WO2015129351A1 - Ultrasound imaging apparatus - Google Patents
Ultrasound imaging apparatus Download PDFInfo
- Publication number
- WO2015129351A1 WO2015129351A1 PCT/JP2015/051722 JP2015051722W WO2015129351A1 WO 2015129351 A1 WO2015129351 A1 WO 2015129351A1 JP 2015051722 W JP2015051722 W JP 2015051722W WO 2015129351 A1 WO2015129351 A1 WO 2015129351A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transmission
- unit
- decoding
- reception
- decoded
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/52—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/5207—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/54—Control of the diagnostic device
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
- G01S15/89—Sonar systems specially adapted for specific applications for mapping or imaging
- G01S15/8906—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
- G01S15/8909—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
- G01S15/8913—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using separate transducers for transmission and reception
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
- G01S15/89—Sonar systems specially adapted for specific applications for mapping or imaging
- G01S15/8906—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
- G01S15/8959—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using coded signals for correlation purposes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/52—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
- G01S7/52017—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
- G01S7/52085—Details related to the ultrasound signal acquisition, e.g. scan sequences
Definitions
- the present invention relates to a technique for improving an S / N ratio using encoding in an ultrasonic imaging apparatus.
- the imaging method using ultrasonic waves is configured by transmitting ultrasonic waves to an object, receiving echoes reflected by the object as electrical signals, and displaying the received signals on a monitor as image data.
- Ultrasound is generated by inputting an electrical signal to a transducer (electroacoustic transducer or vibrator) provided in the apparatus.
- the ultrasonic wave emitted from the transducer is partially reflected at the boundary where the acoustic impedance is different while traveling through the object to make an echo.
- the echo is received by the electroacoustic transducer, and a reception signal is generated. Thereby, the boundary surface of the object can be displayed as a tomographic image of the object.
- Such an imaging technique is widely used as a non-destructive inspection of a structure or a diagnostic apparatus for imaging a tomographic image of a living body with minimal invasiveness.
- transducers are arranged in a channel array, and ultrasonic waves are transmitted as ultrasonic beams by array beam forming.
- the ultrasonic imaging apparatus scans an object with an ultrasonic transmission beam and receives an echo generated by each transmission. Then, reception beam forming is performed on the reception signal of each channel to generate small area data in a region on the beam axis. Then, the tomographic image of the entire object is created by combining (summing) the small area data.
- the frame rate can be improved by reducing the number of transmissions for creating one tomographic image.
- the amount of signal obtained decreases and the SN ratio decreases.
- Spatial encoding transmission / reception is known as an imaging method that enables high frame rate imaging while improving the SN ratio (Patent Document 1).
- the S / N ratio is improved by transmitting to a target object simultaneously from a plurality of directions instead of unidirectional transmission and unidirectional reception.
- ultrasonic waves transmitted from any direction are transmitted by simultaneously transmitting encoded ultrasonic waves from multiple directions to an object, receiving echoes, and then decoding the received signal. The received signal is distinguished and separated.
- transmission / reception is performed twice.
- 1 and 1 are encoded for the transmission waveforms of ultrasonic beams in the A direction and the B direction, respectively, and in the second transmission, 1 and ⁇ 1 are respectively encoded.
- the received signals obtained by receiving the echoes generated by the two transmissions are each stored in the state of channel data before being subjected to receive beamforming.
- the received signal transmitted in the A direction and the received signal transmitted in the B direction are separated.
- the subtraction process cancels the reception signal due to transmission in the A direction and leaves only the reception signal due to transmission in the B direction.
- Spatial encoding transmission / reception requires multiple transmissions / receptions.
- the performance of the decoding process is exhibited on the assumption that each received signal is an echo signal from the same part.
- the propagation distance of the echo varies.
- the time axes of the plurality of received signals are shifted from each other, when the summation process or the subtraction process is performed in the decoding process, a signal to be canceled remains, and an artifact (false image) on the image is generated. This causes image quality degradation.
- An object of the present invention is to provide an ultrasonic imaging apparatus capable of reducing artifacts in a generated image even when a motion occurs in an imaging target when performing spatial encoding transmission / reception.
- the receiving unit includes a decoding unit and a synthesizing unit, and the decoding unit performs spatial encoding using two or more of three or more received signals output by the receiving region in response to transmission of three or more ultrasonic waves. Is decoded to generate a received signal after decoding. This process is performed for two or more different combinations of two or more received signals to be used, thereby generating a plurality of decoded received signals.
- the synthesizer performs addition processing on the plurality of decoded received signals.
- 1 is a block diagram showing a configuration of an ultrasonic imaging apparatus according to a first embodiment of the present invention. Explanatory drawing which shows the principle of unnecessary signal suppression of this invention. 1 is a block diagram showing a configuration of an ultrasonic imaging apparatus according to a first embodiment. The block diagram of the receiving part of 1st embodiment.
- A Explanatory drawing which shows the position of the transmission area (aperture) of the ultrasonic probe of 1st embodiment, and the imaging target 120
- C Explanatory drawing which shows the image of the imaging target 120 obtained by arranging small area data.
- Explanatory drawing which shows repeating the scan which transmits in order from the group of the transmission opening of 1st embodiment.
- A Explanatory drawing which shows the reference waveform used for transmission
- A An explanatory diagram showing codes of transmission waveforms transmitted from two transmission apertures by spatial encoding
- a decoded signal Explanatory drawing which shows the state in which the unnecessary component has arisen.
- the block diagram which shows the whole structure of the specific example of the ultrasonic imaging apparatus of 1st embodiment.
- Explanatory drawing which shows the example of arrangement
- the block diagram which shows the structure of the receiving part 105 of the ultrasonic imaging device of FIG.
- the block diagram which shows the structure of the 1st memory
- combination part 25 of the ultrasonic imaging device of FIG. 10 is a flowchart showing transmission / reception operations of the ultrasonic imaging apparatus of FIG.
- 16 is a block diagram showing a first storage unit (channel memory) 40, decoding units 41 and 141, and weighting units 61 to 64 of the ultrasonic imaging apparatus according to the fifth embodiment.
- Explanatory drawing which shows the structure of 2nd decoding part 141 grade
- the ultrasonic imaging apparatus 100 of the present invention includes an ultrasonic probe 108, a transmission unit 102, and a reception unit 105.
- the ultrasonic probe 108 has at least two transmission areas 110A and 110B and at least one reception area 109, each composed of a transducer.
- the transmitting unit 102 transmits the spatially encoded ultrasonic waves from the predetermined two transmission areas 110A and 110B of the ultrasonic probe 108 at least three times toward the predetermined position (120).
- the reception area 109 receives and outputs an ultrasonic echo from the position (120).
- the receiving unit 105 processes this received signal.
- the receiving unit 105 includes a decoding unit 41 and a combining unit 25.
- the decoding unit 41 receives the reception signals (R1, R2, R3,..., Where the reception area 109 sequentially outputs in response to three or more times of transmission of ultrasonic waves.
- the received signal (H1) after decoding is obtained by performing decoding corresponding to the spatial encoding at the time of transmission using two or more of the signals). By performing this processing for each of two or more different combinations of two or more received signals to be used (for example, a set of R1 and R2, a set of R2 and R3), a plurality of received signals after decoding (H A 1, H A2 , ..., where subscript A indicates a received signal corresponding to transmission from transmission area 110A).
- Synthesizing unit 25 a plurality of decoded received signal (H A 1, H A 2 , ⁇ ) and the addition processing to obtain the summed decoded received signal (H A ').
- the decoding unit generates a decoded reception signal (H B 1, H B 2,%) Corresponding to transmission from the transmission area 110B, and obtains an added decoded reception signal (H B ′).
- H B 1, H B 2, a decoded reception signal
- the original received signals 16a and 17a have the same phase between the decoded received signals (H A 1, H A 2,...), And are strengthened by the adding process of the synthesizer 25. Therefore, it is possible to obtain a decoded received signal (H A ′) 19a after synthesis in which the unnecessary component 19b is suppressed and the original received signal 19a is strengthened, and by using this to generate an image, Artifacts can be reduced.
- a publicly known method can be used as the spatial encoding method by the transmission unit 102 and the decoding method by the decoding unit 41.
- An example of known spatial encoding and decoding processing will be described in detail later.
- Decoding processing by the decoding unit 41 separates echo reception signals generated by ultrasonic waves for each transmission region from ultrasonic reception signals transmitted simultaneously from two or more transmission regions 110A and 110B, for each transmission region. Is a process for obtaining a received signal (decoded received signal) corresponding to.
- the synthesizer 25 adds and synthesizes a plurality of decoded received signals (H A 1, H A 2,%) Obtained for the same transmission region (for example, 110A), thereby combining these received signals.
- the unnecessary signals 16b and 17b are suppressed.
- the receiving unit 105 is a first storage unit that sequentially stores at least one of received signals (R1, R2, R3,...) Sequentially received corresponding to three or more transmissions. 40 and a second storage unit 24 that stores at least one of the decoded reception signals (H A 1, H A 2,...) Generated by the decoding unit 41 may be provided.
- the decoding unit 41 can sequentially perform the decoding process by performing the decoding process using the received signal stored in the first storage unit 40 and the received signal received next.
- the synthesizer 25 can reduce unnecessary signals by adding one or more decoded received signals stored in the second storage unit 24 and the decoded received signal generated next.
- the first storage unit 40 has two storage areas for sequentially storing the two most recent reception signals, and the decoding unit 41 performs a decoding process using the reception signals stored in the two storage areas.
- the second storage unit 24 is configured to sequentially store the latest two or more decoded reception signals, and the combining unit 25 adds the two or more decoded reception signals stored in the second storage unit 24. By doing so, the added decoded received signals can be sequentially generated in time series.
- the ultrasonic probe 108 includes a plurality of (for example, P) receiving areas 109 1 ,... 109 P (where the subscript indicates the number of the receiving area).
- the reception unit 105 includes a phasing addition unit 22.
- the decoding unit 41 decodes the reception signal for each of the reception areas 109 1 ,... 109 P , and receives the decoded reception signals (H 1A 1, H 2A 1... H corresponding to the transmission area (for example, 110A).
- PA 1 where the subscript number and P indicate the number of the reception area, and the subscript A indicates a received signal after decoding corresponding to transmission from the transmission area 110A).
- Phasing addition unit 22 the receiving area 109 1,..., Decoded received signal for each of 109 P a (H 1A 1, H 2A 1 ... H PA 1) is added after the phasing.
- a decoded received signal (H sumA 1) after phasing addition can be generated.
- This process is repeated a plurality of times in time series, and a plurality of decoded received signals (H sumA 1, H sumA 2...)
- After phasing addition are generated and added by the synthesizer 25.
- a received signal (H A ′) after decoding can be obtained.
- the combining unit 25 As shown in FIG. 4, by which the synthesis section 25 is disposed downstream than phasing addition unit 22, the combining unit 25 to the receiving area 109 1, ..., it is not necessary to place every 109 P, phasing addition It suffices to arrange one combining unit 25 after the unit 22. Therefore, compared with the case where the synthesizing unit 25 is arranged for each decoding unit 41, the apparatus configuration can be simplified and an increase in the calculation amount of the synthesizing unit 25 can be suppressed.
- the ultrasound probe 108 includes a plurality of transmission areas (111A and B sets, 112A and B sets, 113A and 113A, in addition to the transmission areas 110A and 110B. B set) can be provided.
- the order of transmission from each set of transmission areas is such that the operation (scanning operation) of sequentially transmitting from each set of transmission areas is repeated three times or more. It is preferable. Thereby, it is possible to obtain reception signals for all sets of transmission areas for each scanning operation. Therefore, after the second scan, the received signal obtained can be combined with the received signal obtained in the previous scan and decoded. Therefore, when there are two reception signals used for the decoding process, a decoded reception signal can be generated for the entire transmission region for each scan after the second scan.
- each decoded reception signal for each transmission area indicates data of a small area (small area data) of the imaging target 120 irradiated with the ultrasonic wave transmitted from the transmission area. . That is, the decoded reception signal in the transmission area 110A is data in the small area 211A, and the decoded reception signal in the transmission area 110B is data in the small area 211B. Therefore, by generating a decoded reception signal for each entire transmission area for each scan, an entire image (FIG. 5C) of the imaging target 120 in which these small area data are arranged is generated for each scan. can do. This makes it possible to output images sequentially in substantially real time.
- the transmission unit 102 can transmit a number N of ultrasonic waves that is one or more greater than the accepted number, and the synthesis unit can add the received number of received reception signals after decoding.
- the transmission areas 110A and 110B of the ultrasonic probe 108 may be the same size as the reception areas 109 1 ,..., 109 P or may be different sizes.
- the transmission area and the reception area are set at the time of transmission and reception, respectively, and are not set at the same time. Therefore, the transmission area and the reception area may be entirely or partially overlapped.
- Spatial encoding is a known technique for encoding spatial dimensions.
- Hadamard space coding is used as an example, and a case where ultrasonic waveforms are transmitted simultaneously from two transmission regions will be described.
- the waveform 71 in FIG. 7A is set as a reference waveform.
- a waveform 72 in FIG. 7B is an inverted waveform of the reference waveform.
- the first transmission Tx1 the ultrasonic waves of the reference waveform 71 are simultaneously transmitted from the two transmission areas 110A and 110B toward a predetermined position (imaging target 120).
- the second transmission Tx2 the reference waveform 71 is obtained from one of the two transmission areas (here, the left transmission area 110A in FIG. 8A) and the other (the right transmission area 110B in FIG. 8A). )
- the inverted waveform 72 is -1, and the position of the transmission area is represented as a row vector column, the first transmission is a row vector [1 1] and the second transmission is [1 -1]. Each is represented. Assuming that the transmission order is a matrix row, the first transmission and the second transmission are represented by the matrix of Expression (1).
- the matrix of equation (1) is called a second-order Hadamard matrix.
- a transmission event obtained by encoding a transmission waveform with this matrix is called Hadamard space coding.
- the echoes of the ultrasonic waves transmitted from the two transmission areas 110A and 110B by Hadamard space coding are received by the reception area 109, whereby reception signals R1 and R2 are obtained, respectively.
- the calculation process of separating the reception signal H A 1 by the ultrasonic wave transmitted from the transmission area 110A and the reception signal H B 1 by the ultrasonic wave transmitted from the transmission area 110B from the reception signals R1 and R2 is called Hadamard decoding processing.
- the reception signals R1 and R2 include an ultrasonic reception signal 13a transmitted from the transmission area 110A and an ultrasonic reception signal 13b transmitted from the transmission area 110B, respectively.
- the reception signal 13b by the transmission in the right column (right transmission area 110B) can be canceled, and the reception signal 13a of the echo generated by the transmission in the left transmission area can be superimposed.
- the received signal 16a (decoded received signal H A 1) can be extracted.
- the received signals H A 1 and H B 1) can be separated.
- FIG. 8C shows a state in which the imaging target 120 approaches the ultrasonic probe 108 during two transmissions and the signal appearance time of the reception signal R2 is shifted with respect to the reception signal R1. Yes.
- the Hadamard decoding received signals H A 1, H B 1, remaining unnecessary signals 16b, 18a occurs canceled.
- the synthesizer 25 receives the decoded received signal H A 1. And the decoded signal H A 2 are added to suppress unnecessary signals 16b and 17b.
- the synthesizer 25 similarly adds unnecessary signals to be suppressed.
- the number of transmission areas is determined by the number of Hadamard code columns, it is possible to have two or more transmission areas.
- the plurality of transmission areas may overlap each other.
- FIG. 9 is a block diagram showing a schematic configuration of a specific example of the ultrasonic imaging apparatus 100 of the present embodiment.
- the ultrasonic imaging apparatus 100 includes a control unit 106, a user interface (UI) 121, a transmission / reception switching unit 101, and an image processing unit 107, in addition to the ultrasonic probe 108, the transmission unit 102, and the reception unit 105 described above. And a display unit 122.
- the UI 121 is an interface that accepts the number of decoded received signals added by the synthesis unit 25 described above, instructions from the user, input of various parameters, and the like.
- the control unit 106 controls the overall operation.
- the ultrasonic probe 108 includes a plurality of transducers arranged one-dimensionally or two-dimensionally in a predetermined arrangement.
- the transducer is an electroacoustic conversion element (vibrator) having a function of converting an electric signal into a sound wave and a sound wave into an electric signal.
- the ultrasonic probe 108 is tailored to have an outer shape suitable for use by bringing the surface on which the transducer is disposed (ultrasonic transmission / reception surface) into contact with the imaging target 120.
- the plurality of arranged transducers are virtually or physically divided into a plurality of (P) receiving areas (hereinafter referred to as channels) 109 1 to 109 P.
- Each channel 109 1 to 109 P is constituted by one or a plurality of transducers.
- Transmission region 110A or the like to be set at the time of transmission may be the same size as the channel 109 1, etc., it may be different.
- an example in which an area equivalent to a plurality of adjacent (four in FIG. 10) channels is used as one transmission area 110A will be described.
- the transmission area is referred to as a transmission aperture.
- the transmission opening 110A and the transmission opening 110B may be formed at positions separated from each other, or may be formed so as to partially overlap.
- channels 109 when the plurality of channels 109 1 to 109 P are not distinguished, they are also simply referred to as channels 109.
- the receiving unit 105 uses the channel signal processing unit 20 including the first storage unit 40 (hereinafter referred to as channel memory) and the decoding unit 41 for each of the channels 109 1 to 109 P. It is the arranged configuration.
- the receiving unit 105 includes the phasing / adding unit 22, the second storage unit 24, and the combining unit 25 described above.
- the transmission unit 102 determines the type of waveform to be transmitted, the delay time for each transmission aperture (for example, 110A, 110B), amplitude modulation, weighting, and the like in accordance with an instruction from the control unit 106, and generates a transmission signal corresponding thereto.
- the operation in which the transmitting unit 102 simultaneously transmits the spatially encoded ultrasonic waves from two predetermined transmission openings of the ultrasonic probe is repeated three or more times.
- the position where the transmission of ultrasonic waves is directed from each transmission aperture is the same among three or more transmissions.
- the transmission signal passes through the transmission / reception switching unit 101 and is transferred to the transducers forming the transmission openings 110A and 110B.
- the transducers in the transmission apertures 110A and 110B receive transmission signals and generate ultrasonic waves (ultrasonic pulses and ultrasonic beams).
- the control unit 106 causes the transmission unit 102 to perform the first transmission Tx1 from the transmission openings 110A and 110B, and causes echoes to be received by the reception region (channel) 109 of the ultrasonic probe 108.
- the reception region (channel) 109 of the ultrasonic probe 108 As the channels used for reception, all the channels 109 1 to 109 P of the ultrasonic probe 108 may be used, or only channels within a predetermined reception opening may be used.
- the control unit 106 receives the received signals R 1 1, R 2 1 ... R P 1 of each channel 109 1 ... 109 P (subscript indicates the channel number, and 1 is obtained in the first transmission. The received signal) is passed to the receiving unit 105.
- the channel memory 40 includes two storage areas 40-1 and 40-2 for each set of transmission apertures.
- Control unit 106 transmits the opening 110A, the received signal R 1 1 to channel 109 1 was obtained by the first transmission Tx1 from 110B, transmission opening 110A, is stored in the storage area 40-1 for 110B.
- the reception signals R 2 1... R P 1 obtained by the other channels 109 2 ... 109 P are also used for the transmission openings 110A and 110B of the channel memory 40 connected to the respective channels. It is stored in the storage area 40-1.
- control unit 106 causes the transmission unit 102 to perform the second transmission Tx2 from the transmission apertures 110A and 110B, and the obtained reception signal R 1 2 of the channel 109 1 is stored in the storage area 40-2 in the channel memory 40.
- the transmission openings 110A of the first storage unit 40 connected to the respective channels.
- the data is stored in the storage area 40-2 for 110B.
- the control unit 106 reads the received signals R 1 1 and R 1 2 from the storage areas 40-1 and 40-2 for the transmission openings 110A and 110B and inputs them to the adder 14 and the subtracter 15 in the decoding unit 41, respectively.
- Received signal H 1A 1 after decoding by transmission from the transmission aperture 110A by the addition process of the adder 14 (subscript indicates the channel number, and subscript A is the decoded received signal corresponding to the transmission aperture 110A. 1 indicates that it is the first received signal obtained after decoding).
- Received signal H 1B 1 after decoding by transmission from transmission aperture 110B by subtracting process by subtracter 15 (subscript number indicates channel number, subscript B is received signal after decoding corresponding to transmission aperture 110B) 1 indicates that it is the first received signal obtained after decoding).
- the control unit 106 also inputs the received signal to the decoding unit 41 for the channel memories 40 connected to the other channels 109 2 ... 109 P , respectively, and receives the decoded reception signal and transmission from the transmission aperture 110A.
- a decoded reception signal by transmission from the opening 110B is calculated.
- the control unit 106 gives a delay time suitable for each of the decoded signals H 1A 1, H 2A 1, H 3A 1... Of each channel to the phasing addition processing unit 22 to perform summation processing (receive beam forming). ).
- decoded signals H 1A 1, H 2A 1, the received signal and the H 3A 1 ⁇ ⁇ ⁇ to phasing addition H sumA 1 (sum indicates that a post-delay-and-sum, the A subscript, It indicates that the received signal corresponds to the transmission aperture 110A, and 1 indicates that it is the first received signal).
- the reception signal HsumA1 after the phasing addition is small area data 210A (see FIG. 5B) corresponding to the transmission aperture 110A.
- the ⁇ H sumB 1 small area data 210B corresponding to the transmission openings 110B.
- the second storage unit 24 has storage areas 24A-1 to 24A- (N ⁇ 1) for storing two sets of N ⁇ 1 small area data for each set of transmission apertures. ) And 24B-1 to 24B- (N-1).
- the received signal H sumA 1 (small area data 210A) after the phasing addition corresponding to the transmission aperture 110A generated by the phasing addition processing unit 22 is stored in the storage area 24A-1.
- the post-phasing addition received signal HsumB1 (small area data 210B) corresponding to the transmission aperture 110B is stored in the storage area 24B-1.
- the control unit 106 causes the transmission unit 102 to execute the third transmission Tx3 that is spatially encoded in the same manner as the first transmission Tx1.
- the reception signal R 13 obtained by the channel 109 1 is overwritten and stored in the storage area 40-1 for the transmission openings 110A and 110B. That is, the received signal R 1 1 stored in the storage area 40-1 by the first transmission Tx1 is deleted, and the received signal R 13 of the third transmission Tx3 is stored.
- the control unit 106 reads the received signals R 1 2 and R 13 from the storage areas 40-1 and 40-2 for the transmission openings 110A and 110B, and inputs them to the adder 14 and the subtracter 15 in the decoding unit 41, respectively. Then, a decoded reception signal H 1A 2 for the transmission aperture 110A and a decoded reception signal H 1B 2 for the transmission aperture 110B are obtained. Similarly, the control unit 106 also inputs the received signal to the decoding unit 41 for the channel memories 40 connected to the other channels 109 2 ... 109 P , respectively, and receives the decoded reception signal and transmission from the transmission aperture 110A. A decoded reception signal by transmission from the opening 110B is calculated.
- the received signal HsumA2 after phasing addition (small area data 210A corresponding to the transmission aperture 110A) and the received signal HsumB2 after phasing addition (small area data 210B corresponding to the transmission aperture 110B) are stored in the second memory.
