys) was prepared in the same manner as in Example 3, except that the expression vector whose nucleotide sequence was shown in SEQ ID NO: 18 was used.
(2)(1)で調製したFc結合性タンパク質を用いた他は、実施例4(1)から(2)と同様な方法で、FcR9_Vカラムを作製した。 (2) An FcR9_V column was prepared in the same manner as in Examples 4 (1) and (2) except that the Fc-binding protein prepared in (1) was used.
(3)インフォームドコンセントを得た健常者から血液を採取した。健常者の年齢および性別を以下に示す。
(健常者A)21歳、男性
(健常者B)26歳、男性
(健常者C)36歳、男性
(健常者D)47歳、男性
(3) Blood was collected from healthy subjects who obtained informed consent. The age and gender of healthy subjects are shown below.
(Healthy person A) 21 years old, male (healthy person B) 26 years old, male (healthy person C) 36 years old, male (healthy person D) 47 years old, male
(4)カラムとしてFcR9_FカラムまたはFcR9_Vカラムを用いた他は、実施例8(2)および(3)と同様の方法でガンマグロブリンの分離パターンを得た。 (4) A gamma globulin separation pattern was obtained in the same manner as in Examples 8 (2) and (3) except that an FcR9_F column or FcR9_V column was used as the column.
(5)(4)で得られた分離パターンを、pHグラジエントをかけ始めてから溶出時間の早いピーク順に、第1ピーク、第2ピーク、第3ピークと定義し、当該第1ピークの面積値をpHグラジエントをかけ始めてからかけ終わるまでの全体の面積値で除することで得た値を第1ピーク面積%とした。さらに、当該第1ピークの高さを各ピークの高さの合計値で除することで得た値を第1ピーク高さ%とした。 (5) The separation pattern obtained in (4) is defined as a first peak, a second peak, and a third peak in the order of elution time after the start of the application of the pH gradient, and the area value of the first peak is defined as The value obtained by dividing by the total area value from the start of the application of the pH gradient to the end thereof was defined as the first peak area%. Furthermore, the value obtained by dividing the height of the first peak by the total value of the heights of the respective peaks was defined as the first peak height%.
 実施例15の結果を図12に示す。図12のパネル(a)では、FcR9_FカラムまたはFcR9_Vカラムで測定した健常者検体の測定値を示す図である。当該図から、加齢に伴い第1ピーク高さ%の値が増加していくことがわかり、さらにアミノ酸配列の異なる2種のFc結合性タンパク質を固定化した不溶性担体を充填したカラムを用いても、加齢に伴い第1ピーク高さ%が増加していく同一の傾向が得られた。この結果は、限定されたアミノ酸配列でなくともFc結合性タンパク質であれば、疾患、疾患の発症リスク及び/又は疾患の進行度合い、加齢の進行度合いを検出することが可能であることがわかる。さらに、図12のパネル(b)では、FcR9_Vカラムで測定した健常者検体の測定値として、第1ピーク面積%と第1ピーク高さ%をそれぞれ示す。当該面積%および当該高さ%をそれぞれ比較すると、どちらも加齢に伴い値が増加しており、どちらの値を用いても正確に評価可能であることがわかる。 結果 The results of Example 15 are shown in FIG. In panel (a) of FIG. 12, it is a figure which shows the measured value of a healthy subject sample measured with the FcR9_F column or the FcR9_V column. From this figure, it can be seen that the value of the first peak height% increases with aging, and further, using a column packed with an insoluble carrier on which two types of Fc-binding proteins having different amino acid sequences are immobilized. Also, the same tendency that the first peak height% increased with aging was obtained. This result indicates that it is possible to detect the disease, the risk of developing the disease and / or the degree of progress of the disease, and the degree of progress of aging if the Fc-binding protein is not limited to the amino acid sequence. . Further, in the panel (b) of FIG. 12, the first peak area% and the first peak height% are shown as the measured values of the healthy subject measured by the FcR9_V column, respectively. Comparing the area% and the height% respectively, it can be seen that the value increases with aging in both cases, and that it is possible to evaluate accurately using either value.
 本発明によれば、糖鎖構造の違いに基づき抗体を分離できる。また、本発明の一態様によれば、抗体の分離パターンの特徴を指標として、被検者における疾患の有無、疾患の発症リスク、疾患の進行度合い、及び/又は加齢の進行度合いを検出できる。 According to the present invention, antibodies can be separated based on the difference in sugar chain structure. According to one embodiment of the present invention, the presence or absence of a disease in a subject, the risk of developing a disease, the degree of progression of a disease, and / or the degree of progression of aging can be detected using the characteristics of an antibody separation pattern as an index. .

Claims (14)

  1.  疾患の有無、疾患の発症リスク、疾患の進行度合い、及び/又は加齢の進行度合いの検出方法であって、
     以下の工程(c):
    (c)抗体の分離パターンに係るデータを指標として、被検者における疾患の有無、疾患の発症リスク、疾患の進行度合い、及び/又は加齢の進行度合いを検出する工程
     を含み、
     前記データが、抗体の分離パターンの特徴であり、
     前記データが、以下の工程(a)および(b)により得られたものである、方法:
    (a)Fc結合性タンパク質を固定化した不溶性担体を充填したカラムに、前記被検者から得た抗体を含有する溶液を添加し、該抗体を該担体に吸着する工程;
    (b)前記担体に吸着した抗体を溶出液を用いて溶出し、前記データを得る工程。
    The presence or absence of the disease, the risk of developing the disease, the degree of progress of the disease, and / or a method for detecting the degree of progress of aging,
    The following step (c):
    (C) detecting the presence or absence of a disease in the subject, the risk of developing the disease, the degree of progression of the disease, and / or the degree of progression of aging in the subject using the data relating to the antibody separation pattern as an index,
    The data is characteristic of the separation pattern of the antibody,
    The method wherein the data is obtained by the following steps (a) and (b):
    (A) adding a solution containing an antibody obtained from the subject to a column packed with an insoluble carrier having Fc-binding protein immobilized thereon, and adsorbing the antibody to the carrier;
    (B) a step of eluting the antibody adsorbed on the carrier using an eluent to obtain the data.
  2.  前記工程(c)の前に、前記工程(a)および(b)を含む、請求項1に記載の方法。 方法 The method according to claim 1, comprising the steps (a) and (b) before the step (c).
  3.  前記工程(a)の前に、前記カラムに平衡化液を添加して、該カラムを平衡化する工程を含む、請求項1または2に記載の方法。 3. The method according to claim 1, further comprising a step of equilibrating the column by adding an equilibration liquid to the column before the step (a).
  4.  前記データの取得が、抗体の分離パターンを得る工程と、該分離パターンから前記特徴を抽出する工程を含む、請求項1~3の何れか1項に記載の方法。 The method according to any one of claims 1 to 3, wherein the acquisition of the data includes a step of obtaining a separation pattern of the antibody, and a step of extracting the feature from the separation pattern.
  5.  前記特徴が、ピーク面積及び/又はピーク高さである、請求項1~4の何れか1項に記載の方法。 The method according to any one of claims 1 to 4, wherein the characteristic is a peak area and / or a peak height.
  6.  前記特徴が、ピーク面積%及び/又はピーク高さ%である、請求項1~5の何れか1項に記載の方法。 The method according to any one of claims 1 to 5, wherein the characteristic is peak area% and / or peak height%.
  7.  前記特徴が、第1ピーク、第2ピーク、および第3ピークから選択される1種またはそれ以上のピークの特徴である、請求項1~6の何れか1項に記載の方法。 The method according to any one of claims 1 to 6, wherein the characteristic is a characteristic of one or more peaks selected from a first peak, a second peak, and a third peak.
  8.  前記特徴が、第1ピークの特徴である、請求項1~7の何れか1項に記載の方法。 The method according to any one of claims 1 to 7, wherein the characteristic is a characteristic of a first peak.
  9.  前記工程(c)が、前記データを、対照被検者から得た抗体の分離パターンに係るデータと比較する工程を含む、請求項1~8の何れか1項に記載の方法。 The method according to any one of claims 1 to 8, wherein the step (c) includes a step of comparing the data with data on an antibody separation pattern obtained from a control subject.
  10.  前記疾患が、がん、自己免疫疾患、感染症、アレルギー、炎症疾患、悪液質、および加齢関連疾患から選択される1種またはそれ以上の疾患である、請求項1~9の何れか1項に記載の方法。 The method according to any one of claims 1 to 9, wherein the disease is one or more diseases selected from cancer, autoimmune disease, infectious disease, allergy, inflammatory disease, cachexia, and age-related disease. Item 2. The method according to item 1.
  11.  前記疾患が、膵がん、胃がん、乳がん、大腸がん、腎がん、リウマチ、シェーグレン症候群、および膵炎から選択される1種またはそれ以上の疾患である、請求項1~10の何れか1項に記載の方法。 The disease according to any one of claims 1 to 10, wherein the disease is one or more diseases selected from pancreatic cancer, gastric cancer, breast cancer, colorectal cancer, kidney cancer, rheumatism, Sjogren's syndrome, and pancreatitis. The method described in the section.
