WO2014021105A1 - Ultrasonic diagnostic device - Google Patents

Ultrasonic diagnostic device Download PDF

Info

Publication number
WO2014021105A1
WO2014021105A1 PCT/JP2013/069414 JP2013069414W WO2014021105A1 WO 2014021105 A1 WO2014021105 A1 WO 2014021105A1 JP 2013069414 W JP2013069414 W JP 2013069414W WO 2014021105 A1 WO2014021105 A1 WO 2014021105A1
Authority
WO
WIPO (PCT)
Prior art keywords
reception
transmission
unit
ultrasonic
scanning
Prior art date
Application number
PCT/JP2013/069414
Other languages
French (fr)
Japanese (ja)
Inventor
浅房 勝徳
Original Assignee
日立アロカメディカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012168862A external-priority patent/JP2015186493A/en
Priority claimed from JP2012269536A external-priority patent/JP2015186494A/en
Application filed by 日立アロカメディカル株式会社 filed Critical 日立アロカメディカル株式会社
Publication of WO2014021105A1 publication Critical patent/WO2014021105A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5238Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image
    • A61B8/5246Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image combining images from the same or different imaging techniques, e.g. color Doppler and B-mode
    • A61B8/5253Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image combining images from the same or different imaging techniques, e.g. color Doppler and B-mode combining overlapping images, e.g. spatial compounding
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0883Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4488Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer the transducer being a phased array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8995Combining images from different aspect angles, e.g. spatial compounding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52085Details related to the ultrasound signal acquisition, e.g. scan sequences
    • G01S7/5209Details related to the ultrasound signal acquisition, e.g. scan sequences using multibeam transmission
    • G01S7/52093Details related to the ultrasound signal acquisition, e.g. scan sequences using multibeam transmission using coded signals

Definitions

  • the present invention relates to an ultrasonic diagnostic apparatus, and more particularly to an ultrasonic diagnostic apparatus that generates and displays various diagnostic images by fan-scanning an area including a diagnostic region of a subject with a scanning line of an ultrasonic transmission / reception beam.
  • the ultrasonic diagnostic apparatus transmits an ultrasonic wave to the inside of the subject using an ultrasonic probe, receives an ultrasonic reflected echo signal corresponding to the structure of the living tissue from the inside of the subject, for example, an ultrasonic tomographic image or the like
  • a diagnostic image is generated and displayed.
  • the diagnostic region is often fan-shaped scanned with an ultrasonic transmission / reception beam using a phased array.
  • the phased array type ultrasonic probe controls the phase of ultrasonic waves radiated from a plurality of transducers having transmission / reception apertures (hereinafter referred to simply as apertures) to focus the ultrasonic waves at a specific focusing point. Transmit beams and receive beams can be generated and the beam direction can be deflected. Therefore, it is generally employed to obtain a diagnostic image by performing sector scan (sector scan) using a pair of transmission beam and reception beam as scanning lines by electronic scanning.
  • Patent Document 1 In order to avoid artifacts peculiar to intercostal scanning, for example, when an ultrasonic probe in which a plurality of transducers are arranged contacts a subject across a plurality of ribs, reflection received by the ultrasonic probe It has been proposed to detect the position of the rib based on the intensity distribution of the echo signal and stop driving the vibrator located directly above the rib (Patent Document 1).
  • Patent Document 3 In order to reduce general speckle noise in ultrasonic diagnosis, it has been proposed to scan a diagnostic region from different directions to obtain a plurality of diagnostic images and to spatially synthesize those diagnostic images (for example, Patent Document 3).
  • an ultrasonic probe driving method is proposed in which a phased array is equivalent to a curved array in order to acquire a plurality of diagnostic images for spatial synthesis.
  • Patent Document 1 since the intercostal scanning is difficult at a position where the rib correlation window is narrow, it may be impossible to acquire a diagnostic image of the heart from various angles.
  • Patent Document 2 since the scanning center is determined by the concave surface on which a plurality of transducers are arranged, the intercostal scanning may not be performed when the depth of the ribs is changed.
  • Such a problem is not limited to obstacles such as the ribs, but is a common problem when obtaining a diagnostic image by imaging the brain tissue from the gap of the skull such as the temple.
  • Patent Document 3 a tomographic image of a diagnostic part can be acquired from various angles, and speckle noise and the like can be reduced by image synthesis. There is no consideration for fan-shaped scanning of a site or a diagnostic site on the back side of an obstacle. Further, Patent Document 4 also does not take into consideration obtaining a diagnostic image at a high frame rate by avoiding an obstacle such as a rib.
  • a first problem to be solved by the present invention is to provide an ultrasonic diagnostic apparatus that can easily acquire a diagnostic image of a diagnostic part on the back side of an obstacle.
  • a second problem is to provide an ultrasonic diagnostic apparatus capable of reducing the influence of artifacts in addition to the first problem.
  • an ultrasonic probe that is used in contact with a subject, and the ultrasonic probe is driven to irradiate the subject.
  • a transmission / reception unit that generates a transmission beam and receives a reflected echo signal received by the ultrasound probe to generate a reception beam; and a diagnosis in the subject using the transmission beam and the reception beam as scanning lines
  • a control unit that controls the transmission / reception unit so as to scan the region in a sector shape, an image configuration unit that generates a diagnostic image based on the reception beam generated by scanning by the transmission / reception unit, and a display that displays the diagnostic image
  • a fan-shaped scanning range such that the fan-shaped scanning range extends to the diagnostic part on the back side of the obstacle that is a transmission obstacle of the transmission beam based on the tomographic image of the diagnostic part generated by the image constructing part.
  • Fan-shaped running A scanning center setting unit that sets at least one scanning center and sets the scanning condition of the sector scan so as to pass through the set scanning center, and the transmission
  • At least one scan center of the sector scan is set so that the sector scan range extends to the diagnostic site on the back side of the obstacle, and the scan condition for each scan center, that is, The maximum scanning angle, scanning line pitch, number of scanning lines, aperture, focusing position, etc. can be set.
  • the scanning center which is the apex of the sector scan corresponding to this is easily moved to the position where the sector scan range extends to the diagnosis part on the back side of the obstacle.
  • the scanning line can be fan-shaped scanned to the back of the obstacle without being obstructed by the obstacle, so that diagnostic images can be easily acquired even from different angles with the position of the ultrasound probe changed. Can do.
  • a plurality of fan-shaped scanning centers are set at a position where the fan-shaped scanning range extends to the diagnostic part on the back side of the obstacle, and the scanning is performed for each scanning center.
  • a plurality of scanning conditions are set so as to pass through the center, the transmission / reception unit is controlled according to each scanning condition, and the image construction unit synthesizes a plurality of the diagnostic images generated for each of the scanning centers. An image is generated. According to this, the influence of the artifact can be reduced.
  • the first aspect of the present invention it is possible to easily obtain a diagnostic image of a diagnostic part on the back side of an obstacle.
  • the influence of the artifact can be reduced.
  • Example 1 of the ultrasonic diagnostic apparatus of the present invention It is a block block diagram of Example 1 of the ultrasonic diagnostic apparatus of the present invention. It is a figure which shows an example of the intercostal scan of the prior art example which demonstrates the solution subject of this invention. It is a figure which shows the scan 1 example between the ribs by Example 1 of this invention. It is a figure which shows the scanning example 2 between the ribs by Example 1 of this invention. It is a figure which shows the scanning example 3 between the ribs by Example 1 of this invention. It is a figure which shows the scanning example 4 between ribs by Example 1 of this invention.
  • FIG. 6 is a diagram for explaining an example of automatically setting a scanning center and scanning conditions according to the first embodiment. It is a block block diagram of Example 2 of the ultrasonic diagnostic apparatus of this invention.
  • FIG. 6 is a diagram illustrating an example of a code-modulated transmission signal according to Embodiment 2.
  • FIG. FIG. 6 is a diagram illustrating an example of an ultrasonic transmission signal applied to each transducer according to the second embodiment. It is a schematic diagram of the sound field distribution of the example of the ultrasonic transmission signal of FIG.
  • FIG. 10 is a diagram illustrating another example of an ultrasonic transmission signal applied to each transducer according to the second embodiment. It is a schematic diagram of the sound field distribution of the example of the ultrasonic transmission signal of FIG. It is a block block diagram of embodiment of the ultrasonic diagnosing device of this invention.
  • FIG. 10 is a diagram for explaining a modification of the fourth embodiment.
  • FIG. 10 is a diagram for explaining another modified example of the fourth embodiment.
  • FIG. 10 is a diagram for explaining still another modification of the fourth embodiment. It is a figure explaining the modification which sets multiple virtual point sound sources of Example 4 to the depth direction.
  • FIG. 10 is a diagram illustrating a modification in which the virtual point sound source according to the fourth embodiment is set on the transmission / reception surface of the ultrasonic probe.
  • FIG. 10 is a diagram illustrating a modification in which the virtual point sound source according to the fourth embodiment is set on the inner side of the transmission / reception surface of the ultrasonic probe.
  • It is a block block diagram of Example 5 of the ultrasonic diagnostic apparatus of this invention. It is a figure explaining the imaging between the ribs of Example 5.
  • FIG. 10 is a diagram illustrating a specific configuration of a transmission modulation unit according to the fifth embodiment. It is a figure which shows the computing equation and waveform of the code modulation transmission signal of Example 5. It is a figure which shows the time waveform of the code modulation transmission signal applied to the transmission aperture which each transmits a plane wave beam to three deflection directions. It is a schematic diagram which shows the sound field distribution of the ultrasonic wave of the plane wave beam transmitted to three deflection directions.
  • FIG. 10 is a specific configuration diagram of a reception beamformer and a reception demodulation unit according to the fifth embodiment. It is a figure which shows the computing equation and waveform of the code demodulation receiving signal of Example 5.
  • the ultrasonic diagnostic apparatus 1 As shown in FIG. 1, the ultrasonic diagnostic apparatus 1 according to the present embodiment generates an ultrasonic probe 2 that is used in contact with a subject 13 and an ultrasonic signal that drives the ultrasonic probe 2. At the same time, a pulsar receiver 4 that receives a reflected echo signal received by the ultrasonic probe 2 to generate a reception signal, and a transmission beam that controls the pulsar receiver 4 to form a transmission beam that is irradiated into the subject 13.
  • the former 3 is formed with a reception beam former 5 that inputs a reception signal output from the pulser receiver 4 and forms a reception beam.
  • the transmission beamformer 3, the pulser receiver 4, and the reception beamformer 5 form a transmission / reception unit of the present invention.
  • the reception beam data output from the reception beamformer 5 is input to the space synthesis unit 6.
  • the spatial synthesis unit 6 performs spatial synthesis using received frame data composed of received beam data for spatial synthesis stored in the spatial synthesis memory 7.
  • the image processing unit 8 extracts diagnostic information from the received frame data synthesized by the space synthesis unit 6, generates a diagnostic image, and displays it on the display unit 9.
  • the space composition unit 6, the space composition memory 7, and the image processing unit 8 form an image configuration unit of the present invention.
  • the transmission beamformer 3, the reception beamformer 5, the space synthesis unit 6, the image processing unit 8, and the display unit 9 are connected to a control unit 10 and a user interface (UI) 11 via a system bus 12, respectively. Necessary data and control commands can be transmitted and received.
  • the control unit 10 controls the entire ultrasound diagnostic apparatus 1 and also controls the transmission beamformer 3 and the reception beamformer 5 to transmit the transmission beam transmitted to the subject 13 and the reflected echo signal received from the subject 13. A receiving beam is formed. Further, the control unit 10 controls the transmission beamformer 3 and the reception beamformer 5 so as to perform sector scanning using the transmission beam and the reception beam as scanning lines.
  • the user interface (UI) 11 includes an input setting unit that allows an operator to operate and operate the ultrasonic diagnostic apparatus 1.
  • the ultrasonic probe 2 is a phased array, is formed by arranging a plurality of transducers, and has a function of transmitting and receiving ultrasonic waves to and from the subject 13.
  • the pulsar receiver 4 drives the ultrasonic probe 2 to generate a transmission pulse for generating ultrasonic waves, and amplifies the reflected echo signal received by the ultrasonic probe 2 with a predetermined gain. Generate a received signal.
  • the transmission beam former 3 forms a transmission beam corresponding to the set depth at the convergence point of the transmitted ultrasonic wave, and drives and controls the ultrasonic probe 2 via the pulser receiver 4.
  • the reception beamformer 5 receives a reception signal from the pulsar receiver 4 and forms a reception beam that is phased according to one or more set convergence points.
  • the image processing unit 8 obtains diagnostic image data by performing various filters, detection, reflection intensity image luminance conversion, blood flow velocity calculation, scan conversion processing, image of each mode, and overlay of characters and scales.
  • the display unit 9 displays the diagnostic image data generated by the image processing unit 8 on the screen as a diagnostic image.
  • the control unit 10 includes a CPU, a main memory, an HDD, and the like, and controls each unit of the ultrasonic diagnostic apparatus 1 via a system bus 12, a serial interface, a network, and the like. That is, the control unit 10 controls the operation of each unit of the ultrasonic diagnostic apparatus 1 in accordance with an instruction according to an operation of the operator input from the user interface 11 connected to the system bus 12.
  • the user interface 11 includes a trackball, a keyboard, a switch, and the like.
  • the spatial synthesis unit 6 stores the reception beam data of at least one frame in the spatial synthesis memory 7, and receives the reception beam data of the second and subsequent frames and the reception beam data at the corresponding position of the stored frame.
  • the combined reception beam data is generated on a frame basis.
  • a known synthesis method can be applied to the spatial synthesis. For example, the reception beam data of a plurality of frames is added and averaged in units of pixels to generate synthesis reception frame data composed of the synthesis reception beam data.
  • the image processing unit 8 performs filtering processing, detection processing, reflection intensity image luminance conversion processing, blood flow velocity calculation, scan conversion on each combined reception beam data of the combined reception frame data output from the spatial combining unit 6 as necessary.
  • a desired diagnostic image is generated by performing processing such as processing.
  • a plurality of diagnostic images are generated on the basis of the received beam generated by fan-shaped scanning for each scanning center, which will be described later, by the space synthesis unit 6, the space synthesis memory 7, and the image processing unit 8.
  • An image configuration unit that generates a combined diagnostic image by combining the diagnostic images is formed.
  • FIG. 1 a diagnostic image of the heart 14 is acquired as a diagnostic site in the subject 13.
  • a rib 15 that is an obstacle is located between the ultrasound probe 2 and the heart 14.
  • the scanning center 16 of the fan scanning is set at the ultrasonic radiation surface of the ultrasonic probe 2. And set at the center of the array of the plurality of transducers.
  • the scanning center 16 is set in the acoustic window which is a gap formed between the two ribs 15a and 15b.
  • FIG. 3 shows an example in which the scanning centers 16a, b, c are set at three points on the line connecting the narrowest points 120a, b of the narrowest gap between the two ribs 15a, b.
  • the scanning center 16 may be set at least at one point on the line connecting the narrowest points 120a and 120b between the ribs 15a and 15b.
  • the scanning center 16 is set to at least one point so that the fan-shaped scanning range extends to the diagnostic part on the back side of one rib 15a or 15b that is an obstacle.
  • the setting of the scanning center 16 is, for example, a tomographic image of the diagnostic region 14 including the rib 15 obtained by bringing the ultrasound probe 2 into contact with the body surface of the subject 13 in a preparation stage for acquiring a diagnostic image of the heart 14.
  • the control unit 10 sets a scanning condition for fan-shaped scanning that passes through the set scanning center 16.
  • the scanning conditions are parameters including the maximum scanning angle of the fan-shaped scanning range, the scanning line pitch, the number of scanning lines, the aperture, the focusing position, and the like, and are set according to preset criteria for the scanning conditions. Then, the control unit 10 controls the transmission beamformer 3 and the reception beamformer 5 according to the set scanning conditions, transmits the transmission beam to the subject 13 via the pulser receiver 4 and the ultrasonic probe 2, and A reception beam is generated from the reflected echo signal.
  • FIG. 3 for the sake of simplicity, three scanning lines 17 are shown for each of the scanning centers 16a to 16c. That is, although the center of the sector scan range and the scan lines at both ends are shown, the number of normal scan lines is several tens to several hundreds.
  • the three received beam data obtained by the sector scans of the scanning centers 16a, 16b, and 16c are stored in the spatial synthesis memory 7 by the spatial synthesis unit 6, and the scanning area of the frame data composed of the respective received beam data is stored.
  • the overlapping reception beam data in the same space is spatially synthesized, and a composite diagnostic image is generated by the image processing unit 8.
  • the scanning center 16 can be set between the ribs 15 that are the obstacles and the ultrasonic beam can be transmitted and received, the heart 14 that is the diagnostic site is attached to the ribs 15. It is possible to draw without being hidden by the acoustic shadow. Therefore, even if the size of the gap between the ribs 15 and the depth from the body surface change depending on the position of the ultrasound probe 2, the scanning center 16 that is the apex of the fan-shaped scanning is correspondingly affected by a plurality of obstacles. Since it can be easily changed to a gap between objects, the scanning line can be scanned in a fan shape without being obstructed by an obstacle. Thereby, it is possible to easily acquire diagnostic images viewed from different angles by changing the position of the ultrasound probe 2 in various ways.
  • frame data consisting of received beam data obtained by setting a plurality of scanning centers 16 and sequentially fan-shaped scanning can be acquired, and these frame data can be spatially combined to form a diagnostic image, thus reducing speckle noise. can do.
  • FIG. 4 shows a modification of FIG. 4 (b) shows the number of scanning lines of fan-shaped scanning of the scanning center 16b set near the centers of the ribs 15a, b in FIG. 3 as shown in FIGS. 4 (a) and 4 (c).
  • the scanning centers 16a and 16c set close to each other are increased from the number of scanning lines in the sector scanning.
  • the image display range can be expanded by increasing the number of scanning lines of the fan-shaped scanning of the scanning center 16 which is relatively far from the rib 15 and is located near the center of the gap between the two adjacent ribs 15. it can. 3 and 4, the number of scanning lines is set to be bilaterally symmetric, but the display range can be expanded by changing the left / right ratio.
  • FIG. 5 shows an example in which the two scanning centers 16a and 16c are set at positions close to the inside of the two ribs 15a and 15b and the number of scanning lines is increased.
  • the effect of spatial synthesis can be enhanced by changing the position of the scanning center 16 and the scanning conditions.
  • the effect of improving the spatial resolution and the effect of reducing the artifact can be adjusted.
  • FIGS. 3 to 5 the case where a plurality of scanning centers are set on the line connecting the narrowest points 120a and 120b of the narrowest gap between the two ribs 15 is shown.
  • the present invention is not limited to this, and two points can be set by shifting the scanning center 16 in the depth direction as shown in FIG.
  • two sets of received beam data related to the diagnostic image of the heart 14 can be acquired. Therefore, by combining these spatially, artifacts due to speckle noise or the like can be reduced.
  • FIG. 6 is effective when the interval between the ribs 15 that are obstacles is narrow.
  • a diagnostic image is obtained by imaging brain tissue from the gap of the temple.
  • the tomographic image including the rib 15 is obtained by operating the user interface 11 at the preparation stage for obtaining the diagnostic image of the heart 14 and bringing the ultrasound probe 2 into contact with the body surface of the subject 13. Is done.
  • the operator can set the scanning center 16 from the user interface 11 including the scanning center setting unit.
  • the control unit 10 determines the distance A between the centers of the ribs 15B1 and 15B2 displayed in the tomographic image of FIG.
  • a deflection angle ⁇ th that passes through the converging point F and is not obstructed by the ribs 15B1 and 15B2 is calculated in advance, and a straight deflection angle ⁇ ′ connecting the vibrator ch at both ends of the aperture D and the converging point F is ⁇ th.
  • the aperture D is changed small or the scanning line deflection angle ⁇ is changed small so that ⁇ ′ ⁇ th.
  • the control center 10 can automatically set the scanning center 16 and set the maximum scanning angle and aperture of the scanning conditions.
  • the control unit 10 can control the transmission / reception beam related to the sector scanning.
  • Example 1 demonstrated above demonstrated the example which images the diagnostic site
  • this invention is not limited to this. That is, according to Example 1, it is possible to obtain a diagnostic image of a diagnostic site on the back side of one rib 15a or 15b. From this, even when there is only one obstacle that causes transmission / reception beam propagation obstruction, by setting at least one scan center of the sector scan so that the sector scan range extends to the diagnostic part on the back side of the obstacle The diagnostic image of the diagnostic part on the back side of the obstacle can be easily acquired.
  • the scanning center setting unit can set the scanning center at a position where the fan-shaped scanning line at one end of the fan-shaped scanning range is not obstructed by the obstacle. Further, the scanning center can be set in the spatial region on the side surface of the obstacle as viewed from the ultrasonic probe. Further, when a plurality of scanning centers are set, the image configuration unit can improve the image quality of the diagnostic image by generating a diagnostic image by combining a plurality of diagnostic images generated for each scanning center.
  • FIG. 8 is a block diagram of the ultrasonic diagnostic apparatus 1 of the present embodiment.
  • This embodiment is characterized in that the transmission beam is code-modulated and the reception beam is code-demodulated to generate reception beam data. Therefore, the difference from the first embodiment shown in FIG. 1 is that the transmission modulation unit 21 is provided to code-modulate the transmission beam data generated by the transmission beamformer 3, and the reception demodulation unit 22 is provided to The reception beam data to be output is code-demodulated and output to the space synthesis unit 6.
  • the transmission modulation unit 21 and the reception demodulation unit 22 are connected to the control unit 10 and the user interface 11 via the system bus 12, respectively. Since other configurations are the same as those of the first embodiment, the same reference numerals are given and the description thereof is omitted.
  • the transmission modulation unit 21 modulates a transmission beam to be transmitted using a code coefficient such as Barker, Golay, or Chirp.
  • the reception demodulation unit 22 demodulates the reception beam using a code demodulation coefficient corresponding to the code modulated by the transmission modulation unit 21.
  • FIG. 9 shows an example in which a diagnostic image of the heart 14 is acquired by fan scanning using the gap formed between the three ribs 15a, 15b and 15c at the scanning center 16 of the fan scanning.
  • two scanning centers 16-1 and 16-2 are set using the user interface 11 in the gap between the three ribs 15a, b, and c.
  • the control unit 10 sets parameters including the maximum scanning angle of the fan-shaped scanning range, the scanning line pitch, the number of scanning lines, the aperture, the focusing position, and the like for the scanning centers 16-1 and 16-2 in accordance with preset scanning conditions.
  • the transmission beamformer 3 and the reception beamformer 5 are controlled to perform sector scanning.
  • FIG. 9 shows an example in which a diagnostic image of the heart 14 is acquired by fan scanning using the gap formed between the three ribs 15a, 15b and 15c at the scanning center 16 of the fan scanning.
  • a transmission / reception beam is formed at two scanning centers 16-1 and 16-2 from one ultrasonic probe 2 at the same time and scanned.
  • Two received beam data respectively obtained at the two points of the scanning centers 16-1 and 16-2 are stored in the space synthesizing memory 7 by the space synthesizing unit 6, and are spatially synthesized as in the first embodiment.
  • transmission and reception beams are mixed in the same fan-shaped region, it is necessary to avoid such contamination.
  • the two transmission beams related to the sector scan of the scanning centers 16-1 and 16-2 are transmitted by performing different code modulation, and the received beam is code-demodulated with a corresponding code.
  • the transmission beam and the reception beam are associated with each other.
  • two parallel processes can be performed at the same time, so that it is possible to separate the two transmission / reception beams related to the sector scans of the respective scan centers 16-1 and 16-2, and to prevent their contamination.
  • FIG. 10 shows an example of the first code modulation transmission signal A and the second code modulation transmission signal B when the fundamental wave: S is a sin wave (one wave number).
  • the first to third ribs 15a to 15c are positioned with respect to the ultrasonic probe 2 having the transducers ch01 to ch38.
  • the first scanning center 16-1 is disposed between the first rib 15a and the second rib 15b, and the second rib 15b is interposed between the second rib 15b and the third rib 15c.
  • a scanning center 16-2 is arranged.
  • the control unit 10 calculates the positions of the first scanning center 16-1 and the second scanning center 16-2, the deflection angle ⁇ of the transmission / reception beam, the depth of the converging position 19, and the transmission aperture, To control.
  • the transmission aperture is calculated so as to be narrower than the interval between the ribs from the information on the transmission frequency, the focusing position, the deflection angle, and the transducer pitch so that the transmission / reception beam is not blocked by the rib 15. Further, the delay amount of each transducer for converging the transmission beam is calculated from the distance between each transducer within the aperture and the focal position and the sound speed of the subject 13.
  • FIG. 11 and 12 show an example in which a transmission beam having a deflection angle of + 45 ° is simultaneously formed from the first aperture and the second aperture.
  • FIG. 11 shows an example of a time waveform of an ultrasonic transmission signal applied to each transducer ch01 to ch38.
  • the first aperture is ch17 to ch24
  • the second aperture is 8ch each of ch31 to ch38. The further to the right, the slower the time.
  • the code-modulated transmission signal A that has been subjected to delay processing is the earliest ch24 and the latest ch17 is applied as an ultrasonic transmission signal.
  • the code modulation transmission signal B that has been subjected to the delay processing of ch38 the earliest and ch31 the latest is applied as the ultrasonic transmission signal.
  • FIG. 12 shows an example of a sound field distribution when an ultrasonic transmission signal is applied as shown in FIG.
  • the ultrasonic transmission signal applied to each transducer is converted from an electrical signal to an ultrasonic signal and propagates through the subject 13. Originally, it propagates due to the directivity characteristics of each transducer, but in FIG. 12, in order to easily understand that the transmission signal is phased and converged at the converging position 19, diffusion and display of a wavefront propagating in another direction are displayed. Is omitted.
  • the ultrasonic transmission signal subjected to the delay processing as shown in FIG. 11 is applied to the vibrators of the first aperture ch17 to ch24, the transmission beam is focused on the focusing position 19-1.
  • the transmission beam is focused on the focusing position 19-2.
  • the scanning center 16-1 is disposed on a straight line connecting the center of the first aperture and the transmission beam 19-1 and the transmission beam connects the focus 19-2.
  • a scanning center 16-2 is arranged on the straight line.
  • FIG. 13 and 14 show an example in which a transmission beam having a deflection angle of 0 ° is simultaneously formed from the first aperture and the second aperture.
  • FIG. 13 shows an example of a time waveform of an ultrasonic transmission signal applied to each transducer ch01 to ch38.
  • the first aperture is ch07 to ch14
  • the second aperture is 8ch each of ch21 to ch28. The further to the right, the slower the time.
  • the code-modulated transmission signal A that has been subjected to the delay processing of ch07 and ch14 and the latest of ch10 and ch11 is applied as an ultrasonic transmission signal.
  • the code-modulated transmission signal B that has been subjected to delay processing for ch21 and ch28 and for ch24 and ch25 the latest is applied as an ultrasonic transmission signal.
  • FIG. 14 shows an example of the sound field distribution when the ultrasonic transmission signal is applied as shown in FIG.
  • the ultrasonic transmission signal applied to each transducer is converted from an electrical signal to an ultrasonic signal and propagates through the subject 13. Originally, it propagates due to the directivity characteristics of each vibration element, but in FIG. 14, in order to easily understand that the transmission signal is phased and converged at the convergence position 19, diffusion and display of a wavefront propagating in another direction are displayed. Is omitted.
  • the ultrasonic transmission signal subjected to delay processing as shown in FIG. 13 to the transducers of the first apertures ch07 to ch14, the transmission beam is focused at the focusing position 19-1.
  • the transmission beam is focused at the focusing position 19-2.
  • the scanning center 16-1 is disposed on a straight line connecting the center of the first aperture and the focusing position 19-1, and the scanning center 16 is positioned on a straight line connecting the center of the second aperture and the focusing position 19-2. -2 is arranged.
  • the reception beamformer 5 performs a delay process corresponding to the time for which the ultrasonic echoes are reflected from each scanning line and received by each transducer.
  • Each reception beam is formed by performing as necessary on the reception signal amplified by the pulser receiver 4 corresponding to the aperture.
  • the reception demodulating unit 22 demodulates the code modulation transmission signal A and the code modulation transmission signal B generated by the transmission modulation unit 21, using a code demodulation filter A and a code demodulation filter B, for example, a time inverse filter process or mismatch. It demodulates by defiltering.
  • reception beam data of two scanning areas can be generated at the same time by code-modulating and code-demodulating the transmission / reception beams, and information on these scanning areas can be mutually converted. Can be separated to prevent contamination.
  • the present invention has been described based on the first and second embodiments.
  • the present invention by arbitrarily setting the position of the scanning center and the number of scanning lines from the situation such as the position and interval of the obstacle, Since ultrasound can be transmitted and received, the diagnostic site can be depicted without being hidden by the acoustic shadow of the obstacle.
  • the spatial synthesis it is possible to synthesize by multiplying the coefficients when synthesizing so that the influence of the information of the spatial data far from the obstacle among the plurality of scanning centers becomes large. According to this, the influence of an obstacle can be reduced further.
  • this coefficient for example, it is desirable to continuously apodize with respect to an array of scanning centers such as Hanning, Hamming, and Blackman.
  • the example in which the transducers are arranged in a plane as the ultrasonic probe 2 is shown.
  • the present invention is not limited to this, and the ultrasonic probe in which the transducers are arranged in a curved surface is also shown. Applicable. In short, any phased array having a function of deflecting the scanning line by controlling the phase and the delay amount can be applied.
  • an example in which different code modulation / demodulation processing is performed for each scanning center has been described. However, different code modulation / demodulation processing can be performed in different scanning line orientations.
  • the number of transmission / reception lines is set according to the set deflection direction ⁇ so that the center transmission line of the plane wave beam is set between the ribs that are the obstacles, and the width of the plane wave beam is set between the ribs 15 that are the obstacles.
  • the pitch may be adjusted.
  • the present embodiment relates to an ultrasonic diagnostic apparatus, and more particularly, to a technique for transmitting a plane wave of an ultrasonic wave to a diagnostic region and receiving a reflected echo signal in parallel to capture a diagnostic image at a high frame rate.
  • a conventional ultrasonic diagnostic apparatus transmits an ultrasonic wave inside a subject using an ultrasonic probe and receives an ultrasonic reflection echo signal corresponding to the structure of a living tissue from the inside of the subject. For example, an ultrasonic tomogram Such a diagnostic image is generated and displayed.
  • a phased array is used and images are obtained by performing sector scan (sector scan) on the diagnostic region with ultrasonic transmission / reception beams.
  • a phased array type ultrasound probe controls the phase of ultrasonic waves radiated from a plurality of transducers having a transmission / reception aperture (hereinafter simply referred to as “aperture” as appropriate) to focus the ultrasound on a specific point. Transmit beam and receive beam can be generated and the beam direction can be deflected. Therefore, it is generally employed to obtain a diagnostic image by performing sector scanning using a pair of transmission beam and reception beam as scanning lines by electronic scanning.
  • the radiation surface is set so that the sound ray center of the beam is set in front of the radiation surface and a sector portion is formed in the subject further ahead of the sound ray center.
  • Has been proposed to be formed into a concave shape for example, Japanese Patent Application Laid-Open No. 2000-201928.
  • a diagnostic image of a relatively fast moving organ such as the heart is desired to be imaged at a high frame rate.
  • a technique using an unfocused transmission beam such as a plane wave has been proposed (for example, US Pat. No. 6,309,356).
  • the acoustic window between the ribs varies depending on the position of the ribs. That is, the size of the acoustic window between the ribs changes depending on the position, and the depth from the body surface to the ribs changes.
  • the technique described in the above patent document does not consider that the size of the acoustic window and the depth position of the ribs change depending on the position of the ribs, the diagnostic images of the heart are acquired from various angles. Limited by case.
  • the scanning center is determined by the concave surface on which a plurality of transducers are arranged.
  • Such problems are not limited to obstacles such as the ribs, but when imaging images of brain tissue on the back side (back side) of the skull from the gap of the skull, such as the temple, etc. This is also a common problem when obtaining a diagnostic image of a living tissue on the back side (back side) of an obstacle.
  • US Pat. No. 6,309,356 does not describe avoiding an obstacle.
  • the problem to be solved by the present embodiment is to provide an ultrasonic diagnostic apparatus capable of acquiring a diagnostic image of a living tissue located behind an obstacle of ultrasonic propagation at a high frame rate while suppressing artifacts. .
  • the first aspect of the present embodiment that solves the above-described problem is a transmission process of an ultrasonic probe that is used in contact with a subject and a plurality of transducers of the ultrasonic probe.
  • An image for generating a diagnostic image based on the received signal processed by the receiving unit, a receiving unit for receiving and processing reflected echo signals received by the plurality of transducers of the ultrasonic probe A transmission unit, a display unit that displays the diagnostic image, a control unit that controls at least the transmission unit, the reception unit, and the image configuration unit; and an input unit that inputs a command to the control unit;
  • the unit drives a plurality of n (n is a natural number) of the transducers corresponding to the transmission aperture set in the ultrasonic probe based on a control command given from the control unit, Plane wave consisting of n transmission lines in the set deflection direction
  • the receiving unit performs focus processing on a reflected echo signal received by a plurality of m (m is a natural number)
  • a reception beam is generated, frame data including a plurality of reception beams obtained by scanning a plurality of reception lines set based on the n transmission lines is generated, and the image configuration unit includes the reception unit
  • the diagnostic image is generated based on the frame data generated in step (1).
  • the transmission unit transmits the unfocused transmission plane wave beam including n transmission lines in the set deflection direction in the subject from the n transmission apertures. Accordingly, a diagnostic image of a living tissue in a diagnostic region located on the back side of an obstacle for ultrasonic propagation can be captured with reduced artifacts.
  • the ultrasonic wave can be transmitted to the entire diagnosis region by one transmission without scanning.
  • the frame rate can be increased by performing parallel reception.
  • the reflected echo signals received by the m transducers corresponding to the receiving apertures are focused, and a plurality of receiving beams are set for a plurality of receiving lines set corresponding to the plurality of transmitting lines. Is generated. Since frame data is generated by a plurality of reception beams, a diagnostic image can be taken at a high frame rate. Further, since the reception beam is generated by focusing and processing the reflected echo signal, the SN ratio of the reception signal can be increased, and a diagnostic image with excellent resolution can be taken.
  • a plane wave beam can be transmitted in a desired set deflection direction by providing a delay time difference in an ultrasonic signal that drives n transducers having a transmission aperture. Therefore, it is possible to set the deflection direction so that a plane wave beam can be transmitted to the diagnostic area located behind the obstacle from an angle avoiding the obstacle, or the plane wave beam is transmitted from a different deflection direction through the gap of the obstacle. As a result, the diagnostic region can be observed from various directions. Furthermore, the effect of artifacts such as speckle noise can be reduced by spatially synthesizing diagnostic image data of diagnostic regions imaged from different directions.
  • the transmission unit provides a delay time difference in driving time for a plurality of n (n is a natural number) transducers corresponding to the transmission aperture set in the ultrasound probe, and is provided at one location in the subject.
  • the ultrasonic wave fronts of the n transmission lines transmitted from the n transducers are aligned at the position of the virtual point sound source set to n, and the n number of the sector areas having the virtual point sound source as a vertex are aligned.
  • the transmission line is formed radially.
  • the reception unit generates a reception beam by performing a focusing process on a reflected echo signal received by a plurality of m (m is a natural number) of the transducers corresponding to a reception aperture set in the ultrasonic probe.
  • the frame data is generated by scanning a plurality of reception lines set based on the n transmission lines.
  • the second aspect is characterized in that a virtual point sound source is formed at an arbitrary desired position, and n transmission lines are radially formed in the entire sector area having the virtual point sound source as a vertex.
  • a sector area can be formed on the back side of the obstacle by forming a virtual point sound source at a position near the obstacle and away from or near the obstacle.
  • This diagnostic image can be easily obtained.
  • a virtual point sound source is set between the obstacles to avoid jamming noise. Artifacts such as shadows and shadow artifacts can be reduced, and an ultrasonic image of a diagnostic region on the back side (back side) of an obstacle can be taken.
  • a virtual point sound source can be formed at any plurality of different positions to generate a plurality of diagnostic images. By combining these diagnostic images, speckle noise, etc. The effect of the artifact can be reduced.
  • the present embodiment it is possible to acquire a diagnostic image of a living tissue located behind an obstacle of ultrasonic propagation at a high frame rate while suppressing artifacts.
  • an ultrasonic diagnostic apparatus 1 includes an ultrasonic probe 2 that is used while being in contact with a subject 13, a transmission beam former 3 that forms a transmission beam to be irradiated into the subject 13, and a transmission beam.
  • the ultrasonic probe 2 is driven in accordance with a signal output from the former 3 to generate a transmission beam, and a pulsar receiver 4 that receives a reflected echo signal received by the ultrasonic probe 2 and an output from the pulsar receiver 4 And a reception beam former 5 that inputs a reflected echo signal to be received and performs reception processing to form a reception beam.
  • the transmission unit of the present invention is configured by the transmission beam former 3 and the pulsar receiver 4, and the reception unit of the present invention is formed by the pulsar receiver 4 and the reception beam former 5.
  • the reception beam data output from the reception beamformer 5 is input to the space synthesis unit 6.
  • the spatial synthesis unit 6 performs spatial synthesis using frame data composed of received beam data for spatial synthesis stored in the spatial synthesis memory 7.
  • the image processing unit 8 extracts diagnostic information from the frame data synthesized by the space synthesis unit 6, generates a diagnostic image, and displays it on the display unit 9.
  • the space composition unit 6, the space composition memory 7, and the image processing unit 8 form an image configuration unit of the present invention.
  • the transmission beamformer 3, the reception beamformer 5, the space synthesis unit 6, the image processing unit 8, and the display unit 9 are connected to a control unit 10 and a user interface (UI) 11 via a system bus 12, respectively. Necessary data and control commands can be transmitted and received.
  • the control unit 10 controls the entire ultrasound diagnostic apparatus 1 and also controls the transmission beamformer 3 and the reception beamformer 5 to transmit the transmission beam transmitted to the subject 13 and the reflected echo signal received from the subject 13. A receiving beam is formed.
  • the control unit 10 also controls the transmission beamformer 3 and the reception beamformer 5 to transmit the transmission beam, and scans and receives the reception line set based on the transmission line of the plane wave beam that is the transmission beam. A beam is generated.
  • the user interface (UI) 11 includes an input unit for an operator to operate and operate the ultrasonic diagnostic apparatus 1.
  • the ultrasonic probe 2 is a phased array, is formed by arranging a plurality of transducers, and has a function of transmitting and receiving ultrasonic waves to and from the subject 13.
  • the pulsar receiver 4 outputs a transmission pulse for driving the ultrasonic probe 2 to generate an ultrasonic wave, and captures a reflected echo signal received by the ultrasonic probe 2 and amplifies it with a predetermined gain. To generate a reception signal.
  • the transmission beamformer 3 is coupled with the pulsar receiver 4 based on a control command given from the control unit 10 and a plurality of n (n is a natural number) transducers corresponding to the transmission aperture set in the ultrasonic probe 2.
  • n is a natural number
  • the transmission beamformer 3 transmits a transmission beam in one or a plurality of set deflection directions ⁇ i given from the control unit 10, so that a delay time difference is provided in the ultrasonic signal that drives n transducers, and the set deflection direction A plane wave beam is transmitted to ⁇ i so that the wave fronts are aligned.
  • the reception beamformer 5 is coupled to the pulser receiver 4 by a plurality of m (m is a natural number) transducers corresponding to the reception aperture set in the ultrasonic probe 2 based on a control command given from the control unit 10.
  • a received beam is generated by focusing the reflected echo signal received.
  • a reflected echo signal is input to perform phasing control, and focus processing is performed on one point or a plurality of convergence points to form a reception beam.
  • a plurality of reception lines set based on n transmission lines are scanned, and a reception beam is generated for each reception line. Then, frame data composed of a plurality of reception beams obtained by scanning all reception lines is generated.
  • a plurality of reception lines set based on n transmission lines are scanned to generate frame data for each of the plurality of set deflection directions ⁇ i. It is like that.
  • the number of reception lines can be set to the same number as the number of transmission lines or a number smaller than the number of transmission lines.
  • the image processing unit 8 obtains diagnostic image data by applying various filters, detection, reflection intensity image luminance conversion, blood flow velocity calculation, scan conversion processing, image of each mode, character, scale, and other overlays.
  • a plurality of set deflection directions ⁇ are set, a spatial composite image is generated based on the received beam data for each deflection direction.
  • the display unit 9 displays the diagnostic image data generated by the image processing unit 8 on the screen as a diagnostic image.
  • the control unit 10 includes a CPU, a main memory, an HDD, and the like, and controls each unit of the ultrasonic diagnostic apparatus 1 via a system bus 12, a serial interface, a network, and the like. That is, the control unit 10 controls the operation of each unit of the ultrasonic diagnostic apparatus 1 in accordance with an instruction according to an operation of the operator input from the user interface 11 connected to the system bus 12.
  • the user interface 11 includes a trackball, a keyboard, a switch, and the like.
  • the spatial synthesis unit 6 stores the reception beam data of at least one frame in the spatial synthesis memory 7, and receives the reception beam data of the second and subsequent frames and the reception beam data at the corresponding position of the stored frame.
  • the combined reception beam data is generated on a frame basis.
  • a known synthesis method can be applied to the spatial synthesis. For example, a plurality of frames of received beam data are added and averaged in units of pixels to generate synthesized frame data composed of the synthesized received beam data.
  • the image processing unit 8 performs filtering processing, detection processing, reflection intensity image luminance conversion processing, blood flow velocity calculation, scan conversion processing on each combined reception beam data of the combined frame data output from the space combining unit 6 as necessary. , Etc. are performed to generate a desired diagnostic image.
  • a plurality of diagnostic images are generated by the space synthesizing unit 6, the space synthesizing memory 7, and the image processing unit 8 based on received beam data generated for a sector area described later, and the plurality of diagnostic images are synthesized.
  • An image constructing unit for generating the synthesized diagnostic image is formed.
  • the diagnostic image capturing method of the present invention performed by using the ultrasonic diagnostic apparatus according to the embodiment configured as described above will be described in each example.
  • an example will be described in which the number and positions of transmission lines that form a plane wave beam and reception lines that form a reception beam are set to be the same.
  • the present invention is not limited to this, and the number of transmission lines and the number of reception lines can be set differently.
  • Example 3 In the third embodiment, description will be made assuming that a diagnostic image of the heart 14 is taken as a diagnostic site in the subject 13 as shown in FIG. As shown in the figure, a rib 15 that is an obstacle is located between the ultrasound probe 2 and the heart 14.
  • the ultrasound probe is performed with the vertex (scanning center) 16 of the sector area as the sector scanning center. It is set so as to be positioned at the center of arrangement of a plurality of transducers on the ultrasonic transmission / reception surface of the touch element 2.
  • a center transmission / reception line 20-c is set at the center in the width direction of the plane wave beam 121 composed of 20. 17A to 17C, center transmission / reception lines 20-c are set at the centers on the line connecting the narrowest points 122a and 122b of the narrowest gap between the two ribs 15a and 15b, respectively.
  • An example is shown.
  • the present invention is not limited to this, and the center transmission / reception line 20-c passing through at least one point on the line connecting the narrowest points 122a and 122b is set.
  • the center transmission / reception line 20-c is set, for example, in a preparation stage for acquiring a diagnostic image of the heart 14, for example, a diagnostic region 14 including a rib 15 obtained by bringing the ultrasonic probe 2 into contact with the body surface of the subject 13.
  • This tomographic image is displayed on the display unit 9, and the operator can set the center transmission / reception line 20-c at the center in the width direction of the plane wave beam 121 from the user interface 11 on the tomographic image. Further, as will be described later, the center transmission / reception line 20-c can be automatically set by the control unit 10.
  • the control unit 10 sets the plane wave beam 121 centered on the set center transmission / reception line 20-c.
  • the plane wave beam 121 is a transmission parameter including a set deflection direction (deflection angle) ⁇ range (+ ⁇ , ⁇ ) of the center transmission / reception line 20-c, a transmission line pitch, the number of transmission lines, a transmission aperture (n), and the like. It is set according to the criteria of transmission conditions set in advance. Then, the control unit 10 controls the transmission beam former 3 in accordance with the set transmission conditions, and transmits a transmission beam to the subject 13 via the pulser receiver 4 and the ultrasonic probe 2.
  • control unit 10 presets a reception aperture for receiving focus and reception parameters such as a reception line pitch, the number of reception lines, and one or a plurality of focus points based on the number of transmission / reception lines 20.
  • the reception beamformer 5 is set according to the reception condition criteria.
  • the number of transmission / reception lines 20 of the plane wave beam 121 is shown in plural (three in the illustrated example) in the set deflection direction (three in the illustrated example).
  • the number of 20 can be set to several tens to several hundreds.
  • the number of set deflection directions can be set as appropriate.
  • Received beam data formed by scanning reflected echo signals based on plane wave beams 121 having different deflection angles along the transmission / reception line 20 is stored in the space synthesis memory 7 by the space synthesis unit 6 for each of a plurality of set deflection directions. .
  • the spatial synthesis unit 6 spatially synthesizes the reception beam data in the same space where frame data composed of reception beam data in a plurality of set deflection directions overlaps to generate a synthesized diagnostic image.
  • n transducers corresponding to the transmission aperture of the ultrasound probe 2 are driven, and a plane wave composed of n transmission / reception lines 20 parallel to the set deflection direction ⁇ i in the subject 13.
  • a timing chart is shown.
  • the transmission beam former 3 intermittently transmits a plane wave beam composed of ultrasonic transmission pulses over a set time.
  • the reception beamformer 5 scans the set transmission / reception line 20 while switching the reception aperture to form a reception beam and acquire frame data. This operation is performed for a plurality of set deflection directions ⁇ i to obtain frame data for each set deflection direction ⁇ i.
  • the control unit 10 controls the transmission beam former 3 to transmit the plane wave beam 121 for each set deflection direction ⁇ i.
  • control unit 10 controls the reception beamformer 5 to divide the plurality of transmission / reception lines 20 of the plane wave beam 121 into a plurality of N sets, and scans the transmission / reception lines 20 for each divided group to generate reception beams. . Then, frame data is generated for each set deflection direction ⁇ i based on the plurality of generated reception beams.
  • FIGS. 18A and 18B may be appropriately combined.
  • the center transmission / reception line 20-c of the plane wave beam 121 is set between the ribs 15 that are obstacles, and the plane wave beam 121 is
  • the number and pitch of the transmission / reception lines 20 can be adjusted according to the set deflection direction ⁇ so that the width falls between the ribs 15 as obstacles. Therefore, it is possible to depict the heart 14 which is a diagnostic site without being hidden by the acoustic shadow of the rib 15. Therefore, even if the size of the gap between the ribs 15, the depth from the body surface, and the set deflection direction ⁇ change depending on the position of the ultrasonic probe 2, the width of the plane wave beam 121 is increased correspondingly. Therefore, the transmission / reception line 20 can be captured without being obstructed by the obstacle. Thereby, it is possible to easily acquire diagnostic images viewed from different angles by changing the position of the ultrasound probe 2 in various ways.
  • the plane wave beam is deflected in three directions.
  • the present invention is not limited to this, and the spatial resolution and the contrast resolution can be improved by appropriately increasing according to the allowable imaging time.
  • the transmission / reception line 20 has been described with three examples for the sake of simplicity.
  • the present invention is not limited to this, and by setting the transmission / reception line 20 according to an allowable imaging time, Contrast resolution can be improved.
  • a plane wave beam for unfocused transmission is shown.
  • the present invention is not limited to this, and a relatively weak focused transmission is performed according to the number of transmission / reception lines and the interval between reception beams.
  • This can also be realized by using a plane wave beam composed of a transmission line having a strong pressure.
  • the weakly focused plane wave beam is adjusted and corrected by reception gain or the like in consideration of sensitivity differences among a plurality of reception beams and the influence of side lobes.
  • FIGS. 19A to 19C a plurality of sheets (see FIG. 19) with the width of the plane wave beam 121 adjusted to the size of the diagnostic region 14 and the set deflection direction ⁇ i are changed. Frame data of 3 frames in the example is acquired.
  • the spatial synthesis unit 6 by performing spatial synthesis in the spatial synthesis unit 6 based on a plurality of pieces of frame data, it is possible to capture a diagnostic image with excellent spatial resolution and few artifacts. That is, by adjusting the position and width of the plane wave beam according to the presence / absence of an obstacle and the position of the obstacle, a wide range or a local range according to the range of the diagnostic region 14 or the transmission / reception line 20 The interval can be adjusted freely.
  • Example 4 A fourth embodiment of the diagnostic image capturing method of the present invention will be described with reference to FIG.
  • a diagnostic image of the heart 14 is taken as a diagnostic site in the subject 13.
  • the fourth embodiment is different from the third embodiment in that a gap formed between the two ribs 15a and 15b is used instead of transmitting a plane wave beam 121 including a plurality of parallel transmission / reception lines 20.
  • the purpose is to transmit the virtual point sound source 31 from a plurality of transducers constituting the transmission aperture.
  • a plane wave beam 33 spreading in a sector shape is formed, and the plane wave beam 33 is propagated by an ultrasonic wave such as a rib. This is because it is not obstructed by other obstacles.
  • three virtual point sound sources 31 are arranged and three transmission / reception lines 32 are shown.
  • the present invention is not limited to this. Yes.
  • three virtual point sound sources 31 are set between obstacles (for example, ribs) 15a and 15b.
  • positions the virtual point sound source 31 is naturally set narrower than the space
  • the control unit 10 controls the transmission beamformer 3 and the reception beamformer 5 based on scanning information such as the number of virtual point sound sources 31, a scanning angle, and a scanning pitch.
  • the transmission beamformer 3 transmits a plurality of n transducers corresponding to the transmission aperture (transmission sub aperture) D set in the ultrasonic probe 2 with a delay time difference based on a control command to the control unit 10. Drive by pulse.
  • the delay time difference is determined so that the ultrasonic wavefronts of the n transmission / reception lines 32 transmitted from the n transducers are aligned at the position of the virtual point sound source 31.
  • the energy transmitted from the transmission sub-aperture D is focused on the virtual point sound source 31, and n transmission / reception lines 32 are diffused radially from the virtual point sound source 31 to the entire sector region to form a plane wave beam 33.
  • the transmission sub aperture D is set as in the following equation (1).
  • L is the shortest distance between the transmission / reception surface of the ultrasound probe 2 and the virtual point sound source 31
  • ⁇ max is the maximum scanning angle.
  • the transmission sub aperture D is too large, artifacts due to the influence of the obstacle (for example, ribs) 15 increase, and adjustment is necessary.
  • the reception beamformer 5 is a reflected echo received by a plurality of m (m is a natural number) transducers corresponding to the reception aperture set in the ultrasonic probe 2 based on a control command of the control unit 10.
  • the signal is focused on the transmission / reception line 32 to generate a reception beam.
  • Frame data is generated from received beam data obtained by scanning n transmission / reception lines 32.
  • the received beam data obtained for each of a plurality of set deflection directions is stored in the space synthesizing memory 7 by the space synthesizing unit 6, and the received beam data in the same space is synthesized to generate one synthesized diagnostic image.
  • speckle noise can be reduced as shown in the conceptual diagram of FIG.
  • the virtual point sound source 31 is set between the obstacles (for example, ribs) 15a and 15b, and the diagnostic part 14 transmits and receives ultrasonic waves without being hidden by the acoustic shadow of the obstacle 15. Therefore, it is possible to obtain a diagnostic image in which artifacts such as jamming noise are reduced by reducing unnecessary irregular reflection due to an obstacle.
  • the case where three virtual point sound sources 31 are set has been described. However, by setting more virtual point sound sources 31, the spatial resolution and the contrast resolution can be improved.
  • FIG. 22 An example is shown in which the diagnostic part 14 on the back side (back side) of the obstacles 15a and 15b is imaged from the gap between the pair of obstacles (for example, ribs) 15a and b.
  • virtual point sound sources 31a, 31b are respectively set in two gaps formed by three obstacles (for example, ribs) 15a, b, c, and the same as in the fourth embodiment.
  • An image can be taken. According to this, it is possible to take an image even in the case of a relatively large diagnostic region 14 and when there are relatively many obstacles 15a to 15c.
  • imaging can be performed without being hidden by the acoustic shadows of the plurality of obstacles 15a to 15c, unnecessary irregular reflection due to the obstacles can be reduced, and artifacts such as jamming noise can be reduced.
  • the number of transmission / reception lines 32 passing through the virtual point sound source 31 set between the obstacles 15a and 15b is compared with that in FIGS. 23 (a) and 23 (c), as shown in FIG. This can be increased when the point sound source 31 is set at the center position.
  • the image display range can be expanded by increasing the number of transmission / reception lines 32.
  • the transmission / reception line 32 is set symmetrically, but the display range can be expanded by changing the left / right ratio.
  • FIG. 24 shows an example in which the number of virtual point sound sources 31 is two and the number of transmission / reception lines 32 is increased.
  • the effect of spatial synthesis and the density of the transmission / reception line 32 can be adjusted to adjust the effect of improving spatial resolution and the effect of reducing artifacts.
  • FIG. 25 shows an example in which two virtual point sound sources 31 are set in the depth direction. This is effective when the distance between the obstacles 15a and 15b is relatively narrow.
  • FIG. 26 and FIG. 27 show an example in which five virtual point sound sources 31 are set when there is no obstacle.
  • FIG. 26 is an example in which the virtual point sound source 31 is set on the transmission / reception surface of the ultrasonic probe 2
  • FIG. 27 is set on the inner side of the ultrasonic probe 2 than the transmission / reception surface of the ultrasonic probe 2. This is an example.
  • the position of the virtual point sound source 31 according to the presence and position of the obstacle, it is possible to freely set a wide range or any local range, or the interval between the transmission and reception lines 32 according to the range of the diagnosis part. It becomes possible to adjust.
  • the synthesis is performed by multiplying the weighting coefficient at the time of synthesis so that the weight of the spatial data far from the obstacle 15 is increased. be able to.
  • a weighting factor it is desirable that the apodization is continuous with respect to the arrangement of the transmission / reception lines 20 and 32 such as Hanning, Hamming, and Blackman.
  • the ultrasonic probe 2 has shown an example in which a plurality of transducers are arranged in a planar shape.
  • the present invention is not limited to this, and for example, a plurality of transducers are arranged on a curved surface.
  • the applied ultrasonic probe can be applied. In short, it is only necessary that the receiving line can be deflected by the phase and the delay amount.
  • the transmission unit transmits a plane wave beam so as to avoid the obstacle of ultrasonic propagation in the subject, and the reception unit receives the reflected echo signal so as to avoid the obstacle of ultrasonic propagation in the subject.
  • the reception unit receives the reflected echo signal so as to avoid the obstacle of ultrasonic propagation in the subject.
  • the obstacle of ultrasonic propagation is reduced. Avoiding this, the plane wave beam can be irradiated to the diagnostic region located behind the obstacle. Similarly, a diagnostic image of a living tissue with reduced artifacts can be taken by forming a reception beam while avoiding an obstacle in the deflection direction.
  • the ultrasonic wave can be transmitted to the entire diagnosis region by one transmission without scanning. In addition, since time required for scanning is unnecessary, the frame rate can be increased by performing parallel reception.
  • a sector area can be formed on the back side of the obstacle by forming a virtual point sound source at a depth near the obstacle and away from or near the obstacle. Can be easily obtained.
  • Example 5 An imaging method of Example 5 using an ultrasonic diagnostic apparatus to which the present invention is applied will be described with reference to FIGS.
  • the fifth embodiment is different from the third and fourth embodiments in that the transmission beam (plane wave beam) is code-modulated and the reception beam is code-demodulated to generate reception beam data. That is, when the plane wave beam 121 is transmitted at the same time in the plurality of setting deflection directions in FIG. 17 of the third embodiment, code modulation and code demodulation are performed so that reception beam data for each of the plurality of setting deflection directions can be identified and acquired. It is in doing so. Since the other points are the same as those of the third and fourth embodiments, the same reference numerals are given and the description thereof is omitted.
  • FIG. 28 shows a block diagram of an ultrasonic diagnostic apparatus 1 that implements the fifth embodiment.
  • the transmission modulation unit 41 is provided to code-modulate the plane wave beam signal generated by the transmission beam former 3, and the reception demodulation unit 42 is provided to receive the reception beam.
  • the reception beam signal output from the former 5 is code-demodulated and output to the spatial synthesis unit 6.
  • the transmission modulation unit 41 and the reception demodulation unit 42 are connected to the control unit 10 and the user interface 11 via the system bus 12, respectively.
  • the transmission modulation unit 41 modulates the transmitted plane wave beam signal using a code coefficient such as Barker, Golay, or Chirp.
  • the reception demodulator 42 demodulates the received beam signal using a code demodulation coefficient corresponding to the code modulated by the transmission modulator 41.
  • FIG. 29 is characterized in that diagnostic images in a plurality of set deflection directions in the third embodiment shown in FIG. 17 are taken in parallel. This further increases the frame rate and spatially synthesizes diagnostic image data in a plurality of set deflection directions to obtain a diagnostic image with high resolution and reduced artifacts. That is, FIG. 29 is an example in which a diagnostic image of the heart that is the diagnostic region 14 is to be taken through a gap formed between the two ribs 15a and 15b.
  • the plane wave beam 121a deflected in a plurality of (3 in the illustrated example) set deflection directions (+ ⁇ , 0 °, ⁇ ) using the user interface 11 in the gaps between the ribs 15a, b. b and c are transmitted at the same time.
  • the control unit 10 sets parameters for the plane wave beams 121a, 121b, 121c, including the angle of the set deflection direction (+ ⁇ , 0 °, ⁇ ), the transmission / reception line pitch, the number of transmission / reception lines, the transmission / reception aperture, etc. And the transmission beamformer 3 and the reception beamformer 5 are controlled.
  • the transmission beamformer 3 transmits plane wave beams 121a, 121b, and 121c having different deflection directions at the same time.
  • the reception beamformer 5 scans the transmission / reception lines 20 of the plane wave beams 121a, 121b, and 121c, and acquires the reception beam data of the reflected echo signal.
  • the received beam data acquired for the plane wave beams 121a, 121b, and 121c is stored in the space synthesis memory 7 by the space synthesis unit 6 and is spatially synthesized as in the third embodiment.
  • plane wave beams deflected in three set deflection directions (+ ⁇ , 0 °, ⁇ ) are mixed in the same sector region, contamination thereof must be avoided.
  • the three plane wave beams 121a, 121b, 121c are subjected to different code modulations and transmitted.
  • the reception beam generated on the transmission / reception lines 20a, b, c of the plane wave beams 121a, 121b, 121c is code-demodulated with a code corresponding to the code modulation of the plane wave beams 121a, 121b, 121c.
  • FIG. 30 shows a configuration diagram of the transmission modulation unit 41 of the fifth embodiment.
  • the transmission modulation unit 41 includes a fundamental wave storage unit 43 that stores a fundamental wave of a transmission signal configured by a memory such as a RAM, a code modulation coefficient storage unit 44 that stores a code modulation coefficient configured by a memory such as a RAM, a CPU, A fundamental wave formed by a processor such as a DSP or a hard logic such as an FPGA, a convolution operation unit 45 that performs a convolution operation on a code modulation coefficient and generates a code modulation transmission signal, and a code modulation transmission signal that is a result of the convolution operation are stored.
  • the fundamental wave storage unit 43 and the code modulation coefficient storage unit 44 are connected to the control unit 10 via the system bus 12.
  • the outputs of the fundamental wave storage unit 43 and the code modulation coefficient storage unit 44 are connected to the input of the convolution operation unit 45.
  • the output of the convolution operation unit 45 is connected to the input of the code modulation transmission signal storage unit 46.
  • the output of the code modulation transmission signal storage unit 46 is input to the transmission beamformer 3.
  • the control unit 10 causes the fundamental wave storage unit 43 to store the fundamental wave s of the transmission signal in a predetermined area via the system bus 12. Further, the control unit 10 causes the code modulation coefficient storage unit 44 to store the code modulation coefficient bX in a predetermined area via the system bus 12.
  • the fundamental wave storage unit 43 and the code modulation coefficient storage unit 44 select and read out the storage area of the fundamental wave s and the code modulation coefficient bX, and output them to the convolution calculation unit 45.
  • the convolution operation unit 45 performs a convolution operation process on the input fundamental wave s and code modulation coefficient bX, generates a code modulation transmission signal, and outputs the code modulation transmission signal to the code modulation transmission signal storage unit 46.
  • the code modulation transmission signal storage unit 46 stores the code modulation transmission signal in a predetermined area, reads out the code modulation transmission signal in the predetermined area, and outputs it to the transmission beamformer 3.
  • FIG. 31 shows an arithmetic expression and waveform of the code modulation transmission signal in the convolution operation unit 45.
  • cX s * bX (2)
  • different sign-modulated plane wave beams 121a to 121c are transmitted for each set deflection direction (+ ⁇ , 0 °, ⁇ ) in FIG.
  • code modulation transmission signals cA, cB, and cC can be expressed by the following equation (3), where the code modulation coefficients are bA, bB, and bC.
  • the fundamental wave s is a sin wave of one wave number
  • FIG. 33 shows a schematic diagram of the sound field distribution of the ultrasonic wave transmitted from the ultrasonic probe 2. In the figure, it shows that the depth is deeper than the ultrasonic probe 2 as it goes to the right. As shown in FIG. 33, the ultrasonic probe 2 having the transducers ch01 to ch38, the obstacle 15a, and the obstacle 15b are located.
  • the position of the center transmission / reception line 20-c of the plane wave beam 121 b is arranged at the center of the plane wave beam 121 b on the user interface 11.
  • the control unit 10 determines the position of the center transmission / reception line 20-c, the deflection direction (+ ⁇ , 0 °, ⁇ ) of the plane wave beams 121a to 121c, the transmission aperture D, 12ch in this example, and the plane wave beams 121a to 121c.
  • the transmission aperture diameter D ch04 to ch15, ch14 to ch25, ch24 to ch35
  • the transmission aperture diameter D is set for each of the deflection directions (+ ⁇ , 0 °, ⁇ ), and the delay amount of each channel of the plane wave beams 121a and 121c is calculated.
  • the transmission aperture D is calculated based on the transmission frequency, the deflection direction, and the transducer pitch so that the plane wave beams 121a to 121c are within the distance between the obstacles so as not to be affected by the obstacles 15a and 15b.
  • the delay amount for deflecting the plane wave beams 121a and 121c is calculated from each transducer within the transmission aperture D, the deflection direction (+ ⁇ , ⁇ ), and the sound velocity of the subject 13.
  • the code modulation transmission signal cC subjected to delay processing is applied so that ch35 is driven earliest and ch24 is driven latest.
  • the same delay-modulated code-modulated transmission signal cB is applied from ch14 to ch25.
  • the code-modulated transmission signal cA subjected to delay processing is applied so that ch04 is driven earliest and ch15 is driven latest.
  • the ultrasonic signal transmitted from the transmission aperture of the plane wave beam 121c forms a wavefront deflected in the deflection direction ⁇ , passes through the obstacles 15a and 15b, and the subject. 13 is propagated.
  • the ultrasonic signal transmitted from the transmission aperture of the plane wave beam 121b forms a wavefront in the deflection direction of 0 °, passes through the obstacles 15a and 15b, and propagates through the subject 13. Further, the ultrasonic signal transmitted from the transmission aperture of the plane wave beam 121a forms a wavefront deflected in the deflection direction + ⁇ , passes through the obstacles 15a and 15b, and propagates through the subject 13.
  • the plane wave beams 121a to 121c having the respective transmission apertures are arranged so as to be an intersection at the center between the obstacles 15a and 15b. Note that the propagation is originally in accordance with the directivity characteristics of each vibration element, but in FIG. 33, in order to easily understand that plane wave transmission is performed, diffusion and display of a wavefront propagating in another direction are omitted.
  • FIG. 34 shows a specific configuration diagram of the reception beamformer 5 and the reception demodulation unit 42 of the fifth embodiment.
  • the present embodiment is a reception beam former 5 and a reception demodulation unit 42 when applied to plane wave beams 121a to 121c having a plurality of set deflection directions (three directions in the illustrated example).
  • the reception beamformer 5 is configured by a processor such as a CPU or DSP, or a hard logic such as an FPGA.
  • storage part 47 comprised with memories, such as RAM which memorize
  • a delay unit 48 for delaying the reception signal of each transmission / reception line and a phasing addition unit 49 (-1 to 3) are provided. There are as many as the number of set deflection directions.
  • the reception demodulation unit 42 is configured by a memory such as a RAM, and is configured by a code demodulation coefficient storage unit 50 that stores a code demodulation coefficient corresponding to a code modulation transmission signal, a processor such as a CPU or DSP, or a hard logic such as an FPGA. .
  • a convolution operation unit 51 ( ⁇ 1 to 3) is provided which performs a convolution operation by combining the output signal of the reception beamformer 5 and the code demodulation coefficient in three directions and three in parallel.
  • the delay amount storage unit 47 and the code demodulation coefficient storage unit 50 are connected to the control unit 10 via the system bus 12.
  • the output of the delay amount storage unit 47 is connected to the input of the delay unit 48.
  • the output of the pulser receiver 4 is connected to the input of the delay unit 48.
  • the output of the delay unit 48 and the input of the phasing addition unit 49 are connected.
  • the output of the phasing addition unit 49 and the output of the code demodulation coefficient storage unit 50 are connected to the input of the convolution operation unit 51.
  • the output of the convolution operation unit 51 is connected to the input of the space synthesis unit 6.
  • the control unit 10 causes the delay amount storage unit 47 to correspond to the three-direction plane wave beams via the system bus 12 and correspond to the three reception apertures.
  • the delay amounts ⁇ tA (ch), ⁇ tB (ch), and ⁇ tC (ch) to be stored are stored in a predetermined area.
  • the control unit 10 transmits the code demodulation coefficients b′A, b′B, and b′C corresponding to the code modulation transmission signal of the plane wave beam in the three directions to the code demodulation coefficient storage unit 50 via the system bus 12. Each is stored in a predetermined area.
  • the delay amount storage unit 47 selects and reads out the area of the stored delay amount, and corresponds the delay amount ⁇ tA (ch) corresponding to the first reception aperture to the delay unit 48-1 and to the second reception aperture.
  • the delay amount ⁇ tB (ch) to be output is output to the delay unit 48-2, and the delay amount ⁇ tC (ch) corresponding to the third reception aperture is output to the delay unit 48-3.
  • the delay units 48-1 to 48-3 perform a time delay corresponding to the input delay amount on the output of the pulsar receiver 4, and output to the phasing adders 49-1 to 49-3.
  • the phasing addition units 49-1 to 4-3 perform addition processing on the reception signals of the respective reception apertures to generate phasing addition signals rbA, rbB, and rbC, and the convolution calculation units 51-1 to 5-3 of the reception demodulation unit 42. Output to.
  • the code demodulation coefficient storage unit 26 selects and reads an area of the code demodulation coefficient stored as appropriate, reads the code demodulation coefficient b′A corresponding to the first reception aperture, and the code demodulation coefficient b ′ corresponding to the second reception aperture.
  • B the code demodulation coefficient b′C corresponding to the third reception aperture diameter, respectively, the first reception aperture convolution operation unit 51-1, the second reception aperture convolution operation unit 51-2, the third reception aperture convolution operation, respectively.
  • the first reception aperture convolution operation section 51-1 performs a convolution operation of the phasing addition signal rbA and the code demodulation coefficient b'A corresponding to the first reception aperture, and generates a code demodulated reception signal rA.
  • the second reception aperture convolution operation unit 51-2 performs a convolution operation of the phasing addition signal rbB and the code demodulation coefficient b'B corresponding to the first reception aperture to generate a code demodulated reception signal rB.
  • the third reception aperture convolution operation unit 51-3 performs a convolution operation of the phasing addition signal rbC and the code demodulation coefficient b'C corresponding to the first reception aperture, and generates a code demodulated reception signal rC.
  • Code demodulated reception signals rA, rB, rC corresponding to the respective reception apertures are output to the space synthesis unit 6.
  • FIG. 35 shows an arithmetic expression and waveform of the code demodulated reception signal.
  • three code-modulated ultrasonic waves that differ for each of the three directions (+ ⁇ , 0 °, ⁇ ) in FIG. 29 are transmitted.
  • each code demodulation coefficient b′A, b′B, b′C, rA, rB, rC can be expressed by the following equation (5).
  • rA rbA * b′A
  • the code demodulation coefficient is a coefficient of a time inverse filter corresponding to the code modulation coefficient or a mismatch filter coefficient, and is paired so that an error due to the ultrasonic modulation demodulation process becomes very small.
  • FIG. 36 and FIG. 37 show an imaging method in which code modulation transmission and code demodulation reception are applied to the fourth embodiment of the virtual point sound source of FIG.
  • Two virtual point sound sources 31 are set between the three obstacles 15a to 15c using the user interface 11.
  • the control unit 10 controls the transmission beamformer 3 and the reception beamformer 5 based on information such as the position of the virtual point sound source and the number of transmission / reception lines, the transmission / reception line angle, and the transmission / reception line pitch.
  • the two transmission apertures have three directions (+ ⁇ , 0 °, ⁇ ) from the virtual point sound source 31 to the transducer array surface of the ultrasonic probe 2.
  • the virtual point sound source becomes an ideal point sound source when the length of the side composed of the angle of the maximum + ⁇ and the minimum ⁇ (2 ⁇ in this case) is larger.
  • two-point transmission of the virtual point sound source 31 and, for example, a reception line deflected in three directions are scanned to obtain a reception beam, and six reception beam data are stored in the space synthesis memory 7 by the space synthesis unit 6. To synthesize data in the same space.
  • FIG. 36 shows a time waveform of the code modulation transmission signal. In the figure, a slower time is shown as it goes to the right.
  • FIG. 37 shows a schematic diagram of the sound field distribution of the plane wave beam transmitted from the ultrasound probe 2. Similarly, the farther the distance from the ultrasound probe 2 is, the closer to the right.
  • the control unit 10 sets the position of the virtual point sound source 31 and the deflection direction (+ ⁇ , 0 °, ⁇ ) of plane wave transmission.
  • the transmission apertures ch04 to ch23 are assigned to the virtual point sound source 31a, and the transmission apertures ch16 to ch35 are assigned to the virtual point sound source 31b.
  • the transmission beam former 3 is controlled by calculating the delay amount for each channel. The delay amount for the virtual point sound source 31 is calculated from the position of each transducer and the virtual point sound source 31 in the transmission aperture and the sound speed of the subject 13.
  • the code-modulated transmission signal cA subjected to the delay processing is applied, with ch04 and ch23 being the earliest and ch13 and ch14 being the latest.
  • the code-modulated transmission signal cB subjected to delay processing is applied, with ch16 and ch35 being the earliest and ch25 and ch26 being the latest.
  • a transmission beam transmitted from the transmission apertures ch04 to ch23 forms a wavefront that converges on the virtual point sound source 31a, passes between the obstacles 15a and 15b, and passes through the subject 13. Propagate to.
  • the transmission beam transmitted from the transmission apertures ch16 to ch35 forms a wavefront that converges on the virtual point sound source 31b, passes between the obstacles 15b and 15c, and propagates to the subject 13.
  • propagation is performed based on the directivity characteristics of each vibration element.
  • FIG. 37 in order to easily understand that the transmission signal is phased and the virtual point sound source is transmitted, diffusion and wavefronts propagating in other directions are transmitted. The display is omitted.
  • the reception beam former 5 that forms a focused reception beam and the reception demodulation unit 42 that performs code demodulation of the focused reception beam signal can be processed in parallel as described with reference to FIG.
  • the arithmetic processing is changed by a program when it is configured by a CPU or DSP, and when it is configured by an FPGA, the processing content is changed by reconfiguration. Since the operation and effect are the same as described above, the explanation is omitted.
  • the sixth embodiment since two virtual point sound sources 31 are set between the obstacles 15a to 15c, a plane wave beam is transmitted, and a reception beam can be acquired in parallel for each reception line.
  • the region 14 can be depicted without being hidden by the acoustic shadow caused by the obstacle 15. As a result, unnecessary irregular reflection due to the obstacle 15 can be reduced, and artifacts such as jamming noise can be reduced.
  • the spatial resolution and contrast resolution can be improved by increasing the number to three or more, transmitting and receiving ultrasonic waves, and spatially synthesizing.
  • the number of scans for parallel reception has been described as three.
  • the spatial resolution and the contrast resolution can be improved by further increasing the number of scans.
  • each transmission / reception aperture, transmission / reception phasing, and code modulation / demodulation for each virtual point sound source 31 it is possible to generate spatial data that separates mutual information and prevents contamination. Since the frame rate can be increased, an optimal diagnostic image state can be obtained.

Abstract

Provided is an ultrasonic diagnostic device that can easily acquire a diagnostic image of a diagnostic site behind an obstacle. In order for a sector scan range to reach a diagnostic site behind the obstacle, which becomes a propagation obstacle for scanning lines comprising a transmission beam and a reception beam, the scanning lines are scanned by positioning scanning centers of a sector scan in a sector scan range and setting at least one scanning center, and setting the scanning conditions of the sector scan so as to pass through the set scanning center (16).

Description

超音波診断装置Ultrasonic diagnostic equipment
 本発明は、超音波診断装置に係り、被検体の診断部位を含む領域を超音波送受信ビームの走査線で扇形走査して、各種の診断画像を生成して表示する超音波診断装置に関する。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic diagnostic apparatus, and more particularly to an ultrasonic diagnostic apparatus that generates and displays various diagnostic images by fan-scanning an area including a diagnostic region of a subject with a scanning line of an ultrasonic transmission / reception beam.
 超音波診断装置は、超音波探触子により被検体内部に超音波を送信し、被検体内部から生体組織の構造に応じた超音波の反射エコー信号を受信し、例えば超音波断層像等の診断画像を生成して表示している。特に、心機能診断等の診断画像の取得においてはフェーズドアレイを用いて、超音波の送受信ビームにより診断部位を扇形走査することが多い。フェーズドアレイ型の超音波探触子は、送受信口径(以下、単に口径という。)の複数の振動子から放射する超音波の位相をそれぞれ制御して、特定の集束点に超音波を集束させた送信ビームと受信ビームを生成でき、かつビーム方向を偏向することができる。したがって、電子スキャンにより一対の送信ビームと受信ビームを走査線として扇形走査(セクタスキャン)して診断画像を取得することが、一般に採用されている。 The ultrasonic diagnostic apparatus transmits an ultrasonic wave to the inside of the subject using an ultrasonic probe, receives an ultrasonic reflected echo signal corresponding to the structure of the living tissue from the inside of the subject, for example, an ultrasonic tomographic image or the like A diagnostic image is generated and displayed. In particular, in acquiring a diagnostic image for cardiac function diagnosis or the like, the diagnostic region is often fan-shaped scanned with an ultrasonic transmission / reception beam using a phased array. The phased array type ultrasonic probe controls the phase of ultrasonic waves radiated from a plurality of transducers having transmission / reception apertures (hereinafter referred to simply as apertures) to focus the ultrasonic waves at a specific focusing point. Transmit beams and receive beams can be generated and the beam direction can be deflected. Therefore, it is generally employed to obtain a diagnostic image by performing sector scan (sector scan) using a pair of transmission beam and reception beam as scanning lines by electronic scanning.
 ところで、超音波探触子を用いて被検体の体表から心臓との間で超音波を送受信する場合、超音波伝搬の障害となる肋骨等の障害物による超音波の反射、乱反射、回折などのために、診断画像にアーチファクトが生じるという問題がある。そこで、肋骨の間の音響窓(アコースティックウィンドウ)から走査線を放射する肋間走査が一般に採用されている。しかし、肋間走査によっても、ジャミングノイズやシャドーアーチファクト等の肋間走査特有のアーチファクトが生ずる。また、一般的なスペックルノイズ等があり、これらのアーチファクトが画像診断の妨げとなる。 By the way, when transmitting and receiving ultrasonic waves from the body surface of the subject to the heart using an ultrasonic probe, reflection, diffuse reflection, diffraction, etc. of ultrasonic waves by obstacles such as ribs that obstruct ultrasonic propagation For this reason, there is a problem that artifacts occur in the diagnostic image. Therefore, intercostal scanning in which a scanning line is emitted from an acoustic window between the ribs (acoustic window) is generally employed. However, intercostal scanning also produces artifacts unique to intercostal scanning, such as jamming noise and shadow artifacts. Further, there are general speckle noises and the like, and these artifacts hinder image diagnosis.
 肋間走査特有のアーチファクトを回避するため、例えば、複数の振動子が配列された超音波探触子を複数の肋骨に跨って被検体に当接したとき、超音波探触子で受信される反射エコー信号の強度分布に基づいて肋骨の位置を検出し、肋骨の真上に位置する振動子の駆動を停止することが提案されている(特許文献1)。 In order to avoid artifacts peculiar to intercostal scanning, for example, when an ultrasonic probe in which a plurality of transducers are arranged contacts a subject across a plurality of ribs, reflection received by the ultrasonic probe It has been proposed to detect the position of the rib based on the intensity distribution of the echo signal and stop driving the vibrator located directly above the rib (Patent Document 1).
 また、肋骨の影響を低減するため、超音波探触子の複数の振動子を走査方向に凹面状に配列して、扇形走査の走査中心(扇形頂点)を肋骨の間に設定し、走査中心よりも前方、つまり肋骨よりも奥側の被検体内に扇形走査領域を形成することが提案されている(例えば、特許文献2)。 In addition, in order to reduce the influence of ribs, multiple transducers of the ultrasound probe are arranged in a concave shape in the scanning direction, and the scanning center (fan apex) of sector scanning is set between the ribs. It has been proposed to form a fan-shaped scanning region in the subject further forward than that, that is, behind the ribs (for example, Patent Document 2).
 また、超音波診断における一般的なスペックルノイズを低減するため、診断部位を異なる方向から走査して複数の診断画像を取得し、それらの診断画像を空間合成することが提案されている(例えば、特許文献3)。特に、同文献3によれば、空間合成を行う複数の診断画像を取得するために、フェーズドアレイを曲面アレイと等価にする超音波探触子の駆動方法が提案されている。 In order to reduce general speckle noise in ultrasonic diagnosis, it has been proposed to scan a diagnostic region from different directions to obtain a plurality of diagnostic images and to spatially synthesize those diagnostic images (for example, Patent Document 3). In particular, according to the document 3, an ultrasonic probe driving method is proposed in which a phased array is equivalent to a curved array in order to acquire a plurality of diagnostic images for spatial synthesis.
 さらに、心臓のように比較的動きの早い臓器の診断は、高フレームレートで診断画像を取得することが望まれる。そこで、複数の口径を設定し、それぞれの口径から異なる符号で変調した送信ビームを送波し、それぞれの口径で受信した受信信号を復号化して受信ビームを生成し、同一時に複数の送信ビームと受信ビームを形成することにより、フレームレートを高くすることが提案されている(例えば、特許文献4)。 Furthermore, for diagnosis of organs that move relatively quickly, such as the heart, it is desirable to obtain diagnostic images at a high frame rate. Therefore, a plurality of apertures are set, transmission beams modulated with different codes are transmitted from the respective apertures, reception signals received at the respective apertures are decoded to generate reception beams, and a plurality of transmission beams are generated at the same time. It has been proposed to increase the frame rate by forming a reception beam (for example, Patent Document 4).
特開2002-253548号公報JP 2002-253548 A 特開2000-201928号公報JP 2000-201928 A 特表2010-538746号公報Special table 2010-538746 特開2002-233526号公報JP 2002-233526 A
 ところで、心臓の診断の場合、いろいろな角度から取得した心臓の診断画像に基づいて診断するのが一般的であるが、肋骨間の音響窓は肋骨の位置によって異なる。つまり、位置によって肋骨間の音響窓の大きさが変わるとともに、体表から肋骨までの深さが変わる。しかし、特許文献1~4に記載された技術では、音響窓の大きさ及び肋骨の深さ位置が肋骨の位置によって変化することが考慮されていないから、いろいろな角度から心臓の診断画像を取得する場合に制約を受ける。例えば、特許文献1によれば、肋骨の相関窓が狭い位置では肋間走査が難しいから、いろいろな角度から心臓の診断画像を取得することができない場合がある。また、特許文献2によれば、複数の振動子を配列した凹面により走査中心が決まってしまうので、肋骨の深さが変わると肋間走査できない場合がある。このような問題は、肋骨等の障害物に限られるものではなく、こめかみ等の頭蓋骨の隙間から脳組織を撮像して診断画像を得る場合にも共通する問題である。さらに、骨などの障害物の隙間から診断画像を取得する場合に限らず、1つの障害物の場合でも、超音波探触子側から見た障害物の奥側の診断部位を撮像したい場合がある。このような場合も、特許文献1,2の技術では考慮されていない。 By the way, in the case of the diagnosis of the heart, it is common to make a diagnosis based on the diagnostic images of the heart acquired from various angles, but the acoustic window between the ribs varies depending on the position of the ribs. That is, the size of the acoustic window between the ribs changes depending on the position, and the depth from the body surface to the ribs changes. However, in the techniques described in Patent Documents 1 to 4, it is not considered that the size of the acoustic window and the depth position of the ribs change depending on the position of the ribs. Therefore, diagnostic images of the heart are obtained from various angles. If you are restricted. For example, according to Patent Document 1, since the intercostal scanning is difficult at a position where the rib correlation window is narrow, it may be impossible to acquire a diagnostic image of the heart from various angles. According to Patent Document 2, since the scanning center is determined by the concave surface on which a plurality of transducers are arranged, the intercostal scanning may not be performed when the depth of the ribs is changed. Such a problem is not limited to obstacles such as the ribs, but is a common problem when obtaining a diagnostic image by imaging the brain tissue from the gap of the skull such as the temple. Furthermore, not only when acquiring a diagnostic image from a gap between obstacles such as bones, even in the case of one obstacle, there is a case where it is desired to image a diagnostic part on the back side of the obstacle viewed from the ultrasonic probe side. is there. Such a case is not considered in the techniques of Patent Documents 1 and 2.
 一方、特許文献3によれば、いろいろな角度から診断部位の断層像を取得でき、かつ画像合成によりスペックルノイズ等を低減できるが、肋骨の間の音響窓を介して肋骨の奥側の診断部位、あるいは障害物の奥側の診断部位を、扇形走査することについては考慮されていない。また、特許文献4についても、肋骨等の障害物を回避して、高フレームレートで診断画像を取得することは何ら考慮されていない。 On the other hand, according to Patent Document 3, a tomographic image of a diagnostic part can be acquired from various angles, and speckle noise and the like can be reduced by image synthesis. There is no consideration for fan-shaped scanning of a site or a diagnostic site on the back side of an obstacle. Further, Patent Document 4 also does not take into consideration obtaining a diagnostic image at a high frame rate by avoiding an obstacle such as a rib.
 本発明が解決しようとする第1の課題は、障害物の奥側の診断部位の診断画像を容易に取得できる超音波診断装置を提供することにある。
 また、第2の課題は、第1の課題に加えて、アーチファクトの影響を低減できる超音波診断装置を提供することにある。
A first problem to be solved by the present invention is to provide an ultrasonic diagnostic apparatus that can easily acquire a diagnostic image of a diagnostic part on the back side of an obstacle.
A second problem is to provide an ultrasonic diagnostic apparatus capable of reducing the influence of artifacts in addition to the first problem.
 上記の第1の課題を解決する本発明の第1の態様は、被検体に当接させて用いる超音波探触子と、前記超音波探触子を駆動して前記被検体内に照射する送信ビームを生成するとともに、前記超音波探触子で受信した反射エコー信号を受信処理して受信ビームを生成する送受信部と、前記送信ビーム及び前記受信ビームを走査線として前記被検体内の診断部位を扇形走査させるように前記送受信部を制御する制御部と、前記送受信部により走査して生成された前記受信ビームに基づいて診断画像を生成する画像構成部と、前記診断画像を表示する表示部とを備え、前記画像構成部により生成された診断部位の断層画像に基づいて、前記送信ビームの伝搬障害となる障害物の奥側の診断部位に扇形走査範囲が及ぶように、扇形走査範囲の扇形走査の走査中心を位置させて少なくとも1つ設定する走査中心設定部を設け、前記制御部は、設定された前記走査中心を通るように前記扇形走査の走査条件を設定し、前記走査条件に従って前記送受信部を制御することを特徴とする。 In a first aspect of the present invention that solves the first problem, an ultrasonic probe that is used in contact with a subject, and the ultrasonic probe is driven to irradiate the subject. A transmission / reception unit that generates a transmission beam and receives a reflected echo signal received by the ultrasound probe to generate a reception beam; and a diagnosis in the subject using the transmission beam and the reception beam as scanning lines A control unit that controls the transmission / reception unit so as to scan the region in a sector shape, an image configuration unit that generates a diagnostic image based on the reception beam generated by scanning by the transmission / reception unit, and a display that displays the diagnostic image A fan-shaped scanning range such that the fan-shaped scanning range extends to the diagnostic part on the back side of the obstacle that is a transmission obstacle of the transmission beam based on the tomographic image of the diagnostic part generated by the image constructing part. Fan-shaped running A scanning center setting unit that sets at least one scanning center and sets the scanning condition of the sector scan so as to pass through the set scanning center, and the transmission / reception is performed according to the scanning condition It is characterized by controlling the part.
 すなわち、本発明の第1の態様においては、障害物の奥側の前記診断部位に扇形走査範囲が及ぶように、扇形走査の走査中心を少なくとも1つ設定し、走査中心ごとに走査条件、すなわち最大走査角度、走査線ピッチ、走査線数、口径、集束位置、等々を設定することができる。これにより、障害物の体表からの深さが異なっても、これに対応して扇形走査の頂点である走査中心を、障害物の奥側の診断部位に扇形走査範囲が及ぶ位置に容易に変更設定できる。その結果、障害物に遮られることなく走査線を障害物の奥側に診断部位に扇形走査できるから、超音波探触子の位置を変えた異なる角度からでも、容易に診断画像を取得することができる。 That is, in the first aspect of the present invention, at least one scan center of the sector scan is set so that the sector scan range extends to the diagnostic site on the back side of the obstacle, and the scan condition for each scan center, that is, The maximum scanning angle, scanning line pitch, number of scanning lines, aperture, focusing position, etc. can be set. As a result, even if the depth of the obstacle from the body surface is different, the scanning center which is the apex of the sector scan corresponding to this is easily moved to the position where the sector scan range extends to the diagnosis part on the back side of the obstacle. Can be changed. As a result, the scanning line can be fan-shaped scanned to the back of the obstacle without being obstructed by the obstacle, so that diagnostic images can be easily acquired even from different angles with the position of the ultrasound probe changed. Can do.
 本発明の第2の態様は、第1の態様において、障害物の奥側の前記診断部位に扇形走査範囲が及ぶ位置に、扇形走査の走査中心を複数設定し、前記走査中心ごとに当該走査中心を通るように前記走査条件を複数設定し、前記各走査条件に従って前記送受信部を制御し、前記画像構成部は、前記走査中心ごとに生成された複数の前記診断画像を合成して前記診断画像を生成することを特徴とする。これによれば、アーチファクトの影響を低減することができる。 According to a second aspect of the present invention, in the first aspect, a plurality of fan-shaped scanning centers are set at a position where the fan-shaped scanning range extends to the diagnostic part on the back side of the obstacle, and the scanning is performed for each scanning center. A plurality of scanning conditions are set so as to pass through the center, the transmission / reception unit is controlled according to each scanning condition, and the image construction unit synthesizes a plurality of the diagnostic images generated for each of the scanning centers. An image is generated. According to this, the influence of the artifact can be reduced.
 本発明の第1の態様によれば、障害物の奥側の診断部位の診断画像を容易に取得することができる。 According to the first aspect of the present invention, it is possible to easily obtain a diagnostic image of a diagnostic part on the back side of an obstacle.
 また、本発明の第2の態様によれば、第1の態様の効果に加えて、アーチファクトの影響を低減することができる。 Further, according to the second aspect of the present invention, in addition to the effect of the first aspect, the influence of the artifact can be reduced.
本発明の超音波診断装置の実施例1のブロック構成図である。It is a block block diagram of Example 1 of the ultrasonic diagnostic apparatus of the present invention. 本発明の解決課題を説明する従来例の肋間走査の一例を示す図である。It is a figure which shows an example of the intercostal scan of the prior art example which demonstrates the solution subject of this invention. 本発明の実施例1による肋間走査例1を示す図である。It is a figure which shows the scan 1 example between the ribs by Example 1 of this invention. 本発明の実施例1による肋間走査例2を示す図である。It is a figure which shows the scanning example 2 between the ribs by Example 1 of this invention. 本発明の実施例1による肋間走査例3を示す図である。It is a figure which shows the scanning example 3 between the ribs by Example 1 of this invention. 本発明の実施例1による肋間走査例4を示す図である。It is a figure which shows the scanning example 4 between ribs by Example 1 of this invention. 実施例1の走査中心と走査条件を自動で設定する一例を説明する図である。FIG. 6 is a diagram for explaining an example of automatically setting a scanning center and scanning conditions according to the first embodiment. 本発明の超音波診断装置の実施例2のブロック構成図である。It is a block block diagram of Example 2 of the ultrasonic diagnostic apparatus of this invention. 実施例2による肋間走査例1を示す図である。It is a figure which shows the scan 1 example between the ribs by Example 2. FIG. 実施例2の符号変調送信信号の例を示す図である。6 is a diagram illustrating an example of a code-modulated transmission signal according to Embodiment 2. FIG. 実施例2の各振動子に印加する超音波送信信号の例を示す図である。FIG. 6 is a diagram illustrating an example of an ultrasonic transmission signal applied to each transducer according to the second embodiment. 図11の超音波送信信号の例の音場分布の模式図である。It is a schematic diagram of the sound field distribution of the example of the ultrasonic transmission signal of FIG. 実施例2の各振動子に印加する超音波送信信号の他の例を示す図である。FIG. 10 is a diagram illustrating another example of an ultrasonic transmission signal applied to each transducer according to the second embodiment. 図13の超音波送信信号の例の音場分布の模式図である。It is a schematic diagram of the sound field distribution of the example of the ultrasonic transmission signal of FIG. 本発明の超音波診断装置の実施形態のブロック構成図である。It is a block block diagram of embodiment of the ultrasonic diagnosing device of this invention. 本発明の解決課題を説明する従来例の肋間走査の一例を示す図である。It is a figure which shows an example of the intercostal scan of the prior art example which demonstrates the solution subject of this invention. 本発明の超音波診断装置を用いた実施例3の肋間撮像を説明する図である。It is a figure explaining the intercostal imaging of Example 3 using the ultrasonic diagnostic apparatus of this invention. 実施例3の肋間撮像の送信と受信のタイミングチャートを示す図である。It is a figure which shows the timing chart of transmission and reception of the imaging between furrows of Example 3. FIG. 実施例3の肋間撮像により撮像された複数の画像を空間合成する例を説明する図である。It is a figure explaining the example which carries out the space synthesis | combination of the several image imaged by the intercostal imaging of Example 3. FIG. 障害物がない場合の本発明の実施例3による撮像を説明する図である。It is a figure explaining the imaging by Example 3 of this invention when there is no obstruction. 本発明の超音波診断装置を用いた実施例4の肋間撮像を説明する図である。It is a figure explaining the intercostal imaging of Example 4 using the ultrasonic diagnostic apparatus of this invention. 実施例4の変形例を説明する図である。FIG. 10 is a diagram for explaining a modification of the fourth embodiment. 実施例4の他の変形例を説明する図である。FIG. 10 is a diagram for explaining another modified example of the fourth embodiment. 実施例4のさらに他の変形例を説明する図である。FIG. 10 is a diagram for explaining still another modification of the fourth embodiment. 実施例4の仮想点音源を深度方向に複数設定する変形例を説明する図である。It is a figure explaining the modification which sets multiple virtual point sound sources of Example 4 to the depth direction. 実施例4の仮想点音源を超音波探触子の送受信面に設定した変形例を説明する図である。FIG. 10 is a diagram illustrating a modification in which the virtual point sound source according to the fourth embodiment is set on the transmission / reception surface of the ultrasonic probe. 実施例4の仮想点音源を超音波探触子の送受信面よりも内部側に設定した変形例を説明する図である。FIG. 10 is a diagram illustrating a modification in which the virtual point sound source according to the fourth embodiment is set on the inner side of the transmission / reception surface of the ultrasonic probe. 本発明の超音波診断装置の実施例5のブロック構成図である。It is a block block diagram of Example 5 of the ultrasonic diagnostic apparatus of this invention. 実施例5の肋間撮像を説明する図である。It is a figure explaining the imaging between the ribs of Example 5. FIG. 実施例5の送信変調部の具体的な構成を説明する図である。FIG. 10 is a diagram illustrating a specific configuration of a transmission modulation unit according to the fifth embodiment. 実施例5の符号変調送信信号の演算式と波形を示す図である。It is a figure which shows the computing equation and waveform of the code modulation transmission signal of Example 5. 3つの偏向方向に平面波ビームをそれぞれ送信する送信口径に印加する符号変調送信信号の時間波形を示す図である。It is a figure which shows the time waveform of the code modulation transmission signal applied to the transmission aperture which each transmits a plane wave beam to three deflection directions. 3つの偏向方向に送信される平面波ビームの超音波の音場分布を示す模式図である。It is a schematic diagram which shows the sound field distribution of the ultrasonic wave of the plane wave beam transmitted to three deflection directions. 実施例5の受信ビームフォーマと受信復調部の具体的な構成図である。FIG. 10 is a specific configuration diagram of a reception beamformer and a reception demodulation unit according to the fifth embodiment. 実施例5の符号復調受信信号の演算式と波形を示す図である。It is a figure which shows the computing equation and waveform of the code demodulation receiving signal of Example 5. 2つの仮想点音源に平面波ビームをそれぞれ送信する送信口径に印加する符号変調送信信号の時間波形を示す図である。It is a figure which shows the time waveform of the code modulation transmission signal applied to the transmission aperture which each transmits a plane wave beam to two virtual point sound sources. 2つの仮想点音源に送信される平面波ビームの超音波の音場分布を示す模式図である。It is a schematic diagram which shows the sound field distribution of the ultrasonic wave of the plane wave beam transmitted to two virtual point sound sources.
 本発明を適用してなる超音波診断装置の実施例について、図を用いて説明する。
(実施例1)
 図1に示すように、本実施例の超音波診断装置1は、被検体13に当接させて用いる超音波探触子2と、超音波探触子2を駆動する超音波信号を生成するとともに、超音波探触子2で受信した反射エコー信号を受信処理して受信信号を生成するパルサレシーバ4と、パルサレシーバ4を制御して被検体13内に照射する送信ビームを形成する送信ビームフォーマ3と、パルサレシーバ4から出力される受信信号を入力して受信ビームを形成する受信ビームフォーマ5とを備えて形成されている。送信ビームフォーマ3とパルサレシーバ4と受信ビームフォーマ5とにより、本発明の送受信部が形成されている。
An embodiment of an ultrasonic diagnostic apparatus to which the present invention is applied will be described with reference to the drawings.
(Example 1)
As shown in FIG. 1, the ultrasonic diagnostic apparatus 1 according to the present embodiment generates an ultrasonic probe 2 that is used in contact with a subject 13 and an ultrasonic signal that drives the ultrasonic probe 2. At the same time, a pulsar receiver 4 that receives a reflected echo signal received by the ultrasonic probe 2 to generate a reception signal, and a transmission beam that controls the pulsar receiver 4 to form a transmission beam that is irradiated into the subject 13. The former 3 is formed with a reception beam former 5 that inputs a reception signal output from the pulser receiver 4 and forms a reception beam. The transmission beamformer 3, the pulser receiver 4, and the reception beamformer 5 form a transmission / reception unit of the present invention.
 受信ビームフォーマ5から出力される受信ビームデータは、空間合成部6に入力される。空間合成部6は、空間合成用メモリ7に記憶された空間合成用の受信ビームデータからなる受信フレームデータを用いて空間合成を行うようになっている。画像処理部8は、空間合成部6により合成された受信フレームデータから診断情報を抽出して、診断画像を生成して表示部9に表示するようになっている。これらの空間合成部6と空間合成用メモリ7と画像処理部8とによって、本発明の画像構成部が形成されている。 The reception beam data output from the reception beamformer 5 is input to the space synthesis unit 6. The spatial synthesis unit 6 performs spatial synthesis using received frame data composed of received beam data for spatial synthesis stored in the spatial synthesis memory 7. The image processing unit 8 extracts diagnostic information from the received frame data synthesized by the space synthesis unit 6, generates a diagnostic image, and displays it on the display unit 9. The space composition unit 6, the space composition memory 7, and the image processing unit 8 form an image configuration unit of the present invention.
 送信ビームフォーマ3、受信ビームフォーマ5、空間合成部6、画像処理部8、表示部9は、それぞれシステムバス12を介して制御部10とユーザインタフェ-ス(UI)11に接続され、それらの間で必要なデータ及び制御指令が送受可能に形成されている。制御部10は、超音波診断装置1の全体を制御するとともに、送信ビームフォーマ3と受信ビームフォーマ5を制御して、被検体13に送信する送信ビーム及び被検体13から受信する反射エコー信号の受信ビームを形成させるようになっている。また、制御部10は、送信ビームと受信ビームを走査線として、扇形走査するように送信ビームフォーマ3と受信ビームフォーマ5を制御するようになっている。ユーザインタフェース(UI)11は、操作者が超音波診断装置1を操作し、かつ動作させるための入力設定部を備えている。 The transmission beamformer 3, the reception beamformer 5, the space synthesis unit 6, the image processing unit 8, and the display unit 9 are connected to a control unit 10 and a user interface (UI) 11 via a system bus 12, respectively. Necessary data and control commands can be transmitted and received. The control unit 10 controls the entire ultrasound diagnostic apparatus 1 and also controls the transmission beamformer 3 and the reception beamformer 5 to transmit the transmission beam transmitted to the subject 13 and the reflected echo signal received from the subject 13. A receiving beam is formed. Further, the control unit 10 controls the transmission beamformer 3 and the reception beamformer 5 so as to perform sector scanning using the transmission beam and the reception beam as scanning lines. The user interface (UI) 11 includes an input setting unit that allows an operator to operate and operate the ultrasonic diagnostic apparatus 1.
 超音波探触子2は、フェーズドアレイであり、複数の振動子を配列して形成され、被検体13との間で超音波を送受信する機能を有している。パルサレシーバ4は、超音波探触子2を駆動して超音波を発生させるための送波パルスを生成するとともに、超音波探触子2で受信した反射エコー信号について所定のゲインで増幅して受信信号を生成する。送信ビームフォーマ3は、送信される超音波の収束点を設定深さに応じた送信ビームを形成し、パルサレシーバ4を介して超音波探触子2を駆動制御する。受信ビームフォーマ5は、パルサレシーバ4から受信信号を入力し、設定される一点又は複数の収束点に応じて整相してなる受信ビームを形成する。これにより、送信ビームと受信ビームの合成からなる走査線が形成される。画像処理部8は、各種フィルタ、検波、反射強度画像輝度変換、血流速度演算、スキャンコンバート処理、各モードの画像や、キャラクタや、スケールなどのオーバーレイを施して診断画像データを得る。表示部9は、画像処理部8で生成された診断画像データを診断画像として画面に表示する。 The ultrasonic probe 2 is a phased array, is formed by arranging a plurality of transducers, and has a function of transmitting and receiving ultrasonic waves to and from the subject 13. The pulsar receiver 4 drives the ultrasonic probe 2 to generate a transmission pulse for generating ultrasonic waves, and amplifies the reflected echo signal received by the ultrasonic probe 2 with a predetermined gain. Generate a received signal. The transmission beam former 3 forms a transmission beam corresponding to the set depth at the convergence point of the transmitted ultrasonic wave, and drives and controls the ultrasonic probe 2 via the pulser receiver 4. The reception beamformer 5 receives a reception signal from the pulsar receiver 4 and forms a reception beam that is phased according to one or more set convergence points. As a result, a scanning line formed by combining the transmission beam and the reception beam is formed. The image processing unit 8 obtains diagnostic image data by performing various filters, detection, reflection intensity image luminance conversion, blood flow velocity calculation, scan conversion processing, image of each mode, and overlay of characters and scales. The display unit 9 displays the diagnostic image data generated by the image processing unit 8 on the screen as a diagnostic image.
 ここで、本実施例の超音波診断装置1の特徴部分の動作について説明する。制御部10は、CPU、メインメモリ、HDDなどから構成され、システムバス12及びシリアルインターフェース、ネットワークなどを介して超音波診断装置1の各部の制御行うようになっている。つまり、制御部10は、システムバス12に接続されたユーザインタフェース11から入力される操作者の操作に応じた指令に従って、超音波診断装置1の各部の動作を制御するようになっている。ユーザインタフェース11には、トラックボール、キーボード、スイッチなどから構成されている。 Here, the operation of the characteristic part of the ultrasonic diagnostic apparatus 1 of the present embodiment will be described. The control unit 10 includes a CPU, a main memory, an HDD, and the like, and controls each unit of the ultrasonic diagnostic apparatus 1 via a system bus 12, a serial interface, a network, and the like. That is, the control unit 10 controls the operation of each unit of the ultrasonic diagnostic apparatus 1 in accordance with an instruction according to an operation of the operator input from the user interface 11 connected to the system bus 12. The user interface 11 includes a trackball, a keyboard, a switch, and the like.
 空間合成部6は、空間合成用メモリ7に少なくとも1つ以上のフレームの受信ビームデータを記憶し、2つ目以降のフレームの受信ビームデータと、記憶したフレームの対応する位置の受信ビームデータを用いて、合成受信ビームデータをフレーム単位で生成するようになっている。空間合成は、周知の合成方法を適用することができ、例えば複数フレームの受信ビームデータを画素単位で加算平均して、合成受信ビームデータからなる合成受信フレームデータを生成する。画像処理部8は、空間合成部6から出力される合成受信フレームデータの各合成受信ビームデータを、必要に応じてフィルタ処理、検波処理、反射強度画像輝度変換処理、血流速度演算、スキャンコンバート処理、等の処理を施して所望の診断画像を生成するようになっている。つまり、空間合成部6と空間合成用メモリ7と画像処理部8とによって、後述する走査中心ごとに扇形走査して生成された受信ビームに基づいて複数の診断画像を生成し、それらの複数の診断画像を合成した合成診断画像を生成する画像構成部が形成されている。 The spatial synthesis unit 6 stores the reception beam data of at least one frame in the spatial synthesis memory 7, and receives the reception beam data of the second and subsequent frames and the reception beam data at the corresponding position of the stored frame. The combined reception beam data is generated on a frame basis. A known synthesis method can be applied to the spatial synthesis. For example, the reception beam data of a plurality of frames is added and averaged in units of pixels to generate synthesis reception frame data composed of the synthesis reception beam data. The image processing unit 8 performs filtering processing, detection processing, reflection intensity image luminance conversion processing, blood flow velocity calculation, scan conversion on each combined reception beam data of the combined reception frame data output from the spatial combining unit 6 as necessary. A desired diagnostic image is generated by performing processing such as processing. That is, a plurality of diagnostic images are generated on the basis of the received beam generated by fan-shaped scanning for each scanning center, which will be described later, by the space synthesis unit 6, the space synthesis memory 7, and the image processing unit 8. An image configuration unit that generates a combined diagnostic image by combining the diagnostic images is formed.
 このように構成される実施例1の診断画像生成方法について図1~図6を参照して説明する。本実施例では、図1に示すように、被検体13内の診断部位として心臓14の診断画像を取得するものとして説明する。同図に示すように、超音波探触子2と心臓14との間に障害物である肋骨15が位置している。従来一般のフェーズドアレイの超音波探触子2を用いて扇形走査により診断画像を取得する場合、図2に示すように、扇形走査の走査中心16を超音波探触子2の超音波放射面の複数の振動子の配列中心に位置させて設定される。この場合、肋骨15が心臓14に対して走査線17を遮る領域18が生じるため、音響陰影により心臓14の一部が隠れた画像となる。また、肋骨15で超音波が乱反射する結果、アーチファクト119が生じ、診断の妨げとなる。 The diagnostic image generation method of the first embodiment configured as described above will be described with reference to FIGS. In the present embodiment, as illustrated in FIG. 1, it is assumed that a diagnostic image of the heart 14 is acquired as a diagnostic site in the subject 13. As shown in the figure, a rib 15 that is an obstacle is located between the ultrasound probe 2 and the heart 14. When a diagnostic image is acquired by fan scanning using a conventional phased array ultrasonic probe 2, as shown in FIG. 2, the scanning center 16 of the fan scanning is set at the ultrasonic radiation surface of the ultrasonic probe 2. And set at the center of the array of the plurality of transducers. In this case, since an area 18 where the rib 15 blocks the scanning line 17 with respect to the heart 14 is generated, an image in which a part of the heart 14 is hidden by an acoustic shadow is obtained. Further, as a result of the irregular reflection of ultrasonic waves at the ribs 15, artifacts 119 are generated, which hinders diagnosis.
 そこで、本実施例では、図3に示すように、扇形走査の走査中心16を2本の肋骨15a、bの間に形成される隙間である音響窓に走査中心16を設定する。図3では、2本の肋骨15a、bの隙間の最も狭い隙間の最狭点120a、bを結ぶ線上の3点にそれぞれ走査中心16a、b、cを設定している例を示している。しかし、これに限られるものではなく、肋骨15a,b間の例えば最狭点120a、bを結ぶ線上の少なくとも1点に走査中心16を設定するだけでもよい。要は、障害物である1つの肋骨15a又は15bの奥側の診断部位に扇形走査範囲が及ぶように、走査中心16を少なくとも1点に設定する。この走査中心16の設定は、例えば心臓14の診断画像を取得する準備段階で、超音波探触子2を被検体13の体表に当接して得られる肋骨15を含む診断部位14の断層画像を表示部9に表示し、その断層画像上で操作者が走査中心設定部を構成するユーザインタフェース11から走査中心16を設定することができる。また、後述するように、制御部10により自動で走査中心16を設定することができる。 Therefore, in this embodiment, as shown in FIG. 3, the scanning center 16 is set in the acoustic window which is a gap formed between the two ribs 15a and 15b. FIG. 3 shows an example in which the scanning centers 16a, b, c are set at three points on the line connecting the narrowest points 120a, b of the narrowest gap between the two ribs 15a, b. However, the present invention is not limited to this. For example, the scanning center 16 may be set at least at one point on the line connecting the narrowest points 120a and 120b between the ribs 15a and 15b. In short, the scanning center 16 is set to at least one point so that the fan-shaped scanning range extends to the diagnostic part on the back side of one rib 15a or 15b that is an obstacle. The setting of the scanning center 16 is, for example, a tomographic image of the diagnostic region 14 including the rib 15 obtained by bringing the ultrasound probe 2 into contact with the body surface of the subject 13 in a preparation stage for acquiring a diagnostic image of the heart 14. Can be displayed on the display unit 9, and the operator can set the scanning center 16 on the tomographic image from the user interface 11 constituting the scanning center setting unit. Further, as described later, the scanning center 16 can be automatically set by the control unit 10.
 ユーザインタフェース11により走査中心16が設定されると、制御部10は、設定された走査中心16を通る扇形走査の走査条件を設定する。走査条件は、扇形走査範囲の最大走査角度、走査線ピッチ、走査線数、口径、集束位置などを含むパラメータであり、予め設定されている走査条件の基準に従って設定する。そして、制御部10は、設定した走査条件に従って送信ビームフォーマ3及び受信ビームフォーマ5を制御して、パルサレシーバ4と超音波探触子2を介して被検体13に送信ビームを送信し、かつ、反射エコー信号から受信ビームを生成する。 When the scanning center 16 is set by the user interface 11, the control unit 10 sets a scanning condition for fan-shaped scanning that passes through the set scanning center 16. The scanning conditions are parameters including the maximum scanning angle of the fan-shaped scanning range, the scanning line pitch, the number of scanning lines, the aperture, the focusing position, and the like, and are set according to preset criteria for the scanning conditions. Then, the control unit 10 controls the transmission beamformer 3 and the reception beamformer 5 according to the set scanning conditions, transmits the transmission beam to the subject 13 via the pulser receiver 4 and the ultrasonic probe 2, and A reception beam is generated from the reflected echo signal.
 図3では、簡略にするために各走査中心16a~16cについて、それぞれ走査線17を3本示している。つまり、扇形走査範囲の中心と、両端の走査線を示しているが、通常の走査線数は数十から数百本である。走査中心16a、b、cのそれぞれの扇形走査で得られた3つの受信ビームデータは、空間合成部6により空間合成用メモリ7に記憶され、それぞれの受信ビームデータからなるフレームデータの走査領域が重なり合う同一空間の受信ビームデータが空間合成され、画像処理部8にて合成診断画像が生成される。 In FIG. 3, for the sake of simplicity, three scanning lines 17 are shown for each of the scanning centers 16a to 16c. That is, although the center of the sector scan range and the scan lines at both ends are shown, the number of normal scan lines is several tens to several hundreds. The three received beam data obtained by the sector scans of the scanning centers 16a, 16b, and 16c are stored in the spatial synthesis memory 7 by the spatial synthesis unit 6, and the scanning area of the frame data composed of the respective received beam data is stored. The overlapping reception beam data in the same space is spatially synthesized, and a composite diagnostic image is generated by the image processing unit 8.
 このように、図3に示した扇形走査によれば、障害物である肋骨15の間に走査中心16を設定して、超音波ビームを送受できるので、診断部位である心臓14を肋骨15の音響陰影に隠れることなく描出することができる。したがって、超音波探触子2の位置によって肋骨15間の隙間の大きさや、体表からの深さが変化しても、これに対応して扇形走査の頂点である走査中心16を複数の障害物の隙間に容易に変更できるから、走査線が障害物に遮られることなく扇形走査できる。これにより、超音波探触子2の位置を種々変えて、異なる角度から見た診断画像を容易に取得することができる。 As described above, according to the sector scan shown in FIG. 3, since the scanning center 16 can be set between the ribs 15 that are the obstacles and the ultrasonic beam can be transmitted and received, the heart 14 that is the diagnostic site is attached to the ribs 15. It is possible to draw without being hidden by the acoustic shadow. Therefore, even if the size of the gap between the ribs 15 and the depth from the body surface change depending on the position of the ultrasound probe 2, the scanning center 16 that is the apex of the fan-shaped scanning is correspondingly affected by a plurality of obstacles. Since it can be easily changed to a gap between objects, the scanning line can be scanned in a fan shape without being obstructed by an obstacle. Thereby, it is possible to easily acquire diagnostic images viewed from different angles by changing the position of the ultrasound probe 2 in various ways.
 また、肋骨15による不要な乱反射が低減できるのでジャミングノイズなどのアーチファクトを低減することができる。さらに、走査中心16を複数設定して、順次、扇形走査して得られる受信ビームデータからなるフレームデータ取得し、それらのフレームデータを空間合成して診断画像を構成できるから、スペックルノイズを低減することができる。 Further, since unnecessary irregular reflection by the ribs 15 can be reduced, artifacts such as jamming noise can be reduced. In addition, frame data consisting of received beam data obtained by setting a plurality of scanning centers 16 and sequentially fan-shaped scanning can be acquired, and these frame data can be spatially combined to form a diagnostic image, thus reducing speckle noise. can do.
 図4に、図3の変形例を示す。図4(b)は、図3の肋骨15a、bの中心付近に設定した走査中心16bの扇形走査の走査線数を、図4(a)、(c)のように、肋骨15a、bの近くに設定した走査中心16a、cを扇形走査の走査線数よりも増加させている。このように、肋骨15から比較的遠く、隣り合う2つの肋骨15の隙間の中心付近に位置する走査中心16の扇形走査の走査線数を増加することにより、画像の表示範囲を拡大することができる。なお、図3及び図4では、走査線数を左右対称に設定しているが、左右の比率を変更することで表示範囲を拡大することもできる。 FIG. 4 shows a modification of FIG. 4 (b) shows the number of scanning lines of fan-shaped scanning of the scanning center 16b set near the centers of the ribs 15a, b in FIG. 3 as shown in FIGS. 4 (a) and 4 (c). The scanning centers 16a and 16c set close to each other are increased from the number of scanning lines in the sector scanning. As described above, the image display range can be expanded by increasing the number of scanning lines of the fan-shaped scanning of the scanning center 16 which is relatively far from the rib 15 and is located near the center of the gap between the two adjacent ribs 15. it can. 3 and 4, the number of scanning lines is set to be bilaterally symmetric, but the display range can be expanded by changing the left / right ratio.
 図5に、2点の走査中心16a、cを2本の肋骨15a、bの内側に近い位置に設定するとともに、走査線数を増加させた例を示す。このように、走査中心16の位置及び走査条件を変えることにより、空間合成の効果を高めることができる。また、走査線密度を調整することで、空間分解能を改善する効果と、アーチファクトの低減効果を調整することができる。 FIG. 5 shows an example in which the two scanning centers 16a and 16c are set at positions close to the inside of the two ribs 15a and 15b and the number of scanning lines is increased. Thus, the effect of spatial synthesis can be enhanced by changing the position of the scanning center 16 and the scanning conditions. Further, by adjusting the scanning line density, the effect of improving the spatial resolution and the effect of reducing the artifact can be adjusted.
 図3~図5に示した走査中心の設定例では、2本の肋骨15の隙間の最も狭い隙間の最狭点120a、bを結ぶ線上に、複数の走査中心を設定する場合を示した。しかし、本発明はこれに限られるものではなく、図6に示すように、走査中心16を深度方向にずらして、2点設定することができる。本例の場合でも、心臓14の診断画像に係る受信ビームデータを2組取得できるから、それらを空間合成することにより、スペックルノイズ等によるアーチファクトを軽減することができる。図6の例は、障害物である肋骨15の間隔が狭い場合などで有効である。特に、障害物間の隙間が狭い例としては、こめかみの隙間から脳組織を撮像して診断画像を得る場合がある。 In the example of setting the scanning center shown in FIGS. 3 to 5, the case where a plurality of scanning centers are set on the line connecting the narrowest points 120a and 120b of the narrowest gap between the two ribs 15 is shown. However, the present invention is not limited to this, and two points can be set by shifting the scanning center 16 in the depth direction as shown in FIG. Even in the case of this example, two sets of received beam data related to the diagnostic image of the heart 14 can be acquired. Therefore, by combining these spatially, artifacts due to speckle noise or the like can be reduced. The example of FIG. 6 is effective when the interval between the ribs 15 that are obstacles is narrow. In particular, as an example in which the gap between obstacles is narrow, there is a case where a diagnostic image is obtained by imaging brain tissue from the gap of the temple.
 図7を参照して、実施例1の制御部10において、走査中心16と走査条件を自動で設定する一例を説明する。図7では、心臓14の診断画像を取得する準備段階で、ユーザインタフェース11を操作することにより、超音波探触子2を被検体13の体表に当接して肋骨15を含む断層画像が取得される。図7の断層画像に基づいて、前述したように、操作者が走査中心設定部を含むユーザインタフェース11から走査中心16を設定することができる。これに対し、制御部10は、図7の断層画像に表示された肋骨15B1、15B2の中心間距離Aと、肋骨15B1、15B2の最大幅W、超音波放射面から肋骨15B1、15B2の中心間を結ぶ直線の中心Oまでの距離yを求める。そして、中心Oを走査中心16と設定し、予め定められた口径Dの中心Cと走査中心16を結ぶ線を送受信ビームの中心線として設定して、走査線の偏向角θを求める。さらに、ユーザインタフェース11等から予め設定された送受信ビームの集束点Fと、口径Dの両端の振動子chを結んで、それらを結ぶ線が肋骨15のB1、B2に遮られないことを確認する。そのために、集束点Fを通り肋骨15B1、15B2に遮られることがない偏向角θthを予め算出しておき、口径Dの両端の振動子chと集束点Fを結ぶ直線の偏向角θ′がθth未満であることを確認する。θ′≧θthの場合は、θ′<θthになるように、口径Dを小さく変更するか、走査線の偏向角θを小さく変更する。このようにして、制御部10において走査中心16を自動で設定するとともに、走査条件のうちの最大走査角度及び口径を設定することができる。また、走査線ピッチ、走査線数、集束位置は、予め設定しておけば、制御部10において扇形走査に係る送受信ビームを制御することができる。 With reference to FIG. 7, an example in which the scanning center 16 and the scanning conditions are automatically set in the control unit 10 of the first embodiment will be described. In FIG. 7, the tomographic image including the rib 15 is obtained by operating the user interface 11 at the preparation stage for obtaining the diagnostic image of the heart 14 and bringing the ultrasound probe 2 into contact with the body surface of the subject 13. Is done. Based on the tomographic image of FIG. 7, as described above, the operator can set the scanning center 16 from the user interface 11 including the scanning center setting unit. In contrast, the control unit 10 determines the distance A between the centers of the ribs 15B1 and 15B2 displayed in the tomographic image of FIG. 7, the maximum width W of the ribs 15B1 and 15B2, and the distance between the centers of the ribs 15B1 and 15B2 from the ultrasonic radiation surface. The distance y O to the center O of the straight line connecting is obtained. Then, the center O is set as the scanning center 16, and a line connecting the predetermined center C of the aperture D and the scanning center 16 is set as the center line of the transmission / reception beam to obtain the deflection angle θ of the scanning line. Further, it is confirmed that the transmission / reception beam focusing point F set in advance from the user interface 11 and the like and the transducer ch at both ends of the aperture D are connected, and the line connecting them is not blocked by B1 and B2 of the rib 15. . Therefore, a deflection angle θth that passes through the converging point F and is not obstructed by the ribs 15B1 and 15B2 is calculated in advance, and a straight deflection angle θ ′ connecting the vibrator ch at both ends of the aperture D and the converging point F is θth. Confirm that it is less than In the case of θ ′ ≧ θth, the aperture D is changed small or the scanning line deflection angle θ is changed small so that θ ′ <θth. In this way, the control center 10 can automatically set the scanning center 16 and set the maximum scanning angle and aperture of the scanning conditions. In addition, if the scanning line pitch, the number of scanning lines, and the focusing position are set in advance, the control unit 10 can control the transmission / reception beam related to the sector scanning.
 以上説明した実施例1は、2本の肋骨15a、bの隙間から、肋骨15a、bの奥側の診断部位を撮像する例を説明したが、本発明はこれに限られるものではない。すなわち、実施例1によれば、1本の肋骨15a又は15bの奥側の診断部位の診断画像を取得できる。このことから、送受信ビームの伝搬障害となる障害物が1つの場合でも、その障害物の奥側の診断部位に扇形走査範囲が及ぶように、扇形走査の走査中心を少なくとも1つ設定することにより、障害物の奥側の診断部位の診断画像を容易に取得できる。この場合、走査中心設定部は、走査中心を、扇形走査範囲の一方の端の扇形走査線が障害物に遮られない位置に設定することができる。また、走査中心を、超音波探触子から見た障害物の側面の空間領域に設定することができる。さらに、走査中心を複数設定した場合、画像構成部は、走査中心ごとに生成される複数の診断画像を合成した診断画像を生成することにより、診断画像の画質を向上させることができる。 Although Example 1 demonstrated above demonstrated the example which images the diagnostic site | part of the back of the ribs 15a and b from the clearance gap between the two ribs 15a and b, this invention is not limited to this. That is, according to Example 1, it is possible to obtain a diagnostic image of a diagnostic site on the back side of one rib 15a or 15b. From this, even when there is only one obstacle that causes transmission / reception beam propagation obstruction, by setting at least one scan center of the sector scan so that the sector scan range extends to the diagnostic part on the back side of the obstacle The diagnostic image of the diagnostic part on the back side of the obstacle can be easily acquired. In this case, the scanning center setting unit can set the scanning center at a position where the fan-shaped scanning line at one end of the fan-shaped scanning range is not obstructed by the obstacle. Further, the scanning center can be set in the spatial region on the side surface of the obstacle as viewed from the ultrasonic probe. Further, when a plurality of scanning centers are set, the image configuration unit can improve the image quality of the diagnostic image by generating a diagnostic image by combining a plurality of diagnostic images generated for each scanning center.
(実施例2)
 本発明を適用してなる超音波診断装置の実施例2について、図8~図14を参照して説明する。図8は、本実施例の超音波診断装置1のブロック構成図である。本実施例は、送信ビームを符号変調し、受信ビームを符号復調して受信ビームデータを生成することを特徴とする。したがって、図1に示した実施例1と異なる点は、送信変調部21を設けて送信ビームフォーマ3により生成される送信ビームデータを符号変調し、受信復調部22を設けて受信ビームフォーマ5から出力される受信ビームデータを符号復調して、空間合成部6に出力するようにしたことにある。なお、送信変調部21と受信復調部22はそれぞれシステムバス12を介して制御部10とユーザインタフェース11に接続されている。その他の構成は、実施例1と同一であることから同一の符号を付して、説明を省略する。
(Example 2)
A second embodiment of an ultrasonic diagnostic apparatus to which the present invention is applied will be described with reference to FIGS. FIG. 8 is a block diagram of the ultrasonic diagnostic apparatus 1 of the present embodiment. This embodiment is characterized in that the transmission beam is code-modulated and the reception beam is code-demodulated to generate reception beam data. Therefore, the difference from the first embodiment shown in FIG. 1 is that the transmission modulation unit 21 is provided to code-modulate the transmission beam data generated by the transmission beamformer 3, and the reception demodulation unit 22 is provided to The reception beam data to be output is code-demodulated and output to the space synthesis unit 6. The transmission modulation unit 21 and the reception demodulation unit 22 are connected to the control unit 10 and the user interface 11 via the system bus 12, respectively. Since other configurations are the same as those of the first embodiment, the same reference numerals are given and the description thereof is omitted.
 送信変調部21は送信される送信ビームを例えばBarkerやGolayや、Chirpなどの符号係数を用いて変調する。受信復調部22は、送信変調部21で変調した符号に応じた符号復調係数を用いて受信ビームを復調する。 The transmission modulation unit 21 modulates a transmission beam to be transmitted using a code coefficient such as Barker, Golay, or Chirp. The reception demodulation unit 22 demodulates the reception beam using a code demodulation coefficient corresponding to the code modulated by the transmission modulation unit 21.
 図9に、本実施例により、扇形走査の走査中心16を3本の肋骨15a、b、cの間に形成される隙間を利用して、扇形走査により心臓14の診断画像を取得する例を説明する。本実施例では、3本の肋骨15a、b、cの隙間に、ユーザインタフェース11を用いて2つの走査中心16-1,16-2を設定する。制御部10は、走査中心16-1,16-2について、扇形走査範囲の最大走査角度、走査線ピッチ、走査線数、口径、集束位置などを含むパラメータを、予め設定した走査条件に従って設定し、送信ビームフォーマ3と受信ビームフォーマ5を制御して扇形走査する。図9の例では、2つの走査中心16-1,16-2に1つの超音波探触子2から同一時に送受信ビームを形成して走査する。走査中心16-1,16-2の2点でそれぞれ得られた2つの受信ビームデータは、空間合成部6により空間合成用メモリ7に記憶され、実施例1と同様に空間合成される。しかし、同一の扇形領域に送受信ビームが混在するから、それらのコンタミネーションを避けなければならない。 FIG. 9 shows an example in which a diagnostic image of the heart 14 is acquired by fan scanning using the gap formed between the three ribs 15a, 15b and 15c at the scanning center 16 of the fan scanning. explain. In the present embodiment, two scanning centers 16-1 and 16-2 are set using the user interface 11 in the gap between the three ribs 15a, b, and c. The control unit 10 sets parameters including the maximum scanning angle of the fan-shaped scanning range, the scanning line pitch, the number of scanning lines, the aperture, the focusing position, and the like for the scanning centers 16-1 and 16-2 in accordance with preset scanning conditions. The transmission beamformer 3 and the reception beamformer 5 are controlled to perform sector scanning. In the example of FIG. 9, a transmission / reception beam is formed at two scanning centers 16-1 and 16-2 from one ultrasonic probe 2 at the same time and scanned. Two received beam data respectively obtained at the two points of the scanning centers 16-1 and 16-2 are stored in the space synthesizing memory 7 by the space synthesizing unit 6, and are spatially synthesized as in the first embodiment. However, since transmission and reception beams are mixed in the same fan-shaped region, it is necessary to avoid such contamination.
 そこで、本実施例では、走査中心16-1、16-2の扇形走査に係る2つの送信ビームに対して異なる符合変調を行って送信し、かつ、受信ビームを対応する符号で符号復調することにより、送信ビームと受信ビームを対応付けるようにしている。これにより、同時に2並列処理を行うことができるから、それぞれの走査中心16-1、16-2の扇形走査に係る2つの送受信ビームを分離することができ、それらのコンタミネーションを防止できる。 Therefore, in this embodiment, the two transmission beams related to the sector scan of the scanning centers 16-1 and 16-2 are transmitted by performing different code modulation, and the received beam is code-demodulated with a corresponding code. Thus, the transmission beam and the reception beam are associated with each other. As a result, two parallel processes can be performed at the same time, so that it is possible to separate the two transmission / reception beams related to the sector scans of the respective scan centers 16-1 and 16-2, and to prevent their contamination.
 例えば、特許文献4に記載されたM=28の例の異なる符号4種類のうちの2種類を用いて符号変調した場合に、送信変調部21で生成される符号変調送信信号について説明する。走査中心16-1に対応する第一の符号変調送信信号Aと、走査中心16-2に対応する第二の符号変調送信信号Bは、基本波:s、第一の送信符号:CA=[-,+,+,-,+,+,-,+,+,-,+,-,+,-,+,+,+,+,+,+,-,-,-,+,+,-,-,-]、第二の送信符号:CB=[-,+,+,+,-,-,-,-,+,+,+,-,+,+,+,-,+,+,+,-,+,+,-,+,-,-,+,-]とすると、次式で表せる。なお、本例の「+」符号は正相、「-」符号は逆相を意味する。また、次式において「*」は、畳み込み積分処理を表す。
       A = s * CA
       B = s * CB
 図10に、基本波:Sにsin波(1波数)の場合の第一の符号変調送信信号A、及び第二の符号変調送信信号Bの一例を示す。
For example, a code-modulated transmission signal generated by the transmission modulation unit 21 when code modulation is performed using two of four types of different codes of M = 28 described in Patent Document 4 will be described. The first code modulation transmission signal A corresponding to the scanning center 16-1 and the second code modulation transmission signal B corresponding to the scanning center 16-2 are fundamental wave: s, first transmission code: CA = [ -, +, +,-, +, +,-, +, +,-, +,-, +,-, +, +, +, +, +, +,-,-,-, +, +, −, −, −], Second transmission code: CB = [−, +, +, +, −, −, −, −, +, +, +, −, +, +, +, −, +, +, +,-, +, +,-, +,-,-, +,-], It can be expressed by the following equation. In this example, “+” sign means normal phase and “−” sign means reverse phase. In the following expression, “*” represents convolution integration processing.
A = s * CA
B = s * CB
FIG. 10 shows an example of the first code modulation transmission signal A and the second code modulation transmission signal B when the fundamental wave: S is a sin wave (one wave number).
 次に、図11~図14を参照して、本実施例の送信の動作の一例を示す。図12に示すように、ch01~ch38の振動子を有する超音波探触子2に対し、第一から第三の肋骨15a~15cが位置するものとする。ここで、ユーザインタフェース11で第一の肋骨15aと第二の肋骨15bの間に第一の走査中心16-1を配置し、第二の肋骨15bと第三の肋骨15cの間に第二の走査中心16-2を配置する。制御部10は、第一の走査中心16-1と第二の走査中心16-2の位置、及び送受信ビームの偏向角θ、集束位置19の深度、送信口径を算出して、送信ビームフォーマ3を制御する。ここで、送信口径については送受信ビームが肋骨15によって遮られないように、送信周波数、集束位置、偏向角、振動子ピッチの情報から、肋骨の間隔より狭くなるように算出する。また、送信ビームを収束する各振動子の遅延量は、口径内の各振動子と集束位置との距離、被検体13の音速から算出する。 Next, an example of the transmission operation of this embodiment will be described with reference to FIGS. As shown in FIG. 12, it is assumed that the first to third ribs 15a to 15c are positioned with respect to the ultrasonic probe 2 having the transducers ch01 to ch38. Here, on the user interface 11, the first scanning center 16-1 is disposed between the first rib 15a and the second rib 15b, and the second rib 15b is interposed between the second rib 15b and the third rib 15c. A scanning center 16-2 is arranged. The control unit 10 calculates the positions of the first scanning center 16-1 and the second scanning center 16-2, the deflection angle θ of the transmission / reception beam, the depth of the converging position 19, and the transmission aperture, To control. Here, the transmission aperture is calculated so as to be narrower than the interval between the ribs from the information on the transmission frequency, the focusing position, the deflection angle, and the transducer pitch so that the transmission / reception beam is not blocked by the rib 15. Further, the delay amount of each transducer for converging the transmission beam is calculated from the distance between each transducer within the aperture and the focal position and the sound speed of the subject 13.
 図11及び図12では、第一の口径と、第二の口径から同時に偏向角+45°の送信ビームを形成する例を示している。図11は、各振動子ch01~ch38に印加する超音波送信信号の時間波形の例を示す。本例の場合、第一の口径はch17~ch24、第二の口径はch31~ch38の各8chである。右に行くほど遅い時間を示す。第一の口径ch17~ch24において、ch24が最も早く、ch17が最も遅く遅延処理された符号変調送信信号Aが超音波送信信号として印加される。第二の口径ch31~ch38において、ch38が最も早く、ch31が最も遅く遅延処理された符号変調送信信号Bが超音波送信信号として印加される。 11 and 12 show an example in which a transmission beam having a deflection angle of + 45 ° is simultaneously formed from the first aperture and the second aperture. FIG. 11 shows an example of a time waveform of an ultrasonic transmission signal applied to each transducer ch01 to ch38. In this example, the first aperture is ch17 to ch24, and the second aperture is 8ch each of ch31 to ch38. The further to the right, the slower the time. In the first apertures ch17 to ch24, the code-modulated transmission signal A that has been subjected to delay processing is the earliest ch24 and the latest ch17 is applied as an ultrasonic transmission signal. In the second apertures ch31 to ch38, the code modulation transmission signal B that has been subjected to the delay processing of ch38 the earliest and ch31 the latest is applied as the ultrasonic transmission signal.
 図12は、図11のように超音波送信信号が印加されたときの音場分布の例を示す。各振動子に印加された超音波送信信号は、電気信号から超音波信号に変換され被検体13を伝搬する。本来は、各振動子の指向特性により伝搬するが、図12では送信信号を整相し、集束位置19に集束することを分かりやすく説明するために、拡散や、他方向へ伝搬する波面の表示を割愛している。第一の口径ch17からch24の振動子に図11のように遅延処理された超音波送信信号が印加することにより、送信ビームは集束位置19-1に集束する。同様に、第二の口径ch31からch38の振動子に図11のように遅延処理された超音波送信信号が印加することにより、送信ビームは集束位置19-2に集束する。本例では第一の口径の中心と送信ビームは集束位置19-1を結ぶ直線上に、走査中心16-1が配置され、第二の口径の中心と送信ビームは集束位置19-2を結ぶ直線上に走査中心16-2が配置される。 FIG. 12 shows an example of a sound field distribution when an ultrasonic transmission signal is applied as shown in FIG. The ultrasonic transmission signal applied to each transducer is converted from an electrical signal to an ultrasonic signal and propagates through the subject 13. Originally, it propagates due to the directivity characteristics of each transducer, but in FIG. 12, in order to easily understand that the transmission signal is phased and converged at the converging position 19, diffusion and display of a wavefront propagating in another direction are displayed. Is omitted. When the ultrasonic transmission signal subjected to the delay processing as shown in FIG. 11 is applied to the vibrators of the first aperture ch17 to ch24, the transmission beam is focused on the focusing position 19-1. Similarly, when the ultrasonic transmission signal subjected to the delay processing as shown in FIG. 11 is applied to the transducers of the second diameter ch31 to ch38, the transmission beam is focused on the focusing position 19-2. In this example, the scanning center 16-1 is disposed on a straight line connecting the center of the first aperture and the transmission beam 19-1 and the transmission beam connects the focus 19-2. A scanning center 16-2 is arranged on the straight line.
 図13と図14に、第一の口径と、第二の口径から同時に偏向角0°の送信ビームを形成する例を示す。図13は各振動子ch01~ch38に印加する超音波送信信号の時間波形の例を示す。本例の場合、第一の口径はch07~ch14、第二の口径はch21~ch28の各8chである。右に行くほど遅い時間を示す。第一の口径ch07~ch14において、ch07とch14が最も早く、ch10とch11が最も遅く遅延処理された符号変調送信信号Aが超音波送信信号として印加される。第二の口径ch21~ch28において、ch21とch28が最も早く、ch24とch25が最も遅く遅延処理された符号変調送信信号Bが超音波送信信号として印加される。 13 and 14 show an example in which a transmission beam having a deflection angle of 0 ° is simultaneously formed from the first aperture and the second aperture. FIG. 13 shows an example of a time waveform of an ultrasonic transmission signal applied to each transducer ch01 to ch38. In this example, the first aperture is ch07 to ch14, and the second aperture is 8ch each of ch21 to ch28. The further to the right, the slower the time. In the first apertures ch07 to ch14, the code-modulated transmission signal A that has been subjected to the delay processing of ch07 and ch14 and the latest of ch10 and ch11 is applied as an ultrasonic transmission signal. In the second apertures ch21 to ch28, the code-modulated transmission signal B that has been subjected to delay processing for ch21 and ch28 and for ch24 and ch25 the latest is applied as an ultrasonic transmission signal.
 図14は、超音波送信信号が図13のように印加されたときの音場分布の例を示す。各振動子に印加された超音波送信信号は電気信号から超音波信号に変換され被検体13を伝搬する。本来は、各振動素子の指向特性により伝搬するが、図14では送信信号を整相し、集束位置19に集束することを分かりやすく説明するために、拡散や、他方向へ伝搬する波面の表示を割愛している。第一の口径ch07~ch14の振動子に図13のように遅延処理された超音波送信信号を印加することにより、送信ビームは集束位置19-1に集束する。同様に、第二の口径ch21~ch28の振動子に図13のように遅延処理された超音波送信信号を印加することにより、送信ビームは集束位置19-2に集束する。本例では、第一の口径の中心と集束位置19-1を結ぶ直線上に走査中心16-1が配置され、第二の口径の中心と集束位置19-2を結ぶ直線上に走査中心16-2が配置される。 FIG. 14 shows an example of the sound field distribution when the ultrasonic transmission signal is applied as shown in FIG. The ultrasonic transmission signal applied to each transducer is converted from an electrical signal to an ultrasonic signal and propagates through the subject 13. Originally, it propagates due to the directivity characteristics of each vibration element, but in FIG. 14, in order to easily understand that the transmission signal is phased and converged at the convergence position 19, diffusion and display of a wavefront propagating in another direction are displayed. Is omitted. By applying the ultrasonic transmission signal subjected to delay processing as shown in FIG. 13 to the transducers of the first apertures ch07 to ch14, the transmission beam is focused at the focusing position 19-1. Similarly, by applying an ultrasonic transmission signal subjected to delay processing as shown in FIG. 13 to the transducers of the second apertures ch21 to ch28, the transmission beam is focused at the focusing position 19-2. In this example, the scanning center 16-1 is disposed on a straight line connecting the center of the first aperture and the focusing position 19-1, and the scanning center 16 is positioned on a straight line connecting the center of the second aperture and the focusing position 19-2. -2 is arranged.
 ちなみに、第一の口径と、第二の口径から同時に偏向角-45°の超音波送信ビームを形成する場合、図11と図12における走査中心16-1、16-2を基準にして対称の位置となる。また、受信に関しては図示していないが、受信ビームフォーマ5では、各走査線上から超音波エコーが反射して、各振動子にて受信する時間に相当する遅延処理を第一の口径と第二の口径に対応するパルサレシーバ4で増幅された受信信号に対して随時行うことによって各受信ビームを形成する。また、受信復調部22は、送信変調部21で生成した符号変調送信信号Aと符号変調送信信号Bを復調するために、符号復調フィルタAと符号復調フィルタBにより、例えばタイムインバースフィルタ処理やミスマッチドフィルタ処理して復調するようになっている。 Incidentally, when an ultrasonic transmission beam having a deflection angle of −45 ° is simultaneously formed from the first aperture and the second aperture, it is symmetrical with respect to the scanning centers 16-1 and 16-2 in FIGS. Position. Although reception is not shown in the figure, the reception beamformer 5 performs a delay process corresponding to the time for which the ultrasonic echoes are reflected from each scanning line and received by each transducer. Each reception beam is formed by performing as necessary on the reception signal amplified by the pulser receiver 4 corresponding to the aperture. In addition, the reception demodulating unit 22 demodulates the code modulation transmission signal A and the code modulation transmission signal B generated by the transmission modulation unit 21, using a code demodulation filter A and a code demodulation filter B, for example, a time inverse filter process or mismatch. It demodulates by defiltering.
 以上説明したように、実施例2によれば、送受信ビームをそれぞれ符号変調及び符号復調処理することにより、同一時に2つの走査領域の受信ビームデータを生成でき、かつ、それら走査領域の情報を相互に分離して、コンタミネーションを防ぐことができる。 As described above, according to the second embodiment, reception beam data of two scanning areas can be generated at the same time by code-modulating and code-demodulating the transmission / reception beams, and information on these scanning areas can be mutually converted. Can be separated to prevent contamination.
 以上、実施例1、2に基づいて本発明を説明したが、本発明によれば、障害物の位置、間隔などの状況から走査中心の位置と、走査線数を任意に設定することにより、超音波送受信することができるので、診断部位を障害物の音響陰影に隠れることなく描出することができる。 As described above, the present invention has been described based on the first and second embodiments. However, according to the present invention, by arbitrarily setting the position of the scanning center and the number of scanning lines from the situation such as the position and interval of the obstacle, Since ultrasound can be transmitted and received, the diagnostic site can be depicted without being hidden by the acoustic shadow of the obstacle.
 また、障害物による不要な乱反射を低減できるので、ジャミングノイズなどのアーチファクトを低減することができる。さらに、走査中心を複数設定して複数の扇形領域について扇形走査し、得られる複数の受信ビームデータを空間合成しているから、スペックルノイズを低減することができる。さらに、走査中心ごとに口径、整相、符号変調復調処理をしているから、相互情報を分離しコンタミネーションを防いだ空間データを生成できる。また、フレームレートを高くできるので、最適な診断画像を得ることができる。 Moreover, since unnecessary irregular reflections due to obstacles can be reduced, artifacts such as jamming noise can be reduced. Furthermore, speckle noise can be reduced because a plurality of scanning centers are set and sector scanning is performed on a plurality of sector regions and a plurality of received beam data obtained are spatially synthesized. Furthermore, since aperture, phasing, and code modulation / demodulation processing are performed for each scanning center, it is possible to generate spatial data in which mutual information is separated and contamination is prevented. In addition, since the frame rate can be increased, an optimal diagnostic image can be obtained.
 また、空間合成において、複数の走査中心のうち障害物から遠い空間データの情報の影響が大きくなるように、合成する際に係数を乗算して合成することができる。これによれば、一層、障害物の影響を低減することができる。この係数として、例えばハニングや、ハミング、ブラックマンなど走査中心の配列に対して連続的にアポダイズすることが望ましい。 Also, in the spatial synthesis, it is possible to synthesize by multiplying the coefficients when synthesizing so that the influence of the information of the spatial data far from the obstacle among the plurality of scanning centers becomes large. According to this, the influence of an obstacle can be reduced further. As this coefficient, for example, it is desirable to continuously apodize with respect to an array of scanning centers such as Hanning, Hamming, and Blackman.
 また、実施例では、超音波探触子2として振動子を平面状に配列した例を示したが、本発明はこれに限らず、曲面状に振動子を配列した超音波探触子にも適用可能である。要は、位相及び遅延量を制御して走査線を偏向する機能を有するフェーズドアレイであれば、適用できる。また、本発明では走査中心ごとに異なる符号変調復調処理をする例を示したが、異なる走査線方位において異なる符号変調復調処理をすることができる。 In the embodiment, the example in which the transducers are arranged in a plane as the ultrasonic probe 2 is shown. However, the present invention is not limited to this, and the ultrasonic probe in which the transducers are arranged in a curved surface is also shown. Applicable. In short, any phased array having a function of deflecting the scanning line by controlling the phase and the delay amount can be applied. In the present invention, an example in which different code modulation / demodulation processing is performed for each scanning center has been described. However, different code modulation / demodulation processing can be performed in different scanning line orientations.
 また、障害物である肋骨の間に平面波ビームの中心送信ラインを設定して、平面波ビームの幅が障害物である肋骨15の間に収まるように、設定偏向方向θに応じて送受信ラインの本数とピッチを調整してもよい。 Also, the number of transmission / reception lines is set according to the set deflection direction θ so that the center transmission line of the plane wave beam is set between the ribs that are the obstacles, and the width of the plane wave beam is set between the ribs 15 that are the obstacles. And the pitch may be adjusted.
 次に、設定偏向方向θに応じて送受信ラインの本数とピッチを調整する実施例について詳細に説明する。 Next, an embodiment in which the number and pitch of transmission / reception lines are adjusted according to the set deflection direction θ will be described in detail.
 本実施例は、超音波診断装置に係り、特に、診断領域に超音波の平面波を送信し、反射エコー信号を並列受信して診断画像を高フレームレートで撮像する技術に関する。 The present embodiment relates to an ultrasonic diagnostic apparatus, and more particularly, to a technique for transmitting a plane wave of an ultrasonic wave to a diagnostic region and receiving a reflected echo signal in parallel to capture a diagnostic image at a high frame rate.
 従来の超音波診断装置は、超音波探触子により被検体内部に超音波を送信し、被検体内部から生体組織の構造に応じた超音波の反射エコー信号を受信し、例えば超音波断層像等の診断画像を生成して表示している。特に、心機能診断においてはフェーズドアレイを用いて、超音波の送受信ビームにより診断部位を扇形走査(セクタスキャン)して撮像している。フェーズドアレイ型の超音波探触子は、送受信口径(以下、適宜、単に口径という。)の複数の振動子から放射する超音波の位相をそれぞれ制御して、特定の点に超音波を集束させた送信ビームと受信ビームを生成することができ、かつビーム方向を偏向することができる。したがって、電子スキャンにより一対の送信ビームと受信ビームを走査線として扇形走査して診断画像を取得することが、一般に採用されている。 A conventional ultrasonic diagnostic apparatus transmits an ultrasonic wave inside a subject using an ultrasonic probe and receives an ultrasonic reflection echo signal corresponding to the structure of a living tissue from the inside of the subject. For example, an ultrasonic tomogram Such a diagnostic image is generated and displayed. In particular, in cardiac function diagnosis, a phased array is used and images are obtained by performing sector scan (sector scan) on the diagnostic region with ultrasonic transmission / reception beams. A phased array type ultrasound probe controls the phase of ultrasonic waves radiated from a plurality of transducers having a transmission / reception aperture (hereinafter simply referred to as “aperture” as appropriate) to focus the ultrasound on a specific point. Transmit beam and receive beam can be generated and the beam direction can be deflected. Therefore, it is generally employed to obtain a diagnostic image by performing sector scanning using a pair of transmission beam and reception beam as scanning lines by electronic scanning.
 ところで、超音波探触子を用いて被検体の体表から心臓との間で超音波を送受信する場合、超音波伝搬の障害となる肋骨等の障害物による超音波の反射、乱反射、回折などのために、診断画像にアーチファクトが生じるという問題がある。そこで、肋骨の間の音響窓(アコースティックウィンドウ)から走査線を送信する肋間走査が一般に採用されている。しかし、肋間走査によっても、ジャミングノイズやシャドーアーチファクト等の肋間走査特有のアーチファクトが生ずる。また、一般的なスペックルノイズ等があり、これらのアーチファクトが画像診断の妨げとなる。 By the way, when transmitting and receiving ultrasonic waves from the body surface of the subject to the heart using an ultrasonic probe, reflection, diffuse reflection, diffraction, etc. of ultrasonic waves by obstacles such as ribs that obstruct ultrasonic propagation For this reason, there is a problem that artifacts occur in the diagnostic image. Therefore, intercostal scanning in which a scanning line is transmitted from an acoustic window between the ribs (acoustic window) is generally employed. However, intercostal scanning also produces artifacts unique to intercostal scanning, such as jamming noise and shadow artifacts. Further, there are general speckle noises and the like, and these artifacts hinder image diagnosis.
 そこで、障害物の影響を低減する技術として、ビームの音線中心を輻射面より前方に設定し、且つ、音線中心よりさらに前方の被検体内にセクタ部分が形成されるように、輻射面を凹面状に形成することが提案されている(例えば、特開2000-201928号公報)。また、心臓のように比較的動きの早い臓器の診断画像は、高フレームレートによる撮像が望まれる。超音波診断装置における高フレームレート撮像を実現するために、平面波などの非集束送信ビームを用いる技術が提案されている(例えば、US6309356号公報)。 Therefore, as a technique for reducing the influence of obstacles, the radiation surface is set so that the sound ray center of the beam is set in front of the radiation surface and a sector portion is formed in the subject further ahead of the sound ray center. Has been proposed to be formed into a concave shape (for example, Japanese Patent Application Laid-Open No. 2000-201928). In addition, a diagnostic image of a relatively fast moving organ such as the heart is desired to be imaged at a high frame rate. In order to realize high frame rate imaging in an ultrasonic diagnostic apparatus, a technique using an unfocused transmission beam such as a plane wave has been proposed (for example, US Pat. No. 6,309,356).
 ところで、心臓の診断の場合、いろいろな角度から取得した心臓の診断画像に基づいて診断するのが一般的であるが、肋骨間の音響窓は肋骨の位置によって異なる。つまり、位置によって肋骨間の音響窓の大きさが変わるとともに、体表から肋骨までの深さが変わる。しかし、上記の特許文献に記載された技術は、音響窓の大きさ及び肋骨の深さ位置が肋骨の位置によって変化することが考慮されていないから、いろいろな角度から心臓の診断画像を取得する場合に制約を受ける。 By the way, in the case of the diagnosis of the heart, it is common to make a diagnosis based on the diagnostic images of the heart acquired from various angles, but the acoustic window between the ribs varies depending on the position of the ribs. That is, the size of the acoustic window between the ribs changes depending on the position, and the depth from the body surface to the ribs changes. However, since the technique described in the above patent document does not consider that the size of the acoustic window and the depth position of the ribs change depending on the position of the ribs, the diagnostic images of the heart are acquired from various angles. Limited by case.
 例えば、特開2000-201928号公報によれば、複数の振動子を配列した凹面により走査中心が決まってしまうので、肋骨の深さが変わると肋間走査できない場合がある。このような問題は、肋骨等の障害物に限られるものではなく、こめかみ等の頭蓋骨の隙間から頭蓋骨の裏側(奥側)の脳組織を撮像して診断画像を得る場合など、超音波伝搬の障害物の裏側(奥側)にある生体組織の診断画像を得る場合にも共通する問題である。また、US6309356号公報には、障害物を回避することに関しては記載されていない。 For example, according to Japanese Patent Application Laid-Open No. 2000-201928, the scanning center is determined by the concave surface on which a plurality of transducers are arranged. Such problems are not limited to obstacles such as the ribs, but when imaging images of brain tissue on the back side (back side) of the skull from the gap of the skull, such as the temple, etc. This is also a common problem when obtaining a diagnostic image of a living tissue on the back side (back side) of an obstacle. Further, US Pat. No. 6,309,356 does not describe avoiding an obstacle.
 本実施例が解決しようとする課題は、超音波伝搬の障害物の裏側に位置する生体組織の診断画像を、アーチファクトを抑制して高フレームレートで取得できる超音波診断装置を提供することにある。 The problem to be solved by the present embodiment is to provide an ultrasonic diagnostic apparatus capable of acquiring a diagnostic image of a living tissue located behind an obstacle of ultrasonic propagation at a high frame rate while suppressing artifacts. .
 上記の課題を解決する本実施例の第1の態様は、被検体に当接して用いる超音波探触子と、前記超音波探触子の複数の振動子を駆動する超音波信号を送信処理する送信部と、前記超音波探触子の複数の振動子により受信される反射エコー信号を受信処理する受信部と、前記受信部で受信処理された受信信号に基づいて診断画像を生成する画像構成部と、前記診断画像を表示する表示部と、少なくとも前記送信部と前記受信部と前記画像構成部を制御する制御部と、前記制御部に指令を入力する入力部とを備え、前記送信部は、前記制御部から与えられる制御指令に基づいて、前記超音波探触子に設定された送信口径に対応する複数n(nは自然数)の前記振動子を駆動して、前記被検体内の設定偏向方向にn本の送信ラインからなる平面波ビームを送信し、前記受信部は、前記超音波探触子に設定された受信口径に対応する複数m(mは自然数)の前記振動子により受波される反射エコー信号をフォーカス処理して受信ビームを生成し、前記n本の送信ラインに基づいて設定される複数の受信ラインを走査して得られる複数の前記受信ビームからなるフレームデータを生成し、前記画像構成部は、前記受信部で生成される前記フレームデータに基づいて前記診断画像を生成することを特徴とする。 The first aspect of the present embodiment that solves the above-described problem is a transmission process of an ultrasonic probe that is used in contact with a subject and a plurality of transducers of the ultrasonic probe. An image for generating a diagnostic image based on the received signal processed by the receiving unit, a receiving unit for receiving and processing reflected echo signals received by the plurality of transducers of the ultrasonic probe A transmission unit, a display unit that displays the diagnostic image, a control unit that controls at least the transmission unit, the reception unit, and the image configuration unit; and an input unit that inputs a command to the control unit; The unit drives a plurality of n (n is a natural number) of the transducers corresponding to the transmission aperture set in the ultrasonic probe based on a control command given from the control unit, Plane wave consisting of n transmission lines in the set deflection direction And the receiving unit performs focus processing on a reflected echo signal received by a plurality of m (m is a natural number) of the transducers corresponding to a receiving aperture set in the ultrasonic probe. A reception beam is generated, frame data including a plurality of reception beams obtained by scanning a plurality of reception lines set based on the n transmission lines is generated, and the image configuration unit includes the reception unit The diagnostic image is generated based on the frame data generated in step (1).
 第1の態様によれば、送信部は、n個の送信口径から被検体内の設定偏向方向にn本の送信ラインからなる非集束送信の平面波ビームを送信しているから、偏向方向の設定に応じて超音波伝搬の障害物の裏側に位置する診断領域の生体組織の診断画像を、アーチファクトを低減して撮像することができる。また、平面波ビームを送信しているから、走査することなく一回の送信で診断領域の全体に超音波を送波できる。また、走査(スキャン)に伴う時間が不要であるから、並列受信することによりフレームレートを高くすることができる。すなわち、受信部では、受信口径に対応するm個の振動子により受波される反射エコー信号をフォーカス処理して、複数の送信ラインに対応させて設定された複数の受信ラインについて複数の受信ビームを生成している。そして、複数の受信ビームによりフレームデータを生成しているから、高いフレームレートで診断画像を撮像することができる。また、受信ビームは反射エコー信号をフォーカスし処理して生成しているから、受信信号のSN比を高くすることができ、解像度に優れた診断画像を撮像することができる。 According to the first aspect, the transmission unit transmits the unfocused transmission plane wave beam including n transmission lines in the set deflection direction in the subject from the n transmission apertures. Accordingly, a diagnostic image of a living tissue in a diagnostic region located on the back side of an obstacle for ultrasonic propagation can be captured with reduced artifacts. In addition, since the plane wave beam is transmitted, the ultrasonic wave can be transmitted to the entire diagnosis region by one transmission without scanning. In addition, since time required for scanning is unnecessary, the frame rate can be increased by performing parallel reception. That is, in the receiving unit, the reflected echo signals received by the m transducers corresponding to the receiving apertures are focused, and a plurality of receiving beams are set for a plurality of receiving lines set corresponding to the plurality of transmitting lines. Is generated. Since frame data is generated by a plurality of reception beams, a diagnostic image can be taken at a high frame rate. Further, since the reception beam is generated by focusing and processing the reflected echo signal, the SN ratio of the reception signal can be increased, and a diagnostic image with excellent resolution can be taken.
 例えば、肋骨等の障害物の隙間を介して障害物の奥側の心臓を撮像する場合は、n個の送信口径を障害物の隙間に収まるように設定すれば、障害物の影響を受けることなく、ジャミングノイズやシャドーアーチファクト等のアーチファクトを低減して撮像できる。また、送信口径のn個の振動子を駆動する超音波信号に遅延時間差を設けることにより、平面波ビームを所望の設定偏向方向に送信できる。そのため、障害物を避けた角度から障害物の裏側に位置する診断領域に平面波ビームを送信可能に偏向方向を設定することができ、あるいは障害物の隙間を介して異なる偏向方向から平面波ビームを送信できるので、様々な方向から診断領域を観測することができる。さらに、異なる方向から撮像した診断領域の診断画像データを空間合成することにより、スペックルノイズ等のアーチファクトの影響を低減することができる。 For example, when imaging the heart on the back side of an obstacle through a gap between obstacles such as ribs, if n transmission apertures are set to fit in the gap between obstacles, the obstacle may be affected. In addition, artifacts such as jamming noise and shadow artifacts can be reduced for imaging. In addition, a plane wave beam can be transmitted in a desired set deflection direction by providing a delay time difference in an ultrasonic signal that drives n transducers having a transmission aperture. Therefore, it is possible to set the deflection direction so that a plane wave beam can be transmitted to the diagnostic area located behind the obstacle from an angle avoiding the obstacle, or the plane wave beam is transmitted from a different deflection direction through the gap of the obstacle. As a result, the diagnostic region can be observed from various directions. Furthermore, the effect of artifacts such as speckle noise can be reduced by spatially synthesizing diagnostic image data of diagnostic regions imaged from different directions.
 また、上記の課題を解決する本実施例の第2の態様は、第1の態様の送信部と受信部に代えて、次のように構成したことを特徴とする。つまり、前記送信部は、前記超音波探触子に設定された送信口径に対応する複数n(nは自然数)の前記振動子を駆動する時間に遅延時間差を設け、前記被検体内の1箇所に設定された仮想点音源の位置で前記n個の振動子から送信されるn本の送信ラインの超音波の波面を揃わせ、前記仮想点音源を頂点とするセクタ領域の全体に前記n本の送信ラインを放射状に形成する。前記受信部は、前記超音波探触子に設定された受信口径に対応する複数m(mは自然数)の前記振動子により受波される反射エコー信号をフォーカス処理して受信ビームを生成するとともに、前記n本の送信ラインに基づいて設定される複数の受信ラインを走査してフレームデータを生成するように構成されたことを特徴とする。 Further, the second aspect of the present embodiment that solves the above-described problems is characterized in that the following configuration is adopted instead of the transmission section and the reception section of the first aspect. That is, the transmission unit provides a delay time difference in driving time for a plurality of n (n is a natural number) transducers corresponding to the transmission aperture set in the ultrasound probe, and is provided at one location in the subject. The ultrasonic wave fronts of the n transmission lines transmitted from the n transducers are aligned at the position of the virtual point sound source set to n, and the n number of the sector areas having the virtual point sound source as a vertex are aligned. The transmission line is formed radially. The reception unit generates a reception beam by performing a focusing process on a reflected echo signal received by a plurality of m (m is a natural number) of the transducers corresponding to a reception aperture set in the ultrasonic probe. The frame data is generated by scanning a plurality of reception lines set based on the n transmission lines.
 すなわち、第2の態様は、仮想点音源を任意の所望位置に形成し、その仮想点音源を頂点とするセクタ領域の全体にn本の送信ラインを放射状に形成したことを特徴とする。これにより、例えば、障害物の近傍の深度であって障害物から離れた位置あるいは近接した位置に仮想点音源を形成することにより、障害物の裏側にセクタ領域を形成できから、障害物の裏側の診断画像を容易に得ることができる。また、肋骨等の障害物の隙間を介して障害物の奥側の心臓を撮像する場合、その障害物の間に仮想点音源を設定することにより、障害物の影響を受けることなく、ジャミングノイズやシャドーアーチファクト等のアーチファクトを低減して、障害物の奥側(裏側)の診断領域の超音波像を撮像することができる。 That is, the second aspect is characterized in that a virtual point sound source is formed at an arbitrary desired position, and n transmission lines are radially formed in the entire sector area having the virtual point sound source as a vertex. Thus, for example, a sector area can be formed on the back side of the obstacle by forming a virtual point sound source at a position near the obstacle and away from or near the obstacle. This diagnostic image can be easily obtained. In addition, when imaging the heart behind an obstacle through a gap between obstacles such as ribs, a virtual point sound source is set between the obstacles to avoid jamming noise. Artifacts such as shadows and shadow artifacts can be reduced, and an ultrasonic image of a diagnostic region on the back side (back side) of an obstacle can be taken.
 また、第1の態様と同様に、仮想点音源を任意の異なる複数の位置に形成して、複数の診断画像を生成することができ、それらの診断画像を合成することにより、スペックルノイズ等のアーチファクトの影響を低減することができる。 Similarly to the first aspect, a virtual point sound source can be formed at any plurality of different positions to generate a plurality of diagnostic images. By combining these diagnostic images, speckle noise, etc. The effect of the artifact can be reduced.
 本実施例によれば、超音波伝搬の障害物の裏側に位置する生体組織の診断画像を、アーチファクトを抑制して高フレームレートで取得できる。 According to the present embodiment, it is possible to acquire a diagnostic image of a living tissue located behind an obstacle of ultrasonic propagation at a high frame rate while suppressing artifacts.
 本発明を適用してなる超音波診断装置の一実施形態について、図15を用いて説明する。図に示すように、超音波診断装置1は、被検体13に当接させて用いる超音波探触子2と、被検体13内に照射する送信ビームを形成する送信ビームフォーマ3と、送信ビームフォーマ3から出力される信号に従って超音波探触子2を駆動して送信ビームを生成するとともに、超音波探触子2で受信した反射エコー信号を受信するパルサレシーバ4と、パルサレシーバ4から出力される反射エコー信号を入力し、受信処理をして受信ビームを形成する受信ビームフォーマ5とを備えて形成されている。本発明の送信部は、送信ビームフォーマ3とパルサレシーバ4とにより構成され、本発明の受信部は、パルサレシーバ4と受信ビームフォーマ5とにより形成されている。 An embodiment of an ultrasonic diagnostic apparatus to which the present invention is applied will be described with reference to FIG. As shown in the figure, an ultrasonic diagnostic apparatus 1 includes an ultrasonic probe 2 that is used while being in contact with a subject 13, a transmission beam former 3 that forms a transmission beam to be irradiated into the subject 13, and a transmission beam. The ultrasonic probe 2 is driven in accordance with a signal output from the former 3 to generate a transmission beam, and a pulsar receiver 4 that receives a reflected echo signal received by the ultrasonic probe 2 and an output from the pulsar receiver 4 And a reception beam former 5 that inputs a reflected echo signal to be received and performs reception processing to form a reception beam. The transmission unit of the present invention is configured by the transmission beam former 3 and the pulsar receiver 4, and the reception unit of the present invention is formed by the pulsar receiver 4 and the reception beam former 5.
 受信ビームフォーマ5から出力される受信ビームデータは、空間合成部6に入力される。空間合成部6は、空間合成用メモリ7に記憶された空間合成用の受信ビームデータからなるフレームデータを用いて空間合成を行うようになっている。画像処理部8は、空間合成部6により合成されたフレームデータから診断情報を抽出して、診断画像を生成して表示部9に表示するようになっている。これらの空間合成部6と空間合成用メモリ7と画像処理部8とによって、本発明の画像構成部が形成されている。 The reception beam data output from the reception beamformer 5 is input to the space synthesis unit 6. The spatial synthesis unit 6 performs spatial synthesis using frame data composed of received beam data for spatial synthesis stored in the spatial synthesis memory 7. The image processing unit 8 extracts diagnostic information from the frame data synthesized by the space synthesis unit 6, generates a diagnostic image, and displays it on the display unit 9. The space composition unit 6, the space composition memory 7, and the image processing unit 8 form an image configuration unit of the present invention.
 送信ビームフォーマ3、受信ビームフォーマ5、空間合成部6、画像処理部8、表示部9は、それぞれシステムバス12を介して制御部10とユーザインタフェ-ス(UI)11に接続され、それらの間で必要なデータ及び制御指令が送受可能に形成されている。制御部10は、超音波診断装置1の全体を制御するとともに、送信ビームフォーマ3と受信ビームフォーマ5を制御して、被検体13に送信する送信ビーム及び被検体13から受信する反射エコー信号の受信ビームを形成させるようになっている。また、制御部10は、送信ビームフォーマ3と受信ビームフォーマ5を制御して、送信ビームを送信させるとともに、送信ビームである平面波ビームの送信ラインに基づいて設定される受信ラインを走査して受信ビームを生成させるようになっている。ユーザインタフェース(UI)11は、操作者が超音波診断装置1を操作し、かつ動作させるための入力部を備えている。 The transmission beamformer 3, the reception beamformer 5, the space synthesis unit 6, the image processing unit 8, and the display unit 9 are connected to a control unit 10 and a user interface (UI) 11 via a system bus 12, respectively. Necessary data and control commands can be transmitted and received. The control unit 10 controls the entire ultrasound diagnostic apparatus 1 and also controls the transmission beamformer 3 and the reception beamformer 5 to transmit the transmission beam transmitted to the subject 13 and the reflected echo signal received from the subject 13. A receiving beam is formed. The control unit 10 also controls the transmission beamformer 3 and the reception beamformer 5 to transmit the transmission beam, and scans and receives the reception line set based on the transmission line of the plane wave beam that is the transmission beam. A beam is generated. The user interface (UI) 11 includes an input unit for an operator to operate and operate the ultrasonic diagnostic apparatus 1.
 超音波探触子2は、フェーズドアレイであり、複数の振動子を配列して形成され、被検体13との間で超音波を送受信する機能を有している。パルサレシーバ4は、超音波探触子2を駆動して超音波を発生させるための送信パルスを出力するとともに、超音波探触子2で受信した反射エコー信号を取り込んで所定のゲインで増幅して受信信号を生成する。 The ultrasonic probe 2 is a phased array, is formed by arranging a plurality of transducers, and has a function of transmitting and receiving ultrasonic waves to and from the subject 13. The pulsar receiver 4 outputs a transmission pulse for driving the ultrasonic probe 2 to generate an ultrasonic wave, and captures a reflected echo signal received by the ultrasonic probe 2 and amplifies it with a predetermined gain. To generate a reception signal.
 送信ビームフォーマ3は、パルサレシーバ4と相まって、制御部10から与えられる制御指令に基づいて、超音波探触子2に設定された送信口径に対応する複数n(nは自然数)の振動子を駆動して、被検体13内の設定偏向方向θにn本の送信ラインからなる平面波ビーム(送信ビーム)を送信するようになっている。ここで、設定偏向方向θは、超音波探触子2の超音波送受信面に鉛直な偏向方向をθ=0とし、これを基準として対称に偏向させた平面波ビームの進行方向を±θとして表現する。そして、送信ビームフォーマ3は、制御部10から与えられる1又は複数の設定偏向方向θiに送信ビームを送信するため、n個の振動子を駆動する超音波信号に遅延時間差を設け、設定偏向方向θiに平面波ビームを送信して、波面が揃うようにしている。 The transmission beamformer 3 is coupled with the pulsar receiver 4 based on a control command given from the control unit 10 and a plurality of n (n is a natural number) transducers corresponding to the transmission aperture set in the ultrasonic probe 2. Driven to transmit a plane wave beam (transmission beam) composed of n transmission lines in the set deflection direction θ in the subject 13. Here, the set deflection direction θ is expressed as ± θ, where θ = 0 is the deflection direction perpendicular to the ultrasound transmission / reception surface of the ultrasound probe 2 and ± θ is the traveling direction of the plane wave beam deflected symmetrically with reference to this. To do. The transmission beamformer 3 transmits a transmission beam in one or a plurality of set deflection directions θi given from the control unit 10, so that a delay time difference is provided in the ultrasonic signal that drives n transducers, and the set deflection direction A plane wave beam is transmitted to θi so that the wave fronts are aligned.
 受信ビームフォーマ5は、パルサレシーバ4と相まって、制御部10から与えられる制御指令に基づいて、超音波探触子2に設定された受信口径に対応する複数m(mは自然数)の振動子により受波される反射エコー信号をフォーカス処理して受信ビームを生成するようになっている。つまり、反射エコー信号を入力して整相制御し、一点又は複数の収束点についてフォーカス処理して受信ビームを形成する。このとき、n本の送信ラインに基づいて設定される複数の受信ラインを走査して、受信ラインごとに受信ビームを生成するようになっている。そして、全ての受信ラインを走査して得られる複数の受信ビームからなるフレームデータを生成するようになっている。また、複数の設定偏向方向θiに平面波ビームが送信される場合は、n本の送信ラインに基づいて設定される複数の受信ラインを走査して複数の設定偏向方向θiごとのフレームデータを生成するようになっている。なお、受信ライン数は、送信ライン数と同数又は送信ライン数よりも少ない本数に設定することができる。 The reception beamformer 5 is coupled to the pulser receiver 4 by a plurality of m (m is a natural number) transducers corresponding to the reception aperture set in the ultrasonic probe 2 based on a control command given from the control unit 10. A received beam is generated by focusing the reflected echo signal received. In other words, a reflected echo signal is input to perform phasing control, and focus processing is performed on one point or a plurality of convergence points to form a reception beam. At this time, a plurality of reception lines set based on n transmission lines are scanned, and a reception beam is generated for each reception line. Then, frame data composed of a plurality of reception beams obtained by scanning all reception lines is generated. When plane wave beams are transmitted in a plurality of set deflection directions θi, a plurality of reception lines set based on n transmission lines are scanned to generate frame data for each of the plurality of set deflection directions θi. It is like that. The number of reception lines can be set to the same number as the number of transmission lines or a number smaller than the number of transmission lines.
 画像処理部8は、各種フィルタ、検波、反射強度画像輝度変換、血流速度演算、スキャンコンバート処理、各モードの画像や、キャラクタや、スケールなどのオーバーレイを施して診断画像データを得る。また、設定偏向方向θが複数設定されている場合は、それぞれの偏向方向ごとの受信ビームデータに基づいて、空間合成画像を生成するようになっている。表示部9は、画像処理部8で生成された診断画像データを診断画像として画面に表示する。 The image processing unit 8 obtains diagnostic image data by applying various filters, detection, reflection intensity image luminance conversion, blood flow velocity calculation, scan conversion processing, image of each mode, character, scale, and other overlays. When a plurality of set deflection directions θ are set, a spatial composite image is generated based on the received beam data for each deflection direction. The display unit 9 displays the diagnostic image data generated by the image processing unit 8 on the screen as a diagnostic image.
 制御部10は、CPU、メインメモリ、HDDなどから構成され、システムバス12及びシリアルインターフェース、ネットワークなどを介して超音波診断装置1の各部の制御を行うようになっている。つまり、制御部10は、システムバス12に接続されたユーザインタフェース11から入力される操作者の操作に応じた指令に従って、超音波診断装置1の各部の動作を制御するようになっている。ユーザインタフェース11には、トラックボール、キーボード、スイッチなどから構成されている。 The control unit 10 includes a CPU, a main memory, an HDD, and the like, and controls each unit of the ultrasonic diagnostic apparatus 1 via a system bus 12, a serial interface, a network, and the like. That is, the control unit 10 controls the operation of each unit of the ultrasonic diagnostic apparatus 1 in accordance with an instruction according to an operation of the operator input from the user interface 11 connected to the system bus 12. The user interface 11 includes a trackball, a keyboard, a switch, and the like.
 空間合成部6は、空間合成用メモリ7に少なくとも1つ以上のフレームの受信ビームデータを記憶し、2つ目以降のフレームの受信ビームデータと、記憶したフレームの対応する位置の受信ビームデータを用いて、合成受信ビームデータをフレーム単位で生成するようになっている。空間合成は、周知の合成方法を適用することができ、例えば複数フレームの受信ビームデータを画素単位で加算平均して、合成受信ビームデータからなる合成フレームデータを生成する。画像処理部8は、空間合成部6から出力される合成フレームデータの各合成受信ビームデータを、必要に応じてフィルタ処理、検波処理、反射強度画像輝度変換処理、血流速度演算、スキャンコンバート処理、等の処理を施して所望の診断画像を生成するようになっている。つまり、空間合成部6と空間合成用メモリ7と画像処理部8とによって、後述する扇形領域について生成された受信ビームデータに基づいて複数の診断画像を生成し、それらの複数の診断画像を合成した合成診断画像を生成する画像構成部が形成されている。 The spatial synthesis unit 6 stores the reception beam data of at least one frame in the spatial synthesis memory 7, and receives the reception beam data of the second and subsequent frames and the reception beam data at the corresponding position of the stored frame. The combined reception beam data is generated on a frame basis. A known synthesis method can be applied to the spatial synthesis. For example, a plurality of frames of received beam data are added and averaged in units of pixels to generate synthesized frame data composed of the synthesized received beam data. The image processing unit 8 performs filtering processing, detection processing, reflection intensity image luminance conversion processing, blood flow velocity calculation, scan conversion processing on each combined reception beam data of the combined frame data output from the space combining unit 6 as necessary. , Etc. are performed to generate a desired diagnostic image. That is, a plurality of diagnostic images are generated by the space synthesizing unit 6, the space synthesizing memory 7, and the image processing unit 8 based on received beam data generated for a sector area described later, and the plurality of diagnostic images are synthesized. An image constructing unit for generating the synthesized diagnostic image is formed.
 このように構成される一実施形態の超音波診断装置を用いて行う本発明の診断画像の撮像方法を、実施例に分けて説明する。なお、以下の実施例では、平面波ビームを形成する送信ラインと、受信ビームを形成する受信ラインの本数及び位置を同一に設定した例を説明する。しかし、本発明はこれに限られるものではなく、送信ライン数と受信ライン数を異ならせて設定することができる。 The diagnostic image capturing method of the present invention performed by using the ultrasonic diagnostic apparatus according to the embodiment configured as described above will be described in each example. In the following embodiments, an example will be described in which the number and positions of transmission lines that form a plane wave beam and reception lines that form a reception beam are set to be the same. However, the present invention is not limited to this, and the number of transmission lines and the number of reception lines can be set differently.
(実施例3)
 本実施例3では、図15に示すように、被検体13内の診断部位として心臓14の診断画像を撮像するものとして説明する。同図に示すように、超音波探触子2と心臓14との間に障害物である肋骨15が位置している。従来一般のフェーズドアレイの超音波探触子2を用いて扇形走査により診断画像を撮像する場合、図16に示すように、扇形領域の頂点(走査中心)16を扇形走査中心として、超音波探触子2の超音波送受信面の複数の振動子の配列中心に位置させて設定される。この場合、肋骨15が心臓14に対して送受信ラインである走査線17を遮る領域18が生じるため、音響陰影により心臓14の一部が隠れた画像となる。また、肋骨15で超音波が乱反射する結果、アーチファクト119が生じ、診断の妨げとなる。
(Example 3)
In the third embodiment, description will be made assuming that a diagnostic image of the heart 14 is taken as a diagnostic site in the subject 13 as shown in FIG. As shown in the figure, a rib 15 that is an obstacle is located between the ultrasound probe 2 and the heart 14. When a diagnostic image is captured by sector scanning using a conventional phased array ultrasound probe 2, as shown in FIG. 16, the ultrasound probe is performed with the vertex (scanning center) 16 of the sector area as the sector scanning center. It is set so as to be positioned at the center of arrangement of a plurality of transducers on the ultrasonic transmission / reception surface of the touch element 2. In this case, since an area 18 is formed in which the rib 15 blocks the scanning line 17 that is a transmission / reception line with respect to the heart 14, an image in which a part of the heart 14 is hidden by the acoustic shadow is obtained. Further, as a result of the irregular reflection of ultrasonic waves at the ribs 15, artifacts 119 are generated, which hinders diagnosis.
 そこで、本実施例3では、図17(a)~(c)に示すように、2本の肋骨15a、bの間に形成される隙間である音響窓の中心に、平行な複数の送受信ライン20からなる平面波ビーム121の幅方向の中心に、中心送受信ライン20-cを設定する。図17(a)~(c)では、2本の肋骨15a、bの隙間の最も狭い隙間の最狭点122a、bを結ぶ線上の中心に、それぞれ中心送受信ライン20-cを設定している例を示している。しかし、これに限られるものではなく、最狭点122a、bを結ぶ線上の少なくとも1点を通る中心送受信ライン20-cを設定する。この中心送受信ライン20-cの設定は、例えば心臓14の診断画像を取得する準備段階で、超音波探触子2を被検体13の体表に当接して得られる肋骨15を含む診断部位14の断層画像を表示部9に表示し、その断層画像上で操作者がユーザインタフェース11から平面波ビーム121の幅方向の中心に中心送受信ライン20-cを設定することができる。また、後述するように、制御部10により自動で中心送受信ライン20-cを設定することができる。 Therefore, in the third embodiment, as shown in FIGS. 17 (a) to 17 (c), a plurality of parallel transmission / reception lines at the center of the acoustic window which is a gap formed between the two ribs 15a and 15b. A center transmission / reception line 20-c is set at the center in the width direction of the plane wave beam 121 composed of 20. 17A to 17C, center transmission / reception lines 20-c are set at the centers on the line connecting the narrowest points 122a and 122b of the narrowest gap between the two ribs 15a and 15b, respectively. An example is shown. However, the present invention is not limited to this, and the center transmission / reception line 20-c passing through at least one point on the line connecting the narrowest points 122a and 122b is set. The center transmission / reception line 20-c is set, for example, in a preparation stage for acquiring a diagnostic image of the heart 14, for example, a diagnostic region 14 including a rib 15 obtained by bringing the ultrasonic probe 2 into contact with the body surface of the subject 13. This tomographic image is displayed on the display unit 9, and the operator can set the center transmission / reception line 20-c at the center in the width direction of the plane wave beam 121 from the user interface 11 on the tomographic image. Further, as will be described later, the center transmission / reception line 20-c can be automatically set by the control unit 10.
 ユーザインタフェース11により中心送受信ライン20-cが設定されると、制御部10は、設定された中心送受信ライン20-cを中心とする平面波ビーム121を設定する。平面波ビーム121は、中心送受信ライン20-cの設定偏向方向(偏向角度)θの範囲(+θ、-θ)、送信ラインピッチ、送信ライン数、送信口径(n)などを含む送信パラメータであり、予め設定されている送信条件の基準に従って設定する。そして、制御部10は、設定した送信条件に従って送信ビームフォーマ3を制御して、パルサレシーバ4と超音波探触子2を介して被検体13に送信ビームを送信する。また、制御部10は、送受信ライン20の本数に基づいて、フォーカス受信するための受信口径と、受信ラインピッチ、受信ライン数、1又は複数のフォーカス点などの受信パラメータを、予め設定されている受信条件の基準に従って受信ビームフォーマ5に設定する。 When the center transmission / reception line 20-c is set by the user interface 11, the control unit 10 sets the plane wave beam 121 centered on the set center transmission / reception line 20-c. The plane wave beam 121 is a transmission parameter including a set deflection direction (deflection angle) θ range (+ θ, −θ) of the center transmission / reception line 20-c, a transmission line pitch, the number of transmission lines, a transmission aperture (n), and the like. It is set according to the criteria of transmission conditions set in advance. Then, the control unit 10 controls the transmission beam former 3 in accordance with the set transmission conditions, and transmits a transmission beam to the subject 13 via the pulser receiver 4 and the ultrasonic probe 2. Further, the control unit 10 presets a reception aperture for receiving focus and reception parameters such as a reception line pitch, the number of reception lines, and one or a plurality of focus points based on the number of transmission / reception lines 20. The reception beamformer 5 is set according to the reception condition criteria.
 図17では、簡略にするために平面波ビーム121の送受信ライン20の本数を、それぞれ設定偏向方向(図示例では3方向)について複数本(図示例では3本)示しているが、通常の送受信ライン20の本数は数十から数百本に設定することができる。また、設定偏向方向についても適宜数、設定することができる。偏向角度が異なる平面波ビーム121に基づく反射エコー信号を、送受信ライン20に従って走査して形成された受信ビームデータは、複数の設定偏向方向ごとに空間合成部6により空間合成用メモリ7に記憶される。そして、空間合成部6にて、複数の設定偏向方向の受信ビームデータからなるフレームデータが重なり合う同一空間の受信ビームデータが空間合成され、合成診断画像が生成される。 In FIG. 17, for the sake of simplicity, the number of transmission / reception lines 20 of the plane wave beam 121 is shown in plural (three in the illustrated example) in the set deflection direction (three in the illustrated example). The number of 20 can be set to several tens to several hundreds. Also, the number of set deflection directions can be set as appropriate. Received beam data formed by scanning reflected echo signals based on plane wave beams 121 having different deflection angles along the transmission / reception line 20 is stored in the space synthesis memory 7 by the space synthesis unit 6 for each of a plurality of set deflection directions. . Then, the spatial synthesis unit 6 spatially synthesizes the reception beam data in the same space where frame data composed of reception beam data in a plurality of set deflection directions overlaps to generate a synthesized diagnostic image.
 図18(a)に、超音波探触子2の送信口径に対応するn個の振動子を駆動して、被検体13内の設定偏向方向θiにn本の平行な送受信ライン20からなる平面波ビーム121を形成する送信動作と、受信口径に対応する複数m(mは自然数で、m≦n)の振動子により受波される反射エコー信号をフォーカス処理して受信ビームを生成する受信動作のタイミングチャートを示す。図に示すように、送信ビームフォーマ3は、設定時間にわたって超音波の送信パルスからなる平面波ビームを間欠的に送信する。受信ビームフォーマ5は、平面波ビームが停止している間に、受信口径を切り替えながら、設定されている送受信ライン20を走査して受信ビームを形成してフレームデータを取得するようになっている。この動作を複数の設定偏向方向θiについて実施して、設定偏向方向θiごとのフレームデータを取得する。 In FIG. 18A, n transducers corresponding to the transmission aperture of the ultrasound probe 2 are driven, and a plane wave composed of n transmission / reception lines 20 parallel to the set deflection direction θi in the subject 13. A transmission operation for forming the beam 121 and a reception operation for generating a reception beam by performing a focusing process on a reflected echo signal received by a plurality of m transducers (m is a natural number, m ≦ n) corresponding to the reception aperture. A timing chart is shown. As shown in the figure, the transmission beam former 3 intermittently transmits a plane wave beam composed of ultrasonic transmission pulses over a set time. While the plane wave beam is stopped, the reception beamformer 5 scans the set transmission / reception line 20 while switching the reception aperture to form a reception beam and acquire frame data. This operation is performed for a plurality of set deflection directions θi to obtain frame data for each set deflection direction θi.
 なお、図18(a)の例によれば、送受信ライン20の本数が多い場合は、フレームデータの取得に時間がかかる場合がある。この場合は、図18(b)に示すように、送受信ライン20を平面波ビーム121の幅方向に複数Nの組に分割し、分割した組ごとに分けて送受信ライン20を並列に走査すれば、フレームデータの取得時間を短縮できる。すなわち、制御部10は、送信ビームフォーマ3を制御して設定偏向方向θiごとに平面波ビーム121を送信させる。また、制御部10は、受信ビームフォーマ5を制御して平面波ビーム121の複数の送受信ライン20を複数Nの組に分割し、分割した組ごとの送受信ライン20を走査して受信ビームを生成する。そして、生成した複数の受信ビームに基づいて設定偏向方向θiごとにフレームデータを生成する。また、図18(a)、(b)を適宜組み合わせてもよい。 Note that, according to the example of FIG. 18A, when the number of transmission / reception lines 20 is large, it may take time to acquire frame data. In this case, as shown in FIG. 18B, if the transmission / reception line 20 is divided into a plurality of N sets in the width direction of the plane wave beam 121, and the transmission / reception lines 20 are scanned in parallel for each divided group, Frame data acquisition time can be shortened. That is, the control unit 10 controls the transmission beam former 3 to transmit the plane wave beam 121 for each set deflection direction θi. Further, the control unit 10 controls the reception beamformer 5 to divide the plurality of transmission / reception lines 20 of the plane wave beam 121 into a plurality of N sets, and scans the transmission / reception lines 20 for each divided group to generate reception beams. . Then, frame data is generated for each set deflection direction θi based on the plurality of generated reception beams. Further, FIGS. 18A and 18B may be appropriately combined.
 このように、図17に示した実施例3の診断画像の撮像方法によれば、障害物である肋骨15の間に平面波ビーム121の中心送受信ライン20-cを設定して、平面波ビーム121の幅が障害物である肋骨15の間に収まるように、設定偏向方向θに応じて送受信ライン20の本数とピッチを調整できる。そのため、診断部位である心臓14を肋骨15の音響陰影に隠れることなく描出することができる。したがって、超音波探触子2の位置によって肋骨15間の隙間の大きさや、体表からの深さ、及び設定偏向方向θが変化しても、これに対応して平面波ビーム121の幅を複数の障害物の隙間に収まるように容易に変更できるから、送受信ライン20が障害物に遮られることなく診断画像を撮像できる。これにより、超音波探触子2の位置を種々変えて、異なる角度から見た診断画像を容易に取得することができる。 As described above, according to the diagnostic image capturing method of the third embodiment illustrated in FIG. 17, the center transmission / reception line 20-c of the plane wave beam 121 is set between the ribs 15 that are obstacles, and the plane wave beam 121 is The number and pitch of the transmission / reception lines 20 can be adjusted according to the set deflection direction θ so that the width falls between the ribs 15 as obstacles. Therefore, it is possible to depict the heart 14 which is a diagnostic site without being hidden by the acoustic shadow of the rib 15. Therefore, even if the size of the gap between the ribs 15, the depth from the body surface, and the set deflection direction θ change depending on the position of the ultrasonic probe 2, the width of the plane wave beam 121 is increased correspondingly. Therefore, the transmission / reception line 20 can be captured without being obstructed by the obstacle. Thereby, it is possible to easily acquire diagnostic images viewed from different angles by changing the position of the ultrasound probe 2 in various ways.
 また、肋骨15による不要な乱反射が低減できるのでジャミングノイズなどのアーチファクトを低減することができる。さらに、設定偏向方向θを複数設定して、異なる偏向方向から診断対象を撮像できるから、それらの複数偏向方向の受信ビームデータからなるフレームデータ取得し、それらのフレームデータを空間合成して診断画像を構成できるから、スペックルノイズを低減することができる。 Further, since unnecessary irregular reflection by the ribs 15 can be reduced, artifacts such as jamming noise can be reduced. Furthermore, since a plurality of set deflection directions θ can be set and a diagnostic object can be imaged from different deflection directions, frame data consisting of received beam data in those multiple deflection directions is acquired, and these frame data are spatially synthesized to produce a diagnostic image. Therefore, speckle noise can be reduced.
 実施例3では、平面波ビームの偏向方向が3方向の例を示したが、これに限らず、許容される撮像時間に応じて適宜増やすことにより、空間分解能や、コントラスト分解能を改善することができる。また、本実施例では、簡単のために送受信ライン20を3本の例で説明したが、これに限らず、送受信ライン20を許容される撮像時間に応じて設定することにより、空間分解能や、コントラスト分解能を改善することができる。 In the third embodiment, the plane wave beam is deflected in three directions. However, the present invention is not limited to this, and the spatial resolution and the contrast resolution can be improved by appropriately increasing according to the allowable imaging time. . In this embodiment, the transmission / reception line 20 has been described with three examples for the sake of simplicity. However, the present invention is not limited to this, and by setting the transmission / reception line 20 according to an allowable imaging time, Contrast resolution can be improved.
 また、実施例3では、非集束送信の平面波ビームの例を示したが、本発明はこれに限らず、送受信ライン数と受信ビームの間隔に応じて、比較的弱めの集束送信を行って音圧の強い送信ラインからなる平面波ビームを用いても実現できる。この場合、複数の受信ビーム相互間の感度差、サイドローブの影響などを考慮して弱集束平面波ビームを調整、受信ゲインなどで補正する。 In the third embodiment, an example of a plane wave beam for unfocused transmission is shown. However, the present invention is not limited to this, and a relatively weak focused transmission is performed according to the number of transmission / reception lines and the interval between reception beams. This can also be realized by using a plane wave beam composed of a transmission line having a strong pressure. In this case, the weakly focused plane wave beam is adjusted and corrected by reception gain or the like in consideration of sensitivity differences among a plurality of reception beams and the influence of side lobes.
 (実施例3の変形例)
 実施例3では、肋骨15の間から診断部位14である心臓を撮像する例を示した。しかし、本発明は肋間撮像に限られるものではなく、障害物の影響がない場合でも、本発明を適用することにより、高フレームレートで空間解像度に優れ、アーチファクトの少ない診断画像を撮像することができる。例えば、図19(a)~(c)に示すように、診断部位14に対して、平面波ビーム121の幅を診断部位14の大きさに合わせて、設定偏向方向θiを変えて複数枚(図示例では3枚)のフレームデータを取得する。そして、複数枚のフレームデータに基づいて空間合成部6において空間合成することにより、空間解像度に優れ、アーチファクトの少ない診断画像を撮像することができる。つまり、障害物の存在の有無、及び障害物の位置に応じて、平面波ビームの位置及び幅を調整することにより、診断部位14の範囲に応じて広範囲又は局所的な範囲、あるいは送受信ライン20の間隔を自由に調整することが可能となる。
(Modification of Example 3)
In the third embodiment, an example in which the heart that is the diagnostic site 14 is imaged from between the ribs 15 is shown. However, the present invention is not limited to intercostal imaging, and even when there is no influence from an obstacle, by applying the present invention, it is possible to capture a diagnostic image with a high frame rate, excellent spatial resolution, and few artifacts. it can. For example, as shown in FIGS. 19A to 19C, a plurality of sheets (see FIG. 19) with the width of the plane wave beam 121 adjusted to the size of the diagnostic region 14 and the set deflection direction θi are changed. Frame data of 3 frames in the example is acquired. Then, by performing spatial synthesis in the spatial synthesis unit 6 based on a plurality of pieces of frame data, it is possible to capture a diagnostic image with excellent spatial resolution and few artifacts. That is, by adjusting the position and width of the plane wave beam according to the presence / absence of an obstacle and the position of the obstacle, a wide range or a local range according to the range of the diagnostic region 14 or the transmission / reception line 20 The interval can be adjusted freely.
(実施例4)
 図20を参照して、本発明の診断画像の撮像方法の実施例4を説明する。本実施例は、実施例3と同様に、被検体13内の診断部位として心臓14の診断画像を撮像するものとして説明する。本実施例4が、実施例3と異なる点は、平行な複数の送受信ライン20からなる平面波ビーム121を送信することに代えて、2本の肋骨15a、bの間に形成される隙間に、送信口径を構成する複数の振動子から仮想点音源31を形成するように送信することにある。すなわち、送信口径に対応する振動子から放出される複数の送受信ライン32が仮想点音源31で交差した後、セクタ状に広がる平面波ビーム33を形成して、平面波ビーム33が肋骨等の超音波伝搬の障害物に遮られないようにしたことにある。図示例では、図を簡潔にするため、仮想点音源31を3点配置し、送受信ライン32を3本示しているが、実施例3と同様に、本発明はこれに限られないことは言うまでもない。
Example 4
A fourth embodiment of the diagnostic image capturing method of the present invention will be described with reference to FIG. In the present embodiment, as in the case of the third embodiment, it is assumed that a diagnostic image of the heart 14 is taken as a diagnostic site in the subject 13. The fourth embodiment is different from the third embodiment in that a gap formed between the two ribs 15a and 15b is used instead of transmitting a plane wave beam 121 including a plurality of parallel transmission / reception lines 20. The purpose is to transmit the virtual point sound source 31 from a plurality of transducers constituting the transmission aperture. That is, after a plurality of transmission / reception lines 32 emitted from the transducer corresponding to the transmission aperture intersect at the virtual point sound source 31, a plane wave beam 33 spreading in a sector shape is formed, and the plane wave beam 33 is propagated by an ultrasonic wave such as a rib. This is because it is not obstructed by other obstacles. In the illustrated example, for the sake of simplicity, three virtual point sound sources 31 are arranged and three transmission / reception lines 32 are shown. However, as in the third embodiment, the present invention is not limited to this. Yes.
 ユーザインタフェース11を用いて、図20(a)~(c)に示すように、障害物(例えば、肋骨)15a,bの間に仮想点音源31を3点設定する。また、仮想点音源31を配置する幅は、障害物(例えば、肋骨)15a,bの間隔よりも当然に狭く設定する。制御部10は、仮想点音源31の数、走査角度、走査ピッチなどの走査情報に基づいて、送信ビームフォーマ3と受信ビームフォーマ5を制御する。 Using the user interface 11, as shown in FIGS. 20A to 20C, three virtual point sound sources 31 are set between obstacles (for example, ribs) 15a and 15b. Moreover, the width | variety which arrange | positions the virtual point sound source 31 is naturally set narrower than the space | interval of the obstruction (for example, rib) 15a, b. The control unit 10 controls the transmission beamformer 3 and the reception beamformer 5 based on scanning information such as the number of virtual point sound sources 31, a scanning angle, and a scanning pitch.
 送信ビームフォーマ3は、制御部10に制御指令に基づいて、超音波探触子2に設定された送信口径(送信サブ口径)Dに対応する複数nの振動子を、遅延時間差を設けた送信パルスで駆動する。遅延時間差は、n個の振動子から送信されるn本の送受信ライン32の超音波の波面が仮想点音源31の位置で揃うように決める。その結果、送信サブ口径Dから送信されたエネルギーが仮想点音源31に集束し、仮想点音源31からセクタ領域の全体にn本の送受信ライン32が放射状に拡散して平面波ビーム33が形成される。ここで、理想的な仮想点音源31を形成するためには、送信サブ口径Dを次式(1)のように設定する。次式(1)において、Lは超音波探触子2の送受信面と仮想点音源31との最短距離、θmaxは走査最大角度である。
   D>2Ltan(θmax)      ・・・(1)
 ただし、送信サブ口径Dを大きくしすぎると、障害物(例えば、肋骨)15の影響によるアーチファクトが増加するので、調整が必要である。
The transmission beamformer 3 transmits a plurality of n transducers corresponding to the transmission aperture (transmission sub aperture) D set in the ultrasonic probe 2 with a delay time difference based on a control command to the control unit 10. Drive by pulse. The delay time difference is determined so that the ultrasonic wavefronts of the n transmission / reception lines 32 transmitted from the n transducers are aligned at the position of the virtual point sound source 31. As a result, the energy transmitted from the transmission sub-aperture D is focused on the virtual point sound source 31, and n transmission / reception lines 32 are diffused radially from the virtual point sound source 31 to the entire sector region to form a plane wave beam 33. . Here, in order to form the ideal virtual point sound source 31, the transmission sub aperture D is set as in the following equation (1). In the following equation (1), L is the shortest distance between the transmission / reception surface of the ultrasound probe 2 and the virtual point sound source 31, and θmax is the maximum scanning angle.
D> 2Ltan (θmax) (1)
However, if the transmission sub aperture D is too large, artifacts due to the influence of the obstacle (for example, ribs) 15 increase, and adjustment is necessary.
 一方、受信ビームフォーマ5は、制御部10の制御指令に基づいて、超音波探触子2に設定された受信口径に対応する複数m(mは自然数)の振動子により受波される反射エコー信号を、送受信ライン32上でフォーカス処理して受信ビームを生成する。そして、n本の送受信ライン32を走査して得られる受信ビームデータにより、フレームデータを生成するようになっている。例えば、複数の設定偏向方向ごとに得られた受信ビームデータを空間合成部6により空間合成用メモリ7に記憶し、同一空間の受信ビームデータを合成して、1枚の合成診断画像を生成する。本実施例4の空間合成によれば、図21の概念図に示すように、スペックルノイズを低減することができる。 On the other hand, the reception beamformer 5 is a reflected echo received by a plurality of m (m is a natural number) transducers corresponding to the reception aperture set in the ultrasonic probe 2 based on a control command of the control unit 10. The signal is focused on the transmission / reception line 32 to generate a reception beam. Frame data is generated from received beam data obtained by scanning n transmission / reception lines 32. For example, the received beam data obtained for each of a plurality of set deflection directions is stored in the space synthesizing memory 7 by the space synthesizing unit 6, and the received beam data in the same space is synthesized to generate one synthesized diagnostic image. . According to the spatial synthesis of the fourth embodiment, speckle noise can be reduced as shown in the conceptual diagram of FIG.
 本実施例4によれば、障害物(例えば、肋骨)15a、bの間に仮想点音源31を設定して、診断部位14が障害物15による音響陰影に隠れることなく、超音波送受信することができるので、障害物による不要な乱反射を低減して、ジャミングノイズなどのアーチファクトを低減した診断画像を取得することができる。なお、本実施例では、仮想点音源31を3点設定する場合を説明したが、さらに多くの仮想点音源31を設定することにより、空間分解能及びコントラスト分解能を改善することができる。 According to the fourth embodiment, the virtual point sound source 31 is set between the obstacles (for example, ribs) 15a and 15b, and the diagnostic part 14 transmits and receives ultrasonic waves without being hidden by the acoustic shadow of the obstacle 15. Therefore, it is possible to obtain a diagnostic image in which artifacts such as jamming noise are reduced by reducing unnecessary irregular reflection due to an obstacle. In this embodiment, the case where three virtual point sound sources 31 are set has been described. However, by setting more virtual point sound sources 31, the spatial resolution and the contrast resolution can be improved.
 (実施例4の変形例1)
 実施例4では、1組の障害物(例えば、肋骨)15a、bの隙間から障害物15a、bの裏側(奥側)の診断部位14を撮像する例を示したが、本発明はこれに限らず、図22に示すように、3つの障害物(例えば、肋骨)15a、b、cにより形成される2つの隙間にそれぞれ仮想点音源31a、bを設定して、実施例4と同様に撮像することができる。これによれば、比較的大きな診断部位14の場合で、かつ比較的多くの障害物15a~cが存在するときでも、撮像することができる。また、複数の障害物15a~cによる音響陰影に隠れることなく撮像できるので、障害物による不要な乱反射を低減して、ジャミングノイズなどのアーチファクトを低減することができる。
(Modification 1 of Example 4)
In the fourth embodiment, an example is shown in which the diagnostic part 14 on the back side (back side) of the obstacles 15a and 15b is imaged from the gap between the pair of obstacles (for example, ribs) 15a and b. Not limited to this, as shown in FIG. 22, virtual point sound sources 31a, 31b are respectively set in two gaps formed by three obstacles (for example, ribs) 15a, b, c, and the same as in the fourth embodiment. An image can be taken. According to this, it is possible to take an image even in the case of a relatively large diagnostic region 14 and when there are relatively many obstacles 15a to 15c. In addition, since imaging can be performed without being hidden by the acoustic shadows of the plurality of obstacles 15a to 15c, unnecessary irregular reflection due to the obstacles can be reduced, and artifacts such as jamming noise can be reduced.
 (実施例4の変形例2)
 図23に、障害物15a、bの間に設定した仮想点音源31を通る送受信ライン32の本数を、図23(a)、(c)に比べて、図23(b)のように、仮想点音源31を中心位置に設定した場合に増やすことができる。このように、超音波探触子2が障害物15a、bから比較的遠い場合は、送受信ライン32の本数を増加することにより、画像表示範囲を拡大することができる。また、本例では、送受信ライン32を左右対称に設定しているが、左右の比率を変更することで表示範囲を拡大することもできる。
(Modification 2 of Example 4)
23, the number of transmission / reception lines 32 passing through the virtual point sound source 31 set between the obstacles 15a and 15b is compared with that in FIGS. 23 (a) and 23 (c), as shown in FIG. This can be increased when the point sound source 31 is set at the center position. Thus, when the ultrasonic probe 2 is relatively far from the obstacles 15a and 15b, the image display range can be expanded by increasing the number of transmission / reception lines 32. In this example, the transmission / reception line 32 is set symmetrically, but the display range can be expanded by changing the left / right ratio.
 (実施例4の変形例3)
 図24に、仮想点音源31の数を2点にし、送受信ライン32の本数を増やした例を示す。本例のように、空間合成の効果と、送受信ライン32の密度を調整して、空間分解能の改善効果とアーチファクトの低減効果を調整することができる。
(Modification 3 of Example 4)
FIG. 24 shows an example in which the number of virtual point sound sources 31 is two and the number of transmission / reception lines 32 is increased. As in this example, the effect of spatial synthesis and the density of the transmission / reception line 32 can be adjusted to adjust the effect of improving spatial resolution and the effect of reducing artifacts.
 (実施例4の変形例4)
 図25に、仮想点音源31を深度方向に2点設定した例を示す。障害物15a、bの間隔が比較的狭い場合などで有効である。
(Modification 4 of Example 4)
FIG. 25 shows an example in which two virtual point sound sources 31 are set in the depth direction. This is effective when the distance between the obstacles 15a and 15b is relatively narrow.
 (実施例4の変形例5)
 図26と図27に、障害物が存在しない場合で、仮想点音源31を5点設定した例を示す。図26は、仮想点音源31を超音波探触子2の送受信面に設定した例であり、図27は超音波探触子2の送受信面よりも超音波探触子2の内部側に設定した例である。このように、障害物の存在、位置に応じて仮想点音源31の位置を調整することにより、診断部位の範囲に応じて広範囲、又は局所的などの範囲、あるいは送受信ライン32の間隔を自由に調整することが可能となる。
(Modification 5 of Example 4)
FIG. 26 and FIG. 27 show an example in which five virtual point sound sources 31 are set when there is no obstacle. FIG. 26 is an example in which the virtual point sound source 31 is set on the transmission / reception surface of the ultrasonic probe 2, and FIG. 27 is set on the inner side of the ultrasonic probe 2 than the transmission / reception surface of the ultrasonic probe 2. This is an example. Thus, by adjusting the position of the virtual point sound source 31 according to the presence and position of the obstacle, it is possible to freely set a wide range or any local range, or the interval between the transmission and reception lines 32 according to the range of the diagnosis part. It becomes possible to adjust.
 また、実施例3,4における空間合成において、複数の送受信ライン20、32のうち、障害物15から遠い空間データの重みが大きくなるように、合成する際に重み係数を乗算した上で合成することができる。重み係数としては、例えばハニング、ハミング、ブラックマンなど、送受信ライン20、32の配列に関して連続的なアポダイズにすることが望ましい。また、実施例3,4において、超音波探触子2は平面状に複数の振動子を配列した例を示したが、本発明はこれに限らず、例えば曲面上に複数の振動子を配列した超音波探触子を適用することができる。要は、位相や、遅延量により受信ラインを偏向することができればよい。 Further, in the spatial synthesis in the third and fourth embodiments, among the plurality of transmission / reception lines 20 and 32, the synthesis is performed by multiplying the weighting coefficient at the time of synthesis so that the weight of the spatial data far from the obstacle 15 is increased. be able to. As a weighting factor, it is desirable that the apodization is continuous with respect to the arrangement of the transmission / reception lines 20 and 32 such as Hanning, Hamming, and Blackman. In the third and fourth embodiments, the ultrasonic probe 2 has shown an example in which a plurality of transducers are arranged in a planar shape. However, the present invention is not limited to this, and for example, a plurality of transducers are arranged on a curved surface. The applied ultrasonic probe can be applied. In short, it is only necessary that the receiving line can be deflected by the phase and the delay amount.
 以上、実施例3,4に基づいて、超音波探触子2と診断部位(診断領域)である心臓14との間に障害物である肋骨15が位置している例について説明したが、本発明はこれに限られるものではない。すなわち、音波伝搬の障害物が1つの場合であって、その障害物の裏側にまで診断部位が広がっている場合でも、実施例3,4及びそれらの変形例で説明した送信ビーム及び受信ビームを用い、障害物により音波が反射等することにより生ずるアーチファクトを低減した診断画像を取得することができる。すなわち、送信部は、被検体内の超音波伝搬の障害物を避けるように平面波ビームを送信し、受信部は、被検体内の超音波伝搬の障害物を避けるように反射エコー信号を受信してフォーカス処理することにより受信ビームを生成するようにすることにより、アーチファクトを低減した生体組織の診断画像を撮像することができる。 As described above, the example in which the rib 15 that is an obstacle is located between the ultrasound probe 2 and the heart 14 that is the diagnostic site (diagnosis region) has been described based on Examples 3 and 4. The invention is not limited to this. That is, even when there is only one obstacle for sound wave propagation and the diagnosis part extends to the back side of the obstacle, the transmission beam and the reception beam described in the third and fourth embodiments and the modifications thereof are used. It is possible to obtain a diagnostic image in which artifacts caused by reflection of sound waves by obstacles are reduced. That is, the transmission unit transmits a plane wave beam so as to avoid the obstacle of ultrasonic propagation in the subject, and the reception unit receives the reflected echo signal so as to avoid the obstacle of ultrasonic propagation in the subject. By generating the received beam by performing the focusing process, it is possible to capture a diagnostic image of the living tissue with reduced artifacts.
 例えば、n個の送信口径から被検体内にn本の送信ラインからなる非集束送信の平面波ビームを送信し、その平面波ビームの偏向方向を任意に調整することにより、超音波伝搬の障害物を避けて障害物の裏側に位置する診断領域に平面波ビームを照射することができる。同様に、その偏向方向に障害物を避けて受信ビームを形成することにより、アーチファクトを低減した生体組織の診断画像を撮像することができる。また、平面波ビームを送信しているから、走査することなく一回の送信で診断領域の全体に超音波を送波できる。また、走査(スキャン)に伴う時間が不要であるから、並列受信することによりフレームレートを高くすることができる。 For example, by transmitting a non-focused transmission plane wave beam consisting of n transmission lines from the n transmission apertures into the subject and arbitrarily adjusting the deflection direction of the plane wave beam, the obstacle of ultrasonic propagation is reduced. Avoiding this, the plane wave beam can be irradiated to the diagnostic region located behind the obstacle. Similarly, a diagnostic image of a living tissue with reduced artifacts can be taken by forming a reception beam while avoiding an obstacle in the deflection direction. In addition, since the plane wave beam is transmitted, the ultrasonic wave can be transmitted to the entire diagnosis region by one transmission without scanning. In addition, since time required for scanning is unnecessary, the frame rate can be increased by performing parallel reception.
 また、障害物の近傍の深度であって障害物から離れた位置あるいは近接した位置に仮想点音源を形成することにより、障害物の裏側にセクタ領域を形成できから、障害物の裏側の診断画像を容易に得ることができる。 In addition, a sector area can be formed on the back side of the obstacle by forming a virtual point sound source at a depth near the obstacle and away from or near the obstacle. Can be easily obtained.
(実施例5)
 本発明を適用してなる超音波診断装置を用いた実施例5の撮像方法について、図28~図37を参照して説明する。本実施例5が実施例3,4と相違する点は、送信ビーム(平面波ビーム)を符号変調するとともに、受信ビームを符号復調して受信ビームデータを生成することにある。すなわち、実施例3の図17の複数の設定偏向方向に同一時に平面波ビーム121を送信した場合、複数の設定偏向方向ごとの受信ビームデータを識別して取得できるように、符号変調及び符号復調するようにしたことにある。その他の点は、実施例3,4と同一であることから、同一符号を付して説明を省略する。
(Example 5)
An imaging method of Example 5 using an ultrasonic diagnostic apparatus to which the present invention is applied will be described with reference to FIGS. The fifth embodiment is different from the third and fourth embodiments in that the transmission beam (plane wave beam) is code-modulated and the reception beam is code-demodulated to generate reception beam data. That is, when the plane wave beam 121 is transmitted at the same time in the plurality of setting deflection directions in FIG. 17 of the third embodiment, code modulation and code demodulation are performed so that reception beam data for each of the plurality of setting deflection directions can be identified and acquired. It is in doing so. Since the other points are the same as those of the third and fourth embodiments, the same reference numerals are given and the description thereof is omitted.
 図28に、本実施例5を実施する超音波診断装置1のブロック構成図を示す。図15に示した実施例3の超音波診断装置1に加えて、送信変調部41を設けて送信ビームフォーマ3により生成される平面波ビーム信号を符号変調し、受信復調部42を設けて受信ビームフォーマ5から出力される受信ビーム信号を符号復調して、空間合成部6に出力するようにしたことにある。なお、送信変調部41と受信復調部42はそれぞれシステムバス12を介して制御部10とユーザインタフェース11に接続されている。 FIG. 28 shows a block diagram of an ultrasonic diagnostic apparatus 1 that implements the fifth embodiment. In addition to the ultrasonic diagnostic apparatus 1 of the third embodiment shown in FIG. 15, the transmission modulation unit 41 is provided to code-modulate the plane wave beam signal generated by the transmission beam former 3, and the reception demodulation unit 42 is provided to receive the reception beam. The reception beam signal output from the former 5 is code-demodulated and output to the spatial synthesis unit 6. The transmission modulation unit 41 and the reception demodulation unit 42 are connected to the control unit 10 and the user interface 11 via the system bus 12, respectively.
 送信変調部41は送信される平面波ビーム信号を例えばBarkerやGolayや、Chirpなどの符号係数を用いて変調する。受信復調部42は、送信変調部41で変調した符号に応じた符号復調係数を用いて受信ビーム信号を復調する。 The transmission modulation unit 41 modulates the transmitted plane wave beam signal using a code coefficient such as Barker, Golay, or Chirp. The reception demodulator 42 demodulates the received beam signal using a code demodulation coefficient corresponding to the code modulated by the transmission modulator 41.
 図29を参照して、本実施例5の診断画像の撮像方法について説明する。図29は、図17に示した実施例3の複数の設定偏向方向の診断画像の撮像を並行して行うことを特徴とする。これにより、さらに高フレームレート化するとともに、複数の設定偏向方向の診断画像データを空間合成して、高分解能で、アーチファクトを低減した診断画像を取得しようとするものである。すなわち、図29は、2本の肋骨15a、bの間に形成される隙間を通して、診断部位14である心臓の診断画像を撮像しようとする例である。 With reference to FIG. 29, the imaging method of the diagnostic image of the present Example 5 is demonstrated. FIG. 29 is characterized in that diagnostic images in a plurality of set deflection directions in the third embodiment shown in FIG. 17 are taken in parallel. This further increases the frame rate and spatially synthesizes diagnostic image data in a plurality of set deflection directions to obtain a diagnostic image with high resolution and reduced artifacts. That is, FIG. 29 is an example in which a diagnostic image of the heart that is the diagnostic region 14 is to be taken through a gap formed between the two ribs 15a and 15b.
 本実施例5では、肋骨15a、bの隙間に、ユーザインタフェース11を用いて、複数(図示例では、3)の設定偏向方向(+θ、0°、-θ)に偏向させた平面波ビーム121a,b,cを同一時に送信する。制御部10は、平面波ビーム121a,b,cについて、設定偏向方向(+θ、0°、-θ)の角度、送受信ラインピッチ、送受信ライン数、送受信口径などを含むパラメータを、予め設定した送受信条件に従って設定し、送信ビームフォーマ3と受信ビームフォーマ5を制御する。すなわち、送信ビームフォーマ3は、偏向方向が異なる平面波ビーム121a,b,cを同一時に送信する。一方、受信ビームフォーマ5は平面波ビーム121a,b,cの送受信ライン20をそれぞれを走査して、反射エコー信号の受信ビームデータを取得する。そして、平面波ビーム121a,b,cについて取得された受信ビームデータは、空間合成部6により空間合成用メモリ7に記憶され、実施例3と同様に空間合成される。しかし、同一のセクタ領域に3つの設定偏向方向(+θ、0°、-θ)に偏向された平面波ビームが混在するから、それらのコンタミネーションを避けなければならない。 In the fifth embodiment, the plane wave beam 121a, deflected in a plurality of (3 in the illustrated example) set deflection directions (+ θ, 0 °, −θ) using the user interface 11 in the gaps between the ribs 15a, b. b and c are transmitted at the same time. The control unit 10 sets parameters for the plane wave beams 121a, 121b, 121c, including the angle of the set deflection direction (+ θ, 0 °, −θ), the transmission / reception line pitch, the number of transmission / reception lines, the transmission / reception aperture, etc. And the transmission beamformer 3 and the reception beamformer 5 are controlled. That is, the transmission beamformer 3 transmits plane wave beams 121a, 121b, and 121c having different deflection directions at the same time. On the other hand, the reception beamformer 5 scans the transmission / reception lines 20 of the plane wave beams 121a, 121b, and 121c, and acquires the reception beam data of the reflected echo signal. The received beam data acquired for the plane wave beams 121a, 121b, and 121c is stored in the space synthesis memory 7 by the space synthesis unit 6 and is spatially synthesized as in the third embodiment. However, since plane wave beams deflected in three set deflection directions (+ θ, 0 °, −θ) are mixed in the same sector region, contamination thereof must be avoided.
 そこで、本実施例5では、3つの平面波ビーム121a,b,cに対してそれぞれ異なる符合変調を行って送信する。そして、平面波ビーム121a,b,cの送受信ライン20a,b,c上で生成した受信ビームを、平面波ビーム121a,b,cの符号変調に対応する符号で符号復調する。これにより、平面波ビーム(送信ビーム)と受信ビームを対応付けることができるので、3つの設定偏向方向に対応する送信ビームと受信ビームを分離することができ、それらのコンタミネーションを防止できる。 Therefore, in the fifth embodiment, the three plane wave beams 121a, 121b, 121c are subjected to different code modulations and transmitted. The reception beam generated on the transmission / reception lines 20a, b, c of the plane wave beams 121a, 121b, 121c is code-demodulated with a code corresponding to the code modulation of the plane wave beams 121a, 121b, 121c. Thereby, since the plane wave beam (transmission beam) and the reception beam can be associated with each other, the transmission beam and the reception beam corresponding to the three set deflection directions can be separated, and contamination thereof can be prevented.
 図30に、本実施例5の送信変調部41の構成図を示す。送信変調部41は、RAMなどメモリで構成する送信信号の基本波を記憶する基本波記憶部43と、RAMなどメモリで構成する符号変調係数を記憶する符号変調係数記憶部44と、CPUや、DSPなどのプロセッサまたはFPGAなどハードロジックなどで形成する基本波と、符号変調係数を畳み込み演算し符号変調送信信号を生成する畳み込み演算部45、及び畳み込み演算結果である符号変調送信信号を記憶して送信ビームフォーマ3へ出力するRAMなどメモリで構成する符号変調送信信号記憶部46を有する。基本波記憶部43と、符号変調係数記憶部44は、システムバス12を介して制御部10と接続されている。基本波記憶部43と、符号変調係数記憶部44のそれぞれの出力は、畳み込み演算部45の入力に接続される。畳み込み演算部45の出力は符号変調送信信号記憶部46の入力に接続される。符号変調送信信号記憶部46の出力は、送信ビームフォーマ3に入力される。 FIG. 30 shows a configuration diagram of the transmission modulation unit 41 of the fifth embodiment. The transmission modulation unit 41 includes a fundamental wave storage unit 43 that stores a fundamental wave of a transmission signal configured by a memory such as a RAM, a code modulation coefficient storage unit 44 that stores a code modulation coefficient configured by a memory such as a RAM, a CPU, A fundamental wave formed by a processor such as a DSP or a hard logic such as an FPGA, a convolution operation unit 45 that performs a convolution operation on a code modulation coefficient and generates a code modulation transmission signal, and a code modulation transmission signal that is a result of the convolution operation are stored. It has a code modulation transmission signal storage unit 46 constituted by a memory such as a RAM that outputs to the transmission beamformer 3. The fundamental wave storage unit 43 and the code modulation coefficient storage unit 44 are connected to the control unit 10 via the system bus 12. The outputs of the fundamental wave storage unit 43 and the code modulation coefficient storage unit 44 are connected to the input of the convolution operation unit 45. The output of the convolution operation unit 45 is connected to the input of the code modulation transmission signal storage unit 46. The output of the code modulation transmission signal storage unit 46 is input to the transmission beamformer 3.
 制御部10は、システムバス12を介して基本波記憶部43に送信信号の基本波sを所定の領域に記憶させる。また、制御部10は、システムバス12を介して符号変調係数記憶部44に符号変調係数bXを所定の領域に記憶させる。基本波記憶部43及び符号変調係数記憶部44は、基本波s及び符号変調係数bXの記憶領域を選択して読み出して畳み込み演算部45へ出力する。畳み込み演算部45は、入力された基本波s及び符号変調係数bXに対して畳み込み演算処理して符号変調送信信号を生成し、符号変調送信信号記憶部46へ出力する。符号変調送信信号記憶部46は、符号変調送信信号を所定の領域に記憶し、所定の領域にある符号変調送信信号を読み出して送信ビームフォーマ3へ出力する。 The control unit 10 causes the fundamental wave storage unit 43 to store the fundamental wave s of the transmission signal in a predetermined area via the system bus 12. Further, the control unit 10 causes the code modulation coefficient storage unit 44 to store the code modulation coefficient bX in a predetermined area via the system bus 12. The fundamental wave storage unit 43 and the code modulation coefficient storage unit 44 select and read out the storage area of the fundamental wave s and the code modulation coefficient bX, and output them to the convolution calculation unit 45. The convolution operation unit 45 performs a convolution operation process on the input fundamental wave s and code modulation coefficient bX, generates a code modulation transmission signal, and outputs the code modulation transmission signal to the code modulation transmission signal storage unit 46. The code modulation transmission signal storage unit 46 stores the code modulation transmission signal in a predetermined area, reads out the code modulation transmission signal in the predetermined area, and outputs it to the transmission beamformer 3.
 図31に、畳み込み演算部45における符号変調送信信号の演算式と波形を示す。符号変調送信信号cXは、送信信号の基本波sと、符号長(例ではM=28)の符号変調係数bXから、次式(2)で表せる。なお、同式中の*は畳み込み演算を表している。
 cX = s * bX            (2)
 ここで、図29の設定偏向方向(+θ、0°、-θ)ごとに、異なる符号変調した平面波ビーム121a~cを送信する。それらの符号変調送信信号cA、cB、cCは、各符号変調係数をbA、bB、bCとすると、次式(3)で表せる。
   cA = s * bA
   cB = s * bB
   cC = s * bC             (3)
 ここで、基本波sを1波数のsin波形、各符号変調係数bA、bB、bCを、
 bA=[-,+,+,-,+,+,-,+,+,-,+,-,+,-,+,+,+,+,+,+,-,-,-,+,+,-,-,-]、
 bB=[-,+,+,+,-,-,-,-,+,+,+,-,+,+,+,-,+,+,+,-,+,+,-,+,-,-,+,-]、
 bC=[+,-,+,+,-,-,+,-,-,+,-,+,-,+,+,+,+,+,+,+,-,-,-,+,+,+,-,-]とし、かつ、符号「+」は位相0°、符号「-」は位相180°の変調としたとき、図31に示す波形の符号変調送信信号cA、cB、cCが生成される。
FIG. 31 shows an arithmetic expression and waveform of the code modulation transmission signal in the convolution operation unit 45. The code-modulated transmission signal cX can be expressed by the following equation (2) from the fundamental wave s of the transmission signal and the code modulation coefficient bX having a code length (M = 28 in the example). Note that * in the formula represents a convolution operation.
cX = s * bX (2)
Here, different sign-modulated plane wave beams 121a to 121c are transmitted for each set deflection direction (+ θ, 0 °, −θ) in FIG. These code modulation transmission signals cA, cB, and cC can be expressed by the following equation (3), where the code modulation coefficients are bA, bB, and bC.
cA = s * bA
cB = s * bB
cC = s * bC (3)
Here, the fundamental wave s is a sin wave of one wave number, and each code modulation coefficient bA, bB, bC is
bA = [−, +, +, −, +, +, −, +, +, −, +, −, +, −, +, +, +, +, +, +, −, −, −, + , +,-,-,-],
bB = [−, +, +, +, −, −, −, −, +, +, +, −, +, +, +, −, +, +, +, −, +, +, −, + ,-,-, +,-],
bC = [+, −, +, +, −, −, +, −, −, +, −, +, −, +, +, +, +, +, +, +, −, −, −, + , +, +, −, −], And the code “+” is phase 0 ° and the code “−” is phase 180 °, the code modulation transmission signals cA, cB having the waveforms shown in FIG. cC is generated.
 超音波探触子2の振動子数が38で、偏向方向(+θ、0°、-θ)に対して同時に平面波ビーム121a~cを送信する際,各振動子ch01~ch38に印加する符号変調送信信号の時間波形を図32に示す。図において、右に行くほど遅い時間を示す。また、超音波探触子2から送信された超音波の音場分布の模式図を図33に示す。図において、右に行くほど超音波探触子2より深度が深いことを示す。図33のように、ch01からch38の振動子を有する超音波探触子2と、障害物15aと、障害物15bが位置する。ここで、ユーザインタフェース11で平面波ビーム121bの中心送受信ライン20-cの位置を平面波ビーム121bの中心に配置する。次に、制御部10は、中心送受信ライン20-cの位置及び平面波ビーム121a~cの偏向方向(+θ、0°、-θ)、送信口径D、本例では各12ch、平面波ビーム121a~cの偏向方向(+θ、0°、-θ)に対してそれぞれ送信口径D:ch04~ch15、ch14~ch25、ch24~ch35)を設定し、平面波ビーム121a、cの各chの遅延量を算出して送信ビームフォーマ3を制御する。ここで、送信口径Dについては、平面波ビーム121a~cが障害物15a,bの影響を受けないように障害物の間隔に収まるように、送信周波数、偏向方向、振動子ピッチに基づいて算出する。平面波ビーム121a、cを偏向するための遅延量は、送信口径D内の各振動子と偏向方向(+θ、-θ)と、被検体13の音速から算出する。 Code modulation applied to each transducer ch01 to ch38 when the number of transducers of the ultrasonic probe 2 is 38 and plane wave beams 121a to 121c are transmitted simultaneously in the deflection direction (+ θ, 0 °, −θ) The time waveform of the transmission signal is shown in FIG. In the figure, a slower time is shown as it goes to the right. FIG. 33 shows a schematic diagram of the sound field distribution of the ultrasonic wave transmitted from the ultrasonic probe 2. In the figure, it shows that the depth is deeper than the ultrasonic probe 2 as it goes to the right. As shown in FIG. 33, the ultrasonic probe 2 having the transducers ch01 to ch38, the obstacle 15a, and the obstacle 15b are located. Here, the position of the center transmission / reception line 20-c of the plane wave beam 121 b is arranged at the center of the plane wave beam 121 b on the user interface 11. Next, the control unit 10 determines the position of the center transmission / reception line 20-c, the deflection direction (+ θ, 0 °, −θ) of the plane wave beams 121a to 121c, the transmission aperture D, 12ch in this example, and the plane wave beams 121a to 121c. The transmission aperture diameter D: ch04 to ch15, ch14 to ch25, ch24 to ch35) is set for each of the deflection directions (+ θ, 0 °, −θ), and the delay amount of each channel of the plane wave beams 121a and 121c is calculated. To control the transmission beamformer 3. Here, the transmission aperture D is calculated based on the transmission frequency, the deflection direction, and the transducer pitch so that the plane wave beams 121a to 121c are within the distance between the obstacles so as not to be affected by the obstacles 15a and 15b. . The delay amount for deflecting the plane wave beams 121a and 121c is calculated from each transducer within the transmission aperture D, the deflection direction (+ θ, −θ), and the sound velocity of the subject 13.
 図32に示すように平面波ビーム121cではch35が最も早く駆動され、ch24が最も遅く駆動されるように遅延処理された符号変調送信信号cCが印加される。また、平面波ビーム121bではch14からch25まで同一の遅延処理された符号変調送信信号cBが印加される。また、平面波ビーム121aではch04が最も早く駆動され、ch15が最も遅く駆動されるように遅延処理された符号変調送信信号cAが印加される。これにより、図33に示すように、平面波ビーム121cの送信口径から送信された超音波信号は偏向方向-θに偏向した波面を形成して、障害物15a,bの間を通過して被検体13を伝播する。また、平面波ビーム121bの送信口径から送信された超音波信号は偏向方向0°に波面を形成し、障害物15a,bの間を通過して被検体13を伝播する。また、平面波ビーム121aの送信口径から送信された超音波信号は偏向方向+θに偏向した波面を形成し、障害物15a,bの間を通過して被検体13を伝播する。 32, in the plane wave beam 121c, the code modulation transmission signal cC subjected to delay processing is applied so that ch35 is driven earliest and ch24 is driven latest. In the plane wave beam 121b, the same delay-modulated code-modulated transmission signal cB is applied from ch14 to ch25. In the plane wave beam 121a, the code-modulated transmission signal cA subjected to delay processing is applied so that ch04 is driven earliest and ch15 is driven latest. As a result, as shown in FIG. 33, the ultrasonic signal transmitted from the transmission aperture of the plane wave beam 121c forms a wavefront deflected in the deflection direction −θ, passes through the obstacles 15a and 15b, and the subject. 13 is propagated. Further, the ultrasonic signal transmitted from the transmission aperture of the plane wave beam 121b forms a wavefront in the deflection direction of 0 °, passes through the obstacles 15a and 15b, and propagates through the subject 13. Further, the ultrasonic signal transmitted from the transmission aperture of the plane wave beam 121a forms a wavefront deflected in the deflection direction + θ, passes through the obstacles 15a and 15b, and propagates through the subject 13.
 それぞれの送信口径の平面波ビーム121a~cは、障害物15a,b間の中心で交点となるように配置される。なお、本来は各振動素子の指向特性に従った伝播になるが、図33では平面波送信することを分かりやすく説明するために、拡散や、他方向へ伝播する波面の表示を割愛している。 The plane wave beams 121a to 121c having the respective transmission apertures are arranged so as to be an intersection at the center between the obstacles 15a and 15b. Note that the propagation is originally in accordance with the directivity characteristics of each vibration element, but in FIG. 33, in order to easily understand that plane wave transmission is performed, diffusion and display of a wavefront propagating in another direction are omitted.
 図34に、本実施例5の受信ビームフォーマ5と受信復調部42の具体的な構成図を示す。本実施例は、設定偏向方向が複数(図示例は3方向)の平面波ビーム121a~cに適用した場合の受信ビームフォーマ5と受信復調部42である。受信ビームフォーマ5は、CPU、DSPなどのプロセッサ又はFPGAなどハードロジックなどで構成されている。そして、超音波探触子2の受信口径に対応する振動子の受信信号の遅延量を記憶するRAMなどメモリで構成する遅延量記憶部47を備えている。また、超音波探触子2の振動子の送信口径ごとに、各送受信ラインの受信信号を遅延処理する遅延部48(-1~3)と、整相加算部49(-1~3)を設定偏向方向の数だけ備えられている。 FIG. 34 shows a specific configuration diagram of the reception beamformer 5 and the reception demodulation unit 42 of the fifth embodiment. The present embodiment is a reception beam former 5 and a reception demodulation unit 42 when applied to plane wave beams 121a to 121c having a plurality of set deflection directions (three directions in the illustrated example). The reception beamformer 5 is configured by a processor such as a CPU or DSP, or a hard logic such as an FPGA. And the delay amount memory | storage part 47 comprised with memories, such as RAM which memorize | stores the delay amount of the received signal of the vibrator | oscillator corresponding to the receiving aperture of the ultrasound probe 2, is provided. In addition, for each transmission aperture of the transducer of the ultrasound probe 2, a delay unit 48 (-1 to 3) for delaying the reception signal of each transmission / reception line and a phasing addition unit 49 (-1 to 3) are provided. There are as many as the number of set deflection directions.
 受信復調部42はRAMなどメモリで構成され、符号変調送信信号に対応する符号復調係数を記憶する符号復調係数記憶部50と、CPU、DSPなどのプロセッサ又はFPGAなどハードロジックなどで構成されている。受信ビームフォーマ5の出力信号と符号復調係数を3方向及び3並列に合わせて畳み込み演算する畳み込み演算部51(-1~3)が備えられている。遅延量記憶部47と符号復調係数記憶部50はシステムバス12を介して制御部10と接続されている。遅延量記憶部47の出力は遅延部48の入力と接続されている。遅延部48の入力にはパルサレシーバ4の出力が接続されている。遅延部48の出力と整相加算部49の入力が接続されている。整相加算部49の出力と、符号復調係数記憶部50の出力が畳み込み演算部51の入力に接続されている。畳み込み演算部51の出力が空間合成部6の入力に接続されている。 The reception demodulation unit 42 is configured by a memory such as a RAM, and is configured by a code demodulation coefficient storage unit 50 that stores a code demodulation coefficient corresponding to a code modulation transmission signal, a processor such as a CPU or DSP, or a hard logic such as an FPGA. . A convolution operation unit 51 (−1 to 3) is provided which performs a convolution operation by combining the output signal of the reception beamformer 5 and the code demodulation coefficient in three directions and three in parallel. The delay amount storage unit 47 and the code demodulation coefficient storage unit 50 are connected to the control unit 10 via the system bus 12. The output of the delay amount storage unit 47 is connected to the input of the delay unit 48. The output of the pulser receiver 4 is connected to the input of the delay unit 48. The output of the delay unit 48 and the input of the phasing addition unit 49 are connected. The output of the phasing addition unit 49 and the output of the code demodulation coefficient storage unit 50 are connected to the input of the convolution operation unit 51. The output of the convolution operation unit 51 is connected to the input of the space synthesis unit 6.
 このように構成されることから、本実施例5によれば、制御部10は、システムバス12を介して遅延量記憶部47に3方向の平面波ビームに対応させて、3つの受信口径に対応する遅延量ΔtA(ch)、ΔtB(ch)、ΔtC(ch)を所定の領域に記憶させる。また、制御部10は、システムバス12を介して符号復調係数記憶部50に対して3方向の平面波ビームの符号変調送信信号に対応する符号復調係数b’A、b’B、b’Cをそれぞれ所定の領域に記憶させる。そして、遅延量記憶部47は、記憶した遅延量の領域を選択して読み出し、第一の受信口径に対応する遅延量ΔtA(ch)を遅延部48-1に、第二の受信口径に対応する遅延量ΔtB(ch)を遅延部48-2に、第三の受信口径に対応する遅延量ΔtC(ch)を遅延部48-3に出力する。 With this configuration, according to the fifth embodiment, the control unit 10 causes the delay amount storage unit 47 to correspond to the three-direction plane wave beams via the system bus 12 and correspond to the three reception apertures. The delay amounts ΔtA (ch), ΔtB (ch), and ΔtC (ch) to be stored are stored in a predetermined area. In addition, the control unit 10 transmits the code demodulation coefficients b′A, b′B, and b′C corresponding to the code modulation transmission signal of the plane wave beam in the three directions to the code demodulation coefficient storage unit 50 via the system bus 12. Each is stored in a predetermined area. Then, the delay amount storage unit 47 selects and reads out the area of the stored delay amount, and corresponds the delay amount ΔtA (ch) corresponding to the first reception aperture to the delay unit 48-1 and to the second reception aperture. The delay amount ΔtB (ch) to be output is output to the delay unit 48-2, and the delay amount ΔtC (ch) corresponding to the third reception aperture is output to the delay unit 48-3.
 遅延部48-1~3は、それぞれ入力された遅延量に応じた時間遅延をパルサレシーバ4の出力に対して施して、整相加算部49-1~3へ出力する。整相加算部49-1~3は各受信口径の受信信号に対して加算処理し、整相加算信号rbA、rbB、rbCを生成して、受信復調部42の畳み込み演算部51-1~3へ出力する。符号復調係数記憶部26は、適宜記憶した符号復調係数の領域を選択して読み出し、第一の受信口径に対応する符号復調係数b’A、第二の受信口径に対応する符号復調係数b’B、第三の受信口径に対応する符号復調係数b’Cを、それぞれ第一の受信口径畳み込み演算部51-1、第二の受信口径畳み込み演算部51-2、第三の受信口径畳み込み演算部51-3へ出力する。 The delay units 48-1 to 48-3 perform a time delay corresponding to the input delay amount on the output of the pulsar receiver 4, and output to the phasing adders 49-1 to 49-3. The phasing addition units 49-1 to 4-3 perform addition processing on the reception signals of the respective reception apertures to generate phasing addition signals rbA, rbB, and rbC, and the convolution calculation units 51-1 to 5-3 of the reception demodulation unit 42. Output to. The code demodulation coefficient storage unit 26 selects and reads an area of the code demodulation coefficient stored as appropriate, reads the code demodulation coefficient b′A corresponding to the first reception aperture, and the code demodulation coefficient b ′ corresponding to the second reception aperture. B, the code demodulation coefficient b′C corresponding to the third reception aperture diameter, respectively, the first reception aperture convolution operation unit 51-1, the second reception aperture convolution operation unit 51-2, the third reception aperture convolution operation, respectively. To the unit 51-3.
 第一の受信口径畳み込み演算部51-1は、整相加算信号rbAと第一の受信口径に対応する符号復調係数b’Aの畳み込み演算を行い、符号復調受信信号rAを生成する。第二の受信口径畳み込み演算部51-2は、整相加算信号rbBと第一の受信口径に対応する符号復調係数b’Bの畳み込み演算を行い、符号復調受信信号rBを生成する。第三の受信口径畳み込み演算部51-3は、整相加算信号rbCと第一の受信口径に対応する符号復調係数b’Cの畳み込み演算を行い、符号復調受信信号rCを生成する。各受信口径に対応する符号復調受信信号rA、rB、rCは空間合成部6へ出力される。 The first reception aperture convolution operation section 51-1 performs a convolution operation of the phasing addition signal rbA and the code demodulation coefficient b'A corresponding to the first reception aperture, and generates a code demodulated reception signal rA. The second reception aperture convolution operation unit 51-2 performs a convolution operation of the phasing addition signal rbB and the code demodulation coefficient b'B corresponding to the first reception aperture to generate a code demodulated reception signal rB. The third reception aperture convolution operation unit 51-3 performs a convolution operation of the phasing addition signal rbC and the code demodulation coefficient b'C corresponding to the first reception aperture, and generates a code demodulated reception signal rC. Code demodulated reception signals rA, rB, rC corresponding to the respective reception apertures are output to the space synthesis unit 6.
 図35に符号復調受信信号の演算式と波形を示す。図示のように、整相加算信号rbXと、ある符号復調係数の数(図示例ではN=57)の符号復調係数b’Xとすると、符号復調受信信号rXは、次式(4)で表せる。
   rX = rbX * b’X       (4)
ここで、図29の3方向(+θ、0°、-θ)の偏向方向毎に異なる3つの符号変調した超音波を送信する。また、各符号復調係数b’A、b’B、b’Cとすると、それに対応する符号復調受信信号をrA、rB、rCは、次式(5)で表せる。
   rA = rbA * b’A
   rB = rbB * b’B
   rC = rbC * b’C        (5)
ここで、符号復調係数は符号変調係数に対応するタイムインバースフィルタの係数もしくは、不整合フィルタ係数となっており、超音波変調復調処理によるエラーを非常に小さくなるよう対になっている。
FIG. 35 shows an arithmetic expression and waveform of the code demodulated reception signal. As shown in the figure, assuming that the phasing addition signal rbX and the code demodulation coefficient b′X of a certain number of code demodulation coefficients (N = 57 in the illustrated example), the code demodulation reception signal rX can be expressed by the following equation (4). .
rX = rbX * b′X (4)
Here, three code-modulated ultrasonic waves that differ for each of the three directions (+ θ, 0 °, −θ) in FIG. 29 are transmitted. Also, assuming that each code demodulation coefficient b′A, b′B, b′C, rA, rB, rC can be expressed by the following equation (5).
rA = rbA * b′A
rB = rbB * b'B
rC = rbC * b′C (5)
Here, the code demodulation coefficient is a coefficient of a time inverse filter corresponding to the code modulation coefficient or a mismatch filter coefficient, and is paired so that an error due to the ultrasonic modulation demodulation process becomes very small.
 本実施例5の図31に示す符号変調(M=28)に対する不整合フィルタ係数(N=57)の場合の信号対エラー比で約30dB以上である。また、符号復調係数の数(N=309)の場合の信号対エラー比で約60dB以上を実現することができる。このように演算規模を増大することにより信号対エラー比を改善することができる。 The signal-to-error ratio in the case of the mismatch filter coefficient (N = 57) for the code modulation (M = 28) shown in FIG. 31 of the fifth embodiment is about 30 dB or more. Further, a signal-to-error ratio of about 60 dB or more can be realized in the case of the number of code demodulation coefficients (N = 309). Thus, the signal to error ratio can be improved by increasing the operation scale.
(実施例6)
 図36と図37に、図22の仮想点音源の実施例4に、符号変調送信と符号復調受信を適用した撮像方法を示す。ユーザインタフェース11を用いて3つの障害物15a~cの間に2点の仮想点音源31を設定する。制御部10は、仮想点音源の位置及び送受信ライン数、送受信ライン角度、送受信ラインピッチなどの情報から送信ビームフォーマ3、受信ビームフォーマ5を制御して撮像する。超音波探触子2の複数の振動子に対して、2箇所の送信口径は、仮想点音源31から、超音波探触子2の振動子配列面へ3方向(+θ、0°、-θ)うち、最大+θ、最小-θの合成する角度(この場合2θ)とからなる辺の長さより大きい方がより仮想点音源が理想的な点音源になる。ここで、仮想点音源31の2点送信と、例えば3方向へ偏向した受信ラインを走査して受信ビームを取得し、6つの受信ビームデータを空間合成部6により空間合成用メモリ7に記憶して同一空間のデータを合成する。
(Example 6)
FIG. 36 and FIG. 37 show an imaging method in which code modulation transmission and code demodulation reception are applied to the fourth embodiment of the virtual point sound source of FIG. Two virtual point sound sources 31 are set between the three obstacles 15a to 15c using the user interface 11. The control unit 10 controls the transmission beamformer 3 and the reception beamformer 5 based on information such as the position of the virtual point sound source and the number of transmission / reception lines, the transmission / reception line angle, and the transmission / reception line pitch. With respect to the plurality of transducers of the ultrasonic probe 2, the two transmission apertures have three directions (+ θ, 0 °, −θ) from the virtual point sound source 31 to the transducer array surface of the ultrasonic probe 2. ), The virtual point sound source becomes an ideal point sound source when the length of the side composed of the angle of the maximum + θ and the minimum −θ (2θ in this case) is larger. Here, two-point transmission of the virtual point sound source 31 and, for example, a reception line deflected in three directions are scanned to obtain a reception beam, and six reception beam data are stored in the space synthesis memory 7 by the space synthesis unit 6. To synthesize data in the same space.
 本実施例により、超音波探触子2の振動子数が38のときで、2点の仮想点音源31を設定して、同時に超音波を送信する際の各振動子ch01~ch38に印加する符号変調送信信号の時間波形を図36に示す。図において、右に行くほど遅い時間を示す。また、超音波探触子2から送信された平面波ビームの音場分布の模式図を図37に示す。同様に、右に行くほど超音波探触子2より遠い距離を示す。制御部10は仮想点音源31の位置及び平面波送信の偏向方向(+θ、0°、-θ)を設定する。また、送信口径として本例では各20ch、つまり仮想点音源31aに対して送信口径ch04~ch23、仮想点音源31bに対して送信口径ch16~ch35を割り当てる。さらに、各chごとの遅延量を算出して送信ビームフォーマ3を制御する。仮想点音源31のための遅延量は、該送信口径内の各振動子と仮想点音源31の位置と、被検体13の音速から算出する。 According to this embodiment, when the number of transducers of the ultrasonic probe 2 is 38, two virtual point sound sources 31 are set and applied to the transducers ch01 to ch38 when transmitting ultrasonic waves at the same time. FIG. 36 shows a time waveform of the code modulation transmission signal. In the figure, a slower time is shown as it goes to the right. FIG. 37 shows a schematic diagram of the sound field distribution of the plane wave beam transmitted from the ultrasound probe 2. Similarly, the farther the distance from the ultrasound probe 2 is, the closer to the right. The control unit 10 sets the position of the virtual point sound source 31 and the deflection direction (+ θ, 0 °, −θ) of plane wave transmission. In this example, the transmission apertures ch04 to ch23 are assigned to the virtual point sound source 31a, and the transmission apertures ch16 to ch35 are assigned to the virtual point sound source 31b. Further, the transmission beam former 3 is controlled by calculating the delay amount for each channel. The delay amount for the virtual point sound source 31 is calculated from the position of each transducer and the virtual point sound source 31 in the transmission aperture and the sound speed of the subject 13.
 図36に示すように、送信口径ch04~ch23ではch04及びch23が最も早く、ch13及びch14が最も遅く遅延処理された符号変調送信信号cAが印加される。また、送信口径ch16~ch35ではch16及びch35が最も早く、ch25及びch26が最も遅く遅延処理された符号変調送信信号cBが印加される。これにより、図37に示すように、送信口径ch04~ch23から送信された送信ビームは仮想点音源31aに集束するような波面を形成し、障害物15aと15bの間を通過して被検体13に伝播する。また、送信口径ch16~ch35から送信された送信ビームは仮想点音源31bに集束するような波面を形成し、障害物15bと15cの間を通過して被検体13に伝播する。なお、本来は各振動素子の指向特性による伝播を行うが、図37では送信信号を整相し、仮想点音源送信することを分かりやすく説明するために、拡散や、他方向へ伝播する波面の表示を割愛している。 As shown in FIG. 36, in the transmission apertures ch04 to ch23, the code-modulated transmission signal cA subjected to the delay processing is applied, with ch04 and ch23 being the earliest and ch13 and ch14 being the latest. In addition, in the transmission apertures ch16 to ch35, the code-modulated transmission signal cB subjected to delay processing is applied, with ch16 and ch35 being the earliest and ch25 and ch26 being the latest. As a result, as shown in FIG. 37, a transmission beam transmitted from the transmission apertures ch04 to ch23 forms a wavefront that converges on the virtual point sound source 31a, passes between the obstacles 15a and 15b, and passes through the subject 13. Propagate to. Further, the transmission beam transmitted from the transmission apertures ch16 to ch35 forms a wavefront that converges on the virtual point sound source 31b, passes between the obstacles 15b and 15c, and propagates to the subject 13. Originally, propagation is performed based on the directivity characteristics of each vibration element. However, in FIG. 37, in order to easily understand that the transmission signal is phased and the virtual point sound source is transmitted, diffusion and wavefronts propagating in other directions are transmitted. The display is omitted.
 集束した受信ビームを形成する受信ビームフォーマ5と、集束した受信ビーム信号を符号復調する受信復調部42については図34で説明したと同様に並列処理できる。演算処理の変更は、CPUやDSPで構成される場合はプログラムで、FPGAで構成される場合には、リコンフィグで処理内容を変更する。動作や効果に関しては前述と同等なので説明を割愛する。 The reception beam former 5 that forms a focused reception beam and the reception demodulation unit 42 that performs code demodulation of the focused reception beam signal can be processed in parallel as described with reference to FIG. The arithmetic processing is changed by a program when it is configured by a CPU or DSP, and when it is configured by an FPGA, the processing content is changed by reconfiguration. Since the operation and effect are the same as described above, the explanation is omitted.
 本実施例6によれば、障害物15a~cの間に、それぞれ2点の仮想点音源31を設定し、平面波ビームを送信するとともに、各受信ラインについて並列に受信ビームを取得できるので、診断部位14が障害物15による音響陰影に隠れることなく描出することができる。その結果、障害物15による不要な乱反射を低減して、ジャミングノイズなどのアーチファクトを低減することができる。 According to the sixth embodiment, since two virtual point sound sources 31 are set between the obstacles 15a to 15c, a plane wave beam is transmitted, and a reception beam can be acquired in parallel for each reception line. The region 14 can be depicted without being hidden by the acoustic shadow caused by the obstacle 15. As a result, unnecessary irregular reflection due to the obstacle 15 can be reduced, and artifacts such as jamming noise can be reduced.
 本実施例6では、仮想点音源31を2点設定する場合を説明したが、例えば3点以上に増やし、超音波送受信かつ、空間合成することにより空間分解能や、コントラスト分解能を改善することができる。また、本実施例6では並列受信の走査数を3本で説明したが、例えばさらに増やすことにより、空間分解能や、コントラスト分解能を改善することができる。 In the sixth embodiment, the case where two virtual point sound sources 31 are set has been described. For example, the spatial resolution and contrast resolution can be improved by increasing the number to three or more, transmitting and receiving ultrasonic waves, and spatially synthesizing. . In the sixth embodiment, the number of scans for parallel reception has been described as three. For example, the spatial resolution and the contrast resolution can be improved by further increasing the number of scans.
 本実施例によれば、仮想点音源31ごとに各送受信口径、各送受信整相、各符号変調復調の処理をすることにより、相互情報を分離しコンタミネーションを防いだ空間データを生成できるので、高フレームレート化ができるので、最適な診断画像の状態を得ることができる。 According to the present embodiment, by processing each transmission / reception aperture, transmission / reception phasing, and code modulation / demodulation for each virtual point sound source 31, it is possible to generate spatial data that separates mutual information and prevents contamination. Since the frame rate can be increased, an optimal diagnostic image state can be obtained.
1 超音波診断装置
2 超音波探触子
3 送信ビームフォーマ
4 パルサレシーバ
5 受信ビームフォーマ
6 空間合成部
7 空間合成用メモリ
8 画像処理部
9 表示部
10 制御部
11 ユーザインタフェース
12 システムバス
13 被検体
21 送信変調部
22 受信復調部
41 送信変調部
42 受信復調部
43 基本波記憶部
44 符号変調係数記憶部
45 演算部
46 符号変調送信信号記憶部
DESCRIPTION OF SYMBOLS 1 Ultrasonic diagnostic apparatus 2 Ultrasonic probe 3 Transmission beam former 4 Pulsar receiver 5 Reception beam former 6 Spatial composition part 7 Spatial composition memory 8 Image processing part 9 Display part 10 Control part 11 User interface 12 System bus 13 Subject 21 transmission modulation unit 22 reception demodulation unit 41 transmission modulation unit 42 reception demodulation unit 43 fundamental wave storage unit 44 code modulation coefficient storage unit 45 calculation unit 46 code modulation transmission signal storage unit

Claims (22)

  1.  被検体に当接させて用いる超音波探触子と、前記超音波探触子を駆動して前記被検体内に照射する送信ビームを生成するとともに、前記超音波探触子で受信した反射エコー信号を受信処理して受信ビームを生成する送受信部と、前記送信ビーム及び前記受信ビームを走査線として前記被検体内の診断部位を扇形走査させるように前記送受信部を制御する制御部と、前記送受信部により走査して生成された前記受信ビームに基づいて診断画像を生成する画像構成部と、前記診断画像を表示する表示部とを備え、
     前記画像構成部により生成された診断部位の断層画像に基づいて、前記送信ビームの伝搬障害となる障害物の奥側の診断部位に扇形走査範囲が及ぶように、扇形走査範囲の扇形走査の走査中心を位置させて少なくとも1つ設定する走査中心設定部を設け、
     前記制御部は、設定された前記走査中心を通るように前記扇形走査の走査条件を設定し、前記走査条件に従って前記送受信部を制御することを特徴とする超音波診断装置。
    An ultrasonic probe that is used in contact with a subject, and a reflected echo received by the ultrasonic probe while generating the transmission beam for driving the ultrasonic probe and irradiating the subject. A transmission / reception unit that receives a signal and generates a reception beam; a control unit that controls the transmission / reception unit so that the diagnostic region in the subject is sector-scanned using the transmission beam and the reception beam as scanning lines; and An image constructing unit that generates a diagnostic image based on the received beam generated by scanning by a transmitting and receiving unit; and a display unit that displays the diagnostic image;
    Based on the tomographic image of the diagnostic part generated by the image construction unit, the fan-shaped scanning scan of the fan-shaped scanning range is performed so that the fan-shaped scanning range extends to the diagnostic part on the back side of the obstacle that becomes the transmission obstacle of the transmission beam. A scanning center setting unit for setting at least one with the center positioned;
    The ultrasonic diagnostic apparatus, wherein the control unit sets a scanning condition of the sector scan so as to pass through the set scanning center, and controls the transmission / reception unit according to the scanning condition.
  2.  前記走査中心設定部は、前記走査中心を、前記扇形走査範囲の一方の端の扇形走査線が前記障害物に遮られない位置に設定することを特徴とする請求項1に記載の超音波診断装置。 2. The ultrasonic diagnosis according to claim 1, wherein the scan center setting unit sets the scan center at a position where a fan scan line at one end of the fan scan range is not obstructed by the obstacle. apparatus.
  3.  前記走査中心設定部は、前記走査中心を、前記超音波探触子から見た前記障害物の側面の空間領域に設定することを特徴とする請求項2に記載の超音波診断装置。 The ultrasonic diagnostic apparatus according to claim 2, wherein the scanning center setting unit sets the scanning center in a spatial region on a side surface of the obstacle viewed from the ultrasonic probe.
  4.  前記走査中心設定部は、前記障害物が複数存在する場合、該複数の障害物に挟まれる隙間に前記扇形走査の走査中心を少なくとも1つ設定することを特徴とする請求項1に記載の超音波診断装置。 2. The super center according to claim 1, wherein when there are a plurality of obstacles, the scan center setting unit sets at least one scan center of the sector scan in a gap between the plurality of obstacles. Ultrasonic diagnostic equipment.
  5.  前記走査中心設定部は、前記走査中心を複数設定するものとされ、
     前記制御部は、設定された複数の前記走査中心を通るように複数の前記扇形走査の走査条件を設定し、前記走査条件に従って前記送受信部を制御するものとされ、
     前記画像構成部は、前記走査中心ごとに生成される複数の前記診断画像を合成して前記診断画像を生成することを特徴とする請求項1に記載の超音波診断装置。
    The scan center setting unit sets a plurality of the scan centers,
    The control unit is configured to set a plurality of fan-shaped scanning conditions so as to pass through the plurality of set scanning centers, and to control the transmission / reception unit according to the scanning conditions,
    The ultrasonic diagnostic apparatus according to claim 1, wherein the image configuration unit generates the diagnostic image by combining a plurality of the diagnostic images generated for each scanning center.
  6.  前記走査中心は、前記超音波探触子の超音波放射面に対して複数存在することを特徴とする請求項1に記載の超音波診断装置。 2. The ultrasonic diagnostic apparatus according to claim 1, wherein a plurality of the scanning centers exist with respect to an ultrasonic radiation surface of the ultrasonic probe.
  7.  前記走査中心は、前記超音波探触子の超音波放射面に垂直に複数存在することを特徴とする請求項6に記載の超音波診断装置。 The ultrasonic diagnostic apparatus according to claim 6, wherein a plurality of the scanning centers exist perpendicularly to an ultrasonic radiation surface of the ultrasonic probe.
  8.  前記走査中心は、前記超音波探触子の超音波放射面に沿って隣り合う前記障害物を結ぶ直線と、前記超音波探触子の超音波放射面とで画成される空間に設定されることを特徴とする請求項1に記載の超音波診断装置。 The scanning center is set to a space defined by a straight line connecting the obstacles adjacent to the ultrasonic radiation surface of the ultrasonic probe and the ultrasonic radiation surface of the ultrasonic probe. The ultrasonic diagnostic apparatus according to claim 1.
  9.  前記送受信部は、前記走査中心ごとに当該走査中心を通る前記走査線の前記送信ビームを異なる変調符号で変調するとともに、当該走査線の前記受信ビームを前記変調符号に対応して設定された復調符号で復調することを特徴とする請求項1に記載の超音波診断装置。 The transmission / reception unit modulates the transmission beam of the scanning line passing through the scanning center for each scanning center with a different modulation code and the demodulation set for the reception beam of the scanning line corresponding to the modulation code The ultrasonic diagnostic apparatus according to claim 1, wherein demodulation is performed using a code.
  10.  被検体に当接して用いる超音波探触子と、前記超音波探触子の複数の振動子を駆動する超音波信号を送信処理する送信部と、前記超音波探触子の複数の振動子により受信される反射エコー信号を受信処理する受信部と、前記受信部で受信処理された受信信号に基づいて診断画像を生成する画像構成部と、前記診断画像を表示する表示部と、少なくとも前記送信部と前記受信部と前記画像構成部を制御する制御部と、前記制御部に指令を入力する入力部とを備え、
     前記送信部は、前記超音波探触子に設定された送信口径に対応する複数n(nは自然数)の前記振動子を駆動して、前記被検体内の設定偏向方向にn本の送信ラインからなる平面波ビームを送信し、
     前記受信部は、前記超音波探触子に設定された受信口径に対応する複数m(mは自然数)の前記振動子により受波される反射エコー信号をフォーカス処理して受信ビームを生成し、前記n本の送信ラインに基づいて設定される複数の受信ラインを走査して得られる複数の前記受信ビームからなるフレームデータを生成し、
     前記画像構成部は、前記受信部で生成される前記フレームデータに基づいて前記診断画像を生成することを特徴とする超音波診断装置。
    An ultrasonic probe used in contact with a subject, a transmitter for transmitting an ultrasonic signal that drives a plurality of transducers of the ultrasonic probe, and a plurality of transducers of the ultrasonic probe A receiving unit that receives and processes the reflected echo signal received by the image processing unit, an image configuration unit that generates a diagnostic image based on the received signal that has been received and processed by the receiving unit, a display unit that displays the diagnostic image, and at least the A control unit that controls the transmission unit, the reception unit, and the image configuration unit; and an input unit that inputs a command to the control unit;
    The transmission unit drives a plurality of n (n is a natural number) of the transducers corresponding to a transmission aperture set in the ultrasound probe, and n transmission lines in a set deflection direction in the subject. A plane wave beam consisting of
    The reception unit generates a reception beam by performing a focusing process on a reflected echo signal received by a plurality of m (m is a natural number) of the transducer corresponding to a reception aperture set in the ultrasonic probe, Generating frame data composed of a plurality of reception beams obtained by scanning a plurality of reception lines set based on the n transmission lines;
    The ultrasonic diagnostic apparatus, wherein the image construction unit generates the diagnostic image based on the frame data generated by the receiving unit.
  11.  前記送信部は、前記n個の振動子を駆動する前記超音波信号に遅延時間差を設けて前記設定偏向方向に前記平面波ビームを送信し、前記制御指令に基づいて少なくとも異なる複数の設定偏向方向にそれぞれ前記n本の送信ラインからなる前記平面波ビームを送信し、
     前記受信部は、前記複数の設定偏向方向に送信される平面波ビームの前記n本の送信ラインに基づいて設定される前記複数の受信ラインを走査して前記複数の設定偏向方向ごとの前記フレームデータを生成し、
     前記画像構成部は、前記複数の設定偏向方向ごとのフレームデータを合成して前記診断画像を生成することを特徴とする請求項10に記載の超音波診断装置。
    The transmitting unit transmits the plane wave beam in the set deflection direction by providing a delay time difference to the ultrasonic signals that drive the n transducers, and at least in a plurality of different set deflection directions based on the control command. Transmitting the plane wave beam each consisting of the n transmission lines,
    The reception unit scans the plurality of reception lines set based on the n transmission lines of the plane wave beam transmitted in the plurality of setting deflection directions, and the frame data for each of the plurality of setting deflection directions. Produces
    The ultrasonic diagnostic apparatus according to claim 10, wherein the image configuration unit generates the diagnostic image by combining frame data for each of the plurality of setting deflection directions.
  12.  前記制御部は、前記送信部を制御して前記設定偏向方向ごとに前記平面波ビームを送信させ、前記受信部を制御して前記平面波ビームの複数の送信ラインを幅方向に複数N(Nは自然数)の組に分割し、該分割した組ごとに前記複数の受信ラインを設定して前記受信ビームを生成し、生成した複数の前記受信ビームに基づいて前記設定偏向方向ごとに前記フレームデータを生成することを特徴とする請求項10に記載の超音波診断装置。 The control unit controls the transmission unit to transmit the plane wave beam for each of the set deflection directions, and controls the reception unit to set a plurality of transmission lines of the plane wave beam in the width direction by N (N is a natural number). ), Sets the plurality of reception lines for each of the divided sets, generates the reception beam, and generates the frame data for each set deflection direction based on the generated plurality of the reception beams. The ultrasonic diagnostic apparatus according to claim 10.
  13.  前記制御部は、前記設定偏向方向にn本の送信ラインから形成される平面波ビームの幅を、前記平面波ビームの伝搬障害となる複数の障害物に挟まれる隙間に収まる幅に設定することを特徴とする請求項12に記載の超音波診断装置。 The control unit sets a width of a plane wave beam formed from n transmission lines in the set deflection direction to a width that fits in a gap between a plurality of obstacles that are obstacles to propagation of the plane wave beam. The ultrasonic diagnostic apparatus according to claim 12.
  14.  前記制御部は、前記平面波ビームの伝搬障害となる複数の障害物に挟まれる隙間の中心を、前記n本の送信ラインの平面波ビーム幅の中心に合わせるとともに、前記平面波ビーム幅と、前記nと、前記受信ラインのピッチ及び本数とを設定することを特徴とする請求項13に記載の超音波診断装置。 The control unit aligns the center of a gap between a plurality of obstacles that are obstacles to propagation of the plane wave beam with the center of the plane wave beam width of the n transmission lines, and the plane wave beam width and the n The ultrasonic diagnostic apparatus according to claim 13, wherein a pitch and the number of the reception lines are set.
  15.  前記送信部は、前記複数の設定偏向方向に送信する平面波ビームの超音波を前記設定偏向方向ごとに異なる変調符号で変調し、
     前記受信部は、前記設定偏向方向に対応する前記受信ラインの前記受信ビームを前記変調符号に対応して設定された復調符号で復調することを特徴とする請求項11に記載の超音波診断装置。
    The transmitting unit modulates the ultrasonic wave of the plane wave beam transmitted in the plurality of setting deflection directions with a different modulation code for each of the setting deflection directions,
    The ultrasonic diagnostic apparatus according to claim 11, wherein the reception unit demodulates the reception beam of the reception line corresponding to the set deflection direction with a demodulation code set corresponding to the modulation code. .
  16.  被検体に当接して用いる超音波探触子と、前記超音波探触子の複数の振動子に超音波信号を送信処理する送信部と、前記超音波探触子の複数の振動子により受信される反射エコー信号を受信処理する受信部と、前記受信部で受信処理された受信信号に基づいて診断画像を生成する画像構成部と、前記診断画像を表示する表示部と、少なくとも前記送信部と前記受信部と前記画像構成部を制御する制御部と、前記制御部に指令を入力する入力部とを備え、
     前記送信部は、前記超音波探触子に設定された送信口径に対応する複数n(nは自然数)の前記振動子を駆動する時間に遅延時間差を設け、前記被検体内に設定された仮想点音源の位置で前記n個の振動子から送信されるn本の送信ラインの超音波の波面を揃わせ、前記仮想点音源を頂点とするセクタ領域の全体に前記n本の送信ラインを拡散させるように構成され、
     前記受信部は、前記超音波探触子に設定された受信口径に対応する複数m(mは自然数で、m≦n)の前記振動子により受波される反射エコー信号をフォーカス処理して受信ビームを生成するとともに、前記n本の送信ラインに基づいて設定される複数の受信ラインを走査してフレームデータを生成するように構成され、
     前記画像構成部は、前記受信部で生成される前記フレームデータに基づいて前記診断画像を生成することを特徴とする超音波診断装置。
    An ultrasonic probe used in contact with a subject, a transmission unit that transmits ultrasonic signals to a plurality of transducers of the ultrasonic probe, and reception by a plurality of transducers of the ultrasonic probe A reception unit that receives and processes the reflected echo signal, an image configuration unit that generates a diagnostic image based on the reception signal received and processed by the reception unit, a display unit that displays the diagnostic image, and at least the transmission unit A control unit that controls the reception unit and the image configuration unit, and an input unit that inputs a command to the control unit,
    The transmission unit provides a delay time difference in driving a plurality of n (n is a natural number) transducers corresponding to a transmission aperture set in the ultrasound probe, and a virtual set in the subject. The wavefronts of the n transmission lines transmitted from the n transducers at the position of the point sound source are aligned, and the n transmission lines are diffused throughout the sector area having the virtual point sound source as a vertex. Configured to let
    The reception unit receives a reflected echo signal received by a plurality of m (m is a natural number, m ≦ n) corresponding to a reception aperture set in the ultrasonic probe by performing focus processing. Generating a beam and scanning a plurality of reception lines set based on the n transmission lines to generate frame data;
    The ultrasonic diagnostic apparatus, wherein the image construction unit generates the diagnostic image based on the frame data generated by the receiving unit.
  17.  前記制御部は、前記仮想点音源を偏向方向又は深度方向の任意の位置に1又は複数設定することを特徴とする請求項16に記載の超音波診断装置。 The ultrasonic diagnostic apparatus according to claim 16, wherein the control unit sets one or a plurality of the virtual point sound sources at arbitrary positions in a deflection direction or a depth direction.
  18.  前記制御部は、前記送信部を制御して前記仮想点音源を1又は複数設定し、設定された前記仮想点音源ごとに前記n本の送信ラインに超音波を送信させ、前記受信部を制御して前記n本の送信ラインを複数N(Nは自然数)の組に分割し、該分割した組ごとに前記複数の受信ラインを設定して前記受信ビームを生成し、生成した複数の前記受信ビームに基づいて前記仮想点音源ごとに前記フレームデータを生成することを特徴とする請求項16に記載の超音波診断装置。 The control unit controls the transmission unit to set one or a plurality of the virtual point sound sources, causes each of the set virtual point sound sources to transmit ultrasonic waves to the n transmission lines, and controls the reception unit. Then, the n transmission lines are divided into a plurality of N (N is a natural number) groups, and the reception beams are generated by setting the plurality of reception lines for each of the divided groups. The ultrasonic diagnostic apparatus according to claim 16, wherein the frame data is generated for each virtual point sound source based on a beam.
  19.  前記制御部は、前記仮想点音源の位置を前記超音波の伝搬障害となる複数の障害物に挟まれる隙間に設定することを特徴とする請求項18に記載の超音波診断装置。 19. The ultrasonic diagnostic apparatus according to claim 18, wherein the control unit sets the position of the virtual point sound source in a gap sandwiched between a plurality of obstacles that are obstacles to propagation of the ultrasonic wave.
  20.  前記制御部は、複数の前記仮想点音源の位置を複数の障害物に挟まれる隙間の偏向方向又は深度方向にずらして設定し、
     前記受信部は、偏向方向にずらして設定された複数の前記仮想点音源の位置又は深度方向にずらして設定された複数の前記仮想点音源の位置ごとに、前記フレームデータを生成して診断画像を複数枚撮像することを特徴とする請求項19に記載の超音波診断装置。
    The control unit sets the position of the plurality of virtual point sound sources by shifting in the deflection direction or depth direction of the gap between the plurality of obstacles,
    The receiving unit generates the frame data for each of the positions of the plurality of virtual point sound sources set by shifting in the deflection direction or the positions of the plurality of virtual point sound sources set by shifting in the depth direction, thereby generating a diagnostic image The ultrasonic diagnostic apparatus according to claim 19, wherein a plurality of images are picked up.
  21.  前記送信部は、前記被検体内の超音波伝搬の障害物を避けるように前記平面波ビームを送信し、
     前記受信部は、前記被検体内の超音波伝搬の障害物を避けるように前記反射エコー信号をフォーカス処理して受信ビームを生成することを特徴とする請求項10に記載の超音波診断装置。
    The transmitting unit transmits the plane wave beam so as to avoid an obstacle of ultrasonic propagation in the subject,
    The ultrasonic diagnostic apparatus according to claim 10, wherein the reception unit generates a reception beam by focusing the reflected echo signal so as to avoid an obstacle of ultrasonic propagation in the subject.
  22.  前記送信部は、前記複数の仮想点音源の位置ごとに送信する超音波を異なる変調符号で変調し、
     前記受信部は、前記n本の送信ラインに基づいて設定される複数の受信ラインの前記受信ビームを前記変調符号に対応して設定された復調符号で復調することを特徴とする請求項17に記載の超音波診断装置。
    The transmission unit modulates ultrasonic waves to be transmitted for each position of the plurality of virtual point sound sources with different modulation codes,
    18. The reception unit according to claim 17, wherein the reception unit demodulates the reception beams of a plurality of reception lines set based on the n transmission lines with a demodulation code set corresponding to the modulation code. The ultrasonic diagnostic apparatus as described.
PCT/JP2013/069414 2012-07-30 2013-07-17 Ultrasonic diagnostic device WO2014021105A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-168862 2012-07-30
JP2012168862A JP2015186493A (en) 2012-07-30 2012-07-30 Ultrasonic diagnostic equipment
JP2012-269536 2012-12-10
JP2012269536A JP2015186494A (en) 2012-12-10 2012-12-10 Ultrasonic diagnostic equipment

Publications (1)

Publication Number Publication Date
WO2014021105A1 true WO2014021105A1 (en) 2014-02-06

Family

ID=50027787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069414 WO2014021105A1 (en) 2012-07-30 2013-07-17 Ultrasonic diagnostic device

Country Status (1)

Country Link
WO (1) WO2014021105A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015129351A1 (en) * 2014-02-28 2015-09-03 日立アロカメディカル株式会社 Ultrasound imaging apparatus
WO2016060017A1 (en) * 2014-10-15 2016-04-21 日立アロカメディカル株式会社 Ultrasound diagnostic device
CN106461766A (en) * 2014-05-30 2017-02-22 皇家飞利浦有限公司 Synchronized phased array data acquisition from multiple acoustic windows
JP2020058476A (en) * 2018-10-05 2020-04-16 株式会社日立製作所 Ultrasonic imaging apparatus and imaging method of ultrasonic image
CN112469339A (en) * 2018-07-24 2021-03-09 皇家飞利浦有限公司 Ultrasound controller unit and method
US11484295B2 (en) * 2019-02-21 2022-11-01 Konica Minolta, Inc. Ultrasound diagnostic technique for setting virtual origins of acoustic lines for trapezoidal scanning

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5652043A (en) * 1979-10-04 1981-05-09 Fujitsu Ltd Ultrasonic diagnosis apparatus
JPH07231892A (en) * 1994-02-22 1995-09-05 Fujitsu Ltd Ultrasonic diagnostic device
JP2006142026A (en) * 2004-11-16 2006-06-08 Siemens Medical Solutions Usa Inc Method and system for aberration correction in ultrasonic imaging
JP2007504876A (en) * 2003-09-10 2007-03-08 コニンクリユケ フィリップス エレクトロニクス エヌ.ブイ. Spatial ultrasound compound with simultaneous transmission of multiple beams

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5652043A (en) * 1979-10-04 1981-05-09 Fujitsu Ltd Ultrasonic diagnosis apparatus
JPH07231892A (en) * 1994-02-22 1995-09-05 Fujitsu Ltd Ultrasonic diagnostic device
JP2007504876A (en) * 2003-09-10 2007-03-08 コニンクリユケ フィリップス エレクトロニクス エヌ.ブイ. Spatial ultrasound compound with simultaneous transmission of multiple beams
JP2006142026A (en) * 2004-11-16 2006-06-08 Siemens Medical Solutions Usa Inc Method and system for aberration correction in ultrasonic imaging

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015129351A1 (en) * 2014-02-28 2015-09-03 日立アロカメディカル株式会社 Ultrasound imaging apparatus
CN106461766A (en) * 2014-05-30 2017-02-22 皇家飞利浦有限公司 Synchronized phased array data acquisition from multiple acoustic windows
JP2017519558A (en) * 2014-05-30 2017-07-20 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Acquisition of synchronized phased array data from multiple acoustic windows
US11366208B2 (en) 2014-05-30 2022-06-21 Koninklijke Philips N.V. Synchronized phased array data acquisition from multiple acoustic windows
WO2016060017A1 (en) * 2014-10-15 2016-04-21 日立アロカメディカル株式会社 Ultrasound diagnostic device
JP2016077442A (en) * 2014-10-15 2016-05-16 日立アロカメディカル株式会社 Ultrasonic diagnostic device
CN107072641A (en) * 2014-10-15 2017-08-18 株式会社日立制作所 Diagnostic ultrasound equipment
CN112469339A (en) * 2018-07-24 2021-03-09 皇家飞利浦有限公司 Ultrasound controller unit and method
US20210315546A1 (en) * 2018-07-24 2021-10-14 Koninklijke Philips N.V. Ultrasound controller unit and method
JP2020058476A (en) * 2018-10-05 2020-04-16 株式会社日立製作所 Ultrasonic imaging apparatus and imaging method of ultrasonic image
JP7140625B2 (en) 2018-10-05 2022-09-21 富士フイルムヘルスケア株式会社 ULTRASOUND IMAGING DEVICE AND ULTRASOUND IMAGING METHOD
US11484295B2 (en) * 2019-02-21 2022-11-01 Konica Minolta, Inc. Ultrasound diagnostic technique for setting virtual origins of acoustic lines for trapezoidal scanning

Similar Documents

Publication Publication Date Title
JP5355924B2 (en) Ultrasonic diagnostic equipment
US8372008B2 (en) Ultrasound diagnostic apparatus and ultrasound diagnostic method
JP4426530B2 (en) Ultrasonic imaging apparatus and ultrasonic imaging method
US7874988B2 (en) Ultrasonic diagnostic apparatus and ultrasonic transmission method
WO2014021105A1 (en) Ultrasonic diagnostic device
US20080119735A1 (en) Ultrasound imaging system and method with offset alternate-mode line
JP6793444B2 (en) Ultrasonic diagnostic equipment
JP4610719B2 (en) Ultrasound imaging device
JP6165324B2 (en) Ultrasonic imaging device
JP2006122683A (en) Aperture shading estimation technique for reducing ultrasonic multi-line image distortion
WO2016060017A1 (en) Ultrasound diagnostic device
WO2015145828A1 (en) Acoustic wave process device, and method and program for signal processing of acoustic wave process device
JP2008080104A (en) Ultrasound apparatus and method for forming ultrasound image
US20050124883A1 (en) Adaptive parallel artifact mitigation
JP6074299B2 (en) Ultrasonic diagnostic apparatus, signal processing method and program for ultrasonic diagnostic apparatus
JP2007513672A (en) Stereoscopic ultrasound imaging system using a two-dimensional array transducer
JP6171091B2 (en) Ultrasonic imaging device
US20200367862A1 (en) Ultrasound diagnostic device and ultrasound diagnostic device control method
KR101120675B1 (en) Method of Compounding an Ultrasound Image Using a Spatial Compounding
JP5777604B2 (en) Ultrasonic diagnostic apparatus, ultrasonic image generation method and program
US20080030581A1 (en) Multizone Color Doppler Beam Transmission Method
US20120238874A1 (en) Ultrasound diagnostic apparatus and ultrasound image producing method
JP2015186494A (en) Ultrasonic diagnostic equipment
KR101120691B1 (en) Method of Compounding an Ultrasound Image Using a Spatial Compounding
KR20150057175A (en) ultrasonic apparatus and control method for the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13825785

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13825785

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP