WO2015198789A1 - Alternating current load-driving device - Google Patents

Alternating current load-driving device Download PDF

Info

Publication number
WO2015198789A1
WO2015198789A1 PCT/JP2015/065414 JP2015065414W WO2015198789A1 WO 2015198789 A1 WO2015198789 A1 WO 2015198789A1 JP 2015065414 W JP2015065414 W JP 2015065414W WO 2015198789 A1 WO2015198789 A1 WO 2015198789A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter
mode
capacitor
switch
output means
Prior art date
Application number
PCT/JP2015/065414
Other languages
French (fr)
Japanese (ja)
Inventor
浅野 勝宏
Original Assignee
株式会社豊田中央研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田中央研究所 filed Critical 株式会社豊田中央研究所
Publication of WO2015198789A1 publication Critical patent/WO2015198789A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to an AC load driving device including an inverter for driving an AC load.
  • An AC load drive system that drives an AC motor by converting DC power from a DC power source (battery) such as a battery into a three-phase AC current by an inverter and supplying the AC motor to the AC motor is widely used.
  • a DC power source battery
  • Such an AC load driving system is suitable for driving a load by converting electric energy into mechanical energy by an AC motor, and for braking the load by converting mechanical energy into electric energy (by an AC motor). It is widely adopted as a drive system for electric vehicles and hybrid vehicles.
  • a step-up / step-down converter is provided between the DC power supply and the inverter, and the DC power supply is boosted and supplied to the inverter in accordance with the operating condition of the AC load, thereby improving efficiency and reducing noise and noise. Is used.
  • the switch is opened with the current flowing through the switch, The switch is closed while a voltage is applied between the terminals.
  • One aspect of the present invention is an inverter that converts DC power from a plurality of DC power sources into AC power and outputs the AC power to an AC load, the plurality of DC power sources, and the connection relationship between the plurality of DC power sources and the inverter.
  • Multi-level DC output means having a switch for switching, and before switching the switch, the inverter is shifted to the reflux mode, the switch is switched during the reflux mode, and the inverter is switched to the reflux mode after the switch is switched.
  • an inverter control means for terminating the operation.
  • a capacitor is generally provided between the positive electrode and the negative electrode on the input side of the inverter.
  • the inverter control means shifts the inverter to a recirculation mode before switching the switch.
  • the inverter and the plurality of DC power sources are switched to an open mode.
  • the open mode the mode is shifted to a capacitor voltage control mode for charging / discharging the capacitor, and when the charging voltage of the capacitor is in a target voltage range, the inverter is shifted to the reflux mode.
  • the multi-level DC output means is shifted to the switch switching mode so that the target voltage is supplied to the inverter from the plurality of DC power supplies
  • the switch switching is completed, that is, When the output of the multilevel DC output means reaches the target voltage
  • the multilevel DC output means is shifted to the normal output mode.
  • the inverter is shifted to the ON mode in which the plurality of DC power supplies are connected.
  • the inverter circulation mode is terminated and the normal mode is shifted.
  • the mode transition as described above is suitable.
  • the switch of the multi-level DC output means is used, or the system main relay is used. Is preferred.
  • the circulation mode is temporarily stopped, the AC load is subjected to power running control or regenerative control to charge / discharge the capacitor, and the charging voltage of the capacitor is set to a target voltage, that is, the multi-level DC output.
  • the inverter is made to recirculate again so that the voltage after the switch switching of the means is quickly followed and the state is maintained when the voltage converges near the target voltage.
  • the current continuously flows due to the magnetic energy accumulated in the AC load, but since the external energy supply to the AC load is lost, the current value gradually decreases and eventually becomes zero. Become. Similarly, the generated torque gradually decreases and eventually becomes zero.
  • the inverter is shifted to the circulation mode, and in the circulation mode, the system main relay is opened and the system sub It is preferable to charge the capacitor with the relay closed.
  • stress such as arc generation is not applied to the switch. Therefore, it is possible to provide an AC load driving device that suppresses the increase in size and cost of the device.
  • the AC load driving system 100 in the first embodiment includes an AC load driving device 102, a DC power supply 104, and an AC load 106 as shown in FIG.
  • the AC load driving system 100 converts DC power from the DC power source 104 into AC power by the inverter 10 included in the AC load driving device 102 and supplies the AC power to the AC load 106 for driving.
  • the AC load 106 can be a three-phase motor generator including three-phase coils u, v, and w, for example.
  • the three-phase motor generator can be mounted on a hybrid vehicle or an electric vehicle.
  • the AC load driving device 102 includes an inverter 10, a multi-level DC output means 20, and an inverter control means 30.
  • the inverter 10 includes transistors T11 to T16 and diodes D11 to D16. Two transistors T11 to T16 are arranged in pairs so as to form an upper arm on the source side and a lower arm on the sink side with respect to the positive electrode bus and the negative electrode bus, respectively. Each of the three-phase coils u, v, w is connected. If the on-time ratio of the paired transistors T11 to T16 is controlled while a voltage is applied to the positive and negative buses of the inverter 10, a rotating magnetic field is generated by the three-phase coils u, v, and w of the AC load 106. And the AC load 106 can be rotationally driven. Open / close control of the transistors T11 to T16 is performed by an inverter control signal S1 from the inverter control means 30.
  • the DC power supply 104 includes a plurality of DC power supplies 104a to 104n.
  • the multi-level DC output means 20 includes a switch that switches a mutual connection relationship between the plurality of DC power sources 104 a to 104 n and a connection relationship with the inverter 10.
  • the multilevel DC output means 20 As shown in FIG. 2A, by configuring the multilevel DC output means 20 as switches SW1 to SW6, the connection of the four DC power supplies 104a to 104d is switched, and different input voltages are applied to the inverter 10. Can be applied. Note that the configuration of the multi-level DC output means 20 is not limited to this, and any configuration that can apply different voltages to the inverter 10 by switching the mutual connection relationship of a plurality of DC power sources.
  • the switch of the multi-level DC output means 20 is switched by a switch switching signal S2 from the inverter control means 30.
  • FIG. 2B shows the relationship between the state of each switch and the output of the multilevel DC output means 20.
  • the switch switching signal S2 can be output to the means 20 to adjust the voltage input to the inverter 10.
  • the control signal S3 can be input from the outside to the inverter control means 30, and the switch switching signal S2 can be output to the multi-level DC output means 20 in accordance with the control signal S3 to adjust the voltage input to the inverter 10. .
  • the control signal S3 may be a signal related to the output required for the AC load 106, such as a signal indicating the accelerator opening of the vehicle, a signal indicating the amount of depression of the brake, a signal indicating the gear ratio of the transmission, or the like. Good.
  • the switching sequence of the multilevel DC output means 20 is started in response to a change in the required output to the AC load 106.
  • a DC voltage is applied from the DC power supply 104 to the inverter 10 via the multi-level DC output means 20, and AC power that has been subjected to cross-flow conversion is supplied to the AC load 106.
  • step S10 a process for shifting the inverter 10 to the reflux mode is performed.
  • the inverter control means 30 switches from the normal mode in which the inverter 10 is cross-flow converted to the reflux mode by the inverter control signal S1.
  • the reflux mode is a state where current is circulated between the inverter 10 and the AC load 106.
  • all the transistors Tr11, 13 and 15 in the upper arm are closed, and all the transistors Tr12, 14 and 16 in the lower arm are opened, so that the circulation mode via the upper arm of the inverter 10 is set. it can.
  • all the transistors Tr11, 13, and 15 in the upper arm are opened, and all the transistors Tr12, 14, and 16 in the lower arm are closed, thereby setting the circulation mode through the lower arm of the inverter 10. be able to.
  • the inverter 10 By setting the inverter 10 to the reflux mode, an open loop state in which no current flows between the multilevel DC output means 20 and the AC load 106 is established.
  • the AC load 106 is a PM motor
  • an induced voltage generated by a magnet is generated at each terminal of the AC load 106, so that the state of the recirculation mode, that is, the upper arm switch is closed or the lower arm switch is closed.
  • a short-circuit current that generates brake torque begins to flow. Therefore, before the torque current component is switched from positive to negative, the switch that has been closed by the circulation mode is opened to avoid the occurrence of braking torque.
  • the multilevel DC output means 20 and the AC load 106 are in an open loop state in which no current flows.
  • step S12 the multi-level DC output means 20 performs a process of shifting to a switch switching mode in which the voltage input from the DC power supply 104 to the inverter 10 is changed.
  • the inverter control means 30 changes the connection relationship of the plurality of DC power sources 104a to 104n so that an input voltage corresponding to the output of the AC load 106 is input to the inverter 10 by the switch switching signal S2.
  • the relationship between the switch state and the output of the multilevel DC output means 20 is shown in FIG.
  • the output 104a means the output voltage of the DC power supply 104a, and the other is the same.
  • step S14 a process for returning the inverter 10 to the normal mode is performed.
  • the inverter control means 30 switches the inverter 10 from the recirculation mode to the normal mode in which the cross flow is converted by the inverter control signal S1.
  • the DC voltage changed by switching the switch of the multilevel DC output means 20 in step S12 is applied to the inverter 10, and the AC load 106 can be driven by the AC voltage obtained by orthogonally converting the DC voltage. .
  • the inverter 10 is set to the reflux mode, and the connection of the plurality of DC power sources 104a to 104n is changed by the multi-level DC output means 20 during the reflux mode, so that it is not necessary to use the step-up / step-down converter.
  • a relay having an inexpensive mechanical contact can be applied as a switch of the multi-level DC output means 20, and the AC load driving device 102 can be reduced in cost and size. Further, since it is not necessary to use a semiconductor switch as the switch, it is not necessary to consider the switching loss when the switch is opened and closed, and the on-resistance loss when conducting.
  • the input voltage is switched by the multilevel DC output means 20 in accordance with the output of the AC load 106, and therefore the frequency is accelerated and decelerated. It is about the same as the frequency. Therefore, even if a relay having a mechanical contact or a semiconductor switch is used as a switch, the life as a switch is sufficiently secured.
  • the switch opening / closing time is about several tens of milliseconds, the input voltage of the inverter 10 can be changed according to the change in the required output to the AC load 106 without giving the driver a sense of incongruity such as torque loss. it can.
  • condenser 12 which smoothes an input voltage is provided in the input side of the inverter 10 of the alternating current load drive device 102.
  • FIG. By providing the capacitor 12, noise generated between the positive bus and the negative bus of the inverter 10 can be removed.
  • a system main relay 16 is provided between the multilevel DC output means 20 and the inverter 10. By opening the system main relay 16, the multilevel DC output means 20 and the inverter 10 can be disconnected so that an excessive capacitor charging current does not flow when the multilevel DC output means 20 is switched. The function of the system main relay 16 can be provided in the multilevel DC output means 20.
  • a DC voltage is applied from the DC power source 104 to the inverter 10 via the multi-level DC output means 20, and the input voltage smoothed by the capacitor 12 is orthogonally converted by the inverter 10 and applied to the AC load 106. It is assumed that it is being supplied.
  • step S20 the inverter 10 is shifted to the reflux mode. This process is the same as step S10 in the first embodiment.
  • step S22 the system main relay 16 is shifted to the open mode.
  • the inverter control means 30 switches the switch of the multilevel DC output means 20 by the switch switching signal S2 and the DC power supply 104.
  • the inverter 10 is disconnected, and the mode is shifted to the open mode in which no DC current is input from the DC power supply 104 to the inverter 10.
  • step S24 the inverter 10 is shifted to the capacitor voltage control mode.
  • the capacitor voltage control mode is a mode in which the capacitor 12 is charged and discharged by performing power running control or regenerative control of the AC load 106.
  • the inverter control means 30 controls the open / close state of the transistors Tr11 to Tr16 by the inverter control signal S1, controls the voltage of the capacitor 12 by discharging or charging the capacitor 12 by powering or regenerating the AC load 106.
  • the capacitor voltage control mode By setting the capacitor voltage control mode, the capacitor 12 can be charged and discharged to adjust the charging voltage (terminal voltage).
  • Power running control can be realized, for example, by driving an AC load and converting electrical energy into kinetic energy.
  • the regenerative control can be realized, for example, by converting inertial energy of the AC load 106 into an energy source and converting it into electric energy by a generator operation.
  • the regenerative control can be continued by driving the AC load 106 as a generator with an external engine or the like, for example.
  • step S26 it is determined whether or not the charging voltage of the capacitor 12 has entered the target voltage range.
  • the inverter control means 30 receives the input of the charging voltage of the capacitor 12 measured by the voltage sensor 14, and shifts the process to step S28 if the charging voltage of the capacitor 12 is within the target voltage range, and enters the target voltage range. If not, the capacitor voltage control mode is continued.
  • the target voltage range is set in the vicinity of the target voltage to be output from the multilevel DC output means 20 after the switch of the multilevel DC output means 20 is switched in step S30 described later. Further, the target voltage is determined based on the voltage required for the AC load 106 at that time.
  • the target voltage ⁇ ⁇ V is set to the target voltage after the switch of the multilevel DC output means 20 changed in step S30 described later.
  • ⁇ V is a voltage that does not cause an arc at the switch contact, and is set to, for example, a minimum arc voltage or less based on the specifications of the switch.
  • step S28 a process for shifting the inverter 10 to the reflux mode is performed.
  • This process is the same as step S10 in the first embodiment.
  • the AC load 106 is a PM motor
  • an induced voltage generated by a magnet is generated at each terminal of the AC load 106, so that the state of the recirculation mode, that is, the upper arm switch is closed or the lower arm switch is closed.
  • the braking torque is generated by opening the switch that has been closed by the recirculation mode at the timing when the torque current component switches from positive to negative.
  • the multilevel DC output means 20 and the AC load 106 are in an open loop state in which no current flows. This process is the same as step S10 in the first embodiment.
  • steps S30 to S34 are performed in parallel with steps S24 to S28.
  • the multi-level DC output means 20 performs a process of shifting to a switch switching mode for changing the voltage input from the DC power supply 104 to the inverter 10. This process is the same as step S12 in the first embodiment.
  • step S32 the process waits until the switch switching is completed. When the output is stabilized, the process proceeds to the normal output mode in step S34.
  • step S36 the process waits until the inverter 10 is switched to the reflux mode and the multi-level DC output means 20 is shifted to the normal output mode.
  • the system main relay 16 is checked in step S38. To the on mode.
  • step S40 a process for returning the inverter 10 to the normal mode is performed. This process is the same as step S14 in the first embodiment.
  • the capacitor voltage control mode can be charged and discharged in advance to the target voltage.
  • the system main relay 16 is provided between the multilevel DC output means 20 and the inverter 10 on the positive bus side of the inverter 10.
  • the system main relay 16 can open and close the connection between the multilevel DC output means 20 and the inverter 10.
  • the system sub relay 18 is provided in parallel with the system main relay 16 between the multilevel DC output means 20 and the inverter 10 on the positive bus side of the inverter 10.
  • the system sub relay 18 is connected in series with the resistor 11 and the inductor 13.
  • the capacitor 12 can be charged / discharged from the DC power source 104 via the resistor 11 and the inductor 13 by closing the system sub relay 18 while the system main relay 16 is open.
  • the system main relay 16 is closed and the system sub-relay 18 is opened, and a DC voltage is applied from the DC power source 104 to the inverter 10 via the multi-level DC output means 20. It is assumed that the smoothed input voltage is orthogonally transformed by the inverter 10 and supplied to the AC load 106.
  • step S50 the inverter 10 is shifted to the reflux mode. This process is the same as step S10 in the first embodiment.
  • step S52 the inverter control means 30 opens the system main relay 16 by the switch switching signal S4. As a result, both the system main relay 16 and the system sub relay 18 are in an open state (open mode).
  • step S54 the inverter 10 is shifted to the capacitor voltage control mode. This process is the same as step S24 in the second embodiment.
  • step S56 it is determined whether or not the charging voltage of the capacitor 12 has entered the target voltage range.
  • the inverter control means 30 receives the input of the charging voltage of the capacitor 12 measured by the voltage sensor 14, and shifts the process to step S58 if the charging voltage of the capacitor 12 is within the target voltage range, and the target voltage range. If not, the process proceeds to step S72.
  • the target voltage range may be set similarly to the second embodiment.
  • step S72 it is determined whether or not the capacitor voltage control mode has continued for a reference time or longer.
  • the inverter control unit 30 shifts the process to step S74 when the capacitor voltage control mode is continued for the reference time or longer, and continues the capacitor voltage control mode when the capacitor voltage control mode is continued for less than the reference time.
  • step S74 a process for returning the inverter 10 from the capacitor voltage control mode to the reflux mode is performed. This process is the same as step S10 in the first embodiment.
  • step S76 the system sub relay 18 is shifted to the on mode.
  • the inverter control means 30 closes the system sub relay 18 by the switch switching signal S4.
  • the system main relay 16 is in an open state (open mode) and the system sub-relay 18 is in a closed state (on mode).
  • the capacitor 12 is charged and discharged.
  • Charging may be performed until the charging voltage of the capacitor 12 falls within the target voltage range, or may be performed until the charging time exceeds the reference time.
  • step S78 the system sub relay 18 is shifted to the off mode.
  • Inverter control means 30 opens system sub-relay 18 (open mode) by switch switching signal S4.
  • step S58 the inverter 10 is returned from the capacitor voltage control mode to the reflux mode.
  • step S10 in the first embodiment.
  • the AC load 106 is a PM motor
  • an induced voltage generated by a magnet is generated at each terminal of the AC load 106, so that the state of the recirculation mode, that is, the upper arm switch is closed or the lower arm switch is closed.
  • the braking torque is generated by opening the switch that has been closed by the recirculation mode at the timing when the torque current component switches from positive to negative.
  • the multilevel DC output means 20 and the AC load 106 are in an open loop state in which no current flows. This process is the same as step S10 in the first embodiment.
  • steps S60 to S64 are performed in parallel with the loop of steps S54 to S58 and steps S54 to S78.
  • the multilevel DC output means 20 performs a process of shifting to a switch switching mode for changing the voltage input from the DC power supply 104 to the inverter 10. This process is the same as step S12 in the first embodiment.
  • step S62 the process waits until the switch switching is completed. When the output is stabilized, the process proceeds to the normal output mode in step S64.
  • step S66 the system sub-relay 18 is set in the off mode, the inverter 10 is set in the reflux mode, and the multi-level DC output means 20 is set in the normal output mode.
  • step S68 the system main relay 16 is shifted to the on mode.
  • step S70 the inverter 10 is returned to the normal mode. This process is the same as step S14 in the first embodiment.
  • the capacitor 12 can be charged / discharged by switching the charge / discharge circuit by the system main relay 16 and the system sub relay 18. Therefore, even if the capacitor 12 is not fully charged / discharged when the inverter 10 is regeneratively controlled to charge / discharge the capacitor 12, the capacitor 12 can be appropriately charged / discharged. Thereby, when the multilevel DC output means 20 and the inverter 10 are directly connected by the system main relay 16, the difference between the output voltage of the multilevel DC output means 20 and the charging voltage of the capacitor 12 can be reduced. Further, it is possible to prevent an excessive charge / discharge current from flowing through the switch contact and the capacitor 12.
  • the switches constituting the system main relay, the system sub relay, and the multi-level DC output means may be any switching device that can be turned on and off from the outside, and have, for example, mechanical contacts.
  • An electromagnetic relay, a semiconductor switch, or the like can be used.
  • inverter 10 inverter, 11 resistor, 12 capacitor, 13 inductor, 14 voltage sensor, 16 system main relay, 18 system sub relay, 20 multi-level DC output means, 30 inverter control means, 100 AC load drive system, 102 AC load drive device, 104 (104a-104n) DC power supply, 106 AC load.

Abstract

 The present invention is configured so as to be provided with: an inverter for converting DC power from a plurality of DC power sources into AC power and outputting the AC power to an AC load, a multilevel DC output means having a switch for switching the connective relationships between the plurality of DC power sources and the inverter; and an inverter-controlling means for transitioning the inverter to a circulation mode before the switch is switched, switching the switch during the circulation mode, and ending the inverter circulation mode after the switch is switched.

Description

交流負荷駆動装置AC load drive
 本発明は、交流負荷を駆動するためのインバータを備えた交流負荷駆動装置に関する。 The present invention relates to an AC load driving device including an inverter for driving an AC load.
 電池などの直流電源(電池)からの直流電力をインバータにより3相交流電流に変換して交流モータに供給し、交流モータを駆動する交流負荷駆動システムが広く利用されている。このような交流負荷駆動システムは、交流モータにより電気エネルギーを機械エネルギーに変換して負荷を駆動すると共に、(交流モータにより)機械エネルギーを電気エネルギーに変換して負荷を制動する場合に適しており、電気自動車やハイブリッド自動車等の駆動システムとして広く採用されている。 2. Description of the Related Art An AC load drive system that drives an AC motor by converting DC power from a DC power source (battery) such as a battery into a three-phase AC current by an inverter and supplying the AC motor to the AC motor is widely used. Such an AC load driving system is suitable for driving a load by converting electric energy into mechanical energy by an AC motor, and for braking the load by converting mechanical energy into electric energy (by an AC motor). It is widely adopted as a drive system for electric vehicles and hybrid vehicles.
 このようなシステムにおいて、高電圧の直流から低電圧の交流を出力する場合、インバータのスイッチング損失の割合が増加し、不要な高調波成分の割合も増加するため、効率の低下、ノイズや騒音の増加を招くおそれがある。そこで、直流電源とインバータとの間に昇降圧コンバータを設け、交流負荷の運転状態に適応して直流電源を昇圧してインバータに供給することにより、効率の向上及びノイズや騒音の低減を図る構成が用いられている。 In such a system, when high-voltage direct current is output from low-voltage alternating current, the ratio of inverter switching loss increases and the ratio of unnecessary harmonic components also increases, reducing efficiency and reducing noise and noise. May increase. Thus, a step-up / step-down converter is provided between the DC power supply and the inverter, and the DC power supply is boosted and supplied to the inverter in accordance with the operating condition of the AC load, thereby improving efficiency and reducing noise and noise. Is used.
 しかしながら、昇降圧コンバータが高コストであり、システムが大型化してしまう問題がある。また、昇降圧コンバータにおけるスイッチング損失及びオン抵抗損失による効率低下が生じる。 However, there is a problem that the buck-boost converter is expensive and the system becomes large. In addition, the efficiency decreases due to switching loss and on-resistance loss in the buck-boost converter.
 そこで、複数の直流電源を設け、これらの複数の直流電源をスイッチにより直列接続又は並列接続して段階的に直流電圧を切り替え、このマルチレベルの直流電源をインバータに接続して交流負荷を駆動する方式が提案されている(特許文献1~3参照)。 Therefore, a plurality of DC power supplies are provided, and these DC power supplies are connected in series or in parallel by switches to switch DC voltages in stages, and this multi-level DC power supply is connected to an inverter to drive an AC load. A method has been proposed (see Patent Documents 1 to 3).
特開2001-119813号公報JP 2001-198113 A 特開2005-287222号公報JP 2005-287222 A 特開2007-98981号公報JP 2007-98981 A
 ところで、複数の直流電源からの直流電圧をインバータに入力して交流負荷を駆動中に複数の直流電源の接続関係を切り替えると、スイッチに電流が流れている状態でスイッチが開にされたり、スイッチ端子間に電圧が印加されている状態でスイッチが閉にされたりすることになる。 By the way, when the DC voltage from multiple DC power supplies is input to the inverter and the connection relationship of multiple DC power supplies is switched while driving an AC load, the switch is opened with the current flowing through the switch, The switch is closed while a voltage is applied between the terminals.
 スイッチとして機械的接点を持つリレーを用いた場合、開閉時にアークが発生し、接点の溶着、接触抵抗の増大、寿命の低下を招いていた。それを防ぐためにはアークを早期に消滅させるための対策及び接点のアークに対する耐性の強化が必要で、リレーの高コスト化及び大型化が避けられない。また、開閉時に電磁ノイズが発生し、電子装置の誤動作の危険性が増大し、その対策のためにシステムの高コスト化及び大型化を招くおそれがある。 When a relay with a mechanical contact was used as a switch, an arc was generated at the time of opening and closing, leading to contact welding, increased contact resistance, and reduced life. In order to prevent this, it is necessary to take measures to extinguish the arc at an early stage and to enhance the resistance of the contact to the arc, and it is inevitable that the relay is increased in cost and size. In addition, electromagnetic noise is generated at the time of opening and closing, increasing the risk of malfunction of the electronic device, and there is a risk of increasing the cost and size of the system as a countermeasure.
 また、スイッチとして半導体スイッチを用いた場合、開閉時にスイッチング損失が発生したり、導通時にオン抵抗損失が発生したり、システムが高コスト化及び大型化したりするおそれがある。 In addition, when a semiconductor switch is used as a switch, there is a risk that a switching loss may occur during opening and closing, an on-resistance loss may occur during conduction, and the system may increase in cost and size.
 本発明の1つの態様は、複数の直流電源からの直流電力を交流電力に変換して交流負荷に出力するインバータと、前記複数の直流電源と、前記複数の直流電源と前記インバータとの接続関係を切り替えるスイッチを有するマルチレベル直流出力手段と、前記スイッチを切り替える前に、前記インバータを環流モードに移行させ、環流モードの間に前記スイッチを切り替え、前記スイッチが切り替えられた後に前記インバータの環流モードを終了させるインバータ制御手段と、を備えることを特徴とする交流負荷駆動装置である。 One aspect of the present invention is an inverter that converts DC power from a plurality of DC power sources into AC power and outputs the AC power to an AC load, the plurality of DC power sources, and the connection relationship between the plurality of DC power sources and the inverter. Multi-level DC output means having a switch for switching, and before switching the switch, the inverter is shifted to the reflux mode, the switch is switched during the reflux mode, and the inverter is switched to the reflux mode after the switch is switched. And an inverter control means for terminating the operation.
 ここで、前記インバータの入力側の正極と負極との間には、一般にはコンデンサが備えられている。前記インバータ制御手段は、前記スイッチを切り替える前に、前記インバータを環流モードに移行させる。環流モードの間には、前記インバータと前記複数の直流電源とを切り離したオープンモードに移行させる。前記オープンモードの間に、前記コンデンサを充放電させるコンデンサ電圧制御モードに移行させ、前記コンデンサの充電電圧が目標電圧範囲となった時、前記インバータを環流モードに移行させる。また、前記オープンモードの間に、前記複数の直流電源から前記インバータに前記目標電圧が供給されるように前記マルチレベル直流出力手段をスイッチ切替モードに移行させ、スイッチの切替が終了した時、すなわち前記マルチレベル直流出力手段の出力が前記目標電圧になった時に、前記マルチレベル直流出力手段を通常出力モードへ移行させる。前記インバータの環流モードへの切り替えと前記マルチレベル直流出力手段の通常出力モードへの移行が完了した時、前記インバータと前記複数の直流電源を接続したオンモードに移行させる。オンモードに移行した後に前記インバータの環流モードを終了させ通常モードに移行させる。以上のようなモードの移行が好適である。また、前記インバータと前記複数の直流電源を切り離しオープンモードに移行する際、または接続しオンモードにする際に、前記マルチレベル直流出力手段のスイッチを利用すること、または、システムメインリレーを利用することが好適である。 Here, a capacitor is generally provided between the positive electrode and the negative electrode on the input side of the inverter. The inverter control means shifts the inverter to a recirculation mode before switching the switch. During the recirculation mode, the inverter and the plurality of DC power sources are switched to an open mode. During the open mode, the mode is shifted to a capacitor voltage control mode for charging / discharging the capacitor, and when the charging voltage of the capacitor is in a target voltage range, the inverter is shifted to the reflux mode. Further, during the open mode, when the multi-level DC output means is shifted to the switch switching mode so that the target voltage is supplied to the inverter from the plurality of DC power supplies, when the switch switching is completed, that is, When the output of the multilevel DC output means reaches the target voltage, the multilevel DC output means is shifted to the normal output mode. When the switching of the inverter to the recirculation mode and the transition of the multi-level DC output means to the normal output mode are completed, the inverter is shifted to the ON mode in which the plurality of DC power supplies are connected. After shifting to the on mode, the inverter circulation mode is terminated and the normal mode is shifted. The mode transition as described above is suitable. Further, when the inverter and the plurality of DC power supplies are disconnected and shifted to the open mode, or when connected to the on mode, the switch of the multi-level DC output means is used, or the system main relay is used. Is preferred.
 また、前記コンデンサ電圧制御モードでは、環流モードを一旦中止し、前記交流負荷を力行制御又は回生制御することにより前記コンデンサを充放電させ、前記コンデンサの充電電圧を目標電圧、すなわち前記マルチレベル直流出力手段の前記スイッチ切り替え後の電圧に速やかに追従させ、目標電圧近傍に収束した時にその状態を維持するように前記インバータを再度環流モードとすることが好適である。また、前記環流モードにおいては、交流負荷に蓄積された磁気エネルギーにより、電流は継続的に流れるが、交流負荷への外部からのエネルギー供給はなくなるので、電流値は徐々に減少し、いずれ零になる。同様に、発生トルクも徐々に減少し、いずれ零になる。ただし、PMモータの場合には、磁石による誘起電圧が交流負荷の各端子に発生しているので、環流モードの状態、すなわち上アームのスイッチを閉状態又は下アームのスイッチを閉状態では、交流負荷の各端子を短絡することになり、ブレーキトルクを発生させる短絡電流が流れ始める。そのため、駆動から制動に切り替わるタイミングで、すなわち、トルク電流成分が正から負に切り替わるタイミングで、環流モードで閉状態にしていたスイッチを開状態にし、電流を零に収束させることが好適である。このような制御をすることにより、制動トルクが発生することを回避することができる。 Further, in the capacitor voltage control mode, the circulation mode is temporarily stopped, the AC load is subjected to power running control or regenerative control to charge / discharge the capacitor, and the charging voltage of the capacitor is set to a target voltage, that is, the multi-level DC output. It is preferable that the inverter is made to recirculate again so that the voltage after the switch switching of the means is quickly followed and the state is maintained when the voltage converges near the target voltage. In the recirculation mode, the current continuously flows due to the magnetic energy accumulated in the AC load, but since the external energy supply to the AC load is lost, the current value gradually decreases and eventually becomes zero. Become. Similarly, the generated torque gradually decreases and eventually becomes zero. However, in the case of a PM motor, an induced voltage generated by a magnet is generated at each terminal of the AC load. Therefore, in the reflux mode, that is, when the upper arm switch is closed or the lower arm switch is closed, AC Each terminal of the load is short-circuited, and a short-circuit current that generates brake torque begins to flow. For this reason, it is preferable to open the switch that has been closed in the reflux mode and converge the current to zero at the timing when switching from driving to braking, that is, when the torque current component switches from positive to negative. By performing such control, generation of braking torque can be avoided.
 また、前記インバータの入力側の正極と負極との間に接続されたコンデンサと、前記インバータと前記マルチレベル直流出力手段との間にシステムメインリレーとを備える。さらに、システムサブリレー、インダクタ、抵抗との直列接続回路をシステムメインリレーと並列に接続することが好適である。ここで、前記コンデンサ電圧制御モードにおいて前記コンデンサの充電電圧を目標電圧近傍に収束できなかった場合、前記インバータを循環モードに移行させ、前記環流モードにおいて、前記システムメインリレーを開状態及び前記システムサブリレーを閉状態として前記コンデンサを充電させることが好適である。また、前記抵抗のレジスタンスRと前記インダクタのインダクタンスLと前記コンデンサのキャパシタンスCは、前記コンデンサが振動無く速やかに充電されるように、臨界制動の条件(R=4L/C)を満足するように設定することが好適である。 A capacitor connected between a positive electrode and a negative electrode on the input side of the inverter; and a system main relay between the inverter and the multi-level DC output means. Furthermore, it is preferable to connect a series connection circuit of a system sub relay, an inductor, and a resistor in parallel with the system main relay. Here, when the charging voltage of the capacitor cannot be converged to the vicinity of the target voltage in the capacitor voltage control mode, the inverter is shifted to the circulation mode, and in the circulation mode, the system main relay is opened and the system sub It is preferable to charge the capacitor with the relay closed. The resistance R of the resistor, the inductance L of the inductor, and the capacitance C of the capacitor satisfy a critical braking condition (R 2 = 4 L / C) so that the capacitor is quickly charged without vibration. It is preferable to set to.
 本発明によれば、スイッチにアーク発生等のストレスを掛けることはない。そのため、装置の大型化及びコストを抑制した交流負荷駆動装置を提供することができる。 According to the present invention, stress such as arc generation is not applied to the switch. Therefore, it is possible to provide an AC load driving device that suppresses the increase in size and cost of the device.
第1の実施の形態における交流負荷駆動システムの構成を示す図である。It is a figure which shows the structure of the alternating current load drive system in 1st Embodiment. 本発明の実施の形態における交流負荷駆動システムの構成を示す図である。It is a figure which shows the structure of the alternating current load drive system in embodiment of this invention. 本発明の実施の形態におけるマルチレベル直流出力手段の作用を示す図である。It is a figure which shows the effect | action of the multilevel DC output means in embodiment of this invention. 第1の実施の形態における直流電源の切替処理を説明するフローチャートである。It is a flowchart explaining the switching process of DC power supply in 1st Embodiment. 第1の実施の形態における直流電源の切替処理を説明するタイミングチャートである。It is a timing chart explaining the switching process of the direct-current power supply in 1st Embodiment. 第2の実施の形態における交流負荷駆動システムの構成を示す図である。It is a figure which shows the structure of the alternating current load drive system in 2nd Embodiment. 第2の実施の形態におけるマルチレベル直流出力手段の作用を示す図である。It is a figure which shows the effect | action of the multilevel DC output means in 2nd Embodiment. 第2の実施の形態における直流電源の切替処理を説明するフローチャートである。It is a flowchart explaining the switching process of DC power supply in 2nd Embodiment. 第2の実施の形態における直流電源の切替処理を説明するタイミングチャートである。It is a timing chart explaining the switching process of the direct-current power supply in 2nd Embodiment. 第3の実施の形態における交流負荷駆動システムの構成を示す図である。It is a figure which shows the structure of the alternating current load drive system in 3rd Embodiment. 第3の実施の形態における直流電源の切替処理を説明するフローチャートである。It is a flowchart explaining the switching process of the DC power supply in 3rd Embodiment. 第3の実施の形態における直流電源の切替処理を説明するタイミングチャートである。It is a timing chart explaining the switching process of the direct-current power supply in 3rd Embodiment.
<第1の実施の形態>
 第1の実施の形態における交流負荷駆動システム100は、図1に示すように、交流負荷駆動装置102、直流電源104及び交流負荷106を含んで構成される。交流負荷駆動システム100は、交流負荷駆動装置102に含まれるインバータ10によって直流電源104からの直流電力を交流電力に変換して交流負荷106へ供給して駆動する。
<First Embodiment>
The AC load driving system 100 in the first embodiment includes an AC load driving device 102, a DC power supply 104, and an AC load 106 as shown in FIG. The AC load driving system 100 converts DC power from the DC power source 104 into AC power by the inverter 10 included in the AC load driving device 102 and supplies the AC power to the AC load 106 for driving.
 なお、交流負荷106は、例えば、三相コイルu,v,wを備える三相モータジェネレータとすることができる。三相モータジェネレータは、ハイブリッド自動車や電気自動車等に搭載することができる。 The AC load 106 can be a three-phase motor generator including three-phase coils u, v, and w, for example. The three-phase motor generator can be mounted on a hybrid vehicle or an electric vehicle.
 交流負荷駆動装置102は、インバータ10、マルチレベル直流出力手段20及びインバータ制御手段30を含んで構成される。 The AC load driving device 102 includes an inverter 10, a multi-level DC output means 20, and an inverter control means 30.
 インバータ10は、トランジスタT11~T16とダイオードD11~D16とにより構成される。トランジスタT11~T16は、それぞれ正極母線と負極母線とに対してソース側となる上アームとシンク側となる下アームを構成するように2個ずつ対で配置され、その接続点に交流負荷106の三相コイルu,v,wの各々が接続される。インバータ10の正極母線と負極母線とに電圧が印加されている状態で対をなすトランジスタT11~T16のオン時間の割合を制御すれば、交流負荷106の三相コイルu,v,wにより回転磁界を形成して交流負荷106を回転駆動することができる。トランジスタT11~T16の開閉制御は、インバータ制御手段30からのインバータ制御信号S1によって行われる。 The inverter 10 includes transistors T11 to T16 and diodes D11 to D16. Two transistors T11 to T16 are arranged in pairs so as to form an upper arm on the source side and a lower arm on the sink side with respect to the positive electrode bus and the negative electrode bus, respectively. Each of the three-phase coils u, v, w is connected. If the on-time ratio of the paired transistors T11 to T16 is controlled while a voltage is applied to the positive and negative buses of the inverter 10, a rotating magnetic field is generated by the three-phase coils u, v, and w of the AC load 106. And the AC load 106 can be rotationally driven. Open / close control of the transistors T11 to T16 is performed by an inverter control signal S1 from the inverter control means 30.
 直流電源104は、複数の直流電源104a~104nによって構成される。マルチレベル直流出力手段20は、複数の直流電源104a~104nの相互の接続関係及びインバータ10との接続関係を切り替えるスイッチを含んで構成される。 The DC power supply 104 includes a plurality of DC power supplies 104a to 104n. The multi-level DC output means 20 includes a switch that switches a mutual connection relationship between the plurality of DC power sources 104 a to 104 n and a connection relationship with the inverter 10.
 例えば、図2(a)に示すように、マルチレベル直流出力手段20をスイッチSW1~SW6のように構成することによって、4つの直流電源104a~104dの接続を切り替えてインバータ10に異なる入力電圧を印加することができる。なお、マルチレベル直流出力手段20の構成は、これに限定されるものではなく、複数の直流電源の相互の接続関係を切り替えて、インバータ10に異なる電圧を印加できるものであればよい。 For example, as shown in FIG. 2A, by configuring the multilevel DC output means 20 as switches SW1 to SW6, the connection of the four DC power supplies 104a to 104d is switched, and different input voltages are applied to the inverter 10. Can be applied. Note that the configuration of the multi-level DC output means 20 is not limited to this, and any configuration that can apply different voltages to the inverter 10 by switching the mutual connection relationship of a plurality of DC power sources.
 マルチレベル直流出力手段20のスイッチは、インバータ制御手段30からのスイッチ切替信号S2によって切り替えられる。図2(b)に各スイッチの状態とマルチレベル直流出力手段20の出力との関係を示す。マルチレベル直流出力手段20を設けることによって、複数の直流電源104a~104nの接続関係を切り替えて得られる多段階の直流電圧をインバータ10へ入力することが可能となり、要求される出力に応じて適切な電圧波形で交流負荷106を駆動することができる。 The switch of the multi-level DC output means 20 is switched by a switch switching signal S2 from the inverter control means 30. FIG. 2B shows the relationship between the state of each switch and the output of the multilevel DC output means 20. By providing the multi-level DC output means 20, it becomes possible to input a multi-stage DC voltage obtained by switching the connection relation of the plurality of DC power sources 104a to 104n to the inverter 10, and appropriately depending on the required output The AC load 106 can be driven with a simple voltage waveform.
 例えば、交流負荷106の三相コイルu,v,wに流れる電流Iu,Iv,Iwを電流センサにより検出してインバータ制御手段30に入力し、電流Iu,Iv,Iwに応じてマルチレベル直流出力手段20へスイッチ切替信号S2を出力してインバータ10へ入力される電圧を調整することができる。また、外部から制御信号S3をインバータ制御手段30に入力し、制御信号S3に応じてマルチレベル直流出力手段20へスイッチ切替信号S2を出力してインバータ10へ入力される電圧を調整することができる。制御信号S3としては、車両のアクセルの開度を示す信号、ブレーキの踏み込み量を示す信号、トランスミッションのギア比を示す信号等の交流負荷106に対して要求される出力に関係する信号とすればよい。 For example, currents Iu, Iv, and Iw flowing through the three-phase coils u, v, and w of the AC load 106 are detected by a current sensor and input to the inverter control unit 30. The switch switching signal S2 can be output to the means 20 to adjust the voltage input to the inverter 10. Further, the control signal S3 can be input from the outside to the inverter control means 30, and the switch switching signal S2 can be output to the multi-level DC output means 20 in accordance with the control signal S3 to adjust the voltage input to the inverter 10. . The control signal S3 may be a signal related to the output required for the AC load 106, such as a signal indicating the accelerator opening of the vehicle, a signal indicating the amount of depression of the brake, a signal indicating the gear ratio of the transmission, or the like. Good.
 以下、図3のフローチャート及び図4のタイミングチャートを参照して、マルチレベル直流出力手段20のスイッチの切替シーケンスを説明する。マルチレベル直流出力手段20の切替シーケンスは、交流負荷106への要求出力の変化に応じて開始される。切替シーケンスの開始前は、マルチレベル直流出力手段20を介して直流電源104からインバータ10に直流電圧が印加され、直交流変換された交流電力が交流負荷106に供給されている状態とする。 Hereinafter, the switch switching sequence of the multilevel DC output means 20 will be described with reference to the flowchart of FIG. 3 and the timing chart of FIG. The switching sequence of the multilevel DC output means 20 is started in response to a change in the required output to the AC load 106. Before the start of the switching sequence, a DC voltage is applied from the DC power supply 104 to the inverter 10 via the multi-level DC output means 20, and AC power that has been subjected to cross-flow conversion is supplied to the AC load 106.
 ステップS10では、インバータ10を環流モードに移行させる処理が行われる。インバータ制御手段30は、インバータ制御信号S1によってインバータ10を直交流変換する通常モードから環流モードに切り替える。 In step S10, a process for shifting the inverter 10 to the reflux mode is performed. The inverter control means 30 switches from the normal mode in which the inverter 10 is cross-flow converted to the reflux mode by the inverter control signal S1.
 環流モードは、インバータ10と交流負荷106との間で電流を循環させる状態である。例えば、上アームのトランジスタTr11,13,15のすべてを閉状態とし、下アームのトランジスタTr12,14,16のすべてを開状態とすることによってインバータ10の上アームを介した循環モードとすることができる。また、例えば、上アームのトランジスタTr11,13,15のすべてを開状態とし、下アームのトランジスタTr12,14,16のすべてを閉状態とすることによってインバータ10の下アームを介した循環モードとすることができる。 The reflux mode is a state where current is circulated between the inverter 10 and the AC load 106. For example, all the transistors Tr11, 13 and 15 in the upper arm are closed, and all the transistors Tr12, 14 and 16 in the lower arm are opened, so that the circulation mode via the upper arm of the inverter 10 is set. it can. Further, for example, all the transistors Tr11, 13, and 15 in the upper arm are opened, and all the transistors Tr12, 14, and 16 in the lower arm are closed, thereby setting the circulation mode through the lower arm of the inverter 10. be able to.
 インバータ10を環流モードとすることによって、マルチレベル直流出力手段20と交流負荷106との間は電流が流れない開ループ状態となる。また、交流負荷106がPMモータの場合には、磁石による誘起電圧が交流負荷106の各端子に発生しており、環流モードの状態、すなわち上アームのスイッチを閉状態又は下アームのスイッチを閉状態では、ブレーキトルクを発生させる短絡電流が流れ始める。そのため、トルク電流成分が正から負に切り替わる前に、環流モードにより閉状態にしていたスイッチを開状態にすることにより、制動トルクが発生することを回避する。この場合も、マルチレベル直流出力手段20と交流負荷106との間は、電流が流れない開ループ状態となる。 By setting the inverter 10 to the reflux mode, an open loop state in which no current flows between the multilevel DC output means 20 and the AC load 106 is established. In addition, when the AC load 106 is a PM motor, an induced voltage generated by a magnet is generated at each terminal of the AC load 106, so that the state of the recirculation mode, that is, the upper arm switch is closed or the lower arm switch is closed. In the state, a short-circuit current that generates brake torque begins to flow. Therefore, before the torque current component is switched from positive to negative, the switch that has been closed by the circulation mode is opened to avoid the occurrence of braking torque. Also in this case, the multilevel DC output means 20 and the AC load 106 are in an open loop state in which no current flows.
 ステップS12では、マルチレベル直流出力手段20により直流電源104からインバータ10に入力される電圧を変更するスイッチ切替モードに移行させる処理が行われる。スイッチ切替モードでは、インバータ制御手段30は、スイッチ切替信号S2によって、交流負荷106の出力に応じた入力電圧がインバータ10に入力されるように複数の直流電源104a~104nの接続関係を変更する。スイッチの状態とマルチレベル直流出力手段20の出力との関係は、図2(b)に示す。ここで、例えば、出力104aは直流電源104aの出力電圧を意味しており、他も同様である。 In step S12, the multi-level DC output means 20 performs a process of shifting to a switch switching mode in which the voltage input from the DC power supply 104 to the inverter 10 is changed. In the switch switching mode, the inverter control means 30 changes the connection relationship of the plurality of DC power sources 104a to 104n so that an input voltage corresponding to the output of the AC load 106 is input to the inverter 10 by the switch switching signal S2. The relationship between the switch state and the output of the multilevel DC output means 20 is shown in FIG. Here, for example, the output 104a means the output voltage of the DC power supply 104a, and the other is the same.
 ステップS14では、インバータ10を通常モードに戻す処理が行われる。インバータ制御手段30は、インバータ制御信号S1によってインバータ10を環流モードから直交流変換する通常モードに切り替える。 In step S14, a process for returning the inverter 10 to the normal mode is performed. The inverter control means 30 switches the inverter 10 from the recirculation mode to the normal mode in which the cross flow is converted by the inverter control signal S1.
 これによって、ステップS12においてマルチレベル直流出力手段20のスイッチを切り替えることによって変更された直流電圧がインバータ10に印加され、その直流電圧を直交流変換した交流電圧によって交流負荷106を駆動することができる。 Thus, the DC voltage changed by switching the switch of the multilevel DC output means 20 in step S12 is applied to the inverter 10, and the AC load 106 can be driven by the AC voltage obtained by orthogonally converting the DC voltage. .
 このように、インバータ10を環流モードとし、環流モードの間にマルチレベル直流出力手段20によって複数の直流電源104a~104nの接続を変更することによって、昇降圧コンバータを用いる必要がなくなる。また、マルチレベル直流出力手段20のスイッチに電流が流れておらず、また電圧が印加されていない状態で開閉を行うことができる。したがって、スイッチの開閉時に接点にアークを生じることがなく、接点の溶着、接点抵抗の増加、スイッチの寿命の低下を回避することができる。 Thus, the inverter 10 is set to the reflux mode, and the connection of the plurality of DC power sources 104a to 104n is changed by the multi-level DC output means 20 during the reflux mode, so that it is not necessary to use the step-up / step-down converter. In addition, it is possible to perform opening / closing in a state where no current flows through the switch of the multilevel DC output means 20 and no voltage is applied. Therefore, no arc is generated at the contact point when the switch is opened and closed, and it is possible to avoid contact welding, increase in contact resistance, and decrease in switch life.
 また、マルチレベル直流出力手段20のスイッチとして安価な機械的接点を有するリレーを適用することができ、交流負荷駆動装置102を低コスト化及び小型化することができる。また、スイッチとして半導体スイッチを用いる必要がないので、スイッチの開閉時のスイッチング損失、導通時のオン抵抗損失を考慮する必要がなくなる。 Further, a relay having an inexpensive mechanical contact can be applied as a switch of the multi-level DC output means 20, and the AC load driving device 102 can be reduced in cost and size. Further, since it is not necessary to use a semiconductor switch as the switch, it is not necessary to consider the switching loss when the switch is opened and closed, and the on-resistance loss when conducting.
 また、マルチレベル直流出力手段20のスイッチを開閉する際に、スパイク状の高電圧や電磁ノイズが発生しないので、電子装置の誤動作を誘引する心配がなく、ノイズ対策のためのコストの増大や装置の大型化を回避することができる。 In addition, when the switch of the multi-level DC output means 20 is opened and closed, spike-like high voltage and electromagnetic noise are not generated, so there is no fear of inducing malfunction of the electronic device, increasing the cost for noise countermeasures and the device Can be avoided.
 また、マルチレベル直流出力手段20のスイッチを開閉する際に突入電流が生ずることがないため直流電源104、インバータ10、交流負荷106等の劣化を引き起こすおそれがなくなる。 Further, since no inrush current is generated when the switch of the multi-level DC output means 20 is opened and closed, there is no possibility of causing deterioration of the DC power supply 104, the inverter 10, the AC load 106 and the like.
 さらに、交流負荷駆動システム100をハイブリッド自動車や電気自動車等に適用した場合、マルチレベル直流出力手段20による入力電圧の切り替えは交流負荷106の出力に応じて行われるので、その頻度は加速及び減速の頻度と同程度となる。したがって、スイッチとして機械的接点を持つリレー又は半導体スイッチのいずれを用いたとしてもスイッチとしての寿命は十分に確保される。 Furthermore, when the AC load drive system 100 is applied to a hybrid vehicle, an electric vehicle, or the like, the input voltage is switched by the multilevel DC output means 20 in accordance with the output of the AC load 106, and therefore the frequency is accelerated and decelerated. It is about the same as the frequency. Therefore, even if a relay having a mechanical contact or a semiconductor switch is used as a switch, the life as a switch is sufficiently secured.
 また、スイッチの開閉時間として数十m秒程度とすれば、ドライバーにトルク抜け等の違和感を与えることなく、交流負荷106への要求出力の変化に応じてインバータ10の入力電圧を変更することができる。 If the switch opening / closing time is about several tens of milliseconds, the input voltage of the inverter 10 can be changed according to the change in the required output to the AC load 106 without giving the driver a sense of incongruity such as torque loss. it can.
<第2の実施の形態>
 第2の実施の形態では、図5(a)に示すように、交流負荷駆動装置102のインバータ10の入力側に入力電圧を平滑化するコンデンサ12が設けられている。コンデンサ12を設けることによって、インバータ10の正極母線と負極母船との間に発生するノイズを除去することができる。また、マルチレベル直流出力手段20とインバータ10との間にシステムメインリレー16を設ける。システムメインリレー16を開状態とすることにより、マルチレベル直流出力手段20とインバータ10とを切り離し、マルチレベル直流出力手段20のスイッチ切り替え時に過大なコンデンサ充電電流が流れないようにすることができる。なお、システムメインリレー16の機能をマルチレベル直流出力手段20の中に持たせることも可能である。
<Second Embodiment>
In 2nd Embodiment, as shown to Fig.5 (a), the capacitor | condenser 12 which smoothes an input voltage is provided in the input side of the inverter 10 of the alternating current load drive device 102. FIG. By providing the capacitor 12, noise generated between the positive bus and the negative bus of the inverter 10 can be removed. A system main relay 16 is provided between the multilevel DC output means 20 and the inverter 10. By opening the system main relay 16, the multilevel DC output means 20 and the inverter 10 can be disconnected so that an excessive capacitor charging current does not flow when the multilevel DC output means 20 is switched. The function of the system main relay 16 can be provided in the multilevel DC output means 20.
 以下、図6のフローチャート及び図7のタイミングチャートを参照して、本実施の形態におけるマルチレベル直流出力手段20の切替シーケンスを説明する。 Hereinafter, the switching sequence of the multilevel DC output means 20 in the present embodiment will be described with reference to the flowchart of FIG. 6 and the timing chart of FIG.
 切替シーケンスが開始前は、マルチレベル直流出力手段20を介して直流電源104からインバータ10に直流電圧が印加され、コンデンサ12によって平滑化された入力電圧がインバータ10によって直交変換されて交流負荷106に供給されている状態とする。 Before the switching sequence is started, a DC voltage is applied from the DC power source 104 to the inverter 10 via the multi-level DC output means 20, and the input voltage smoothed by the capacitor 12 is orthogonally converted by the inverter 10 and applied to the AC load 106. It is assumed that it is being supplied.
 ステップS20では、インバータ10が環流モードに移行される。この処理は、第1の実施の形態におけるステップS10と同様である。 In step S20, the inverter 10 is shifted to the reflux mode. This process is the same as step S10 in the first embodiment.
 ステップS22では、システムメインリレー16をオープンモードに移行させる。なお、システムメインリレー16の機能をマルチレベル直流出力手段20に内在させている場合には、インバータ制御手段30は、スイッチ切替信号S2によってマルチレベル直流出力手段20のスイッチを切り替えて直流電源104とインバータ10とが切断されて、直流電源104からインバータ10へ直流電流が入力されないオープンモードに移行させる。 In step S22, the system main relay 16 is shifted to the open mode. In the case where the function of the system main relay 16 is included in the multilevel DC output means 20, the inverter control means 30 switches the switch of the multilevel DC output means 20 by the switch switching signal S2 and the DC power supply 104. The inverter 10 is disconnected, and the mode is shifted to the open mode in which no DC current is input from the DC power supply 104 to the inverter 10.
 ステップS24では、インバータ10をコンデンサ電圧制御モードに移行させる。コンデンサ電圧制御モードは、交流負荷106を力行制御又は回生制御することによってコンデンサ12を充放電させるモードである。インバータ制御手段30は、インバータ制御信号S1によって、トランジスタTr11~Tr16の開閉状態を制御し、交流負荷106を力行または回生制御してコンデンサ12を放電又は充電してコンデンサ12の電圧を制御する。コンデンサ電圧制御モードとすることによって、コンデンサ12を充放電して充電電圧(端子電圧)を調整することができる。力行制御は、例えば、交流負荷を駆動して、電気エネルギーを運動エネルギーに変換することによって実現することができる。回生制御は、例えば、交流負荷106の慣性エネルギーをエネルギー源にして、発電機動作により電気エネルギーに変換することによって実現することができる。また、回生制御は、例えば、交流負荷106を外部のエンジン等で発電機として駆動することによって持続することができる。 In step S24, the inverter 10 is shifted to the capacitor voltage control mode. The capacitor voltage control mode is a mode in which the capacitor 12 is charged and discharged by performing power running control or regenerative control of the AC load 106. The inverter control means 30 controls the open / close state of the transistors Tr11 to Tr16 by the inverter control signal S1, controls the voltage of the capacitor 12 by discharging or charging the capacitor 12 by powering or regenerating the AC load 106. By setting the capacitor voltage control mode, the capacitor 12 can be charged and discharged to adjust the charging voltage (terminal voltage). Power running control can be realized, for example, by driving an AC load and converting electrical energy into kinetic energy. The regenerative control can be realized, for example, by converting inertial energy of the AC load 106 into an energy source and converting it into electric energy by a generator operation. The regenerative control can be continued by driving the AC load 106 as a generator with an external engine or the like, for example.
 ステップS26では、コンデンサ12の充電電圧が目標電圧範囲に入ったか否かが判定される。インバータ制御手段30は、電圧センサ14によって測定されたコンデンサ12の充電電圧の入力を受けて、コンデンサ12の充電電圧が目標電圧範囲に入っていればステップS28に処理を移行させ、目標電圧範囲に入っていなければコンデンサ電圧制御モードを継続させる。 In step S26, it is determined whether or not the charging voltage of the capacitor 12 has entered the target voltage range. The inverter control means 30 receives the input of the charging voltage of the capacitor 12 measured by the voltage sensor 14, and shifts the process to step S28 if the charging voltage of the capacitor 12 is within the target voltage range, and enters the target voltage range. If not, the capacitor voltage control mode is continued.
 ここで、目標電圧範囲は、後述するステップS30においてマルチレベル直流出力手段20のスイッチが切り替えられた後にマルチレベル直流出力手段20から出力されるべき目標電圧に対して、その近傍に設定する。また、その目標電圧は、交流負荷106に対してその時点で必要とされる電圧に基づいて決定される。 Here, the target voltage range is set in the vicinity of the target voltage to be output from the multilevel DC output means 20 after the switch of the multilevel DC output means 20 is switched in step S30 described later. Further, the target voltage is determined based on the voltage required for the AC load 106 at that time.
 例えば、後述するステップS30において変更されるマルチレベル直流出力手段20のスイッチ切替後の目標電圧に対して、目標電圧±ΔVといった具合に設定する。ΔVは、スイッチ接点にアークが発生しない程度の電圧で、スイッチの仕様に基づき、例えば最小アーク電圧以下に設定される。 For example, the target voltage ± ΔV is set to the target voltage after the switch of the multilevel DC output means 20 changed in step S30 described later. ΔV is a voltage that does not cause an arc at the switch contact, and is set to, for example, a minimum arc voltage or less based on the specifications of the switch.
 ステップS28では、インバータ10を環流モードに移行させる処理が行われる。この処理は、第1の実施の形態におけるステップS10と同様である。また、交流負荷106がPMモータの場合には、磁石による誘起電圧が交流負荷106の各端子に発生しており、環流モードの状態、すなわち上アームのスイッチを閉状態又は下アームのスイッチを閉状態では、ブレーキトルクを発生させる短絡電流が流れ始める。そのため、第2の実施の形態における環流モード状態では、トルク電流成分が正から負に切り替わるタイミングで、環流モードにより閉状態にしていたスイッチを開状態にすることにより、制動トルクが発生することを回避する。この場合も、マルチレベル直流出力手段20と交流負荷106との間は、電流が流れない開ループ状態となる。この処理は、第1の実施の形態におけるステップS10と同様である。 In step S28, a process for shifting the inverter 10 to the reflux mode is performed. This process is the same as step S10 in the first embodiment. In addition, when the AC load 106 is a PM motor, an induced voltage generated by a magnet is generated at each terminal of the AC load 106, so that the state of the recirculation mode, that is, the upper arm switch is closed or the lower arm switch is closed. In the state, a short-circuit current that generates brake torque begins to flow. Therefore, in the recirculation mode state in the second embodiment, the braking torque is generated by opening the switch that has been closed by the recirculation mode at the timing when the torque current component switches from positive to negative. To avoid. Also in this case, the multilevel DC output means 20 and the AC load 106 are in an open loop state in which no current flows. This process is the same as step S10 in the first embodiment.
 また、ステップS24~ステップS28に平行して、ステップS30~S34が行われる。ステップS30では、マルチレベル直流出力手段20により直流電源104からインバータ10に入力される電圧を変更するスイッチ切替モードに移行させる処理が行われる。この処理は、第1の実施の形態におけるステップS12と同様である。ステップS32では、スイッチ切替が終了するまで待ち、出力が安定したらステップS34で通常出力モードに移行させる。ステップS36では、インバータ10を環流モードへ、マルチレベル直流出力手段20を通常出力モードへ移行させることが完了するまで待機し、完了していることが確認されれば、ステップS38でシステムメインリレー16をオンモードに移行させる。 Further, steps S30 to S34 are performed in parallel with steps S24 to S28. In step S30, the multi-level DC output means 20 performs a process of shifting to a switch switching mode for changing the voltage input from the DC power supply 104 to the inverter 10. This process is the same as step S12 in the first embodiment. In step S32, the process waits until the switch switching is completed. When the output is stabilized, the process proceeds to the normal output mode in step S34. In step S36, the process waits until the inverter 10 is switched to the reflux mode and the multi-level DC output means 20 is shifted to the normal output mode. When it is confirmed that the inverter 10 is completed, the system main relay 16 is checked in step S38. To the on mode.
 ステップS40では、インバータ10を通常モードに戻す処理が行われる。この処理は、第1の実施の形態におけるステップS14と同様である。 In step S40, a process for returning the inverter 10 to the normal mode is performed. This process is the same as step S14 in the first embodiment.
 以上のように、本実施の形態では、インバータ10の入力側にコンデンサ12が設けられている場合に、マルチレベル直流出力手段20又はシステムメインリレー16のスイッチの切り替えに伴って過大なコンデンサ12の充放電電流が流れないように、コンデンサ電圧制御モードにおいて予め目標電圧まで充放電しておくことができる。 As described above, in the present embodiment, when the capacitor 12 is provided on the input side of the inverter 10, the excessive capacitor 12 is switched in accordance with the switch of the multilevel DC output means 20 or the system main relay 16. In order to prevent the charging / discharging current from flowing, the capacitor voltage control mode can be charged and discharged in advance to the target voltage.
<第3の実施の形態>
 第2の実施の形態では、交流負荷106を力行制御又は回生制御してコンデンサ12の電圧を制御する態様について説明したが、図8に示すように、インバータ10の入力側にシステムメインリレー16及びシステムサブリレー18を設けて直流電源104からの電力にてコンデンサ12を電圧制御する構成としてもよい。
<Third Embodiment>
In the second embodiment, the mode in which the AC load 106 is subjected to power running control or regenerative control to control the voltage of the capacitor 12 has been described. However, as shown in FIG. A system sub-relay 18 may be provided to control the voltage of the capacitor 12 with power from the DC power source 104.
 システムメインリレー16は、インバータ10の正極母線側におけるマルチレベル直流出力手段20とインバータ10との間に設けられる。システムメインリレー16によりマルチレベル直流出力手段20とインバータ10との接続を開閉することができる。システムサブリレー18は、インバータ10の正極母線側におけるマルチレベル直流出力手段20とインバータ10との間にシステムメインリレー16と並列に設けられる。システムサブリレー18は、抵抗11及びインダクタ13と直列接続される。 The system main relay 16 is provided between the multilevel DC output means 20 and the inverter 10 on the positive bus side of the inverter 10. The system main relay 16 can open and close the connection between the multilevel DC output means 20 and the inverter 10. The system sub relay 18 is provided in parallel with the system main relay 16 between the multilevel DC output means 20 and the inverter 10 on the positive bus side of the inverter 10. The system sub relay 18 is connected in series with the resistor 11 and the inductor 13.
 システムメインリレー16が開状態においてシステムサブリレー18を閉状態とすることによって、抵抗11及びインダクタ13を介して直流電源104からコンデンサ12を充放電することができる。 The capacitor 12 can be charged / discharged from the DC power source 104 via the resistor 11 and the inductor 13 by closing the system sub relay 18 while the system main relay 16 is open.
 以下、図9のフローチャート及び図10のタイミングチャートを参照して、本実施の形態におけるマルチレベル直流出力手段20の切替シーケンスを説明する。 Hereinafter, the switching sequence of the multilevel DC output means 20 in the present embodiment will be described with reference to the flowchart of FIG. 9 and the timing chart of FIG.
 切替シーケンスが開始前は、システムメインリレー16が閉状態及びシステムサブリレー18が開状態とされ、マルチレベル直流出力手段20を介して直流電源104からインバータ10に直流電圧が印加され、コンデンサ12によって平滑化された入力電圧がインバータ10によって直交変換されて交流負荷106に供給されている状態とする。 Before the switching sequence is started, the system main relay 16 is closed and the system sub-relay 18 is opened, and a DC voltage is applied from the DC power source 104 to the inverter 10 via the multi-level DC output means 20. It is assumed that the smoothed input voltage is orthogonally transformed by the inverter 10 and supplied to the AC load 106.
 ステップS50では、インバータ10が環流モードに移行される。この処理は、第1の実施の形態におけるステップS10と同様である。 In step S50, the inverter 10 is shifted to the reflux mode. This process is the same as step S10 in the first embodiment.
 ステップS52では、インバータ制御手段30は、スイッチ切替信号S4によって、システムメインリレー16を開状態する。これによって、システムメインリレー16及びシステムサブリレー18の両方が開状態(オープンモード)となる。 In step S52, the inverter control means 30 opens the system main relay 16 by the switch switching signal S4. As a result, both the system main relay 16 and the system sub relay 18 are in an open state (open mode).
 ステップS54では、インバータ10をコンデンサ電圧制御モードに移行させる。この処理は、第2の実施の形態におけるステップS24と同様である。 In step S54, the inverter 10 is shifted to the capacitor voltage control mode. This process is the same as step S24 in the second embodiment.
 ステップS56では、コンデンサ12の充電電圧が目標電圧範囲に入ったか否かが判定される。インバータ制御手段30は、電圧センサ14によって測定されたコンデンサ12の充電電圧の入力を受けて、コンデンサ12の充電電圧が目標電圧範囲内に入っていればステップS58に処理を移行させ、目標電圧範囲内に入っていなければステップS72に処理を移行させる。目標電圧範囲は、第2の実施の形態と同様に設定すればよい。 In step S56, it is determined whether or not the charging voltage of the capacitor 12 has entered the target voltage range. The inverter control means 30 receives the input of the charging voltage of the capacitor 12 measured by the voltage sensor 14, and shifts the process to step S58 if the charging voltage of the capacitor 12 is within the target voltage range, and the target voltage range. If not, the process proceeds to step S72. The target voltage range may be set similarly to the second embodiment.
 ステップS72では、コンデンサ電圧制御モードが基準時間以上継続されたか否かが判定される。インバータ制御手段30は、コンデンサ電圧制御モードが基準時間以上継続された場合にはステップS74に処理を移行させ、基準時間未満継続されている状態であればコンデンサ電圧制御モードを継続させる。 In step S72, it is determined whether or not the capacitor voltage control mode has continued for a reference time or longer. The inverter control unit 30 shifts the process to step S74 when the capacitor voltage control mode is continued for the reference time or longer, and continues the capacitor voltage control mode when the capacitor voltage control mode is continued for less than the reference time.
 ステップS74では、インバータ10をコンデンサ電圧制御モードから環流モードに戻す処理が行われる。この処理は、第1の実施の形態におけるステップS10と同様である。 In step S74, a process for returning the inverter 10 from the capacitor voltage control mode to the reflux mode is performed. This process is the same as step S10 in the first embodiment.
 ステップS76では、システムサブリレー18をオンモードに移行させる。インバータ制御手段30は、スイッチ切替信号S4によって、システムサブリレー18を閉状態する。これによって、システムメインリレー16が開状態(オープンモード)及びシステムサブリレー18が閉状態(オンモード)となる。 In step S76, the system sub relay 18 is shifted to the on mode. The inverter control means 30 closes the system sub relay 18 by the switch switching signal S4. As a result, the system main relay 16 is in an open state (open mode) and the system sub-relay 18 is in a closed state (on mode).
 この状態では、マルチレベル直流出力手段20、システムサブリレー18、抵抗11及びインダクタ13を介して、直流電源104からインバータ10に直流電力が供給される。このとき、コンデンサ12の充電電圧とマルチレベル直流出力手段20から出力される直流電圧との間に電位差があれば、抵抗11及びインダクタ13を介してコンデンサ12が充放電される。 In this state, DC power is supplied from the DC power source 104 to the inverter 10 through the multi-level DC output means 20, the system sub relay 18, the resistor 11, and the inductor 13. At this time, if there is a potential difference between the charging voltage of the capacitor 12 and the DC voltage output from the multilevel DC output means 20, the capacitor 12 is charged / discharged via the resistor 11 and the inductor 13.
 このとき、コンデンサ12のキャパシタンスC、抵抗11の抵抗値R及びインダクタ13のインダクタンスLを適切に設定することによって、コンデンサ12の充電回路の時定数を調整することができ、コンデンサ12が充放電される際にリプル等の発生を抑制することができると同時に、コンデンサ12を急速に充放電することができる。例えば、臨界制動の条件(R=4L/C)を満足するように設定すれば、コンデンサ12が振動することなく速やかに充放電される。充電は、コンデンサ12の充電電圧が目標電圧範囲内に入るまで行ってもよいし、充電時間が基準時間を超えるまで行ってもよい。 At this time, by appropriately setting the capacitance C of the capacitor 12, the resistance value R of the resistor 11, and the inductance L of the inductor 13, the time constant of the charging circuit of the capacitor 12 can be adjusted, and the capacitor 12 is charged and discharged. In addition, the occurrence of ripples and the like can be suppressed during charging, and at the same time, the capacitor 12 can be charged and discharged rapidly. For example, if the critical braking condition (R 2 = 4 L / C) is set, the capacitor 12 is quickly charged and discharged without vibration. Charging may be performed until the charging voltage of the capacitor 12 falls within the target voltage range, or may be performed until the charging time exceeds the reference time.
 ステップS78では、システムサブリレー18をオフモードに移行させる。インバータ制御手段30は、スイッチ切替信号S4によって、システムサブリレー18を開状態(オープンモード)とする。 In step S78, the system sub relay 18 is shifted to the off mode. Inverter control means 30 opens system sub-relay 18 (open mode) by switch switching signal S4.
 これによって、システムサブリレー18を介したコンデンサ12の充放電状態が解除される。 Thereby, the charge / discharge state of the capacitor 12 via the system sub relay 18 is released.
 一方、ステップS56からステップS58に移行すると、インバータ10をコンデンサ電圧制御モードから環流モードに戻す処理が行われる。この処理は、第1の実施の形態におけるステップS10と同様である。また、交流負荷106がPMモータの場合には、磁石による誘起電圧が交流負荷106の各端子に発生しており、環流モードの状態、すなわち上アームのスイッチを閉状態又は下アームのスイッチを閉状態では、ブレーキトルクを発生させる短絡電流が流れ始める。そのため、第3の実施の形態における環流モード状態では、トルク電流成分が正から負に切り替わるタイミングで、環流モードにより閉状態にしていたスイッチを開状態にすることにより、制動トルクが発生することを回避する。この場合も、マルチレベル直流出力手段20と交流負荷106との間は、電流が流れない開ループ状態となる。この処理は、第1の実施の形態におけるステップS10と同様である。 On the other hand, when the process proceeds from step S56 to step S58, the inverter 10 is returned from the capacitor voltage control mode to the reflux mode. This process is the same as step S10 in the first embodiment. In addition, when the AC load 106 is a PM motor, an induced voltage generated by a magnet is generated at each terminal of the AC load 106, so that the state of the recirculation mode, that is, the upper arm switch is closed or the lower arm switch is closed. In the state, a short-circuit current that generates brake torque begins to flow. Therefore, in the recirculation mode state in the third embodiment, the braking torque is generated by opening the switch that has been closed by the recirculation mode at the timing when the torque current component switches from positive to negative. To avoid. Also in this case, the multilevel DC output means 20 and the AC load 106 are in an open loop state in which no current flows. This process is the same as step S10 in the first embodiment.
 また、ステップS54~ステップS58及びステップS54~ステップS78のループに並行して、ステップS60~ステップS64が行われる。ステップS60では、マルチレベル直流出力手段20により直流電源104からインバータ10に入力される電圧を変更するスイッチ切替モードに移行させる処理が行われる。この処理は、第1の実施の形態におけるステップS12と同様である。ステップS62では、スイッチ切替が終了するまで待ち、出力が安定したらステップS64で通常出力モードに移行させる。 Further, steps S60 to S64 are performed in parallel with the loop of steps S54 to S58 and steps S54 to S78. In step S60, the multilevel DC output means 20 performs a process of shifting to a switch switching mode for changing the voltage input from the DC power supply 104 to the inverter 10. This process is the same as step S12 in the first embodiment. In step S62, the process waits until the switch switching is completed. When the output is stabilized, the process proceeds to the normal output mode in step S64.
 ステップS66では、システムサブリレー18をオフモードへ、インバータ10を環流モードへ、マルチレベル直流出力手段20を通常出力モードへ移行させることが完了するまで待機し、完了していることが確認されれば、ステップS68でシステムメインリレー16をオンモードに移行させる。 In step S66, the system sub-relay 18 is set in the off mode, the inverter 10 is set in the reflux mode, and the multi-level DC output means 20 is set in the normal output mode. In step S68, the system main relay 16 is shifted to the on mode.
 ステップS70では、インバータ10を通常モードに戻す処理が行われる。この処理は、第1の実施の形態におけるステップS14と同様である。 In step S70, the inverter 10 is returned to the normal mode. This process is the same as step S14 in the first embodiment.
 以上のように、システムメインリレー16及びシステムサブリレー18によって、充放電回路を切り替えてコンデンサ12を充放電することができる。したがって、インバータ10を回生制御してコンデンサ12を充放電した際にコンデンサ12の充放電が十分にできなかった場合であってもコンデンサ12を適切に充放電させることができる。これにより、システムメインリレー16によってマルチレベル直流出力手段20とインバータ10とを直接接続させる際においてマルチレベル直流出力手段20の出力電圧とコンデンサ12の充電電圧との差を小さくしておくことができ、スイッチ接点及びコンデンサ12に過大な充放電電流が流れることを防ぐことができる。 As described above, the capacitor 12 can be charged / discharged by switching the charge / discharge circuit by the system main relay 16 and the system sub relay 18. Therefore, even if the capacitor 12 is not fully charged / discharged when the inverter 10 is regeneratively controlled to charge / discharge the capacitor 12, the capacitor 12 can be appropriately charged / discharged. Thereby, when the multilevel DC output means 20 and the inverter 10 are directly connected by the system main relay 16, the difference between the output voltage of the multilevel DC output means 20 and the charging voltage of the capacitor 12 can be reduced. Further, it is possible to prevent an excessive charge / discharge current from flowing through the switch contact and the capacitor 12.
 第1乃至第3の実施の形態において、システムメインリレー、システムサブリレー及びマルチレベル直流出力手段を構成するスイッチは、外部からオン、オフできる切り替え装置であればよく、例えば機械的な接点を有する電磁リレー、半導体スイッチ等で構成することが可能である。 In the first to third embodiments, the switches constituting the system main relay, the system sub relay, and the multi-level DC output means may be any switching device that can be turned on and off from the outside, and have, for example, mechanical contacts. An electromagnetic relay, a semiconductor switch, or the like can be used.
 機械的な接点を有する電磁リレーで構成した場合、ゼロ電圧、ゼロ電流の状態でスイッチングするので、アーク及びスイッチングロスがなく、かつ導通時には、オン抵抗損も発生しないので好適である。また、半導体スイッチ等で構成した場合にも、導通時のオン抵抗損は発生するものの、ゼロ電圧、ゼロ電流スイッチングとなるのでスイッチングロスはなくなる。なお、システムサブリレーは、オンモードが一瞬であるので、導通時のオン抵抗損は無視でき、動作遅れが少なく制御性が良好な半導体スイッチで構成することが好適である。 When configured with an electromagnetic relay having a mechanical contact, switching is performed in a state of zero voltage and zero current, which is preferable because there is no arc and switching loss and no on-resistance loss occurs during conduction. In addition, even when constituted by a semiconductor switch or the like, although an on-resistance loss during conduction occurs, the switching loss is eliminated because zero voltage and zero current switching is performed. Since the on-mode is instantaneous for the system sub-relay, it is preferable that the on-resistance loss during conduction is negligible, and the system sub-relay is configured with a semiconductor switch that has less operation delay and good controllability.
 10 インバータ、11 抵抗、12 コンデンサ、13 インダクタ、14 電圧センサ、16 システムメインリレー、18 システムサブリレー、20 マルチレベル直流出力手段、30 インバータ制御手段、100 交流負荷駆動システム、102 交流負荷駆動装置、104(104a-104n) 直流電源、106 交流負荷。 10 inverter, 11 resistor, 12 capacitor, 13 inductor, 14 voltage sensor, 16 system main relay, 18 system sub relay, 20 multi-level DC output means, 30 inverter control means, 100 AC load drive system, 102 AC load drive device, 104 (104a-104n) DC power supply, 106 AC load.

Claims (5)

  1.  交流負荷駆動装置であって、
     複数の直流電源からの直流電力を交流電力に変換して交流負荷に出力するインバータと、
     前記複数の直流電源と、
     前記複数の直流電源と前記インバータとの接続関係を切り替えるスイッチを有するマルチレベル直流出力手段と、
     前記スイッチを切り替える前に、前記インバータを環流モードに移行させ、環流モードの間に前記スイッチを切り替え、前記スイッチが切り替えられた後に前記インバータの環流モードを終了させるインバータ制御手段と、
    を備える。
    AC load driving device,
    An inverter that converts DC power from a plurality of DC power sources into AC power and outputs it to an AC load;
    The plurality of DC power supplies;
    Multi-level DC output means having a switch for switching the connection relationship between the plurality of DC power supplies and the inverter;
    Before switching the switch, the inverter is shifted to the recirculation mode, the switch is switched during the recirculation mode, and the inverter control means for terminating the recirculation mode of the inverter after the switch is switched;
    Is provided.
  2.  請求項1に記載の交流負荷駆動装置であって、
     前記インバータの入力側の正極と負極との間に接続されたコンデンサと、
     前記インバータと前記マルチレベル直流出力手段との間にシステムメインリレーと、を備え、
     前記インバータ制御手段は、
     前記システムメインリレーを切り替える前に、前記インバータを環流モードに移行させ、
     環流モードの間に、前記システムメインリレーを開状態にして前記インバータと前記複数の直流電源とを切り離したオープンモードに移行させ、
     前記オープンモードの間に、前記コンデンサを充放電させるコンデンサ電圧制御モードに移行させ、
     前記コンデンサの充電電圧が目標電圧範囲となった場合、前記インバータを環流モードに移行させ、
     前記オープンモードの間に、前記コンデンサ電圧制御モードと前記環流モードに並行して前記複数の直流電源から前記インバータに前記目標電圧が供給されるように前記マルチレベル直流出力手段の前記スイッチを切り替え、
     前記マルチレベル直流出力手段から前記目標電圧が出力され、かつ前記インバータが環流モードに移行完了した後に前記システムメインリレーをオンモードに移行し、オンモードに移行完了した後に前記インバータの環流モードを終了させる。
    The AC load driving device according to claim 1,
    A capacitor connected between the positive and negative electrodes on the input side of the inverter;
    A system main relay between the inverter and the multi-level DC output means,
    The inverter control means includes
    Before switching the system main relay, the inverter is shifted to the reflux mode,
    During the recirculation mode, the system main relay is opened to shift to the open mode in which the inverter and the plurality of DC power sources are disconnected,
    During the open mode, transition to a capacitor voltage control mode for charging and discharging the capacitor,
    When the charging voltage of the capacitor is in the target voltage range, the inverter is shifted to the reflux mode,
    During the open mode, the switch of the multi-level DC output means is switched so that the target voltage is supplied from the plurality of DC power supplies to the inverter in parallel with the capacitor voltage control mode and the reflux mode,
    After the target voltage is output from the multi-level DC output means and the inverter has completed the transition to the circulation mode, the system main relay is transitioned to the on mode, and after the transition to the on mode is completed, the circulation mode of the inverter is terminated. Let
  3.  請求項2に記載の交流負荷駆動装置であって、
     前記コンデンサ電圧制御モードでは、環流モードを一旦中止し、前記交流負荷を力行制御又は回生制御することにより前記コンデンサを充放電させ、
     その後、前記インバータを再度環流モードとする。
    The AC load driving device according to claim 2,
    In the capacitor voltage control mode, the circulation mode is temporarily stopped, and the AC load is charged / discharged by power running control or regenerative control,
    Thereafter, the inverter is set to the reflux mode again.
  4.  請求項2に記載の交流負荷駆動装置であって、
     前記インバータの入力側の正極と負極との間に接続されたコンデンサと、
     前記インバータと前記マルチレベル直流出力手段との間に前記システムメインリレーと並列に接続された、インダクタ及び抵抗とに直列接続されたシステムサブリレーと、
    を備え、
     前記コンデンサ電圧制御モードにおいて、前記コンデンサを前記目標電圧範囲内に設定できなかった場合に、前記インバータを環流モードに移行させ、環流モードの間に、前記システムメインリレーを開状態及び前記システムサブリレーを閉状態として前記コンデンサを充電させる。
    The AC load driving device according to claim 2,
    A capacitor connected between the positive and negative electrodes on the input side of the inverter;
    A system sub-relay connected in series with an inductor and a resistor connected in parallel with the system main relay between the inverter and the multi-level DC output means;
    With
    In the capacitor voltage control mode, when the capacitor cannot be set within the target voltage range, the inverter is shifted to the circulation mode, and the system main relay is in an open state and the system sub-relay during the circulation mode. Is closed to charge the capacitor.
  5.  請求項3に記載の交流負荷駆動装置であって、
     前記インバータの入力側の正極と負極との間に接続されたコンデンサと、
     前記インバータと前記マルチレベル直流出力手段との間に並列に接続された、インダクタ及び抵抗とに直列接続されたシステムサブリレーと、
    を備え、
     前記コンデンサ電圧制御モードにおいて、前記コンデンサを前記目標電圧範囲内に設定できなかった場合に、前記インバータを環流モードに移行させ、環流モードの間に、前記システムメインリレーを開状態及び前記システムサブリレーを閉状態として前記コンデンサを充電させる。
     
     
    The AC load driving device according to claim 3,
    A capacitor connected between the positive and negative electrodes on the input side of the inverter;
    A system sub-relay connected in series with an inductor and a resistor connected in parallel between the inverter and the multi-level DC output means;
    With
    In the capacitor voltage control mode, when the capacitor cannot be set within the target voltage range, the inverter is shifted to the circulation mode, and the system main relay is in an open state and the system sub-relay during the circulation mode. Is closed to charge the capacitor.

PCT/JP2015/065414 2014-06-27 2015-05-28 Alternating current load-driving device WO2015198789A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-132546 2014-06-27
JP2014132546A JP2016012959A (en) 2014-06-27 2014-06-27 Ac load drive device

Publications (1)

Publication Number Publication Date
WO2015198789A1 true WO2015198789A1 (en) 2015-12-30

Family

ID=54937886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065414 WO2015198789A1 (en) 2014-06-27 2015-05-28 Alternating current load-driving device

Country Status (2)

Country Link
JP (1) JP2016012959A (en)
WO (1) WO2015198789A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002199744A (en) * 2000-12-27 2002-07-12 Daikin Ind Ltd Inverter-protecting method and device thereof
JP2003164159A (en) * 2001-11-29 2003-06-06 Denso Corp Current detection device for three-phase inverter
JP2008092761A (en) * 2006-10-05 2008-04-17 Chugoku Electric Power Co Inc:The Power supply for motor drive
US20120236616A1 (en) * 2009-10-09 2012-09-20 Sma Solar Technology Ag Inverter capable of providing reactive power
JP2013158184A (en) * 2012-01-31 2013-08-15 Toyota Motor Corp Vehicle control device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5528946B2 (en) * 2010-08-10 2014-06-25 ナブテスコ株式会社 Indirect matrix converter
EP2854272A4 (en) * 2012-05-22 2016-02-17 Yaskawa Denki Seisakusho Kk Power conversion apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002199744A (en) * 2000-12-27 2002-07-12 Daikin Ind Ltd Inverter-protecting method and device thereof
JP2003164159A (en) * 2001-11-29 2003-06-06 Denso Corp Current detection device for three-phase inverter
JP2008092761A (en) * 2006-10-05 2008-04-17 Chugoku Electric Power Co Inc:The Power supply for motor drive
US20120236616A1 (en) * 2009-10-09 2012-09-20 Sma Solar Technology Ag Inverter capable of providing reactive power
JP2013158184A (en) * 2012-01-31 2013-08-15 Toyota Motor Corp Vehicle control device

Also Published As

Publication number Publication date
JP2016012959A (en) 2016-01-21

Similar Documents

Publication Publication Date Title
KR101025896B1 (en) Power supply system, vehicle using the same, power supply system control method, and computer-readable recording medium containing program for causing computer to execute the method
US7728562B2 (en) Voltage link control of a DC-AC boost converter system
WO2011101959A1 (en) Power supply device
CN108306488B (en) Variable voltage converter for obtaining lower minimum step-up ratio
JP7160007B2 (en) power supply
JP6277247B1 (en) CONVERSION DEVICE, DEVICE, AND CONTROL METHOD
KR20210133374A (en) System and method for charging using motor driving system
JP2008306822A (en) Power supply system, vehicle equipped with the same, control method of power supply system, and computer-readable recording medium with program for making computer implement the control method
JP2023114972A (en) Vehicular battery charge system using motor drive system
JP6277246B1 (en) CONVERSION DEVICE, DEVICE, AND CONTROL METHOD
US11038367B2 (en) Power supply apparatus for vehicle
JP7160431B2 (en) Power transmission system and its control method
WO2011142396A1 (en) Power converter
US9627978B2 (en) Circuit arrangement and method for ascertaining switching times for a DC-DC voltage converter
WO2015198789A1 (en) Alternating current load-driving device
JP2019165579A (en) Power system of vehicle
KR102529389B1 (en) System and method for low voltage dc-dc converter control of environmentally friendly vehicles
JP2010115056A (en) Power supply system and vehicle
JP2017017825A (en) Ac load drive device
WO2019180912A1 (en) Voltage switching type direct-current power supply
WO2019163080A1 (en) Voltage switching-type dc power supply
CN111917295B (en) Power conversion device and power conversion control device
US20240048083A1 (en) Power conversion apparatus
JP5755583B2 (en) Power control system
EP4108507A1 (en) System for charging vehicle battery using motor driving system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15812333

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15812333

Country of ref document: EP

Kind code of ref document: A1