  12.  Fc結合性タンパク質が、以下の(1)~(4)のいずれかのポリペプチドである、請求項1~11の何れか1項に記載の方法:
    (1)配列番号1に記載のアミノ酸配列の17番目から192番目までのアミノ酸残基を含み、但し当該17番目から192番目までのアミノ酸残基において、少なくとも176番目のバリンがフェニルアラニンに置換されたポリペプチド;
    (2)配列番号1に記載のアミノ酸配列の17番目から192番目までのアミノ酸残基を含み、但し当該17番目から192番目までのアミノ酸残基において、少なくとも27番目のバリンがグルタミン酸に、29番目のフェニルアラニンがイソロイシンに、35番目のチロシンがアスパラギンに、48番目のグルタミンがアルギニンに、75番目のフェニルアラニンがロイシンに、92番目のアスパラギンがセリンに、117番目のバリンがグルタミン酸に、121番目のグルタミン酸がグリシンに、171番目のフェニルアラニンがセリンに、および176番目のバリンがフェニルアラニンに置換されたポリペプチド;
    (3)配列番号1に記載のアミノ酸配列の17番目から192番目までのアミノ酸残基を含み、但し当該17番目から192番目までのアミノ酸残基において、少なくとも27番目のバリンがグルタミン酸に、29番目のフェニルアラニンがイソロイシンに、35番目のチロシンがアスパラギンに、48番目のグルタミンがアルギニンに、75番目のフェニルアラニンがロイシンに、92番目のアスパラギンがセリンに、117番目のバリンがグルタミン酸に、121番目のグルタミン酸がグリシンに、および171番目のフェニルアラニンがセリンに置換されたポリペプチド;
    (4)上記(1)~(3)のいずれかのポリペプチドのアミノ酸配列を含み、但し当該アミノ酸配列において、上記置換以外の位置において、1~10個のアミノ酸変異を含む、ポリペプチド。
    The method according to any one of claims 1 to 11, wherein the Fc binding protein is a polypeptide according to any one of the following (1) to (4):
    (1) It includes the 17th to 192nd amino acid residues of the amino acid sequence of SEQ ID NO: 1, provided that at least the 176th valine is substituted with phenylalanine in the 17th to 192nd amino acid residues. A polypeptide;
    (2) It includes the 17th to 192nd amino acid residues of the amino acid sequence of SEQ ID NO: 1, provided that at least the 27th valine is the glutamic acid and the 29th amino acid is the 17th to the 192nd amino acid residues. Phenylalanine to isoleucine, 35th tyrosine to asparagine, 48th glutamine to arginine, 75th phenylalanine to leucine, 92nd asparagine to serine, 117th valine to glutamic acid, 121st glutamic acid Is a polypeptide in which is substituted with glycine, phenylalanine at position 171 with serine, and valine at position 176 with phenylalanine;
    (3) It includes the 17th to 192nd amino acid residues of the amino acid sequence of SEQ ID NO: 1, provided that at least the 17th to 192nd amino acid residues have at least 27th valine in glutamic acid and 29th in glutamic acid. Phenylalanine to isoleucine, 35th tyrosine to asparagine, 48th glutamine to arginine, 75th phenylalanine to leucine, 92nd asparagine to serine, 117th valine to glutamic acid, 121st glutamic acid Has been replaced by glycine and phenylalanine at position 171 by serine;
    (4) A polypeptide comprising the amino acid sequence of the polypeptide of any of (1) to (3) above, provided that the amino acid sequence has 1 to 10 amino acid mutations at positions other than the above substitutions.
  13.  2種またはそれ以上の抗体を含有する組成物であって、以下のIからIXのうち2つ以上の項目に該当する組成物:
    I. G1Faを有する抗体の含有量をG0Fを有する抗体の含有量で割った値が重量比で0.4以下である;
    II. G2Fを有する抗体の含有量をG0Fを有する抗体の含有量で割った値が重量比で0.2以下である;
    III. G2F+2SAを有する抗体の含有量をG0Fを有する抗体の含有量で割った値が重量比で0.03以下である;
    IV. G1Fbを有する抗体の含有量をG1Faを有する抗体の含有量で割った値が重量比で0.5以上である;
    V. G2Fを有する抗体の含有量をG1Fbを有する抗体の含有量で割った値が重量比で0.6以下である;
    VI. G2F+SAを有する抗体の含有量をG1Fbを有する抗体の含有量で割った値が重量比で0.3以下である;
    VII. G2F+2SAを有する抗体の含有量をG1Fbを有する抗体の含有量で割った値が重量比で0.12以下である;
    VIII. 抗体の総含有量に対するG2+SAを有する抗体の含有量の比率が重量比で0.2%以下である;
    IX. 抗体の総含有量に対するG2+2SAを有する抗体の含有量の比率が重量比で0.2%以下である。
    A composition containing two or more antibodies, wherein the composition falls under two or more of the following I to IX:
    I. A value obtained by dividing the content of the antibody having G1Fa by the content of the antibody having G0F is 0.4 or less by weight;
