WO2015198824A1 - Ultrasound imaging apparatus - Google Patents

Ultrasound imaging apparatus Download PDF

Info

Publication number
WO2015198824A1
WO2015198824A1 PCT/JP2015/066199 JP2015066199W WO2015198824A1 WO 2015198824 A1 WO2015198824 A1 WO 2015198824A1 JP 2015066199 W JP2015066199 W JP 2015066199W WO 2015198824 A1 WO2015198824 A1 WO 2015198824A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
reception
unit
aperture
imaging apparatus
Prior art date
Application number
PCT/JP2015/066199
Other languages
French (fr)
Japanese (ja)
Inventor
千鶴枝 石原
貞一郎 池田
鱒沢 裕
Original Assignee
日立アロカメディカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立アロカメディカル株式会社 filed Critical 日立アロカメディカル株式会社
Priority to JP2016529229A priority Critical patent/JP6212638B2/en
Publication of WO2015198824A1 publication Critical patent/WO2015198824A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8959Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using coded signals for correlation purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography

Definitions

  • the present invention relates to a high frame rate technology using coding and an SN ratio improving technology in an ultrasonic imaging apparatus.
  • the imaging method using ultrasonic waves is configured by transmitting ultrasonic waves to an object, receiving echoes reflected by the object as electrical signals, and displaying the received signals on a monitor as image data.
  • Ultrasound is generated by inputting an electrical signal to a transducer (electroacoustic transducer or vibrator) provided in the apparatus.
  • the ultrasonic wave emitted from the transducer is partially reflected at the boundary where the acoustic impedance is different while traveling through the object to make an echo.
  • the echo is received by the electroacoustic transducer, and a reception signal is generated. Thereby, the boundary surface of the object can be displayed as a tomographic image of the object.
  • Such an imaging technique is widely used as a non-destructive inspection of a structure or a diagnostic apparatus for imaging a tomographic image of a living body with minimal invasiveness.
  • transducers are arranged in a channel array, and ultrasonic waves are transmitted as ultrasonic beams by array beam forming.
  • the ultrasonic imaging apparatus scans an object with an ultrasonic transmission beam and receives an echo generated by each transmission. Then, reception beam forming is performed on the reception signal of each channel to generate small area data in a region on the beam axis. Then, the tomographic image of the entire object is created by combining (summing) the small area data.
  • Spatial encoding transmission / reception is known as an imaging method that enables high frame rate imaging (Patent Document 1).
  • the required number of transmissions is reduced by transmitting to the object simultaneously from a plurality of directions instead of unidirectional transmission and unidirectional reception.
  • ultrasonic waves transmitted from any direction are transmitted by simultaneously transmitting encoded ultrasonic waves from multiple directions to an object, receiving echoes, and then decoding the received signal. The received signal is distinguished and separated.
  • transmission / reception is performed twice.
  • 1 and 1 are encoded for the transmission waveforms of ultrasonic beams in the A direction and the B direction, respectively, and in the second transmission, 1 and ⁇ 1 are respectively encoded.
  • the received signals obtained by receiving the echoes generated by the two transmissions are each stored in the state of channel data before being subjected to receive beamforming.
  • the received signal transmitted in the A direction and the received signal transmitted in the B direction are separated.
  • the received signal due to transmission in the B direction is canceled, and only the received signal due to transmission in the A direction remains. Also, by subtracting the first received signal and the second received signal, the received signal due to transmission in the A direction is canceled, and only the received signal due to transmission in the B direction remains.
  • This process is equivalent to canceling the reception signal by one transmission in the A direction and the B direction and simultaneously adding the reception signal by the other transmission. For this reason, the amplitude of the received signal in each direction obtained after the post-decoding processing is twice the amplitude of the received signal obtained by the conventional one-way transmission and one-way reception, and the SN ratio is improved.
  • Spatial encoding transmission / reception requires multiple transmissions / receptions.
  • the performance of the decoding process is exhibited on the assumption that each received signal is an echo signal from the same part.
  • the propagation distance of the echo varies.
  • the time axes of the plurality of received signals are shifted from each other, when the summation process or the subtraction process is performed in the decoding process, a signal to be canceled remains, and an artifact (false image) on the image is generated. This causes image quality degradation.
  • An object of the present invention is to provide an ultrasonic imaging apparatus capable of reducing artifacts in a generated image even when a motion occurs in an imaging target when performing spatial encoding transmission / reception.
  • the transmission unit performs the operation of transmitting the spatially encoded ultrasonic wave simultaneously from two or more transmission apertures included in the transmission aperture group for one or more rounds (one scan) in order for each of the plurality of transmission aperture groups. Make it.
  • the reception unit performs a decoding process and a phasing process on the output of the reception area that has received the echo of the ultrasonic wave from the imaging target, and obtains a reception signal for a desired reception focus of the imaging target.
  • the transmission unit changes the spatial encoding code of the ultrasonic wave transmitted by some of the transmission aperture groups to the ultrasonic spatial encoding code transmitted by the other transmission aperture groups. Invert it.
  • the aperture synthesis unit transmits a reception signal for a desired reception focus obtained by the reception unit from an echo generated by an ultrasonic wave transmitted from one transmission aperture group among a plurality of transmission aperture groups, and another transmission aperture group. Addition processing is performed on the reception signals for the same reception focus obtained by the reception unit from echoes generated by ultrasonic waves.
  • FIG. 1 is a block diagram showing a configuration of an ultrasonic imaging apparatus according to a first embodiment of the present invention.
  • (a) Explanatory drawing which shows transmission by the transmission aperture group of 1st embodiment (b) Explanatory drawing which shows receiving beam forming of 1st embodiment, (c) Explanatory drawing which shows aperture synthesis of 1st embodiment.
  • Explanatory drawing which shows suppression of the unnecessary signal by aperture synthesis of 1st embodiment (planatory drawing which shows the basic waveform used for the space coding transmission of 1st embodiment.
  • FIG. 1 Explanatory drawing which shows the spatial encoding of the transmission aperture group 110 of 1st embodiment, and the phase of the unnecessary signal after decoding
  • FIG. 1 The block diagram which shows the structure of the ultrasonic imaging device of 2nd embodiment.
  • Explanatory drawing which shows receiving beam forming of 2nd embodiment, and arrangement
  • the block diagram which shows the structure of the 2nd memory
  • Explanatory drawing which shows the arrangement pattern (transmission order) of the transmission scanning line (transmission opening pair) of 2nd embodiment.
  • Explanatory drawing which shows another example of the arrangement pattern (transmission order) of the transmission scanning line (transmission opening pair) of 2nd embodiment.
  • Explanatory drawing which shows another example of the arrangement pattern (transmission order) of the transmission scanning line (transmission opening pair) of 2nd embodiment.
  • the block diagram which shows the structure which has arrange
  • the block diagram which shows the structure which has arrange
  • Explanatory drawing which shows the structure which carries out aperture synthesis weighted to the received signal after decoding of 3rd embodiment.
  • Explanatory drawing which shows carrying out aperture synthesis of the received signal after phase addition.
  • Explanatory drawing which shows the structure of the opening synthetic
  • Explanatory drawing which shows the spatial encoding transmission by the orthogonal Golay code of 1st embodiment, and a decoding process.
  • Explanatory drawing which shows another example of the arrangement pattern (transmission order) of the transmission scanning line (transmission opening pair) of 2nd embodiment.
  • the ultrasonic imaging apparatus 100 includes an ultrasonic probe 108, a transmission unit 102, a reception unit 105, and an aperture synthesis unit 25.
  • the ultrasonic probe 108 has a plurality of transmission aperture groups 110 and 111 and one or more reception areas 109.
  • a transmission aperture group (eg, 110) includes two or more transmission apertures 110A, 110B, and the like.
  • the transmission aperture group (for example, 111) includes two or more transmission apertures 111A, 111B, and the like.
  • the transmission unit 102 transmits ultrasonically spatially encoded simultaneously from two or more transmission apertures (110A, 110B, etc.) included in a transmission aperture group (for example, 110). This operation is performed one round (one scan) or more in order for each of the transmission aperture groups 110, 111, and the like.
  • Ultrasonic waves transmitted from two or more transmission apertures (110A, 110B, etc.) may be transmitted toward a predetermined position (transmission focal point) of the imaging target 120, or transmitted in different directions. Good.
  • the ultrasonic wave may be transmitted in focus or defocused. In the case of focus transmission, the transmission focus may be different for each transmission aperture group (110, 111, etc.) or may overlap.
  • the reception area 109 receives an ultrasonic echo from the imaging target 120 and outputs an electrical signal.
  • the receiving unit 105 performs a decoding process and a phasing process on the output of the reception area, and a desired reception focus (for example, 52) to be imaged as illustrated in FIG. The received signal is obtained.
  • the transmission unit 102 transmits the spatial encoding code of the ultrasonic wave transmitted by some of the transmission aperture groups (eg, 111) out of the plurality of transmission aperture groups (110, 111, etc.) to another transmission aperture group (eg, 110). ) Is inverted with respect to the spatial encoding code of the ultrasonic wave transmitted.
  • the phase is inverted for two transmission aperture groups (110, 111) having different spatial encoding at the time of transmission.
  • the phases of the original reception signals 18-1a and 18-2a from the reception focal point 52 are not inverted.
  • the aperture synthesizing unit 25 is obtained for a desired reception focal point 52 obtained by the receiving unit 105 from echoes generated by ultrasonic waves transmitted from one transmission aperture group 110 among two or more transmission aperture groups (110, 111, etc.).
  • the reception signal 18-1 and the reception signal 18-2 for the same reception focal point 52 obtained by the reception unit 105 from the echo generated by the ultrasonic wave transmitted from another transmission aperture group 111 are added.
  • some of the transmission aperture groups (110, 111, etc.) some of the transmission aperture groups (for example, 110) have spatial encoding codes inverted with respect to the other transmission aperture groups (111).
  • the unnecessary signals 18-1b and 18-2b generated by the body movement of the imaging target 120 can be canceled and reduced by the addition process.
  • the original reception signals 18-1a and 18-2a from the reception focal point 52 can be added and strengthened.
  • the ultrasonic imaging apparatus when performing spatially encoded transmission / reception, causes artifacts in an image due to unnecessary signals 18-1b and 18-1b even when movement occurs in the imaging target. Can be suppressed.
  • a known method can be used as the spatial encoding method by the transmission unit 102.
  • Hadamard spatial coding spatial coding using orthogonal Golay codes, or the like can be used.
  • Spatial encoding is an imaging technique that uses spatially encoded transmission events.
  • signals transmitted simultaneously in a plurality of directions can be separated as received signals when transmitted independently.
  • a 2-by-2 Hadamard matrix shown in Equation (1) can be used as an encoding matrix.
  • H ⁇ 1 1 / 4H.
  • the waveform 71 is used to transmit from the transmission apertures 110A and 110B.
  • the transmission vectors transmitted by the transmission apertures A and B are encoded using the row vector [1 ⁇ 1]. That is, the sign of one of the transmission apertures 110A and 110B is set to the opposite phase with respect to the other transmission waveform, and transmission is performed in the same two directions as those transmitted in the first round transmission (first scan).
  • the waveform 72 shown in FIG. 4 is used as the antiphase waveform.
  • the reception signal x1 for one transmission aperture (110A) and the reception signal x2 for the other transmission aperture (110B) Can be obtained by the decoding operation. Note that scaling of the inverse matrix was ignored here.
  • the received signal x1 can be extracted.
  • the received signal x2 can be extracted.
  • the calculation process of this received signal is a decoding process.
  • the ultrasonic waves are transmitted twice from the two transmission openings 110A and 110B by performing the above-described encoding.
  • the echo is generated from the point scatterer 11 of the imaging target 120.
  • Two transmissions (the first transmission Tx1, the second transmission Tx) subjected to the above encoding are performed.
  • the reception area (channel) 109 receives reception signals R1 and R2 for each transmission event.
  • the reception signal 18a included in each of the reception signals R1 and R2 is an echo signal due to transmission through the transmission aperture 110A
  • the reception signal 18b is an echo signal due to transmission through the transmission aperture 110B.
  • the received signals R1 and R2 are added by the adder 14, the received signal 18b transmitted by the transmission aperture 110B is canceled, and only the received signal 18a transmitted by the transmission aperture 110A remains.
  • the received signals R1 and R2 are subtracted by the subtractor 15, the received signal 18a transmitted by the transmission aperture 110A is canceled, and only the received signal 18b transmitted by the transmission aperture 110B remains. Therefore, a reception signal in a state where echoes due to simultaneous transmission from the two transmission openings 110A and 110B are mixed can be separated as a reception signal when each transmission is performed independently.
  • FIG. 6 illustrates a state in which the imaging target 120 approaches the ultrasonic probe 108 during two transmissions, and the signal appearance time of the reception signal R2 is shifted with respect to the reception signal R1.
  • undeleted unnecessary signals 18b and 18a are generated in the received signals H A 1 and H B 1 after decoding.
  • the signal 18-1 and the reception signal 18-2 for the reception focal point 52 corresponding to the transmission in which the sign of the spatial encoding of the other transmission aperture group 111 is inverted are added.
  • unnecessary signals 18-1b and 18-2b generated by the body movement of the imaging target 120 are canceled and reduced, and at the same time, the original received signals 18-1a and 18- Add 2a and strengthen.
  • the spatial encoding code is [1 1] in the first transmission Tx1 and [1 -1] in the second transmission Tx2.
  • the spatial coding obtained by inverting the spatial coding code refers to a code in which [1 1] and [1 -1] are interchanged.
  • Inversion of the spatial coding code can also be performed by changing the coding order from [1 1] to [1 -1] from [1 -1] to [1 1]. equal.
  • the received signals R1 and R2 received by the channel 109 after two spatially encoded transmissions are complex numbers exp (j ⁇ t) using arbitrary frequencies ⁇ . Is expressed as the following expression (3). According to the above equation (2), these received signals R1 and R2 are added by the adder 14, and the decoded received signal H1 (18-1) obtained by decoding the one transmission aperture (110A) is expressed by the following equation ( 3).
  • a and b are arbitrary coefficients.
  • the original received signal 18-1a corresponding to the transmission aperture 110A is the first term of the expression (3)
  • the undesired unnecessary signal 18- 1b is the second term (see FIG. 7A).
  • the decoded received signal H1 ⁇ (18-2) obtained by adding these signals is expressed by the following equation (4).
  • decoded received signal (4) H1 - in (18-2) the original received signal 18-2a corresponding to the transmission opening 110A is the first term of the equation (4), canceling the remaining unwanted signal 18 -2b is the second term (see FIG. 7B).
  • the original received signals 18-1a and 18-2a obtained by transmitting from the different transmission aperture groups 110 and 111 are in-phase waveforms, while unnecessary signals are obtained.
  • 18-1b and 18-2b have phases inverted from each other. Therefore, if the decoded received signals H1 and H1 ⁇ obtained by two transmissions of different transmission aperture groups 110 and 111 are added, unnecessary components cancel each other, and only necessary components can be left.
  • the decoding process for obtaining the received signal x1 for one transmission aperture (111A) and the received signal x2 for the other transmission aperture (111B) can be expressed by equation (5) (see equation (2)) ).
  • the reception signals R2 and R1 are added by the adder 14 when the reception signals R1 and R2 for the two transmissions are used. As a result, only the reception signal 13a transmitted by the transmission aperture 111A remains. When the received signals R2 and R1 are subtracted by the subtractor 15, only the received signal 13b transmitted by the transmission aperture 111B remains.
  • Spatial coding using orthogonal Golay codes uses a matrix represented by the following equation (6).
  • X1 and X2 are Golay codes that are complementary pairs
  • Y1 and Y2 are Golay codes that are different types of complementary pairs.
  • Equation (7) When spatial coding by this Golay code is used, the decoding process is as shown in the following equation (7).
  • Equation (7) let R1 and R2 be the received signals obtained in each transmission event in the spatially coded transmission using the Golay code. By this calculation, the echo from the transmission direction using the Golay code X and the echo from the transmission direction using the Golay code Y are separated.
  • FIG. 27 shows spatial encoding transmission and decoding processing when orthogonal Golay codes are used.
  • R1 is input to a correlation processing unit 54-1 that performs cross-correlation processing with X1 and a correlation processing unit 55-1 that performs cross-correlation processing with Y1.
  • R2 is input to a correlation processing unit 54-2 that performs cross-correlation processing with X2 and a correlation processing unit 55-2 that performs cross-correlation processing with Y2.
  • Addition processing 56 is obtained, respectively, and decoded reception signals H A 1 and H B 1 are obtained.
  • the Golay code also corresponds to the transmission of one transmission aperture group 110 out of a plurality of transmission aperture groups 110, 111, etc.
  • the reception signal 18-1 for the reception focal point 52 and the reception signal 18-2 for the reception focal point 52 corresponding to the transmission in which the spatial encoding of the other transmission aperture group 111 is inverted are added.
  • the unnecessary signals 18-1b and 18-2b generated by the body movement can be canceled and reduced, and at the same time, the original received signals 18-1a and 18-2a from the reception focal point 52 can be added and strengthened.
  • Second Embodiment An ultrasonic imaging apparatus according to the second embodiment will be described.
  • the basic configuration of the ultrasonic imaging apparatus of the second embodiment is the same as that of the apparatus of the first embodiment, but in the second embodiment, there are two transmission aperture groups (110, 111, etc.), respectively. Includes transmission apertures (eg, 110A, 110B). Therefore, in the following description, the transmission aperture group is referred to as a transmission aperture pair.
  • the transmission unit 102 transmits ultrasonic waves in order for every two or more transmission aperture pairs (110, 111, etc.). At this time, the order of the spatial encoding codes is reversed alternately.
  • the transmission unit 102 repeatedly performs an operation of sequentially transmitting each transmission aperture pair (110, 111, etc.) two or more times.
  • a plurality of transmission aperture pairs (110, 111, etc.) are transmitted.
  • Each spatial encoding code is set to a code different from the first round.
  • the decoding unit 41 of the reception unit 105 performs a decoding process using the output of the transmission area pair (for example, 110) from the first round transmission and the output from the second round transmission in the reception area 109.
  • FIG. 8 is a block diagram showing a schematic configuration of a specific example of the ultrasonic imaging apparatus 100 of the present embodiment.
  • the ultrasonic imaging apparatus 100 includes an ultrasonic probe 108, a transmission unit 102, a reception unit 105, and an aperture synthesis unit 25.
  • a control unit 106 a user interface (UI) 121, a transmission / reception switching unit 101, an image processing unit 107, and a display unit 122 are provided.
  • the UI 121 is an interface that receives instructions from the user, input of various parameters, and the like.
  • the control unit 106 controls the overall operation.
  • the ultrasonic probe 108 includes a plurality of transducers arranged one-dimensionally or two-dimensionally in a predetermined arrangement.
  • the transducer is an electroacoustic conversion element (vibrator) having a function of converting an electric signal into a sound wave and a sound wave into an electric signal.
  • the ultrasonic probe 108 is tailored to have an outer shape suitable for use by bringing the surface on which the transducer is disposed (ultrasonic transmission / reception surface) into contact with the imaging target 120.
  • the plurality of arranged transducers are virtually or physically divided into a plurality of (P) channels 109 1 to 109 P determined in advance as shown in FIG.
  • Each channel 109 1 to 109 P is composed of one or more transducers.
  • Transmission apertures 110A or the like to be set at the time of transmission may be the same size as the channel 109 1, etc., it may be different.
  • a plurality of adjacent channels four in FIG. 9 are used as one transmission aperture 110A will be described.
  • the transmission aperture 110A and the transmission aperture 110B that constitute each of the transmission aperture pairs 110 will be described below as an example where they are separated from each other on the ultrasonic probe 108 by a predetermined distance. Good.
  • each of the channels 109 1 to 109 P is used as the reception area 109.
  • the transmission unit 102 selects a predetermined transmission aperture pair (for example, 110) of the ultrasonic probe 108 in accordance with an instruction from the control unit 106, and transmits the transmission to the transmission apertures 110A and 110B of the selected transmission aperture pair 110. Generate a signal. Specifically, the waveform type, delay time for each of the transmission apertures 110A and 110B, amplitude modulation, weighting, and the like are determined, and a transmission signal corresponding to the delay time is generated. At this time, the transmission signal is spatially encoded with the Hadamard spatial code described later.
  • the transmission unit 102 passes the generated transmission signals to the transducers of the channels constituting the transmission apertures 110A and 110B, respectively, and causes the transmission apertures 110A and 110B to simultaneously transmit ultrasonic waves spatially encoded with Hadamard spatial codes in different directions. .
  • This operation is sequentially executed by all of the plurality of transmission aperture pairs 110 to 113 and the like.
  • the ultrasonic wave may be transmitted in focus or defocused. In the case of focus transmission, the transmission focus for each of the transmission aperture pairs 110 to 113 may be different.
  • the transmitter 102 inverts Hadamard's spatial code alternately when transmitting ultrasonic waves in order to the transmission aperture pairs 110 to 113 and the like. Repeat this two or more times. However, in the second round, the transmission aperture pairs 110 to 113 and the like are reversed so that the spatial coding is different from the first round.
  • the Hadamard spatial code can be decoded by combining the received signal obtained by the first round transmission and the received signal obtained by the second round transmission.
  • the transmission focus for each of the transmission aperture pairs 110 to 113 is the same in at least the first and second round transmissions.
  • An echo is generated in the imaging target 120 by the ultrasonic waves sequentially transmitted to the imaging target 120 from the transmission aperture pairs 110 to 113 and the like.
  • the echo is received by the reception area (channel) 109 of the ultrasonic probe 108.
  • channels used for reception all the channels 109 1 ... 109 P of the ultrasonic probe 108 may be used, or only channels within a predetermined reception opening (active channel) may be used.
  • the control unit 106 receives the received signals R 1 1, R 2 1 ... R P 1 of each channel 109 1 ... 109 P (subscript indicates the channel number, and 1 indicates a certain transmission aperture pair.
  • the received signal obtained by the first round transmission (hereinafter also referred to as the first scan) is transferred to the receiving unit 105.
  • the receiving unit 105 includes a channel signal processing unit 20 including a first storage unit (hereinafter referred to as a channel memory) 40 and a decoding unit 41 that decodes a Hadamard spatial code as a channel 109 1. It is provided for every 109 P.
  • the receiving unit 105 includes the phasing / adding unit 22 and the second storage unit 24 described above.
  • the channel memory 40 includes two storage areas 40-1 and 40-2 for each of the transmission aperture pairs 110 to 113.
  • Control unit 106 transmits the opening 110A of the transmission aperture pairs 110, the received signal R 1 1 to channel 109 1 is obtained by transmission from 110B, transmission opening 110A, it is stored in the storage area 40-1 for 110B.
  • the control unit 106 determines that the other channels 109 2 ... 109 P are received signals R 2 1... R P 1 obtained by transmission from the transmission apertures 110A and 110B of the transmission aperture pair 110, respectively.
  • the data is stored in the storage area 40-1 for the transmission aperture 110 of the channel memory 40 connected to each channel.
  • control unit 106 each time to be transmitted sequentially from the transmitting pair of openings 111-113, etc., channel 109 1, 109 2 ... 109 received signal R 1 1 where P is obtained, respectively, R 2 1 ... R P 1 is stored in the storage area 40-1 for the corresponding transmission aperture pair in the channel memory 40 connected to each channel.
  • control unit 106 causes the transmission unit 102 to perform the second round transmission (second scan) in order from the transmission aperture pairs 110 to 113, and the obtained channels 109 1 , 109 2 ... 109 P Received signals R 1 2, R 2 2..R P 2 are sequentially stored in the corresponding storage areas 40-2 in the channel memory 40 connected to the respective channels.
  • the decoding unit 41 includes an adder 14, a subtractor 15, a transfer unit 16, and first and second receiving units 17-1 and 17-2 for decoding the Hadamard space code.
  • the decoding unit 41 receives the received signal R 1 1 from the storage areas 40-1 and 40-2 for the transmission aperture pair 110. , R 1 2 are read out and input to the transfer unit 16 in the decoding unit 41.
  • the control unit 106 receives the received signal R 1 1 as the first receiving unit 17-1 of the decoding unit 41. And the received signal R 1 2 is input to the second receiving unit 17-2.
  • the received signal R 1 1 is input to the second receiving unit 17-2 and the received signal R 1 2 is received first. Input to section 17-1.
  • the control unit 106 inputs the signals of the first receiving unit 17-1 and the second receiving unit 17-2 to the adder 14 and the subtracter 15, respectively.
  • the reception signal is input from the storage areas 40-1 and 40-2 for the transmission aperture pair 110 described above, the reception signal obtained by the transmission from the transmission aperture 110A by the addition process of the adder 14 ( Hereinafter, it is referred to as a received signal after decoding.
  • H 1A 1 (The subscript number indicates the channel number, the subscript A indicates the decoded received signal corresponding to the transmission aperture 110A, and the half-width 1 is Indicating the first received signal after decoding).
  • Received signal H 1B 1 after decoding obtained by transmission from the transmission aperture 110B by subtraction processing by the subtractor 15 (the subscript number indicates the channel number, and the subscript B indicates the decoding corresponding to the transmission aperture 110B) It indicates that the received signal is a post-received signal, and the half-width 1 indicates that it is the first received signal after decoding.
  • control unit 106 also inputs the received signal to the decoding unit 41 for the channel memories 40 connected to the other channels 109 2 ... 109 P , respectively, and receives the decoded reception signal and transmission from the transmission aperture 110A.
  • a decoded reception signal by transmission from the opening 110B is calculated.
  • the phasing / adding unit 22 focuses the decoded reception signals H 1A 1, H 2A 1, H 3A 1... Corresponding to the transmission aperture 110A output from each channel signal processing unit 20 on a predetermined reception focus. Delay time is given, and the summing process is performed (receive beam forming). Thus, decoded signals H 1A, H 2A, the received signal is phased and added to H 3A ⁇ Hsum A (sum indicates that a post-delay-and-sum, the A subscript, the transmission apertures 110A Indicating the corresponding received signal).
  • the phasing adder 22 performs parallel beam forming, and as shown in FIG. 12, the ultrasonic irradiation region of the transmission aperture 110A is M-numbered at a predetermined spread angle centered on the transmission aperture 110A.
  • Reception scanning lines (beams # 1 to #M) are set, and G reception focal points 31-1 to 31-G are set on the respective reception scanning lines at predetermined intervals.
  • delay curves 32a, 32b, 34a, 34b, etc. according to the position of the reception focus are provided. Set the corresponding delay time and obtain the received signal Hsum A after phasing addition.
  • the phasing addition unit 22 receives the signals after the phasing addition for G ⁇ M reception focal points from the decoded reception signals H 1A 1, H 2A 1, H 3A 1... Corresponding to the transmission aperture 110A.
  • Each signal Hsum A is obtained.
  • the delay phasing data of the reception focus of the sector area 35-110A where the plurality of reception scanning lines of FIG. 12 are arranged can be generated. That is, an image of the sector area 35-110A (that is, a set of reception focal points) is generated by the decoded reception signal for the transmission aperture 110A.
  • the number of reception scanning lines can be about 2 to 8 with the central axis of the transmission beam of the transmission aperture 110A as the center of the ultrasonic wave, or within the directivity angle 30 (eg, 90 °) of the transmission aperture 110A.
  • a large number of reception scanning lines such as 32 lines, 64 lines, 128 lines, etc. can be generated in parallel.
  • FIG. 12 shows an example in which the delay time curves 32a, 32b, 34a, and 34b are obtained by the delay method in which the center of the transmission aperture 110A is set to time zero, but the delay method in which the transmission focal point position is set to time zero.
  • the (virtual sound source method) can also be used.
  • the shape of the aggregate of reception beams may be a fan shape or a reception beam shape in which the beam direction is selected in the normal vector direction of the surface layer surface of the channel 109 in the probe 108. Further, it may be an aggregate of arbitrary plural beams that cover the range of the transmission beam to be transmitted.
  • the probe 108 has a linear shape arranged on a straight line, but may have a convex shape with a curved element arrangement.
  • the transmission beam scanning method may be a sector type.
  • the phasing addition unit 22 performs phasing addition on the decoded signals H 1B , H 2B , H 3B ... Corresponding to transmission from the transmission aperture 110B output from each channel signal processing unit 20. Get Hsum B. At this time, the phasing addition unit 22 performs parallel beam forming, and M reception scanning lines (beam # 1) with a predetermined spread angle centered on the transmission aperture 110A in the ultrasonic irradiation region of the transmission aperture 110B. To #M) and G reception focal points 31-1 to 31-G are set on the respective reception scanning lines at predetermined intervals. For each reception focus, delay times 32a, 32b, 34a, 34b, etc.
  • Receive signal Hsum B is obtained. That is, the phasing addition unit 22 receives the signals after phasing addition for G ⁇ M reception focal points from the decoded reception signals H 1B 1, H 2B 1, H 3B 1... Corresponding to the transmission aperture 110B. Each of the signals Hsum B is obtained. As a result, an image of the sector area 35-110B is formed as shown in FIG.
  • the second storage unit 24 of FIG. 10 includes a storage area for storing the reception signal Hsum after the phasing addition of G ⁇ M reception focal points as shown in FIG. 13 for each transmission aperture of the transmission aperture pair. ing.
  • the phasing addition unit 22 stores the reception signal Hsum A after phasing addition of the G ⁇ M reception focal points obtained for the transmission aperture 110A in the storage area 24A for the transmission aperture pair 110 in FIG. Further, the reception signal Hsum B after the phasing addition for the G ⁇ M reception focal points obtained for the transmission aperture 110B is stored in the storage area 24B for the transmission aperture 110B in FIG.
  • the phasing addition unit 22 receives the decoded received signals H 1A 1, H 2A 1, H 3A 1 for one transmission aperture output from each channel signal processing unit 20. From the received signal Hsum A after phasing addition for G ⁇ M reception focal points. Similarly, for the other transmission aperture, a reception signal Hsum B after phasing addition for G ⁇ M reception focal points is obtained. Then, the received signals Hsum A and Hsum B after the phasing addition are stored in the storage areas 24A and 24B for each of the transmission aperture pairs 111 to 113 in the second storage unit 24, for example.
  • the aperture synthesis unit 25 uses the reception signal Hsum after the phasing addition of the reception focal points (for example, 52-1 and 52-2 in FIG. 3) at the same position to all the storage areas 24A and 24B of the second storage unit 24. Is read out and added (synthesized).
  • the aperture synthesis unit 25 synthesizes the reception signal after phasing addition between different transmission aperture pairs, so that it is included in the reception signal after decoding due to the body movement of the imaging target 120 as shown in FIG.
  • the unnecessary signals 18-1b and 18-2b generated can be canceled and reduced, and artifacts caused by body movement can be suppressed.
  • the ultrasonic imaging apparatus 100 can output images of the imaging target 120 continuously by performing two or more rounds of transmission (scanning) using a plurality of transmission aperture pairs 110 to 113 and the like. This operation will be described below with reference to FIGS.
  • transmission is performed in order using four transmission aperture pairs 110 to 113.
  • Transmission from the transmission aperture pair is referred to as a transmission scanning line
  • the spatial coding of the row vector [1 1] in Equation (1) for transmitting signals of the same phase from the two transmission apertures of the transmission aperture pair is the first spatial encoding, and the signals having opposite phases are transmitted.
  • the spatial encoding of the row vector [1 ⁇ 1] to be called is the second spatial encoding.
  • transmission in order from the transmission aperture pairs 110 to 113 is referred to as scanning
  • transmission in the nth cycle (nth scan) is referred to as scan number n.
  • the control unit 106 stores the received signal obtained for each channel 109 in the storage area 40-1 for the transmission aperture pair 111 of the channel memory 40 of FIG. 11 connected to each channel 109 (step 148).
  • the reception signal is stored in the storage area 40-1 for all the transmission aperture pairs 110 to 113.
  • the control unit 106 stores the received signal obtained for each channel 109 in the storage area 40-2 for the transmission aperture pairs 110 and 112 of the channel memory 40 of FIG. 11 connected to each channel 109 (step 152). .
  • the control unit 106 stores the received signal obtained for each channel 109 in the storage area 40-2 for the transmission aperture pairs 111 and 113 of the channel memory 40 of FIG. 11 connected to each channel 109 (step 154). .
  • the reception signal is stored in the storage area 40-2 for all the transmission aperture pairs 110 to 113.
  • decoding processing becomes possible. Therefore, the process proceeds to step 159 in step 157 and the decoding process is performed.
  • step 159 the control unit 106 selects the transmission aperture pair 110, and passes the reception signal stored in the storage areas 40-1 and 40-2 for the transmission aperture pair 110 to the decoding unit 41.
  • the decoding unit 41 generates decoded reception signals H A and H B (steps 160 and 161). Further, the decoded reception signals H A and H B are phased and added by the phase adjusting and adding unit 22 by parallel beam forming, respectively (step 162). As a result, fan-shaped areas 35-110A and 35-110B are set for the two transmission apertures as shown in FIGS.
  • the control unit 106 For one position among a plurality of predetermined positions M, the control unit 106 receives the received signal after phasing addition of the reception focus at the same coordinates as that position, as shown in FIG. Reading is performed from the storage areas 24A and 24B for the transmission aperture pairs 110 to 113 (step 165). As shown in FIGS. 2 (c) and 16 (c), the aperture synthesizing unit 25 synthesizes by adding a plurality of readout signals after phasing addition of the same coordinates, and stores the storage unit 34 in FIG. (Steps 167 and 168). Steps 165 to 168 are repeated until completion for all positions M (step 169).
  • the image processing unit 107 constructs an image by arranging the post-composition phasing addition received signals stored in the storage unit 34 for each position (step 170). ). The constructed image is displayed on the display unit 122.
  • the received signals after phasing addition obtained by a plurality of transmissions having different spatial encoding codes can be added by synthesizing the received signals after phasing addition at the same position. it can. Therefore, unnecessary signals 18-1b and 18-2b caused by body movement of the imaging target 120 can be canceled and suppressed, and artifacts are suppressed in the image constructed at step 170.
  • the control unit 106 transmits the first spatial coding when the scanning number k is an odd number and the transmission scanning line k is an odd number and the second spatial code when the scanning number n is an even number.
  • the transmission scan line k is an even number and the first spatial encoding transmission is performed.
  • the second spatial encoding transmission is performed.
  • the first spatial encoding and the second spatial encoding can be interchanged.
  • the overlapping state of the fan-shaped regions 35 for each of the transmission aperture pairs 110 to 113 differs depending on the position of the reception focus. For this reason, the number of received signals after phasing addition selected in step 165 differs depending on the position of the reception focal point, but may be combined while remaining different. It is also possible to perform processing for correcting the intensity of the signals 18-1a, 18-2a and the like that should be received according to the number of received signals after phasing addition to be combined.
  • the signal H2 obtained for the transmission aperture 111A in the decoding process (addition process) by echo in the transmission of the transmission number 2 and the transmission number K + 2 is expressed by the following equation (8) using the above equation (4). Can be expressed as: This signal corresponds to the signal at the reception focal point 52-2 in FIG.
  • K is the number of transmission scanning lines (transmission aperture pairs). Considering the size of a general probe 108, the number of transmission scanning lines (transmission aperture pairs) of the ultrasonic diagnostic apparatus is 100 or more. become. Therefore, ⁇ is sufficiently small with respect to ⁇ T and can be regarded as almost zero. Therefore, the signal H2 of receive focal point 52-2 of the formula (8), signals H1 of the formula (4) - is almost equivalent to.
  • the signals of the reception focal point 52-1 and the focal point 52-2 are added by aperture synthesis processing, unnecessary signals corresponding to the second item of the equations (3) and (4) cancel each other, and an image in which artifacts are suppressed is generated. be able to.
  • the control unit 106 sets the transmission aperture 110A of the transmission aperture pair 110 at the end of the probe 108, sets the transmission aperture 110B at the center of the probe 108, and others.
  • the transmission apertures of the transmission aperture pairs are set so as to be adjacent to each other sequentially.
  • this embodiment is not limited to arrangement
  • the scanning line #aK and the scanning line # b1 are adjacent to each other, and the adjacent position is the central portion of the probe 108.
  • the arrangement of the transmission aperture pairs may be configured as follows.
  • a region where transmission scanning lines are continuously transmitted is positioned at the center of the probe 108.
  • adjacent scanning lines are arranged in the central region of the probe 110. Can be consecutive.
  • the transmission scanning lines may be arranged as shown in FIG.
  • the transmission scanning lines do not have to be aligned in order along the probe 108. That is, as long as the positions of the transmission areas of the transmission aperture A and the transmission aperture B are the same in each scan, the positions of the transmission scanning lines on the probe 108 may not be aligned. Therefore, as shown in FIG. 18, the transmission scanning line may be set at random.
  • the arrangement pattern of these transmission scanning lines (transmission aperture pairs) on the probe 108 may be appropriately selected by the control unit 106 according to the imaging conditions, or may be selected by the user. May be.
  • a storage unit 124 storing a plurality of types of transmission scanning line arrangement patterns is arranged in the ultrasonic imaging apparatus 100, and the control unit 106 selects an appropriate pattern, or A selection from the user is accepted via the UI 121. This is performed in step 142 of the flowchart of FIG.
  • the control unit 106 controls the operations of the transmission unit 102 and the reception unit 105 according to the selected pattern.
  • the ultrasonic imaging apparatus of the present embodiment has a configuration in which the phasing addition unit 22 is arranged after the decoding unit 41 and performs the phasing addition process after the decoding process.
  • the phasing addition process may be performed before the decoding process.
  • the decoding unit 41 since the decoding unit 41 may be arranged after the phasing addition unit 22, it is not necessary to arrange the decoding unit 41 for each reception channel 109, and the circuit scale of the reception unit 105 can be reduced. Note that the decoding unit 41 needs to use the received signal for each transmission received by each channel twice for decoding processing.
  • the phasing / adding unit 22 reads the data twice from the first storage unit (channel memory) 40 and delivers it to the decoding unit 41 after the phasing process.
  • a duplicator 21 is arranged for each channel 109 instead of the first storage unit 40, and the received signal of each channel obtained by one transmission event is transmitted by the duplicator 21.
  • Two replicated signals R 1 1, R 1 1 '(subscript indicates channel number, dash indicates second read (or after replication) signal, 1 is first round It is also possible to output the received signal obtained by transmission (first transmission).
  • the phasing addition unit performs phasing addition processing on the two signals R 1 1 and R 1 1 ′ separately.
  • the beam memory 23 is arranged after the phasing addition section 22, and the decoding section 41 is arranged at the subsequent stage.
  • the control unit 106 gives a delay time for focusing each point in the region on the transmission beam axis from the transmission aperture A to the reception signal R 1 1 of each channel to the phasing addition processing unit 22 to obtain R sumA 1,
  • the data is stored in the storage area 23A-1 of the beam memory 23.
  • the control unit 106 gives a delay time for focusing each point in the region on the transmission beam axis from the aperture B to the received signal R 1 1 ′ of each channel to the phasing addition processing unit 22, and R sumB 1 Is stored in the storage area 23B-1 of the beam memory 23.
  • control unit 106 In the second round transmission (second transmission), the control unit 106 similarly obtains R sumA 2 and R sumB 2 and stores them in the storage areas 23A-2 and 23B-2 of the beam memory 23, respectively.
  • the control unit 106 reads the received signals R sumA 1 and R sumA 2 from the storage areas 23A-1 and 23A-2 and inputs them to the adder 14 of the decoding unit 41.
  • Decoded received signal HsumA after phasing by transmission from transmission aperture 110A by the addition process of adder 14 (sum indicates that after phasing addition, subscript A indicates the phasing corresponding to transmission aperture 110A. Indicating that it is a post-phase decoded received signal).
  • the control unit 106 reads the received signals R sumB 1 and R sumB 2 from the storage areas 23B-1 and 23B-2 and inputs them to the subtracter 15 of the decoding unit 41.
  • Decoded received signal HsumB after phasing by transmission from transmission aperture 110B by subtraction processing of subtractor 15 (sum indicates that it is after phasing addition, and subscript B indicates phasing corresponding to transmission aperture 110B. Indicating that it is a post-phase decoded received signal).
  • the third embodiment has the same configuration as the second embodiment, but the second embodiment is different from the second embodiment in that the aperture synthesis unit 25 weights and adds a plurality of post-phased reception signals for the same reception focus. Is different. Specifically, the aperture synthesizer 25 sets the weights of the plurality of reception signals for the same reception focus to be heavier as the reception signal is closer to the center of the time variation at which the plurality of reception signals are obtained.
  • the original received signals 18-1a to 18-Ka have the same phase, and the unnecessary signals 18-1b to 18-Kb have inverted phases alternately.
  • the weighting unit 32 is arranged in the aperture synthesis unit 25.
  • the weighting unit 32 weights the amplitudes of the reception signals 18-1 to 18-K and then adds them. It is desirable that the weighting units 32-1, 32-2,..., 32-K weight the reception signals 18-1 to 18-K generated in time series closer to the center time in the time series. .
  • FIG. 21 it is possible to obtain an image after aperture synthesis in which the original received signal 119a is further strengthened and the unnecessary signal 119b is further suppressed.
  • a weight table storage unit 86 is arranged in the ultrasonic diagnostic apparatus 100 of the second embodiment as shown in FIG.
  • the control unit 106 obtains weight data (w (m, ⁇ , k)) for the received signals 18-1 to 18-K (H sumA (m, ⁇ , k)) at each reception focus from the weight table storage unit 86.
  • the reading and weighting units 32-1, 32-2,..., 32-K are installed (FIGS. 23A and 23B).
  • m is the number of the reception scanning line
  • is the number of the reception focus in the reception scanning line
  • k is the number of the transmission scanning line.
  • the weighting units 32-1, 32-2,..., 32-K multiply the received signals 18-1 to 18-K by weight data (w (m, ⁇ , k)), respectively. Thereafter, the synthesizer 25 synthesizes the weighted reception signals (FIG. 23 (c)).
  • Other configurations are the same as those of the ultrasonic imaging apparatus of the second embodiment.
  • the third embodiment will be further described.
  • the original reception signals 18-1a to 18-Ka included in the reception signals 18-1 to 18-K after phasing addition for the reception focus 52 generated by the decoding unit 41 in time series are as shown in FIG.
  • the waveform is always in phase.
  • These received signals are in a state of being gradually shifted in the time direction due to the movement of the imaging target 120 as shown in FIG. Therefore, the center of the signal appearance time (reception time) (the center of the time series) as shown in FIG. 24B, rather than the data after aperture synthesis in which these received signals are simply added as shown in FIG.
  • the unnecessary signals 18-1b to 18-Kb included in the reception signals 18-1 to 18-K after the phasing addition for the reception focal point 52 generated by the decoding unit 41 in time series are alternately inverted in waveform. It becomes. Since these signals are also time-shifted little by little, signals that have a smaller time shift (unnecessary signals 18-1b and 18-2b, unnecessary signals 18-2b and 18-3b) than the sum of all the signals. It is possible to suppress the unnecessary signal components as a whole by adding the addition results after minimizing the unnecessary signals. This is equivalent to increasing the weighting of signals closer to the center of the time series of time series delay phasing data and adding them.
  • the spatial resolution is improved by suppressing the spread in the time axis direction of the original received signal 119a after synthesis, and unnecessary.
  • the signal 119b can be further suppressed.
  • a method similar to the image quality enhancement image processing method using a Gaussian filter can be used. For example, when three received signals after phasing and addition for the same reception focus 52 are subjected to aperture synthesis, the signals are added after being multiplied by weighting coefficients ⁇ , ⁇ , and ⁇ . ⁇ that is multiplied by the signal that is the center of the time series is set to a value that is larger than ⁇ and ⁇ that are multiplied by the preceding and succeeding signals. For example, the maximum amplitude value at the center of the Gaussian function is used for ⁇ , and the values corresponding to any two points before and after that are used for ⁇ and ⁇ . In addition to the Gaussian function, the binomial coefficient value [1 2 1] based on the binomial distribution may be assigned to the weighting coefficients ⁇ , ⁇ , and ⁇ , respectively.
  • the weighting method is performed on the reception signal on one scanning line. This is equivalent to weighting along the position of the scanning line. For example, as shown in FIG. 25A, when nine reception scanning lines are set for one transmission scanning line, each reception scanning line is weighted with a binary coefficient of 1 to 70. Looking at the weighting coefficient for the reception focal point 52 of each transmission scanning line, as shown in FIG. 25B, the position of the reception focal point 52 moves to the inner reception scanning line as the transmission scanning line number increases. For this reason, the reception signal that is aperture-synthesized with respect to the reception focus 52 is weighted so that the amplitude of the reception signal of the reception scanning line closer to the center increases.
  • a weighting unit that weights all the received signals after phasing stored in the second storage unit 24 so that the reception signal whose reception scanning line number is closer to the center is greater. 250 may be arranged in the synthesis unit 25 (see FIG. 26).
  • FIG. 25B shows an example in which the transmission scanning line interval is exactly equal to the reception beam interval.
  • the control unit 106 reads the program predetermined by the CPU and executes it to realize the operation in FIG. 14. Or a hardware structure realized by the operation of a hardware circuit such as an ASIC (application specific integrated circuit) or a programmable hardware circuit such as an FPGA (field-programmable gate array). Also good.
  • the operation of the aperture synthesis unit 25 is the same, and may be a structure realized by software or a structure that realizes the operation by a hardware circuit such as an ASIC or FPGA. The same applies to the transmission unit 102 and the reception unit 105.