- the data is stored in the storage areas 24A-2 and 24B-2 of the unit 24, respectively.
- the control unit 106 stores, in the storage area 24A-1, two time-series small area data 210A (received signals H sumA 1 and H sumA 2 after phasing addition) for the transmission aperture 110A obtained by three transmissions. , 24A-2 and transferred to the combining unit 25.
- the addition processing unit 33 in the synthesizing unit 25 adds two small area data 210A (received signals H sumA 1 and H sumA 2 after phasing addition) for the transmission aperture 110A, and combines the small area data 210A ( A combined received signal H A ′) is obtained.
- control unit 106 reads out the small area data 210A (received signals H sumB 1 and H sumB 2 after phasing addition) for the transmission aperture 110B from the storage areas 24B-1 and 24B-2, and combines the data 25 Pass to.
- the addition processing unit 33 of the synthesizing unit 25 adds the two small area data 210B (the received signals H sumB 1 and H sumB 2 after phasing addition) for the transmission aperture 110B, and combines the small area data 210B (synthesized). After receiving signal H B ′) is obtained.
- small area data 210 ⁇ / b> A, B combined received signals H A ′, H B ′
- unnecessary signals due to the movement of the imaging target 120 are suppressed.
- the small area data H A ′ and H B ′ are stored in storage areas 24A-T and 24B-T provided in the second storage unit 24.
- the control unit 106 repeats the same process as described above for each set of transmission apertures. At this time, in the above description, it has been described that transmission is performed three times (N times) continuously from one set of transmission apertures 110A and 110B. However, as shown in FIG. It is desirable to repeat the scan to be performed three times (N times).
- the first transmission is sequentially performed for each set of transmission apertures (steps 142 to 148).
- the number of scans n is an odd number
- transmission is performed by encoding (first spatial encoding) in the first row of equation (1) (step 144)
- the obtained reception signal is stored in the channel memory 40.
- the data is stored in the storage area 40-1 for each set of transmission apertures.
- transmission is performed by encoding (first spatial encoding) in the first row of equation (1) (step 146), and the obtained reception signal is set to a set of transmission apertures in the channel memory 40.
- Each of them is stored in the storage area 40-2 (step 147).
- the control unit 106 transfers the received signals in the storage areas 40-1 and 40-2 to the decoding unit 41 for each set of transmission apertures (steps 151 and 156) after the second scan number n (step 149).
- the decoded received signals H A and H B are generated (steps 152 and 153). Further, the received signals H A and H B after decoding are phased and added by the phasing adder 22 respectively, and the obtained small area data H sumA and H sumB are stored in the storage areas 24A-1 and 24B ⁇ of the second storage unit 24, respectively. 1 (that is, storage areas 24A- (n-1), 24B- (n-1)) is stored for each set of transmission apertures (step 155).
- each transmission aperture set of the third transmission by the first spatial encoding is sequentially performed, and the obtained reception signal is overwritten and stored in the storage area 40-1 for each transmission aperture set of the channel memory 40. (Steps 142 to 148). Then, the process proceeds to steps 151 to 156, and the control unit 106 sequentially passes the received signals of the storage areas 40-1 and 40-2 to the respective decoding units 41 for each set of transmission apertures, and for each set of transmission apertures, After decoding, reception signals H A and H B are generated.
- the decoded reception signals H A and H B are phased and added by the phasing and adding unit 22 respectively, and the obtained small area data H sumA and H sumB are stored in the storage areas 24A-2 and 24B-2 of the second storage unit 24, respectively. (That is, storage areas 24A- (n-1), 24B- (n-1)) are stored for each set of transmission apertures.
- the control unit 106 sets the data in the storage areas 24A-1 to 24A- (N-1) of the second storage unit 24 for each set of transmission apertures (steps 158 and 163). Is transferred to the synthesizing unit 25, and the synthesizing unit 25 adds to obtain one small area data H A ′ (steps 159 and 160). Next, the control unit 106 reads out the data in the storage areas 24B-1 and 24B- (N-1) and transfers the data to the combining unit 25, and the addition processing unit 33 of the combining unit 25 adds the other small area data.
- H B ′ is obtained (steps 161 and 162).
- the obtained small area data H A ′ and H B ′ are stored in the storage areas 24A-T and 24B-T provided in the second storage unit 24 for each transmission aperture.
- a total of eight small area data 210A to 213A and 210B to 213B are stored in the storage areas 24A-T and 24B-T in FIG. 13, two for each set of transmission apertures shown in FIG.
- the control unit 106 transfers the small area data of the storage areas 24A-T and 24B-T to the synthesis unit 25, and the image construction unit 34 of the synthesis unit 25 arranges these small area data at predetermined positions, respectively.
- An image of the imaging target 120 is constructed (step 164).
- the fourth and subsequent n-th scans are performed.
- the processing of the fourth and subsequent scans is the same as in the above steps, but in step 155, the storage area of the second storage unit 24 that stores the small area data H sumA and H sumB is the storage area 24A- ( n-1- (N-1)) and 24B- (n-1- (N-1)), and the storage areas after the (N-1) th time are sequentially overwritten and saved.
- the image of the imaging target 120 using the small area data synthesized by the synthesis unit 25 can be constructed every n-th scan.
- the number of scans N until the composition unit 25 performs composition is not limited to three, and can be any number.
- the setting of the number of scans N can be accepted from the operator via the UI 121.
- the number (N ⁇ 1) of decoded received signals to be combined by the combining unit 25 can be received from the operator via the UI 121, and transmission can be performed by a number one or more larger than that number.
- the control unit 106 can also set an appropriate number of scans N according to the set imaging conditions. In this case, an appropriate number of scans N is obtained in advance for each settable imaging condition, and this is stored in a memory in the control unit 106 or an external memory, and the control unit 106 reads and uses it. Can do.
- the control unit 106 causes the first spatial coding to be transmitted when the number of scans is an odd number, and the second spatial coding to be performed when the number of scans is an even number.
- decoding can be performed for each scan using the two most recently received signals, and small area data for each set of transmission apertures can be obtained in time series. Therefore, it is possible to display an image to be imaged almost in real time for each scan.
- the present invention is not limited to this, and if it is possible to prepare a large number of storage areas in the scan memory 40, it is also possible to perform decoding using two received signals that are not the most recent. .
- the small area data need not be mutually exclusive in the imaging region of the imaging target 120 and may partially overlap each other. At this time, the overlapping small area data is combined and added coherently or incoherently as the same area data in the combining unit 25.
- the combining unit 25 adds a plurality of time-series small area data, thereby obtaining small area data in which unnecessary data resulting from the movement of the imaging target is suppressed.
- the second storage unit 24 and the combining unit 25 are arranged in the subsequent stage of the phasing addition unit 22, even if the device has 100 or more reception channels, the second storage unit is stored in the entire device. Only one unit 24 and one synthesis unit 25 need be arranged. Therefore, the hardware configuration does not increase in proportion to the number of channels, and the increase in hardware cost according to the present embodiment can be minimized. Since the phasing addition is a linear addition process, the phase of the unnecessary component in the signal before and after the phasing addition is maintained.
- the control unit 106 may be configured to determine the number of small area data to be added by the synthesis unit 25 according to the speed of movement of the imaging target. In this case, the control unit 106 separately performs image processing, obtains the speed of movement of the imaging target by calculation, and determines the number of addition processes from the relationship between a predetermined speed and the number of addition processes. it can.
- the combining unit 25 has a plurality of decoded received signals (small area data) H sumA 1, H sumA 2... H sumA (N ⁇ 1 .., 32- (N ⁇ 1).
- the weighting units 32-1, 32-2,..., 32- (N-1) weights the received signal that is closer to the center time of the time series among the received signals generated in the time series. Is desirable.
- FIG. 1 As a result, as shown in FIG.
- the original received signal 119a is further strengthened, and small area data (decoded received signal after synthesis) H A ′ in which the unnecessary signal 119b is further suppressed can be obtained.
- a weight data storage unit 86 in which weight coefficient values are stored in advance is provided. Other configurations are the same as those of the ultrasonic imaging apparatus of the first embodiment.
- the decoded received signals H A 1 the decoding unit 41 generates a time series, H A 2, H A 3 included in ..., original received signal 16a, 17a, 18a .. are always in-phase waveforms as shown in FIG.
- These received signals are in a state in which the time is gradually shifted by the movement of the imaging target 120 as shown in FIG. Therefore, as shown in FIG. 17A, the signal appearance time center (the center of the time series) is closer than the small area data (decoded received signal after synthesis) H A ′ obtained by simply adding these received signals.
- the smaller area data (decoded received signal after synthesis) H A ′ which is weighted after increasing the weight, is less spread in the time axis direction of the signal and the spatial resolution is improved. .
- the unnecessary signals 16b to 18b included in the decoded received signals H A 1, H A 2, H A 3... Generated by the decoding unit 41 in time series alternately have waveforms with opposite phases. Since these signals are also time-shifted little by little, unnecessary signals are obtained by adding together signals having a small time shift (unnecessary signals 16b and 17b, unnecessary signals 17b and 18b), rather than adding all signals together. If the addition results are added to each other after minimizing the error, the entire unnecessary signal component can be suppressed. This is equivalent to increasing the weighting and adding the signals closer to the center of the time series of the received signals H A 1, H A 2, H A 3.
- the spatial resolution is improved by suppressing the spread of the original received signal 119a in the time axis direction, and the unnecessary signal 119b is further suppressed. can do.
- the method of performing weighting and performing addition is similar to the method of high quality image processing using a Gaussian filter. For example, when the three signals H A 1, H A 2, and H A 3 shown in FIG. 16 are summed, the signals are summed after weighting coefficients ⁇ , ⁇ , and ⁇ are multiplied. ⁇ multiplied by the signal of H A 2 which is the center of the time series is set to a value larger than ⁇ and ⁇ before and after that. For example, the maximum amplitude value at the center of the Gaussian function is used for ⁇ , and the values corresponding to any two points before and after that are used for ⁇ and ⁇ . In addition to the Gaussian function, the binomial coefficient value [1 2 1] based on the binomial distribution may be assigned to the weighting coefficients ⁇ , ⁇ , and ⁇ , respectively.
- the control unit 106 reduces the small area data H sumA 1, H sum stored in the storage areas 24A-1 to 24A- (N ⁇ 1) of the second storage unit 24. sumA 2... H sumA (N ⁇ 1) is read and transferred to the synthesis unit 25.
- the weighting units 32-1 to 32- (N ⁇ 1) of the combining unit 25 weight the waveform amplitudes of H sumA 1, H sumA 2... H sumA (N ⁇ 1).
- the weight data storage unit 86 stores weight data in advance according to the number of data to be weighted (N-1).
- the control unit 106 selects an appropriate weighting coefficient value from the weight data storage unit 86 according to the number of data to be weighted (N ⁇ 1), and assigns weighting units 32-1, 32-2,. Set to -1). As a result, the weight coefficient is increased as the time closer to the center of the time series of H sumA 1, H sumA 2... H sumA (N ⁇ 1).
- the small area data is added by the addition processing unit 33 of the synthesis unit 25 to become small area data (decoded received signal after synthesis) H A ′, and the storage areas 24A-T of the second storage unit (Step 160). As a result, the unnecessary signal is further suppressed, and small area data in which the spatial resolution of the original received signal is increased can be generated.
- step 162 after weighting, addition processing is performed.
- the transmission unit 102 causes the transmission aperture to transmit the spatial encoding combined with the temporal encoding having an orthogonal relationship, that is, the spatio-temporal encoded ultrasonic.
- the receiving unit 105 includes filters 54-1 to 54-2, 55-1 to 55-2 that perform decoding corresponding to time coding, and an adding unit 56 in the decoding unit 41 as shown in FIG.
- the synthesizer 25 adds the plurality of decoded received signals decoded by the decoder 41.
- Time coding is a method of coding an ultrasonic waveform and distributing ultrasonic energy in the time direction and applying a compression filter at the time of reception.
- the energy of the dispersed sound waves is compressed, and a decoded signal having a high amplitude can be generated, so that imaging with an improved SN ratio can be performed.
- temporal encoding to spatial encoding and applying it to the present invention, artifacts in the generated image can be reduced and the S / N ratio can be improved even when motion occurs in the imaging target. it can.
- Spatio-temporal coding transmission / reception itself in which temporal coding is added to spatial coding is a known technique described in, for example, US Pat. No. 6,048,315.
- the configuration of generating and synthesizing the post-reception signal is unique to the present invention.
- the Golay code is known as a code in which an unnecessary signal called a time side lobe does not remain before and after the compressed pulse waveform in the time direction.
- the Golay code is a binary code that is a pair of complementary sequences having the same code length. Assuming that the autocorrelation functions of the pair of codes X1 and X2 are ⁇ X1X1 and ⁇ X2X2 , the sum ⁇ x1x2 (k) of those k-th elements is expressed by the equation (2).
- L is the code length of the Golay code.
- the waveform of the first transmission Tx1 subjected only to time encoding Is a waveform representing X1 as shown in FIG. 20A
- the waveform of the second transmission Tx2 is a waveform representing X2.
- the reference waveform 71 in FIG. 7A is assigned to reference numeral 1
- the inverted waveform 72 in FIG. 7B is assigned to reference numeral -1.
- the received signals R1 and R2 obtained by each transmission have the same waveform as the transmission waveform assuming an echo from one scatterer.
- the received signal has a waveform in which various echoes are overlapped by a medium scatterer.
- autocorrelation filters 54 and 55 of codes X1 and X2 used for each transmission are applied to the two received signals R1 and R2 (FIGS. 19 and 20B). .
- the autocorrelation filters 54 and 55 are matched filters using coefficients obtained by inverting the transmitted code coefficients (1 or ⁇ 1) with respect to the time axis. Thereby, the compression pulses C1 and C2 are generated.
- the compression pulses C1 and C2 are composed of a central main lobe and time side lobes appearing before and after the time direction, and the time side lobes are in an inverted relationship with each other with the compression pulses C1 and C2. Therefore, the time side lobe is canceled by adding them at the same time by the adding unit 56, and the main lobe signals are added and output.
- the codes Y1 and Y2 are codes such that the sum of the cross-correlation functions of Y1 and Y2 with respect to X1 and X2 is zero at all points.
- the cross-correlation function of the X1 and Y1 [psi X1Y1, X2 and Y2 cross correlation of the number of the [psi X2Y2, sum between their k-th element is represented by the formula (3).
- L is the code length of the Golay code. Therefore, even when the X and Y codes are transmitted simultaneously, if the cross-correlation processing is performed on the received signal, it can be separated as an echo signal transmitted with each code.
- Equation (4) space-time coded transmission as shown in Equation (4) is performed.
- the row vector indicates the order of transmission
- the column vector indicates the position of the transmission aperture. Therefore, in Expression (4), the first transmission is [X1 Y1], and a waveform time-coded with X1 from one of the two transmission apertures and a waveform time-coded with Y2 from the other are simultaneously transmitted. .
- the second transmission is [X2 Y2], and a waveform time-coded by X2 from one of the two transmission apertures and a waveform time-coded by Y2 from the other are simultaneously transmitted.
- Decoding according to space-time coding is performed using the first received signal and the second received signal received for each transmission of Expression (4). Both Golay decoding by the X code and Golay decoding by the Y code are performed to separate the Golay code X echo from the Y echo. Accordingly, assuming that the received signals of each transmission are R1 and R2, the decoding process of space-time coding is expressed by Expression (5).
- the unnecessary signal generated by the movement of the imaging target is the remaining cancellation of the time side lobe generated in the compressed pulse of FIG. That is, when the imaging target moves between two transmissions / receptions, the signal appearance time of the reception signal R2 is shifted with respect to the reception signal R1, so that the time side lobes of C1 and C2 do not cancel each other. Become complete.
- the signal appearance time of the received signal R2 with respect to the received signal R1 is also the signal that should be 0 when the signals ⁇ X1Y1 and ⁇ X2Y2 signals after cross-correlation processing with the Golay pair in the orthogonal relationship are added. Since it is in a shifted state, an unneeded unnecessary signal is generated.
- the synthesizer 25 adds a plurality of decoded reception signals obtained for the same transmission aperture, so that an unnecessary signal is generated even when the imaging target moves. Can be suppressed.
- the channel memory 40 is provided with two storage areas 40-1 to 40-2 for each set of transmission openings.
- the decoding unit 41 in the present embodiment includes a correlation filter 54-1 with a code X1, a correlation filter 54-2 with a code X2, a correlation filter 55-1 with a code Y1, a correlation filter 55-2 with a code Y2, and an addition unit. 56 is provided as shown in FIG.
- the decoded reception signal H 1A 1 and the decoded reception signal H 1B 1 obtained after the processing of the adder 56 are respectively received from the decoded reception signal and the transmission opening 110B by transmission from the transmission aperture 110A, as in the first embodiment. Is a received signal after decoding. As in the first embodiment, the subscript number indicates the channel number, the alphabetic character indicates the decoded received signal corresponding to the transmission aperture, and 1 indicates the first obtained decoded signal. Show.
- the configuration other than the first spatial encoding [X1 Y1] which is the first temporal encoding and the second spatial encoding [X2 Y2] which is the second space-time encoding is the control at the time of transmission and reception.
- the operation of the unit 106 is the same as that in FIG.
- the transmission unit 102 transmits not only the spatial encoding described in the first embodiment but also the temporally encoded ultrasonic wave from the transmission aperture.
- the receiving unit 105 includes a second decoding unit 141 that performs decoding corresponding to time coding in addition to the decoding unit 41 as illustrated in FIG.
- the synthesizer 25 adds the plurality of decoded received signals decoded by the decoder 41 and the second decoder 141.
- the second decoding unit 141 can be configured to perform decoding corresponding to temporal encoding on the received signal after decoding performed by the decoding unit 41 corresponding to spatial encoding.
- the number of transmissions of the transmission unit 102 is 5 or more.
- the decoding unit 41 and the second decoding unit 141 perform decoding using four received signals among the received signals obtained by five or more transmissions, and generate a decoded received signal. By performing this process for two or more different combinations of four received signals to be used, a plurality of decoded received signals can be generated.
- the combining unit 25 combines these.
- the first storage unit 40 of the receiving unit 105 four storage areas 40-1 to 40-4 that sequentially store the latest four received signals among the received signals for each transmission of five or more ultrasonic waves. 40-4 is provided.
- the decoding unit 41 and the second decoding unit 141 perform different decoding processes using the four received signals respectively stored in the four storage areas 40-1 to 40-4, so that the combinations of received signals are different.
- the decoded received signal can be generated in time series.
- the time encoding by the code X1 is the first time encoding
- the time encoding by the code X2 is the second time encoding.
- the first transmission Tx1 ultrasonic wave is subjected to first spatial encoding and first time encoding
- the second transmission Tx2 ultrasonic wave is subjected to the first spatial encoding and the first temporal encoding. Two-time encoding is performed.
- the second transmission Tx3 is subjected to the second spatial encoding and the first temporal encoding
- the fourth transmission Tx4 is subjected to the second spatial encoding and the second temporal encoding.
- a spatial encoding matrix combined with temporal encoding is expressed by Expression (6).
- the decoding unit 41 In the decoding process, as shown in FIG. 22, Hadamard decoding is first performed by the decoding unit 41 on the four received signals R1 to R4 obtained by four transmissions. At this time, two received signals that have been subjected to the same time-coded transmission are used in combination. Thereby, the echo by the transmission from a some transmission opening is isolate
- This decoding process is expressed by Equation (7), and thereby, a decoded reception signal HA from one transmission aperture (for example, 110A) is generated.
- the decoded received signal H B corresponding to the other transmission aperture (for example, 110B) is obtained by Expression (8).
- the decoding processing of equations (7) and (8) is referred to as Golay-Hadamard decoding.
- unnecessary signals can be suppressed even when the imaging target moves by adding a plurality of decoded reception signals obtained for the same transmission aperture by Golay-Hadamard decoding, by the synthesis unit 25.
- the channel memory 40 is provided with four storage areas 40-1 to 40-4 for each set of transmission openings.
- the decoding unit 41 includes two adders 14 and two subtracters 15 and can decode the spatial encoding of the four received signals.
- the second decoding unit 141 includes autocorrelation filters 54 and 55 and an addition unit 56 as shown in FIG. 21 for Golay time-coding decoding.
- control unit 106 during transmission / reception will be described with reference to FIG.
- the control unit 106 transmits an ultrasonic wave subjected to the first spatial coding and the first time coding (X1) (step 172).
- the control unit 106 stores the obtained reception signal R1 in the storage area 40-1 of the channel memory 40 (step 173). This is sequentially performed for all sets of transmission apertures (steps 142 and 148).
- the control unit 106 stores the obtained reception signal R2 in the storage area 40-2 of the channel memory 40 (step 176). This is sequentially performed for all sets of transmission apertures (steps 142 and 148).
- the control unit 106 stores the obtained reception signal R3 in the storage area 40-3 of the channel memory 40 (step 179). This is sequentially performed for all sets of transmission apertures (steps 142 and 148).
- the control unit 106 stores the obtained reception signal R4 in the storage area 40-4 of the channel memory 40 (step 182). This is sequentially performed for all sets of transmission apertures (steps 142 and 148).
- the control unit 106 proceeds to step 152 and transfers the received signals R1 to R4 in the storage areas 40-1 to 40-4 to the decoding unit 41 in FIG.
- the decoding unit performs an addition process by the adder 14 and a subtraction process by the subtracter 15 on the reception signal R1 obtained by the transmission of the first spatial coding and the reception signal R3 obtained by the transmission of the second spatial coding. To decrypt. Similarly, the received signals R2 and R4 are decoded by addition processing and subtraction processing.
- the four received signals obtained by decoding the spatial coding obtained by the decoding unit 41 are applied with autocorrelation filters 54 and 55 in the second decoding unit 141 to generate compressed pulses, respectively.
- decoded received signals H 1A 1 and H 1B 1 are obtained (step 153). This process is performed for each set of transmission apertures (step 151).
- the obtained decoded received signals H 1A 1 and H 1B 1 are subjected to the following steps 154 to 156 to obtain small area data after phasing addition. Since these steps 154 to 156 are the same as those in the first embodiment, description thereof will be omitted.
- the control unit 106 overwrites and stores the received signal R5 obtained by this transmission in the storage area 40-1 of the channel memory 40 (step 173). Therefore, when performing the decoding process in step 152, the control unit 106 reads the received signals R5, R2, R3, and R4 from the four storage areas 40-1 to 40-4 and passes them to the decoding unit 41. Subsequent steps 153 to 156 provide small area data after phasing addition.
- the combining unit 25 obtains the combined small area data H A ′ and H B ′ and constructs an image. In this image, an unnecessary signal generated by moving the imaging target is suppressed. Thereafter, one image is constructed for each scan.
- the ultrasonic diagnostic apparatus of the fifth embodiment has a configuration in which weighting units 61 to 64 are arranged between the channel memory 20 and the decoding unit 41 as shown in FIG. Other configurations are the same as those of the fourth embodiment.
- the control unit 106 sets the weights of the weighting units 61 to 64.
- weighting in Golay decoding is given in order to suppress unnecessary signals due to Golay coding.
- the weighting coefficient values set in the weighting units 61 to 64 are set so that the centered value becomes larger when the reception signals stored in the storage areas 40-1 to 40-4 are arranged in the order of reception. .