    II. A value obtained by dividing the content of the antibody having G2F by the content of the antibody having G0F is 0.2 or less by weight;
    III. The content of the antibody with G2F + 2SA divided by the content of the antibody with G0F is less than or equal to 0.03 by weight;
    IV. The value obtained by dividing the content of the antibody having G1Fb by the content of the antibody having G1Fa is 0.5 or more by weight;
    V. A value obtained by dividing the content of the antibody having G2F by the content of the antibody having G1Fb is 0.6 or less by weight;
    VI. A value obtained by dividing the content of the antibody having G2F + SA by the content of the antibody having G1Fb is 0.3 or less by weight;
    VII. The content of the antibody with G2F + 2SA divided by the content of the antibody with G1Fb is less than or equal to 0.12 by weight;
    VIII. The ratio of the content of the antibody having G2 + SA to the total content of the antibody is 0.2% or less by weight;
    IX. The ratio of the content of the antibody having G2 + 2SA to the total content of the antibody is 0.2% or less by weight.
  14.  2種またはそれ以上の抗体を含有する組成物であって、以下のIからIXのうち2つ以上の項目に該当する組成物:
    I. G1Faを有する抗体の含有量をG0Fを有する抗体の含有量で割った値が重量比で1.8以上である;
    II. G2Fを有する抗体の含有量をG0Fを有する抗体の含有量で割った値が重量比で0.6以上である;
    III. G2F+2SAを有する抗体の含有量をG0Fを有する抗体の含有量で割った値が重量比で0.06以上である;
    IV. G1Fbを有する抗体の含有量をG1Faを有する抗体の含有量で割った値が重量比で0.3以下である;
    V. G2Fを有する抗体の含有量をG1Fbを有する抗体の含有量で割った値が重量比で3.0以上である;
    VI. G2F+SAを有する抗体の含有量をG1Fbを有する抗体の含有量で割った値が重量比で0.6以上である;
    VII. G2F+2SAを有する抗体の含有量をG1Fbを有する抗体の含有量で割った値が重量比で0.3以上である;
    VIII. 抗体の総含有量に対するG2+SAを有する抗体の含有量の比率が重量比で2%以上である;
    IX. 抗体の総含有量に対するG2+2SAを有する抗体の含有量の比率が重量比で0.6%以上である。
    A composition containing two or more antibodies, wherein the composition falls under two or more of the following I to IX:
    I. A value obtained by dividing the content of the antibody having G1Fa by the content of the antibody having G0F is 1.8 or more by weight;
    II. A value obtained by dividing the content of the antibody having G2F by the content of the antibody having G0F is 0.6 or more by weight;
    III. The content of the antibody with G2F + 2SA divided by the content of the antibody with G0F is greater than or equal to 0.06 by weight;
    IV. A value obtained by dividing the content of the antibody having G1Fb by the content of the antibody having G1Fa is 0.3 or less by weight;
    V. The content of the antibody with G2F divided by the content of the antibody with G1Fb is greater than or equal to 3.0 by weight;
    VI. A value obtained by dividing the content of the antibody having G2F + SA by the content of the antibody having G1Fb is 0.6 or more by weight;
    VII. The content of the antibody with G2F + 2SA divided by the content of the antibody with G1Fb is greater than or equal to 0.3 by weight;
    VIII. The ratio of the content of the antibody having G2 + SA to the total content of the antibody is 2% or more by weight;
    IX. The ratio of the content of the antibody having G2 + 2SA to the total content of the antibodies is 0.6% or more by weight.
PCT/JP2019/024160 2018-06-20 2019-06-18 Method for separating antibody, and method for testing on disease WO2019244901A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19822237.4A EP3812759A4 (en) 2018-06-20 2019-06-18 Method for separating antibody, and method for testing on disease
US17/253,824 US20210116445A1 (en) 2018-06-20 2019-06-18 Method for separating antibody, and method for testing on disease
CN201980040776.7A CN112334768B (en) 2018-06-20 2019-06-18 Method for separating antibody and method for examining disease

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-116611 2018-06-20
JP2018116611 2018-06-20
JP2019-015596 2019-01-31
JP2019015596 2019-01-31

Publications (1)

Publication Number Publication Date
WO2019244901A1 true WO2019244901A1 (en) 2019-12-26

Family

ID=68984036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024160 WO2019244901A1 (en) 2018-06-20 2019-06-18 Method for separating antibody, and method for testing on disease

Country Status (5)

Country Link
US (1) US20210116445A1 (en)
EP (1) EP3812759A4 (en)
JP (1) JP7469584B2 (en)
CN (1) CN112334768B (en)
WO (1) WO2019244901A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022124096A1 (en) * 2020-12-11 2022-06-16 東ソー株式会社 Method for predicting immunoglobulin-linked glycan

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7047425B2 (en) * 2017-02-20 2022-04-05 東ソー株式会社 Fc-binding protein with improved antibody separation ability and antibody separation method using it

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007136001A1 (en) * 2006-05-19 2007-11-29 Osaka University Method for determination of inflammatory bowel disease
JP2011206046A (en) 2010-03-10 2011-10-20 Sagami Chemical Research Institute IMPROVED Fc RECEPTOR AND METHOD FOR PRODUCING THE SAME
WO2013120929A1 (en) 2012-02-15 2013-08-22 F. Hoffmann-La Roche Ag Fc-receptor based affinity chromatography
JP2015086216A (en) 2013-09-27 2015-05-07 東ソー株式会社 Improved fc-binding proteins, methods for producing the proteins and antibody-adsorbing agents using the proteins
JP2015522260A (en) * 2012-06-15 2015-08-06 ハリー スティリ, Method for detecting a disease or condition
WO2015199154A1 (en) 2014-06-27 2015-12-30 東ソー株式会社 IMPROVED Fc-BINDING PROTEIN, METHOD FOR PRODUCING SAID PROTEIN, ANTIBODY ADSORBENT USING SAID PROTEIN, AND METHOD FOR SEPARATING ANTIBODY USING SAID ADSORBENT
JP2016099304A (en) 2014-11-26 2016-05-30 株式会社島津製作所 Glycoprotein analysis method using mass analysis
JP2016108294A (en) * 2014-12-09 2016-06-20 東ソー株式会社 Efficient separation method of antibody
JP2016169197A (en) 2014-06-27 2016-09-23 東ソー株式会社 Improved fc-binding proteins, methods for producing the same and antibody adsorbing agents using the same
JP2016194500A (en) 2015-03-31 2016-11-17 株式会社島津製作所 Preparation method of sample for analysis, and analytical method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000061636A2 (en) * 1999-04-14 2000-10-19 Research Corporation Technologies, Inc. Aberrantly glycosylated antibodies as marker for cancer
WO2006114661A1 (en) * 2005-04-26 2006-11-02 Dwek Raymond A High throughput glycan analysis for diagnosing and monitoring rheumatoid arthritis and other autoimmune diseases
JP2008309501A (en) * 2007-06-12 2008-12-25 Kyowa Hakko Kirin Co Ltd Sugar chain analyzing method
JP5581493B2 (en) * 2008-07-09 2014-09-03 公益財団法人ヒューマンサイエンス振興財団 Biomarker for detection of arteriosclerotic disease and test method for arteriosclerotic disease
WO2015041303A1 (en) * 2013-09-18 2015-03-26 東ソー株式会社 Fc-BINDING PROTEIN, METHOD FOR PRODUCING SAID PROTEIN, AND ANTIBODY ADSORBENT USING SAID PROTEIN, AND METHODS FOR PURIFYING AND IDENTIFYING ANTIBODY USING SAID ADSORBENT
WO2016064955A1 (en) * 2014-10-21 2016-04-28 The General Hospital Corporation Methods of diagnosis and treatment of tuberculosis and infection
JP2018011515A (en) * 2016-07-19 2018-01-25 東ソー株式会社 Method for producing recombinant protein using Escherichia coli
CN106525986A (en) * 2016-09-22 2017-03-22 上海颢哲信息科技有限公司 Method for fast and high throughput detection of N-linked glycans in glycoprotein based on membrane separation
JP2021162586A (en) * 2020-03-30 2021-10-11 東ソー株式会社 Analysis method of antibody and disease detection method using the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007136001A1 (en) * 2006-05-19 2007-11-29 Osaka University Method for determination of inflammatory bowel disease
JP2011206046A (en) 2010-03-10 2011-10-20 Sagami Chemical Research Institute IMPROVED Fc RECEPTOR AND METHOD FOR PRODUCING THE SAME
WO2013120929A1 (en) 2012-02-15 2013-08-22 F. Hoffmann-La Roche Ag Fc-receptor based affinity chromatography
JP2015522260A (en) * 2012-06-15 2015-08-06 ハリー スティリ, Method for detecting a disease or condition
JP2015086216A (en) 2013-09-27 2015-05-07 東ソー株式会社 Improved fc-binding proteins, methods for producing the proteins and antibody-adsorbing agents using the proteins
WO2015199154A1 (en) 2014-06-27 2015-12-30 東ソー株式会社 IMPROVED Fc-BINDING PROTEIN, METHOD FOR PRODUCING SAID PROTEIN, ANTIBODY ADSORBENT USING SAID PROTEIN, AND METHOD FOR SEPARATING ANTIBODY USING SAID ADSORBENT
JP2016169197A (en) 2014-06-27 2016-09-23 東ソー株式会社 Improved fc-binding proteins, methods for producing the same and antibody adsorbing agents using the same
JP2016099304A (en) 2014-11-26 2016-05-30 株式会社島津製作所 Glycoprotein analysis method using mass analysis
JP2016108294A (en) * 2014-12-09 2016-06-20 東ソー株式会社 Efficient separation method of antibody
JP2016194500A (en) 2015-03-31 2016-11-17 株式会社島津製作所 Preparation method of sample for analysis, and analytical method

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Analysis of carbohydrate chain of human IgG using PALSTATION (TM)", 1 February 2001 (2001-02-01), pages 1 - 3, XP009525416, Retrieved from the Internet <URL:http://catalog.takara-bio.co.jp/product/basic_info.php?unitid=U100002765&recommend_flg=1&click_f1g=l> [retrieved on 20190902] *
CHROMATOGRAPHY, vol. 34, no. 2, 2013, pages 83 - 88
NATURE COMMUNICATION, vol. 7, 2016, pages 11205
ROY JEFFERIS: "Glycoforms of human IgG in Health and Disease", TRENDS IN GLYCOSCIENCE AND GLYCOTECHNOLOGY, vol. 21, no. 118, 1 January 2009 (2009-01-01), pages 105 - 117, XP055772213, ISSN: 0915-7352, DOI: 10.4052/tigg.21.105 *
SCIENCE, vol. 320, 2008, pages 373
See also references of EP3812759A4
YOSUKE TERAO , NAOKI YAMANAKA , YOSHIHARU ASAOKA , SATOSHI ENDO , TORU TANAKA , SEIGO OE , TERUHIKO IDE : "Separation of Antibody by Fc Receptor Resin Based on Antibody`s Glycan Structures", TOSOH RESEARCH & TECHNOLOGY REVIEW, vol. 61, 2017, pages 33 - 41, XP009525460, ISSN: 1346-3039 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022124096A1 (en) * 2020-12-11 2022-06-16 東ソー株式会社 Method for predicting immunoglobulin-linked glycan

Also Published As

Publication number Publication date
CN112334768B (en) 2024-03-05
US20210116445A1 (en) 2021-04-22
JP2020118664A (en) 2020-08-06
EP3812759A4 (en) 2022-07-27
EP3812759A1 (en) 2021-04-28
JP7469584B2 (en) 2024-04-17
CN112334768A (en) 2021-02-05

Similar Documents

Publication Publication Date Title
WO2019244901A1 (en) Method for separating antibody, and method for testing on disease
EP3048112B1 (en) Fc-BINDING PROTEIN, METHOD FOR PRODUCING SAID PROTEIN, AND ANTIBODY ADSORBENT USING SAID PROTEIN, AND METHODS FOR PURIFYING AND IDENTIFYING ANTIBODY USING SAID ADSORBENT
EP3162895B1 (en) Improved fc-binding protein, method for producing said protein, antibody adsorbent using said protein, and method for separating antibody using said adsorbent
Lardinois et al. Immunoglobulins G from patients with ANCA-associated vasculitis are atypically glycosylated in both the Fc and Fab regions and the relation to disease activity
Goetze et al. Rapid LC–MS screening for IgG Fc modifications and allelic variants in blood
Giddens et al. Chemoenzymatic glyco-engineering of monoclonal antibodies
EP2748613A1 (en) Oxmif as a diagnostic marker
US11603548B2 (en) Fc-binding protein exhibiting improved alkaline resistance, method for producing said protein, antibody adsorbent using said protein, and method for separating antibody using said antibody adsorbent
JP2021095395A (en) Solution for antibody separation
JP2021094018A (en) Solution for antibody separation
CN114478787B (en) anti-Gd-IgA 1 monoclonal antibody and ELISA kit for IgA nephropathy auxiliary diagnosis
KR101438089B1 (en) A Bio Probe for Detecting Porcine Reproductive and Respiratory Syndrome Virus and Method for Diagnosing PRRSV Using the Same
JP2023079305A (en) Method for analyzing subject-derived antibody
JP7298607B2 (en) Affinity carrier using mutant VHH antibody
JP2022151678A (en) Method for analyzing antibody
WO2022124096A1 (en) Method for predicting immunoglobulin-linked glycan
JP4856381B2 (en) Method for measuring human orotate phosphoribosyltransferase protein
CA3231890A1 (en) Use of lectins to determine mammaglobin-a glycoforms in breast cancer
Peng N-glycan profiling of medulloblastoma in patients at different proteome subtypes of disease
JP2022098421A (en) Method for predicting overall survival period of cancer patient
Reichardt et al. Minimal epitope for Mannitou IgM on paucimannose-carrying glycoproteins
Zhang et al. Prognostic value of plasma IgG N-glycome traits in patients with pulmonary arterial hypertension: an observational cohort study
Serna et al. Minimal epitope for Mannitou IgM on paucimannose-carrying glycoproteins
JP2023104343A (en) Method for detecting blood lipid concentration
CN117126283A (en) anti-PIC antibody, kit and method for detecting PIC

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19822237

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019822237

Country of ref document: EP

Effective date: 20210120