Abstract

Provided is an ultrasound imaging apparatus capable of reducing image artifacts generated during spatially encoded transmission/reception even when movement of the object being imaged occurs. To each of (at least two) transmitting aperture groups (110, 111) of an ultrasound probe (108) in order, a transmitting unit (102) causes the action of transmitting spatially encoded ultrasonic waves toward a prescribed location of an object that is being imaged (120) simultaneously from at least two transmitting apertures contained in the transmitting aperture group to be performed at least one time. A receiving unit (105) obtains a received signal by performing decoding and phasing of the output of a reception region (109). When doing so, the transmitting unit (102) inverts the spatially encoded code of the ultrasonic waves transmitted by some of the two or more transmitting aperture groups with respect to the spatially encoded code of the ultrasonic waves transmitted by the other transmitting aperture groups. An aperture synthesis unit (25) performs aperture synthesis of the reception signal obtained with the transmission of the transmitting aperture group (110) and the reception signal obtained with the transmission of the other transmitting aperture group (111).

Description

超音波撮像装置Ultrasonic imaging device
 本発明は、超音波撮像装置において、符号化を使った高フレームレート化技術およびSN比向上技術に関するものである。 The present invention relates to a high frame rate technology using coding and an SN ratio improving technology in an ultrasonic imaging apparatus.
 超音波を用いた撮像方法は、超音波を対象物に送信し、対象物で反射したエコーを電気信号として受信し、受信信号を画像データとしてモニター上に表示することで構成される。超音波は、装置に備えられたトランスデューサ(電気音響変換素子、振動子)に電気信号を入力することで生成される。トランスデューサから出射された超音波は、対象物中を進みながら音響インピーダンスの異なる境界で一部反射され、エコーを作る。エコーは、電気音響変換素子で受信され、受信信号が生成される。これにより、対象物の境界面を、対象物の断層像として表示できる。このような撮像技術は、構造物の非破壊検査や、生体の断層像を低侵襲で撮像する診断装置などとして、広く用いられている。 The imaging method using ultrasonic waves is configured by transmitting ultrasonic waves to an object, receiving echoes reflected by the object as electrical signals, and displaying the received signals on a monitor as image data. Ultrasound is generated by inputting an electrical signal to a transducer (electroacoustic transducer or vibrator) provided in the apparatus. The ultrasonic wave emitted from the transducer is partially reflected at the boundary where the acoustic impedance is different while traveling through the object to make an echo. The echo is received by the electroacoustic transducer, and a reception signal is generated. Thereby, the boundary surface of the object can be displayed as a tomographic image of the object. Such an imaging technique is widely used as a non-destructive inspection of a structure or a diagnostic apparatus for imaging a tomographic image of a living body with minimal invasiveness.
 通常、トランスデューサは、チャネルアレイ状に並べられており、超音波はアレイビームフォーミングによって超音波ビームとして送信される。超音波撮像装置は、超音波の送信ビームを対象物に走査し、それぞれの送信により生じたエコーを受信する。そして、各チャネルの受信信号に対して受信ビームフォーミングを行い、ビーム軸上の領域における小エリアデータを生成する。そして、小エリアデータを合体(合算)させることで、対象物全体の断層画像を作る。 Normally, transducers are arranged in a channel array, and ultrasonic waves are transmitted as ultrasonic beams by array beam forming. The ultrasonic imaging apparatus scans an object with an ultrasonic transmission beam and receives an echo generated by each transmission. Then, reception beam forming is performed on the reception signal of each channel to generate small area data in a region on the beam axis. Then, the tomographic image of the entire object is created by combining (summing) the small area data.
 1枚の断層画像を作るための送信事象の数を減らすことによって、フレームレートが向上する。高フレームレート撮像が可能となる撮像方法として、空間符号化送受が知られている(特許文献1)。空間符号化送受では、1方向送信、1方向受信ではなく、対象物に複数方向から同時に送信することで、必要な送信回数を低減する。具体的には、空間符号化送受方法では、符号化した超音波を同時に多方向から対象物に送信し、エコーを受信した後、受信信号を復号処理することにより、どの方向から送信した超音波による受信信号かを区別して分離する。例えば、対象物に対して超音波ビームを送信する方向(もしくは位置)がA方向とB方向である場合、2回の送受信を行う。1回目の送信では、A方向とB方向の超音波ビームの送信波形に対して、それぞれ1と1の符号化を行い、2回目の送信では、それぞれ1と-1の符号化を行う。2回の送信でそれぞれ生じたエコーを受信して得られた受信信号は、受信ビームフォーミングされる前に、それぞれチャネルデータの状態で保存する。1回目の受信信号と2回目の受信信号を使って復号処理を行うことで、A方向の送信による受信信号と、B方向の送信による受信信号を分離する。具体的には、1回目の受信信号と2回目の受信信号を同時刻として和算処理することで、B方向の送信による受信信号を打ち消し、A方向の送信による受信信号のみを残す。また、1回目の受信信号と2回目の受信信号を減算処理することで、A方向の送信による受信信号を打ち消し、B方向の送信による受信信号のみを残す。この処理は、A方向およびB方向のうちの一方の送信による受信信号を打ち消すのと同時に,もう一方の送信による受信信号を加算していることと等価となる。このため,復号後処理後に得られる各方向の受信信号の振幅は,従来の1方向送信、1方向受信で得られる受信信号の振幅の2倍となり,SN比が向上する。 ¡The frame rate is improved by reducing the number of transmission events for creating one tomographic image. Spatial encoding transmission / reception is known as an imaging method that enables high frame rate imaging (Patent Document 1). In spatially encoded transmission / reception, the required number of transmissions is reduced by transmitting to the object simultaneously from a plurality of directions instead of unidirectional transmission and unidirectional reception. Specifically, in the spatial encoding transmission / reception method, ultrasonic waves transmitted from any direction are transmitted by simultaneously transmitting encoded ultrasonic waves from multiple directions to an object, receiving echoes, and then decoding the received signal. The received signal is distinguished and separated. For example, when the directions (or positions) of transmitting the ultrasonic beam to the object are the A direction and the B direction, transmission / reception is performed twice. In the first transmission, 1 and 1 are encoded for the transmission waveforms of ultrasonic beams in the A direction and the B direction, respectively, and in the second transmission, 1 and −1 are respectively encoded. The received signals obtained by receiving the echoes generated by the two transmissions are each stored in the state of channel data before being subjected to receive beamforming. By performing decoding processing using the first received signal and the second received signal, the received signal transmitted in the A direction and the received signal transmitted in the B direction are separated. Specifically, by summing the first received signal and the second received signal at the same time, the received signal due to transmission in the B direction is canceled, and only the received signal due to transmission in the A direction remains. Also, by subtracting the first received signal and the second received signal, the received signal due to transmission in the A direction is canceled, and only the received signal due to transmission in the B direction remains. This process is equivalent to canceling the reception signal by one transmission in the A direction and the B direction and simultaneously adding the reception signal by the other transmission. For this reason, the amplitude of the received signal in each direction obtained after the post-decoding processing is twice the amplitude of the received signal obtained by the conventional one-way transmission and one-way reception, and the SN ratio is improved.
特開平11-155867号公報JP-A-11-155867
 空間符号化送受では、複数回の送受信が必要である。復号処理の性能は、それぞれの受信信号が同一部位からのエコーの信号であることが前提で発揮される。複数回の送受信の間に、撮像対象がトランスデューサに近づくもしくは遠ざかるなどの動きを生じた場合、エコーの伝搬距離が変動する。この結果、複数の受信信号の時間軸が互いにシフトした状態となるため、復号処理において和算処理または減算処理をした場合、打ち消されるべき信号が残り、画像上のアーチファクト(偽像)を生み出す。これが、画質の劣化を引き起こす。 Spatial encoding transmission / reception requires multiple transmissions / receptions. The performance of the decoding process is exhibited on the assumption that each received signal is an echo signal from the same part. When a movement such as the imaging target approaches or moves away from the transducer during multiple transmissions / receptions, the propagation distance of the echo varies. As a result, since the time axes of the plurality of received signals are shifted from each other, when the summation process or the subtraction process is performed in the decoding process, a signal to be canceled remains, and an artifact (false image) on the image is generated. This causes image quality degradation.
 本発明の目的は、空間符号化送受信を行う際に、撮像対象に動きが生じた場合であっても、生成される画像のアーチファクトを低減できる超音波撮像装置を提供することにある。 An object of the present invention is to provide an ultrasonic imaging apparatus capable of reducing artifacts in a generated image even when a motion occurs in an imaging target when performing spatial encoding transmission / reception.
 本発明では、送信部は、送信開口グループに含まれる2以上の送信開口から同時に、空間符号化した超音波を送信させる動作を、複数の送信開口グループごとに順番に一巡(1スキャン)以上行わせる。受信部は、撮像対象からの超音波のエコーを受信した受信領域の出力に対して、復号処理と整相処理を施して、撮像対象の所望の受信焦点についての受信信号を得る。このとき、送信部は、複数の送信開口グループのうち一部の送信開口グループが送信する超音波の空間符号化の符号を、他の送信開口グループが送信する超音波の空間符号化の符号に対して反転させる。開口合成部は、複数の送信開口グループのうち1の送信開口グループの送信した超音波で生じたエコーから受信部が得た所望の受信焦点についての受信信号と、別の送信開口グループの送信した超音波で生じたエコーから受信部が得た同一の受信焦点についての受信信号とを加算処理する。 In the present invention, the transmission unit performs the operation of transmitting the spatially encoded ultrasonic wave simultaneously from two or more transmission apertures included in the transmission aperture group for one or more rounds (one scan) in order for each of the plurality of transmission aperture groups. Make it. The reception unit performs a decoding process and a phasing process on the output of the reception area that has received the echo of the ultrasonic wave from the imaging target, and obtains a reception signal for a desired reception focus of the imaging target. At this time, the transmission unit changes the spatial encoding code of the ultrasonic wave transmitted by some of the transmission aperture groups to the ultrasonic spatial encoding code transmitted by the other transmission aperture groups. Invert it. The aperture synthesis unit transmits a reception signal for a desired reception focus obtained by the reception unit from an echo generated by an ultrasonic wave transmitted from one transmission aperture group among a plurality of transmission aperture groups, and another transmission aperture group. Addition processing is performed on the reception signals for the same reception focus obtained by the reception unit from echoes generated by ultrasonic waves.
 本発明によれば、空間符号化送受信を行う際に、撮像対象に動きが生じた場合であっても、生成した画像のアーチファクトを低減することができる。 According to the present invention, it is possible to reduce artifacts in a generated image even when a motion occurs in an imaging target when performing spatial encoding transmission / reception.
本発明の第一実施形態の超音波撮像装置の構成を示すブロック図。1 is a block diagram showing a configuration of an ultrasonic imaging apparatus according to a first embodiment of the present invention. (a)第一実施形態の送信開口グループによる送信を示す説明図、(b)第一の実施形態の受信ビームフォーミングを示す説明図、(c)第一実施形態の開口合成を示す説明図。(a) Explanatory drawing which shows transmission by the transmission aperture group of 1st embodiment, (b) Explanatory drawing which shows receiving beam forming of 1st embodiment, (c) Explanatory drawing which shows aperture synthesis of 1st embodiment. 第一実施形態の開口合成による不要信号の抑制を示す説明図。Explanatory drawing which shows suppression of the unnecessary signal by aperture synthesis of 1st embodiment. 第一実施形態の空間符号化送信に用いる基本波形を示す説明図。Explanatory drawing which shows the basic waveform used for the space coding transmission of 1st embodiment. 第一実施形態のHadamard空間符号化送信と、復号処理を示す説明図。Explanatory drawing which shows Hadamard space encoding transmission of 1st embodiment, and a decoding process. 空間符号化送受信において、体動により不要信号が生じることを示す説明図。Explanatory drawing which shows that an unnecessary signal arises by body movement in space coding transmission / reception. (a)第一実施形態の送信開口グループ110の空間符号化と、復号後の不要信号の位相を示す説明図、(b)送信開口グループ111の空間符号化と、復号後の不要信号の位相を示す説明図。(A) Explanatory drawing which shows the spatial encoding of the transmission aperture group 110 of 1st embodiment, and the phase of the unnecessary signal after decoding, (b) Spatial encoding of the transmission aperture group 111, and the phase of the unnecessary signal after decoding FIG. 第二実施形態の超音波撮像装置の構成を示すブロック図。The block diagram which shows the structure of the ultrasonic imaging device of 2nd embodiment. 第二実施形態の探触子108のチャネル109と、送信開口ペア110等を示すブロック図。The block diagram which shows the channel 109 of the probe 108 of 2nd embodiment, the transmission aperture pair 110 grade | etc.,. 第二実施形態の超音波探触子の受信部105の構成を示すブロック部。The block part which shows the structure of the receiving part 105 of the ultrasonic probe of 2nd embodiment. 第二実施形態の第1の記憶部(チャネルメモリ)20の構成と、復号部41の構成を示すブロック図。The block diagram which shows the structure of the 1st memory | storage part (channel memory) 20 of 2nd embodiment, and the structure of the decoding part 41. FIG. 第二実施形態の受信ビームフォーミングと、受信焦点の配置を示す説明図。Explanatory drawing which shows receiving beam forming of 2nd embodiment, and arrangement | positioning of a receiving focus. 第二実施形態の第2の記憶部24および開口合成部25の構成を示すブロック図。The block diagram which shows the structure of the 2nd memory | storage part 24 and opening synthetic | combination part 25 of 2nd embodiment. 第二実施形態の超音波撮像装置の送受信の動作を示すフローチャート。9 is a flowchart showing transmission / reception operations of the ultrasonic imaging apparatus according to the second embodiment. 第二実施形態の送信走査線(送信開口ペア)の配置パターン(送信順)を示す説明図。Explanatory drawing which shows the arrangement pattern (transmission order) of the transmission scanning line (transmission opening pair) of 2nd embodiment. (a)第二実施形態の受信ビームフォーミングを示す説明図、(b)同一受信焦点の整相加算後受信信号の選択を示す説明図、(c)開口合成画像を示す説明図。(A) Explanatory drawing which shows receiving beam forming of 2nd embodiment, (b) Explanatory drawing which shows selection of the receiving signal after phasing addition of the same receiving focus, (c) Explanatory drawing which shows an aperture synthetic image. 第二実施形態の送信走査線(送信開口ペア)の配置パターン(送信順)の別の例を示す説明図。Explanatory drawing which shows another example of the arrangement pattern (transmission order) of the transmission scanning line (transmission opening pair) of 2nd embodiment. 第二実施形態の送信走査線(送信開口ペア)の配置パターン(送信順)のさらに別の例を示す説明図。Explanatory drawing which shows another example of the arrangement pattern (transmission order) of the transmission scanning line (transmission opening pair) of 2nd embodiment. 第二実施形態の超音波撮像装置に送信走査線の配置パターンを格納した格納部124を配置した構成を示すブロック図。The block diagram which shows the structure which has arrange | positioned the storage part 124 which stored the arrangement pattern of the transmission scanning line in the ultrasonic imaging apparatus of 2nd embodiment. 第二実施形態において、復号部41を整相加算部22の後段に配置した構成を示すブロック図。The block diagram which shows the structure which has arrange | positioned the decoding part 41 in the back | latter stage of the phasing addition part 22 in 2nd embodiment. 第三実施形態の復号後受信信号に重み付けした開口合成する構造を示す説明図。Explanatory drawing which shows the structure which carries out aperture synthesis weighted to the received signal after decoding of 3rd embodiment. 第三実施形態の開口合成部25の構成を示すブロック図。The block diagram which shows the structure of the opening synthetic | combination part 25 of 3rd embodiment. (a)第三実施形態の受信ビームフォーミングを示す説明図、(b)同一受信焦点の整相加算後受信信号の選択した後、重み付けすることを示す説明図、(c)開口合成画像を示す説明図。(A) Explanatory diagram showing receive beamforming of the third embodiment, (b) Explanatory diagram showing weighting after selection of received signals after phasing addition of the same reception focus, (c) Aperture composite image Illustration. (a)第三実施形態において、複数の復号後受信信号をそのまま加算した波形を示す説明図、(b)複数の復号後受信信号に重み付けした後加算した波形を示す説明図。(A) In 3rd embodiment, explanatory drawing which shows the waveform which added the several decoding reception signal as it is, (b) Explanatory drawing which shows the waveform added after weighting the several decoding reception signal. (a)第三実施形態の受信走査線ごとに、その受信走査線の受信焦点の整相加算後受信信号に重みを与えることを示す説明図、(b)重みを付与された受信焦点の整相加算後受信信号を開口合成することを示す説明図。(A) Explanatory drawing which shows giving a weight to the receiving signal after the phasing addition of the receiving focus of the receiving scanning line for every receiving scanning line of 3rd embodiment, (b) Adjustment of the receiving focus given the weight. Explanatory drawing which shows carrying out aperture synthesis of the received signal after phase addition. 第三実施形態の開口合成部25の構成を示す説明図。Explanatory drawing which shows the structure of the opening synthetic | combination part 25 of 3rd embodiment. 第一実施形態の直交したGolay符号による空間符号化送信と、復号処理を示す説明図。Explanatory drawing which shows the spatial encoding transmission by the orthogonal Golay code of 1st embodiment, and a decoding process. 第二実施形態の送信走査線(送信開口ペア)の配置パターン(送信順)のさらに別の例を示す説明図。Explanatory drawing which shows another example of the arrangement pattern (transmission order) of the transmission scanning line (transmission opening pair) of 2nd embodiment.
 本発明の一実施形態の超音波撮像装置について図面を用いて説明する。 An ultrasonic imaging apparatus according to an embodiment of the present invention will be described with reference to the drawings.
 <<第一実施形態>>
 図1に示すように、第一実施形態の超音波撮像装置100は、超音波探触子108と、送信部102と、受信部105と、開口合成部25とを有している。超音波探触子108は、複数の送信開口グループ110、111等と、1以上の受信領域109とを有する。送信開口グループ(例えば、110)は、2以上の送信開口110A、110B等を含む。送信開口グループ(例えば、111)は、2以上の送信開口111A、111B等を含む。
<< First Embodiment >>
As shown in FIG. 1, the ultrasonic imaging apparatus 100 according to the first embodiment includes an ultrasonic probe 108, a transmission unit 102, a reception unit 105, and an aperture synthesis unit 25. The ultrasonic probe 108 has a plurality of transmission aperture groups 110 and 111 and one or more reception areas 109. A transmission aperture group (eg, 110) includes two or more transmission apertures 110A, 110B, and the like. The transmission aperture group (for example, 111) includes two or more transmission apertures 111A, 111B, and the like.
 送信部102は、図2(a)のように、送信開口グループ(例えば110)に含まれる2以上の送信開口(110A,110B等)から同時に空間符号化した超音波を送信する。この動作を、送信開口グループ110,111等ごとに順番に一巡(1スキャン)以上行わせる。2以上の送信開口(110A,110B等)から送信される超音波は、撮像対象120の所定の位置(送信焦点)に向かって送信されてもよいし、それぞれ異なる方向に向かって送信されてもよい。このとき、超音波は、フォーカス送信されてもよいし,デフォーカス送信されてもよい。フォーカス送信する場合は、送信開口グループ(110,111等)ごとに送信焦点が異なっていても良いし,重なっていても良い。 As shown in FIG. 2A, the transmission unit 102 transmits ultrasonically spatially encoded simultaneously from two or more transmission apertures (110A, 110B, etc.) included in a transmission aperture group (for example, 110). This operation is performed one round (one scan) or more in order for each of the transmission aperture groups 110, 111, and the like. Ultrasonic waves transmitted from two or more transmission apertures (110A, 110B, etc.) may be transmitted toward a predetermined position (transmission focal point) of the imaging target 120, or transmitted in different directions. Good. At this time, the ultrasonic wave may be transmitted in focus or defocused. In the case of focus transmission, the transmission focus may be different for each transmission aperture group (110, 111, etc.) or may overlap.
 受信領域109は、撮像対象120からの超音波のエコーを受信し、電気信号を出力する。受信部105は、受信領域の出力に対して、復号部41による復号処理と、整相処理とを施して、図2(b)のように、撮像対象の所望の受信焦点(例えば52)についての受信信号を得る。 The reception area 109 receives an ultrasonic echo from the imaging target 120 and outputs an electrical signal. The receiving unit 105 performs a decoding process and a phasing process on the output of the reception area, and a desired reception focus (for example, 52) to be imaged as illustrated in FIG. The received signal is obtained.
 送信部102は、複数の送信開口グループ(110,111等)のうち一部の送信開口グループ(例えば、111)が送信する超音波の空間符号化の符号を、他の送信開口グループ(例えば110)が送信する超音波の空間符号化の符号に対して反転させる。これにより、撮像対象120に体動が生じた場合に、図3のように、復号部41の復号処理で受信信号18-1、18-2に生じる不要信号18-1b、18-2bは、送信時の空間符号化の異なる2つの送信開口グループ(110,111)について、位相が反転する。一方、受信焦点52からの本来の受信信号18-1a、18-2aは、位相が反転しない。 The transmission unit 102 transmits the spatial encoding code of the ultrasonic wave transmitted by some of the transmission aperture groups (eg, 111) out of the plurality of transmission aperture groups (110, 111, etc.) to another transmission aperture group (eg, 110). ) Is inverted with respect to the spatial encoding code of the ultrasonic wave transmitted. As a result, when body motion occurs in the imaging target 120, unnecessary signals 18-1b and 18-2b generated in the reception signals 18-1 and 18-2 in the decoding process of the decoding unit 41 as shown in FIG. The phase is inverted for two transmission aperture groups (110, 111) having different spatial encoding at the time of transmission. On the other hand, the phases of the original reception signals 18-1a and 18-2a from the reception focal point 52 are not inverted.
 開口合成部25は、2以上の送信開口グループ(110、111等)のうち1の送信開口グループ110の送信した超音波で生じたエコーから受信部105が得た所望の受信焦点52について得た受信信号18-1と、別の送信開口グループ111の送信した超音波で生じたエコーから受信部105が得た同一の受信焦点52についての受信信号18-2とを加算処理する。複数の送信開口グループ(110,111等)のうち一部の送信開口グループ(例えば110)は、他の送信開口グループ(111)に対して空間符号化の符号が反転しているため、図3のように、撮像対象120の体動により生じた不要信号18-1b、18-2bを加算処理により打ち消し合わせて低減することができる。また、受信焦点52からの本来の受信信号18-1a、18-2aを足し合わせて強めることができる。 The aperture synthesizing unit 25 is obtained for a desired reception focal point 52 obtained by the receiving unit 105 from echoes generated by ultrasonic waves transmitted from one transmission aperture group 110 among two or more transmission aperture groups (110, 111, etc.). The reception signal 18-1 and the reception signal 18-2 for the same reception focal point 52 obtained by the reception unit 105 from the echo generated by the ultrasonic wave transmitted from another transmission aperture group 111 are added. Among some of the plurality of transmission aperture groups (110, 111, etc.), some of the transmission aperture groups (for example, 110) have spatial encoding codes inverted with respect to the other transmission aperture groups (111). As described above, the unnecessary signals 18-1b and 18-2b generated by the body movement of the imaging target 120 can be canceled and reduced by the addition process. Further, the original reception signals 18-1a and 18-2a from the reception focal point 52 can be added and strengthened.
 したがって、本実施形態の超音波撮像装置は、空間符号化送受信を行う際に、撮像対象に動きが生じた場合であっても、不要信号18-1b、18-1bに起因して画像にアーチファクトが生じるのを抑制することができる。 Therefore, the ultrasonic imaging apparatus according to the present embodiment, when performing spatially encoded transmission / reception, causes artifacts in an image due to unnecessary signals 18-1b and 18-1b even when movement occurs in the imaging target. Can be suppressed.
 なお、送信部102による空間符号化方法は、公知の方法を用いることができる。例えば、Hadamard空間符号化や、直交したGolay符号による空間符号化等を用いることができる。 Note that a known method can be used as the spatial encoding method by the transmission unit 102. For example, Hadamard spatial coding, spatial coding using orthogonal Golay codes, or the like can be used.
 つぎに、空間符号化および復号処理の原理について以下説明する。 Next, the principle of spatial encoding and decoding processing will be described below.
 (空間符号化および復号の原理) 
 空間符号化により,同時に複数の領域に送信し,どの領域からのエコー信号かを区別して分離する超音波撮像の原理について説明する。
(Principle of spatial encoding and decoding)
The principle of ultrasonic imaging will be described in which spatial coding is used to simultaneously transmit to a plurality of regions and distinguish and separate the echo signal from which region.
 空間符号化は,空間的に符号化された送信事象を使用した撮像手法である。符号化に用いる行列の逆行列を使って,複数方向へ同時に送信した信号を,独立に送信した場合の受信信号として分離することができる。例えば,式(1)に示す2行2列のHadamard行列を符号化行列として用いることができる。
Figure JPOXMLDOC01-appb-M000001
Spatial encoding is an imaging technique that uses spatially encoded transmission events. By using an inverse matrix of a matrix used for encoding, signals transmitted simultaneously in a plurality of directions can be separated as received signals when transmitted independently. For example, a 2-by-2 Hadamard matrix shown in Equation (1) can be used as an encoding matrix.
Figure JPOXMLDOC01-appb-M000001
 式(1)の行列の逆行列は、それ自身をスケーリングした行列H-1=1/4Hである。この行列を用いることにより、空間符号化された送信信号の生成や受信信号の復号の演算を容易に行うことができる。例えば、送信開口グループ110の送信開口110A,110Bの送信信号を空間符号化する場合、一巡目の送信(第一スキャン)では、行列の行ベクトル[1 1]を使って、送信開口110A,110Bがそれぞれ送信する送信波形を符号化する。これにより、同位相の音波波形が送信開口110A,110Bから同時に送信される。すなわち、図4の波形71を基準波形とすると,波形71を使って送信開口110A,110Bから送信を行う。二巡目の送信(第二スキャン)では行ベクトル[1 -1] を使って、送信開口A,Bがそれぞれ送信する送信波形を符号化する。すなわち、送信開口110A、110Bのうち一方の送信波形の符号を、他方の送信波形に対して逆位相とし,一巡目の送信(第一スキャン)で送信した方向と同じ2方向へ送信を行う。逆位相の波形は,図4の波形72を用いる。 The inverse of the matrix of equation (1) is a scaled matrix H −1 = 1 / 4H. By using this matrix, it is possible to easily perform generation of a spatially encoded transmission signal and decoding of a reception signal. For example, when the transmission signals of the transmission apertures 110A and 110B of the transmission aperture group 110 are spatially encoded, the transmission apertures 110A and 110B are used in the first round transmission (first scan) by using the matrix row vector [1 1]. Each encodes a transmission waveform to be transmitted. Thereby, the sound wave waveform of the same phase is simultaneously transmitted from the transmission openings 110A and 110B. That is, assuming that the waveform 71 of FIG. 4 is a reference waveform, the waveform 71 is used to transmit from the transmission apertures 110A and 110B. In the second round transmission (second scan), the transmission vectors transmitted by the transmission apertures A and B are encoded using the row vector [1 −1]. That is, the sign of one of the transmission apertures 110A and 110B is set to the opposite phase with respect to the other transmission waveform, and transmission is performed in the same two directions as those transmitted in the first round transmission (first scan). The waveform 72 shown in FIG. 4 is used as the antiphase waveform.
 各送信について得られた受信信号をRx=[y1 y2]tとすると,一方の送信開口(110A)についての受信信号x1、他方の送信開口(110B)についての受信信号x2は、式(2)の復号演算で求めることができる。
Figure JPOXMLDOC01-appb-M000002
なお、ここでは逆行列のスケーリングは無視した。
When the reception signal obtained for each transmission is Rx = [y1 y2] t , the reception signal x1 for one transmission aperture (110A) and the reception signal x2 for the other transmission aperture (110B) Can be obtained by the decoding operation.
Figure JPOXMLDOC01-appb-M000002
Note that scaling of the inverse matrix was ignored here.
 したがって,それぞれの送信事象で受信した受信信号y1およびy2を同時刻で加算すると,受信信号x1を抽出することができる。一方,減算すると,受信信号x2を抽出することができる。この受信信号の演算過程が復号処理となる。 Therefore, when the received signals y1 and y2 received in each transmission event are added at the same time, the received signal x1 can be extracted. On the other hand, when subtracted, the received signal x2 can be extracted. The calculation process of this received signal is a decoding process.
 この空間符号化の概念を,図5を使ってさらに説明する。超音波は,2箇所の送信開口110A,110Bから、上述の符号化を行って2回送信される。エコーは,撮像対象120の点散乱体11から発生する。上記の符号化を行った2回の送信(一巡目の送信Tx1,二巡目の送信Tx)を行う。受信領域(チャネル)109は、それぞれの送信イベントに対しての受信信号R1,R2を受信する。受信信号R1,R2にそれぞれ含まれる受信信号18aは、送信開口110Aの送信によるエコーの信号で,受信信号18bは送信開口110Bの送信によるエコーの信号である。したがって受信信号R1,R2を加算器14で加算すると,送信開口110Bの送信による受信信号18bが打ち消され,送信開口110Aの送信による受信信号18aのみが残る。受信信号R1,R2を減算器15で減算すると,送信開口110Aの送信による受信信号18aが打ち消され,送信開口110Bの送信による受信信号18bのみが残る。したがって,2か所の送信開口110A、110Bからの同時送信によるエコーが混ざった状態の受信信号を,各送信を独立に行った場合の受信信号として分離できる。 This concept of spatial coding will be further explained with reference to FIG. The ultrasonic waves are transmitted twice from the two transmission openings 110A and 110B by performing the above-described encoding. The echo is generated from the point scatterer 11 of the imaging target 120. Two transmissions (the first transmission Tx1, the second transmission Tx) subjected to the above encoding are performed. The reception area (channel) 109 receives reception signals R1 and R2 for each transmission event. The reception signal 18a included in each of the reception signals R1 and R2 is an echo signal due to transmission through the transmission aperture 110A, and the reception signal 18b is an echo signal due to transmission through the transmission aperture 110B. Therefore, when the received signals R1 and R2 are added by the adder 14, the received signal 18b transmitted by the transmission aperture 110B is canceled, and only the received signal 18a transmitted by the transmission aperture 110A remains. When the received signals R1 and R2 are subtracted by the subtractor 15, the received signal 18a transmitted by the transmission aperture 110A is canceled, and only the received signal 18b transmitted by the transmission aperture 110B remains. Therefore, a reception signal in a state where echoes due to simultaneous transmission from the two transmission openings 110A and 110B are mixed can be separated as a reception signal when each transmission is performed independently.
 ここで、上記復号処理において、2回の送信間において撮像対象120の体動が生じたり、超音波探触子108が撮像対象120に対して動くと、それぞれの送信におけるエコーの伝搬距離が変動する。その結果、各受信信号が互いに時間シフトした状態となる。例えば、図6は、2回の送信中に撮像対象120が超音波探触子108に近づき、受信信号R1に対して受信信号R2の信号出現時間がシフトしている状態を示している。この場合、復号後受信信号HA1、HB1には、打ち消し残りの不要信号18b、18aが生じる。 Here, in the above decoding process, if the body movement of the imaging target 120 occurs between two transmissions or the ultrasonic probe 108 moves relative to the imaging target 120, the propagation distance of the echo in each transmission changes. To do. As a result, the received signals are shifted from each other in time. For example, FIG. 6 illustrates a state in which the imaging target 120 approaches the ultrasonic probe 108 during two transmissions, and the signal appearance time of the reception signal R2 is shifted with respect to the reception signal R1. In this case, undeleted unnecessary signals 18b and 18a are generated in the received signals H A 1 and H B 1 after decoding.
 (不要信号の抑制の原理)
 本実施形態では、図3および図7(a)、(b)に示すように、複数の送信開口グループ110、111等のうち1の送信開口グループ110の送信に対応する受信焦点52についての受信信号18-1と、他の送信開口グループ111の空間符号化の符号を反転させた送信に対応する受信焦点52についての受信信号18-2とを加算処理する。これにより、図3のように、撮像対象120の体動により生じた不要信号18-1b、18-2bを打ち消し合わせて低減すると同時に、受信焦点52からの本来の受信信号18-1a、18-2aを足し合わせて強める。
(Principle of unnecessary signal suppression)
In the present embodiment, as shown in FIG. 3 and FIGS. 7A and 7B, reception of the reception focus 52 corresponding to transmission of one transmission aperture group 110 out of a plurality of transmission aperture groups 110, 111, etc. The signal 18-1 and the reception signal 18-2 for the reception focal point 52 corresponding to the transmission in which the sign of the spatial encoding of the other transmission aperture group 111 is inverted are added. Thereby, as shown in FIG. 3, unnecessary signals 18-1b and 18-2b generated by the body movement of the imaging target 120 are canceled and reduced, and at the same time, the original received signals 18-1a and 18- Add 2a and strengthen.
 なお,図7(a)に示すように,空間符号化の符号とは,第一回の送信Tx1においては[1 1]であり,第二回の送信Tx2においては[1 -1]であることを指す。この空間符号化の符号を反転させた空間符号化とは,[1 1]と[1 -1]を入れ替えた符号を指し,図7(b)に示すような第一回の送信Tx1においては[1 -1]となり,第二回の送信Tx2においては[1 1]となることを指す。空間符号化の符号の反転は,符号化の順番が[1 1]から[1 -1]であったものを,[1 -1]から[1 1]の順番へ入れ替える動作を行うことにも等しい。 As shown in FIG. 7 (a), the spatial encoding code is [1 1] in the first transmission Tx1 and [1 -1] in the second transmission Tx2. Refers to that. The spatial coding obtained by inverting the spatial coding code refers to a code in which [1 1] and [1 -1] are interchanged. In the first transmission Tx1 as shown in FIG. [1-1], indicating that it is [1 1] in the second transmission Tx2. Inversion of the spatial coding code can also be performed by changing the coding order from [1 1] to [1 -1] from [1 -1] to [1 1]. equal.
 不要信号の抑制の原理を数式を用いてさらに説明する。送信開口グループ110から図7に示すように、空間符号化した2回の送信を行ってそれぞれチャネル109で受信された受信信号R1およびR2は、任意の各周波数ωを用いた複素数exp(jωt)により、下式(3)のように表される。上述の式(2)により、これら受信信号R1とR2を加算器14で加算処理して、一方の送信開口(110A)について復号処理した復号後受信信号H1(18-1)は、下式(3)で表される。 The principle of suppressing unnecessary signals will be further explained using mathematical expressions. As shown in FIG. 7 from the transmission aperture group 110, the received signals R1 and R2 received by the channel 109 after two spatially encoded transmissions are complex numbers exp (jωt) using arbitrary frequencies ω. Is expressed as the following expression (3). According to the above equation (2), these received signals R1 and R2 are added by the adder 14, and the decoded received signal H1 (18-1) obtained by decoding the one transmission aperture (110A) is expressed by the following equation ( 3).
Figure JPOXMLDOC01-appb-M000003
 ここで,aとbは任意の係数である。
Figure JPOXMLDOC01-appb-M000003
Here, a and b are arbitrary coefficients.
 式(3)の復号後受信信号H1(18-1)において、送信開口110Aに対応する本来の受信信号18-1aは、式(3)の第一項であり,打ち消し残った不要信号18-1bは第二項である(図7(a)参照)。 In the decoded received signal H1 (18-1) after the expression (3), the original received signal 18-1a corresponding to the transmission aperture 110A is the first term of the expression (3), and the undesired unnecessary signal 18- 1b is the second term (see FIG. 7A).
 一方,送信開口グループ110とは異なる送信開口グループ111から、空間符号化の符号を送信開口グループ110の2回の送信とはそれぞれ反転させて2回送信を行った場合の受信信号R1とR2、およびこれらを加算処理した復号後受信信号H1-(18-2)は、下式(4)で表される。
Figure JPOXMLDOC01-appb-M000004
On the other hand, from the transmission aperture group 111 different from the transmission aperture group 110, the received signals R1 and R2 when the transmission is performed twice by reversing the spatial encoding code from the two transmissions of the transmission aperture group 110, respectively. The decoded received signal H1 (18-2) obtained by adding these signals is expressed by the following equation (4).
Figure JPOXMLDOC01-appb-M000004
 式(4)の復号後受信信号H1-(18-2)において、送信開口110Aに対応する本来の受信信号18-2aは、式(4)の第一項であり,打ち消し残った不要信号18-2bは第二項である(図7(b)参照)。 Wherein decoded received signal (4) H1 - in (18-2), the original received signal 18-2a corresponding to the transmission opening 110A is the first term of the equation (4), canceling the remaining unwanted signal 18 -2b is the second term (see FIG. 7B).
 式(3)と式(4)より,異なる送信開口グループ110と111から送信を行って得た本来の受信信号18-1aと18-2aは、同位相の波形となるのに対し,不要信号18-1bと18-2bは,互いに反転した位相になる。よって、異なる送信開口グループ110と111のそれぞれ2回の送信によって得た復号後受信信号H1とH1-を加算すれば,不要成分が打ち消し合い,必要成分のみを残すことができる。 From the equations (3) and (4), the original received signals 18-1a and 18-2a obtained by transmitting from the different transmission aperture groups 110 and 111 are in-phase waveforms, while unnecessary signals are obtained. 18-1b and 18-2b have phases inverted from each other. Therefore, if the decoded received signals H1 and H1 obtained by two transmissions of different transmission aperture groups 110 and 111 are added, unnecessary components cancel each other, and only necessary components can be left.
 なお、上述の送信開口グループ111から送信開口グループ110とは空間符号化の順番を入れ変えて(空間符号化の符号を反転させて)行った2回の送信に対する受信信号をRx=[y1 y2]tとすると,一方の送信開口(111A)についての受信信号x1、他方の送信開口(111B)についての受信信号x2を求める復号処理は、式(5)で表すことできる(式(2)参照)。
Figure JPOXMLDOC01-appb-M000005
It should be noted that the reception signal for two transmissions performed by changing the order of the spatial encoding (inverting the spatial encoding code) from the transmission aperture group 111 to the transmission aperture group 110 described above is Rx = [y1 y2 ] t , the decoding process for obtaining the received signal x1 for one transmission aperture (111A) and the received signal x2 for the other transmission aperture (111B) can be expressed by equation (5) (see equation (2)) ).
Figure JPOXMLDOC01-appb-M000005
 このように,空間符号化の符号の順番を入れ変えて2回の送信を行った場合は,2回の送信に対する受信信号R1,R2とすると,受信信号R2,R1を加算器14で加算することで送信開口111Aの送信による受信信号13aのみが残る。受信信号R2,R1を減算器15で減算すると,送信開口111Bの送信による受信信号13bのみが残る。 As described above, when the transmission is performed twice while changing the order of the codes of the spatial coding, the reception signals R2 and R1 are added by the adder 14 when the reception signals R1 and R2 for the two transmissions are used. As a result, only the reception signal 13a transmitted by the transmission aperture 111A remains. When the received signals R2 and R1 are subtracted by the subtractor 15, only the received signal 13b transmitted by the transmission aperture 111B remains.
 なお,直交したGolay符号を用いた空間符号化においても,同様に不要成分が打ち消し合い,必要成分のみを残すことができる。直交したGolay符号による空間符号化は,下式(6)のように表す行列を用いる。
Figure JPOXMLDOC01-appb-M000006
ここで,X1とX2は相補関係のペアとなるGolay符号であり,Y1とY2は異なる種類の相補関係のペアとなるGolay符号である。符号Y1、Y2は、X1とX2に対するY1とY2の相互相関関数の和が、全ての点でゼロとなるような符号であり,このような関係を持つGolay符号の組合せを直交したGolay符号と呼ぶ。たとえば,X1=[1 1]とX2=[1 -1],Y1=[-1 1]とY2=[-1 -1]のGolay符号の組合せがある。
In the spatial coding using orthogonal Golay codes, unnecessary components cancel each other out, and only necessary components can be left. Spatial coding using orthogonal Golay codes uses a matrix represented by the following equation (6).
Figure JPOXMLDOC01-appb-M000006
Here, X1 and X2 are Golay codes that are complementary pairs, and Y1 and Y2 are Golay codes that are different types of complementary pairs. The codes Y1 and Y2 are codes such that the sum of the cross-correlation functions of Y1 and Y2 with respect to X1 and X2 is zero at all points, and a Golay code having an orthogonal combination of Golay codes having such a relationship Call. For example, there are combinations of Golay codes of X1 = [1 1] and X2 = [1 −1], Y1 = [− 1 1] and Y2 = [− 1 −1].
 このGolay符号による空間符号化を用いた場合,復号処理は以下の式(7)のようになる。式(7)において、Golay符号による空間符号化送信における各送信事象で得られた受信信号をR1,R2とする。
Figure JPOXMLDOC01-appb-M000007
 この演算により,Golay符号Xを用いた送信方向からのエコーと,Golay符号Yを用いた送信方向からのエコーを分離する。図27に、直交したGolay符号を使った場合の空間符号化送信と、復号処理を示す。R1はX1との相互相関処理を行う相関処理部54-1と,Y1との相互相関処理を行う相関処理部55-1に入力される。R2はX2との相互相関処理を行う相関処理部54-2と,Y2との相互相関処理を行う相関処理部55-2に入力される。それぞれ加算処理56を得て,復号後受信信号HA1、HB1を得る。
When spatial coding by this Golay code is used, the decoding process is as shown in the following equation (7). In Equation (7), let R1 and R2 be the received signals obtained in each transmission event in the spatially coded transmission using the Golay code.
Figure JPOXMLDOC01-appb-M000007
By this calculation, the echo from the transmission direction using the Golay code X and the echo from the transmission direction using the Golay code Y are separated. FIG. 27 shows spatial encoding transmission and decoding processing when orthogonal Golay codes are used. R1 is input to a correlation processing unit 54-1 that performs cross-correlation processing with X1 and a correlation processing unit 55-1 that performs cross-correlation processing with Y1. R2 is input to a correlation processing unit 54-2 that performs cross-correlation processing with X2 and a correlation processing unit 55-2 that performs cross-correlation processing with Y2. Addition processing 56 is obtained, respectively, and decoded reception signals H A 1 and H B 1 are obtained.
 この復号処理において、体動が生じ,各受信信号が互いに時間シフトした状態である場合,Golay符号の自己相関関数で生じるタイムサイドローブの打ち消し残りが生じ、Hadamard空間符号化で生じる不要成分と同様に,アーチファクトの原因である不要成分となる。図3で示すHadamard空間符号化を用いた不要成分の打ち消し方法と同様に,Golay符号を用いた場合も、複数の送信開口グループ110、111等のうち1の送信開口グループ110の送信に対応する受信焦点52についての受信信号18-1と、他の送信開口グループ111の空間符号化を反転させた送信に対応する受信焦点52についての受信信号18-2とを加算処理する。これにより、体動により生じた不要信号18-1b、18-2bを打ち消し合わせて低減すると同時に、受信焦点52からの本来の受信信号18-1a、18-2aを足し合わせて強めることができる。 In this decoding process, when body motion occurs and each received signal is in a time-shifted state, there remains a cancellation of the time side lobe generated by the autocorrelation function of the Golay code, which is the same as the unnecessary component generated by Hadamard space coding In addition, it becomes an unnecessary component that causes artifacts. Similar to the unnecessary component cancellation method using Hadamard space coding shown in FIG. 3, the Golay code also corresponds to the transmission of one transmission aperture group 110 out of a plurality of transmission aperture groups 110, 111, etc. The reception signal 18-1 for the reception focal point 52 and the reception signal 18-2 for the reception focal point 52 corresponding to the transmission in which the spatial encoding of the other transmission aperture group 111 is inverted are added. As a result, the unnecessary signals 18-1b and 18-2b generated by the body movement can be canceled and reduced, and at the same time, the original received signals 18-1a and 18-2a from the reception focal point 52 can be added and strengthened.
 直交したGolay符号を使った場合の空間符号化の場合では,復号処理が異なるだけで,その他の形態は,Hadamard空間符号化をもちいた場合と同様である。以降,Hadamard空間符号化を用いた場合で説明を行う。 In the case of spatial coding using orthogonal Golay codes, only the decoding process is different, and the other forms are the same as those using Hadamard spatial coding. In the following, description will be made using Hadamard space coding.
 <<第二実施形態>>
 第二実施形態の超音波撮像装置について説明する。
<< Second Embodiment >>
An ultrasonic imaging apparatus according to the second embodiment will be described.
 第二実施形態の超音波撮像装置の基本的な構成は、第一実施形態の装置の構成と同様であるが、第二実施形態では、送信開口グループ(110,111等)はそれぞれ、2つの送信開口(例えば110A,110B)を含む。よって、以下の説明では、送信開口グループを、送信開口ペアと呼ぶ。送信部102は、2以上の送信開口ペア(110,111等)ごとに順番に超音波を送信させる。この際、空間符号化の符号を交互に順番を反転させる。 The basic configuration of the ultrasonic imaging apparatus of the second embodiment is the same as that of the apparatus of the first embodiment, but in the second embodiment, there are two transmission aperture groups (110, 111, etc.), respectively. Includes transmission apertures (eg, 110A, 110B). Therefore, in the following description, the transmission aperture group is referred to as a transmission aperture pair. The transmission unit 102 transmits ultrasonic waves in order for every two or more transmission aperture pairs (110, 111, etc.). At this time, the order of the spatial encoding codes is reversed alternately.
 また、送信部102は、送信開口ペア(110,111等)ごとに順番に送信させる動作を二巡以上繰り返し行わせ、二巡目の送信では、複数の送信開口ペア(110,111等)のそれぞれの空間符号化の符号を、一巡目とは異なる符号にさせる。受信部105の復号部41は、受信領域109の、送信開口ペア(例えば110)の一巡目の送信による出力と、二巡目の送信による出力とを用いて復号処理を行う。 In addition, the transmission unit 102 repeatedly performs an operation of sequentially transmitting each transmission aperture pair (110, 111, etc.) two or more times. In the second transmission, a plurality of transmission aperture pairs (110, 111, etc.) are transmitted. Each spatial encoding code is set to a code different from the first round. The decoding unit 41 of the reception unit 105 performs a decoding process using the output of the transmission area pair (for example, 110) from the first round transmission and the output from the second round transmission in the reception area 109.
 以下、第二実施形態の超音波撮像装置の具体例について詳細に説明する。 Hereinafter, a specific example of the ultrasonic imaging apparatus according to the second embodiment will be described in detail.
 <装置の全体構成>
 第二実施形態の超音波撮像装置100の全体構成について詳しく説明する。図8は、本実施形態の超音波撮像装置100の具体例の概略構成を示すブロック図である。図8において、第一実施形態の図1の構成と同様の構成は、図1と同じ符号を付す。超音波撮像装置100は、超音波探触子108と送信部102と受信部105と開口合成部25を備える。これらに加えて、制御部106と、ユーザインタフェース(UI)121と、送受切替部101と、画像処理部107と、表示部122とを備えている。UI121は、ユーザからの指示、各種パラメータの入力等を受け付けるインタフェースである。制御部106は、全体の動作を制御する。
<Overall configuration of device>
The overall configuration of the ultrasonic imaging apparatus 100 according to the second embodiment will be described in detail. FIG. 8 is a block diagram showing a schematic configuration of a specific example of the ultrasonic imaging apparatus 100 of the present embodiment. In FIG. 8, the same components as those of the first embodiment shown in FIG. The ultrasonic imaging apparatus 100 includes an ultrasonic probe 108, a transmission unit 102, a reception unit 105, and an aperture synthesis unit 25. In addition to these, a control unit 106, a user interface (UI) 121, a transmission / reception switching unit 101, an image processing unit 107, and a display unit 122 are provided. The UI 121 is an interface that receives instructions from the user, input of various parameters, and the like. The control unit 106 controls the overall operation.
 超音波探触子108は、所定の配列で1次元または2次元に配列されたトランスデューサを複数個備えている。トランスデューサは、電気信号を音波へ、音波を電気信号へと変換する機能を持つ電気音響変換素子(振動子)である。超音波探触子108は、トランスデューサが配置された面(超音波送受面)を撮像対象120に接触させて使用するのに適した外形に仕立てられている。 The ultrasonic probe 108 includes a plurality of transducers arranged one-dimensionally or two-dimensionally in a predetermined arrangement. The transducer is an electroacoustic conversion element (vibrator) having a function of converting an electric signal into a sound wave and a sound wave into an electric signal. The ultrasonic probe 108 is tailored to have an outer shape suitable for use by bringing the surface on which the transducer is disposed (ultrasonic transmission / reception surface) into contact with the imaging target 120.
 配列された複数のトランスデューサは、図9のように、予め定められた複数(P個)のチャネル109~109に仮想的もしくは物理的に分割されている。各チャネル109~109は、それぞれ1つもしくは複数のトランスデューサによって構成される。送信時に設定される送信開口110A等は、チャネル109等と同じ大きさであってもよいし、異なっていてもよい。以下の説明では、一つの送信開口110Aとして、隣り合う複数(図9では、4個)のチャネルを用いる例について説明する。送信開口ペア110をそれぞれ構成する送信開口110Aと送信開口110Bは、ここでは所定の距離だけ超音波探触子108上で離れている例について以下説明するが、一部重なるように形成してもよい。他の送信開口ペア111、112,113、114についても同様である。またすべての送信開口ペアが重なるように形成してもよい。 The plurality of arranged transducers are virtually or physically divided into a plurality of (P) channels 109 1 to 109 P determined in advance as shown in FIG. Each channel 109 1 to 109 P is composed of one or more transducers. Transmission apertures 110A or the like to be set at the time of transmission may be the same size as the channel 109 1, etc., it may be different. In the following description, an example in which a plurality of adjacent channels (four in FIG. 9) are used as one transmission aperture 110A will be described. The transmission aperture 110A and the transmission aperture 110B that constitute each of the transmission aperture pairs 110 will be described below as an example where they are separated from each other on the ultrasonic probe 108 by a predetermined distance. Good. The same applies to the other transmission aperture pairs 111, 112, 113, and 114. Moreover, you may form so that all the transmission aperture pairs may overlap.
 また、以下の説明では、チャネル109~109の一つ一つを、受信領域109として用いる。なお、2以上のチャネルを一つの受信領域109として用いることももちろん可能である。 In the following description, each of the channels 109 1 to 109 P is used as the reception area 109. Of course, it is possible to use two or more channels as one reception area 109.
 送信部102は、制御部106からの指示に従って、超音波探触子108の予め定めた送信開口ペア(例えば110)を選択し、選択した送信開口ペア110の送信開口110A,110Bに送信させる送信信号を生成する。具体的には、波形種類、送信開口110A,110Bごとの遅延時間、振幅変調、重み付け等を決定し、それに応じた送信信号を生成する。このとき、送信信号は、後述のHadamard空間符号で空間符号化する。 The transmission unit 102 selects a predetermined transmission aperture pair (for example, 110) of the ultrasonic probe 108 in accordance with an instruction from the control unit 106, and transmits the transmission to the transmission apertures 110A and 110B of the selected transmission aperture pair 110. Generate a signal. Specifically, the waveform type, delay time for each of the transmission apertures 110A and 110B, amplitude modulation, weighting, and the like are determined, and a transmission signal corresponding to the delay time is generated. At this time, the transmission signal is spatially encoded with the Hadamard spatial code described later.
 送信部102は、生成した送信信号を、送信開口110A、110Bを構成するチャネルのトランスデューサにそれぞれ受け渡し、送信開口110A、110Bから、Hadamard空間符号で空間符号化した超音波を同時に異なる方向へ送信させる。この動作を、複数の送信開口ペア110~113等のすべてに順番に実行させる。超音波はフォーカス送信させてもよいし,デフォーカス送信させてもよい。フォーカス送信の場合,送信開口ペア110~113ごとの送信焦点は、異なっていても構わない。送信部102は、送信開口ペア110~113等に順番に超音波を送信させる際に、Hadamardの空間符号を交互に反転させる。これを、二巡以上繰り返す。ただし、二巡目は、送信開口ペア110~113等ごとに一巡目とは異なる符号の空間符号化になるように反転させる。 The transmission unit 102 passes the generated transmission signals to the transducers of the channels constituting the transmission apertures 110A and 110B, respectively, and causes the transmission apertures 110A and 110B to simultaneously transmit ultrasonic waves spatially encoded with Hadamard spatial codes in different directions. . This operation is sequentially executed by all of the plurality of transmission aperture pairs 110 to 113 and the like. The ultrasonic wave may be transmitted in focus or defocused. In the case of focus transmission, the transmission focus for each of the transmission aperture pairs 110 to 113 may be different. The transmitter 102 inverts Hadamard's spatial code alternately when transmitting ultrasonic waves in order to the transmission aperture pairs 110 to 113 and the like. Repeat this two or more times. However, in the second round, the transmission aperture pairs 110 to 113 and the like are reversed so that the spatial coding is different from the first round.
 このように送信を二巡以上繰り返すことにより、一巡目の送信で得た受信信号と、二巡目の送信で得た受信信号とを組み合わせてHadamardの空間符号を復号することができる。なお、フォーカス送信の場合,送信開口ペア110~113等ごとの送信焦点は,少なくとも一巡目および二巡目の送信において同一にする。 By repeating the transmission two or more times in this way, the Hadamard spatial code can be decoded by combining the received signal obtained by the first round transmission and the received signal obtained by the second round transmission. In the case of focus transmission, the transmission focus for each of the transmission aperture pairs 110 to 113 is the same in at least the first and second round transmissions.
 送信開口ペア110~113等から順に撮像対象120に送信された超音波によって、撮像対象120ではエコーが生じる。エコーは、超音波探触子108の受信領域(チャネル)109で受信される。受信に用いるチャネルは、超音波探触子108のすべてのチャネル109・・・109を用いてもよいし、予め定められた受信開口(アクティブチャネル)内のチャネルのみを用いてもよい。制御部106は、各チャネル109・・・109の受信信号R11,R21...RP1(下付き文字は、チャネルの番号を示し、1は、ある送信開口ペアの一巡目の送信(以下、第一スキャンとも呼ぶ)で得た受信信号であることを示す)を、受信部105に受け渡す。 An echo is generated in the imaging target 120 by the ultrasonic waves sequentially transmitted to the imaging target 120 from the transmission aperture pairs 110 to 113 and the like. The echo is received by the reception area (channel) 109 of the ultrasonic probe 108. As channels used for reception, all the channels 109 1 ... 109 P of the ultrasonic probe 108 may be used, or only channels within a predetermined reception opening (active channel) may be used. The control unit 106 receives the received signals R 1 1, R 2 1 ... R P 1 of each channel 109 1 ... 109 P (subscript indicates the channel number, and 1 indicates a certain transmission aperture pair. The received signal obtained by the first round transmission (hereinafter also referred to as the first scan) is transferred to the receiving unit 105.
 受信部105は、図10に示すように、第1の記憶部(以下、チャネルメモリと呼ぶ)40と、Hadamardの空間符号を復号する復号部41とを含むチャネル信号処理部20をチャネル109~109ごとに備えている。また、受信部105には、上述した整相加算部22と、第2の記憶部24が備えられている。 As shown in FIG. 10, the receiving unit 105 includes a channel signal processing unit 20 including a first storage unit (hereinafter referred to as a channel memory) 40 and a decoding unit 41 that decodes a Hadamard spatial code as a channel 109 1. It is provided for every 109 P. The receiving unit 105 includes the phasing / adding unit 22 and the second storage unit 24 described above.
 図11のように、チャネルメモリ40には、送信開口ペア110~113等ごとに2つずつの記憶領域40-1,40-2が備えられている。制御部106は、送信開口ペア110の送信開口110A,110Bからの送信によってチャネル109が得た受信信号R11を、送信開口110A,110B用の記憶領域40-1に格納させる。同様に、制御部106は、他のチャネル109・・・109が、送信開口ペア110の送信開口110A,110Bからの送信によってそれぞれ得た受信信号R21...RP1について、それぞれのチャネルに接続されているチャネルメモリ40の送信開口110用の記憶領域40-1に格納させる。 As shown in FIG. 11, the channel memory 40 includes two storage areas 40-1 and 40-2 for each of the transmission aperture pairs 110 to 113. Control unit 106 transmits the opening 110A of the transmission aperture pairs 110, the received signal R 1 1 to channel 109 1 is obtained by transmission from 110B, transmission opening 110A, it is stored in the storage area 40-1 for 110B. Similarly, the control unit 106 determines that the other channels 109 2 ... 109 P are received signals R 2 1... R P 1 obtained by transmission from the transmission apertures 110A and 110B of the transmission aperture pair 110, respectively. The data is stored in the storage area 40-1 for the transmission aperture 110 of the channel memory 40 connected to each channel.
 その後、制御部106は、送信開口ペア111~113等から順番に送信させるたびに、チャネル1091、109・・・109がそれぞれ得た受信信号R11,R21...RP1を、それぞれのチャネルに接続されているチャネルメモリ40内の対応する送信開口ペア用の記憶領域40-1に格納させる。 Thereafter, the control unit 106, each time to be transmitted sequentially from the transmitting pair of openings 111-113, etc., channel 109 1, 109 2 ... 109 received signal R 1 1 where P is obtained, respectively, R 2 1 ... R P 1 is stored in the storage area 40-1 for the corresponding transmission aperture pair in the channel memory 40 connected to each channel.
 次に、制御部106は、送信開口ペア110~113から順番に、二巡目の送信(第二スキャン)を送信部102に行わせ、得られたチャネル109、109・・・109の受信信号R12,R22..RP2を、それぞれのチャネルに接続されているチャネルメモリ40内の対応する記憶領域40-2に順次格納させる。 Next, the control unit 106 causes the transmission unit 102 to perform the second round transmission (second scan) in order from the transmission aperture pairs 110 to 113, and the obtained channels 109 1 , 109 2 ... 109 P Received signals R 1 2, R 2 2..R P 2 are sequentially stored in the corresponding storage areas 40-2 in the channel memory 40 connected to the respective channels.
 復号部41は、Hadamard空間符号を復号するために、加算器14と、減算器15と、受け渡し部16と、第一および第二受け取り部17-1,17-2とを備える構成である。二巡目の送信(第二スキャン)が終了したならば、制御部106の制御下で、復号部41は、送信開口ペア110用の記憶領域40-1、40-2から受信信号R11、R12を読み出し、復号部41内の受け渡し部16へ入力させる。制御部106は、受け渡し部16に,空間符号化の符号の順番を反転させていない送信で得られた受信信号の場合は,受信信号R11を復号部41の第一受け取り部17-1へ入力させ,受信信号R12を第二受け取り部17-2へ入力させる。一方,空間符号化の符号の順番を反転させた送信で得られた受信信号の場合は,受信信号R11を第二受け取り部17-2へ入力させ,受信信号R12を第一受け取り部17-1へ入力させる。制御部106は、図11のように,第一受け取り部17-1および第二受け取り部17-2の信号をそれぞれ加算器14と減算器15にそれぞれ入力させる。上で述べた,送信開口ペア110用の記憶領域40-1、40-2から受信信号を入力させた場合,加算器14の加算処理により、送信開口110Aからの送信によって得られた受信信号(以下、復号後受信信号と呼ぶ)H1A1(下付き数字は、チャネルの番号を示し、下付きのAは、送信開口110Aに対応する復号後受信信号であることを示し、半角の1は、1番目に得られた復号後受信信号であることを示す)が得られる。減算器15による減算処理により、送信開口110Bからの送信によって得られた復号後受信信号H1B1(下付き数字は、チャネルの番号を示し、下付きのBは、送信開口110Bに対応する復号後受信信号であることを示し、半角の1は、1番目に得られた復号後受信信号であることを示す)が得られる。 The decoding unit 41 includes an adder 14, a subtractor 15, a transfer unit 16, and first and second receiving units 17-1 and 17-2 for decoding the Hadamard space code. When the second round of transmission (second scan) is completed, under the control of the control unit 106, the decoding unit 41 receives the received signal R 1 1 from the storage areas 40-1 and 40-2 for the transmission aperture pair 110. , R 1 2 are read out and input to the transfer unit 16 in the decoding unit 41. In the case of a received signal obtained by transmission in which the order of the spatial encoding codes is not reversed, the control unit 106 receives the received signal R 1 1 as the first receiving unit 17-1 of the decoding unit 41. And the received signal R 1 2 is input to the second receiving unit 17-2. On the other hand, in the case of a received signal obtained by transmission in which the order of codes of spatial coding is reversed, the received signal R 1 1 is input to the second receiving unit 17-2 and the received signal R 1 2 is received first. Input to section 17-1. As shown in FIG. 11, the control unit 106 inputs the signals of the first receiving unit 17-1 and the second receiving unit 17-2 to the adder 14 and the subtracter 15, respectively. When the reception signal is input from the storage areas 40-1 and 40-2 for the transmission aperture pair 110 described above, the reception signal obtained by the transmission from the transmission aperture 110A by the addition process of the adder 14 ( Hereinafter, it is referred to as a received signal after decoding. H 1A 1 (The subscript number indicates the channel number, the subscript A indicates the decoded received signal corresponding to the transmission aperture 110A, and the half-width 1 is Indicating the first received signal after decoding). Received signal H 1B 1 after decoding obtained by transmission from the transmission aperture 110B by subtraction processing by the subtractor 15 (the subscript number indicates the channel number, and the subscript B indicates the decoding corresponding to the transmission aperture 110B) It indicates that the received signal is a post-received signal, and the half-width 1 indicates that it is the first received signal after decoding.
 同様に、制御部106は、他のチャネル109・・・109に接続されたチャネルメモリ40についても、それぞれ復号部41に受信信号を入力させ、送信開口110Aからの復号後受信信号および送信開口110Bからの送信による復号後受信信号を演算させる。 Similarly, the control unit 106 also inputs the received signal to the decoding unit 41 for the channel memories 40 connected to the other channels 109 2 ... 109 P , respectively, and receives the decoded reception signal and transmission from the transmission aperture 110A. A decoded reception signal by transmission from the opening 110B is calculated.
 整相加算部22は、各チャネル信号処理部20から出力される送信開口110Aに対応する復号後受信信号H1A1、H2A1、H3A1・・・にそれぞれ、所定の受信焦点に焦点を結ぶ遅延時間を与え、合算処理をさせる(受信ビームフォーミング)。これにより、復号後信号H1A、H2A、H3A・・・を整相加算した受信信号HsumA(sumは、整相加算後であることを示し、下付きのAは、送信開口110Aに対応する受信信号であることを示す)を得る。 The phasing / adding unit 22 focuses the decoded reception signals H 1A 1, H 2A 1, H 3A 1... Corresponding to the transmission aperture 110A output from each channel signal processing unit 20 on a predetermined reception focus. Delay time is given, and the summing process is performed (receive beam forming). Thus, decoded signals H 1A, H 2A, the received signal is phased and added to H 3A ··· Hsum A (sum indicates that a post-delay-and-sum, the A subscript, the transmission apertures 110A Indicating the corresponding received signal).
 このとき、整相加算部22は、パラレルビームフォーミングを行い、図12に示したように、送信開口110Aの超音波の照射領域に、送信開口110Aを中心とした予め定めた広がり角でM本の受信走査線(beam#1~#M)を設定し、それぞれの受信走査線上に予め定めた間隔でG個の受信焦点31-1~31-Gを設定する。それぞれの受信焦点について、復号後受信信号H1A1、H2A1、H3A1・・・の焦点を結ばせるために、受信焦点の位置に応じた遅延カーブ32a,32b,34a,34b等に対応する遅延時間を設定し、整相加算後の受信信号HsumAを得る。すなわち、整相加算部22は、送信開口110Aに対応する復号後受信信号H1A1、H2A1、H3A1・・・から、G×M個の受信焦点についての整相加算後の受信信号HsumAをそれぞれ得る。これにより、図12の複数の受信走査線が配置された扇形領域35-110Aの受信焦点の遅延整相データを生成することができる。すなわち、送信開口110Aについての復号後受信信号によって,扇形領域35-110Aの像(すなわち、受信焦点の集合)が生成される。 At this time, the phasing adder 22 performs parallel beam forming, and as shown in FIG. 12, the ultrasonic irradiation region of the transmission aperture 110A is M-numbered at a predetermined spread angle centered on the transmission aperture 110A. Reception scanning lines (beams # 1 to #M) are set, and G reception focal points 31-1 to 31-G are set on the respective reception scanning lines at predetermined intervals. In order to focus the reception signals H 1A 1, H 2A 1, H 3A 1... After decoding for each reception focus, delay curves 32a, 32b, 34a, 34b, etc. according to the position of the reception focus are provided. Set the corresponding delay time and obtain the received signal Hsum A after phasing addition. That is, the phasing addition unit 22 receives the signals after the phasing addition for G × M reception focal points from the decoded reception signals H 1A 1, H 2A 1, H 3A 1... Corresponding to the transmission aperture 110A. Each signal Hsum A is obtained. Thereby, the delay phasing data of the reception focus of the sector area 35-110A where the plurality of reception scanning lines of FIG. 12 are arranged can be generated. That is, an image of the sector area 35-110A (that is, a set of reception focal points) is generated by the decoded reception signal for the transmission aperture 110A.
 なお、受信走査線の本数は、送信開口110Aの送信ビームの中心軸を超音波中心として2~8本程度形成することも可能であるし、送信開口110Aの指向角30(例えば90°)内に、32本,64本,128本等の多数の受信走査線を並列に生成することも可能である。 Note that the number of reception scanning lines can be about 2 to 8 with the central axis of the transmission beam of the transmission aperture 110A as the center of the ultrasonic wave, or within the directivity angle 30 (eg, 90 °) of the transmission aperture 110A. In addition, a large number of reception scanning lines such as 32 lines, 64 lines, 128 lines, etc. can be generated in parallel.
 図12では、遅延時間のカーブ32a,32b、34a、34bが送信開口110Aの中心を時刻ゼロとする遅延法で求められている例を示しているが、送信焦点位置を時刻ゼロとする遅延法(仮想音源法)を用いることももちろん可能である。 FIG. 12 shows an example in which the delay time curves 32a, 32b, 34a, and 34b are obtained by the delay method in which the center of the transmission aperture 110A is set to time zero, but the delay method in which the transmission focal point position is set to time zero. Of course, the (virtual sound source method) can also be used.
 受信ビームの集合体の形状は、扇型形状であっても、探触子108におけるチャネル109の表層面の法線ベクトル方向にビーム方向を選んだような受信ビーム形状であっても良い。また、送信する送信ビームの範囲内を網羅するような任意の複数ビームの集合体であってもよい。また、図12において,探触子108は直線上に配置されたリニア型の形状であるが、素子配置が湾曲したコンベックス形状であってもよい。また、送信ビームの走査方式がセクタ型であっても良い。 The shape of the aggregate of reception beams may be a fan shape or a reception beam shape in which the beam direction is selected in the normal vector direction of the surface layer surface of the channel 109 in the probe 108. Further, it may be an aggregate of arbitrary plural beams that cover the range of the transmission beam to be transmitted. In FIG. 12, the probe 108 has a linear shape arranged on a straight line, but may have a convex shape with a curved element arrangement. Further, the transmission beam scanning method may be a sector type.
 同様に、整相加算部22は、各チャネル信号処理部20から出力される送信開口110Bからの送信に対応する復号後信号H1B、H2B、H3B・・・を整相加算した受信信号HsumBを得る。このとき、整相加算部22は、パラレルビームフォーミングを行い、送信開口110Bの超音波の照射領域に、送信開口110Aを中心とした予め所定の広がり角でM本の受信走査線(beam#1~#M)を設定し、それぞれの受信走査線上に予め定めた間隔でG個の受信焦点31-1~31-Gを設定する。それぞれの受信焦点について、復号後受信信号H1B1、H2B1、H3B1・・・の焦点を結ばせるための遅延時間32a,32b,34a,34b等を設定し、整相加算後の受信信号HsumBを得る。すなわち、整相加算部22は、送信開口110Bに対応する復号後受信信号H1B1、H2B1、H3B1・・・から、G×M個の受信焦点についての整相加算後の受信信号HsumBをそれぞれ得る。これにより、図2(b)のように扇形領域35-110Bの像が形成される。 Similarly, the phasing addition unit 22 performs phasing addition on the decoded signals H 1B , H 2B , H 3B ... Corresponding to transmission from the transmission aperture 110B output from each channel signal processing unit 20. Get Hsum B. At this time, the phasing addition unit 22 performs parallel beam forming, and M reception scanning lines (beam # 1) with a predetermined spread angle centered on the transmission aperture 110A in the ultrasonic irradiation region of the transmission aperture 110B. To #M) and G reception focal points 31-1 to 31-G are set on the respective reception scanning lines at predetermined intervals. For each reception focus, delay times 32a, 32b, 34a, 34b, etc. for setting the focus of the decoded received signals H 1B 1, H 2B 1, H 3B 1. Receive signal Hsum B is obtained. That is, the phasing addition unit 22 receives the signals after phasing addition for G × M reception focal points from the decoded reception signals H 1B 1, H 2B 1, H 3B 1... Corresponding to the transmission aperture 110B. Each of the signals Hsum B is obtained. As a result, an image of the sector area 35-110B is formed as shown in FIG.
 図10の第2の記憶部24は、図13のようにG×M個の受信焦点の整相加算後の受信信号Hsumを格納するための記憶領域を、送信開口ペアの送信開口ごとに備えている。整相加算部22は、送信開口110Aについて得たG×M個の受信焦点の整相加算後の受信信号HsumAを図13の送信開口ペア110用の記憶領域24Aに格納する。また、送信開口110Bについて得たG×M個の受信焦点についての整相加算後の受信信号HsumBを図13の送信開口110B用の記憶領域24Bに格納する。 The second storage unit 24 of FIG. 10 includes a storage area for storing the reception signal Hsum after the phasing addition of G × M reception focal points as shown in FIG. 13 for each transmission aperture of the transmission aperture pair. ing. The phasing addition unit 22 stores the reception signal Hsum A after phasing addition of the G × M reception focal points obtained for the transmission aperture 110A in the storage area 24A for the transmission aperture pair 110 in FIG. Further, the reception signal Hsum B after the phasing addition for the G × M reception focal points obtained for the transmission aperture 110B is stored in the storage area 24B for the transmission aperture 110B in FIG.
 整相加算部22は、送信開口ペア111~113等についても同様に、各チャネル信号処理部20から出力される一方の送信開口についての復号後受信信号H1A1、H2A1、H3A1・・・から、G×M個の受信焦点についての整相加算後の受信信号HsumAを得る。同様に、他方の送信開口について、G×M個の受信焦点についての整相加算後の受信信号HsumBを得る。そして、第2の記憶部24の送信開口ペア111~113等ごとの記憶領域24A、24Bに、それぞれの整相加算後の受信信号HsumA、HsumBを格納する。 Similarly, for the transmission aperture pairs 111 to 113, the phasing addition unit 22 receives the decoded received signals H 1A 1, H 2A 1, H 3A 1 for one transmission aperture output from each channel signal processing unit 20. From the received signal Hsum A after phasing addition for G × M reception focal points. Similarly, for the other transmission aperture, a reception signal Hsum B after phasing addition for G × M reception focal points is obtained. Then, the received signals Hsum A and Hsum B after the phasing addition are stored in the storage areas 24A and 24B for each of the transmission aperture pairs 111 to 113 in the second storage unit 24, for example.
 送信開口ペア111~113は、超音波探触子108のそれぞれ少しずつずれた位置にあるため、その照射領域は、図2(a)のように、異なる送信開口ペア110~113同士で一部重なり、図2(b)に示した扇形領域35(受信焦点の集合)も、異なる送信開口ペア110~113同士で一部重なっている。そのため、ある送信開口ペア110の扇形領域35-110A,Bの受信焦点の一部は、隣接する送信開口ペア111等の扇形領域35-111A,Bの受信焦点と一致している。開口合成部25は、同一位置の受信焦点(例えば、図3の52-1と52-2)の整相加算後の受信信号Hsumを、第2の記憶部24のすべての記憶領域24A,24Bの中から選択して読み出し、加算(合成)する。 Since the transmission aperture pairs 111 to 113 are at positions slightly shifted from each other on the ultrasonic probe 108, the irradiation area is partially different between different transmission aperture pairs 110 to 113 as shown in FIG. The fan-shaped region 35 (collection of reception focal points) shown in FIG. 2B also partially overlaps with different transmission aperture pairs 110 to 113. For this reason, a part of the reception focus of the sector areas 35-110A, B of a certain transmission aperture pair 110 coincides with the reception focus of the sector areas 35-111A, B of the adjacent transmission aperture pair 111 and the like. The aperture synthesis unit 25 uses the reception signal Hsum after the phasing addition of the reception focal points (for example, 52-1 and 52-2 in FIG. 3) at the same position to all the storage areas 24A and 24B of the second storage unit 24. Is read out and added (synthesized).
 本実施形態では、複数の送信開口ペア111~113の送信時の空間符号化の符号を交互に反転させているため、撮像対象120の体動に起因して復号後受信信号に含まれる不要信号の位相は、送信開口ペアごとに反転している。よって、整相加算後の受信信号を異なる送信開口ペア間で開口合成部25が合成することにより、図3に示したように、撮像対象120の体動に起因して復号後受信信号に含まれる不要信号18-1b、18-2bを打消し合わせて低減することができ、体動に起因するアーチファクトを抑制できる。 In this embodiment, since the spatial encoding codes at the time of transmission of the plurality of transmission aperture pairs 111 to 113 are alternately inverted, unnecessary signals included in the received signal after decoding due to the body movement of the imaging target 120 Are reversed for each transmission aperture pair. Therefore, the aperture synthesis unit 25 synthesizes the reception signal after phasing addition between different transmission aperture pairs, so that it is included in the reception signal after decoding due to the body movement of the imaging target 120 as shown in FIG. The unnecessary signals 18-1b and 18-2b generated can be canceled and reduced, and artifacts caused by body movement can be suppressed.
 本実施形態の超音波撮像装置100は、複数の送信開口ペア110~113等により二巡以上の送信(スキャン)を行って、連続して撮像対象120の画像を出力することができる。この動作を、図14~図16を用いて以下説明する。 The ultrasonic imaging apparatus 100 according to the present embodiment can output images of the imaging target 120 continuously by performing two or more rounds of transmission (scanning) using a plurality of transmission aperture pairs 110 to 113 and the like. This operation will be described below with reference to FIGS.
 以下の説明においては、4組の送信開口ペア110~113を用いて順番に送信を行う。送信開口ペアからの送信を送信走査線と呼び、送信開口ペア110、111、112、113の送信をそれぞれ、送信走査線k=1、2、3、4と呼ぶ。また、送信開口ペアの2つの送信開口から同位相の信号をそれぞれ送信する式(1)の行ベクトル[1 1]の空間符号化を第一空間符号化と、互いに逆位相の信号をそれぞれ送信する行ベクトル[1 -1]の空間符号化を第二空間符号化と呼ぶ。さらに、送信開口ペア110~113から順に送信することをスキャンと呼び、n巡目の送信(第nスキャン)をスキャン番号nと呼ぶ。 In the following description, transmission is performed in order using four transmission aperture pairs 110 to 113. Transmission from the transmission aperture pair is referred to as a transmission scanning line, and transmission from the transmission aperture pairs 110, 111, 112, and 113 is referred to as transmission scanning line k = 1, 2, 3, 4, respectively. In addition, the spatial coding of the row vector [1 1] in Equation (1) for transmitting signals of the same phase from the two transmission apertures of the transmission aperture pair is the first spatial encoding, and the signals having opposite phases are transmitted. The spatial encoding of the row vector [1−1] to be called is the second spatial encoding. Further, transmission in order from the transmission aperture pairs 110 to 113 is referred to as scanning, and transmission in the nth cycle (nth scan) is referred to as scan number n.
 制御部106は、図14のフローに示すように、一巡目の送信(スキャンn=1)(ステップ141~148)で、各送信開口ペア110~113について順に送信を行う。このとき、送信開口ペアごとに交互に空間符号化の符号を反転させる。 As shown in the flow of FIG. 14, the control unit 106 sequentially transmits the transmission aperture pairs 110 to 113 in the first transmission (scan n = 1) (steps 141 to 148). At this time, the code of spatial encoding is alternately inverted for each transmission aperture pair.
 具体的には、まず、制御部106は、送信走査線k=1(送信開口ペア110)を選択し(ステップ142)、スキャン番号nが奇数かどうか判定する(ステップ143)。スキャン番号nは1(一巡目の送信)であるので奇数であり、ステップ144に進み。そして、送信走査線k(=1)が奇数かどうか判定し(ステップ144)、送信走査線k=1は奇数であるので、第一空間符号化による送信を送信開口ペア110に行わせる(ステップ145)(図15のk=1参照)。制御部106は、チャネル109ごとに得られた受信信号を、チャネル109ごとに接続された図11のチャネルメモリ40の送信開口ペア110用の記憶領域40-1に格納する(ステップ146)。 Specifically, first, the control unit 106 selects the transmission scanning line k = 1 (transmission aperture pair 110) (step 142), and determines whether the scan number n is an odd number (step 143). Since the scan number n is 1 (transmission in the first round), it is an odd number, and the process proceeds to step 144. Then, it is determined whether or not the transmission scanning line k (= 1) is an odd number (step 144). Since the transmission scanning line k = 1 is an odd number, transmission by the first spatial encoding is performed by the transmission aperture pair 110 (step). 145) (see k = 1 in FIG. 15). The control unit 106 stores the received signal obtained for each channel 109 in the storage area 40-1 for the transmission aperture pair 110 of the channel memory 40 of FIG. 11 connected to each channel 109 (step 146).
 つぎに、制御部106は、送信走査線番号kをk=2にインクリメントし(ステップ156)、ステップ142に戻って、送信走査線k=2の送信開口ペア111を選択し、k=2が偶数であるので(ステップ144)、第二空間符号化による送信を送信開口ペア111に行わせる(ステップ147)(図15のk=2参照)。制御部106は、チャネル109ごとに得られた受信信号を、チャネル109ごとに接続された図11のチャネルメモリ40の送信開口ペア111用の記憶領域40-1に格納する(ステップ148)。 Next, the control unit 106 increments the transmission scanning line number k to k = 2 (step 156), returns to step 142, selects the transmission aperture pair 111 of the transmission scanning line k = 2, and k = 2 Since it is an even number (step 144), the transmission aperture pair 111 is caused to transmit by the second spatial encoding (step 147) (see k = 2 in FIG. 15). The control unit 106 stores the received signal obtained for each channel 109 in the storage area 40-1 for the transmission aperture pair 111 of the channel memory 40 of FIG. 11 connected to each channel 109 (step 148).
 同様に、送信走査線k=3(送信開口ペア112)については、第一空間符号化した送信を行い、k=4(送信開口ペア113)については、第二空間符号化した送信を行い、それぞれ送信開口ペア112,113用の記憶領域40-1に格納する。 Similarly, for the transmission scanning line k = 3 (transmission aperture pair 112), the first spatially encoded transmission is performed, and for k = 4 (transmission aperture pair 113), the second spatially encoded transmission is performed, They are stored in the storage areas 40-1 for the transmission aperture pairs 112 and 113, respectively.
 以上により、ステップ155のk=K(K=4)に到達し、スキャン番号n=1(一巡目の送信)が終了する(ステップ155)。これにより、すべての送信開口ペア110~113用の記憶領域40-1に受信信号が格納された状態となる。しかし、スキャン番号n=1では、まだ記憶領域40-2に受信信号が格納されていないので、復号処理はできない。よって、スキャン番号n=2にインクリメントし(ステップ158)、ステップ142に戻る。 Thus, k = K (K = 4) in step 155 is reached, and the scan number n = 1 (transmission in the first round) is completed (step 155). As a result, the reception signal is stored in the storage area 40-1 for all the transmission aperture pairs 110 to 113. However, when the scan number n = 1, the received signal is not yet stored in the storage area 40-2, so that the decoding process cannot be performed. Therefore, the scan number n is incremented to 2 (step 158), and the process returns to step 142.
 スキャン番号n=2(二巡目の送信)は、n=1とは空間符号化の符号を入れ替えて行う。具体的には、制御部106は、ステップ143、149でnが偶数であるのでステップ150に進み、送信走査線kが奇数(k=1,3)の送信開口ペア111,113については、第二空間符号化した送信を行う(ステップ151)(図15のスキャン番号n=2の送信走査線k=1、3を参照)。制御部106は、チャネル109ごとに得られた受信信号を、チャネル109ごとに接続された図11のチャネルメモリ40の送信開口ペア110、112用の記憶領域40-2に格納する(ステップ152)。また、制御部106は、送信走査線kが偶数(k=2,4)の送信開口ペア110,112については、第一空間符号化した送信を行う(ステップ153)(図15のスキャン番号n=2の送信走査線k=2、4を参照)。制御部106は、チャネル109ごとに得られた受信信号を、チャネル109ごとに接続された図11のチャネルメモリ40の送信開口ペア111、113用の記憶領域40-2に格納する(ステップ154)。 Scan number n = 2 (transmission in the second round) is performed by replacing the spatial encoding code with n = 1. Specifically, since n is an even number in Steps 143 and 149, the control unit 106 proceeds to Step 150. For the transmission aperture pairs 111 and 113 in which the transmission scanning line k is an odd number (k = 1, 3), Two-space-encoded transmission is performed (step 151) (see transmission scanning line k = 1, 3 with scan number n = 2 in FIG. 15). The control unit 106 stores the received signal obtained for each channel 109 in the storage area 40-2 for the transmission aperture pairs 110 and 112 of the channel memory 40 of FIG. 11 connected to each channel 109 (step 152). . Further, the control unit 106 performs the first spatial encoding for the transmission aperture pairs 110 and 112 whose transmission scanning line k is an even number (k = 2, 4) (step 153) (scan number n in FIG. 15). = 2 transmission scan lines k = 2, see 4). The control unit 106 stores the received signal obtained for each channel 109 in the storage area 40-2 for the transmission aperture pairs 111 and 113 of the channel memory 40 of FIG. 11 connected to each channel 109 (step 154). .
 以上により、スキャン番号n=2におけるステップ155のk=K(K=4)に到達し、スキャン番号n=2(二巡目の送信)が終了する。すべての送信開口ペア110~113用の記憶領域40-2に受信信号が格納された状態となる。これにより、すべての送信開口ペア110~113の記憶領域40-1、および40-2に受信信号が格納されたので、復号処理が可能になる。よって、ステップ157でステップ159に進み、復号化処理を行う。 As described above, k = K (K = 4) in step 155 in the scan number n = 2 is reached, and the scan number n = 2 (transmission in the second round) is completed. The reception signal is stored in the storage area 40-2 for all the transmission aperture pairs 110 to 113. As a result, since the received signals are stored in the storage areas 40-1 and 40-2 of all the transmission aperture pairs 110 to 113, decoding processing becomes possible. Therefore, the process proceeds to step 159 in step 157 and the decoding process is performed.
 制御部106は、ステップ159において、送信開口ペア110を選択し、送信開口ペア110用の記憶領域40-1,40-2に格納されている受信信号を、復号部41に受け渡させる。復号部41は、復号後受信信号HA,HBを生成する(ステップ160、161)。さらに復号後受信信号HA,HBを、それぞれパラレルビームフォーミングにより整相加算部22で整相加算させる(ステップ162)。これにより、2つの送信開口について、それぞれ図2(b)および図16(a)のように、扇形領域35-110A,35-110Bを設定し、予め定めたM本の受信走査線(beam#1~#M)上のそれぞれG個の受信焦点31-1~31-Gについて、整相加算後の受信信号HsumA,HsumBを得る。制御部106は、得られた扇形領域35-110A、35-110Bの整相加算後受信信号HsumA,HsumBを、図13の第2の記憶部24の送信開口ペア110用の記憶領域24A,24Bに格納する(ステップ163)。 In step 159, the control unit 106 selects the transmission aperture pair 110, and passes the reception signal stored in the storage areas 40-1 and 40-2 for the transmission aperture pair 110 to the decoding unit 41. The decoding unit 41 generates decoded reception signals H A and H B (steps 160 and 161). Further, the decoded reception signals H A and H B are phased and added by the phase adjusting and adding unit 22 by parallel beam forming, respectively (step 162). As a result, fan-shaped areas 35-110A and 35-110B are set for the two transmission apertures as shown in FIGS. 2B and 16A, respectively, and predetermined M reception scanning lines (beam # About 1 ~ # M) each G number of receive focal point 31-1 ~ 31-G on, obtaining the reception signal H SumA after phasing addition, the H sumB. Control unit 106, resulting Sector Region 35-110A, after phasing addition of 35-110B received signal H SumA, the H sumB, storage area 24A for transmission aperture pairs 110 of the second storage unit 24 of FIG. 13 , 24B (step 163).
 上記ステップ159~163をすべての送信開口ペア111~113について、それぞれ扇形領域のG×M個の受信焦点の整相加算後受信信号HsumA,HsumBを得て、各送信開口ペア111~113用の記憶領域24A,24Bに格納するまで繰り返す(ステップ164)。 For all of the transmission of the above steps 159 to 163 pair of openings 111-113, phasing addition received signals H SumA of G × M pieces of receive focal point of each sector area, with the H sumB, each transmission pair of openings 111-113 The process is repeated until it is stored in the storage areas 24A and 24B (step 164).
 制御部106は、予め定めておいた複数の位置Mのうちの一つの位置について、その位置と同じ座標の受信焦点の整相加算後受信信号を、図16(b)のように、すべての送信開口ペア110~113用の記憶領域24A,24Bから読み出す(ステップ165)。開口合成部25は、図2(c)および図16(c)のように、読み出された同じ座標の複数の整相加算後受信信号を加算することにより合成し、図13の記憶部34に格納する(ステップ167、168)。上記ステップ165~168を、すべての位置Mについて完了するまで繰り返す(ステップ169)。すべての位置Mについて、合成が終了したならば、画像処理部107は、記憶部34に格納された合成後の整相加算後受信信号を、位置ごとに並べることにより画像を構築する(ステップ170)。構築した画像は、表示部122に表示される。 For one position among a plurality of predetermined positions M, the control unit 106 receives the received signal after phasing addition of the reception focus at the same coordinates as that position, as shown in FIG. Reading is performed from the storage areas 24A and 24B for the transmission aperture pairs 110 to 113 (step 165). As shown in FIGS. 2 (c) and 16 (c), the aperture synthesizing unit 25 synthesizes by adding a plurality of readout signals after phasing addition of the same coordinates, and stores the storage unit 34 in FIG. (Steps 167 and 168). Steps 165 to 168 are repeated until completion for all positions M (step 169). If the synthesis has been completed for all positions M, the image processing unit 107 constructs an image by arranging the post-composition phasing addition received signals stored in the storage unit 34 for each position (step 170). ). The constructed image is displayed on the display unit 122.
 その後、制御部106は、ステップ158に戻って、スキャン番号nをインクリメントし、スキャン番号n=3(三巡目の送信)を行う。制御部106は、三巡目の送信では、ステップ146,148において、受信信号を記憶領域40-1、40-2に格納する。よって、ステップ157において、ステップ159~170に進むことにより、記憶領域40-1に格納されたスキャン番号n=3(三巡目の送信)で得られた受信信号と、記憶領域40-2に格納されたスキャン番号n=2(二巡目の送信)で得られた受信信号を用いて復号化処理を行って復号化後受信信号を得て、画像を構築することができる。これにより、スキャン番号n=2以降は、スキャンごとに撮像対象120の画像を構築して順次表示することができる。 Thereafter, the control unit 106 returns to Step 158, increments the scan number n, and performs scan number n = 3 (transmission in the third round). In the third transmission, the control unit 106 stores the received signal in the storage areas 40-1 and 40-2 in steps 146 and 148. Therefore, in step 157, by proceeding to steps 159 to 170, the received signal obtained with scan number n = 3 (transmission in the third round) stored in the storage area 40-1 and the storage area 40-2 are stored. An image can be constructed by performing a decoding process using the received signal obtained with the stored scan number n = 2 (transmission in the second round) to obtain a decoded received signal. Thereby, after the scan number n = 2, an image of the imaging target 120 can be constructed and displayed sequentially for each scan.
 このように、ステップ165~169において、同一の位置の整相加算後受信信号を合成することにより、空間符号化の符号の異なる複数の送信で得た整相加算後受信信号を加算することができる。よって、撮像対象120の体動等に起因する不要信号18-1b、18-2bを打消し合わせて抑制することができ、ステップ170で構築される画像は、アーチファクトが抑制されている。 In this manner, in steps 165 to 169, the received signals after phasing addition obtained by a plurality of transmissions having different spatial encoding codes can be added by synthesizing the received signals after phasing addition at the same position. it can. Therefore, unnecessary signals 18-1b and 18-2b caused by body movement of the imaging target 120 can be canceled and suppressed, and artifacts are suppressed in the image constructed at step 170.
 なお、図14のステップ141~157では、制御部106は、スキャン番号nが奇数回のときに、送信走査線kが奇数で第一空間符号化の送信を、偶数のときに第二空間符号化の送信を行わせ、スキャン番号nが偶数のときは、送信走査線kが偶数で第一空間符号化の送信を、偶数のときに第二空間符号化の送信を行わせる構成であったが、第一空間符号化と第二空間符号化を入れ替えることも可能である。 Note that in steps 141 to 157 in FIG. 14, the control unit 106 transmits the first spatial coding when the scanning number k is an odd number and the transmission scanning line k is an odd number and the second spatial code when the scanning number n is an even number. When the scan number n is an even number, the transmission scan line k is an even number and the first spatial encoding transmission is performed. When the scan number n is an even number, the second spatial encoding transmission is performed. However, the first spatial encoding and the second spatial encoding can be interchanged.
 また、送信開口ペア110~113ごとの扇形領域35の重なり具合は、受信焦点の位置によって異なる。このため、ステップ165において選択される整相加算後受信信号の数は、受信焦点の位置によって異なるが、異なったまま合成しても構わない。また、本来受信すべき信号18-1a、18-2a等の強度を、合成される整相加算後受信信号の数に応じて補正する処理を行うことも可能である。 Also, the overlapping state of the fan-shaped regions 35 for each of the transmission aperture pairs 110 to 113 differs depending on the position of the reception focus. For this reason, the number of received signals after phasing addition selected in step 165 differs depending on the position of the reception focal point, but may be combined while remaining different. It is also possible to perform processing for correcting the intensity of the signals 18-1a, 18-2a and the like that should be received according to the number of received signals after phasing addition to be combined.
 ここで,ステップ167で整相加算後受信信号を合成することで、不要信号が抑制される原理を数式を用いてさらに説明する。図15のスキャン番号n=2の送信走査線番号k=1の時点(送信番号K+1とする)で得られた受信信号(エコー)が,スキャン番号n=1の送信走査線番号k=1の送信(送信番号1とする)に対して出現時間がΔTシフトしているとする。この場合,スキャン番号n=2のときに、ステップ161における復号処理(加算処理)で、送信開口110Aについて得られる信号H1は、上述の式(3)で表す通りである。この信号が,図3の受信焦点52-1における信号とする。 Here, the principle that the unnecessary signal is suppressed by synthesizing the reception signal after phasing addition in step 167 will be further described using mathematical expressions. The received signal (echo) obtained at the time of transmission scan line number k = 1 of scan number n = 2 in FIG. 15 (assumed to be transmission number K + 1) is the transmission scan line number k = 1 of scan number n = 1. It is assumed that the appearance time is shifted by ΔT with respect to transmission 1 (transmission number 1). In this case, when the scan number n = 2, the signal H1 obtained for the transmission aperture 110A in the decoding process (addition process) in step 161 is as expressed by the above-described equation (3). This signal is a signal at the reception focal point 52-1 in FIG.
 一方、送信開口111Aの受信焦点52-2の信号は,スキャン番号n=1の送信走査線番号k=2の時点での送信(送信番号2とする)と,スキャン番号n=1の送信走査線番号k=2の時点での送信(送信番号K+2とする)の送信で得られた受信信号(エコー)によって生成される。このため、スキャンを繰り返している間,体動が一様であれば,送信番号1と送信番号2の送信の間に生じる体動による時間シフトは,単純にΔτ=ΔT/Kと表される。また,送信番号2と,送信番号K+2の送信による受信信号は,互いに出現時間がΔTシフトしている。したがって,送信番号2と送信番号K+2の送信におけるエコーによる復号処理(加算処理)で、送信開口111Aについて得られる信号H2は,上述の式(4)を用いて、下式(8)のように表すことができる。この信号が、図3の受信焦点52-2の信号に相当する。 On the other hand, the signal at the reception focal point 52-2 of the transmission aperture 111A is transmitted at the time of the transmission scanning line number k = 2 with the scan number n = 1 (transmission number 2) and the transmission scanning with the scan number n = 1. It is generated by a received signal (echo) obtained by transmission at the time of line number k = 2 (transmission number K + 2). For this reason, if the body movement is uniform while the scan is repeated, the time shift due to the body movement occurring between transmissions of transmission number 1 and transmission number 2 is simply expressed as Δτ = ΔT / K. . In addition, the appearance times of the reception signals transmitted by the transmission number 2 and the transmission number K + 2 are shifted by ΔT. Therefore, the signal H2 obtained for the transmission aperture 111A in the decoding process (addition process) by echo in the transmission of the transmission number 2 and the transmission number K + 2 is expressed by the following equation (8) using the above equation (4). Can be expressed as: This signal corresponds to the signal at the reception focal point 52-2 in FIG.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 Kは、送信走査線(送信開口ペア)の数であり、一般的な探触子108の大きさを考慮すると、超音波診断装置の送信走査線(送信開口ペア)の数は、100本以上になる。したがって,ΔτはΔTに対して十分小さく,ほとんど0に近いと見なすことができる。このため,式(8)で表される受信焦点52-2の信号H2は,式(4)で表される信号H1-とほとんど等価となる。受信焦点52-1と焦点52-2の信号を,開口合成処理によって加算すると、式(3)と式(4)の第二項目に当たる不要信号が互いに打ち消し合い,アーチファクトを抑圧した画像を生成することができる。 K is the number of transmission scanning lines (transmission aperture pairs). Considering the size of a general probe 108, the number of transmission scanning lines (transmission aperture pairs) of the ultrasonic diagnostic apparatus is 100 or more. become. Therefore, Δτ is sufficiently small with respect to ΔT and can be regarded as almost zero. Therefore, the signal H2 of receive focal point 52-2 of the formula (8), signals H1 of the formula (4) - is almost equivalent to. When the signals of the reception focal point 52-1 and the focal point 52-2 are added by aperture synthesis processing, unnecessary signals corresponding to the second item of the equations (3) and (4) cancel each other, and an image in which artifacts are suppressed is generated. be able to.
 なお、図15に示した例では、制御部106が、送信開口ペア110の送信開口110Aを探触子108の端部に設定し、送信開口110Bを探触子108の中央に設定し、他の送信開口ペアの送信開口が順次、隣合うように設定している。この場合、送信走査線k=Kの送信開口ペアのA側の送信開口(送信走査線#aK)は、送信開口110B(送信走査線#b1)と隣り合う。隣り合う送信開口から送信される超音波の空間符号化の符号は、異なっている方が、不要信号をより低減することができる。 In the example shown in FIG. 15, the control unit 106 sets the transmission aperture 110A of the transmission aperture pair 110 at the end of the probe 108, sets the transmission aperture 110B at the center of the probe 108, and others. The transmission apertures of the transmission aperture pairs are set so as to be adjacent to each other sequentially. In this case, the A-side transmission aperture (transmission scanning line #aK) of the transmission aperture pair of the transmission scanning line k = K is adjacent to the transmission aperture 110B (transmission scanning line # b1). If the codes of the spatial encoding of ultrasonic waves transmitted from adjacent transmission apertures are different, unnecessary signals can be further reduced.
 なお、本実施形態は、図15の送信開口ペア(送信走査線)の配置に限定されるものではない。図15の配置の場合、上述したように走査線#aKと走査線#b1は隣り合い、隣り合う位置は、探触子108の中央部である。上述したように、k=1とk=Kの送信による受信信号の時間差ΔTは、上述するΔτよりも大きく、開口合成を行っても不要信号の打ち消し残りは、他の送信走査線の組み合わせよりも大きくなる可能性がある。そのため、走査線#aKと走査線#b1が隣り合う位置が、探触子108の中央部にあると、画像の中心付近に、打消し残りの不要信号のアーチファクトが出現する可能性がある。そこで、画像中心におけるアーチファクトを避けるため,送信開口ペア(送信走査線)の配置を、次のような構成にしてもよい。 In addition, this embodiment is not limited to arrangement | positioning of the transmission aperture pair (transmission scanning line) of FIG. In the arrangement of FIG. 15, as described above, the scanning line #aK and the scanning line # b1 are adjacent to each other, and the adjacent position is the central portion of the probe 108. As described above, the time difference ΔT of the received signal due to the transmission of k = 1 and k = K is larger than the above-described Δτ, and the remainder of the cancellation of the unnecessary signal is less than the combination of other transmission scanning lines even if aperture synthesis is performed. Can also be large. Therefore, if the position where the scanning line #aK and the scanning line # b1 are adjacent to each other is in the center portion of the probe 108, there is a possibility that artifacts of unneeded unwanted signals appear near the center of the image. Therefore, in order to avoid artifacts at the center of the image, the arrangement of the transmission aperture pairs (transmission scanning lines) may be configured as follows.
 例えば,図17のように、送信走査線が連続して送信される領域を探触子108の中心に位置した構成とする。具体的には、k=1の送信開口110Aの位置は、探触子108の端部からではなく,端部からずれた位置にする。具体的には、図17のように探触子108の長さの1/4程度ずれた位置にk=1の送信開口110Aを配置すると、探触子110の中央領域では、隣り合う走査線の番号を連続させることができる。また図28に示すような,送信走査線の配置にしてもよい。 For example, as shown in FIG. 17, a region where transmission scanning lines are continuously transmitted is positioned at the center of the probe 108. Specifically, the position of the transmission aperture 110 </ b> A with k = 1 is not the end of the probe 108, but a position shifted from the end. Specifically, as shown in FIG. 17, when the transmission aperture 110A with k = 1 is arranged at a position shifted by about ¼ of the length of the probe 108, adjacent scanning lines are arranged in the central region of the probe 110. Can be consecutive. Further, the transmission scanning lines may be arranged as shown in FIG.
 また、本実施形態では、復号処理に用いる2つの受信信号が得られる送信開口の位置が同位置であれば、送信走査線は、探触子108に沿って順番にならんでいなくてもよい。すなわち送信開口Aと送信開口Bの送信領域の位置が、各スキャンにおいて同じであれば,送信走査線の探触子108上の位置は、並んでいなくてもよい。したがって,図18に示すように、ランダムに送信走査線を設定する構成にしてもよい。 In this embodiment, if the positions of the transmission apertures from which the two reception signals used for the decoding process are obtained are the same position, the transmission scanning lines do not have to be aligned in order along the probe 108. . That is, as long as the positions of the transmission areas of the transmission aperture A and the transmission aperture B are the same in each scan, the positions of the transmission scanning lines on the probe 108 may not be aligned. Therefore, as shown in FIG. 18, the transmission scanning line may be set at random.
 これらの送信走査線(送信開口ペア)の探触子108上での配置のパターンは,制御部106が,撮像条件にしたがって適切に選ぶ構成にしてもよいし,ユーザが選ぶことができる構成にしてもよい。例えば、図19に示すように、送信走査線の配置のパターンを複数種類格納した格納部124を、超音波撮像装置100内に配置し、制御部106が適切なパターンを選択するか、もしくは、UI121を介して、ユーザからの選択を受け付ける。これは,図14のフローチャートのステップ142で行われる。制御部106は,選択したパターンにしたがって,送信部102と受信部105の動作を制御する。 The arrangement pattern of these transmission scanning lines (transmission aperture pairs) on the probe 108 may be appropriately selected by the control unit 106 according to the imaging conditions, or may be selected by the user. May be. For example, as shown in FIG. 19, a storage unit 124 storing a plurality of types of transmission scanning line arrangement patterns is arranged in the ultrasonic imaging apparatus 100, and the control unit 106 selects an appropriate pattern, or A selection from the user is accepted via the UI 121. This is performed in step 142 of the flowchart of FIG. The control unit 106 controls the operations of the transmission unit 102 and the reception unit 105 according to the selected pattern.
 なお、本実施形態の超音波撮像装置は、図10に示したように、復号部41の後に整相加算部22を配置しており、復号処理後に整相加算処理を行う構成であったが、整相加算処理を復号処理の前に行ってもよい。その場合,復号部41を整相加算部22の後に配置すればよいため、復号部41を受信チャネル109ごとに配置する必要がなく、受信部105の回路規模を小さくすることができる。なお、復号部41は、復号処理のため、各チャネルが受信した送信ごとの受信信号を2回用いる必要がある。そのため、第1の記憶部(チャネルメモリ)40から整相加算部22が2回づつ読みだして整相処理後、復号部41に受け渡す構成にすることが可能である。もしくは,図20に示すように,第1の記憶部40の代わりに、チャネル109ごとに複製器21を配置し、1回の送信事象で得られた各チャネルの受信信号を、複製器21によって2つの複製された信号R11、R11’(下付きの数字はチャネルの番号を示し,ダッシュは2回目の読み出し(もしくは複製後)の信号であることを示し,1は、一巡目の送信(第一送信)で得た受信信号であることを示す)を出力するように構成することも可能である。整相加算部は、2つの信号R11、R11’をそれぞれ別々に整相加算処理する。また、整相加算部22の後には、ビームメモリ23を配置し、その後段に復号部41を配置する。 Note that, as shown in FIG. 10, the ultrasonic imaging apparatus of the present embodiment has a configuration in which the phasing addition unit 22 is arranged after the decoding unit 41 and performs the phasing addition process after the decoding process. The phasing addition process may be performed before the decoding process. In that case, since the decoding unit 41 may be arranged after the phasing addition unit 22, it is not necessary to arrange the decoding unit 41 for each reception channel 109, and the circuit scale of the reception unit 105 can be reduced. Note that the decoding unit 41 needs to use the received signal for each transmission received by each channel twice for decoding processing. Therefore, it is possible to adopt a configuration in which the phasing / adding unit 22 reads the data twice from the first storage unit (channel memory) 40 and delivers it to the decoding unit 41 after the phasing process. Alternatively, as shown in FIG. 20, a duplicator 21 is arranged for each channel 109 instead of the first storage unit 40, and the received signal of each channel obtained by one transmission event is transmitted by the duplicator 21. Two replicated signals R 1 1, R 1 1 '(subscript indicates channel number, dash indicates second read (or after replication) signal, 1 is first round It is also possible to output the received signal obtained by transmission (first transmission). The phasing addition unit performs phasing addition processing on the two signals R 1 1 and R 1 1 ′ separately. Further, the beam memory 23 is arranged after the phasing addition section 22, and the decoding section 41 is arranged at the subsequent stage.
 複製器21が生成した2つの同一の受信信号受信信号R11、R11’は,整相加算処理部22へ受け渡される。制御部106は、整相加算処理部22に各チャネルの受信信号R11に送信開口Aからの送信ビーム軸上の領域の各点に焦点を結ぶ遅延時間を与えてRsumA1を得,ビームメモリ23の記憶領域23A-1に保存する。同様に,制御部106は、整相加算処理部22に各チャネルの受信信号R11’に開口Bからの送信ビーム軸上の領域の各点に焦点を結ぶ遅延時間を与えてRsumB1を得,ビームメモリ23の記憶領域23B-1に保存する。 Two identical received signals R 1 1 and R 1 1 ′ generated by the duplicator 21 are delivered to the phasing addition processing unit 22. The control unit 106 gives a delay time for focusing each point in the region on the transmission beam axis from the transmission aperture A to the reception signal R 1 1 of each channel to the phasing addition processing unit 22 to obtain R sumA 1, The data is stored in the storage area 23A-1 of the beam memory 23. Similarly, the control unit 106 gives a delay time for focusing each point in the region on the transmission beam axis from the aperture B to the received signal R 1 1 ′ of each channel to the phasing addition processing unit 22, and R sumB 1 Is stored in the storage area 23B-1 of the beam memory 23.
 二巡目の送信(第二送信)においても,制御部106は、同様にしてRsumA2とRsumB2を得,ビームメモリ23の記憶領域23A-2および23B-2にそれぞれ保存する。 In the second round transmission (second transmission), the control unit 106 similarly obtains R sumA 2 and R sumB 2 and stores them in the storage areas 23A-2 and 23B-2 of the beam memory 23, respectively.
 制御部106は記憶領域23A-1,23A-2から受信信号RsumA1とRsumA2を読み出し,復号部41の加算器14に入力させる。加算器14の加算処理により送信開口110Aからの送信による整相後復号化受信信号HsumA(sumは、整相加算後であることを示し、下付きのAは、送信開口110Aに対応する整相後復号化受信信号であることを示す)が得られる。また,制御部106は、記憶領域23B-1,23B-2から受信信号RsumB1とRsumB2を読み出し,復号部41の減算器15に入力させる。減算器15の減算処理により送信開口110Bからの送信による整相後復号化受信信号HsumB(sumは、整相加算後であることを示し、下付きのBは、送信開口110Bに対応する整相後復号化受信信号であることを示す)が得られる。 The control unit 106 reads the received signals R sumA 1 and R sumA 2 from the storage areas 23A-1 and 23A-2 and inputs them to the adder 14 of the decoding unit 41. Decoded received signal HsumA after phasing by transmission from transmission aperture 110A by the addition process of adder 14 (sum indicates that after phasing addition, subscript A indicates the phasing corresponding to transmission aperture 110A. Indicating that it is a post-phase decoded received signal). In addition, the control unit 106 reads the received signals R sumB 1 and R sumB 2 from the storage areas 23B-1 and 23B-2 and inputs them to the subtracter 15 of the decoding unit 41. Decoded received signal HsumB after phasing by transmission from transmission aperture 110B by subtraction processing of subtractor 15 (sum indicates that it is after phasing addition, and subscript B indicates phasing corresponding to transmission aperture 110B. Indicating that it is a post-phase decoded received signal).
 この整相加算後の受信信号HsumAおよびHsumBはそれぞれ送信開口110A、110Bに対応する扇形領域35内のある受信焦点のデータである。
<第三実施形態>
 第三実施形態の超音波撮像装置について、図21~図25を用いて説明する。
Received signal H SumA and H sumB each transmission aperture 110A after the phasing addition, a data reception focus with sector area 35 corresponding to 110B.
<Third embodiment>
An ultrasonic imaging apparatus according to the third embodiment will be described with reference to FIGS.
 第三実施形態は、第二実施形態と同様の構成であるが、開口合成部25が、同一の受信焦点についての複数の整相後受信信号を重み付けした後加算する点で第二実施形態とは異なる。具体的には、開口合成部25は、同一の受信焦点についての複数の受信信号の重みを、複数の受信信号が得られた時間のばらつきの中心に近い受信信号ほど重く設定する。 The third embodiment has the same configuration as the second embodiment, but the second embodiment is different from the second embodiment in that the aperture synthesis unit 25 weights and adds a plurality of post-phased reception signals for the same reception focus. Is different. Specifically, the aperture synthesizer 25 sets the weights of the plurality of reception signals for the same reception focus to be heavier as the reception signal is closer to the center of the time variation at which the plurality of reception signals are obtained.
 図21に示すように,各送信走査線(k=1~K)で得られた同一の受信焦点52-1~52-Kについての整相加算後受信信号18-1~18-Kは、本来の受信信号18-1a~18-Kaは互いに同位相であり,不要信号18-1b~18-Kbは交互に反転した位相となる。 As shown in FIG. 21, the received signals 18-1 to 18-K after phasing addition for the same reception focal points 52-1 to 52-K obtained by the transmission scanning lines (k = 1 to K) are as follows. The original received signals 18-1a to 18-Ka have the same phase, and the unnecessary signals 18-1b to 18-Kb have inverted phases alternately.
 第三実施形態では,図21のように、開口合成部25内に重み付け部32を配置する。重み付け部32は、受信信号18-1~18-Kの振幅に重み付けを行い,その後,加算する。重み付け部32-1,32-2・・・32-Kは、時系列に生成された受信信号18-1~18-Kのうち、時系列の中心時間に近いものほど大きく重み付けすることが望ましい。これにより、図21のように本来の受信信号119aをより強め、不要信号119bをより抑制した開口合成後の画像を得ることができる。 In the third embodiment, as shown in FIG. 21, the weighting unit 32 is arranged in the aperture synthesis unit 25. The weighting unit 32 weights the amplitudes of the reception signals 18-1 to 18-K and then adds them. It is desirable that the weighting units 32-1, 32-2,..., 32-K weight the reception signals 18-1 to 18-K generated in time series closer to the center time in the time series. . As a result, as shown in FIG. 21, it is possible to obtain an image after aperture synthesis in which the original received signal 119a is further strengthened and the unnecessary signal 119b is further suppressed.
 図22を用いて具体的な構成を説明する。本実施形態は、第二実施形態の超音波診断装置100内に図22のように,重みテーブル格納部86を配置する。制御部106は、各受信焦点における受信信号18-1~18-K(HsumA(m,σ,k))に対する重みデータ(w(m,σ,k))を,重みテーブル格納部86から読み出し,重み付け部32-1,32-2・・・32-Kに設置する(図23(a),(b))。ただし、mは、受信走査線の番号、σは、受信走査線における受信焦点の番号、kは、送信走査線の番号を示す。重み付け部32-1,32-2・・・32-Kは、受信信号18-1~18-Kにそれぞれ重みデータ(w(m,σ,k))を乗算する。その後,合成部25は、重み付けされた受信信号を合成する(図23(c))。他の構成は、第二実施形態の超音波撮像装置と同様な構成である。 A specific configuration will be described with reference to FIG. In this embodiment, a weight table storage unit 86 is arranged in the ultrasonic diagnostic apparatus 100 of the second embodiment as shown in FIG. The control unit 106 obtains weight data (w (m, σ, k)) for the received signals 18-1 to 18-K (H sumA (m, σ, k)) at each reception focus from the weight table storage unit 86. The reading and weighting units 32-1, 32-2,..., 32-K are installed (FIGS. 23A and 23B). Here, m is the number of the reception scanning line, σ is the number of the reception focus in the reception scanning line, and k is the number of the transmission scanning line. The weighting units 32-1, 32-2,..., 32-K multiply the received signals 18-1 to 18-K by weight data (w (m, σ, k)), respectively. Thereafter, the synthesizer 25 synthesizes the weighted reception signals (FIG. 23 (c)). Other configurations are the same as those of the ultrasonic imaging apparatus of the second embodiment.
 第三実施形態についてさらに説明する。復号部41が、時系列に生成する受信焦点52についての整相加算後受信信号18-1~18-Kに含まれる、本来の受信信号18-1a~18-Kaは、図21に示すように、常に同位相の波形である。これらの受信信号は、図24(a)のように撮像対象120の動きによって少しずつ時間方向にシフトした状態である。そのため、図24(a)のように単純にこれらの受信信号を加算した開口合成後のデータよりも、図24(b)のように、信号出現時間(受信時間)の中心(時系列の中心)に近いものほど重みづけを大きくしてから開口合成部25で開口合成した後のデータの方が、信号の時間軸方向の広がりが小さくなり、空間分解能が向上する。 The third embodiment will be further described. The original reception signals 18-1a to 18-Ka included in the reception signals 18-1 to 18-K after phasing addition for the reception focus 52 generated by the decoding unit 41 in time series are as shown in FIG. In addition, the waveform is always in phase. These received signals are in a state of being gradually shifted in the time direction due to the movement of the imaging target 120 as shown in FIG. Therefore, the center of the signal appearance time (reception time) (the center of the time series) as shown in FIG. 24B, rather than the data after aperture synthesis in which these received signals are simply added as shown in FIG. The closer the data to (), the greater the weighting, and the data after aperture synthesis by the aperture synthesis unit 25 has a smaller spread of the signal in the time axis direction and the spatial resolution is improved.
 一方、復号部41が、時系列に生成する受信焦点52についての整相加算後受信信号18-1~18-Kに含まれる不要信号18-1b~18-Kbは、交互に逆位相の波形となる。これらの信号も少しずつ時間シフトした状態であるため、すべての信号を加算するより、時間シフトが小さい信号同士(不要信号18-1bと18-2b、不要信号18-2bと18-3b)をそれぞれ加算して不要信号を最小限にしてから、加算結果同士を加算した方が、全体の不要信号成分を抑圧させることができる。これは、時系列な遅延整相データの時系列の中心に近い信号ほど重みづけを大きくして加算することと等価である。 On the other hand, the unnecessary signals 18-1b to 18-Kb included in the reception signals 18-1 to 18-K after the phasing addition for the reception focal point 52 generated by the decoding unit 41 in time series are alternately inverted in waveform. It becomes. Since these signals are also time-shifted little by little, signals that have a smaller time shift (unnecessary signals 18-1b and 18-2b, unnecessary signals 18-2b and 18-3b) than the sum of all the signals. It is possible to suppress the unnecessary signal components as a whole by adding the addition results after minimizing the unnecessary signals. This is equivalent to increasing the weighting of signals closer to the center of the time series of time series delay phasing data and adding them.
 このように、時系列の中心時間に近い復号化復号後受信信号ほど大きく重み付けすることにより、合成後の本来の受信信号119aの時間軸方向の広がりを抑えて空間分解能を向上させ、かつ、不要信号119bをより抑制することができる。 In this way, by decoding and decoding received signals that are closer to the center time of the time series, the spatial resolution is improved by suppressing the spread in the time axis direction of the original received signal 119a after synthesis, and unnecessary. The signal 119b can be further suppressed.
 受信信号に重みづけを行って加算を行う具体的な方法としては、ガウシアンフィルタを使った高画質化画像処理の方法と同様の方法を用いることができる。例えば,同じ受信焦点52についての3つの整相加算後受信信号を開口合成する場合に、各信号に対して重み付け係数α、β、γを乗算してから加算する。時系列の中心となる信号に乗算するβは、その前後の信号に乗算するするα、γよりも大きい値に設定する。たとえば、ガウシアン関数の中心の最大振幅値をβに用い、その前後の任意の2点に相当する値をα、γに用いる。また、ガウシアン関数の他に、二項分布に基づいた二項係数値[1 2 1]の要素をα、β、γの重み付け係数にそれぞれ割り当ててもよい。 As a specific method for weighting the received signal and performing addition, a method similar to the image quality enhancement image processing method using a Gaussian filter can be used. For example, when three received signals after phasing and addition for the same reception focus 52 are subjected to aperture synthesis, the signals are added after being multiplied by weighting coefficients α, β, and γ. Β that is multiplied by the signal that is the center of the time series is set to a value that is larger than α and γ that are multiplied by the preceding and succeeding signals. For example, the maximum amplitude value at the center of the Gaussian function is used for β, and the values corresponding to any two points before and after that are used for α and γ. In addition to the Gaussian function, the binomial coefficient value [1 2 1] based on the binomial distribution may be assigned to the weighting coefficients α, β, and γ, respectively.
 このとき、送信を行う送信走査線の順番が図15のように、探触子108の端から順番に配置されている場合,重み付けの方法は,1つの走査線における受信信号に対して,受信走査線の位置に沿って重み付けを行うことと同等である。例えば,図25(a)に示すように,1つの送信走査線について受信走査線を9本設定する場合は,それぞれの受信走査線に1から70の2項係数による重み付けを行う。各送信走査線の受信焦点52について,重み係数を見ると,図25(b)に示すように,受信焦点52の位置は,送信走査線の番号が大きくなるほど内側の受信走査線に移動する。このため,受信焦点52について開口合成される受信信号を、中心近い受信走査線の受信信号ほど振幅が大きくなる重み付けがされる。 At this time, when the order of the transmission scanning lines to be transmitted is arranged in order from the end of the probe 108 as shown in FIG. 15, the weighting method is performed on the reception signal on one scanning line. This is equivalent to weighting along the position of the scanning line. For example, as shown in FIG. 25A, when nine reception scanning lines are set for one transmission scanning line, each reception scanning line is weighted with a binary coefficient of 1 to 70. Looking at the weighting coefficient for the reception focal point 52 of each transmission scanning line, as shown in FIG. 25B, the position of the reception focal point 52 moves to the inner reception scanning line as the transmission scanning line number increases. For this reason, the reception signal that is aperture-synthesized with respect to the reception focus 52 is weighted so that the amplitude of the reception signal of the reception scanning line closer to the center increases.
 したがって,図25(b)に示すように,第二の記憶部24に記憶されたすべての整相後受信信号に対し、受信走査線の番号が中心に近い受信信号ほど大きい重み付けを行う重み付け部250を合成部25に配置すればよい(図26参照)。 Therefore, as shown in FIG. 25 (b), a weighting unit that weights all the received signals after phasing stored in the second storage unit 24 so that the reception signal whose reception scanning line number is closer to the center is greater. 250 may be arranged in the synthesis unit 25 (see FIG. 26).
 なお、図25(b)では,送信走査線の間隔が、受信ビームの間隔とちょうど等しくなる場合を例に記載している。 Note that FIG. 25B shows an example in which the transmission scanning line interval is exactly equal to the reception beam interval.
 なお、上述の実施形態では、図14のフローチャートを用いて超音波撮像装置の動作を説明したが、制御部106は、CPUが予め定めたプログラムを読み込んで実行することにより図14の動作を実現させるソフトウエア構造であってもよいし、ASIC(application specific integrated circuit)等のハードウエア回路や、FPGA(field-programmable gate array)等のプログラマブルハードウエア回路の動作によって実現するハードウエア構造であってもよい。また、開口合成部25の動作についても同様であり、ソフトウエアによって実現される構造であっても、ASICやFPGA等のハードウエア回路によって動作を実現する構造であってもよい。送信部102や受信部105についても同様である。 In the above-described embodiment, the operation of the ultrasonic imaging apparatus has been described with reference to the flowchart in FIG. 14. However, the control unit 106 reads the program predetermined by the CPU and executes it to realize the operation in FIG. 14. Or a hardware structure realized by the operation of a hardware circuit such as an ASIC (application specific integrated circuit) or a programmable hardware circuit such as an FPGA (field-programmable gate array). Also good. The operation of the aperture synthesis unit 25 is the same, and may be a structure realized by software or a structure that realizes the operation by a hardware circuit such as an ASIC or FPGA. The same applies to the transmission unit 102 and the reception unit 105.
25…開口合成部、41…復号部、52…受信焦点、100…超音波撮像装置、101…双樹切り替え部、102…送信部、105…受信部、106…制御部、107…画像処理部、108…超音波探触子、109…受信領域、110、111…送信開口グループ(送信開口ペア)、110A、110B、111A、111B…送信開口、120…撮像対象、121…ユーザインタフェース(UI)、122…表示部 DESCRIPTION OF SYMBOLS 25 ... Aperture synthetic | combination part, 41 ... Decoding part, 52 ... Reception focus, 100 ... Ultrasound imaging device, 101 ... Dual tree switching part, 102 ... Transmission part, 105 ... Reception part, 106 ... Control part, 107 ... Image processing part DESCRIPTION OF SYMBOLS 108 ... Ultrasonic probe, 109 ... Reception area, 110, 111 ... Transmission aperture group (transmission aperture pair), 110A, 110B, 111A, 111B ... Transmission aperture, 120 ... Imaging object, 121 ... User interface (UI) 122: Display unit

Claims (13)

  1.  それぞれ2以上の送信開口を含む、複数の送信開口グループと、1以上の受信領域とを有する超音波探触子と、
     前記送信開口グループに含まれる前記2以上の送信開口から同時に、空間符号化した超音波を送信させる動作を、前記送信開口グループごとに順番に一巡以上行わせる送信部と、
     前記撮像対象からの前記超音波のエコーを受信した前記受信領域の出力に対して、復号処理と整相処理を施して、前記撮像対象の所望の位置の受信焦点についての受信信号を得る受信部と、
     開口合成部とを有し、
     前記送信部は、複数の前記送信開口グループのうち一部の送信開口グループが送信する超音波の前記空間符号化の符号を、他の送信開口グループが送信する超音波の前記空間符号化の符号に対して反転させ、
     前記開口合成部は、複数の前記送信開口グループのうち1の送信開口グループの送信した超音波で生じた前記エコーから前記受信部が得た前記所望の位置の受信焦点についての受信信号と、別の送信開口グループの送信した超音波で生じた前記エコーから前記受信部が得た同一の前記受信焦点についての受信信号とを加算処理することを特徴とする超音波撮像装置。
    An ultrasound probe having a plurality of transmission aperture groups, each including two or more transmission apertures, and one or more reception areas;
    An operation for transmitting the spatially encoded ultrasonic wave simultaneously from the two or more transmission apertures included in the transmission aperture group, one cycle or more in order for each transmission aperture group; and
    A receiving unit that performs a decoding process and a phasing process on the output of the reception area that has received the echo of the ultrasonic wave from the imaging target, and obtains a reception signal for a reception focus at a desired position of the imaging target When,
    An aperture synthesis section,
    The transmission unit is configured to transmit the spatial encoding code of the ultrasonic wave transmitted by a part of the transmission aperture groups among the plurality of transmission aperture groups, and the spatial encoding code of the ultrasonic wave transmitted from another transmission aperture group. Invert
    The aperture synthesizing unit is different from a reception signal for a reception focal point at the desired position obtained by the reception unit from the echo generated by ultrasonic waves transmitted from one transmission aperture group among the plurality of transmission aperture groups. An ultrasonic imaging apparatus characterized by performing an addition process on the reception signal for the same reception focus obtained by the reception unit from the echo generated by the ultrasonic wave transmitted by the transmission aperture group.
  2.  請求項1に記載の超音波撮像装置において、前記送信部は、前記送信開口グループごとに順番に超音波を送信させる際に、前記空間符号化の符号を交互に反転させることを特徴とする超音波撮像装置。 The ultrasonic imaging apparatus according to claim 1, wherein the transmission unit alternately reverses the codes of the spatial encoding when transmitting ultrasonic waves in order for each transmission aperture group. Sound imaging device.
  3.  請求項1に記載の超音波撮像装置において、前記送信部は、前記送信開口グループごとに順番に送信させる前記動作を、二巡以上繰り返し行わせ、二巡目の送信では、前記送信開口グループのそれぞれの空間符号化の符号を一巡目とは異なる符号にさせ、
     前記受信部は、前記受信領域の、前記送信開口グループの一巡目の送信による出力と、二巡目の送信による出力とを用いて復号処理を行うことを特徴とする超音波撮像装置。
    The ultrasonic imaging apparatus according to claim 1, wherein the transmission unit repeatedly performs the operation of transmitting the transmission aperture groups in order for each of the transmission aperture groups two or more times. Make each spatial coding code different from the first round,
    The ultrasonic imaging apparatus, wherein the receiving unit performs a decoding process using an output of the transmission aperture group in a first round transmission and an output of a second round transmission in the reception area.
  4.  請求項1に記載の超音波撮像装置において、前記送信開口グループに含まれる2以上の送信開口は、前記超音波探触子上で離れた位置にあることを特徴とする超音波撮像装置。 2. The ultrasonic imaging apparatus according to claim 1, wherein two or more transmission apertures included in the transmission aperture group are located apart from each other on the ultrasonic probe.
  5.  請求項4に記載の超音波撮像装置において、前記超音波探触子は、複数の前記送信開口が配列された構成であり、
     前記送信部は、前記配列された前記送信開口のうち予め定めた距離にある2以上の送信開口を順番に選択して、前記送信開口グループとして超音波を送信させることを特徴とする超音波撮像装置。
    The ultrasonic imaging apparatus according to claim 4, wherein the ultrasonic probe has a configuration in which a plurality of the transmission openings are arranged.
    The transmission unit sequentially selects two or more transmission apertures at a predetermined distance from the arranged transmission apertures, and transmits ultrasonic waves as the transmission aperture group. apparatus.
  6.  請求項5に記載の超音波撮像装置において、前記送信部は、最初に送信させる前記送信開口グループの前記送信開口として、前記超音波探触子の中央部に位置する2以上の送信開口を選択することを特徴とする超音波撮像装置。 The ultrasonic imaging apparatus according to claim 5, wherein the transmission unit selects two or more transmission apertures positioned at a central portion of the ultrasonic probe as the transmission aperture of the transmission aperture group to be transmitted first. An ultrasonic imaging apparatus.
  7.  請求項4に記載の超音波撮像装置において、前記超音波探触子は、複数の前記送信開口が配列された構成であり、
     前記送信部は、前記配列された前記送信開口のうち2以上の送信開口を、ランダムに選択して、前記送信開口グループとして超音波を送信させることを特徴とする超音波撮像装置。
    The ultrasonic imaging apparatus according to claim 4, wherein the ultrasonic probe has a configuration in which a plurality of the transmission openings are arranged.
    The ultrasonic imaging apparatus, wherein the transmission unit randomly selects two or more transmission apertures among the arranged transmission apertures and transmits ultrasonic waves as the transmission aperture group.
  8.  請求項1に記載の超音波撮像装置において、前記開口合成部は、前記受信部が得た同一の前記受信焦点についての複数の前記受信信号を加算する際に、前記受信信号を重み付けした後加算することを特徴とする超音波撮像装置。 2. The ultrasonic imaging apparatus according to claim 1, wherein the aperture synthesis unit weights the reception signal and adds the plurality of reception signals for the same reception focus obtained by the reception unit. 3. An ultrasonic imaging apparatus.
  9.  請求項8に記載の超音波撮像装置において、前記開口合成部は、同一の前記受信焦点についての複数の前記受信信号の重みを、前記受信信号がそれぞれ得られた時刻のばらつきの中心に近い受信信号ほど重く設定することを特徴とする超音波撮像装置。 9. The ultrasonic imaging apparatus according to claim 8, wherein the aperture synthesizer receives the weights of the plurality of reception signals for the same reception focal point near the center of variation in time at which the reception signals are respectively obtained. An ultrasonic imaging apparatus that is set to be heavier as a signal.
  10.  請求項8に記載の超音波撮像装置において、前記受信部は、前記送信開口を中心に、予め定められた範囲に複数の受信走査線を並べて設定し、前記受信走査線の上にそれぞれ複数の前記受信焦点を設定し、
     前記開口合成部は、前記複数の受信走査線のうち中央に近い受信走査線ほど、その上に位置する前記受信焦点の前記受信信号の重みを大きく設定することを特徴とする超音波撮像装置。
    9. The ultrasonic imaging apparatus according to claim 8, wherein the reception unit sets a plurality of reception scanning lines in a predetermined range around the transmission aperture, and each of the plurality of reception scanning lines is set on the reception scanning line. Set the reception focus;
    The ultrasonic imaging apparatus, wherein the aperture synthesizing unit sets the weight of the reception signal of the reception focal point located above the reception scanning line closer to the center among the plurality of reception scanning lines.
  11.  請求項1に記載の超音波撮像装置において、前記超音波探触子は、前記受信領域を複数有し、
     前記受信部は、前記復号処理を行う復号部と、複数の前記受信領域の出力を整相処理後加算する整相加算部とを有し、
     前記復号部は、複数の前記受信領域ごとに配置され、前記整相加算部は、前記複数の復号部の出力する復号後の信号を整相処理後加算して、前記受信焦点についての受信信号を得ることを特徴とする超音波撮像装置。
    The ultrasonic imaging apparatus according to claim 1, wherein the ultrasonic probe has a plurality of the reception areas,
    The receiving unit includes a decoding unit that performs the decoding process, and a phasing addition unit that adds the outputs of the plurality of reception areas after phasing processing,
    The decoding unit is arranged for each of the plurality of reception areas, and the phasing addition unit adds the decoded signals output from the plurality of decoding units after phasing processing, and receives a reception signal for the reception focus An ultrasonic imaging apparatus characterized in that:
  12.  請求項1に記載の超音波撮像装置において、前記超音波探触子は、前記受信領域を複数有し、
     前記受信部は、前記復号処理を行う復号部と、複数の前記受信領域の出力を整相処理後加算する整相加算部とを有し、
     前記復号部は、前記整相加算部の後段に配置され、前記整相処理および加算処理後の信号を復号処理することを特徴とする超音波撮像装置。
    The ultrasonic imaging apparatus according to claim 1, wherein the ultrasonic probe has a plurality of the reception areas,
    The receiving unit includes a decoding unit that performs the decoding process, and a phasing addition unit that adds the outputs of the plurality of reception areas after phasing processing,
    The ultrasonic imaging apparatus, wherein the decoding unit is arranged at a subsequent stage of the phasing addition unit, and decodes the signal after the phasing processing and addition processing.
  13.  請求項12に記載の超音波撮像装置において、前記整相加算部と前記超音波探触子との間には、複数の前記受信領域ごとに複製器が配置され、複数の前記受信領域が出力した信号を複製した2つの信号をそれぞれ前記整相加算部に出力し、前記整相加算部は、2つの信号をそれぞれ別々に整相加算処理することを特徴とする超音波撮像装置。 13. The ultrasonic imaging apparatus according to claim 12, wherein a duplicator is disposed for each of the plurality of reception areas between the phasing adder and the ultrasonic probe, and the plurality of reception areas are output. An ultrasonic imaging apparatus, wherein two signals obtained by copying the obtained signals are output to the phasing addition unit, and the phasing addition unit performs phasing addition processing on the two signals separately.
PCT/JP2015/066199 2014-06-26 2015-06-04 Ultrasound imaging apparatus WO2015198824A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016529229A JP6212638B2 (en) 2014-06-26 2015-06-04 Ultrasonic imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-131182 2014-06-26
JP2014131182 2014-06-26

Publications (1)

Publication Number Publication Date
WO2015198824A1 true WO2015198824A1 (en) 2015-12-30

Family

ID=54937920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066199 WO2015198824A1 (en) 2014-06-26 2015-06-04 Ultrasound imaging apparatus

Country Status (2)

Country Link
JP (1) JP6212638B2 (en)
WO (1) WO2015198824A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017175834A1 (en) * 2016-04-07 2017-10-12 株式会社日立製作所 Ultrasonic image capturing device and ultrasonic wave transmitting and receiving method
JP2020065629A (en) * 2018-10-23 2020-04-30 株式会社日立製作所 Ultrasonic diagnostic device and operation method thereof
US20220015743A1 (en) * 2020-07-16 2022-01-20 Konica Minolta, Inc. Ultrasound diagnostic device and non-transitory computer readable storage medium
US11969295B2 (en) * 2020-07-16 2024-04-30 Konica Minolta, Inc. Techniques to prevent an occurrence of an artifact due to residual echoes in an ultrasound diagnostic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11155867A (en) * 1997-10-01 1999-06-15 General Electric Co <Ge> Ultrasonic imaging system and method for obtaining ultrasonic scatter data
JP2004209087A (en) * 2003-01-07 2004-07-29 Hitachi Medical Corp Ultrasonic diagnostic apparatus
JP2008253663A (en) * 2007-04-09 2008-10-23 Toshiba Corp Ultrasonic diagnostic device and its control processing program
WO2014057658A1 (en) * 2012-10-12 2014-04-17 コニカミノルタ株式会社 Ultrasonic wave signal processing device, ultrasonic wave signal processing method, and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11155867A (en) * 1997-10-01 1999-06-15 General Electric Co <Ge> Ultrasonic imaging system and method for obtaining ultrasonic scatter data
JP2004209087A (en) * 2003-01-07 2004-07-29 Hitachi Medical Corp Ultrasonic diagnostic apparatus
JP2008253663A (en) * 2007-04-09 2008-10-23 Toshiba Corp Ultrasonic diagnostic device and its control processing program
WO2014057658A1 (en) * 2012-10-12 2014-04-17 コニカミノルタ株式会社 Ultrasonic wave signal processing device, ultrasonic wave signal processing method, and program

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017175834A1 (en) * 2016-04-07 2017-10-12 株式会社日立製作所 Ultrasonic image capturing device and ultrasonic wave transmitting and receiving method
JP2017185085A (en) * 2016-04-07 2017-10-12 株式会社日立製作所 Ultrasound imaging apparatus and ultrasound transmission/reception method
JP2020065629A (en) * 2018-10-23 2020-04-30 株式会社日立製作所 Ultrasonic diagnostic device and operation method thereof
JP7169157B2 (en) 2018-10-23 2022-11-10 富士フイルムヘルスケア株式会社 ULTRASOUND DIAGNOSTIC APPARATUS AND METHOD OF OPERATION THEREOF
US20220015743A1 (en) * 2020-07-16 2022-01-20 Konica Minolta, Inc. Ultrasound diagnostic device and non-transitory computer readable storage medium
US11969295B2 (en) * 2020-07-16 2024-04-30 Konica Minolta, Inc. Techniques to prevent an occurrence of an artifact due to residual echoes in an ultrasound diagnostic device

Also Published As

Publication number Publication date
JP6212638B2 (en) 2017-10-11
JPWO2015198824A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
JP5238692B2 (en) Retrospective and dynamic transmission focusing for spatial compounding
US9198636B2 (en) Continuous transmit focusing method and apparatus for ultrasound imaging system
Bottenus Recovery of the complete data set from focused transmit beams
JP5913557B2 (en) Ultrasonic imaging device
US20090306512A1 (en) Coherent Image Formation for Dynamic Transmit Beamformation
JP6014643B2 (en) Ultrasonic diagnostic equipment
JP6189867B2 (en) Ultrasonic imaging device
JP6212638B2 (en) Ultrasonic imaging device
WO2014118588A1 (en) Multi-faced ultrasound transducer element
JP6378370B2 (en) Ultrasonic imaging apparatus and ultrasonic signal processing method
Trots et al. Orthogonal Golay codes with local beam pattern correction in ultrasonic imaging
CN109416400B (en) Fast synthetic focused ultrasound imaging with large linear arrays
JP3740066B2 (en) Synthetic aperture focusing method in ultrasound imaging system
WO2015129351A1 (en) Ultrasound imaging apparatus
WO2016009544A1 (en) Ultrasound imaging apparatus
KR102452220B1 (en) Imaging method, apparatus implementing the method, a computer program and a computer-readable storage medium
JP6410944B2 (en) Ultrasonic imaging apparatus and ultrasonic imaging method
JP7140625B2 (en) ULTRASOUND IMAGING DEVICE AND ULTRASOUND IMAGING METHOD
JP2015521876A (en) Ultrasound imaging
Bera et al. Dual stage beamforming in the absence of front-end receive focusing
JP7387249B2 (en) Ultrasound diagnostic equipment, medical image processing equipment, and medical image processing programs
JP2022183623A (en) Ultrasonic diagnostic apparatus and image processing method
Park Aperture analysis of coarrays for focused ultrasound imaging
JP2018187014A (en) Ultrasonic imaging device
Martín et al. METHOD TO SIMPLIFY THE BEAMFORMING PROCESS OF MULTI‐ELEMENT SYNTHETIC APERTURE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15811726

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016529229

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15811726

Country of ref document: EP

Kind code of ref document: A1