- the weighting coefficient value is selected and set by the control unit 106 from the weight data storage unit 87 in which values corresponding to Gaussian functions, binomial coefficient values, and the like are stored in advance.
- a transmission aperture for performing space-time coding of the following equation (9) is added to the transmission aperture of space-time coding performed by equation (6).
- the space-time coding is as shown in Equation (10).
- Hadamard decoding is performed on a received signal that has been subjected to the same time-coded transmission.
- decoding is performed using the first received signal and the second received signal, and decoding is performed using the second received signal and the fourth received signal.
- Golay decoding is applied.
- both Golay decoding by the X code and Golay decoding by the Y code are performed, and the Golay code X echo and the Y echo are separated. Therefore, assuming that the received signals for each transmission are R1 to R4, the Hadamard decoding process is expressed by Expression (11).
- Golay decoding is performed with each code, and signals in each column are extracted.
- the control unit 106 sets four transmission apertures in the ultrasonic probe 108. Assuming that the transmission apertures are transmission apertures A, B, C, and D, respectively, the control unit 106 codes the time waveform in the order of X1, X2, X1, and X2 to the channel of the transmission aperture A according to Equation (10).
- the transmission signals that have been converted are sent sequentially.
- a transmission signal obtained by encoding a time waveform in the order of X1, X2, -X1, and -X2 is sequentially sent to the channel of the transmission aperture B.
- a transmission signal obtained by encoding a time waveform in the order of Y1, Y2, Y1, and Y2 is sequentially sent to the channel of the transmission aperture C.
- a transmission signal obtained by encoding a time waveform in the order of Y1, Y2, -Y1, and -Y2 is sequentially sent to the channel of the transmission aperture D.
- autocorrelation filters 57 and 58 using a Y code are added to the second decoding unit 141.
- the control unit 106 adds the received signals R1 and R3 by the adder 14 and subtracts it by the subtractor 15.
- the output is divided into two, and an X1 autocorrelation filter 54 and a Y1 autocorrelation filter 57 are applied.
- the received signals R2 and R4 are added by the adder 14 and subtracted by the subtractor 15, respectively.
- the output is divided into two parts, and the X2 autocorrelation filter 55 and the Y2 autocorrelation filter 58 are applied.
- the addition is performed by the Golay code adding unit 56, so that the decoded reception signal H A corresponding to the transmission of the transmission aperture A subjected to the Golay-Hadamard decoding, the decoded reception signal H B corresponding to the transmission of the transmission aperture B , The decoded reception signal H C corresponding to the transmission of the transmission aperture C and the decoded reception signal HD corresponding to the transmission of the transmission aperture D are output.
- the frame rate is improved.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Acoustics & Sound (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Animal Behavior & Ethology (AREA)
- Molecular Biology (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
Provided is an ultrasound imaging apparatus whereby artifacts in a generated image can be reduced even when the imaging subject moves during spatially encoded transmission/reception. In the present invention, spatially encoded ultrasonic waves are transmitted three or more times toward a predetermined position from at least two transmission regions of an ultrasonic probe simultaneously. A reception unit in the present invention includes a decoding unit and a synthesizing unit, and the decoding unit performs decoding corresponding to the spatial encoding and generates a decoded reception signal (HA1) using two or more of three or more reception signals (R1, R2, R3) outputted by the reception regions in corresponding fashion to the three or more transmissions of ultrasonic waves. This processing is performed for each of two or more different combinations of the two or more reception signals used, and a plurality of decoded reception signals (HA1, HA2) are thereby generated. The synthesizing unit adds the plurality of decoded reception signals (HA1, HA2) and obtains a decoded reception signal (HA') in which an unwanted signal (19b) is suppressed.
Description
本発明は、超音波撮像装置において、符号化を使ったSN比向上技術に関するものである。
The present invention relates to a technique for improving an S / N ratio using encoding in an ultrasonic imaging apparatus.
超音波を用いた撮像方法は、超音波を対象物に送信し、対象物で反射したエコーを電気信号として受信し、受信信号を画像データとしてモニター上に表示することで構成される。超音波は、装置に備えられたトランスデューサ(電気音響変換素子、振動子)に電気信号を入力することで生成される。トランスデューサから出射された超音波は、対象物中を進みながら音響インピーダンスの異なる境界で一部反射され、エコーを作る。エコーは、電気音響変換素子で受信され、受信信号が生成される。これにより、対象物の境界面を、対象物の断層像として表示できる。このような撮像技術は、構造物の非破壊検査や、生体の断層像を低侵襲で撮像する診断装置などとして、広く用いられている。
The imaging method using ultrasonic waves is configured by transmitting ultrasonic waves to an object, receiving echoes reflected by the object as electrical signals, and displaying the received signals on a monitor as image data. Ultrasound is generated by inputting an electrical signal to a transducer (electroacoustic transducer or vibrator) provided in the apparatus. The ultrasonic wave emitted from the transducer is partially reflected at the boundary where the acoustic impedance is different while traveling through the object to make an echo. The echo is received by the electroacoustic transducer, and a reception signal is generated. Thereby, the boundary surface of the object can be displayed as a tomographic image of the object. Such an imaging technique is widely used as a non-destructive inspection of a structure or a diagnostic apparatus for imaging a tomographic image of a living body with minimal invasiveness.
通常、トランスデューサは、チャネルアレイ状に並べられており、超音波はアレイビームフォーミングによって超音波ビームとして送信される。超音波撮像装置は、超音波の送信ビームを対象物に走査し、それぞれの送信により生じたエコーを受信する。そして、各チャネルの受信信号に対して受信ビームフォーミングを行い、ビーム軸上の領域における小エリアデータを生成する。そして、小エリアデータを合体(合算)させることで、対象物全体の断層画像を作る。
Normally, transducers are arranged in a channel array, and ultrasonic waves are transmitted as ultrasonic beams by array beam forming. The ultrasonic imaging apparatus scans an object with an ultrasonic transmission beam and receives an echo generated by each transmission. Then, reception beam forming is performed on the reception signal of each channel to generate small area data in a region on the beam axis. Then, the tomographic image of the entire object is created by combining (summing) the small area data.
1枚の断層画像を作るための送信回数を減らすことによって、フレームレートは向上することができる。しかしその結果として、得られる信号量が低下し、SN比が低下する。SN比を改善しながら、高フレームレート撮像が可能となる撮像方法として、空間符号化送受が知られている(特許文献1)。空間符号化送受では、1方向送信、1方向受信ではなく、対象物に複数方向から同時に送信することで、SN比を改善する。具体的には、空間符号化送受方法では、符号化した超音波を同時に多方向から対象物に送信し、エコーを受信した後、受信信号を復号処理することにより、どの方向から送信した超音波による受信信号かを区別して分離する。例えば、対象物に対して超音波ビームを送信する方向(もしくは位置)がA方向とB方向である場合、2回の送受信を行う。1回目の送信では、A方向とB方向の超音波ビームの送信波形に対して、それぞれ1と1の符号化を行い、2回目の送信では、それぞれ1と-1の符号化を行う。2回の送信でそれぞれ生じたエコーを受信して得られた受信信号は、受信ビームフォーミングされる前に、それぞれチャネルデータの状態で保存する。1回目の受信信号と2回目の受信信号を使って復号処理を行うことで、A方向の送信による受信信号と、B方向の送信による受信信号を分離する。具体的には、1回目の受信信号と2回目の受信信号を同時刻として和算処理することで、B方向の送信による受信信号を打ち消し、A方向の送信による受信信号のみを残す。一方、減算処理することで、A方向の送信による受信信号を打ち消し、B方向の送信による受信信号のみを残す。
The frame rate can be improved by reducing the number of transmissions for creating one tomographic image. However, as a result, the amount of signal obtained decreases and the SN ratio decreases. Spatial encoding transmission / reception is known as an imaging method that enables high frame rate imaging while improving the SN ratio (Patent Document 1). In spatial encoding transmission / reception, the S / N ratio is improved by transmitting to a target object simultaneously from a plurality of directions instead of unidirectional transmission and unidirectional reception. Specifically, in the spatial encoding transmission / reception method, ultrasonic waves transmitted from any direction are transmitted by simultaneously transmitting encoded ultrasonic waves from multiple directions to an object, receiving echoes, and then decoding the received signal. The received signal is distinguished and separated. For example, when the directions (or positions) of transmitting the ultrasonic beam to the object are the A direction and the B direction, transmission / reception is performed twice. In the first transmission, 1 and 1 are encoded for the transmission waveforms of ultrasonic beams in the A direction and the B direction, respectively, and in the second transmission, 1 and −1 are respectively encoded. The received signals obtained by receiving the echoes generated by the two transmissions are each stored in the state of channel data before being subjected to receive beamforming. By performing decoding processing using the first received signal and the second received signal, the received signal transmitted in the A direction and the received signal transmitted in the B direction are separated. Specifically, by summing the first received signal and the second received signal at the same time, the received signal due to transmission in the B direction is canceled, and only the received signal due to transmission in the A direction remains. On the other hand, the subtraction process cancels the reception signal due to transmission in the A direction and leaves only the reception signal due to transmission in the B direction.
空間符号化送受では、複数回の送受信が必要である。復号処理の性能は、それぞれの受信信号が同一部位からのエコーの信号であることが前提で発揮される。複数回の送受信の間に、撮像対象がトランスデューサに近づくもしくは遠ざかるなどの動きを生じた場合、エコーの伝搬距離が変動する。この結果、複数の受信信号の時間軸が互いにシフトした状態となるため、復号処理において和算処理または減算処理をした場合、打ち消されるべき信号が残り、画像上のアーチファクト(偽像)を生み出す。これが、画質の劣化を引き起こす。
Spatial encoding transmission / reception requires multiple transmissions / receptions. The performance of the decoding process is exhibited on the assumption that each received signal is an echo signal from the same part. When a movement such as the imaging target approaches or moves away from the transducer during multiple transmissions / receptions, the propagation distance of the echo varies. As a result, since the time axes of the plurality of received signals are shifted from each other, when the summation process or the subtraction process is performed in the decoding process, a signal to be canceled remains, and an artifact (false image) on the image is generated. This causes image quality degradation.
本発明の目的は、空間符号化送受信を行う際に、撮像対象に動きが生じた場合であっても、生成される画像のアーチファクトを低減できる超音波撮像装置を提供することにある。
An object of the present invention is to provide an ultrasonic imaging apparatus capable of reducing artifacts in a generated image even when a motion occurs in an imaging target when performing spatial encoding transmission / reception.
上記目的を達成するために、本発明では、超音波探触子の少なくとも2つの送信領域から同時に、空間符号化した超音波を所定の位置に向かって3回以上送信させる。受信部は、復号部と合成部とを含み、復号部は、3回以上の超音波の送信に対応して受信領域が出力した3以上の受信信号のうち2以上を用いて、空間符号化に対応する復号を行って復号後受信信号を生成する。この処理を、用いる2以上の受信信号の組み合わせの異なる2組以上についてそれぞれ行うことにより、複数の復号後受信信号を生成する。合成部は、複数の復号後受信信号を加算処理する。
In order to achieve the above object, according to the present invention, at least two transmission areas of the ultrasonic probe are simultaneously transmitted with the spatially encoded ultrasonic wave three times or more toward a predetermined position. The receiving unit includes a decoding unit and a synthesizing unit, and the decoding unit performs spatial encoding using two or more of three or more received signals output by the receiving region in response to transmission of three or more ultrasonic waves. Is decoded to generate a received signal after decoding. This process is performed for two or more different combinations of two or more received signals to be used, thereby generating a plurality of decoded received signals. The synthesizer performs addition processing on the plurality of decoded received signals.
本発明によれば、空間符号化送受信を行う際に、撮像対象に動きが生じた場合であっても、生成した画像のアーチファクトを低減することができる。
According to the present invention, it is possible to reduce artifacts in a generated image even when a motion occurs in an imaging target when performing spatial encoding transmission / reception.
本発明の実施形態の超音波撮像装置について図面を用いて説明する。
An ultrasonic imaging apparatus according to an embodiment of the present invention will be described with reference to the drawings.
<<第一実施形態>>
図1に示すように、本発明の超音波撮像装置100は、超音波探触子108と、送信部102と、受信部105とを有している。超音波探触子108は、それぞれトランスデューサで構成された、少なくとも2つの送信領域110A、110Bと、少なくとも1つの受信領域109とを有する。送信部102は、超音波探触子108の所定の2つの送信領域110A、110Bから同時に、空間符号化した超音波を、所定の位置(120)に向かって3回以上送信させる。受信領域109は、位置(120)からの超音波のエコーを受信して出力する。受信部105は、この受信信号を処理する。 << First Embodiment >>
As shown in FIG. 1, theultrasonic imaging apparatus 100 of the present invention includes an ultrasonic probe 108, a transmission unit 102, and a reception unit 105. The ultrasonic probe 108 has at least two transmission areas 110A and 110B and at least one reception area 109, each composed of a transducer. The transmitting unit 102 transmits the spatially encoded ultrasonic waves from the predetermined two transmission areas 110A and 110B of the ultrasonic probe 108 at least three times toward the predetermined position (120). The reception area 109 receives and outputs an ultrasonic echo from the position (120). The receiving unit 105 processes this received signal.
図1に示すように、本発明の超音波撮像装置100は、超音波探触子108と、送信部102と、受信部105とを有している。超音波探触子108は、それぞれトランスデューサで構成された、少なくとも2つの送信領域110A、110Bと、少なくとも1つの受信領域109とを有する。送信部102は、超音波探触子108の所定の2つの送信領域110A、110Bから同時に、空間符号化した超音波を、所定の位置(120)に向かって3回以上送信させる。受信領域109は、位置(120)からの超音波のエコーを受信して出力する。受信部105は、この受信信号を処理する。 << First Embodiment >>
As shown in FIG. 1, the
受信部105は、復号部41と合成部25とを備えている。復号部41は、図2に示すように、3回以上の超音波の送信に対応して受信領域109が順次出力した受信信号(R1,R2,R3,・・・(ただし、数字は、受信信号の受信した順番を示す))のうち2以上を用いて、送信時の空間符号化に対応する復号を行って復号後受信信号(H1)を得る。この処理を、用いる2以上の受信信号の組み合わせの異なる2組(例えば、R1とR2の組、R2とR3の組)以上についてそれぞれ行うことにより、複数の復号後受信信号(HA1,HA2,・・・、ただし、下付きのAは、送信領域110Aからの送信に対応する受信信号であることを示す)を生成する。合成部25は、複数の復号後受信信号(HA1,HA2,・・・)を加算処理し、加算された復号後受信信号(HA')を得る。なお、復号部は、送信領域110Bからの送信に対応する復号後受信信号(HB1,HB2,・・・)を生成し、加算された復号後受信信号(HB')を得ることももちろん可能である。
The receiving unit 105 includes a decoding unit 41 and a combining unit 25. As shown in FIG. 2, the decoding unit 41 receives the reception signals (R1, R2, R3,..., Where the reception area 109 sequentially outputs in response to three or more times of transmission of ultrasonic waves. The received signal (H1) after decoding is obtained by performing decoding corresponding to the spatial encoding at the time of transmission using two or more of the signals). By performing this processing for each of two or more different combinations of two or more received signals to be used (for example, a set of R1 and R2, a set of R2 and R3), a plurality of received signals after decoding (H A 1, H A2 , ..., where subscript A indicates a received signal corresponding to transmission from transmission area 110A). Synthesizing unit 25, a plurality of decoded received signal (H A 1, H A 2 , ···) and the addition processing to obtain the summed decoded received signal (H A '). The decoding unit generates a decoded reception signal (H B 1, H B 2,...) Corresponding to transmission from the transmission area 110B, and obtains an added decoded reception signal (H B ′). Of course it is also possible.
このように、複数の復号後受信信号(HA1,HA2,・・・)を加算することにより、空間符号化送受信を行う際に撮像対象120に動きが生じた場合に復号後受信信号(HA1,HA2,・・・)に生じる不要信号16b,17b(図2)を打ち消し合わせて低減することができる。その理由は、複数の送受信間の撮像対象120の動きがほぼ等速である場合、得られる受信信号を順次組み合わせた受信信号の組(R1とR2の組、R2とR3の組等)から得られた復号後受信信号(HA1,HA2,・・・)は、不要信号16b、17bの位相が順次反転するためである。一方、本来の受信信号16a,17aは、復号後受信信号(HA1,HA2,・・・)間において同位相となるため、合成部25の加算処理により強め合う。よって、不要成分19bが抑制され、本来の受信信号19aが強められた合成後の復号後受信信号(HA’)19aを得ることができ、これを用いて画像を生成することにより、画像のアーチファクトを低減することができる。
As described above, by adding a plurality of decoded reception signals (H A 1, H A 2,...), Reception after decoding is performed when movement occurs in the imaging target 120 when performing spatial encoding transmission / reception. Unnecessary signals 16b and 17b (FIG. 2) generated in the signals (H A 1, H A 2,...) Can be canceled and reduced. The reason is that when the movement of the imaging target 120 between a plurality of transmissions / receptions is substantially constant speed, it is obtained from a set of received signals (a set of R1 and R2, a set of R2 and R3, etc.) obtained by sequentially combining received signals This is because the received decoded signals (H A 1, H A 2,...) Sequentially invert the phases of the unnecessary signals 16b and 17b. On the other hand, the original received signals 16a and 17a have the same phase between the decoded received signals (H A 1, H A 2,...), And are strengthened by the adding process of the synthesizer 25. Therefore, it is possible to obtain a decoded received signal (H A ′) 19a after synthesis in which the unnecessary component 19b is suppressed and the original received signal 19a is strengthened, and by using this to generate an image, Artifacts can be reduced.
なお、送信部102による空間符号化方法、および、復号部41による復号方法としては、公知の方法を用いることができる。公知の空間符号化および復号処理の一例については、後で詳しく説明する。
A publicly known method can be used as the spatial encoding method by the transmission unit 102 and the decoding method by the decoding unit 41. An example of known spatial encoding and decoding processing will be described in detail later.
復号部41による復号処理は、2以上の送信領域110A,110Bから同時に送信された超音波によるエコーの受信信号から、送信領域ごとの超音波によって生じたエコーの受信信号を分離し、送信領域ごとに対応する受信信号(復号後受信信号)を得る処理である。合成部25は、同一の送信領域(例えば、110A)について得られた複数の復号後受信信号(HA1,HA2,・・・)を加算して合成することにより、これら受信信号の不要信号16b,17bを抑制する。
Decoding processing by the decoding unit 41 separates echo reception signals generated by ultrasonic waves for each transmission region from ultrasonic reception signals transmitted simultaneously from two or more transmission regions 110A and 110B, for each transmission region. Is a process for obtaining a received signal (decoded received signal) corresponding to. The synthesizer 25 adds and synthesizes a plurality of decoded received signals (H A 1, H A 2,...) Obtained for the same transmission region (for example, 110A), thereby combining these received signals. The unnecessary signals 16b and 17b are suppressed.
受信部105は、図3に示すように、3回以上の送信に対応して順に受信した受信信号(R1,R2,R3,・・・)の少なくとも一つを順次記憶する第1の記憶部40と、復号部41が生成した復号後受信信号(HA1,HA2,・・・)を少なくとも一つを記憶する第2の記憶部24とを備えるように構成してもよい。復号部41は、第1の記憶部40に記憶された受信信号と、その次に受信された受信信号とを用いて復号処理を行うことにより、順次復号処理を行うことができる。合成部25は、第2の記憶部24に記憶された1以上の復号後受信信号と、その次に生成された復号後受信信号とを加算することにより、不要信号を低減できる。
As shown in FIG. 3, the receiving unit 105 is a first storage unit that sequentially stores at least one of received signals (R1, R2, R3,...) Sequentially received corresponding to three or more transmissions. 40 and a second storage unit 24 that stores at least one of the decoded reception signals (H A 1, H A 2,...) Generated by the decoding unit 41 may be provided. The decoding unit 41 can sequentially perform the decoding process by performing the decoding process using the received signal stored in the first storage unit 40 and the received signal received next. The synthesizer 25 can reduce unnecessary signals by adding one or more decoded received signals stored in the second storage unit 24 and the decoded received signal generated next.
例えば、第1の記憶部40は、直近の2つの受信信号を順次記憶するための2つの記憶領域を有し、復号部41は、2つの記憶領域に格納された受信信号を用いて復号処理を行うことにより、時系列に復号後受信信号を生成する構成にすることができる。第2の記憶部24は、直近の2以上の復号後受信信号を順次記憶するように構成し、合成部25は、第2の記憶部24に記憶された2以上の復号後受信信号を加算することにより、加算された復号後受信信号を時系列に順次生成することができる。
For example, the first storage unit 40 has two storage areas for sequentially storing the two most recent reception signals, and the decoding unit 41 performs a decoding process using the reception signals stored in the two storage areas. By performing the above, it is possible to have a configuration for generating a reception signal after decoding in time series. The second storage unit 24 is configured to sequentially store the latest two or more decoded reception signals, and the combining unit 25 adds the two or more decoded reception signals stored in the second storage unit 24. By doing so, the added decoded received signals can be sequentially generated in time series.
また、超音波探触子108は、図4のように複数(例えばP個)の受信領域1091、・・・109P(ただし、下付き文字は、受信領域の番号を示す)を備えるように構成してもよい。受信部105は、受信領域1091、・・・109Pにより、受信信号(例えば、R11,R21...RP1、ただし、下付き数字は、受信領域の番号を示す)を受信する。また、受信部105は、整相加算部22を有する。復号部41は、受信領域1091、・・・109Pごとに、受信信号を復号処理し、送信領域(例えば110A)に対応する復号後受信信号(H1A1,H2A1...HPA1、ただし、下付き数字とPは、受信領域の番号を示し、下付きのAは、送信領域110Aからの送信に対応する復号後受信信号であることを示す)を生成する。整相加算部22は、受信領域1091、・・・、109Pごとの復号後受信信号(H1A1,H2A1...HPA1)を整相した後加算する。これにより、整相加算後の復号後受信信号(HsumA1)を生成することができる。この処理を、時系列に複数回繰り返し、複数の整相加算後の復号後受信信号(HsumA1,HsumA2・・・)を生成し、合成部25によって加算することにより、合成後の復号後受信信号(HA')を得ることができる。
Further, as shown in FIG. 4, the ultrasonic probe 108 includes a plurality of (for example, P) receiving areas 109 1 ,... 109 P (where the subscript indicates the number of the receiving area). You may comprise. Receiving section 105, the receiving area 109 1, the · · · 109 P, the received signal (e.g., R 1 1, R 2 1 ... R P 1, where the subscript indicates the number of the receiving area) Receive. In addition, the reception unit 105 includes a phasing addition unit 22. The decoding unit 41 decodes the reception signal for each of the reception areas 109 1 ,... 109 P , and receives the decoded reception signals (H 1A 1, H 2A 1... H corresponding to the transmission area (for example, 110A). PA 1, where the subscript number and P indicate the number of the reception area, and the subscript A indicates a received signal after decoding corresponding to transmission from the transmission area 110A). Phasing addition unit 22, the receiving area 109 1,..., Decoded received signal for each of 109 P a (H 1A 1, H 2A 1 ... H PA 1) is added after the phasing. As a result, a decoded received signal (H sumA 1) after phasing addition can be generated. This process is repeated a plurality of times in time series, and a plurality of decoded received signals (H sumA 1, H sumA 2...) After phasing addition are generated and added by the synthesizer 25. A received signal (H A ′) after decoding can be obtained.
図4のように、合成部25を整相加算部22よりも後段に配置したことにより、合成部25を受信領域1091、・・・、109Pごとに配置する必要がなく、整相加算部22の後に一つの合成部25を配置すれば足りる。そのため、合成部25を復号部41ごとに配置した場合と比較して、装置構成を簡素化できるとともに、合成部25の演算量の増大を抑えることができる。
As shown in FIG. 4, by which the synthesis section 25 is disposed downstream than phasing addition unit 22, the combining unit 25 to the receiving area 109 1, ..., it is not necessary to place every 109 P, phasing addition It suffices to arrange one combining unit 25 after the unit 22. Therefore, compared with the case where the synthesizing unit 25 is arranged for each decoding unit 41, the apparatus configuration can be simplified and an increase in the calculation amount of the synthesizing unit 25 can be suppressed.
また、図5(a)に示すように、超音波探触子108は、送信領域110A、110Bの組の他に複数組の送信領域(111AおよびBの組,112AおよびBの組、113AおよびBの組)を備えるよう構成することができる。このとき、各送信領域の組からの送信の順番は、図6に示すように、各組の送信領域からそれぞれ1回ずつ順番に送信を行う動作(スキャン動作)を3回以上繰り返すようにすることが好ましい。これにより、1回のスキャン動作ごとに、全組の送信領域についての受信信号を得ることができる。よって、2スキャン目以降は、得られた受信信号を、その前のスキャンで得た受信信号と組み合わせ、復号することができる。したがって、復号処理に用いる受信信号が2つの場合、2スキャン目以降の1スキャンごとに、全送信領域について復号後受信信号を生成することができる。
As shown in FIG. 5 (a), the ultrasound probe 108 includes a plurality of transmission areas (111A and B sets, 112A and B sets, 113A and 113A, in addition to the transmission areas 110A and 110B. B set) can be provided. At this time, as shown in FIG. 6, the order of transmission from each set of transmission areas is such that the operation (scanning operation) of sequentially transmitting from each set of transmission areas is repeated three times or more. It is preferable. Thereby, it is possible to obtain reception signals for all sets of transmission areas for each scanning operation. Therefore, after the second scan, the received signal obtained can be combined with the received signal obtained in the previous scan and decoded. Therefore, when there are two reception signals used for the decoding process, a decoded reception signal can be generated for the entire transmission region for each scan after the second scan.
送信領域ごとの復号後受信信号はそれぞれ、図5(b)のように、その送信領域から送信された超音波が照射された撮像対象120の小領域のデータ(小エリアデータ)を示している。すなわち、送信領域110Aの復号後受信信号は、小エリア211Aのデータであり、送信領域110Bの復号後受信信号は、小エリア211Bのデータである。よって、1スキャンごとに、全送信領域ごとの復号後受信信号を生成することにより、1スキャンごとに、これらの小エリアデータを並べた撮像対象120の全体画像(図5(c))を生成することができる。これにより、ほぼリアルタイムで順次画像を出力することが可能になる。
As shown in FIG. 5B, each decoded reception signal for each transmission area indicates data of a small area (small area data) of the imaging target 120 irradiated with the ultrasonic wave transmitted from the transmission area. . That is, the decoded reception signal in the transmission area 110A is data in the small area 211A, and the decoded reception signal in the transmission area 110B is data in the small area 211B. Therefore, by generating a decoded reception signal for each entire transmission area for each scan, an entire image (FIG. 5C) of the imaging target 120 in which these small area data are arranged is generated for each scan. can do. This makes it possible to output images sequentially in substantially real time.
また、本発明では、合成部25で加算処理する復号後受信信号の数の設定を、操作者から受け付ける受け付け部をさらに有する構成としてもよい。この場合、送信部102は、受け付けた数よりも1以上多い数Nの超音波を送信させ、合成部は、受け付けた数の復号後受信信号を加算処理することができる。
Further, in the present invention, it may be configured to further include a receiving unit that receives the setting of the number of received signals after decoding to be added by the combining unit 25 from the operator. In this case, the transmission unit 102 can transmit a number N of ultrasonic waves that is one or more greater than the accepted number, and the synthesis unit can add the received number of received reception signals after decoding.
なお、超音波探触子108の送信領域110AおよびB等は、受信領域1091、・・・、109Pと同一の大きさであってもよいし、異なる大きさであってもよい。また、送信領域と受信領域は、送信時と受信時にそれぞれ設定され、同時に設定されることはないため、送信領域と受信領域とが全部または一部重なり合う領域であっても構わない。
It should be noted that the transmission areas 110A and 110B of the ultrasonic probe 108 may be the same size as the reception areas 109 1 ,..., 109 P or may be different sizes. In addition, the transmission area and the reception area are set at the time of transmission and reception, respectively, and are not set at the same time. Therefore, the transmission area and the reception area may be entirely or partially overlapped.
<空間符号化の原理>
ここで、空間符号化の原理について説明する。空間符号化は、空間的な次元を符号化する公知の技術である。本実施形態では、一例としてHadamard空間符号化を用い、2か所の送信領域から同時に超音波波形を送信する場合について説明する。 <Principle of spatial coding>
Here, the principle of spatial encoding will be described. Spatial encoding is a known technique for encoding spatial dimensions. In this embodiment, Hadamard space coding is used as an example, and a case where ultrasonic waveforms are transmitted simultaneously from two transmission regions will be described.
ここで、空間符号化の原理について説明する。空間符号化は、空間的な次元を符号化する公知の技術である。本実施形態では、一例としてHadamard空間符号化を用い、2か所の送信領域から同時に超音波波形を送信する場合について説明する。 <Principle of spatial coding>
Here, the principle of spatial encoding will be described. Spatial encoding is a known technique for encoding spatial dimensions. In this embodiment, Hadamard space coding is used as an example, and a case where ultrasonic waveforms are transmitted simultaneously from two transmission regions will be described.
まず、Hadamard空間符号化の概念を説明する。図7(a)の波形71を基準波形とする。図7(b)の波形72を基準波形の反転波形とする。図8(a)のように、第一送信Tx1として、2つの送信領域110A、110Bからいずれも基準波形71の超音波を同時に所定位置(撮像対象120)に向かって送信する。つぎに、第二送信Tx2として、2つの送信領域のうち一方(ここでは図8(a)の左側の送信領域110A)から基準波形71を、他方(図8(a)の右側の送信領域110B)から反転波形72を同時に送信する。基準波形71を1、反転波形72を-1とし、送信領域の位置を行ベクトルの列として表すと、第一送信は[1 1]、第二送信は、[1 -1]の行ベクトルでそれぞれ表される。送信の順番を行列の行とすると、第一送信および第二送信は、式(1)の行列で表される。
First, the concept of Hadamard space coding will be explained. The waveform 71 in FIG. 7A is set as a reference waveform. A waveform 72 in FIG. 7B is an inverted waveform of the reference waveform. As shown in FIG. 8A, as the first transmission Tx1, the ultrasonic waves of the reference waveform 71 are simultaneously transmitted from the two transmission areas 110A and 110B toward a predetermined position (imaging target 120). Next, as the second transmission Tx2, the reference waveform 71 is obtained from one of the two transmission areas (here, the left transmission area 110A in FIG. 8A) and the other (the right transmission area 110B in FIG. 8A). ) To transmit the inverted waveform 72 simultaneously. When the reference waveform 71 is 1, the inverted waveform 72 is -1, and the position of the transmission area is represented as a row vector column, the first transmission is a row vector [1 1] and the second transmission is [1 -1]. Each is represented. Assuming that the transmission order is a matrix row, the first transmission and the second transmission are represented by the matrix of Expression (1).
Hadamard空間符号化によって2つの送信領域110A,110Bから送信された超音波のエコーは、受信領域109で受信することにより、受信信号R1、R2がそれぞれ得られる。受信信号R1、R2から、送信領域110Aから送信した超音波による受信信号HA1、および、送信領域110Bから送信した超音波による受信信号HB1を分離する演算過程をHadamard復号処理と呼ぶ。
The echoes of the ultrasonic waves transmitted from the two transmission areas 110A and 110B by Hadamard space coding are received by the reception area 109, whereby reception signals R1 and R2 are obtained, respectively. The calculation process of separating the reception signal H A 1 by the ultrasonic wave transmitted from the transmission area 110A and the reception signal H B 1 by the ultrasonic wave transmitted from the transmission area 110B from the reception signals R1 and R2 is called Hadamard decoding processing.
図8(b)のように、受信信号R1,R2は、それぞれ送信領域110Aから送信した超音波による受信信号13aと、送信領域110Bから送信した超音波による受信信号13bとを含む。復号部41は、加算器14と減算器15とを含む。第一送信による受信信号R1と第二送信による受信信号R2とを、復号部41内の加算器14で同時刻で加算すると、上記行ベクトルの加算から、
[1 1] + [1 -1]=[2 0]
となり、右列を0へ導くことができる。すなわち、図8(b)のように、右列(右側の送信領域110B)の送信による受信信号13bを打ち消すことができ、左側の送信領域の送信により生じたエコーの受信信号13aを重畳させて受信信号16a(復号後受信信号HA1)を抽出することができる。 As shown in FIG. 8B, the reception signals R1 and R2 include anultrasonic reception signal 13a transmitted from the transmission area 110A and an ultrasonic reception signal 13b transmitted from the transmission area 110B, respectively. The decoding unit 41 includes an adder 14 and a subtracter 15. When the reception signal R1 by the first transmission and the reception signal R2 by the second transmission are added at the same time by the adder 14 in the decoding unit 41, the addition of the row vector
[1 1] + [1 -1] = [2 0]
Thus, the right column can be led to 0. That is, as shown in FIG. 8B, thereception signal 13b by the transmission in the right column (right transmission area 110B) can be canceled, and the reception signal 13a of the echo generated by the transmission in the left transmission area can be superimposed. The received signal 16a (decoded received signal H A 1) can be extracted.
[1 1] + [1 -1]=[2 0]
となり、右列を0へ導くことができる。すなわち、図8(b)のように、右列(右側の送信領域110B)の送信による受信信号13bを打ち消すことができ、左側の送信領域の送信により生じたエコーの受信信号13aを重畳させて受信信号16a(復号後受信信号HA1)を抽出することができる。 As shown in FIG. 8B, the reception signals R1 and R2 include an
[1 1] + [1 -1] = [2 0]
Thus, the right column can be led to 0. That is, as shown in FIG. 8B, the
一方、受信信号R1と受信信号R2とを、復号部41内の減算器15で減算すると、
[1 1] - [1 -1]=[0 2]
となり、左列(左側の送信領域110A)の送信による受信信号13aを打ち消すことができ、右側の送信領域110Bの送信による受信信号13bを重畳した受信信号18b(復号後受信信号HB1)を抽出することができる。 On the other hand, when the received signal R1 and the received signal R2 are subtracted by thesubtracter 15 in the decoding unit 41,
[1 1]-[1 -1] = [0 2]
Thus, the receivedsignal 13a by the transmission in the left column (left transmission area 110A) can be canceled, and the received signal 18b (decoded received signal H B 1) on which the reception signal 13b by the transmission in the right transmission area 110B is superimposed is obtained. Can be extracted.
[1 1] - [1 -1]=[0 2]
となり、左列(左側の送信領域110A)の送信による受信信号13aを打ち消すことができ、右側の送信領域110Bの送信による受信信号13bを重畳した受信信号18b(復号後受信信号HB1)を抽出することができる。 On the other hand, when the received signal R1 and the received signal R2 are subtracted by the
[1 1]-[1 -1] = [0 2]
Thus, the received
この復号処理によって、2か所の送信領域110A、110Bからの同時送信によるエコーが混ざった状態で受信した受信信号R1、R2から、各送信を独立に行った場合と同等の受信信号(復号後受信信号HA1、HB1)を分離できる。
By this decoding process, received signals equivalent to the case where each transmission is performed independently from the received signals R1 and R2 received in a state where echoes due to simultaneous transmission from the two transmission areas 110A and 110B are mixed (after decoding) The received signals H A 1 and H B 1) can be separated.
しかしながら、上記復号処理において、撮像対象120が2回の送受信間において動きを生じたり、超音波探触子108が撮像対象120に対して動くと、それぞれの送信におけるエコーの伝搬距離が変動する。その結果、各受信信号が互いに時間シフトした状態となる。例えば、図8(c)は、2回の送信中に撮像対象120が超音波探触子108に近づき、受信信号R1に対して受信信号R2の信号出現時間がシフトしている状態を示している。この場合、Hadamard復号後受信信号HA1、HB1には、打ち消し残りの不要信号16b、18aが生じる。そこで、本発明では、撮像対象120の動きがほぼ等速であるとき、受信信号R1とR2を加算して得た復号後受信信号HA1の打ち消し残りの不要信号16bと、受信信号R2とR3を加算して得た復号後信号HA2における打ち消し残りの不要信号17b(図2)は、互いに反転した波形に成ることを利用して、合成部25が、復号後受信信号HA1と復号後信号HA2とを加算することで、不要信号16b,17bを抑制する。同様に、送信領域110Bからの送信信号について得た、復号後受信信号HB1と復号後信号HB2についても、同様に合成部25が加算することにより、不要信号を抑制する。
However, in the above decoding process, if the imaging target 120 moves between two transmissions / receptions or the ultrasonic probe 108 moves with respect to the imaging target 120, the propagation distance of the echo in each transmission varies. As a result, the received signals are shifted from each other in time. For example, FIG. 8C shows a state in which the imaging target 120 approaches the ultrasonic probe 108 during two transmissions and the signal appearance time of the reception signal R2 is shifted with respect to the reception signal R1. Yes. In this case, the Hadamard decoding received signals H A 1, H B 1, remaining unnecessary signals 16b, 18a occurs canceled. Therefore, in the present invention, when the movement of the imaging target 120 is substantially constant, the unnecessary signal 16b remaining after cancellation of the decoded received signal H A 1 obtained by adding the received signals R1 and R2, and the received signal R2 By utilizing the fact that the unnecessary signal 17b (FIG. 2) remaining after cancellation in the decoded signal H A 2 obtained by adding R3 has an inverted waveform, the synthesizer 25 receives the decoded received signal H A 1. And the decoded signal H A 2 are added to suppress unnecessary signals 16b and 17b. Similarly, with respect to the decoded received signal H B 1 and the decoded signal H B 2 obtained for the transmission signal from the transmission area 110B, the synthesizer 25 similarly adds unnecessary signals to be suppressed.
なお、上記の例では送信領域が2か所の例を説明したが、送信領域の数はHadamard符号の列数によって決定されるため、2か所以上にすることも可能である。また、複数の送信領域は、相互に重畳していてもよい。
In the above example, an example in which there are two transmission areas has been described. However, since the number of transmission areas is determined by the number of Hadamard code columns, it is possible to have two or more transmission areas. In addition, the plurality of transmission areas may overlap each other.
以下、第一実施形態の超音波撮像装置の具体例について詳細に説明する。
Hereinafter, a specific example of the ultrasonic imaging apparatus according to the first embodiment will be described in detail.
<装置の全体構成>
本実施形態の超音波撮像装置100の全体構成について説明する。図9は、本実施形態の超音波撮像装置100の具体例の概略構成を示すブロック図である。超音波撮像装置100は、上述した超音波探触子108と送信部102と受信部105の他に、制御部106と、ユーザインタフェース(UI)121と、送受切替部101と、画像処理部107と、表示部122とを備えて構成される。UI121は、上述した合成部25が加算処理する復号後受信信号の数、ユーザからの指示、各種パラメータの入力等を受け付けるインタフェースである。制御部106は、全体の動作を制御する。 <Overall configuration of device>
The overall configuration of theultrasonic imaging apparatus 100 of the present embodiment will be described. FIG. 9 is a block diagram showing a schematic configuration of a specific example of the ultrasonic imaging apparatus 100 of the present embodiment. The ultrasonic imaging apparatus 100 includes a control unit 106, a user interface (UI) 121, a transmission / reception switching unit 101, and an image processing unit 107, in addition to the ultrasonic probe 108, the transmission unit 102, and the reception unit 105 described above. And a display unit 122. The UI 121 is an interface that accepts the number of decoded received signals added by the synthesis unit 25 described above, instructions from the user, input of various parameters, and the like. The control unit 106 controls the overall operation.
本実施形態の超音波撮像装置100の全体構成について説明する。図9は、本実施形態の超音波撮像装置100の具体例の概略構成を示すブロック図である。超音波撮像装置100は、上述した超音波探触子108と送信部102と受信部105の他に、制御部106と、ユーザインタフェース(UI)121と、送受切替部101と、画像処理部107と、表示部122とを備えて構成される。UI121は、上述した合成部25が加算処理する復号後受信信号の数、ユーザからの指示、各種パラメータの入力等を受け付けるインタフェースである。制御部106は、全体の動作を制御する。 <Overall configuration of device>
The overall configuration of the
超音波探触子108は、所定の配列で1次元または2次元に配列されたトランスデューサを複数個備えている。トランスデューサは、電気信号を音波へ、音波を電気信号へと変換する機能を持つ電気音響変換素子(振動子)である。超音波探触子108は、トランスデューサが配置された面(超音波送受面)を撮像対象120に接触させて使用するのに適した外形に仕立てられている。
The ultrasonic probe 108 includes a plurality of transducers arranged one-dimensionally or two-dimensionally in a predetermined arrangement. The transducer is an electroacoustic conversion element (vibrator) having a function of converting an electric signal into a sound wave and a sound wave into an electric signal. The ultrasonic probe 108 is tailored to have an outer shape suitable for use by bringing the surface on which the transducer is disposed (ultrasonic transmission / reception surface) into contact with the imaging target 120.
配列された複数のトランスデューサは、図10のように、予め定められた複数(P個)の受信領域(以下、チャネルと呼ぶ)1091~109Pに仮想的もしくは物理的に分割されている。各チャネル1091~109Pは、1つもしくは複数のトランスデューサによって構成される。送信時に設定される送信領域110A等は、チャネル1091等と同じ大きさであってもよいし、異なっていてもよい。以下の説明では、一つの送信領域110Aとして、隣り合う複数(図10では、4個)のチャネルと同等の領域を用いる例について説明する。また、以下の説明では、送信領域を送信開口と呼ぶ。送信開口110Aと送信開口110Bは、相互に離れた位置に形成してもよいし、一部重なるように形成してもよい。また、以下の説明では、複数のチャネル1091~109Pを区別しない場合には、単にチャネル109とも呼ぶ。
As shown in FIG. 10, the plurality of arranged transducers are virtually or physically divided into a plurality of (P) receiving areas (hereinafter referred to as channels) 109 1 to 109 P. Each channel 109 1 to 109 P is constituted by one or a plurality of transducers. Transmission region 110A or the like to be set at the time of transmission may be the same size as the channel 109 1, etc., it may be different. In the following description, an example in which an area equivalent to a plurality of adjacent (four in FIG. 10) channels is used as one transmission area 110A will be described. In the following description, the transmission area is referred to as a transmission aperture. The transmission opening 110A and the transmission opening 110B may be formed at positions separated from each other, or may be formed so as to partially overlap. In the following description, when the plurality of channels 109 1 to 109 P are not distinguished, they are also simply referred to as channels 109.
また、受信部105は、図11に示すように、上述の第1の記憶部40(以下、チャネルメモリと呼ぶ)と復号部41からなるチャネル信号処理部20をチャネル1091~109Pごとに配置した構成である。また、受信部105には、上述した整相加算部22と、第2の記憶部24、合成部25が備えられている。
In addition, as shown in FIG. 11, the receiving unit 105 uses the channel signal processing unit 20 including the first storage unit 40 (hereinafter referred to as channel memory) and the decoding unit 41 for each of the channels 109 1 to 109 P. It is the arranged configuration. The receiving unit 105 includes the phasing / adding unit 22, the second storage unit 24, and the combining unit 25 described above.
送信部102は、制御部106からの指示に従って、送信する波形種類、送信開口(例えば110A,110B)ごとの遅延時間、振幅変調、重み付け等を決定し、それに応じた送信信号を生成する。本発明では、送信部102が超音波探触子の所定の2つの送信開口から、空間符号化した超音波を同時に送信する動作を、3回以上繰り返す。各々の送信開口から超音波の送信が向けられている位置は,3回以上の送信間で同一である。送信信号は、送受切替部101を経て、送信開口110A,110Bを構成するトランスデューサに受け渡される。送信開口110A,110Bのトランスデューサは、送信信号を受け取って超音波(超音波パルスや超音波ビーム)を発生する。
The transmission unit 102 determines the type of waveform to be transmitted, the delay time for each transmission aperture (for example, 110A, 110B), amplitude modulation, weighting, and the like in accordance with an instruction from the control unit 106, and generates a transmission signal corresponding thereto. In the present invention, the operation in which the transmitting unit 102 simultaneously transmits the spatially encoded ultrasonic waves from two predetermined transmission openings of the ultrasonic probe is repeated three or more times. The position where the transmission of ultrasonic waves is directed from each transmission aperture is the same among three or more transmissions. The transmission signal passes through the transmission / reception switching unit 101 and is transferred to the transducers forming the transmission openings 110A and 110B. The transducers in the transmission apertures 110A and 110B receive transmission signals and generate ultrasonic waves (ultrasonic pulses and ultrasonic beams).
制御部106は、送信開口110A、110Bから上記第一送信Tx1を送信部102に行わせ、エコーを超音波探触子108の受信領域(チャネル)109で受信させる。受信に用いるチャネルは、超音波探触子108のすべてのチャネル1091・・・109Pを用いてもよいし、予め定められた受信開口内のチャネルのみを用いてもよい。制御部106は、各チャネル1091・・・109Pの受信信号R11,R21...RP1(下付き文字は、チャネルの番号を示し、1は、第一送信で得た受信信号であることを示す)を、受信部105に受け渡す。
The control unit 106 causes the transmission unit 102 to perform the first transmission Tx1 from the transmission openings 110A and 110B, and causes echoes to be received by the reception region (channel) 109 of the ultrasonic probe 108. As the channels used for reception, all the channels 109 1 to 109 P of the ultrasonic probe 108 may be used, or only channels within a predetermined reception opening may be used. The control unit 106 receives the received signals R 1 1, R 2 1 ... R P 1 of each channel 109 1 ... 109 P (subscript indicates the channel number, and 1 is obtained in the first transmission. The received signal) is passed to the receiving unit 105.
図12のように、チャネルメモリ40には、送信開口の組ごとに2つの記憶領域40-1,40-2が備えられている。制御部106は、送信開口110A,110Bからの第一送信Tx1によってチャネル1091が得た受信信号R11を、送信開口110A,110B用の記憶領域40-1に格納させる。同様に、他のチャネル1092・・・109Pがそれぞれ得た受信信号R21...RP1についても、それぞれのチャネルに接続されているチャネルメモリ40の送信開口110A,110B用の記憶領域40-1に格納させる。
As shown in FIG. 12, the channel memory 40 includes two storage areas 40-1 and 40-2 for each set of transmission apertures. Control unit 106 transmits the opening 110A, the received signal R 1 1 to channel 109 1 was obtained by the first transmission Tx1 from 110B, transmission opening 110A, is stored in the storage area 40-1 for 110B. Similarly, the reception signals R 2 1... R P 1 obtained by the other channels 109 2 ... 109 P are also used for the transmission openings 110A and 110B of the channel memory 40 connected to the respective channels. It is stored in the storage area 40-1.
次に、制御部106は、送信開口110A,110Bからの第二送信Tx2を送信部102に行わせ、得られたチャネル1091の受信信号R12をチャネルメモリ40内の記憶領域40-2に格納させる。同様に、他のチャネル1092・・・109Pがそれぞれ得た受信信号R22...RP2についても、それぞれのチャネルに接続されている第1の記憶部40の送信開口110A,110B用の記憶領域40-2に格納させる。
Next, the control unit 106 causes the transmission unit 102 to perform the second transmission Tx2 from the transmission apertures 110A and 110B, and the obtained reception signal R 1 2 of the channel 109 1 is stored in the storage area 40-2 in the channel memory 40. To store. Similarly, with respect to the received signals R 2 2... R P 2 obtained by the other channels 109 2 ... 109 P , the transmission openings 110A of the first storage unit 40 connected to the respective channels. The data is stored in the storage area 40-2 for 110B.
制御部106は、送信開口110A,110B用の記憶領域40-1、40-2から受信信号R11、R12を読み出し、復号部41内の加算器14と減算器15にそれぞれ入力させる。加算器14の加算処理により送信開口110Aからの送信による復号後受信信号H1A1(下付き数字は、チャネルの番号を示し、下付きのAは、送信開口110Aに対応する復号後受信信号であることを示し、1は、1番目に得られた復号後受信信号であることを示す)が得られる。減算器15による減算処理による送信開口110Bからの送信による復号後受信信号H1B1(下付き数字は、チャネルの番号を示し、下付きのBは、送信開口110Bに対応する復号後受信信号であることを示し、1は、1番目に得られた復号後受信信号であることを示す)が得られる。同様に、制御部106は、他のチャネル1092・・・109Pに接続されたチャネルメモリ40についても、それぞれ復号部41に受信信号を入力させ、送信開口110Aからの復号後受信信号および送信開口110Bからの送信による復号後受信信号を演算させる。
The control unit 106 reads the received signals R 1 1 and R 1 2 from the storage areas 40-1 and 40-2 for the transmission openings 110A and 110B and inputs them to the adder 14 and the subtracter 15 in the decoding unit 41, respectively. . Received signal H 1A 1 after decoding by transmission from the transmission aperture 110A by the addition process of the adder 14 (subscript indicates the channel number, and subscript A is the decoded received signal corresponding to the transmission aperture 110A. 1 indicates that it is the first received signal obtained after decoding). Received signal H 1B 1 after decoding by transmission from transmission aperture 110B by subtracting process by subtracter 15 (subscript number indicates channel number, subscript B is received signal after decoding corresponding to transmission aperture 110B) 1 indicates that it is the first received signal obtained after decoding). Similarly, the control unit 106 also inputs the received signal to the decoding unit 41 for the channel memories 40 connected to the other channels 109 2 ... 109 P , respectively, and receives the decoded reception signal and transmission from the transmission aperture 110A. A decoded reception signal by transmission from the opening 110B is calculated.
各チャネル信号処理部20から出力される送信開口110Aに対応する復号後受信信号H1A1、H2A1、H3A1・・・と、送信開口110Bに対応する復号後信号H1B1、H2B1、H3B1・・・は、整相加算処理部22へ受け渡される。制御部106は、整相加算処理部22に各チャネルの復号後信号H1A1、H2A1、H3A1・・・にそれぞれに適合した遅延時間を与え、合算処理をさせる(受信ビームフォーミング)。これにより、復号後信号H1A1、H2A1、H3A1・・・を整相加算した受信信号HsumA1(sumは、整相加算後であることを示し、下付きのAは、送信開口110Aに対応する受信信号であることを示し、1は、1番目に得られた受信信号であることを示す)を得る。この整相加算後の受信信号HsumA1は、送信開口110Aに対応する小エリアデータ210A(図5(b)参照)である。同様に、復号後信号H1B1、H2B1、H3B1・・・を整相加算した受信信号HsumB1(送信開口110Bに対応する小エリアデータ210B)を得る。
Decoded received signals H 1A 1, H 2A 1, H 3A 1... Corresponding to the transmission aperture 110A output from each channel signal processing unit 20, and decoded signals H 1B 1, H corresponding to the transmission aperture 110B. 2B 1, H 3B 1... Are transferred to the phasing addition processing unit 22. The control unit 106 gives a delay time suitable for each of the decoded signals H 1A 1, H 2A 1, H 3A 1... Of each channel to the phasing addition processing unit 22 to perform summation processing (receive beam forming). ). Thus, decoded signals H 1A 1, H 2A 1, the received signal and the H 3A 1 · · · to phasing addition H sumA 1 (sum indicates that a post-delay-and-sum, the A subscript, It indicates that the received signal corresponds to the transmission aperture 110A, and 1 indicates that it is the first received signal). The reception signal HsumA1 after the phasing addition is small area data 210A (see FIG. 5B) corresponding to the transmission aperture 110A. Similarly, to obtain a decoded signal H 1B 1, H 2B 1, H 3B 1 received signal to phasing addition the ··· H sumB 1 (small area data 210B corresponding to the transmission openings 110B).
第2の記憶部24には、図13に示すように、送信開口の組ごとにN-1個の小エリアデータを2組の格納するための記憶領域24A-1~24A-(N-1)と、24B-1~24B-(N-1)が備えられている。ここで、Nは、1つの合成後小エリアデータを得るために必要な送信回数であり、ここではN=3である。整相加算処理部22が生成した、送信開口110Aに対応する整相加算後受信信号HsumA1(小エリアデータ210A)は、記憶領域24A-1に格納される。同様に、送信開口110Bに対応する整相加算後受信信号HsumB1(小エリアデータ210B)は、記憶領域24B-1に格納される。
As shown in FIG. 13, the second storage unit 24 has storage areas 24A-1 to 24A- (N−1) for storing two sets of N−1 small area data for each set of transmission apertures. ) And 24B-1 to 24B- (N-1). Here, N is the number of transmissions required to obtain one post-combination small area data, and here N = 3. The received signal H sumA 1 (small area data 210A) after the phasing addition corresponding to the transmission aperture 110A generated by the phasing addition processing unit 22 is stored in the storage area 24A-1. Similarly, the post-phasing addition received signal HsumB1 (small area data 210B) corresponding to the transmission aperture 110B is stored in the storage area 24B-1.
制御部106は、第一送信Tx1と同様の空間符号化をした第三送信Tx3を送信部102に実行させる。チャネル1091が得た受信信号R13を、送信開口110A,110B用の記憶領域40-1に上書き保存させる。すなわち、第一送信Tx1により記憶領域40-1に保存しておいた受信信号R11を消去し、第三送信Tx3の受信信号R13を保存する。同様に、他のチャネル1092・・・109Pがそれぞれ得た受信信号R23...RP3についても、それぞれのチャネルに接続されているチャネルメモリ40の110A,110Bの記憶領域40-1に上書き保存する。
The control unit 106 causes the transmission unit 102 to execute the third transmission Tx3 that is spatially encoded in the same manner as the first transmission Tx1. The reception signal R 13 obtained by the channel 109 1 is overwritten and stored in the storage area 40-1 for the transmission openings 110A and 110B. That is, the received signal R 1 1 stored in the storage area 40-1 by the first transmission Tx1 is deleted, and the received signal R 13 of the third transmission Tx3 is stored. Similarly, for the received signals R 2 3... R P 3 obtained by the other channels 109 2 ... 109 P , the storage areas 40 of 110A and 110B of the channel memory 40 connected to the respective channels. Save to -1.
制御部106は、送信開口110A,110B用の記憶領域40-1、40-2から受信信号R12、R13を読み出し、復号部41内の加算器14と減算器15にそれぞれ入力させ、送信開口110Aについての復号後受信信号H1A2と、送信開口110Bについての復号後受信信号H1B2を得る。同様に、制御部106は、他のチャネル1092・・・109Pに接続されたチャネルメモリ40についても、それぞれ復号部41に受信信号を入力させ、送信開口110Aからの復号後受信信号および送信開口110Bからの送信による復号後受信信号を演算させる。
The control unit 106 reads the received signals R 1 2 and R 13 from the storage areas 40-1 and 40-2 for the transmission openings 110A and 110B, and inputs them to the adder 14 and the subtracter 15 in the decoding unit 41, respectively. Then, a decoded reception signal H 1A 2 for the transmission aperture 110A and a decoded reception signal H 1B 2 for the transmission aperture 110B are obtained. Similarly, the control unit 106 also inputs the received signal to the decoding unit 41 for the channel memories 40 connected to the other channels 109 2 ... 109 P , respectively, and receives the decoded reception signal and transmission from the transmission aperture 110A. A decoded reception signal by transmission from the opening 110B is calculated.
各チャネル信号処理部20からの送信開口110Aに対応する復号後受信信号H1A2、H2A2、H3A1・・・と、送信開口110Bに対応する復号後信号H1B2、H2B2、H3B2・・・は、整相加算処理部22へ受け渡され、整相加算後受信信号HsumA2(送信開口110Aに対応する小エリアデータ210A)と、整相加算後受信信号HsumB2(送信開口110Bに対応する小エリアデータ210B)が生成される。
Decoded received signals H 1A 2, H 2A 2, H 3A 1... Corresponding to the transmission aperture 110A from each channel signal processing unit 20, and decoded signals H 1B 2 and H 2B 2 corresponding to the transmission aperture 110B. , H 3B 2... Are transferred to the phasing addition processing unit 22 and received signal H sumA 2 after phasing addition (small area data 210A corresponding to transmission aperture 110A) and received signal H after phasing addition. sumB 2 (small area data 210B corresponding to the transmission aperture 110B) is generated.
整相加算後受信信号HsumA2(送信開口110Aに対応する小エリアデータ210A)と、整相加算後受信信号HsumB2(送信開口110Bに対応する小エリアデータ210B)は、第2の記憶部24の記憶領域24A-2、24B-2にそれぞれ格納される。
The received signal HsumA2 after phasing addition (small area data 210A corresponding to the transmission aperture 110A) and the received signal HsumB2 after phasing addition (small area data 210B corresponding to the transmission aperture 110B) are stored in the second memory. The data is stored in the storage areas 24A-2 and 24B-2 of the unit 24, respectively.
制御部106は、3回の送信により得られた,送信開口110Aについての時系列な2つの小エリアデータ210A(整相加算後受信信号HsumA1、HsumA2)を、記憶領域24A-1,24A-2から読み出して、合成部25に受け渡す。合成部25内の加算処理部33は、送信開口110Aについての2つの小エリアデータ210A(整相加算後受信信号HsumA1、HsumA2)を加算して、合成後の小エリアデータ210A(合成後受信信号HA’)を得る。同様に、制御部106は、送信開口110Bについての小エリアデータ210A(整相加算後受信信号HsumB1、HsumB2)を、記憶領域24B-1,24B-2から読み出して、合成部25に受け渡す。合成部25の加算処理部33は、送信開口110Bについての2つの小エリアデータ210B(整相加算後受信信号HsumB1、HsumB2)を加算して、合成後の小エリアデータ210B(合成後受信信号HB’)を得る。これらの小エリアデータ210A、B(合成後受信信号HA’、HB’)は、撮像対象120の動きに起因する不要信号が抑制されている。小エリアデータHA’、HB’は、第2の記憶部24に設けられた記憶領域24A-T、24B-Tに格納される。
The control unit 106 stores, in the storage area 24A-1, two time-series small area data 210A (received signals H sumA 1 and H sumA 2 after phasing addition) for the transmission aperture 110A obtained by three transmissions. , 24A-2 and transferred to the combining unit 25. The addition processing unit 33 in the synthesizing unit 25 adds two small area data 210A (received signals H sumA 1 and H sumA 2 after phasing addition) for the transmission aperture 110A, and combines the small area data 210A ( A combined received signal H A ′) is obtained. Similarly, the control unit 106 reads out the small area data 210A (received signals H sumB 1 and H sumB 2 after phasing addition) for the transmission aperture 110B from the storage areas 24B-1 and 24B-2, and combines the data 25 Pass to. The addition processing unit 33 of the synthesizing unit 25 adds the two small area data 210B (the received signals H sumB 1 and H sumB 2 after phasing addition) for the transmission aperture 110B, and combines the small area data 210B (synthesized). After receiving signal H B ′) is obtained. In these small area data 210 </ b> A, B (combined received signals H A ′, H B ′), unnecessary signals due to the movement of the imaging target 120 are suppressed. The small area data H A ′ and H B ′ are stored in storage areas 24A-T and 24B-T provided in the second storage unit 24.
制御部106は、送信開口の組ごとに、上記と同様の過程を繰り返す。このとき、上述の説明では、一組の送信開口110A,Bから連続3回(N回)の送信を行うように説明したが、図6のように、送信開口の組のそれぞれについて順に送信を行うスキャンを、3回(N回)繰り返すことが望ましい。
The control unit 106 repeats the same process as described above for each set of transmission apertures. At this time, in the above description, it has been described that transmission is performed three times (N times) continuously from one set of transmission apertures 110A and 110B. However, as shown in FIG. It is desirable to repeat the scan to be performed three times (N times).
そのため、図14のフローに示すように、スキャン回数をnで表すと、1回目のスキャン(ステップ141)では、各送信開口の組について、順に第一送信を行う(ステップ142~148)。このとき、スキャン回数nが奇数のときには、式(1)の第1行目の符号化(第一空間符号化)による送信を行い(ステップ144)、得られた受信信号は、チャネルメモリ40の送信開口の組ごとの記憶領域40-1にそれぞれ格納する。スキャン回数nが偶数のときには、式(1)の第1行目の符号化(第一空間符号化)による送信を行い(ステップ146)、得られた受信信号をチャンネルメモリ40の送信開口の組ごとの記憶領域40-2にそれぞれ格納する(ステップ147)。
Therefore, as shown in the flow of FIG. 14, when the number of scans is represented by n, in the first scan (step 141), the first transmission is sequentially performed for each set of transmission apertures (steps 142 to 148). At this time, when the number of scans n is an odd number, transmission is performed by encoding (first spatial encoding) in the first row of equation (1) (step 144), and the obtained reception signal is stored in the channel memory 40. The data is stored in the storage area 40-1 for each set of transmission apertures. When the number of scans n is an even number, transmission is performed by encoding (first spatial encoding) in the first row of equation (1) (step 146), and the obtained reception signal is set to a set of transmission apertures in the channel memory 40. Each of them is stored in the storage area 40-2 (step 147).
制御部106は、スキャン回数nが2回目以降(ステップ149)は、送信開口の組ごとに(ステップ151、156)、記憶領域40-1,40-2の受信信号を復号部41に受け渡させ、復号後受信信号HA,HBを生成させる(ステップ152,153)。さらに復号後受信信号HA,HBをそれぞれ整相加算部22で整相加算させ、得られた小エリアデータHsumA,HsumBを第2の記憶部24の記憶領域24A-1,24B-1(すなわち記憶領域24A-(n-1),24B-(n-1))に、送信開口の組ごとに格納する(ステップ155)。
The control unit 106 transfers the received signals in the storage areas 40-1 and 40-2 to the decoding unit 41 for each set of transmission apertures (steps 151 and 156) after the second scan number n (step 149). The decoded received signals H A and H B are generated (steps 152 and 153). Further, the received signals H A and H B after decoding are phased and added by the phasing adder 22 respectively, and the obtained small area data H sumA and H sumB are stored in the storage areas 24A-1 and 24B− of the second storage unit 24, respectively. 1 (that is, storage areas 24A- (n-1), 24B- (n-1)) is stored for each set of transmission apertures (step 155).
その後、ステップ142に戻り3回目のスキャンを行う(ステップ157,150)。3回目のスキャンでは、第一空間符号化による第三送信の各送信開口の組について順に行い、得られた受信信号をチャンネルメモリ40の送信開口の組ごとの記憶領域40-1に上書き保存する(ステップ142~148)。そして、ステップ151~156に進み、制御部106は、送信開口の組ごとに、それぞれの復号部41に順に記憶領域40-1,40-2の受信信号を受け渡し、送信開口の組ごとに、復号後受信信号HA,HBを生成させる。復号後受信信号HA,HBをそれぞれ整相加算部22で整相加算させ、得られた小エリアデータHsumA,HsumBを第2の記憶部24の記憶領域24A-2,24B-2(すなわち記憶領域24A-(n-1),24B-(n-1))に、送信開口の組ごとに格納する。
Thereafter, the process returns to step 142 to perform the third scan (steps 157 and 150). In the third scan, each transmission aperture set of the third transmission by the first spatial encoding is sequentially performed, and the obtained reception signal is overwritten and stored in the storage area 40-1 for each transmission aperture set of the channel memory 40. (Steps 142 to 148). Then, the process proceeds to steps 151 to 156, and the control unit 106 sequentially passes the received signals of the storage areas 40-1 and 40-2 to the respective decoding units 41 for each set of transmission apertures, and for each set of transmission apertures, After decoding, reception signals H A and H B are generated. The decoded reception signals H A and H B are phased and added by the phasing and adding unit 22 respectively, and the obtained small area data H sumA and H sumB are stored in the storage areas 24A-2 and 24B-2 of the second storage unit 24, respectively. (That is, storage areas 24A- (n-1), 24B- (n-1)) are stored for each set of transmission apertures.
そして、送信回数が、N回(3回)以上かどうか判断する(ステップ157)。N回(3回)以上の場合、制御部106は、送信開口の組ごとに(ステップ158、163)、第2の記憶部24の記憶領域24A-1~24A-(N-1)のデータを読み出して、合成部25に受け渡し、合成部25が加算して一方の小エリアデータHA’を求める(ステップ159,160)。次に、制御部106は、記憶領域24B-1,24B-(N-1)のデータを読み出して、合成部25に受け渡し、合成部25の加算処理部33が加算して他方の小エリアデータHB’を求める(ステップ161,162)。求めた小エリアデータHA’、HB’は、第2の記憶部24に設けられた記憶領域24A-T、24B-Tに、送信開口ごとに格納される。これにより、図5に示す送信開口の組ごとに2つずつ、合計8つの小エリアデータ210A~213A,210B~213Bが、図13の記憶領域24A-T、24B-Tにそれぞれ格納される。制御部106は、記憶領域24A-T、24B-Tの小エリアデータを合成部25に受け渡し、合成部25の画像構築部34は、これらの小エリアデータをそれぞれ所定の位置に並べることにより、撮像対象120の画像を構築する(ステップ164)。
Then, it is determined whether the number of transmissions is N times (three times) or more (step 157). In the case of N times (three times) or more, the control unit 106 sets the data in the storage areas 24A-1 to 24A- (N-1) of the second storage unit 24 for each set of transmission apertures (steps 158 and 163). Is transferred to the synthesizing unit 25, and the synthesizing unit 25 adds to obtain one small area data H A ′ (steps 159 and 160). Next, the control unit 106 reads out the data in the storage areas 24B-1 and 24B- (N-1) and transfers the data to the combining unit 25, and the addition processing unit 33 of the combining unit 25 adds the other small area data. H B ′ is obtained (steps 161 and 162). The obtained small area data H A ′ and H B ′ are stored in the storage areas 24A-T and 24B-T provided in the second storage unit 24 for each transmission aperture. Thus, a total of eight small area data 210A to 213A and 210B to 213B are stored in the storage areas 24A-T and 24B-T in FIG. 13, two for each set of transmission apertures shown in FIG. The control unit 106 transfers the small area data of the storage areas 24A-T and 24B-T to the synthesis unit 25, and the image construction unit 34 of the synthesis unit 25 arranges these small area data at predetermined positions, respectively. An image of the imaging target 120 is constructed (step 164).
その後、ステップ142に戻り、4回目以降のn回目のスキャンを行う。4回目以降ンのスキャンの処理も、上記各ステップと同様であるが、ステップ155において、小エリアデータHsumA,HsumBを格納する第2の記憶部24の記憶領域は、記憶領域24A-(n-1-(N-1)),24B-(n-1-(N-1))とし、(N-1)回目の以降の記憶領域を順次上書き保存していく。これにより、n回目のスキャンごとに、合成部25で合成した小エリアデータを用いた撮像対象120の画像を構築することができる。
Thereafter, returning to step 142, the fourth and subsequent n-th scans are performed. The processing of the fourth and subsequent scans is the same as in the above steps, but in step 155, the storage area of the second storage unit 24 that stores the small area data H sumA and H sumB is the storage area 24A- ( n-1- (N-1)) and 24B- (n-1- (N-1)), and the storage areas after the (N-1) th time are sequentially overwritten and saved. Thereby, the image of the imaging target 120 using the small area data synthesized by the synthesis unit 25 can be constructed every n-th scan.
なお、合成部25が合成を行うまでのスキャン回数Nは、3回に限られるものではなく、任意の回数にすることができる。例えば、スキャン回数Nの設定をUI121を介して操作者から受け付けることも可能である。また、合成部25が合成すべき復号後受信信号の数(N-1)を操作者からUI121を介して受け付け、その数よりも1以上大きい数の送信を行わせることも可能である。さらに、設定されている撮像条件に応じて、適切なスキャン回数Nを制御部106が設定することも可能である。この場合、設定可能な撮像条件ごとに予め適切なスキャン回数Nを求め、これを制御部106内のメモリまたは外部のメモリに格納しておき、それを制御部106が読み出して用いる構成にすることができる。
Note that the number of scans N until the composition unit 25 performs composition is not limited to three, and can be any number. For example, the setting of the number of scans N can be accepted from the operator via the UI 121. Further, the number (N−1) of decoded received signals to be combined by the combining unit 25 can be received from the operator via the UI 121, and transmission can be performed by a number one or more larger than that number. Furthermore, the control unit 106 can also set an appropriate number of scans N according to the set imaging conditions. In this case, an appropriate number of scans N is obtained in advance for each settable imaging condition, and this is stored in a memory in the control unit 106 or an external memory, and the control unit 106 reads and uses it. Can do.
また、図14のステップ143、144、146では、制御部106は、スキャン回数が奇数回のときに第一空間符号化の送信を、偶数回のときに第二空間符号化の送信を行わせたことにより、直近の2つの受信信号を用いて復号をスキャンごとに行うことができ、各送信開口の組の小エリアデータを、時系列に得ることができる。よって、スキャンごとにほぼリアルタイムに撮像対象の画像を表示することができる。ただし、本発明はこれに限られるものではなく、スキャンメモリ40に多くの記憶領域を用意することが可能であれば、直近ではない2つの受信信号を用いて復号処理を行うことも可能である。
In steps 143, 144, and 146 in FIG. 14, the control unit 106 causes the first spatial coding to be transmitted when the number of scans is an odd number, and the second spatial coding to be performed when the number of scans is an even number. Thus, decoding can be performed for each scan using the two most recently received signals, and small area data for each set of transmission apertures can be obtained in time series. Therefore, it is possible to display an image to be imaged almost in real time for each scan. However, the present invention is not limited to this, and if it is possible to prepare a large number of storage areas in the scan memory 40, it is also possible to perform decoding using two received signals that are not the most recent. .
なお、小エリアデータは、撮像対象120の撮像領域において互いに排他的である必要はなく、互いに一部重なり合っていてもよい。このとき、重なり合う小エリアデータは、合成部25におい同一領域データとしてコヒーレントに、もしくはインコヒーレントに合成加算処理する。
Note that the small area data need not be mutually exclusive in the imaging region of the imaging target 120 and may partially overlap each other. At this time, the overlapping small area data is combined and added coherently or incoherently as the same area data in the combining unit 25.
上述してきたように、本実施形態では、合成部25が時系列な複数の小エリアデータを加算することにより、撮像対象の動きに起因する不要データを抑制した小エリアデータを得ることができる。このとき、第2の記憶部24と合成部25を整相加算部22の後段に配置したことにより、受信チャネル数が100以上用意されている装置であっても、装置全体で第2の記憶部24と合成部25を一つずつのみ配置すればよい。よって、チャネル数に比例して、ハードウェア構成が増大することがなく、本実施形態によるハードウェアコストの増大は最小限に抑えられることができる。なお、整相加算は線形加算処理であるため、整相加算前後の信号における不要成分の位相は保持される。
As described above, in the present embodiment, the combining unit 25 adds a plurality of time-series small area data, thereby obtaining small area data in which unnecessary data resulting from the movement of the imaging target is suppressed. At this time, since the second storage unit 24 and the combining unit 25 are arranged in the subsequent stage of the phasing addition unit 22, even if the device has 100 or more reception channels, the second storage unit is stored in the entire device. Only one unit 24 and one synthesis unit 25 need be arranged. Therefore, the hardware configuration does not increase in proportion to the number of channels, and the increase in hardware cost according to the present embodiment can be minimized. Since the phasing addition is a linear addition process, the phase of the unnecessary component in the signal before and after the phasing addition is maintained.
なお、合成部25で加算処理する時系列な小エリアデータの数が大きいほどアーチファクトはより低減できるが、撮像対象の動きが速い場合は、画質が劣化する恐れがある。したがって、制御部106が、撮像対象の動きの速さに応じて、合成部25が加算処理する小エリアデータの数を決定する構成にすることも可能である。この場合、制御部106は、別途画像処理を行って、撮像対象の動きの速さを演算により求め、予め定めておいた速さと加算処理数との関係から、加算処理数を決定することができる。
Note that the artifact can be further reduced as the number of time-series small area data to be added by the synthesizing unit 25 increases. However, when the movement of the imaging target is fast, the image quality may be deteriorated. Therefore, the control unit 106 may be configured to determine the number of small area data to be added by the synthesis unit 25 according to the speed of movement of the imaging target. In this case, the control unit 106 separately performs image processing, obtains the speed of movement of the imaging target by calculation, and determines the number of addition processes from the relationship between a predetermined speed and the number of addition processes. it can.
<<第二実施形態>>
第二実施形態の超音波撮像装置について、図15~図17を用いて説明する。 << Second Embodiment >>
An ultrasonic imaging apparatus according to the second embodiment will be described with reference to FIGS.
第二実施形態の超音波撮像装置について、図15~図17を用いて説明する。 << Second Embodiment >>
An ultrasonic imaging apparatus according to the second embodiment will be described with reference to FIGS.
第二実施形態の超音波撮像装置は、図15に示すように、合成部25が、複数の復号後受信信号(小エリアデータ)HsumA1、HsumA2・・・HsumA(N-1)に重み付けする重み付け部32-1,32-2・・・32-(N-1)を有する。これら重み付け部32-1,32-2・・・32-(N-1)により重み付けされた復号後受信信号HsumA1、HsumA2・・・HsumA(N-1)を加算処理部33が加算する。このとき、重み付け部32-1,32-2・・・32-(N-1)は、時系列に生成された復号後受信信号のうち、時系列の中心時間に近いものほど大きく重み付けすることが望ましい。これにより、図16のように本来の受信信号119aをより強め、不要信号119bをより抑制した小エリアデータ(合成後の復号後受信信号)HA’を得ることができる。超音波撮像装置内には、予め重み係数値が格納された重みデータ格納部86が備えられている。他の構成は、第一実施形態の超音波撮像装置と同様な構成である。
In the ultrasonic imaging apparatus according to the second embodiment, as illustrated in FIG. 15, the combining unit 25 has a plurality of decoded received signals (small area data) H sumA 1, H sumA 2... H sumA (N−1 .., 32- (N−1). The decoded received signals H sumA 1, H sumA 2... H sumA (N−1) weighted by the weighting units 32-1 , 32-2,. Will add. At this time, the weighting units 32-1, 32-2,..., 32- (N-1) weights the received signal that is closer to the center time of the time series among the received signals generated in the time series. Is desirable. As a result, as shown in FIG. 16, the original received signal 119a is further strengthened, and small area data (decoded received signal after synthesis) H A ′ in which the unnecessary signal 119b is further suppressed can be obtained. In the ultrasonic imaging apparatus, a weight data storage unit 86 in which weight coefficient values are stored in advance is provided. Other configurations are the same as those of the ultrasonic imaging apparatus of the first embodiment.
第二実施形態についてさらに説明する。第1実施形態でも記述したように、復号部41が時系列に生成する復号後受信信号HA1、HA2、HA3・・・に含まれる、本来の受信信号16a,17a,18a・・・は、図16に示すように、常に同位相の波形である。これらの受信信号は、図17(a)のように撮像対象120の動きによって少しずつ時間シフトした状態である。そのため、図17(a)のように単純にこれらの受信信号を加算した小エリアデータ(合成後の復号後受信信号)HA’よりも、信号出現時間の中心(時系列の中心)に近いものほど重みづけを大きくしてから合成部25で加算した小エリアデータ(合成後の復号後受信信号)HA’の方が、信号の時間軸方向の広がりが小さくなり、空間分解能が向上する。
The second embodiment will be further described. As also described in the first embodiment, the decoded received signals H A 1 the decoding unit 41 generates a time series, H A 2, H A 3 included in ..., original received signal 16a, 17a, 18a .. Are always in-phase waveforms as shown in FIG. These received signals are in a state in which the time is gradually shifted by the movement of the imaging target 120 as shown in FIG. Therefore, as shown in FIG. 17A, the signal appearance time center (the center of the time series) is closer than the small area data (decoded received signal after synthesis) H A ′ obtained by simply adding these received signals. The smaller area data (decoded received signal after synthesis) H A ′, which is weighted after increasing the weight, is less spread in the time axis direction of the signal and the spatial resolution is improved. .
一方、復号部41が時系列に生成する復号後受信信号HA1、HA2、HA3・・・に含まれる不要信号16b~18bは、交互に逆位相の波形となる。これらの信号も少しずつ時間シフトした状態であるため、すべての信号を一緒に加算するより、時間シフトが小さい信号同士(不要信号16bと17b、不要信号17bと18b)をそれぞれ加算して不要信号を最小限にしてから、加算結果同士を加算した方が、全体の不要信号成分を抑圧させることができる。これは、時系列な復号後受信信号HA1、HA2、HA3・・・の時系列の中心に近い信号ほど重みづけを大きくして加算することと等価である。
On the other hand, the unnecessary signals 16b to 18b included in the decoded received signals H A 1, H A 2, H A 3... Generated by the decoding unit 41 in time series alternately have waveforms with opposite phases. Since these signals are also time-shifted little by little, unnecessary signals are obtained by adding together signals having a small time shift ( unnecessary signals 16b and 17b, unnecessary signals 17b and 18b), rather than adding all signals together. If the addition results are added to each other after minimizing the error, the entire unnecessary signal component can be suppressed. This is equivalent to increasing the weighting and adding the signals closer to the center of the time series of the received signals H A 1, H A 2, H A 3.
このように、時系列の中心時間に近い復号後受信信号ほど大きく重み付けすることにより、本来の受信信号119aの時間軸方向の広がりを抑えて空間分解能を向上させ、かつ、不要信号119bをより抑制することができる。
In this way, by increasing the weight of the decoded received signal that is closer to the center time of the time series, the spatial resolution is improved by suppressing the spread of the original received signal 119a in the time axis direction, and the unnecessary signal 119b is further suppressed. can do.
重みづけを行って加算を行う方法は、ガウシアンフィルタを使った高画質化画像処理の方法と同類である。例えば、図16に示す3つの信号HA1、HA2、HA3を和算する場合では、各信号に対して重み付け係数α、β、γを乗算してから和算する。時系列の中心となるHA2の信号に乗算するβは、その前後のα、γよりも大きい値に設定する。たとえば、ガウシアン関数の中心の最大振幅値をβに用い、その前後の任意の2点に相当する値をα、γに用いる。また、ガウシアン関数の他に、二項分布に基づいた二項係数値 [1 2 1]の要素をα、β、γの重み付け係数にそれぞれ割り当ててもよい。
The method of performing weighting and performing addition is similar to the method of high quality image processing using a Gaussian filter. For example, when the three signals H A 1, H A 2, and H A 3 shown in FIG. 16 are summed, the signals are summed after weighting coefficients α, β, and γ are multiplied. Β multiplied by the signal of H A 2 which is the center of the time series is set to a value larger than α and γ before and after that. For example, the maximum amplitude value at the center of the Gaussian function is used for β, and the values corresponding to any two points before and after that are used for α and γ. In addition to the Gaussian function, the binomial coefficient value [1 2 1] based on the binomial distribution may be assigned to the weighting coefficients α, β, and γ, respectively.
第二実施形態における合成部25の構成と動作を図15を用いてさらに説明する。制御部106は、第一実施形態の図14のステップ159において、第2の記憶部24の記憶領域24A-1~24A-(N-1)に格納されている小エリアデータHsumA1、HsumA2・・・HsumA(N-1)を読み出し、合成部25に受け渡す。合成部25の重み付け部32-1~32-(N-1)は、HsumA1、HsumA2・・・HsumA(N-1)の波形の振幅に重み付けする。重みデータ格納部86には、重みづけするデータ数(N-1)に応じて、重みデータが予め格納されている。制御部106は、重み付けするデータ数(N-1)に応じて、重みデータ格納部86から適切な重み係数値を選択して、重み付け部32-1,32-2・・・32-(N-1)にそれぞれ設定する。これにより、HsumA1、HsumA2・・・HsumA(N-1)の時系列の時間の中心に近いものほど重み係数を大きくする。重み付け後、小エリアデータは、合成部25の加算処理部33で加算され、小エリアデータ(合成後の復号後受信信号)HA’となって、第2の記憶部の記憶領域24A-Tに格納される(ステップ160)。これにより、不要信号がより抑圧され、本来の受信信号の空間分解能を高めた小エリアデータを生成することができる。ステップ162についても同様に、重み付け後、加算する処理を行う。
The configuration and operation of the synthesis unit 25 in the second embodiment will be further described with reference to FIG. In step 159 of FIG. 14 of the first embodiment, the control unit 106 reduces the small area data H sumA 1, H sum stored in the storage areas 24A-1 to 24A- (N−1) of the second storage unit 24. sumA 2... H sumA (N−1) is read and transferred to the synthesis unit 25. The weighting units 32-1 to 32- (N−1) of the combining unit 25 weight the waveform amplitudes of H sumA 1, H sumA 2... H sumA (N−1). The weight data storage unit 86 stores weight data in advance according to the number of data to be weighted (N-1). The control unit 106 selects an appropriate weighting coefficient value from the weight data storage unit 86 according to the number of data to be weighted (N−1), and assigns weighting units 32-1, 32-2,. Set to -1). As a result, the weight coefficient is increased as the time closer to the center of the time series of H sumA 1, H sumA 2... H sumA (N−1). After the weighting, the small area data is added by the addition processing unit 33 of the synthesis unit 25 to become small area data (decoded received signal after synthesis) H A ′, and the storage areas 24A-T of the second storage unit (Step 160). As a result, the unnecessary signal is further suppressed, and small area data in which the spatial resolution of the original received signal is increased can be generated. Similarly, in step 162, after weighting, addition processing is performed.
その他の構成は、第一実施形態と同様であるので説明を省略する。
Other configurations are the same as those in the first embodiment, and thus description thereof is omitted.
<<第三実施形態>>
本発明の第三実施形態について説明する。第三実施形態の超音波撮像装置では、送信部102は、直交関係を持つ時間符号化と組み合わせた空間符号化,すなわち時空間符号化された超音波を送信開口から送信させる。受信部105は、図18のように復号部41に時間符号化に対応する復号を行うフィルタ54-1~54-2,55-1~55-2および加算部56を備える。合成部25は、復号部41が復号した複数の復号後受信信号を加算処理する。 << Third embodiment >>
A third embodiment of the present invention will be described. In the ultrasonic imaging apparatus according to the third embodiment, thetransmission unit 102 causes the transmission aperture to transmit the spatial encoding combined with the temporal encoding having an orthogonal relationship, that is, the spatio-temporal encoded ultrasonic. The receiving unit 105 includes filters 54-1 to 54-2, 55-1 to 55-2 that perform decoding corresponding to time coding, and an adding unit 56 in the decoding unit 41 as shown in FIG. The synthesizer 25 adds the plurality of decoded received signals decoded by the decoder 41.
本発明の第三実施形態について説明する。第三実施形態の超音波撮像装置では、送信部102は、直交関係を持つ時間符号化と組み合わせた空間符号化,すなわち時空間符号化された超音波を送信開口から送信させる。受信部105は、図18のように復号部41に時間符号化に対応する復号を行うフィルタ54-1~54-2,55-1~55-2および加算部56を備える。合成部25は、復号部41が復号した複数の復号後受信信号を加算処理する。 << Third embodiment >>
A third embodiment of the present invention will be described. In the ultrasonic imaging apparatus according to the third embodiment, the
時間符号化は、超音波波形を符号化し、超音波のエネルギーを時間方向に分散させて送信する手法であり、受信時に圧縮フィルタを適用する。これにより、分散した音波のエネルギーが圧縮され、高い振幅の復号後受信信号を生成することができるため、SN比を向上させた撮像が行える。時間符号化を空間符号化に組み合わせて本発明に適用することにより、撮像対象に動きが生じた場合であっても、生成される画像のアーチファクトを低減でき、しかも、SN比を向上させることができる。
Time coding is a method of coding an ultrasonic waveform and distributing ultrasonic energy in the time direction and applying a compression filter at the time of reception. As a result, the energy of the dispersed sound waves is compressed, and a decoded signal having a high amplitude can be generated, so that imaging with an improved SN ratio can be performed. By applying temporal encoding to spatial encoding and applying it to the present invention, artifacts in the generated image can be reduced and the S / N ratio can be improved even when motion occurs in the imaging target. it can.
以下、具体的に説明する。空間符号化に時間符号化を追加した時空間符号化送受自体は、例えば、米国特許第6048315号等に記載された公知技術であるが、これをどのように用いて、時系列な複数の復号後受信信号を生成し、合成するかという構成が、本発明特有である。
The details will be described below. Spatio-temporal coding transmission / reception itself in which temporal coding is added to spatial coding is a known technique described in, for example, US Pat. No. 6,048,315. The configuration of generating and synthesizing the post-reception signal is unique to the present invention.
(時間符号化の原理)
まず、時間符号化の原理を、Golay符号を用いる場合を例に説明する。Golay符号は、圧縮後のパルス波形の時間方向の前後に、タイムサイドローブと呼ばれる不要信号が残存しない符号として知られている。Golay符号は、同じ符号長である相補系列のペアとなるバイナリコードである。ペアとなる符号X1、X2のそれぞれの自己相関関数をψX1X1、ψX2X2とすると、それらのk番目の要素同士の和χx1x2(k)は、式(2)で表される。
式(2)において、LはGolay符号の符号長である。式(2)から明らかなように、k番目の要素同士の和χx1x2(k)は、k=0(時間シフト0の状態)以外の場合で常に0をとるため、Golay符号のペアを順次送信し、それぞれの受信信号に自己相関処理を施し、加算処理を行うことでタイムサイドローブが完全に打ち消された時間符号化が行えることがわかる。この演算処理を以下、Golay復号と呼ぶ。
(Principle of time coding)
First, the principle of time encoding will be described using an example of using a Golay code. The Golay code is known as a code in which an unnecessary signal called a time side lobe does not remain before and after the compressed pulse waveform in the time direction. The Golay code is a binary code that is a pair of complementary sequences having the same code length. Assuming that the autocorrelation functions of the pair of codes X1 and X2 are ψ X1X1 and ψ X2X2 , the sum χ x1x2 (k) of those k-th elements is expressed by the equation (2).
In Expression (2), L is the code length of the Golay code. As is clear from equation (2), the sum χ x1x2 (k) of the k-th elements is always 0 except in the case of k = 0 (time shift 0 state). It can be seen that by performing transmission, performing autocorrelation processing on each received signal, and performing addition processing, time coding in which the time side lobe is completely canceled can be performed. Hereinafter, this arithmetic processing is referred to as Golay decoding.
まず、時間符号化の原理を、Golay符号を用いる場合を例に説明する。Golay符号は、圧縮後のパルス波形の時間方向の前後に、タイムサイドローブと呼ばれる不要信号が残存しない符号として知られている。Golay符号は、同じ符号長である相補系列のペアとなるバイナリコードである。ペアとなる符号X1、X2のそれぞれの自己相関関数をψX1X1、ψX2X2とすると、それらのk番目の要素同士の和χx1x2(k)は、式(2)で表される。
First, the principle of time encoding will be described using an example of using a Golay code. The Golay code is known as a code in which an unnecessary signal called a time side lobe does not remain before and after the compressed pulse waveform in the time direction. The Golay code is a binary code that is a pair of complementary sequences having the same code length. Assuming that the autocorrelation functions of the pair of codes X1 and X2 are ψ X1X1 and ψ X2X2 , the sum χ x1x2 (k) of those k-th elements is expressed by the equation (2).
例えばGolay符号のペアとして、図19のように、L=2である符号X1=[1 1]とX2=[1 -1]を用いる場合、時間符号化のみを施した第一送信Tx1の波形は、図20(a)のようにX1を表す波形となり、第二送信Tx2の波形は、X2を表す波形となる。ただし、図7(a)の基準波形71を符号1に、図7(b)の反転波形72を符号-1に割り当てている。それぞれの送信で得られた受信信号R1、R2は、1散乱体からのエコーを仮定すると送信波形と同一の波形となる。なお、実際には、受信信号は媒質の散乱体によって様々なエコーが重なった波形となる。2つの受信信号R1、R2には、Golay復号処理のために、まず、各送信に用いられた符号X1、X2の自己相関フィルタ54,55が適用される(図19、図20(b))。自己相関フィルタ54,55は、それぞれ送信した符号係数(1もしくは-1)を時間軸について反転させた係数を用いた、整合フィルタである。これにより、圧縮パルスC1,C2が生成される。圧縮パルスC1,C2は、中心のメインローブと、その時間方向の前後に出現するタイムサイドローブから成るが、タイムサイドローブは、圧縮パルスC1、C2で互いに反転した関係となる。このため、それらを同時刻で加算部56で加算処理することでタイムサイドローブは打ち消され、メインローブの信号は加算されて出力される。
For example, when a code X1 = [1 1] and X2 = [1 −1] with L = 2 is used as a pair of Golay codes as shown in FIG. 19, the waveform of the first transmission Tx1 subjected only to time encoding Is a waveform representing X1 as shown in FIG. 20A, and the waveform of the second transmission Tx2 is a waveform representing X2. However, the reference waveform 71 in FIG. 7A is assigned to reference numeral 1 and the inverted waveform 72 in FIG. 7B is assigned to reference numeral -1. The received signals R1 and R2 obtained by each transmission have the same waveform as the transmission waveform assuming an echo from one scatterer. Actually, the received signal has a waveform in which various echoes are overlapped by a medium scatterer. For the Golay decoding process, first, autocorrelation filters 54 and 55 of codes X1 and X2 used for each transmission are applied to the two received signals R1 and R2 (FIGS. 19 and 20B). . The autocorrelation filters 54 and 55 are matched filters using coefficients obtained by inverting the transmitted code coefficients (1 or −1) with respect to the time axis. Thereby, the compression pulses C1 and C2 are generated. The compression pulses C1 and C2 are composed of a central main lobe and time side lobes appearing before and after the time direction, and the time side lobes are in an inverted relationship with each other with the compression pulses C1 and C2. Therefore, the time side lobe is canceled by adding them at the same time by the adding unit 56, and the main lobe signals are added and output.
次に,直交関係を持つ時間符号化と組み合わせた空間符号化,すなわち時空間符号化について説明する。上記のGolay符号ペアX1とX2に加えて、別のGolay符号ペアY1とY2を用いる。符号Y1、Y2は、X1とX2に対するY1とY2の相互相関関数の和が、全ての点でゼロとなるような符号を用いる。X1とY1の相互相関関数をψX1Y1、X2とY2の相互相関化数をψX2Y2とすると、それらのk番目の要素同士の和は、式(3)で表される。
式(3)において、LはGolay符号の符号長である。したがって、XとYの符号を同時に送信した場合においても、受信信号に相互相関処理を行えばそれぞれの符号で送信したエコー信号として分離することができる。
Next, spatial coding combined with temporal coding having an orthogonal relationship, that is, space-time coding will be described. In addition to the above Golay code pair X1 and X2, another Golay code pair Y1 and Y2 is used. The codes Y1 and Y2 are codes such that the sum of the cross-correlation functions of Y1 and Y2 with respect to X1 and X2 is zero at all points. When the cross-correlation function of the X1 and Y1 [psi X1Y1, X2 and Y2 cross correlation of the number of the [psi X2Y2, sum between their k-th element is represented by the formula (3).
In Expression (3), L is the code length of the Golay code. Therefore, even when the X and Y codes are transmitted simultaneously, if the cross-correlation processing is performed on the received signal, it can be separated as an echo signal transmitted with each code.
L=2であるGolayペアがX1=[1 1]とX2=[1 -1]であるとき,直交関係を持つGolayペアY1とY2の符号は,Y1=[-1 1]とY2=[-1 -1]などが挙げられる。
When the Golay pair with L = 2 is X1 = [1 1] and X2 = [1 −1], the codes of the Golay pairs Y1 and Y2 having an orthogonal relationship are Y1 = [− 1 1] and Y2 = [ -1 -1].
2つの送信開口から同時に送信を行う動作を、2回行う時空間符号化送受では,式(4)のような時空間符号化された送信を行う。式(4)において、行ベクトルが送信の順番を示し、列ベクトルが送信開口の位置を示す。よって、式(4)において、第一送信は[X1 Y1]であり、2つの送信開口の一方からX1で時間符号化された波形を、他方からY2で時間符号化された波形を同時に送信する。第二送信は[X2 Y2]であり、2つの送信開口の一方からX2で時間符号化された波形を、他方からY2で時間符号化された波形を同時に送信する。
In space-time coded transmission / reception in which the operation of performing transmission from two transmission apertures at the same time is performed twice, space-time coded transmission as shown in Equation (4) is performed. In equation (4), the row vector indicates the order of transmission, and the column vector indicates the position of the transmission aperture. Therefore, in Expression (4), the first transmission is [X1 Y1], and a waveform time-coded with X1 from one of the two transmission apertures and a waveform time-coded with Y2 from the other are simultaneously transmitted. . The second transmission is [X2 Y2], and a waveform time-coded by X2 from one of the two transmission apertures and a waveform time-coded by Y2 from the other are simultaneously transmitted.
式(4)の送信ごとにそれぞれ受信した、第一受信信号と第二受信信号を使って時空間符号化に応じた復号を行う。Xの符号によるGolay復号とYの符号によるGolay復号を両方行って、Golay符号XによるエコーとYによるエコーを分離する。したがって、各送信の受信信号をR1~R2とすると、時空間符号化の復号処理は、式(5)で表される。
Decoding according to space-time coding is performed using the first received signal and the second received signal received for each transmission of Expression (4). Both Golay decoding by the X code and Golay decoding by the Y code are performed to separate the Golay code X echo from the Y echo. Accordingly, assuming that the received signals of each transmission are R1 and R2, the decoding process of space-time coding is expressed by Expression (5).
このような時空間符号化送受において,撮像対象が動くことで生じる不要信号は,図20(b)の圧縮パルスに生じるタイムサイドローブの打ち消し残りである。つまり,2回の送受信間において撮像対象が動きを生じた場合、受信信号R1に対して受信信号R2の信号出現時間がシフトした状態となるため,C1とC2のタイムサイドローブの打ち消し合いが不完全となる。また同様に,直交関係にあるGolayペアとの相互相関処理後の信号ψX1Y1とψX2Y2信号を加算する際に0となるべき信号も,受信信号R1に対して受信信号R2の信号出現時間がシフトした状態となるため、打ち消し残った不要信号が生じる。
In such space-time encoding transmission / reception, the unnecessary signal generated by the movement of the imaging target is the remaining cancellation of the time side lobe generated in the compressed pulse of FIG. That is, when the imaging target moves between two transmissions / receptions, the signal appearance time of the reception signal R2 is shifted with respect to the reception signal R1, so that the time side lobes of C1 and C2 do not cancel each other. Become complete. Similarly, the signal appearance time of the received signal R2 with respect to the received signal R1 is also the signal that should be 0 when the signals ψX1Y1 and ψX2Y2 signals after cross-correlation processing with the Golay pair in the orthogonal relationship are added. Since it is in a shifted state, an unneeded unnecessary signal is generated.
第三実施形態では、第一実施形態と同様な原理で、同じ送信開口について得られた複数の復号後受信信号を、合成部25が加算することにより、撮像対象が動く場合も、不要信号を抑制できる。
In the third embodiment, on the basis of the same principle as in the first embodiment, the synthesizer 25 adds a plurality of decoded reception signals obtained for the same transmission aperture, so that an unnecessary signal is generated even when the imaging target moves. Can be suppressed.
第一実施形態と同様,本実施形態では,図18のように、チャネルメモリ40には、送信開口の組ごとに、2つの記憶領域40-1~40-2が備えられている。また、本実施形態における復号部41は、符号X1の相関フィルタ54-1,符号X2の相関フィルタ54-2,符号Y1の相関フィルタ55-1,符号Y2の相関フィルタ55-2,と加算部56が図18のように備えられている。
As in the first embodiment, in this embodiment, as shown in FIG. 18, the channel memory 40 is provided with two storage areas 40-1 to 40-2 for each set of transmission openings. Further, the decoding unit 41 in the present embodiment includes a correlation filter 54-1 with a code X1, a correlation filter 54-2 with a code X2, a correlation filter 55-1 with a code Y1, a correlation filter 55-2 with a code Y2, and an addition unit. 56 is provided as shown in FIG.
加算部56の処理後に得られる復号後受信信号H1A1および復号後受信信号H1B1は,第一実施形態と同様に,それぞれ送信開口110Aからの送信による復号後受信信号,送信開口110Bからの送信による復号後受信信号である。第一実施形態と同様に,下付き数字はチャネルの番号,英字は送信開口に対応する復号後受信信号であることを示し、1は、1番目に得られた復号後受信信号であることを示す。
The decoded reception signal H 1A 1 and the decoded reception signal H 1B 1 obtained after the processing of the adder 56 are respectively received from the decoded reception signal and the transmission opening 110B by transmission from the transmission aperture 110A, as in the first embodiment. Is a received signal after decoding. As in the first embodiment, the subscript number indicates the channel number, the alphabetic character indicates the decoded received signal corresponding to the transmission aperture, and 1 indicates the first obtained decoded signal. Show.
したがって,第一空間符号化を第一時空間符号化である[X1 Y1],第二空間符号化を第二時空間符号化である[X2 Y2]とする以外の構成は,送受信時の制御部106の動作は,図14と同様である。
Therefore, the configuration other than the first spatial encoding [X1 Y1] which is the first temporal encoding and the second spatial encoding [X2 Y2] which is the second space-time encoding is the control at the time of transmission and reception. The operation of the unit 106 is the same as that in FIG.
<<第四実施形態>>
本発明の第四実施形態について説明する。第四実施形態の超音波撮像装置では、送信部102は、第一実施形態で説明した空間符号化のみならず、時間符号化された超音波を送信開口から送信させる。受信部105は、図21のように復号部41に加えて、時間符号化に対応する復号を行う第2の復号部141を備える。合成部25は、復号部41および第2の復号部141が復号した複数の復号後受信信号を加算処理する。 << Fourth Embodiment >>
A fourth embodiment of the present invention will be described. In the ultrasonic imaging apparatus of the fourth embodiment, thetransmission unit 102 transmits not only the spatial encoding described in the first embodiment but also the temporally encoded ultrasonic wave from the transmission aperture. The receiving unit 105 includes a second decoding unit 141 that performs decoding corresponding to time coding in addition to the decoding unit 41 as illustrated in FIG. The synthesizer 25 adds the plurality of decoded received signals decoded by the decoder 41 and the second decoder 141.
本発明の第四実施形態について説明する。第四実施形態の超音波撮像装置では、送信部102は、第一実施形態で説明した空間符号化のみならず、時間符号化された超音波を送信開口から送信させる。受信部105は、図21のように復号部41に加えて、時間符号化に対応する復号を行う第2の復号部141を備える。合成部25は、復号部41および第2の復号部141が復号した複数の復号後受信信号を加算処理する。 << Fourth Embodiment >>
A fourth embodiment of the present invention will be described. In the ultrasonic imaging apparatus of the fourth embodiment, the
第2の復号部141は、図21のように、復号部41が空間符号化に対応する復号を行った復号後受信信号について、時間符号化に対応する復号を行う構成にすることができる。
As shown in FIG. 21, the second decoding unit 141 can be configured to perform decoding corresponding to temporal encoding on the received signal after decoding performed by the decoding unit 41 corresponding to spatial encoding.
送信部102の送信回数は5回以上とする。復号部41および第2の復号部141は、5回以上の送信で得た受信信号のうち4つの受信信号を用いて復号を行って復号後受信信号を生成する。この処理を、用いる4つの受信信号の組み合わせの異なる2組以上について行うことにより、複数の復号後受信信号を生成することができる。合成部25は、これらを合成する。
The number of transmissions of the transmission unit 102 is 5 or more. The decoding unit 41 and the second decoding unit 141 perform decoding using four received signals among the received signals obtained by five or more transmissions, and generate a decoded received signal. By performing this process for two or more different combinations of four received signals to be used, a plurality of decoded received signals can be generated. The combining unit 25 combines these.
そのため、受信部105の第1の記憶部40には、5回以上の超音波の送信ごとの受信信号のうち、直近の4回の前記受信信号を順次記憶する4つの記憶領域40-1~40-4が備えられている。復号部41および第2の復号部141は、4つの記憶領域40-1~40-4にそれぞれ格納された4つの記受信信号を用いて復号処理を順次行うことにより、受信信号の組み合わせの異なる復号後受信信号を時系列に生成することができる。
Therefore, in the first storage unit 40 of the receiving unit 105, four storage areas 40-1 to 40-4 that sequentially store the latest four received signals among the received signals for each transmission of five or more ultrasonic waves. 40-4 is provided. The decoding unit 41 and the second decoding unit 141 perform different decoding processes using the four received signals respectively stored in the four storage areas 40-1 to 40-4, so that the combinations of received signals are different. The decoded received signal can be generated in time series.
(空間符号化と時間符号化の組み合わせ)
空間符号化にさらに時間符号化を施した送信信号を生成することは、式(1)の要素に、上記の時間符号化送信を適用することで実現できる。符号X1による時間符号化を第一時間符号化、符号X2による時間符号化を第二時間符号化とする。例えば、図22のように、第一送信Tx1の超音波には、第一空間符号化と第一時間符号化とを施し、第二送信Tx2の超音波には、第一空間符号化と第二時間符号化とを施す。第三送信Tx3の超音波には、第二空間符号化と第一時間符号化とを施し、第四送信Tx4には、第二空間符号化と第二時間符号化とを施す。この場合、時間符号化を組み合わせた空間符号化の行列は、式(6)で表される。
(Combination of space coding and time coding)
Generation of a transmission signal in which space coding is further time-coded can be realized by applying the time-coded transmission described above to the element of Equation (1). The time encoding by the code X1 is the first time encoding, and the time encoding by the code X2 is the second time encoding. For example, as shown in FIG. 22, the first transmission Tx1 ultrasonic wave is subjected to first spatial encoding and first time encoding, and the second transmission Tx2 ultrasonic wave is subjected to the first spatial encoding and the first temporal encoding. Two-time encoding is performed. The second transmission Tx3 is subjected to the second spatial encoding and the first temporal encoding, and the fourth transmission Tx4 is subjected to the second spatial encoding and the second temporal encoding. In this case, a spatial encoding matrix combined with temporal encoding is expressed by Expression (6).
空間符号化にさらに時間符号化を施した送信信号を生成することは、式(1)の要素に、上記の時間符号化送信を適用することで実現できる。符号X1による時間符号化を第一時間符号化、符号X2による時間符号化を第二時間符号化とする。例えば、図22のように、第一送信Tx1の超音波には、第一空間符号化と第一時間符号化とを施し、第二送信Tx2の超音波には、第一空間符号化と第二時間符号化とを施す。第三送信Tx3の超音波には、第二空間符号化と第一時間符号化とを施し、第四送信Tx4には、第二空間符号化と第二時間符号化とを施す。この場合、時間符号化を組み合わせた空間符号化の行列は、式(6)で表される。
Generation of a transmission signal in which space coding is further time-coded can be realized by applying the time-coded transmission described above to the element of Equation (1). The time encoding by the code X1 is the first time encoding, and the time encoding by the code X2 is the second time encoding. For example, as shown in FIG. 22, the first transmission Tx1 ultrasonic wave is subjected to first spatial encoding and first time encoding, and the second transmission Tx2 ultrasonic wave is subjected to the first spatial encoding and the first temporal encoding. Two-time encoding is performed. The second transmission Tx3 is subjected to the second spatial encoding and the first temporal encoding, and the fourth transmission Tx4 is subjected to the second spatial encoding and the second temporal encoding. In this case, a spatial encoding matrix combined with temporal encoding is expressed by Expression (6).
復号処理は、図22に示すように、4回の送信で得られた4つの受信信号R1~R4について、まず復号部41によりHadamard復号を行う。このとき、同じ時間符号化送信を行った2つの受信信号を組み合わせて用いる。これにより、複数の送信開口からの送信によるエコーを分離する。その後、Golay復号部141により、上述のGolay復号処理を適用し、高SN比の信号を生成する。
In the decoding process, as shown in FIG. 22, Hadamard decoding is first performed by the decoding unit 41 on the four received signals R1 to R4 obtained by four transmissions. At this time, two received signals that have been subjected to the same time-coded transmission are used in combination. Thereby, the echo by the transmission from a some transmission opening is isolate | separated. Thereafter, the Golay decoding unit 141 applies the above-described Golay decoding process to generate a signal with a high S / N ratio.
この復号処理は、式(7)で表され、これにより一方の送信開口(例えば110A)からの復号後受信信号HAが生成される。
This decoding process is expressed by Equation (7), and thereby, a decoded reception signal HA from one transmission aperture (for example, 110A) is generated.
また、他方の送信開口(例えば110B)に対応する復号後受信信号HBは、式(8)により得られる。
式(7)、(8)の復号処理をGolay-Hadamard復号と呼ぶ。
Also, the decoded received signal H B corresponding to the other transmission aperture (for example, 110B) is obtained by Expression (8).
The decoding processing of equations (7) and (8) is referred to as Golay-Hadamard decoding.
第三実施形態では、Golay-Hadamard復号により、同じ送信開口について得られた複数の復号後受信信号を、合成部25が加算することにより、撮像対象が動く場合も、不要信号を抑制できる。
In the third embodiment, unnecessary signals can be suppressed even when the imaging target moves by adding a plurality of decoded reception signals obtained for the same transmission aperture by Golay-Hadamard decoding, by the synthesis unit 25.
図21のように、チャネルメモリ40には、送信開口の組ごとに、4つの記憶領域40-1~40-4が備えられている。また、復号部41は、加算器14と減算器15が2つずつ備えられ、4つの受信信号の空間符号化を復号できる。第2の復号部141は、Golay時間符号化の復号のため、自己相関フィルタ54,55と加算部56が図21のように備えられている。
As shown in FIG. 21, the channel memory 40 is provided with four storage areas 40-1 to 40-4 for each set of transmission openings. In addition, the decoding unit 41 includes two adders 14 and two subtracters 15 and can decode the spatial encoding of the four received signals. The second decoding unit 141 includes autocorrelation filters 54 and 55 and an addition unit 56 as shown in FIG. 21 for Golay time-coding decoding.
送受信時の制御部106の動作を図23を参照しながら説明する。
The operation of the control unit 106 during transmission / reception will be described with reference to FIG.
まず、制御部106は、スキャン回数n=1のとき、第一空間符号化と第一時間符号化(X1)とを施した超音波を送信させる(ステップ172)。制御部106は、得られた受信信号R1をチャネルメモリ40の記憶領域40-1に保存する(ステップ173)。これを全ての送信開口の組について順に行う(ステップ142、148)。
First, when the number of scans n = 1, the control unit 106 transmits an ultrasonic wave subjected to the first spatial coding and the first time coding (X1) (step 172). The control unit 106 stores the obtained reception signal R1 in the storage area 40-1 of the channel memory 40 (step 173). This is sequentially performed for all sets of transmission apertures (steps 142 and 148).
スキャン回数n=2のとき、第一空間符号化と第二時間符号化(X2)とを施した超音波を送信させる(ステップ175)。制御部106は、得られた受信信号R2をチャネルメモリ40の記憶領域40-2に保存する(ステップ176)。これを全ての送信開口の組について順に行う(ステップ142、148)。
When the number of scans n = 2, the ultrasonic wave subjected to the first spatial coding and the second time coding (X2) is transmitted (step 175). The control unit 106 stores the obtained reception signal R2 in the storage area 40-2 of the channel memory 40 (step 176). This is sequentially performed for all sets of transmission apertures (steps 142 and 148).
スキャン回数n=3のとき、第二空間符号化と第一時間符号化(X1)とを施した超音波を送信させる(ステップ178)。制御部106は、得られた受信信号R3をチャネルメモリ40の記憶領域40-3に保存する(ステップ179)。これを全ての送信開口の組について順に行う(ステップ142、148)。
When the number of scans n = 3, the ultrasonic waves subjected to the second spatial encoding and the first temporal encoding (X1) are transmitted (step 178). The control unit 106 stores the obtained reception signal R3 in the storage area 40-3 of the channel memory 40 (step 179). This is sequentially performed for all sets of transmission apertures (steps 142 and 148).
スキャン回数n=4のとき、第二空間符号化と第二時間符号化(X2)とを施した超音波を送信させる(ステップ181)。制御部106は、得られた受信信号R4をチャネルメモリ40の記憶領域40-4に保存する(ステップ182)。これを全ての送信開口の組について順に行う(ステップ142、148)。
When the number of scans n = 4, the ultrasonic waves subjected to the second spatial encoding and the second temporal encoding (X2) are transmitted (step 181). The control unit 106 stores the obtained reception signal R4 in the storage area 40-4 of the channel memory 40 (step 182). This is sequentially performed for all sets of transmission apertures (steps 142 and 148).
スキャン回数nが4以上の場合、制御部106は、ステップ152に進み、記憶領域40-1~40-4の受信信号R1~R4を図21の復号部41に受け渡す。復号部は、第一空間符号化の送信により得られた受信信号R1を、第二空間符号化の送信により得られた受信信号R3と加算器14による加算処理および減算器15による減算処理を施して復号する。同様に受信信号R2とR4とを加算処理および減算処理して復号する。
If the number of scans n is 4 or more, the control unit 106 proceeds to step 152 and transfers the received signals R1 to R4 in the storage areas 40-1 to 40-4 to the decoding unit 41 in FIG. The decoding unit performs an addition process by the adder 14 and a subtraction process by the subtracter 15 on the reception signal R1 obtained by the transmission of the first spatial coding and the reception signal R3 obtained by the transmission of the second spatial coding. To decrypt. Similarly, the received signals R2 and R4 are decoded by addition processing and subtraction processing.
復号部41で得られた空間符号化を復号した4つの受信信号は、第2の復号部141において、自己相関フィルタ54,55が適用され圧縮パルスがそれぞれ生成される。これらの送信時のGolay符号X1、X2が異なる2つずつを組にして加算部56で加算することにより、復号後受信信号H1A1、H1B1が得られる(ステップ153)。この処理は、送信開口の組ごとに行われる(ステップ151)。
The four received signals obtained by decoding the spatial coding obtained by the decoding unit 41 are applied with autocorrelation filters 54 and 55 in the second decoding unit 141 to generate compressed pulses, respectively. By receiving two sets of different Golay codes X1 and X2 at the time of transmission and adding them by the adder 56, decoded received signals H 1A 1 and H 1B 1 are obtained (step 153). This process is performed for each set of transmission apertures (step 151).
得られた復号後受信信号H1A1、H1B1は、以下のステップ154~156を行うことにより、整相加算後の小エリアデータが得られる。これらステップ154~156は、第一の実施形態と同様であるので説明を省略する。
The obtained decoded received signals H 1A 1 and H 1B 1 are subjected to the following steps 154 to 156 to obtain small area data after phasing addition. Since these steps 154 to 156 are the same as those in the first embodiment, description thereof will be omitted.
なお、スキャン回数n=5では、送信部102は、ステップ171において、n=1のときと同様に第一空間符号化と第一時間符号化を施した送信を行う(ステップ172)。制御部106は、この送信で得られた受信信号R5をチャネルメモリ40の記憶領域40-1に上書き保存する(ステップ173)。よって、ステップ152において復号処理を行う際に、制御部106は、4つの記憶領域40-1~40-4から受信信号R5、R2、R3、R4を読み出し、復号部41に受け渡す。以降のステップ153~156により、整相加算後の小エリアデータがえられる。
When the number of scans is n = 5, the transmission unit 102 performs transmission with the first spatial coding and the first time coding performed in step 171 as in the case of n = 1 (step 172). The control unit 106 overwrites and stores the received signal R5 obtained by this transmission in the storage area 40-1 of the channel memory 40 (step 173). Therefore, when performing the decoding process in step 152, the control unit 106 reads the received signals R5, R2, R3, and R4 from the four storage areas 40-1 to 40-4 and passes them to the decoding unit 41. Subsequent steps 153 to 156 provide small area data after phasing addition.
そして、ステップ158~164により、第一の実施形態と同様に合成部25により合成後の小エリアデータHA'、HB'が得られ、画像が構築される。この画像は、撮像対象が動くことで生じた不要信号を抑圧されている。以降、スキャンごとに1枚の画像が構築される。
In steps 158 to 164, similarly to the first embodiment, the combining unit 25 obtains the combined small area data H A ′ and H B ′ and constructs an image. In this image, an unnecessary signal generated by moving the imaging target is suppressed. Thereafter, one image is constructed for each scan.
その他の構成は第一実施形態と同様であるので説明を省略する。
Other configurations are the same as those in the first embodiment, and thus description thereof is omitted.
<<第五実施形態>>
第五実施形態の超音波診断装置は、図24のように、チャネルメモリ20と復号部41との間に、重み付け部61~64を配置した構成である。他の構成は、第四実施形態と同様である。重み付け部61~64の重みは、制御部106が設定する。 << Fifth Embodiment >>
The ultrasonic diagnostic apparatus of the fifth embodiment has a configuration in whichweighting units 61 to 64 are arranged between the channel memory 20 and the decoding unit 41 as shown in FIG. Other configurations are the same as those of the fourth embodiment. The control unit 106 sets the weights of the weighting units 61 to 64.
第五実施形態の超音波診断装置は、図24のように、チャネルメモリ20と復号部41との間に、重み付け部61~64を配置した構成である。他の構成は、第四実施形態と同様である。重み付け部61~64の重みは、制御部106が設定する。 << Fifth Embodiment >>
The ultrasonic diagnostic apparatus of the fifth embodiment has a configuration in which
第四実施形態の時空間符号化において、複数の送信間で撮像対象120が動くと、各受信信号が互いに時間シフトした状態となる。Golay符号の圧縮パルスに生じるタイムサイドローブは、2つの圧縮パルスの時間軸がシフトしていると完全に打ち消しあうことができないため、打ち消し残りタイムサイドローブが発生する。この打ち消し残りタイムサイドローブも、画像上のアーチファクトの原因となる不要信号である。そこで本実施形態では、Golay符号化による不要信号を抑圧するために、Golay復号における重み付けを付与する。重み付け部61~64に設定する重み係数値は、記憶領域40-1~40-4に格納された受信信号を受信した順番に並べた場合、中心にあるものほど大きい値になるように設定する。例えば、重み付け係数値は、ガウシアン関数に相当する値や二項係数の値などを予め格納しておいた重みデータ格納部87から制御部106が選択して設定することが望ましい。
In the space-time coding according to the fourth embodiment, when the imaging target 120 moves between a plurality of transmissions, the received signals are shifted in time from each other. Since the time side lobe generated in the compression pulse of the Golay code cannot be completely canceled if the time axis of the two compression pulses is shifted, a time side lobe remaining after cancellation occurs. This remaining cancellation time side lobe is also an unnecessary signal that causes an artifact on the image. Therefore, in this embodiment, weighting in Golay decoding is given in order to suppress unnecessary signals due to Golay coding. The weighting coefficient values set in the weighting units 61 to 64 are set so that the centered value becomes larger when the reception signals stored in the storage areas 40-1 to 40-4 are arranged in the order of reception. . For example, it is desirable that the weighting coefficient value is selected and set by the control unit 106 from the weight data storage unit 87 in which values corresponding to Gaussian functions, binomial coefficient values, and the like are stored in advance.
このように受信信号に重み付けをすることにより、Golay符号の圧縮パルスに生じるタイムサイドローブを抑制することができる。
By weighting the reception signal in this way, it is possible to suppress time side lobes that occur in the Golay code compression pulse.
他の構成は、第四実施形態と同様であるので説明を省略する。
Other configurations are the same as those in the fourth embodiment, and thus description thereof is omitted.
<<第六実施形態>>
第四実施形態の時空間符号化送受では、2つの送信開口から同時に送信を行うため、2つの小エリアデータを得るのに4回の送信が必要であった。第六実施形態では、フレームレートを向上させるために、同時に4方向(4つの送信開口)から4回の送信を行う時空間符号化送受を行う。 << Sixth Embodiment >>
In the space-time coded transmission / reception of the fourth embodiment, since transmission is performed simultaneously from two transmission apertures, four transmissions are necessary to obtain two small area data. In the sixth embodiment, in order to improve the frame rate, space-time encoded transmission / reception is performed in which transmission is performed four times from four directions (four transmission apertures) at the same time.
第四実施形態の時空間符号化送受では、2つの送信開口から同時に送信を行うため、2つの小エリアデータを得るのに4回の送信が必要であった。第六実施形態では、フレームレートを向上させるために、同時に4方向(4つの送信開口)から4回の送信を行う時空間符号化送受を行う。 << Sixth Embodiment >>
In the space-time coded transmission / reception of the fourth embodiment, since transmission is performed simultaneously from two transmission apertures, four transmissions are necessary to obtain two small area data. In the sixth embodiment, in order to improve the frame rate, space-time encoded transmission / reception is performed in which transmission is performed four times from four directions (four transmission apertures) at the same time.
同時に4つの送信開口から送信を行う場合、直交関係にあるGolay符号セットを用いる。例えば、第三実施形態で述べたGolay符号ペアY1とY2を用いる。
¡When transmitting from four transmission apertures at the same time, use the Golay code set that is orthogonal. For example, the Golay code pairs Y1 and Y2 described in the third embodiment are used.
4つの送信開口から同時に送信を行う時空間符号化送受では、式(6)によって行う時空間符号化の送信開口に、以下の式(9)の時空間符号化を行う送信開口を加える。
In space-time coded transmission / reception in which transmission is performed simultaneously from four transmission apertures, a transmission aperture for performing space-time coding of the following equation (9) is added to the transmission aperture of space-time coding performed by equation (6).
4つの送信開口についてまとめると、式(10)のような時空間符号化になる。
Hadamard復号は同じ時間符号化送信を行った受信信号で行う。式(9)の場合では、第一受信信号と第二受信信号で復号を行い、第二受信信号と第四受信信号で復号を行う。その後、Golay復号を適用する。このとき、Xの符号によるGolay復号とYの符号によるGolay復号を両方行って、Golay符号XによるエコーとYによるエコーを分離する。したがって、各送信の受信信号をR1~R4とすると、Hadamard復号処理は、式(11)で表される。
To summarize the four transmission apertures, the space-time coding is as shown in Equation (10).
Hadamard decoding is performed on a received signal that has been subjected to the same time-coded transmission. In the case of Expression (9), decoding is performed using the first received signal and the second received signal, and decoding is performed using the second received signal and the fourth received signal. Then, Golay decoding is applied. At this time, both Golay decoding by the X code and Golay decoding by the Y code are performed, and the Golay code X echo and the Y echo are separated. Therefore, assuming that the received signals for each transmission are R1 to R4, the Hadamard decoding process is expressed by Expression (11).
次に、それぞれの符号でGolay復号を行い、各列の信号をそれぞれ抽出する。
Next, Golay decoding is performed with each code, and signals in each column are extracted.
より具体的に説明すると、制御部106は、超音波探触子108に送信開口を4つ設定する。それぞれ送信開口部を送信開口A、B、C、Dとすると、制御部106は、式(10)にしたがって、送信開口AのチャネルにはX1、X2、X1、X2の順番で時間波形を符号化した送信信号を順次送る。送信開口BのチャネルにはX1、X2、-X1、-X2の順番で時間波形を符号化した送信信号を順次送る。送信開口CのチャネルにはY1、Y2、Y1、Y2の順番で時間波形を符号化した送信信号を順次送る。送信開口DのチャネルにはY1、Y2、-Y1、-Y2の順番で時間波形を符号化した送信信号を順次送る。
More specifically, the control unit 106 sets four transmission apertures in the ultrasonic probe 108. Assuming that the transmission apertures are transmission apertures A, B, C, and D, respectively, the control unit 106 codes the time waveform in the order of X1, X2, X1, and X2 to the channel of the transmission aperture A according to Equation (10). The transmission signals that have been converted are sent sequentially. A transmission signal obtained by encoding a time waveform in the order of X1, X2, -X1, and -X2 is sequentially sent to the channel of the transmission aperture B. A transmission signal obtained by encoding a time waveform in the order of Y1, Y2, Y1, and Y2 is sequentially sent to the channel of the transmission aperture C. A transmission signal obtained by encoding a time waveform in the order of Y1, Y2, -Y1, and -Y2 is sequentially sent to the channel of the transmission aperture D.
図25のように、第2の復号部141には、図24の構成に加えて、Y符号による自己相関フィルタ57、58が追加されている。制御部106は、受信信号R1とR3をそれぞれ加算器14で加算し、減算器15で減算する。その出力をそれぞれ2つに分け、X1の自己相関フィルタ54とY1の自己相関フィルタ57を適用する。また、受信信号R2とR4をそれぞれ加算器14で加算し、減算器15で減算する。その出力をそれぞれ2つに分け、X2の自己相関フィルタ55とY2の自己相関フィルタ58を適用する。そして、Golay符号の加算部56により加算することにより、Golay-Hadamard復号された送信開口Aの送信に対応する復号後受信信号HA、送信開口Bの送信に対応する復号後受信信号HB、送信開口Cの送信に対応する復号後受信信号HC、送信開口Dの送信に対応する復号後受信信号HDを出力する。
As shown in FIG. 25, in addition to the configuration of FIG. 24, autocorrelation filters 57 and 58 using a Y code are added to the second decoding unit 141. The control unit 106 adds the received signals R1 and R3 by the adder 14 and subtracts it by the subtractor 15. The output is divided into two, and an X1 autocorrelation filter 54 and a Y1 autocorrelation filter 57 are applied. The received signals R2 and R4 are added by the adder 14 and subtracted by the subtractor 15, respectively. The output is divided into two parts, and the X2 autocorrelation filter 55 and the Y2 autocorrelation filter 58 are applied. Then, the addition is performed by the Golay code adding unit 56, so that the decoded reception signal H A corresponding to the transmission of the transmission aperture A subjected to the Golay-Hadamard decoding, the decoded reception signal H B corresponding to the transmission of the transmission aperture B , The decoded reception signal H C corresponding to the transmission of the transmission aperture C and the decoded reception signal HD corresponding to the transmission of the transmission aperture D are output.
以降の処理は、合成部25による複数の復号後受信信号(小エリアデータ)の合成処理を含めて、第三実施形態と同様であるので、説明を省略する。
Since the subsequent processing is the same as that of the third embodiment including the synthesis processing of a plurality of decoded received signals (small area data) by the synthesis unit 25, description thereof will be omitted.
第六実施形態によれば、第四の実施形態と同様に4回のスキャンで、4つの送信開口に対応する小エリアデータを生成することができるため、フレームレートが向上する。
According to the sixth embodiment, since the small area data corresponding to the four transmission apertures can be generated by four scans as in the fourth embodiment, the frame rate is improved.
13a、13b、18b…受信信号、15…減算器、16a,17a、19a…本来の受信信号、16b,17b、18b、19b…不要信号、22…整相加算、24…第2の記憶部、25…合成部、40…第1の記憶部、41…復号部、100…超音波撮像装置、102…送信部、105…受信部、108…超音波探触子、109…受信領域、1091、・・・109P…受信領域、110A、110B…送信領域、120…撮像対象、211A、211B…小エリア
13a, 13b, 18b ... received signal, 15 ... subtractor, 16a, 17a, 19a ... original received signal, 16b, 17b, 18b, 19b ... unnecessary signal, 22 ... phasing addition, 24 ... second storage unit, 25 ... Synthesizer, 40 ... First memory, 41 ... Decoder, 100 ... Ultrasound imaging device, 102 ... Transmitter, 105 ... Receiver, 108 ... Ultrasound probe, 109 ... Receiving area, 109 1 , ... 109 P ... reception area, 110A, 110B ... transmission area, 120 ... imaging target, 211A, 211B ... small area
Claims (15)
- それぞれトランスデューサで構成された、少なくとも2つの送信領域と、少なくとも1つの受信領域とを有する超音波探触子と、
前記少なくとも2つの送信領域から同時に、空間符号化した超音波を所定の位置に向かって3回以上送信させる送信部と、
前記受信領域が前記位置からの前記超音波のエコーを受信して出力する受信信号を処理する受信部とを有し、
前記受信部は、復号部と、合成部とを含み、
前記復号部は、前記3回以上の前記超音波の送信に対応して前記受信領域が出力した3以上の前記受信信号のうち2以上を用いて、前記空間符号化に対応する復号を行って復号後受信信号を生成する処理を、用いる2以上の前記受信信号の組み合わせの異なる2組以上についてそれぞれ行うことにより、複数の前記復号後受信信号を生成し、
前記合成部は、複数の前記復号後受信信号を加算処理することを特徴とする超音波撮像装置。 An ultrasound probe having at least two transmission areas and at least one reception area, each composed of a transducer;
A transmitter that transmits spatially-encoded ultrasonic waves three or more times toward a predetermined position simultaneously from the at least two transmission regions;
The reception area has a reception unit that processes a reception signal that receives and outputs the ultrasonic echo from the position;
The receiving unit includes a decoding unit and a combining unit,
The decoding unit performs decoding corresponding to the spatial coding using two or more of the three or more received signals output from the reception area in response to the transmission of the ultrasonic wave three times or more. A plurality of decoded received signals are generated by performing a process of generating a decoded received signal for each of two or more different combinations of two or more received signals to be used,
The ultrasonic imaging apparatus, wherein the synthesizing unit performs addition processing on a plurality of the decoded reception signals. - 請求項1に記載の超音波撮像装置において、前記復号部による復号の処理は、前記2以上の送信領域から同時に送信された前記超音波によるエコーの受信信号から、前記送信領域ごとの超音波によって生じたエコーの受信信号を分離することにより、前記送信領域ごとに対応する受信信号である前記復号後受信信号を得る処理であり、
前記合成部が加算処理する前記複数の復号後受信信号は、同一の前記送信領域について得られた複数の前記復号後受信信号であることを特徴とする超音波撮像装置。 2. The ultrasonic imaging apparatus according to claim 1, wherein the decoding process by the decoding unit is performed by ultrasonic waves for each transmission region from reception signals of echoes transmitted by the ultrasonic waves simultaneously transmitted from the two or more transmission regions. The process of obtaining the received signal after decoding, which is a received signal corresponding to each transmission region, by separating the received signal of the generated echo,
The ultrasound imaging apparatus, wherein the plurality of decoded reception signals that are added by the combining unit are the plurality of decoded reception signals obtained for the same transmission region. - 請求項1に記載の超音波撮像装置において、前記受信部は、前記送信に対応して順に受信した前記受信信号の少なくとも一つを順次記憶する第1の記憶部と、前記復号部が生成した前記復号後受信信号を少なくとも一つを記憶する第2の記憶部とを含み、
前記復号部は、前記第1の記憶部に記憶された前記受信信号を用いて復号処理を行い、
前記合成部は、前記第2の記憶部に記憶された前記復号後受信信号を用いて前記加算処理を行うことを特徴とする超音波撮像装置。 2. The ultrasonic imaging apparatus according to claim 1, wherein the reception unit is generated by the decoding unit and a first storage unit that sequentially stores at least one of the reception signals received in order corresponding to the transmission. A second storage unit for storing at least one received signal after decoding,
The decoding unit performs a decoding process using the received signal stored in the first storage unit,
The ultrasonic imaging apparatus, wherein the synthesizing unit performs the addition process using the decoded received signal stored in the second storage unit. - 請求項3に記載の超音波撮像装置において、前記第1の記憶部は、前記3回以上の超音波の送信ごとの前記受信信号のうち、直近の2回の前記受信信号を順次記憶する2つの記憶領域を有し、
前記復号部は、前記2つの記憶領域にそれぞれ格納された2つの前記受信信号を用いて復号処理を順次行うことにより、前記受信信号の組み合わせの異なる前記復号後受信信号を時系列に生成することを特徴とする超音波撮像装置。 4. The ultrasonic imaging apparatus according to claim 3, wherein the first storage unit sequentially stores the two most recent reception signals among the reception signals for each transmission of the three or more ultrasonic waves. Has two storage areas,
The decoding unit sequentially generates decoding received signals having different combinations of the received signals in time series by sequentially performing decoding processing using the two received signals respectively stored in the two storage areas. An ultrasonic imaging apparatus characterized by the above. - 請求項1に記載の超音波撮像装置において、前記超音波探触子は、前記受信領域を複数有し、
前記受信部は、整相加算部を備え、
前記復号部は、同一の前記超音波の送信に対応する前記受信領域のそれぞれの受信信号を用いて、前記複数の受信領域ごとに前記復号後受信信号を生成し、
前記整相加算部は、前記複数の受信領域ごとの前記復号後受信信号を整相した後、加算し、
前記合成部は、前記整相加算後の複数の前記復号後受信信号を加算することを特徴とする超音波撮像装置。 The ultrasonic imaging apparatus according to claim 1, wherein the ultrasonic probe has a plurality of the reception areas,
The receiving unit includes a phasing addition unit,
The decoding unit generates the reception signal after decoding for each of the plurality of reception areas using each reception signal of the reception area corresponding to the transmission of the same ultrasonic wave,
The phasing addition unit phasing the decoded received signal for each of the plurality of reception areas, and adding,
The ultrasonic imaging apparatus, wherein the synthesizer adds a plurality of the decoded reception signals after the phasing addition. - 請求項1に記載の超音波撮像装置において、前記超音波探触子は、前記送信領域を複数組備え、
前記送信部は、複数組の前記送信領域から前記位置に向かって順次超音波を送信するスキャン動作を3回以上繰り返すことを特徴とする超音波撮像装置。 The ultrasonic imaging apparatus according to claim 1, wherein the ultrasonic probe includes a plurality of sets of the transmission areas,
The ultrasonic imaging apparatus, wherein the transmission unit repeats a scanning operation of sequentially transmitting ultrasonic waves from a plurality of sets of the transmission areas toward the position three times or more. - 請求項1に記載の超音波撮像装置において、操作者から前記合成部が加算処理する前記復号後受信信号の数を受け付ける受け付け部をさらに有し、
前記送信部は、前記受け付け部の受け付けた数よりも1つ以上多い数の送信を行わせ、前記合成部は、前記受け付けた数の前記復号後受信信号を加算処理することを特徴とする超音波撮像装置。 The ultrasonic imaging apparatus according to claim 1, further comprising: a receiving unit that receives a number of received signals after decoding that the combining unit performs addition processing from an operator;
The transmitting unit causes one or more transmissions greater than the number received by the receiving unit, and the synthesizing unit performs addition processing on the received number of decoded reception signals. Sound imaging device. - 請求項1に記載の超音波撮像装置において、前記合成部は、前記複数の復号後受信信号に重み付けする重み付け部を有し、前記重み付け部により重み付けされた前記複数の復号後受信信号を加算処理することを特徴とする超音波撮像装置。 2. The ultrasonic imaging apparatus according to claim 1, wherein the synthesis unit includes a weighting unit that weights the plurality of decoded reception signals, and adds the plurality of decoded reception signals weighted by the weighting unit. An ultrasonic imaging apparatus.
- 請求項8に記載の超音波撮像装置において、前記復号部は、直近の2以上の受信信号を用いて前記復号後受信信号を時系列に生成し、前記重み付け部は、時系列に生成された前記複数の復号後受信信号のうち、中心時間に近いものほど大きく重み付けすることを特徴とする超音波撮像装置。 9. The ultrasonic imaging apparatus according to claim 8, wherein the decoding unit generates the decoded reception signal in time series using two or more recent reception signals, and the weighting unit is generated in time series. An ultrasonic imaging apparatus, wherein a weight closer to a central time among the plurality of decoded received signals is weighted more.
- 請求項1に記載の超音波撮像装置において、前記送信部は、前記空間符号化に加えて時間符号化された超音波を前記送信領域から送信させ、
前記受信部は、前記復号部に加えて、前記時間符号化に対応する復号を行う第2の復号部を備え、
前記合成部は、前記復号部および前記第2の復号部が復号した複数の復号後受信信号を加算処理することを特徴とする超音波撮像装置。 The ultrasonic imaging apparatus according to claim 1, wherein the transmission unit transmits time-encoded ultrasonic waves from the transmission region in addition to the spatial encoding,
In addition to the decoding unit, the receiving unit includes a second decoding unit that performs decoding corresponding to the time encoding,
The ultrasonic imaging apparatus, wherein the synthesizing unit performs addition processing on a plurality of decoded reception signals decoded by the decoding unit and the second decoding unit. - 請求項10に記載の超音波撮像装置において、前記第2の復号部は、前記復号部が前記空間符号化に対応する復号を行った前記復号後受信信号について、前記時間符号化に対応する復号を行うことを特徴とする超音波撮像装置。 The ultrasound imaging apparatus according to claim 10, wherein the second decoding unit performs decoding corresponding to the temporal encoding for the received signal after decoding, in which the decoding unit performs decoding corresponding to the spatial encoding. An ultrasonic imaging apparatus characterized by performing:
- 請求項10に記載の超音波撮像装置において、前記送信部は、2つの前記送信領域から同時に5回以上送信させ、
前記復号部および前記第2の復号部は、5回以上の送信で得た前記受信信号のうち4つの前記受信信号を用いて符号化を行って前記復号後受信信号を生成する処理を、用いる4つの前記受信信号の組み合わせの異なる2組以上について行うことにより、複数の前記復号後受信信号を生成することを特徴とする超音波撮像装置。 The ultrasonic imaging apparatus according to claim 10, wherein the transmission unit transmits five or more times simultaneously from the two transmission areas,
The decoding unit and the second decoding unit use a process of performing encoding using the four received signals among the received signals obtained by five or more transmissions to generate the decoded received signal An ultrasonic imaging apparatus that generates a plurality of the decoded reception signals by performing two or more different combinations of the four reception signals. - 請求項12に記載の超音波撮像装置において、前記受信部105は、5回以上の超音波の送信ごとの前記受信信号のうち、直近の4回の前記受信信号を順次記憶する4つの記憶領域を備えた第1の記憶部を有し、
前記復号部および前記第2の復号部は、前記4つの記憶領域にそれぞれ格納された4つの前記受信信号を用いて復号処理を順次行うことにより、前記受信信号の組み合わせの異なる前記復号後受信信号を時系列に生成することを特徴とする超音波撮像装置。 The ultrasonic imaging apparatus according to claim 12, wherein the reception unit 105 sequentially stores the latest four reception signals among the reception signals for every five or more ultrasonic transmissions. A first storage unit comprising:
The decoding unit and the second decoding unit sequentially perform decoding processing using the four reception signals respectively stored in the four storage areas, so that the decoded reception signals having different combinations of the reception signals Are generated in time series. - 請求項10に記載の超音波撮像装置において、前記受信部は、前記復号部に受け渡す前の前記受信信号に重み付けする重み付け部を備えることを特徴とする超音波撮像装置。 The ultrasonic imaging apparatus according to claim 10, wherein the receiving unit includes a weighting unit that weights the received signal before being transferred to the decoding unit.
- 請求項10に記載の超音波撮像装置において、前記超音波探触子は、少なくとも4つの前記送信領域を備え、
前記送信部は、4つの前記送信領域から同時に、空間符号化および時間符号化された超音波を送信部させることを特徴とする超音波撮像装置。 The ultrasonic imaging apparatus according to claim 10, wherein the ultrasonic probe includes at least four transmission regions,
The ultrasonic imaging apparatus, wherein the transmission unit causes the spatially encoded and temporally encoded ultrasonic waves to be transmitted simultaneously from the four transmission regions.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-039132 | 2014-02-28 | ||
JP2014039132A JP2017099423A (en) | 2014-02-28 | 2014-02-28 | Ultrasonic imaging apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015129351A1 true WO2015129351A1 (en) | 2015-09-03 |
Family
ID=54008680
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/051722 WO2015129351A1 (en) | 2014-02-28 | 2015-01-22 | Ultrasound imaging apparatus |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2017099423A (en) |
WO (1) | WO2015129351A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7235645B2 (en) * | 2019-11-29 | 2023-03-08 | 日立Geニュークリア・エナジー株式会社 | Ultrasonic inspection method and ultrasonic inspection apparatus |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11155867A (en) * | 1997-10-01 | 1999-06-15 | General Electric Co <Ge> | Ultrasonic imaging system and method for obtaining ultrasonic scatter data |
JP2013503681A (en) * | 2009-09-03 | 2013-02-04 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Contralateral array-based transcranial ultrasonic aberration correction |
WO2014021105A1 (en) * | 2012-07-30 | 2014-02-06 | 日立アロカメディカル株式会社 | Ultrasonic diagnostic device |
-
2014
- 2014-02-28 JP JP2014039132A patent/JP2017099423A/en active Pending
-
2015
- 2015-01-22 WO PCT/JP2015/051722 patent/WO2015129351A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11155867A (en) * | 1997-10-01 | 1999-06-15 | General Electric Co <Ge> | Ultrasonic imaging system and method for obtaining ultrasonic scatter data |
JP2013503681A (en) * | 2009-09-03 | 2013-02-04 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Contralateral array-based transcranial ultrasonic aberration correction |
WO2014021105A1 (en) * | 2012-07-30 | 2014-02-06 | 日立アロカメディカル株式会社 | Ultrasonic diagnostic device |
Also Published As
Publication number | Publication date |
---|---|
JP2017099423A (en) | 2017-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9198636B2 (en) | Continuous transmit focusing method and apparatus for ultrasound imaging system | |
Bottenus | Recovery of the complete data set from focused transmit beams | |
JP5238692B2 (en) | Retrospective and dynamic transmission focusing for spatial compounding | |
CN110998361A (en) | Method for coded multi-pulse ultrasound contrast imaging | |
KR20130139704A (en) | Method and apparatus of 3-dimensional volume scanning using 2-dimensional transducer array | |
US10561402B2 (en) | Motion imaging with multiple parallel receive beams | |
KR101792589B1 (en) | Beamformer, diagnosing system, medical image system and method for displaying diagnosing image | |
KR20200080276A (en) | Spatial and temporal encoding of acoustic waveforms for whole composite transmission aperture imaging | |
US20190261948A1 (en) | System and method for ultrafast synthetic transmit aperture ultrasound imaging | |
JP6212638B2 (en) | Ultrasonic imaging device | |
US9955952B2 (en) | Ultrasonic diagnostic device and correction method | |
JP2005081150A (en) | Method and apparatus for tissue high-harmonic imaging with naturally occurring (tissue) decoded type coded excitation | |
Trots et al. | Orthogonal Golay codes with local beam pattern correction in ultrasonic imaging | |
WO2015129351A1 (en) | Ultrasound imaging apparatus | |
JP4767522B2 (en) | Method and apparatus for single transmit Golay coded excitation | |
CN109416400B (en) | Fast synthetic focused ultrasound imaging with large linear arrays | |
EP4171387B1 (en) | Method and system for data transfer reduction in ultrasound imaging | |
EP3652560B1 (en) | An ultrasound probe and processing method | |
JP6410944B2 (en) | Ultrasonic imaging apparatus and ultrasonic imaging method | |
Yang et al. | Design of orthogonal coded excitation for synthetic aperture imaging in ultrasound systems | |
Bera et al. | Dual stage beamforming in the absence of front-end receive focusing | |
JP7526135B2 (en) | Ultrasound diagnostic device and image processing method | |
JP7015640B2 (en) | Ultrasonic diagnostic equipment and its control method | |
KR20230043751A (en) | Method and system for processing a set of signals received by a transducer element | |
CN115211889A (en) | Method and system for ultrasound imaging |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15755765 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15755765 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |