WO2019180912A1 - Voltage switching type direct-current power supply - Google Patents

Voltage switching type direct-current power supply Download PDF

Info

Publication number
WO2019180912A1
WO2019180912A1 PCT/JP2018/011684 JP2018011684W WO2019180912A1 WO 2019180912 A1 WO2019180912 A1 WO 2019180912A1 JP 2018011684 W JP2018011684 W JP 2018011684W WO 2019180912 A1 WO2019180912 A1 WO 2019180912A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
switching
parallel
power supply
series
Prior art date
Application number
PCT/JP2018/011684
Other languages
French (fr)
Japanese (ja)
Inventor
田中 正一
Original Assignee
田中 正一
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田中 正一 filed Critical 田中 正一
Priority to PCT/JP2018/011684 priority Critical patent/WO2019180912A1/en
Publication of WO2019180912A1 publication Critical patent/WO2019180912A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/14Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation with three or more levels of voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/08Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor
    • H02P3/14Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor by regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/12Buck converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/14Boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2201/00Indexing scheme relating to controlling arrangements characterised by the converter used
    • H02P2201/09Boost converter, i.e. DC-DC step up converter increasing the voltage between the supply and the inverter driving the motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a voltage switching DC power supply, and more particularly to a voltage switching DC power supply for a traction motor.
  • FIG. 1 shows a known motor driving device in which a boost chopper 1000 is arranged between a battery 101 and an inverter 102.
  • the boost chopper 1000 boosts the DC link voltage Vd applied to the smoothing capacitor 103 in the high speed region.
  • the weight and loss of the boost chopper 1000 are disadvantages of this motor drive device.
  • a known voltage-switching DC power source having a series switch that connects two batteries in series and two parallel switches that connect two batteries in parallel can avoid the switching loss of the boost chopper 1000.
  • this voltage-switching DC power supply one problem with this voltage-switching DC power supply is that the DC link voltage Vd changes suddenly. A sudden change in the DC link voltage Vd adversely affects the smoothing capacitor and the inverter.
  • Another problem is that the short circuit current flowing between the two batteries increases the battery loss when the voltages of the two batteries connected in parallel are different.
  • FIG. 2 shows an example of a voltage-switching DC power source disclosed in Patent Document 1.
  • Series relay 201 connects batteries 202 and 203 in series.
  • Two parallel relays 204 and 205 connect the batteries 202 and 203 in parallel.
  • the step-up chopper 208 shown in FIG. 2 gradually changes the DC link voltage Vd during a transition period for switching the battery connection.
  • the addition of the step-up chopper 208 increases manufacturing cost and switching loss.
  • a voltage switching DC power supply can employ a capacitor such as a lithium ion capacitor instead of a battery.
  • a capacitor such as a lithium ion capacitor instead of a battery.
  • switching between series connection and parallel connection becomes difficult due to the voltage difference between the capacitor and the battery.
  • One object of the present invention is to provide a voltage-switching DC power source suitable for driving a variable speed motor.
  • the voltage-switching DC power supply has a connection switching circuit for selecting a series connection and a parallel connection of a plurality of charge devices.
  • This connection switching circuit including an inductor in addition to at least one series switch and at least two parallel switches has a chopper mode. According to this chopper mode, in order to avoid magnetic saturation of the inductor, a series switch and / or a parallel switch composed of transistors are switched at a predetermined PWM carrier frequency. This avoids sudden changes in DC link voltage or sudden increases in charge device current.
  • the series switch is turned off when some charging device is defective.
  • the voltage-switching DC power supply can use only the remaining normal charge devices.
  • each of the two sub power supply sets includes two battery blocks and one connection switching circuit. Further, the two sub power supply sets are connected by a third connection switching circuit.
  • the voltage-switching DC power supply can generate three levels of DC link voltage. Furthermore, this voltage-switching DC power supply can execute the 2-parallel discharge mode and the 4-parallel discharge mode when one battery block becomes defective. Therefore, the reliability of the DC power supply is improved.
  • FIG. 1 is a wiring diagram showing a conventional step-up chopper type variable voltage DC power supply.
  • FIG. 2 is a wiring diagram showing a conventional voltage-switching DC power supply.
  • FIG. 3 is a wiring diagram showing the voltage-switching type DC power source of the first embodiment.
  • FIG. 4 is a wiring diagram showing the chopper operation of the connection switching circuit.
  • FIG. 5 is a wiring diagram showing a voltage-switching DC power supply having a relay box for parallel charging.
  • FIG. 6 is a schematic wiring diagram showing a boost chopper type regenerative braking operation.
  • FIG. 7 is a schematic wiring diagram showing a boost chopper type regenerative braking operation.
  • FIG. 8 is a wiring diagram showing the voltage switching type DC power source of the second embodiment.
  • FIG. 1 is a wiring diagram showing a conventional step-up chopper type variable voltage DC power supply.
  • FIG. 2 is a wiring diagram showing a conventional voltage-switching DC power supply.
  • FIG. 9 is a diagram showing a characteristic between the DC link voltage and the motor rotation speed.
  • FIG. 10 is a wiring diagram showing a voltage-switching DC power supply having a relay box for parallel charging.
  • FIG. 11 is a wiring diagram showing a modification.
  • FIG. 12 is a wiring diagram showing a voltage-switching DC power supply according to the third embodiment.
  • FIG. 13 is an equivalent circuit diagram of the voltage-switching DC power source shown in FIG.
  • FIG. 14 is a wiring diagram showing the precharge mode.
  • FIG. 15 is a wiring diagram showing the precharge mode.
  • FIG. 16 is a wiring diagram showing the engine start mode.
  • FIG. 17 is a wiring diagram showing the power generation mode.
  • FIG. 18 is a wiring diagram showing a low-torque type torque assist mode.
  • FIG. 10 is a wiring diagram showing a voltage-switching DC power supply having a relay box for parallel charging.
  • FIG. 11 is a wiring diagram showing a modification.
  • FIG. 19 is a wiring diagram showing a high torque type torque assist mode.
  • FIG. 20 is a wiring diagram showing the regenerative braking mode.
  • FIG. 21 is a wiring diagram showing the regenerative braking mode.
  • FIG. 20 is a wiring diagram showing a voltage-switching DC power supply according to the fourth embodiment.
  • FIG. 23 is a wiring diagram showing the serial mode.
  • FIG. 24 is a wiring diagram showing the parallel discharge mode.
  • FIG. 25 is a wiring diagram showing the parallel charging mode.
  • This voltage-switching DC power supply is connected to an inverter that drives a traction motor of an electric vehicle.
  • This voltage-switching DC power supply can employ a capacitor as a charging device instead of a battery.
  • This voltage-switching DC power supply can be connected to an inverter that drives another variable speed motor.
  • This voltage-switching DC power source includes batteries 1 and 2 and a connection switching circuit 10.
  • the connection switching circuit 10 includes a series transistor 3, a charging diode 4, and parallel diodes 5 and 6.
  • the connection switching circuit 10 further includes an inductor 7.
  • the voltage-switching DC power supply applies a DC link voltage Vd to the smoothing capacitor 20 and the inverter 30.
  • Inverter 30 has three legs 31, 32, and 33.
  • Inverter 30 is connected to stator coil 40 of the three-phase motor.
  • the stator coil 40 includes a U-phase coil 41, a V-phase coil 42, and a W-phase coil 43.
  • Leg 31 is connected to phase coil 41, and leg 32 is connected to phase coil 42.
  • the leg 33 is connected to the phase coil 43.
  • the negative electrode of the battery 1 is connected to the negative terminals of the smoothing capacitor 20 and the inverter 30.
  • the positive electrode of the battery 2 is connected to the positive terminals of the smoothing capacitor 20 and the inverter 30 through the inductor 7.
  • the series transistor 3 and the charging diode 4 connect the batteries 1 and 2 in series.
  • the series transistor 3 can turn off the discharge of the batteries 1 and 2.
  • a charging diode 4 connected in antiparallel to the series transistor 3 can charge the batteries 1 and 2.
  • the anode of the parallel diode 5 is connected to the negative electrode of the battery 1, and the cathode of the parallel diode 5 is connected to the negative electrode of the battery 2.
  • the anode electrode of the parallel diode 6 is connected to the positive electrode of the battery 2, and the cathode electrode of the parallel diode 6 is connected to the positive electrode of the battery 1.
  • batteries 1 and 2 each have a voltage of 320V.
  • the connection switching circuit 10 and the inverter 30 are controlled by the controller 100.
  • the precharge operation of the smoothing capacitor 20 when the key switch of the electric vehicle is turned on will be described. Since the series transistor 3 is off, the smoothing capacitor 20 is charged through the parallel diodes 5 and 6. As a result, the inrush current flowing through the smoothing capacitor 20 is halved and the power loss is 1 ⁇ 4.
  • the series transistor 3 is switched at a predetermined PWM carrier frequency. Its PWM duty ratio, which is equal to the ratio of on period / (on period + off period), is gradually increased from 0 to 1.
  • PWM duty ratio which is equal to the ratio of on period / (on period + off period)
  • the series transistor 3 is turned on, a voltage sum (about 640V) is applied to the smoothing capacitor 20 through the inductor 7, and the inductor 7 stores magnetic energy.
  • the series transistor 3 is turned off, the inductor 7 suppresses a decrease in current flowing through the inductor 7. As a result, the DC link voltage Vd gradually increases from 320V to 640V.
  • the series transistor 3 is switched at a predetermined PWM carrier frequency.
  • the PWM duty ratio is gradually reduced from 1 to 0.
  • the DC link voltage Vd gradually decreases from 640V to 320V.
  • the parallel diodes 5 and 6, the series transistor 3, and the inductor 7 serve as a known step-down chopper.
  • FIG. 4 is a schematic diagram showing the operation of the step-down chopper.
  • the circuit 300 on the left shows a state where the series transistor 3 is turned on, and the circuit 400 on the right shows a state where the series transistor 3 is turned off.
  • the inductor 7 can have a lower inductance value than the inductor of the boost chopper shown in FIG.
  • the switching frequency of the series transistor 3 can have a higher switching frequency value than that of the boost chopper shown in FIG. As a result, the switching loss of the step-down chopper increases. However, since the high frequency switching of the series transistor 3 is only in the mode switching period, this increase in switching loss can be ignored.
  • the connection switching circuit 10 has a relay box 8 and a connector 9.
  • the relay box 8 accommodates two magnet contactors 8A and 8B.
  • the positive electrode of the battery 2 is connected to the positive terminal 9 A of the connector 9, and the negative electrode of the battery 1 is connected to the negative terminal 9 B of the connector 9.
  • Terminals 9A and 9B are connected to an unillustrated external DC power supply.
  • the contactor 8 A connects the negative terminal 9 B to the negative electrode of the battery 2, and the contactor 8 B connects the positive terminal 9 A to the positive electrode of the battery 1.
  • the contactors 8A and 8B are turned on, the contactor 8A is connected in parallel with the parallel diode 5, and the contactor 8B is connected in parallel with the parallel diode 6.
  • the external DC power supply charges the batteries 1 and 2 in parallel. In the parallel discharge mode, it is possible to turn on the contactors 8A and 8B.
  • the contactor 8A is connected in parallel with the parallel diode 5, and the contactor 8B is connected in parallel with the parallel diode 6. Therefore, in the parallel discharge mode, the batteries 1 and 2 are already in the parallel discharge mode by the diodes 5 and 6 before the contactors 8A and 8B are turned on. Therefore, when the contactors 8A and 8B are turned on, the voltage difference between the batteries 1 and 2 can be sufficiently reduced. This means that when the contactors 8A and 8B are turned on, the short-circuit current flowing between the batteries 1 and 2 becomes substantially zero. Furthermore, arcing of the contactors 8A and 8B is prevented by the diodes 5 and 6 when the contactor 8A and / or the contactor 8B are turned off. This improves the life and reliability of the contactors 8A and 8B.
  • the contactor 8A In the parallel charging period of the batteries 1 and 2, when the voltage of the battery 1 exceeds a predetermined value, the contactor 8A is turned off. Similarly, when the voltage of the battery 2 exceeds a predetermined value, the contactor 8B is turned off. In the parallel discharge period of the batteries 1 and 2, when the voltage of the battery 1 becomes less than a predetermined value, the contactor 8A is turned off. Similarly, when the voltage of the battery 2 exceeds a predetermined value, the contactor 8B is turned off. Eventually, the bad battery is separated by two independent contactors 8A and 8B.
  • the contactors 8A and 8B may or may not be turned on.
  • the controller 100 instructs the inverter 30 to perform a boost chopper operation.
  • the three legs 31-33 of the inverter 30 are switched synchronously at a predetermined PWM carrier frequency.
  • Each PWM cycle period is composed of a clamp period and an output period. In the clamp period shown in FIG. 6, the lower arm transistors of the legs 31-33 are simultaneously turned on. In the output period shown in FIG. 7, the lower arm transistors of the legs 31-33 are simultaneously turned off.
  • inverter 30 When the PWM duty ratio equal to the ratio of output period / (clamp period + output period) is low, inverter 30 generates a high output voltage. Thereby, the inverter 30 which functions as a step-up chopper can generate a high charging voltage.
  • the PWM duty ratio is controlled based on the battery charging current. Since the inverter 30 is operated as a step-up chopper, the ripple rate of the charging current supplied from the inverter 30 to the batteries 1 and 2 is increased. However, this ripple rate is reduced by the inductor 7 and the smoothing capacitor 20. The loss of the batteries 1 and 2 is reduced by this ripple rate reduction. Similarly, the losses of the batteries 1 and 2 are reduced in the parallel discharge mode compared to the series discharge mode under low load conditions of the traction motor. This suppresses an increase in battery temperature. In particular, this effect is superior in older batteries with increased internal resistance.
  • a second connection switching circuit 10A and a third connection switching circuit 10B are added to the voltage-switching DC power supply of the first embodiment.
  • the battery 1 of the first embodiment is divided into two battery blocks 1A and 1B each having a rated voltage of 160V.
  • the battery 2 of the first embodiment is divided into two battery blocks 2A and 2B each having a rated voltage of 160V.
  • the inductor 7 of the first embodiment is divided into two inductors 71 and 72. Inductors 71 and 72 can have a common core.
  • Each of the added connection switching circuits 10A and 10B has substantially the same circuit configuration as that of the connection switching circuit 10.
  • the connection switching circuit 10A includes a series transistor 3A having a charging diode 4A, parallel diodes 5A and 6A, and an inductor 7.
  • the series transistor 3A connects the block 2A and the block 2B.
  • the charging diode 4A is connected in antiparallel with the series transistor 3A.
  • the parallel diode 5A connects the negative electrode of the block 2A and the negative electrode of the block 2B.
  • the parallel diode 6A connects the positive electrode of the block 2A and the positive electrode of the block 2B.
  • the connection switching circuit 10B includes a series transistor 3B having a charging diode 4B, parallel diodes 5B and 6B, and an inductor 7.
  • the serial transistor 3B connects the block 1A and the block 1B.
  • the charging diode 4B is connected in antiparallel with the series transistor 3B.
  • the parallel diode 5B connects the negative electrode of the block 1A and the negative electrode of the block 1B.
  • the parallel diode 6B connects the positive electrode of the block 1A and the positive electrode of the block 1B.
  • the controller 100 has a series discharge mode, a 2-parallel discharge mode, and a 4-parallel discharge mode.
  • the 2-parallel discharge mode is essentially the same as the parallel discharge mode of the first embodiment.
  • the series transistor 3 is turned off and the series transistors 3A and 3B are turned on.
  • the DC link voltage Vd is approximately 320V.
  • the series transistors 3, 3A and 3B are turned off.
  • the DC link voltage Vd is approximately 160V.
  • the mode switching operation from the 2-parallel discharge mode to the series discharge mode will be described.
  • the series transistors 3A and 3B are turned off.
  • the serial transistor 3 is switched at a predetermined PWM carrier frequency, and its PWM duty ratio is gradually increased from 0 to 1.
  • the DC link voltage Vd gradually increases from 320V to 640V.
  • another mode switching operation from the series discharge mode to the 2-parallel discharge mode will be described.
  • the serial transistor 3 is switched at a predetermined PWM carrier frequency, and its PWM duty ratio is gradually decreased from 1 to 0.
  • the DC link voltage Vd gradually decreases from 640V to 320V.
  • the parallel diodes 5 and 6, the series transistor 3, and the inductor 7 serve as a known step-down chopper.
  • parallel diodes 5A and 6A, the series transistor 3A, and the inductor 7 function as a known step-down chopper.
  • parallel diodes 5B and 6B, series transistor 3B, and inductor 7 also function as a known step-down chopper.
  • FIG. 9 is a diagram showing the relationship between the motor rotation speed and the DC link voltage Vd when the motor torque is the maximum value.
  • the DC link voltage Vd is, for example, 160 V in a low speed region less than 40 km / h, for example, 320 V in a medium speed region in the range of 40-80 km / h, and 640 V in a high speed region exceeding 80 km / h.
  • connection switching circuit 10 has a relay box 8 and a connector 9 as in the first embodiment.
  • the contactors 81 and 82 can be turned on in the 2-parallel discharge mode and the regenerative braking mode. Thereby, the contactor 81 is connected in parallel with the parallel diode 5, and the contactor 82 is connected in parallel with the diode 6.
  • the DC link voltage Vd is 320 V in the 2-parallel discharge mode and the regenerative braking mode. Since the regenerative braking in this embodiment is essentially the same as in the first embodiment, description thereof is omitted.
  • the contactor 81 is connected in parallel with the parallel diode 5, and the contactor 82 is connected in parallel with the parallel diode 6. Therefore, in the 2-parallel discharge mode, the batteries 1 and 2 are already in the 2-parallel discharge mode by the diodes 5 and 6 before the contactors 81 and 82 are turned on. Therefore, when the contactors 81 and 82 are turned on, the voltage difference between the batteries 1 and 2 can be sufficiently reduced. This means that when the contactors 81 and 82 are turned on, the short-circuit current flowing between the batteries 1 and 2 becomes substantially zero. Furthermore, when the contactor 81 and the contactor 82 are turned off, the arc discharge of the contactors 81 and 82 is prevented by the diodes 5 and 6. Thereby, the lifetime and reliability of the contactors 81 and 82 are improved.
  • the discharge mode in the block failure state which means the case where the voltage of one of the blocks 1A, 1B, 2A, and 2B is out of the allowable range
  • the 2-parallel discharge mode one of the batteries 1 and 2 that does not include a defective block supplies a discharge current. In other words, 50% of the battery cells can continue to discharge.
  • the serial transistor 3 is turned off and the 2-parallel charging mode is employed. Further, the serial transistor 3A, 3B connected to the defective block is turned off. Thereby, 50% of battery cells can continue charging. Eventually, according to the second embodiment using three series transistors, it is possible to select a three-stage DC link voltage Vd and to disconnect a defective battery block.
  • the 4-parallel discharge mode employed in the low speed region significantly reduces battery loss. For this reason, the rise in battery temperature can be suppressed, and the battery life can be extended particularly in a high temperature environment. This effect is particularly noticeable in old batteries with high internal resistance.
  • the charging diode 4 shown in FIG. 5 or FIG. 8 is omitted.
  • the contactors 8A and 8B are turned on during the regenerative braking period, and the inverter 30 charges the batteries 1 and 2 in parallel through the contactors 8A and 8B.
  • a power transistor can be employed in place of the contactors 8A and 8B.
  • FIG. 11 shows another variation.
  • the series transistors 3, 3A, and 3B shown in FIG. 8 each comprise a bidirectional insulated gate transistor.
  • the insulated gate transistor can have a body diode.
  • a 3-series discharge mode in which three of the four blocks 1A, 1B, 2A, and 2B shown in FIG. 8 output the DC link voltage Vd to the inverter 30 is employed.
  • the 3-series discharge mode includes a first mode and a second mode. The first mode and the second mode are preferably executed alternately at a predetermined interval.
  • the series transistors 3 and 3A are turned on, and the series transistor 3B is turned off.
  • the voltage sum of the flocks 2A, 2B, and 1A is applied to the inverter 30.
  • the series transistors 3 and 3B are turned on, and the series transistor 3A is turned off.
  • the voltage sum of the blocks 2B, 1A, and 1B is applied to the inverter 30.
  • Each of the four blocks has about 160V. Therefore, a voltage of 480 V is applied to the inverter 30.
  • series transistor 3 In this 3-series discharge mode, the series transistor 3 is turned on. Series transistors 3A and 3B are complementarily switched at a predetermined interval.
  • blocks 2B and 1A discharge faster than blocks 2A and 1B.
  • the blocks 2A and 1B discharge faster than the blocks 2B and 1A. Thereby, the voltage difference between the blocks 2B and 1A and the blocks 2A and 1B is reduced.
  • the voltage-switching DC power supply can output 480V in addition to 160V, 320V, and 640V.
  • the DC power supply includes a connection switching circuit 10C including a series transistor 3, parallel transistors 50 and 60, and an inductor 7.
  • This DC power supply has the following differences compared to the DC power supply of the first embodiment shown in FIG.
  • Parallel transistors 50 and 60 are employed in place of the parallel diodes 5 and 6.
  • Each of the serial transistor 3 and the parallel transistors 50 and 60 is a MOS transistor having an antiparallel diode.
  • a capacitor 2 is employed instead of the battery 2.
  • the battery 1 has a battery voltage Vb, and the capacitor 2 has a capacitor voltage Vc.
  • the important difference is that the inductor 7 is arranged between the capacitor 2 and the parallel transistor 60.
  • FIG. 13 shows an equivalent circuit of this DC power supply.
  • the internal resistance rc of the capacitor 2 is lower than the internal resistance rb of the battery 1.
  • the battery 1 is composed of a lithium ion battery having a rated voltage of 48V or a lead acid battery having a rated voltage of 14.4V.
  • the capacitor 2 is a lithium ion capacitor.
  • This motor with stator coil 40 is coupled to a pulley driven by the crankshaft of the internal combustion engine. The operation of this DC power source controlled by the controller 100 will be described below.
  • the precharge mode is performed when the capacitor voltage Vc is lower than the battery voltage Vb.
  • the series transistor 3 is turned off and the parallel transistor 60 is turned on.
  • the parallel transistor 50 is switched at a predetermined PWM carrier frequency.
  • the PWM duty ratio of the parallel transistor 50 is gradually increased from 0 to 1.
  • the connection switching circuit 10C including the series transistor 3, the parallel transistors 50 and 60, and the inductor 7 operates as a step-down chopper.
  • Each PWM cycle period consists of a current supply period and a freewheeling period.
  • FIG. 14 shows this current supply period during which the parallel transistor 50 is turned on.
  • the discharge current of the battery 1 flows through the parallel transistor 60, the inductor 7, the capacitor 2, and the parallel transistor 50.
  • the capacitor voltage Vc gradually approaches the battery voltage Vb.
  • FIG. 15 shows a freewheeling period in which the parallel transistor 50 is turned off.
  • the magnetic energy accumulated in the inductor 7 causes a freewheeling current to flow through the series transistor 3, the parallel transistor 60, and the inductor 7.
  • the freewheeling current flows through the antiparallel diode of the series transistor 3.
  • the parallel transistors 50 and 60 are turned off and the series transistor 3 is turned on.
  • the DC link voltage Vdc applied to the inverter 30 is approximately equal to the sum of the capacitor voltage Vc and the battery voltage Vb.
  • the series transistor 3 is turned off.
  • the magnetic energy stored in the inductor 7 causes a freewheeling current to flow through the parallel transistor 50.
  • the inductor 7 is magnetically saturated in this engine start mode.
  • Capacitor Recovery Mode Next, the capacitor recovery mode will be described with reference to FIG.
  • the motor is driven as a generator.
  • the inverter 30 as a three-phase rectifier rectifies the three-phase voltage induced in the stator coil 40.
  • the serial transistor 3 and the parallel transistor 60 are turned off, and the parallel transistor 50 is turned on. Thereby, the capacitor 2 is charged.
  • the inductor 7 is magnetically saturated in this capacitor recovery mode.
  • the power generation mode will be described with reference to FIG.
  • the parallel transistor 60 is turned on.
  • the parallel transistor 50 is turned on and the series transistor 3 is turned off.
  • the inverter 30 charges the capacitor 2 and the battery 1 connected in parallel.
  • the inverter 30 supplies power to the electric load connected to the battery 1.
  • Torque assist mode Next, a low level type torque assist mode will be described with reference to FIG. Series transistor 3 is turned off and parallel transistors 50 and 60 are turned on.
  • the controller 100 controls the inverter 30, and motor current is supplied to the stator coil 40 through the inverter 30 from the battery 1 and the capacitor 2 connected in parallel.
  • This parallel regenerative braking mode is essentially the same as the power generation mode described above.
  • the serial transistor 3 is turned off and the parallel transistors 50 and 60 are turned on.
  • Inverter 30 charges capacitor 2 and battery 1 connected in parallel.
  • Capacitor Rechargeable Regenerative Braking Mode the capacitor rechargeable regenerative braking mode will be described with reference to FIG. This mode is employed, for example, when the battery 1 has a high SOC (charge state) value.
  • the serial transistor 3 and the parallel transistor 60 are turned off, and only the parallel transistor 50 is turned on. Thereby, only the capacitor 2 absorbs the generated current of the inverter 30.
  • the capacitor voltage Vc can be higher than the battery voltage Vb.
  • the capacitor regenerative braking mode is stopped. Thereby, the braking energy is recovered satisfactorily regardless of the state of the battery 1.
  • the capacitor 2 When the capacitor voltage Vc is higher than the battery voltage Vb, the capacitor 2 is preferably discharged to the inverter 30 or the battery 1. In the discharging operation from the capacitor 2 to the battery 1, the series transistor 3 is turned off and the parallel transistor 50 is turned on. The parallel transistor 60 is switched at a predetermined PWM carrier frequency. The PWM duty ratio of the parallel transistor 60 is gradually increased from 0 to 1. Thereby, the capacitor voltage Vc becomes substantially equal to the battery voltage Vb.
  • the inverter 30 can execute the boost chopper mode. For example, when the rectified voltage of the inverter 30 decreases due to a decrease in the motor rotation speed, the boost chopper mode is executed.
  • this step-up chopper mode one of the three upper arm transistors 34-36 or the three lower arm transistors 37-39 shown in FIG. 12 is switched synchronously at a predetermined PWM duty ratio. Upper arm transistors 34-36 and lower arm transistors 37-39 are complementarily switched.
  • connection switching circuit 10c can circulate the freewheeling current of the inductor 7.
  • the effect of the third embodiment will be described. According to this voltage-switching DC power supply, it is possible to avoid the addition of an expensive battery.
  • the capacitor 2 used only for a short time can have a lower capacitance value than the battery 1.
  • Capacitor 2 with low internal resistance and long life reduces power loss for engine start, torque assist, and regenerative braking.
  • Capacitor 2 extends the life of battery 2.
  • connection switching circuit 10c has both a voltage switching function and a step-down chopper function.
  • this step-down chopper operation the capacitor voltage Vc and the battery voltage Vb are equalized.
  • engine start-up, regenerative braking, and torque assist can be performed by the capacitor 2 alone. Thereby, the lifetime of the battery 1 is further extended.
  • This DC power supply includes a connection switching circuit 10 d including a series transistor 3, parallel transistors 50 and 60, and an inductor 7. Further, the connection switching circuit 10 d has a bypass diode 73.
  • the voltage V1 of the battery 1 is approximately equal to the voltage V2 of the battery 2.
  • the main feature of this DC power supply is that the inductor 7 of the third embodiment shown in FIG. 12 is divided into two sub-inductors 71 and 72.
  • the two sub-inductors 71 and 72 have one ends connected to the inverter 30 and the smoothing capacitor 20. Each of the two subcoils 71 and 72 has the other end connected by a bypass diode 73. The anode electrode of the bypass diode 73 is connected to the sub-inductor 72, and the cathode electrode thereof is connected to the sub-inductor 71. It is also possible to employ the capacitor 2 shown in FIG. 12 instead of the battery 2 shown in FIG. The sub-inductor 71 is connected to the positive electrode of the battery 2, and the sub-inductor 72 is connected to the parallel transistor 60. Each coil of the sub-inductors 71 and 72 can be wound around a common magnetic core.
  • a fuse 81 is connected in series with the parallel transistor 50, and a fuse 82 is connected in series with the parallel transistor 60. It is also possible to connect a third fuse in series with the series transistor 3.
  • the smoothing capacitor 20 includes capacitors 21 and 22 connected in parallel.
  • the capacitor 21 is made of a lithium ion capacitor having a high capacitance value
  • the capacitor 22 is made of a film capacitor having excellent high frequency characteristics.
  • the DC power source having the connection switching circuit 10 d is connected to the smoothing capacitor 20 and the inverter 30 through system relays 91 and 92.
  • the connection switching circuit 10d has a parallel mode and a series mode.
  • the parallel mode is described with reference to FIG.
  • the serial transistor 3 is turned off and the parallel transistors 50 and 60 are turned on. Thereby, the batteries 1 and 2 are connected in parallel.
  • the serial mode is described with reference to FIG.
  • the parallel transistors 50 and 60 are turned off, and the series transistor 3 is turned on. Thereby, the batteries 1 and 2 are connected in series, and the DC link voltage Vdc equal to the voltage sum (V1 + V2) is applied to the inverter 30.
  • the PWM duty ratio of the serial transistor 3 gradually changes from 0 to 1
  • the PWM duty ratio of the parallel transistors 50 and 60 gradually changes from 1 to 0.
  • the PWM duty ratio of the serial transistor 3 gradually changes from 1 to 0, and the PWM duty ratio of the parallel transistors 50 and 60 gradually changes from 0 to 1.
  • the parallel transistors 50 and 60 are driven in a complementary manner as compared with the serial transistor 3.
  • each PWM cycle period is composed of a series period and a parallel period.
  • the series period the series transistor 3 is turned on and the parallel transistors 50 and 60 are turned off.
  • the parallel period the series transistor 3 is turned off and the parallel transistors 50 and 60 are turned on.
  • the series period includes a series discharge period and a series charge period.
  • the parallel period includes a parallel discharge period and a parallel charge period.
  • a series discharge period in which the batteries 1 and 2 are discharged will be described with reference to FIG.
  • the sub-inductor 71 stores magnetic energy.
  • the parallel discharge period will be described with reference to FIG.
  • the magnetic energy stored in the sub-inductor 71 is consumed by the freewheeling current that flows through the parallel transistor 50.
  • the parallel transistor 60 is turned on, and the sub-inductor 72 stores magnetic energy.
  • the parallel transistor 60 is turned off, and the magnetic energy stored in the sub-inductor 72 is consumed by the freewheeling current flowing through the parallel transistor 60.
  • a series charging period in which the batteries 1 and 2 are charged will be described with reference to FIG.
  • the sub-inductor 71 stores magnetic energy.
  • a freewheeling current circulates through the antiparallel diode of the series transistor 3.
  • the parallel charging period will be described with reference to FIG.
  • the parallel transistor 60 is turned off, the sub-inductors 71 and 72 store magnetic energy.
  • the parallel transistor 50 is turned off, the freewheeling current circulates through the sub-inductor 71 and the antiparallel diode of the series transistor 3.
  • the parallel transistor 60 is turned off, the freewheeling current circulates through the sub-inductor 72 and the bypass diode 73.
  • the battery voltage V1 and the battery voltage V2 are gradually equalized by the parallel mode and the parallel period of the voltage switching period.
  • the parallel transistor 50 is turned off.
  • the parallel transistor 60 is turned off. Thereby, the reliability of the DC power supply is improved.
  • inductor 7 forms a low-pass filter together with the smoothing capacitor 20, the high-frequency component of the battery current is reduced. This high frequency component of the battery current causes useless power loss in the batteries 1 and 2 and raises their temperature. Thus, inductor 7 simplifies the cooling mechanism for batteries 1 and 2 and extends the life of batteries 1 and 2.
  • the smoothing capacitor 20 has a lithium ion capacitor 21 having a high capacitance value in addition to the conventional film capacitor 22.
  • the high frequency component of the electric current which flows through the batteries 1 and 2 is reduced, and the power loss of the batteries 1 and 2 is reduced.
  • the increase in the capacity of the smoothing capacitor 20 increases the inrush current flowing through the smoothing capacitor 20.
  • the capacity increase of the smoothing capacitor 20 has a limit.
  • this inrush current is suppressed by the step-down chopper operation of the connection switching circuit having the inductor 7. Therefore, the smoothing capacitor 20 of this embodiment can include a lithium capacitor having a higher capacity than a conventional film capacitor.
  • the precharging operation of the smoothing capacitor 20 will be described.
  • the series transistor 3 is turned off, and one or both of the parallel transistors 50 and 60 are switched at a predetermined PWM carrier frequency.
  • the parallel transistors 50 and / or 60 have a predetermined PWM duty ratio.
  • the smoothing capacitor 20 can be gradually charged.
  • the connection switching circuit 10d for switching the amplitude of the DC link voltage Vdc can reduce the inrush current to the smoothing capacitor 20.
  • the loss of the smoothing capacitor 20 and the batteries 1 and 2 is reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Provided is a voltage switching type direct-current power supply which is capable of reducing loss. This direct-current power supply has a connection switching circuit which can select a serial connection or a parallel connection of two or more charge devices. The direct-current power supply applies a two-level or three-level DC link voltage to an inverter for variable speed motor driving. The connection switching circuit, which has an inductor, performs a chopper operation in order to avoid sudden changes in the DC link voltage and in order to reduce voltage differences among the plurality of charge devices. In this chopper operation, series transistors or parallel transistors of the connection switching circuit are switched at a prescribed PWM carrier frequency.

Description

電圧切替式直流電源Voltage switching DC power supply
本発明は電圧切替式直流電源に関し、特にトラクションモータ用の電圧切替式直流電源に関する。 The present invention relates to a voltage switching DC power supply, and more particularly to a voltage switching DC power supply for a traction motor.
トラクションモータ用のインバータに印加されるDCリンク電圧はモータ回転数に応じて変更されることが好適である。図1は、昇圧チョッパ1000がバッテリ101とインバータ102との間に配置される周知のモータ駆動装置を示す。昇圧チョッパ1000は高速領域において平滑キャパシタ103に印加されるDCリンク電圧Vdを昇圧する。しかし、昇圧チョッパ1000の重量及び損失はこのモータ駆動装置の欠点となっている。 The DC link voltage applied to the inverter for the traction motor is preferably changed according to the motor rotation speed. FIG. 1 shows a known motor driving device in which a boost chopper 1000 is arranged between a battery 101 and an inverter 102. The boost chopper 1000 boosts the DC link voltage Vd applied to the smoothing capacitor 103 in the high speed region. However, the weight and loss of the boost chopper 1000 are disadvantages of this motor drive device.
2つのバッテリを直列接続する直列スイッチと、2つのバッテリを並列接続する2つの並列スイッチとをもつ公知の電圧切替式直流電源は、上記昇圧チョッパ1000のスイッチング損失を回避することができる。しかし、この電圧切替式直流電源の1つの問題はDCリンク電圧Vdが急変することである。DCリンク電圧Vdの急変は平滑キャパシタ及びインバータに悪影響を与える。もう1つの問題は並列接続された2つのバッテリの電圧が異なる時、2つのバッテリ間を流れる短絡電流がバッテリ損失を増加させることである。 A known voltage-switching DC power source having a series switch that connects two batteries in series and two parallel switches that connect two batteries in parallel can avoid the switching loss of the boost chopper 1000. However, one problem with this voltage-switching DC power supply is that the DC link voltage Vd changes suddenly. A sudden change in the DC link voltage Vd adversely affects the smoothing capacitor and the inverter. Another problem is that the short circuit current flowing between the two batteries increases the battery loss when the voltages of the two batteries connected in parallel are different.
図2は特許文献1に開示される電圧切替式直流電源の一例を示す。直列リレー201はバッテリ202及び203を直列に接続する。2つの並列リレー204及び205はバッテリ202及び203を並列接続する。図2に示される昇圧チョッパ208はバッテリの接続を切り替えるための過渡期間においてDCリンク電圧Vdを徐々に変更する。しかし、この昇圧チョッパ208の追加は製造コスト及びスイッチングロスを増加させる。 FIG. 2 shows an example of a voltage-switching DC power source disclosed in Patent Document 1. Series relay 201 connects batteries 202 and 203 in series. Two parallel relays 204 and 205 connect the batteries 202 and 203 in parallel. The step-up chopper 208 shown in FIG. 2 gradually changes the DC link voltage Vd during a transition period for switching the battery connection. However, the addition of the step-up chopper 208 increases manufacturing cost and switching loss.
電圧切替式直流電源はバッテリの代わりにたとえばリチウムイオンキャパシタのようなキャパシタを採用することができる。しかし、キャパシタ及びバッテリの間の電圧差により、直列接続と並列接続の切替は困難となる。 A voltage switching DC power supply can employ a capacitor such as a lithium ion capacitor instead of a battery. However, switching between series connection and parallel connection becomes difficult due to the voltage difference between the capacitor and the battery.
特開2012-060838号公報JP 2012-060838 A
本発明の一つの目的は可変速モータの駆動に好適な電圧切替式直流電源を提供することである。 One object of the present invention is to provide a voltage-switching DC power source suitable for driving a variable speed motor.
本発明の1つの様相によれば、電圧切替式直流電源は、複数のチャージデバイスの直列接続及び並列接続を選択するための接続切替回路をもつ。少なくとも1つの直列スイッチ及び少なくとも2つの並列スイッチの他にインダクタを含むこの接続切替回路はチョッパモードをもつ。このチョッパモードによれば、インダクタの磁気飽和を回避するために、トランジスタからなる直列スイッチ及び/又は並列スイッチが所定のPWMキャリヤ周波数でスイッチングされる。これにより、DCリンク電圧の急変又はチャージデバイスの電流の急増が回避される。 According to one aspect of the present invention, the voltage-switching DC power supply has a connection switching circuit for selecting a series connection and a parallel connection of a plurality of charge devices. This connection switching circuit including an inductor in addition to at least one series switch and at least two parallel switches has a chopper mode. According to this chopper mode, in order to avoid magnetic saturation of the inductor, a series switch and / or a parallel switch composed of transistors are switched at a predetermined PWM carrier frequency. This avoids sudden changes in DC link voltage or sudden increases in charge device current.
1つの好適な態様において、一部のチャージデバイスが不良である時、直列スイッチがオフされる。これにより、電圧切替式直流電源は残りの正常なチャージデバイスだけを使用することができる。 In one preferred aspect, the series switch is turned off when some charging device is defective. As a result, the voltage-switching DC power supply can use only the remaining normal charge devices.
本発明のもう1つの様相によれば、2つのサブ電源セットが採用される。2つのサブ電源セットはそれぞれ、2つのバッテリブロック及び1つの接続切替回路からなる。さらに、2つのサブ電源セットは第3の接続切替回路により接続される。これにより、電圧切替式直流電源は3つのレベルのDCリンク電圧を発生することができる。さらに、この電圧切替式直流電源は、1つのバッテリブロックが不良となる場合において、2-並列放電モード及び4-並列放電モードを実行することができる。したがって、直流電源の信頼性が改善される。 According to another aspect of the present invention, two sub power supply sets are employed. Each of the two sub power supply sets includes two battery blocks and one connection switching circuit. Further, the two sub power supply sets are connected by a third connection switching circuit. As a result, the voltage-switching DC power supply can generate three levels of DC link voltage. Furthermore, this voltage-switching DC power supply can execute the 2-parallel discharge mode and the 4-parallel discharge mode when one battery block becomes defective. Therefore, the reliability of the DC power supply is improved.
図1は従来の昇圧チョッパ式可変電圧直流電源を示す配線図である。FIG. 1 is a wiring diagram showing a conventional step-up chopper type variable voltage DC power supply. 図2は従来の電圧切替式直流電源を示す配線図である。FIG. 2 is a wiring diagram showing a conventional voltage-switching DC power supply. 図3は第1実施例の電圧切替式直流電源を示す配線図である。FIG. 3 is a wiring diagram showing the voltage-switching type DC power source of the first embodiment. 図4は接続切替回路のチョッパ動作を示す配線図である。FIG. 4 is a wiring diagram showing the chopper operation of the connection switching circuit. 図5は並列充電用のリレーボックスをもつ電圧切替式直流電源を示す配線図である。FIG. 5 is a wiring diagram showing a voltage-switching DC power supply having a relay box for parallel charging. 図6は昇圧チョッパ式回生制動動作を示す模式配線図である。FIG. 6 is a schematic wiring diagram showing a boost chopper type regenerative braking operation. 図7は昇圧チョッパ式回生制動動作を示す模式配線図である。FIG. 7 is a schematic wiring diagram showing a boost chopper type regenerative braking operation. 図8は第2実施例の電圧切替式直流電源を示す配線図である。FIG. 8 is a wiring diagram showing the voltage switching type DC power source of the second embodiment. 図9はDCリンク電圧とモータ回転数との間の特性を示す図である。FIG. 9 is a diagram showing a characteristic between the DC link voltage and the motor rotation speed. 図10は並列充電用のリレーボックスをもつ電圧切替式直流電源を示す配線図である。FIG. 10 is a wiring diagram showing a voltage-switching DC power supply having a relay box for parallel charging. 図11は変形態様を示す配線図である。FIG. 11 is a wiring diagram showing a modification. 図12は第3実施例の電圧切替式直流電源を示す配線図である。FIG. 12 is a wiring diagram showing a voltage-switching DC power supply according to the third embodiment. 図13は図12に示される電圧切替式直流電源の等価回路図である。FIG. 13 is an equivalent circuit diagram of the voltage-switching DC power source shown in FIG. 図14は予備充電モードを示す配線図である。FIG. 14 is a wiring diagram showing the precharge mode. 図15は予備充電モードを示す配線図である。FIG. 15 is a wiring diagram showing the precharge mode. 図16はエンジン始動モードを示す配線図である。FIG. 16 is a wiring diagram showing the engine start mode. 図17は発電モードを示す配線図である。FIG. 17 is a wiring diagram showing the power generation mode. 図18は低トルクタイプのトルクアシストモードを示す配線図である。FIG. 18 is a wiring diagram showing a low-torque type torque assist mode. 図19は高トルクタイプのトルクアシストモードを示す配線図である。FIG. 19 is a wiring diagram showing a high torque type torque assist mode. 図20は回生制動モードを示す配線図である。FIG. 20 is a wiring diagram showing the regenerative braking mode. 図21は回生制動モードを示す配線図である。FIG. 21 is a wiring diagram showing the regenerative braking mode. 図20は第4実施例の電圧切替式直流電源を示す配線図である。FIG. 20 is a wiring diagram showing a voltage-switching DC power supply according to the fourth embodiment. 図23は直列モードを示す配線図である。FIG. 23 is a wiring diagram showing the serial mode. 図24は並列放電モードを示す配線図である。FIG. 24 is a wiring diagram showing the parallel discharge mode. 図25は並列充電モードを示す配線図である。FIG. 25 is a wiring diagram showing the parallel charging mode.
本発明の電圧切替式直流電源の好適な実施形態が図面を参照して説明される。この電圧切替式直流電源は電気自動車のトラクションモータを駆動するインバータに接続される。この電圧切替式直流電源はバッテリの代わりにキャパシタをチャージデバイスとして採用することができる。この電圧切替式直流電源は他の可変速モータを駆動するインバータに接続されることができる。 A preferred embodiment of the voltage-switching DC power source of the present invention will be described with reference to the drawings. This voltage-switching DC power supply is connected to an inverter that drives a traction motor of an electric vehicle. This voltage-switching DC power supply can employ a capacitor as a charging device instead of a battery. This voltage-switching DC power supply can be connected to an inverter that drives another variable speed motor.
     第1実施例
電気自動車に適用される第1実施例の電圧切替式直流電源が図3-図7を参照して説明される。この電圧切替式直流電源はバッテリ1及び2及び接続切替回路10からなる。接続切替回路10は直列トランジスタ3、充電ダイオード4、並列ダイオード5及び6からなる。接続切替回路10はさらにインダクタ7を含む。電圧切替式直流電源は平滑キャパシタ20及びインバータ30にDCリンク電圧Vdを印加する。インバータ30は3つのレグ31、32、及び33をもつ。インバータ30は3相モータのステータコイル40に接続される。ステータコイル40はU相コイル41、V相コイル42、及びW相コイル43からなる。レグ31は相コイル41に接続され、レグ32は相コイル42に接続され。レグ33は相コイル43に接続されている。
First Embodiment A voltage-switching DC power supply according to a first embodiment applied to an electric vehicle will be described with reference to FIGS. This voltage-switching DC power source includes batteries 1 and 2 and a connection switching circuit 10. The connection switching circuit 10 includes a series transistor 3, a charging diode 4, and parallel diodes 5 and 6. The connection switching circuit 10 further includes an inductor 7. The voltage-switching DC power supply applies a DC link voltage Vd to the smoothing capacitor 20 and the inverter 30. Inverter 30 has three legs 31, 32, and 33. Inverter 30 is connected to stator coil 40 of the three-phase motor. The stator coil 40 includes a U-phase coil 41, a V-phase coil 42, and a W-phase coil 43. Leg 31 is connected to phase coil 41, and leg 32 is connected to phase coil 42. The leg 33 is connected to the phase coil 43.
バッテリ1の負極は平滑キャパシタ20及びインバータ30の各負端子に接続されている。バッテリ2の正極はインダクタ7を通じて平滑キャパシタ20及びインバータ30の各正端子に接続されている。直列トランジスタ3及び充電ダイオード4はバッテリ1及び2を直列接続する。直列トランジスタ3はバッテリ1及び2の放電をオフすることができる。直列トランジスタ3に逆並列接続された充電ダイオード4はバッテリ1及び2を充電することができる。 The negative electrode of the battery 1 is connected to the negative terminals of the smoothing capacitor 20 and the inverter 30. The positive electrode of the battery 2 is connected to the positive terminals of the smoothing capacitor 20 and the inverter 30 through the inductor 7. The series transistor 3 and the charging diode 4 connect the batteries 1 and 2 in series. The series transistor 3 can turn off the discharge of the batteries 1 and 2. A charging diode 4 connected in antiparallel to the series transistor 3 can charge the batteries 1 and 2.
並列ダイオード5のアノード電極はバッテリ1の負極に接続され、並列ダイオード5のカソードはバッテリ2の負極に接続されている。並列ダイオード6のアノード電極はバッテリ2の正極に接続され、並列ダイオード6のカソード電極はバッテリ1の正極に接続されている。 The anode of the parallel diode 5 is connected to the negative electrode of the battery 1, and the cathode of the parallel diode 5 is connected to the negative electrode of the battery 2. The anode electrode of the parallel diode 6 is connected to the positive electrode of the battery 2, and the cathode electrode of the parallel diode 6 is connected to the positive electrode of the battery 1.
たとえば、バッテリ1及び2はそれぞれ320Vの電圧をもつ。接続切替回路10及びインバータ30はコントローラ100により制御される。まず、電気自動車のキースイッチがオンされた時の平滑キャパシタ20のプリチャージ動作が説明される。直列トランジスタ3はオフされているので、平滑キャパシタ20は並列ダイオード5及び6を通じて充電される。これにより、平滑キャパシタ20に流れる突入電流は半分となり、電力損失は1/4となる。 For example, batteries 1 and 2 each have a voltage of 320V. The connection switching circuit 10 and the inverter 30 are controlled by the controller 100. First, the precharge operation of the smoothing capacitor 20 when the key switch of the electric vehicle is turned on will be described. Since the series transistor 3 is off, the smoothing capacitor 20 is charged through the parallel diodes 5 and 6. As a result, the inrush current flowing through the smoothing capacitor 20 is halved and the power loss is ¼.
この電圧切替式直流電源の放電動作が説明される。直列トランジスタ3がオンされる直列放電モードにおいて、DCリンク電圧Vdはバッテリ1及び2の電圧和(=640V)と等しくなる。直列トランジスタ3がオフされる並列放電モードにおいて、DCリンク電圧Vdは、バッテリ1及び2の高い方の電圧(=約320V)と等しくなる。言い換えれば、2つのバッテリ1及び2の電圧差は並列ダイオード5及び6により並列放電モードにおいて自動的に解消される。 The discharge operation of this voltage-switching DC power supply will be described. In the series discharge mode in which the series transistor 3 is turned on, the DC link voltage Vd becomes equal to the voltage sum of the batteries 1 and 2 (= 640 V). In the parallel discharge mode in which the series transistor 3 is turned off, the DC link voltage Vd becomes equal to the higher voltage (= about 320 V) of the batteries 1 and 2. In other words, the voltage difference between the two batteries 1 and 2 is automatically eliminated in the parallel discharge mode by the parallel diodes 5 and 6.
次に、並列放電モードから直列放電モードへのモード切替動作が説明される。このモード切替動作において、直列トランジスタ3は所定のPWMキャリヤ周波数でスイッチングされる。オン期間/(オン期間+オフ期間)の比率に等しいそのPWMデユーティ比は0から1へ徐々に増加される。直列トランジスタ3がオンされる時、電圧和(約640V)がインダクタ7を通じて平滑キャパシタ20に印加され、インダクタ7は磁気エネルギーを蓄積する。直列トランジスタ3がオフされる時、インダクタ7はインダクタ7を流れる電流の減少を抑制する。これにより、DCリンク電圧Vdは320Vから640Vへ徐々に上昇する。 Next, the mode switching operation from the parallel discharge mode to the series discharge mode will be described. In this mode switching operation, the series transistor 3 is switched at a predetermined PWM carrier frequency. Its PWM duty ratio, which is equal to the ratio of on period / (on period + off period), is gradually increased from 0 to 1. When the series transistor 3 is turned on, a voltage sum (about 640V) is applied to the smoothing capacitor 20 through the inductor 7, and the inductor 7 stores magnetic energy. When the series transistor 3 is turned off, the inductor 7 suppresses a decrease in current flowing through the inductor 7. As a result, the DC link voltage Vd gradually increases from 320V to 640V.
次に、直列放電モードから並列放電モードへのもう1つのモード切替動作が説明される。このモード切替動作において、直列トランジスタ3は所定のPWMキャリヤ周波数でスイッチングされる。そのPWMデユーティ比は1から0へ徐々に減少される。これにより、DCリンク電圧Vdは640Vから320Vへ徐々に低下する。結局、並列ダイオード5及び6、直列トランジスタ3、及びインダクタ7は、公知の降圧チョッパとして働く。 Next, another mode switching operation from the series discharge mode to the parallel discharge mode will be described. In this mode switching operation, the series transistor 3 is switched at a predetermined PWM carrier frequency. The PWM duty ratio is gradually reduced from 1 to 0. As a result, the DC link voltage Vd gradually decreases from 640V to 320V. Eventually, the parallel diodes 5 and 6, the series transistor 3, and the inductor 7 serve as a known step-down chopper.
図4は、この降圧チョッパの動作を示す模式図である。左側の回路300は直列トランジスタ3がオンされた状態を示し、右側の回路400は直列トランジスタ3がオフされた状態を示す。インダクタ7は、図1に示される昇圧チョッパのインダクタよりも低いインダクタンス値をもつことができる。直列トランジスタ3のスイッチング周波数は、図1に示される昇圧チョッパよりも高いスイッチング周波数値をもつことができる。その結果、降圧チョッパのスイッチング損失は増加する。しかし、直列トランジスタ3の高周波スイッチングはモード切替期間だけであるため、このスイッチング損失の増加は無視されることができる。 FIG. 4 is a schematic diagram showing the operation of the step-down chopper. The circuit 300 on the left shows a state where the series transistor 3 is turned on, and the circuit 400 on the right shows a state where the series transistor 3 is turned off. The inductor 7 can have a lower inductance value than the inductor of the boost chopper shown in FIG. The switching frequency of the series transistor 3 can have a higher switching frequency value than that of the boost chopper shown in FIG. As a result, the switching loss of the step-down chopper increases. However, since the high frequency switching of the series transistor 3 is only in the mode switching period, this increase in switching loss can be ignored.
次に、外部直流電源によるバッテリ1及び2の充電動作が図5を参照して説明される。バッテリ1及び2を並列に充電するために、この外部直流電源は約320Vの電圧をバッテリ1及び2に印加する。この並列充電のために、接続切替回路10はリレーボックス8及びコネクタ9をもつ。リレーボックス8は、2つのマグネットコンタクタ8A及び8Bを収容する。バッテリ2の正極はコネクタ9の正極端子9Aに接続され、バッテリ1の負極はコネクタ9の負極端子9Bに接続されている。端子9A及び9Bは図略の図略の外部直流電源に接続される。 Next, the charging operation of the batteries 1 and 2 by the external DC power supply will be described with reference to FIG. In order to charge the batteries 1 and 2 in parallel, the external DC power supply applies a voltage of about 320V to the batteries 1 and 2. For this parallel charging, the connection switching circuit 10 has a relay box 8 and a connector 9. The relay box 8 accommodates two magnet contactors 8A and 8B. The positive electrode of the battery 2 is connected to the positive terminal 9 A of the connector 9, and the negative electrode of the battery 1 is connected to the negative terminal 9 B of the connector 9. Terminals 9A and 9B are connected to an unillustrated external DC power supply.
コンタクタ8Aは負極端子9Bをバッテリ2の負極に接続し、コンタクタ8Bは正極端子9Aをバッテリ1の正極に接続する。コンタクタ8A及び8Bがオンされる時、コンタクタ8Aは並列ダイオード5と並列に接続され、コンタクタ8Bは並列ダイオード6と並列に接続される。これにより、外部直流電源はバッテリ1及び2を並列に充電する。並列放電モードにおいて、コンタクタ8A及び8Bをオンすることは可能である。 The contactor 8 A connects the negative terminal 9 B to the negative electrode of the battery 2, and the contactor 8 B connects the positive terminal 9 A to the positive electrode of the battery 1. When the contactors 8A and 8B are turned on, the contactor 8A is connected in parallel with the parallel diode 5, and the contactor 8B is connected in parallel with the parallel diode 6. Thereby, the external DC power supply charges the batteries 1 and 2 in parallel. In the parallel discharge mode, it is possible to turn on the contactors 8A and 8B.
この実施例によれば、コンタクタ8Aが並列ダイオード5と並列接続され、コンタクタ8Bが並列ダイオード6と並列接続されている。したがって、並列放電モードにおいて、コンタクタ8A及び8Bがオンされる前に、バッテリ1及び2はダイオード5及び6により既に並列放電モードとなっている。したがって、コンタクタ8A及び8Bがオンされる時、バッテリ1及び2の間の電圧差は十分に低減されることができる。これは、コンタクタ8A及び8Bがオンされる時、バッテリ1及び2の間に流れる短絡電流がほぼゼロとなることを意味する。さらに、コンタクタ8A及び/又はコンタクタ8Bがオフされる時、コンタクタ8A及び8Bのアーク放電はダイオード5及び6により防止される。これにより、コンタクタ8A及び8Bの寿命及び信頼性が改善される。 According to this embodiment, the contactor 8A is connected in parallel with the parallel diode 5, and the contactor 8B is connected in parallel with the parallel diode 6. Therefore, in the parallel discharge mode, the batteries 1 and 2 are already in the parallel discharge mode by the diodes 5 and 6 before the contactors 8A and 8B are turned on. Therefore, when the contactors 8A and 8B are turned on, the voltage difference between the batteries 1 and 2 can be sufficiently reduced. This means that when the contactors 8A and 8B are turned on, the short-circuit current flowing between the batteries 1 and 2 becomes substantially zero. Furthermore, arcing of the contactors 8A and 8B is prevented by the diodes 5 and 6 when the contactor 8A and / or the contactor 8B are turned off. This improves the life and reliability of the contactors 8A and 8B.
バッテリ1及び2の並列充電期間において、バッテリ1の電圧が所定値を超える時、コンタクタ8Aがオフされる。同様に、バッテリ2の電圧が所定値を超える時、コンタクタ8Bがオフされる。バッテリ1及び2の並列放電期間において、バッテリ1の電圧が所定値未満となる時、コンタクタ8Aがオフされる。同様に、バッテリ2の電圧が所定値を超える時、コンタクタ8Bがオフされる。結局、不良バッテリは2つの独立コンタクタ8A及び8Bにより分離される。 In the parallel charging period of the batteries 1 and 2, when the voltage of the battery 1 exceeds a predetermined value, the contactor 8A is turned off. Similarly, when the voltage of the battery 2 exceeds a predetermined value, the contactor 8B is turned off. In the parallel discharge period of the batteries 1 and 2, when the voltage of the battery 1 becomes less than a predetermined value, the contactor 8A is turned off. Similarly, when the voltage of the battery 2 exceeds a predetermined value, the contactor 8B is turned off. Eventually, the bad battery is separated by two independent contactors 8A and 8B.
次に、この電圧切替式直流電源の回生制動期間における充電動作が図6及び図7を参照して説明される。コンタクタ8A及び8Bはオンされてもよく、オンされなくてもよい。この回生制動において、インバータ30の発電電圧がDCリンク電圧よりも低い時、コントローラ100はインバータ30に昇圧チョッパ動作を指令する。この昇圧チョッパ動作において、インバータ30の3つのレグ31-33は所定のPWMキャリヤ周波数で同期的にスイッチングされる。各PWMサイクル期間はそれぞれクランプ期間と出力期間とからなる。図6に示されるクランプ期間において、レグ31-33の下アームトランジスタが同時にオンされる。図7に示される出力期間において、レグ31-33の下アームトランジスタが同時にオフされる。 Next, the charging operation in the regenerative braking period of this voltage-switching DC power supply will be described with reference to FIGS. The contactors 8A and 8B may or may not be turned on. In this regenerative braking, when the generated voltage of the inverter 30 is lower than the DC link voltage, the controller 100 instructs the inverter 30 to perform a boost chopper operation. In this step-up chopper operation, the three legs 31-33 of the inverter 30 are switched synchronously at a predetermined PWM carrier frequency. Each PWM cycle period is composed of a clamp period and an output period. In the clamp period shown in FIG. 6, the lower arm transistors of the legs 31-33 are simultaneously turned on. In the output period shown in FIG. 7, the lower arm transistors of the legs 31-33 are simultaneously turned off.
出力期間/(クランプ期間+出力期間)の比率に等しいPWMデユーティ比が低い時、インバータ30は高い出力電圧を発生する。これにより、昇圧チョッパとして働くインバータ30は高い充電電圧を発生することができる。PWMデユーティ比はバッテリ充電電流に基づいて制御される。インバータ30を昇圧チョッパとして動作させるため、インバータ30からバッテリ1及び2へ供給される充電電流のリップルレートは高くなる。しかし、このリップルレートはインダクタ7及び平滑キャパシタ20により低減される。バッテリ1及び2の損失はこのリップルレート低減により低減される。同様に、バッテリ1及び2の損失はトラクションモータの低負荷条件において並列放電モードにおいて直列放電モードよりも低減される。これは、バッテリ温度の上昇を抑制する。特に、この効果は増加された内部抵抗をもつ古いバッテリにおいて優れている。 When the PWM duty ratio equal to the ratio of output period / (clamp period + output period) is low, inverter 30 generates a high output voltage. Thereby, the inverter 30 which functions as a step-up chopper can generate a high charging voltage. The PWM duty ratio is controlled based on the battery charging current. Since the inverter 30 is operated as a step-up chopper, the ripple rate of the charging current supplied from the inverter 30 to the batteries 1 and 2 is increased. However, this ripple rate is reduced by the inductor 7 and the smoothing capacitor 20. The loss of the batteries 1 and 2 is reduced by this ripple rate reduction. Similarly, the losses of the batteries 1 and 2 are reduced in the parallel discharge mode compared to the series discharge mode under low load conditions of the traction motor. This suppresses an increase in battery temperature. In particular, this effect is superior in older batteries with increased internal resistance.
     第2実施例
電気自動車に適用される第2実施例の電圧切替式直流電源が図8を参照して説明される。この実施例によれば、第2の接続切替回路10A及び第3の接続切替回路10Bが第1実施例の電圧切替式直流電源に追加されている。第1実施例のバッテリ1は、それぞれ160Vの定格電圧をもつ2つのバッテリブロック1A及び1Bに分割されている。同様に、第1実施例のバッテリ2は、それぞれ160Vの定格電圧をもつ2つのバッテリブロック2A及び2Bに分割されている。第1実施例のインダクタ7は2つのインダクタ71及び72に分割されている。インダクタ71及び72は共通のコアをもつことができる。追加された接続切替回路10A及び10Bはそれぞれ、接続切替回路10と本質的に同じ回路構成をもつ。
Second Embodiment A voltage switching type DC power source according to a second embodiment applied to an electric vehicle will be described with reference to FIG. According to this embodiment, a second connection switching circuit 10A and a third connection switching circuit 10B are added to the voltage-switching DC power supply of the first embodiment. The battery 1 of the first embodiment is divided into two battery blocks 1A and 1B each having a rated voltage of 160V. Similarly, the battery 2 of the first embodiment is divided into two battery blocks 2A and 2B each having a rated voltage of 160V. The inductor 7 of the first embodiment is divided into two inductors 71 and 72. Inductors 71 and 72 can have a common core. Each of the added connection switching circuits 10A and 10B has substantially the same circuit configuration as that of the connection switching circuit 10.
接続切替回路10Aは、充電ダイオード4Aをもつ直列トランジスタ3A、並列ダイオード5A及び6A、及びインダクタ7からなる。直列トランジスタ3Aはブロック2A及びブロック2Bを接続している。充電ダイオード4Aは直列トランジスタ3Aと逆並列に接続されている。並列ダイオード5Aはブロック2Aの負極とブロック2Bの負極とを接続している。並列ダイオード6Aはブロック2Aの正極とブロック2Bの正極とを接続している。 The connection switching circuit 10A includes a series transistor 3A having a charging diode 4A, parallel diodes 5A and 6A, and an inductor 7. The series transistor 3A connects the block 2A and the block 2B. The charging diode 4A is connected in antiparallel with the series transistor 3A. The parallel diode 5A connects the negative electrode of the block 2A and the negative electrode of the block 2B. The parallel diode 6A connects the positive electrode of the block 2A and the positive electrode of the block 2B.
接続切替回路10Bは、充電ダイオード4Bをもつ直列トランジスタ3B、並列ダイオード5B及び6B、及びインダクタ7からなる。直列トランジスタ3Bはブロック1A及びブロック1Bを接続している。充電ダイオード4Bは直列トランジスタ3Bと逆並列に接続されている。並列ダイオード5Bはブロック1Aの負極とブロック1Bの負極とを接続している。並列ダイオード6Bはブロック1Aの正極とブロック1Bの正極とを接続している。 The connection switching circuit 10B includes a series transistor 3B having a charging diode 4B, parallel diodes 5B and 6B, and an inductor 7. The serial transistor 3B connects the block 1A and the block 1B. The charging diode 4B is connected in antiparallel with the series transistor 3B. The parallel diode 5B connects the negative electrode of the block 1A and the negative electrode of the block 1B. The parallel diode 6B connects the positive electrode of the block 1A and the positive electrode of the block 1B.
この電圧切替式直流電源の放電動作が説明される。コントローラ100は直列放電モード、2-並列放電モード、4-並列放電モードをもつ。2-並列放電モードは本質的に実施例1の並列放電モードと同じである。3つの直列トランジスタ3、3A、及び3Bがオンされる直列放電モードにおいて、DCリンク電圧Vdは4つのブロック2A、2B、1A、及び1Bの電圧和(=約640V)と等しくなる。2-並列放電モードにおいて、直列トランジスタ3がオフされ、直列トランジスタ3A及び3Bはオンされる。DCリンク電圧Vdはほぼ320Vとなる。4-並列放電モードにおいて、直列トランジスタ3、3A及び3Bはオフされる。DCリンク電圧Vdはほぼ160Vとなる。 The discharge operation of this voltage-switching DC power supply will be described. The controller 100 has a series discharge mode, a 2-parallel discharge mode, and a 4-parallel discharge mode. The 2-parallel discharge mode is essentially the same as the parallel discharge mode of the first embodiment. In the series discharge mode in which the three series transistors 3, 3A, and 3B are turned on, the DC link voltage Vd is equal to the voltage sum (= about 640 V) of the four blocks 2A, 2B, 1A, and 1B. In the 2-parallel discharge mode, the series transistor 3 is turned off and the series transistors 3A and 3B are turned on. The DC link voltage Vd is approximately 320V. In the 4-parallel discharge mode, the series transistors 3, 3A and 3B are turned off. The DC link voltage Vd is approximately 160V.
次に、2-並列放電モードから直列放電モードへのモード切替動作が説明される。このモード切替動作において、直列トランジスタ3A及び3Bはオフされている。直列トランジスタ3は所定のPWMキャリヤ周波数でスイッチングされ、そのPWMデユーティ比は0から1へ徐々に増加される。これにより、DCリンク電圧Vdは320Vから640Vへ徐々に上昇する。次に、直列放電モードから2-並列放電モードへのもう1つのモード切替動作が説明される。このモード切替動作において、直列トランジスタ3は所定のPWMキャリヤ周波数でスイッチングされ、そのPWMデユーティ比は1から0へ徐々に減少される。これにより、DCリンク電圧Vdは640Vから320Vへ徐々に低下する。結局、並列ダイオード5及び6、直列トランジスタ3、及びインダクタ7は、公知の降圧チョッパとして働く。 Next, the mode switching operation from the 2-parallel discharge mode to the series discharge mode will be described. In this mode switching operation, the series transistors 3A and 3B are turned off. The serial transistor 3 is switched at a predetermined PWM carrier frequency, and its PWM duty ratio is gradually increased from 0 to 1. As a result, the DC link voltage Vd gradually increases from 320V to 640V. Next, another mode switching operation from the series discharge mode to the 2-parallel discharge mode will be described. In this mode switching operation, the serial transistor 3 is switched at a predetermined PWM carrier frequency, and its PWM duty ratio is gradually decreased from 1 to 0. As a result, the DC link voltage Vd gradually decreases from 640V to 320V. Eventually, the parallel diodes 5 and 6, the series transistor 3, and the inductor 7 serve as a known step-down chopper.
次に、4-並列放電モードから2-並列放電モードへのもう1つのモード切替動作が説明される。このモード切替動作において、直列トランジスタ3はオフされている。直列トランジスタ3A及び3Bは所定のPWMキャリヤ周波数でスイッチングされ、そのPWMデユーティ比は0から1へ徐々に増加される。これにより、DCリンク電圧Vdは160Vから320Vへ徐々に上昇する。次に、2-並列放電モードから4-並列放電モードへのもう1つのモード切替動作が説明される。このモード切替動作において、直列トランジスタ3A及び3Bは所定のPWMキャリヤ周波数でスイッチングされ、そのPWMデユーティ比は1から0へ徐々に減少される。これにより、DCリンク電圧Vdは320Vから160Vへ徐々に低下する。結局、並列ダイオード5A及び6A、直列トランジスタ3A、及びインダクタ7は公知の降圧チョッパとして働く。同様に、並列ダイオード5B及び6B、直列トランジスタ3B、及びインダクタ7も公知の降圧チョッパとして働く。 Next, another mode switching operation from the 4-parallel discharge mode to the 2-parallel discharge mode will be described. In this mode switching operation, the series transistor 3 is turned off. The series transistors 3A and 3B are switched at a predetermined PWM carrier frequency, and the PWM duty ratio is gradually increased from 0 to 1. As a result, the DC link voltage Vd gradually increases from 160V to 320V. Next, another mode switching operation from the 2-parallel discharge mode to the 4-parallel discharge mode will be described. In this mode switching operation, the series transistors 3A and 3B are switched at a predetermined PWM carrier frequency, and the PWM duty ratio is gradually reduced from 1 to 0. As a result, the DC link voltage Vd gradually decreases from 320V to 160V. Eventually, the parallel diodes 5A and 6A, the series transistor 3A, and the inductor 7 function as a known step-down chopper. Similarly, parallel diodes 5B and 6B, series transistor 3B, and inductor 7 also function as a known step-down chopper.
図9はモータトルクが最大値である場合におけるモータ回転数とDCリンク電圧Vdとの関係を示す図である。DCリンク電圧Vdは、たとえば40km/h未満の低速領域において160Vとなり、たとえば40-80km/hの範囲の中速領域において320Vとなり、80km/hを超える高速領域において640Vとなる。 FIG. 9 is a diagram showing the relationship between the motor rotation speed and the DC link voltage Vd when the motor torque is the maximum value. The DC link voltage Vd is, for example, 160 V in a low speed region less than 40 km / h, for example, 320 V in a medium speed region in the range of 40-80 km / h, and 640 V in a high speed region exceeding 80 km / h.
次に、外部直流電源による4つのブロック1A、1B、2A、及び2Bの充電動作が図10を参照して説明される。直列トランジスタ3A及び3Bはオンされ、直列トランジスタ3はオフされる。これにより、直列接続されたブロック1A及び1Bは実質的にバッテリ1となる。同様に、直列接続されたブロック2A及び2Bは実質的にバッテリ2となる。バッテリ1及び2を並列に充電するために、この外部直流電源は約320Vの電圧をバッテリ1及び2に印加する。この並列充電のために、接続切替回路10は第1実施例と同様にリレーボックス8及びコネクタ9をもつ。 Next, the charging operation of the four blocks 1A, 1B, 2A, and 2B by the external DC power supply will be described with reference to FIG. Series transistors 3A and 3B are turned on and series transistor 3 is turned off. Thereby, the blocks 1A and 1B connected in series substantially become the battery 1. Similarly, the blocks 2A and 2B connected in series become the battery 2 substantially. In order to charge the batteries 1 and 2 in parallel, the external DC power supply applies a voltage of about 320V to the batteries 1 and 2. For this parallel charging, the connection switching circuit 10 has a relay box 8 and a connector 9 as in the first embodiment.
コンタクタ81及び82は、2-並列放電モード及び回生制動モードにおいてオンされることができる。これにより、コンタクタ81は並列ダイオード5と並列接続され、コンタクタ82はダイオード6と並列接続される。DCリンク電圧Vdは、2-並列放電モード及び回生制動モードにおいて320Vとなる。この実施例における回生制動は、本質的に第1実施例と同じであるため、説明は省略される。 The contactors 81 and 82 can be turned on in the 2-parallel discharge mode and the regenerative braking mode. Thereby, the contactor 81 is connected in parallel with the parallel diode 5, and the contactor 82 is connected in parallel with the diode 6. The DC link voltage Vd is 320 V in the 2-parallel discharge mode and the regenerative braking mode. Since the regenerative braking in this embodiment is essentially the same as in the first embodiment, description thereof is omitted.
この実施例によれば、コンタクタ81が並列ダイオード5と並列接続され、コンタクタ82が並列ダイオード6と並列接続されている。したがって、2-並列放電モードにおいて、コンタクタ81及び82がオンされる前に、バッテリ1及び2はダイオード5及び6により既に2-並列放電モードとなっている。したがって、コンタクタ81及び82がオンされる時、バッテリ1及び2の間の電圧差は十分に低減されることができる。これは、コンタクタ81及び82がオンされる時、バッテリ1及び2の間に流れる短絡電流がほぼゼロとなることを意味する。さらに、コンタクタ81及びコンタクタ82がオフされる時、コンタクタ81及び82のアーク放電はダイオード5及び6により防止される。これにより、コンタクタ81及び82の寿命及び信頼性が改善される。 According to this embodiment, the contactor 81 is connected in parallel with the parallel diode 5, and the contactor 82 is connected in parallel with the parallel diode 6. Therefore, in the 2-parallel discharge mode, the batteries 1 and 2 are already in the 2-parallel discharge mode by the diodes 5 and 6 before the contactors 81 and 82 are turned on. Therefore, when the contactors 81 and 82 are turned on, the voltage difference between the batteries 1 and 2 can be sufficiently reduced. This means that when the contactors 81 and 82 are turned on, the short-circuit current flowing between the batteries 1 and 2 becomes substantially zero. Furthermore, when the contactor 81 and the contactor 82 are turned off, the arc discharge of the contactors 81 and 82 is prevented by the diodes 5 and 6. Thereby, the lifetime and reliability of the contactors 81 and 82 are improved.
次に、ブロック1A、1B、2A、及び2Bのうちの1つの電圧が許容範囲から離れている場合を意味するブロック不良状態における放電モードが説明される。4-並列放電モードが実行される時、不良ブロックを除く3つのブロックが放電電流を供給する。言い換えれば、75%のバッテリセルは放電を継続することができる。2-並列放電モードにおいて、バッテリ1及び2のうち、不良ブロックを含まない方が放電電流を供給する。言い換えれば、50%のバッテリセルは放電を継続することができる。 Next, the discharge mode in the block failure state which means the case where the voltage of one of the blocks 1A, 1B, 2A, and 2B is out of the allowable range will be described. 4-When the parallel discharge mode is executed, three blocks except the defective block supply the discharge current. In other words, 75% of the battery cells can continue to discharge. In the 2-parallel discharge mode, one of the batteries 1 and 2 that does not include a defective block supplies a discharge current. In other words, 50% of the battery cells can continue to discharge.
次に、ブロック不良状態における充電モードが説明される。直列トランジスタ3がオフされ、2-並列充電モードが採用される。さらに、直列トランジスタ3A、3Bのうち不良ブロックに接続される方がオフされる。これにより、50%のバッテリセルは充電を継続することができる。結局、3つの直列トランジスタを使用する第2実施例によれば、3段階のDCリンク電圧Vdを選択できるとともに、不良バッテリブロックを切り離すことができる。 Next, the charging mode in the block failure state will be described. The serial transistor 3 is turned off and the 2-parallel charging mode is employed. Further, the serial transistor 3A, 3B connected to the defective block is turned off. Thereby, 50% of battery cells can continue charging. Eventually, according to the second embodiment using three series transistors, it is possible to select a three-stage DC link voltage Vd and to disconnect a defective battery block.
この実施例の利点が説明される。この実施例によれば、低速領域において採用される4-並列放電モードは、バッテリ損失を大幅に低減する。このため、バッテリ温度の上昇を抑制することができ、特に高温環境下においてバッテリ寿命を延長することができる。この効果は特に高い内部抵抗をもつ古いバッテリにおいて顕著である。 The advantages of this embodiment are described. According to this embodiment, the 4-parallel discharge mode employed in the low speed region significantly reduces battery loss. For this reason, the rise in battery temperature can be suppressed, and the battery life can be extended particularly in a high temperature environment. This effect is particularly noticeable in old batteries with high internal resistance.
第1実施例及び第2実施例の変形態様が説明される。この変形態様によれば、図5又は図8に示される充電ダイオード4が省略される。コンタクタ8A及び8Bは回生制動期間においてオンされ、インバータ30はコンタクタ8A及び8Bを通じてバッテリ1及び2を並列充電する。コンタクタ8A及び8Bの代わりにパワートランジスタを採用することができる。図11はもう一つの変形態様を示す。この変形態様において、図8に示される直列トランジスタ3、3A、及び3Bはそれぞれ、双方向性の絶縁ゲートトランジスタからなる。この絶縁ゲートトランジスタはボディダイオードをもつことができる。 Variations of the first and second embodiments will be described. According to this modification, the charging diode 4 shown in FIG. 5 or FIG. 8 is omitted. The contactors 8A and 8B are turned on during the regenerative braking period, and the inverter 30 charges the batteries 1 and 2 in parallel through the contactors 8A and 8B. A power transistor can be employed in place of the contactors 8A and 8B. FIG. 11 shows another variation. In this variation, the series transistors 3, 3A, and 3B shown in FIG. 8 each comprise a bidirectional insulated gate transistor. The insulated gate transistor can have a body diode.
     変形態様
この変形態様によれば、図8に示される4つのブロック1A、1B、2A、及び2Bのうちの3つのブロックがインバータ30にDCリンク電圧Vdを出力する3-直列放電モードが採用される。この3-直列放電モードは第1モード及び第2モードからなる。第1モード及び第2モードは所定のインタバルで交互に実行されることが好適である。
Modified Mode According to this modified mode, a 3-series discharge mode in which three of the four blocks 1A, 1B, 2A, and 2B shown in FIG. 8 output the DC link voltage Vd to the inverter 30 is employed. The The 3-series discharge mode includes a first mode and a second mode. The first mode and the second mode are preferably executed alternately at a predetermined interval.
第1モードにおいて、直列トランジスタ3及び3Aがオンされ、直列トランジスタ3Bはオフされる。これにより、フロック2A、2B、及び1Aの電圧和がインバータ30に印加される。第2モードにおいて、直列トランジスタ3及び3Bがオンされ、直列トランジスタ3Aはオフされる。これにより、ブロック2B、1A、及び1Bの電圧和がインバータ30に印加される。4つのブロックはそれぞれ約160Vをもつ。したがって、480Vの電圧がインバータ30に印加される。 In the first mode, the series transistors 3 and 3A are turned on, and the series transistor 3B is turned off. Thus, the voltage sum of the flocks 2A, 2B, and 1A is applied to the inverter 30. In the second mode, the series transistors 3 and 3B are turned on, and the series transistor 3A is turned off. As a result, the voltage sum of the blocks 2B, 1A, and 1B is applied to the inverter 30. Each of the four blocks has about 160V. Therefore, a voltage of 480 V is applied to the inverter 30.
この3-直列放電モードにおいて、直列トランジスタ3はオンされる。直列トランジスタ3A及び3Bは所定インタバルで相補的にスイッチングされる。 In this 3-series discharge mode, the series transistor 3 is turned on. Series transistors 3A and 3B are complementarily switched at a predetermined interval.
けれども、この3-直列放電モードによれば、ブロック2B及び1Aがブロック2A及び1Bよりもより速く放電する。しかし、2-並列放電モード及び4-並列放電モードが実行される時、ブロック2A及び1Bがブロック2B及び1Aよりも速く放電する。これにより、ブロック2B及び1Aとブロック2A及び1Bとの間の電圧差が低減される。結局、電圧切替式直流電源は、160V、320V、及び640Vに加えて、480Vを出力することができる。 However, according to this 3-series discharge mode, blocks 2B and 1A discharge faster than blocks 2A and 1B. However, when the 2-parallel discharge mode and the 4-parallel discharge mode are executed, the blocks 2A and 1B discharge faster than the blocks 2B and 1A. Thereby, the voltage difference between the blocks 2B and 1A and the blocks 2A and 1B is reduced. Eventually, the voltage-switching DC power supply can output 480V in addition to 160V, 320V, and 640V.
     第3実施例
第3実施例の電圧切替式直流電源が図12を参照して説明される。この直流電源はマイルドハイブリッド車(MHV)により採用される。この直流電源は、直列トランジスタ3、並列トランジスタ50及び60、及びインダクタ7からなる接続切替回路10Cを有する。この直流電源は図3に示される第1実施例の直流電源と比べて次の差異をもつ。並列トランジスタ50及び60が並列ダイオード5及び6の代わりに採用される。直列トランジスタ3並びに並列トランジスタ50及び60はそれぞれ、逆並列ダイオードをもつMOSトランジスタからなる。キャパシタ2がバッテリ2の代わりに採用される。バッテリ1はバッテリ電圧Vbをもち、キャパシタ2はキャパシタ電圧Vcをもつ。重要な差異は、インダクタ7は、キャパシタ2と並列トランジスタ60との間に配置されることである。
Third Embodiment A voltage-switching DC power source according to a third embodiment will be described with reference to FIG. This DC power supply is adopted by mild hybrid vehicles (MHV). The DC power supply includes a connection switching circuit 10C including a series transistor 3, parallel transistors 50 and 60, and an inductor 7. This DC power supply has the following differences compared to the DC power supply of the first embodiment shown in FIG. Parallel transistors 50 and 60 are employed in place of the parallel diodes 5 and 6. Each of the serial transistor 3 and the parallel transistors 50 and 60 is a MOS transistor having an antiparallel diode. A capacitor 2 is employed instead of the battery 2. The battery 1 has a battery voltage Vb, and the capacitor 2 has a capacitor voltage Vc. The important difference is that the inductor 7 is arranged between the capacitor 2 and the parallel transistor 60.
図13はこの直流電源の等価回路を示す。キャパシタ2の内部抵抗rcはバッテリ1の内部抵抗rbよりも低い。バッテリ1は定格電圧48Vのリチウムイオンバッテリ又は定格電圧14.4Vの鉛酸バッテリからなる。キャパシタ2はリチウムイオンキャパシタからなる。ステータコイル40をもつこのモータは内燃エンジンのクランクシャフトにより駆動されるプーリーに結合されている。コントローラ100により制御されるこの直流電源の動作が以下に説明される。 FIG. 13 shows an equivalent circuit of this DC power supply. The internal resistance rc of the capacitor 2 is lower than the internal resistance rb of the battery 1. The battery 1 is composed of a lithium ion battery having a rated voltage of 48V or a lead acid battery having a rated voltage of 14.4V. The capacitor 2 is a lithium ion capacitor. This motor with stator coil 40 is coupled to a pulley driven by the crankshaft of the internal combustion engine. The operation of this DC power source controlled by the controller 100 will be described below.
     予備充電モード     
最初に、予備充電モードが図14及び図15を参照して説明される。この予備充電モードはキャパシタ電圧Vcがバッテリ電圧Vbよりも低い時に実施される。この予備充電モードにおいて、直列トランジスタ3はオフされ、並列トランジスタ60はオンされる。並列トランジスタ50は所定のPWMキャリヤ周波数でスイッチングされる。並列トランジスタ50のPWMデユーティ比は0から1へ徐々に増加される。これにより、直列トランジスタ3、並列トランジスタ50及び60、及びインダクタ7からなる接続切替回路10Cは降圧チョッパとして動作する。各PWMサイクル周期は電流供給期間とフリーホィーリング期間とからなる。図14は並列トランジスタ50がオンされるこの電流供給期間を示す。バッテリ1の放電電流が並列トランジスタ60、インダクタ7、キャパシタ2、及び並列トランジスタ50を通じて流れる。これにより、キャパシタ電圧Vcは徐々にバッテリ電圧Vbに接近する。
Pre-charging mode
First, the precharge mode will be described with reference to FIGS. This precharge mode is performed when the capacitor voltage Vc is lower than the battery voltage Vb. In this precharge mode, the series transistor 3 is turned off and the parallel transistor 60 is turned on. The parallel transistor 50 is switched at a predetermined PWM carrier frequency. The PWM duty ratio of the parallel transistor 50 is gradually increased from 0 to 1. Accordingly, the connection switching circuit 10C including the series transistor 3, the parallel transistors 50 and 60, and the inductor 7 operates as a step-down chopper. Each PWM cycle period consists of a current supply period and a freewheeling period. FIG. 14 shows this current supply period during which the parallel transistor 50 is turned on. The discharge current of the battery 1 flows through the parallel transistor 60, the inductor 7, the capacitor 2, and the parallel transistor 50. Thereby, the capacitor voltage Vc gradually approaches the battery voltage Vb.
図15は並列トランジスタ50がオフされるフリーホィーリング期間を示す。インダクタ7に蓄積された磁気エネルギーは、直列トランジスタ3、並列トランジスタ60、及びインダクタ7を通じてフリーホィーリング電流を流す。フリーホィーリング電流は直列トランジスタ3の逆並列ダイオードを通じて流れる。キャパシタ電圧Vcがバッテリ電圧Vbとほぼ等しくなる時、この予備充電モードは終了する。 FIG. 15 shows a freewheeling period in which the parallel transistor 50 is turned off. The magnetic energy accumulated in the inductor 7 causes a freewheeling current to flow through the series transistor 3, the parallel transistor 60, and the inductor 7. The freewheeling current flows through the antiparallel diode of the series transistor 3. When the capacitor voltage Vc becomes substantially equal to the battery voltage Vb, the precharge mode ends.
     エンジン始動モード     
次に、エンジン始動モードが図16を参照して説明される。このエンジン始動モードによれば、並列トランジスタ50及び60はオフされ、直列トランジスタ3はオンされる。インバータ30に印加されるDCリンク電圧Vdcはキャパシタ電圧Vc及びバッテリ電圧Vbの和にほぼ等しい。エンジン始動後、直列トランジスタ3はオフされる。直列トランジスタ3はオフされる時、インダクタ7に蓄積された磁気エネルギーは並列トランジスタ50を通じてフリーホィーリング電流を流す。インダクタ7はこのエンジン始動モードにおいて磁気飽和する。
Engine start mode
Next, the engine start mode will be described with reference to FIG. According to this engine start mode, the parallel transistors 50 and 60 are turned off and the series transistor 3 is turned on. The DC link voltage Vdc applied to the inverter 30 is approximately equal to the sum of the capacitor voltage Vc and the battery voltage Vb. After starting the engine, the series transistor 3 is turned off. When the series transistor 3 is turned off, the magnetic energy stored in the inductor 7 causes a freewheeling current to flow through the parallel transistor 50. The inductor 7 is magnetically saturated in this engine start mode.
     キャパシタ回復モード
次に、キャパシタ回復モードが図17を参照して説明される。エンジン回転数が所定値より高くなった時、モータは発電機として駆動される。3相整流器としてのインバータ30はステータコイル40に誘導された3相電圧を整流する。直列トランジスタ3及び並列トランジスタ60はオフされ、並列トランジスタ50がオンされる。これにより、キャパシタ2が充電される。インダクタ7はこのキャパシタ回復モードにおいて磁気飽和する。
Capacitor Recovery Mode Next, the capacitor recovery mode will be described with reference to FIG. When the engine speed becomes higher than a predetermined value, the motor is driven as a generator. The inverter 30 as a three-phase rectifier rectifies the three-phase voltage induced in the stator coil 40. The serial transistor 3 and the parallel transistor 60 are turned off, and the parallel transistor 50 is turned on. Thereby, the capacitor 2 is charged. The inductor 7 is magnetically saturated in this capacitor recovery mode.
     発電モード
次に、発電モードが図17を参照して説明される。キャパシタ電圧Vcがバッテリ電圧Vbとほぼ等しくなる時、並列トランジスタ60がオンされる。並列トランジスタ50はオンされ、直列トランジスタ3はオフされている。これにより、インバータ30は、並列接続されたキャパシタ2及びバッテリ1を充電する。インバータ30はバッテリ1に接続された電気負荷に給電する。
Power Generation Mode Next, the power generation mode will be described with reference to FIG. When the capacitor voltage Vc becomes substantially equal to the battery voltage Vb, the parallel transistor 60 is turned on. The parallel transistor 50 is turned on and the series transistor 3 is turned off. Thereby, the inverter 30 charges the capacitor 2 and the battery 1 connected in parallel. The inverter 30 supplies power to the electric load connected to the battery 1.
     トルクアシストモード     
次に、低レベルタイプのトルクアシストモードが図18を参照して説明される。直列トランジスタ3はオフされ、並列トランジスタ50及び60はオンされる。コントローラ100はインバータ30を制御し、モータ電流が、並列接続されたバッテリ1及びキャパシタ2からインバータ30を通じてステータコイル40に供給される。
Torque assist mode
Next, a low level type torque assist mode will be described with reference to FIG. Series transistor 3 is turned off and parallel transistors 50 and 60 are turned on. The controller 100 controls the inverter 30, and motor current is supplied to the stator coil 40 through the inverter 30 from the battery 1 and the capacitor 2 connected in parallel.
次に、高レベルタイプのトルクアシストモードが図19を参照して説明される。強力なトルクアシストが要求される時、並列トランジスタ50及び60はオフされ、直列トランジスタ3がオンされる。平滑キャパシタ20への突入電流を低減するために、直列トランジスタ3を所定のPWMキャリヤ周波数でスイッチングすることも可能である。直列トランジスタ3のPWMデユーティ比は0から1に次第に増加される。その結果、キャパシタ電圧Vcとバッテリ電圧Vbとの和に等しいDCリンク電圧Vdcがインバータ30に印加される。 Next, a high level type torque assist mode will be described with reference to FIG. When strong torque assist is required, parallel transistors 50 and 60 are turned off and series transistor 3 is turned on. In order to reduce the inrush current to the smoothing capacitor 20, the series transistor 3 can be switched at a predetermined PWM carrier frequency. The PWM duty ratio of the series transistor 3 is gradually increased from 0 to 1. As a result, a DC link voltage Vdc equal to the sum of the capacitor voltage Vc and the battery voltage Vb is applied to the inverter 30.
     標準回生制動モード
次に、標準回生制動モードが図20を参照して説明される。この並列回生制動モードは既述された発電モードと本質的に同じである。直列トランジスタ3はオフされ、並列トランジスタ50及び60がオンされる。インバータ30は、並列接続されたキャパシタ2及びバッテリ1を充電する。
Standard Regenerative Braking Mode Next, the standard regenerative braking mode will be described with reference to FIG. This parallel regenerative braking mode is essentially the same as the power generation mode described above. The serial transistor 3 is turned off and the parallel transistors 50 and 60 are turned on. Inverter 30 charges capacitor 2 and battery 1 connected in parallel.
     キャパシタ充電式回生制動モード
次に、キャパシタ充電式回生制動モードが図21を参照して説明される。このモードは、たとえばバッテリ1が高いSOC(充電状態)値をもつ時に採用される。直列トランジスタ3及び並列トランジスタ60はオフされ、並列トランジスタ50だけがオンされる。これにより、キャパシタ2だけがインバータ30の発電電流を吸収する。キャパシタ電圧Vcはバッテリ電圧Vbより高くなることができる。キャパシタ電圧Vcが所定の高電圧値に達した時このキャパシタ回生制動モードは停止される。これにより、バッテリ1の状態にかかわらず、制動エネルギーは良好に回収される。
Capacitor Rechargeable Regenerative Braking Mode Next, the capacitor rechargeable regenerative braking mode will be described with reference to FIG. This mode is employed, for example, when the battery 1 has a high SOC (charge state) value. The serial transistor 3 and the parallel transistor 60 are turned off, and only the parallel transistor 50 is turned on. Thereby, only the capacitor 2 absorbs the generated current of the inverter 30. The capacitor voltage Vc can be higher than the battery voltage Vb. When the capacitor voltage Vc reaches a predetermined high voltage value, the capacitor regenerative braking mode is stopped. Thereby, the braking energy is recovered satisfactorily regardless of the state of the battery 1.
キャパシタ電圧Vcがバッテリ電圧Vbよりも高い時、キャパシタ2はインバータ30又はバッテリ1に放電することが好適である。キャパシタ2からバッテリ1への放電動作において、直列トランジスタ3はオフされ、並列トランジスタ50はオンされる。並列トランジスタ60は所定のPWMキャリヤ周波数でスイッチングされる。並列トランジスタ60のPWMデユーティ比は0から1に徐々に増加される。これにより、キャパシタ電圧Vcはほぼバッテリ電圧Vbと等しくなる。 When the capacitor voltage Vc is higher than the battery voltage Vb, the capacitor 2 is preferably discharged to the inverter 30 or the battery 1. In the discharging operation from the capacitor 2 to the battery 1, the series transistor 3 is turned off and the parallel transistor 50 is turned on. The parallel transistor 60 is switched at a predetermined PWM carrier frequency. The PWM duty ratio of the parallel transistor 60 is gradually increased from 0 to 1. Thereby, the capacitor voltage Vc becomes substantially equal to the battery voltage Vb.
     昇圧チョッパモード
回生制動モードにおいて、3相整流器としてのインバータ30の整流電圧がDCリンク電圧Vdcを下回る時、インバータ30は昇圧チョッパモードを実行することができる。たとえばモータ回転速度の低下によりインバータ30の整流電圧が低下する時、この昇圧チョッパモードが実行される。この昇圧チョッパモードによれば、図12に示される3つの上アームトランジスタ34-36又は3つの下アームトランジスタ37-39のどちらかが所定のPWMデユーティ比で同期的にスイッチングされる。上アームトランジスタ34-36及び下アームトランジスタ37-39は相補的にスイッチングされる。
In the boost chopper mode regenerative braking mode, when the rectified voltage of the inverter 30 as the three-phase rectifier is lower than the DC link voltage Vdc, the inverter 30 can execute the boost chopper mode. For example, when the rectified voltage of the inverter 30 decreases due to a decrease in the motor rotation speed, the boost chopper mode is executed. According to this step-up chopper mode, one of the three upper arm transistors 34-36 or the three lower arm transistors 37-39 shown in FIG. 12 is switched synchronously at a predetermined PWM duty ratio. Upper arm transistors 34-36 and lower arm transistors 37-39 are complementarily switched.
3つの下アームトランジスタ37-39がオンされる時、磁気エネルギーが、短絡されたステータコイル40の3つの相コイル41-43に蓄積される。次に、3つの下アームトランジスタ37-39がオフされる時、インバータ30は高い整流電圧を出力する。これにより、たとえモータ回転数が低下しても、回生制動モードを実行することができる。 When the three lower arm transistors 37-39 are turned on, magnetic energy is stored in the three phase coils 41-43 of the shorted stator coil 40. Next, when the three lower arm transistors 37-39 are turned off, the inverter 30 outputs a high rectified voltage. Thereby, even if the motor rotation speed decreases, the regenerative braking mode can be executed.
キャパシタ2を放電する並列トランジスタ50がオフされる時、フリーホィーリング電流は並列トランジスタ50の逆並列ダイオードを通じて流れる。キャパシタ2を充電する並列トランジスタ50がオフされる時、もう1つのフリーホィーリング電流は直列トランジスタ3の逆並列ダイオードを通じて流れる。同様に、キャパシタ2を放電する直列トランジスタ3がオフされる時、フリーホィーリング電流は並列トランジスタ50の逆並列ダイオードを通じて流れる。結局。接続切替回路10cはインダクタ7のフリーホィーリング電流を循環することができる。 When the parallel transistor 50 that discharges the capacitor 2 is turned off, freewheeling current flows through the anti-parallel diode of the parallel transistor 50. When the parallel transistor 50 that charges the capacitor 2 is turned off, another freewheeling current flows through the anti-parallel diode of the series transistor 3. Similarly, freewheeling current flows through the anti-parallel diode of the parallel transistor 50 when the series transistor 3 discharging the capacitor 2 is turned off. After all. The connection switching circuit 10c can circulate the freewheeling current of the inductor 7.
第3実施例の効果が説明される。この電圧切替式直流電源によれば、高価なバッテリの追加を回避することができる。短時間だけ使用されるキャパシタ2はバッテリ1と比べて低い容量値をもつことができる。低い内部抵抗及び長い寿命をもつキャパシタ2は、エンジン始動、トルクアシスト、及び回生制動の電力損失を低減する。キャパシタ2はバッテリ2の寿命が延長する。 The effect of the third embodiment will be described. According to this voltage-switching DC power supply, it is possible to avoid the addition of an expensive battery. The capacitor 2 used only for a short time can have a lower capacitance value than the battery 1. Capacitor 2 with low internal resistance and long life reduces power loss for engine start, torque assist, and regenerative braking. Capacitor 2 extends the life of battery 2.
接続切替回路10cは電圧切替機能と降圧チョッパ機能の両方をもつ。この降圧チョッパ動作において、キャパシタ電圧Vc及びバッテリ電圧Vbは均等化される。1つの変形態様において、エンジン始動、回生制動、及びトルクアシストは、キャパシタ2だけにより実行されることができる。これにより、バッテリ1の寿命はさらに延長される。 The connection switching circuit 10c has both a voltage switching function and a step-down chopper function. In this step-down chopper operation, the capacitor voltage Vc and the battery voltage Vb are equalized. In one variant, engine start-up, regenerative braking, and torque assist can be performed by the capacitor 2 alone. Thereby, the lifetime of the battery 1 is further extended.
     第4実施例
電気自動車(EV)又はハイブリッド車(HV)に適用される第4実施例の電圧切替式直流電源が図22を参照して説明される。この直流電源は、直列トランジスタ3、並列トランジスタ50及び60、及びインダクタ7からなる接続切替回路10dを有する。さらに、接続切替回路10dはバイパスダイオード73をもつ。バッテリ1の電圧V1はバッテリ2の電圧V2にほぼ等しい。この直流電源の主な特徴は、図12に示される第3実施例のインダクタ7が2つのサブインダクタ71及び72に分割されている点にある。
Fourth Embodiment A voltage-switching DC power source according to a fourth embodiment applied to an electric vehicle (EV) or a hybrid vehicle (HV) will be described with reference to FIG. This DC power supply includes a connection switching circuit 10 d including a series transistor 3, parallel transistors 50 and 60, and an inductor 7. Further, the connection switching circuit 10 d has a bypass diode 73. The voltage V1 of the battery 1 is approximately equal to the voltage V2 of the battery 2. The main feature of this DC power supply is that the inductor 7 of the third embodiment shown in FIG. 12 is divided into two sub-inductors 71 and 72.
2つのサブインダクタ71及び72はインバータ30及び平滑キャパシタ20に接続される一端をもつ。2つのサブコイル71及び72はそれぞれ、バイパスダイオード73により接続される他端をもつ。バイパスダイオード73のアノード電極はサブインダクタ72に接続され、そのカソード電極はサブインダクタ71に接続されている。図22に示されるバッテリ2の代わりに図12に示されるキャパシタ2を採用することも可能である。サブインダクタ71はバッテリ2の正極に接続され、サブインダクタ72は並列トランジスタ60に接続されている。サブインダクタ71及び72の各コイルは共通の磁気コアに巻かれることができる。 The two sub-inductors 71 and 72 have one ends connected to the inverter 30 and the smoothing capacitor 20. Each of the two subcoils 71 and 72 has the other end connected by a bypass diode 73. The anode electrode of the bypass diode 73 is connected to the sub-inductor 72, and the cathode electrode thereof is connected to the sub-inductor 71. It is also possible to employ the capacitor 2 shown in FIG. 12 instead of the battery 2 shown in FIG. The sub-inductor 71 is connected to the positive electrode of the battery 2, and the sub-inductor 72 is connected to the parallel transistor 60. Each coil of the sub-inductors 71 and 72 can be wound around a common magnetic core.
ヒユーズ81が並列トランジスタ50と直列に接続され、ヒユーズ82が並列トランジスタ60と直列に接続されている。第3のヒューズを直列トランジスタ3と直列に接続することも可能である。さらに、平滑キャパシタ20は、並列に接続されたキャパシタ21及び22からなる。キャパシタ21は高容量値をもつリチウムイオンキャパシタからなり、キャパシタ22は優れた高周波特性をもつフィルムキャパシタからなる。接続切替回路10dをもつ直流電源は、システムリレー91及び92を通じて平滑キャパシタ20及びインバータ30に接続されている。 A fuse 81 is connected in series with the parallel transistor 50, and a fuse 82 is connected in series with the parallel transistor 60. It is also possible to connect a third fuse in series with the series transistor 3. Further, the smoothing capacitor 20 includes capacitors 21 and 22 connected in parallel. The capacitor 21 is made of a lithium ion capacitor having a high capacitance value, and the capacitor 22 is made of a film capacitor having excellent high frequency characteristics. The DC power source having the connection switching circuit 10 d is connected to the smoothing capacitor 20 and the inverter 30 through system relays 91 and 92.
接続切替回路10dは並列モード及び直列モードをもつ。並列モードが図22を参照して説明される。直列トランジスタ3がオフされ、並列トランジスタ50及び60がオンされる。これにより、バッテリ1及び2は並列に接続される。直列モードが図23を参照して説明される。並列トランジスタ50及び60がオフされ、直列トランジスタ3がオンされる。これにより、バッテリ1及び2は直列に接続され、電圧和(V1+V2)に等しいDCリンク電圧Vdcがインバータ30に印加される。 The connection switching circuit 10d has a parallel mode and a series mode. The parallel mode is described with reference to FIG. The serial transistor 3 is turned off and the parallel transistors 50 and 60 are turned on. Thereby, the batteries 1 and 2 are connected in parallel. The serial mode is described with reference to FIG. The parallel transistors 50 and 60 are turned off, and the series transistor 3 is turned on. Thereby, the batteries 1 and 2 are connected in series, and the DC link voltage Vdc equal to the voltage sum (V1 + V2) is applied to the inverter 30.
次に、並列モードと直列モードとの間の切替を徐々に実行する電圧切替モードが説明される。この電圧切替モードにおいて、直列トランジスタ3及び並列トランジスタ50及び60は所定のPWMキャリヤ周波数でスイッチングされる。この動作は降圧チョッパ動作と呼ばれる。 Next, a voltage switching mode in which switching between the parallel mode and the series mode is gradually performed will be described. In this voltage switching mode, the series transistor 3 and the parallel transistors 50 and 60 are switched at a predetermined PWM carrier frequency. This operation is called a step-down chopper operation.
並列モードから直列モードへの電圧切替モードにおいて、直列トランジスタ3のPWMデユーティ比は0から1に徐々に変化し、並列トランジスタ50及び60のPWMデユーティ比は1から0に徐々に変化する。直列モードから並列モードの電圧切替モードにおいて、直列トランジスタ3のPWMデユーティ比は1から0に徐々に変化し、並列トランジスタ50及び60のPWMデユーティ比は0から1に徐々に変化する。並列トランジスタ50及び60は直列トランジスタ3と比べて相補的に駆動される。 In the voltage switching mode from the parallel mode to the series mode, the PWM duty ratio of the serial transistor 3 gradually changes from 0 to 1, and the PWM duty ratio of the parallel transistors 50 and 60 gradually changes from 1 to 0. In the voltage switching mode from the serial mode to the parallel mode, the PWM duty ratio of the serial transistor 3 gradually changes from 1 to 0, and the PWM duty ratio of the parallel transistors 50 and 60 gradually changes from 0 to 1. The parallel transistors 50 and 60 are driven in a complementary manner as compared with the serial transistor 3.
この電圧切替モードにおいて、各PWMサイクル周期はそれぞれ、直列期間と並列期間からなる。直列期間において、直列トランジスタ3がオンされ、並列トランジスタ50及び60はオフされる。並列期間において、直列トランジスタ3がオフされ、並列トランジスタ50及び60はオンされる。直列期間は直列放電期間及び直列充電期間からなる。並列期間は並列放電期間及び並列充電期間からなる。 In this voltage switching mode, each PWM cycle period is composed of a series period and a parallel period. In the series period, the series transistor 3 is turned on and the parallel transistors 50 and 60 are turned off. In the parallel period, the series transistor 3 is turned off and the parallel transistors 50 and 60 are turned on. The series period includes a series discharge period and a series charge period. The parallel period includes a parallel discharge period and a parallel charge period.
バッテリ1及び2が放電される直列放電期間が図23を参照して説明される。サブインダクタ71は磁気エネルギーを蓄積する。並列放電期間が図24を参照して説明される。サブインダクタ71に蓄積された磁気エネルギーは、並列トランジスタ50を通じて流れるフリーホィーリング電流により消費される。並列放電期間において、並列トランジスタ60がオンされ、サブインダクタ72は磁気エネルギーを蓄積する。直列放電期間において、並列トランジスタ60がオフされ、サブインダクタ72に蓄積された磁気エネルギーは、並列トランジスタ60を通じて流れるフリーホィーリング電流により消費される。 A series discharge period in which the batteries 1 and 2 are discharged will be described with reference to FIG. The sub-inductor 71 stores magnetic energy. The parallel discharge period will be described with reference to FIG. The magnetic energy stored in the sub-inductor 71 is consumed by the freewheeling current that flows through the parallel transistor 50. In the parallel discharge period, the parallel transistor 60 is turned on, and the sub-inductor 72 stores magnetic energy. In the series discharge period, the parallel transistor 60 is turned off, and the magnetic energy stored in the sub-inductor 72 is consumed by the freewheeling current flowing through the parallel transistor 60.
バッテリ1及び2が充電される直列充電期間が図23を参照して説明される。サブインダクタ71は磁気エネルギーを蓄積する。直列トランジスタ3がオフされる時、フリーホィーリング電流が直列トランジスタ3の逆並列ダイオードを通じて循環する。並列充電期間が図25を参照して説明される。並列トランジスタ60がオフされる時、サブインダクタ71及び72は磁気エネルギーを蓄積する。並列トランジスタ50がオフされる時、フリーホィーリング電流は、サブインダクタ71及び直列トランジスタ3の逆並列ダイオードを通じて循環する。並列トランジスタ60がオフされる時、フリーホィーリング電流は、サブインダクタ72及びバイパスダイオード73を通じて循環する。 A series charging period in which the batteries 1 and 2 are charged will be described with reference to FIG. The sub-inductor 71 stores magnetic energy. When the series transistor 3 is turned off, a freewheeling current circulates through the antiparallel diode of the series transistor 3. The parallel charging period will be described with reference to FIG. When the parallel transistor 60 is turned off, the sub-inductors 71 and 72 store magnetic energy. When the parallel transistor 50 is turned off, the freewheeling current circulates through the sub-inductor 71 and the antiparallel diode of the series transistor 3. When the parallel transistor 60 is turned off, the freewheeling current circulates through the sub-inductor 72 and the bypass diode 73.
第4実施例の効果が説明される。まず、バッテリ電圧V1及びバッテリ電圧V2は並列モード及び電圧切替期間の並列期間により徐々に均等化される。バッテリ1が不良となる時、並列トランジスタ50がオフされる。バッテリ2が不良となる時、並列トランジスタ60がオフされる。これにより、直流電源の信頼性が改善される。 The effect of the fourth embodiment will be described. First, the battery voltage V1 and the battery voltage V2 are gradually equalized by the parallel mode and the parallel period of the voltage switching period. When the battery 1 becomes defective, the parallel transistor 50 is turned off. When the battery 2 becomes defective, the parallel transistor 60 is turned off. Thereby, the reliability of the DC power supply is improved.
さらに、接続切替回路10dの降圧チョッパ動作によりDCリンク電圧Vdcの急激な変化を防止することができる。インダクタ7は平滑キャパシタ20とともにローパスフィルタを構成するため、バッテリ電流の高周波成分が低減される。このバッテリ電流の高周波成分は、バッテリ1及び2に無駄な電力損失を発生し、それらの温度を上昇させる。したがって、インダクタ7は、バッテリ1及び2のための冷却機構を簡素化し、バッテリ1及び2の寿命を延長する。 Furthermore, a sudden change in the DC link voltage Vdc can be prevented by the step-down chopper operation of the connection switching circuit 10d. Since the inductor 7 forms a low-pass filter together with the smoothing capacitor 20, the high-frequency component of the battery current is reduced. This high frequency component of the battery current causes useless power loss in the batteries 1 and 2 and raises their temperature. Thus, inductor 7 simplifies the cooling mechanism for batteries 1 and 2 and extends the life of batteries 1 and 2.
この実施例によれば、平滑キャパシタ20が従来のフィルムキャパシタ22の他に高容量値をもつリチウムイオンキャパシタ21をもつ。これにより、バッテリ1及び2を流れる電流の高周波成分が低減され、バッテリ1及び2の電力損失が低減される。バッテリ1又は2が平滑キャパシタ20に接続される時に、平滑キャパシタ20の容量増加は平滑キャパシタ20に流れる突入電流を増加させる。このため、従来技術において、平滑キャパシタ20の容量増加は限界をもつ。けれども、この実施例によれば、この突入電流はインダクタ7をもつ接続切替回路の降圧チョッパ動作により抑制される。したがって、この実施例の平滑キャパシタ20は従来のフィルムキャパシタよりも高容量のリチウムキャパシタを含むことができる。 According to this embodiment, the smoothing capacitor 20 has a lithium ion capacitor 21 having a high capacitance value in addition to the conventional film capacitor 22. Thereby, the high frequency component of the electric current which flows through the batteries 1 and 2 is reduced, and the power loss of the batteries 1 and 2 is reduced. When the battery 1 or 2 is connected to the smoothing capacitor 20, the increase in the capacity of the smoothing capacitor 20 increases the inrush current flowing through the smoothing capacitor 20. For this reason, in the prior art, the capacity increase of the smoothing capacitor 20 has a limit. However, according to this embodiment, this inrush current is suppressed by the step-down chopper operation of the connection switching circuit having the inductor 7. Therefore, the smoothing capacitor 20 of this embodiment can include a lithium capacitor having a higher capacity than a conventional film capacitor.
平滑キャパシタ20の予備充電動作が説明される。まず直列トランジスタ3がオフされ、並列トランジスタ50及び60の一方又は両方が所定のPWMキャリヤ周波数でスイッチングされる。並列トランジスタ50及び/又は60は所定のPWMデユーティ比をもつ。これにより平滑キャパシタ20は徐々に充電されることができる。言い換えれば、DCリンク電圧Vdcの振幅を切り替えるための接続切替回路10dが平滑キャパシタ20への突入電流を低減することができる。その結果、平滑キャパシタ20及びバッテリ1及び2の損失が低減される。 The precharging operation of the smoothing capacitor 20 will be described. First, the series transistor 3 is turned off, and one or both of the parallel transistors 50 and 60 are switched at a predetermined PWM carrier frequency. The parallel transistors 50 and / or 60 have a predetermined PWM duty ratio. As a result, the smoothing capacitor 20 can be gradually charged. In other words, the connection switching circuit 10d for switching the amplitude of the DC link voltage Vdc can reduce the inrush current to the smoothing capacitor 20. As a result, the loss of the smoothing capacitor 20 and the batteries 1 and 2 is reduced.

Claims (19)

  1.  複数のチャージデバイスの直列接続及び並列接続を切り替えるための直列スイッチ及び複数の並列スイッチに加えてインダクタを有する接続切替回路と、
     前記スイッチの少なくとも一部を所定のPWMキャリヤ周波数でスイッチングすることにより前記インダクタの電流を低減するチョッパモードを有するコントローラと、
     を備えることを特徴とする電圧切替式直流電源。
    A connection switch circuit having an inductor in addition to a series switch and a plurality of parallel switches for switching a series connection and a parallel connection of a plurality of charge devices;
    A controller having a chopper mode for reducing current of the inductor by switching at least a part of the switch at a predetermined PWM carrier frequency;
    A voltage-switching DC power supply comprising:
  2.  前記コントローラは、前記並列スイッチの一部及び直列スイッチをオフすることにより、不良特性をもつ前記チャージデバイスを分離する請求項1記載の電圧切替式直流電源。 The voltage-switching DC power supply according to claim 1, wherein the controller isolates the charge device having a defective characteristic by turning off a part of the parallel switch and a series switch.
  3.  前記インバータは、並列接続されたフィルムキャパシタ及び電気二重層キャパシタからなる平滑キャパシタと並列に接続される請求項1記載の電圧切替式直流電源。 The voltage-switching DC power supply according to claim 1, wherein the inverter is connected in parallel with a smoothing capacitor comprising a film capacitor and an electric double layer capacitor connected in parallel.
  4.  前記コントローラは、前記チャージデバイスの直列接続と並列接続との間の所定の過渡期間に前記チョッパモードを実行する請求項1記載の電圧切替式直流電源。 The voltage-switching DC power supply according to claim 1, wherein the controller executes the chopper mode during a predetermined transition period between the series connection and the parallel connection of the charge devices.
  5.  前記コントローラは、前記前記チョッパモードを実行することにより前記チャージデバイス間の電圧差を低減する請求項1記載の電圧切替式直流電源。 The voltage-switching DC power supply according to claim 1, wherein the controller reduces the voltage difference between the charge devices by executing the chopper mode.
  6.  前記直列スイッチは、逆並列ダイオードを有するトランジスタからなる請求項1記載の電圧切替式直流電源。 The voltage-switching DC power supply according to claim 1, wherein the series switch is composed of a transistor having an antiparallel diode.
  7.  前記並列スイッチは、逆並列ダイオードを有するトランジスタからなる請求項1記載の電圧切替式直流電源。 The voltage-switching DC power supply according to claim 1, wherein the parallel switch comprises a transistor having an antiparallel diode.
  8.  前記並列スイッチは、前記チャージデバイスを放電するための並列ダイオードからなる請求項1記載の電圧切替式直流電源。 The voltage-switching DC power supply according to claim 1, wherein the parallel switch comprises a parallel diode for discharging the charge device.
  9.  前記インダクタは、前記チャージデバイス及び前記スイッチを前記インバータに接続する請求項1記載の電圧切替式直流電源。 The voltage-switching DC power supply according to claim 1, wherein the inductor connects the charge device and the switch to the inverter.
  10.  前記インダクタは、前記チャージデバイスを前記並列スイッチに接続する請求項1記載の電圧切替式直流電源。 The voltage-switching DC power supply according to claim 1, wherein the inductor connects the charge device to the parallel switch.
  11.  前記インダクタに接続される前記チャージデバイスは、キャパシタからなる請求項10記載の電圧切替式直流電源。 The voltage-switching DC power supply according to claim 10, wherein the charge device connected to the inductor is a capacitor.
  12.  前記インダクタは、前記チャージデバイスを前記インバータに接続する第1のサブインダクタと、前記並列スイッチを前記インバータに接続する第2のサブインダクタとを有する請求項1記載の電圧切替式直流電源。 2. The voltage-switching DC power supply according to claim 1, wherein the inductor includes a first sub-inductor that connects the charge device to the inverter and a second sub-inductor that connects the parallel switch to the inverter.
  13.  前記接続切替回路は、前記並列スイッチと前記第2のサブインダクタとの間の第1の接続点に接続されるアノード電極と、前記チャージデバイスと前記第1のサブインダクタとの間の第2の接続点に接続されるカソード電極とを有するバイパスダイオードを有する請求項12記載の電圧切替式直流電源。 The connection switching circuit includes an anode electrode connected to a first connection point between the parallel switch and the second sub-inductor, and a second electrode between the charge device and the first sub-inductor. The voltage-switching DC power supply according to claim 12, further comprising a bypass diode having a cathode electrode connected to the connection point.
  14.  前記チャージデバイス(1)は、第2の接続切替回路(10B)により接続される2つのブロック(1A、1B)からなり、
     前記チャージデバイス(2)は、第3の接続切替回路(10A)により接続される2つのブロック(2A、2B)からなり、
     前記第2及び第3の接続切替回路(10A、10B)は、本質的に前記接続切替回路(10)と本質的に同じ回路構成をもつ請求項1記載の電圧切替式直流電源。
    The charge device (1) is composed of two blocks (1A, 1B) connected by a second connection switching circuit (10B).
    The charge device (2) is composed of two blocks (2A, 2B) connected by a third connection switching circuit (10A).
    The voltage-switching DC power supply according to claim 1, wherein the second and third connection switching circuits (10A, 10B) have essentially the same circuit configuration as the connection switching circuit (10).
  15.  前記コントローラは、前記4つのブロック(1A、1B、2A、2B)を並列接続する4-並列モードをさらにもつ請求項14記載の電圧切替式直流電源。 15. The voltage switching type DC power supply according to claim 14, wherein the controller further has a 4-parallel mode in which the four blocks (1A, 1B, 2A, 2B) are connected in parallel.
  16.  前記コントローラは、前記4つのブロック(1A、1B、2A、2B)のうちの3つを直列接続する3-直列モードをさらにもつ請求項14記載の電圧切替式直流電源。 15. The voltage-switching DC power supply according to claim 14, wherein the controller further has a 3-series mode in which three of the four blocks (1A, 1B, 2A, 2B) are connected in series.
  17.  第1及び第2のチャージデバイスの直列接続及び並列接続を切り替えるための直列スイッチ及び複数の並列スイッチを有する接続切替回路と、前記接続の切替を制御するコントローラとを備える電圧切替式直流電源において、
     前記第1のチャージデバイス(1)は、第2の接続切替回路(10B)により接続される2つのブロック(1A、1B)からなり、
     前記第2のチャージデバイス(2)は、第3の接続切替回路(10A)により接続される2つのブロック(2A、2B)からなり、
     前記第2及び第3の接続切替回路(10A、10B)は、本質的に前記接続切替回路(10)と本質的に同じ回路構成をもつことを特徴とする電圧切替式直流電源。
    In a voltage-switching DC power supply comprising a connection switching circuit having a series switch and a plurality of parallel switches for switching between serial connection and parallel connection of the first and second charge devices, and a controller for controlling switching of the connection,
    The first charging device (1) includes two blocks (1A, 1B) connected by a second connection switching circuit (10B).
    The second charging device (2) includes two blocks (2A, 2B) connected by a third connection switching circuit (10A),
    The voltage-switching DC power supply characterized in that the second and third connection switching circuits (10A, 10B) have essentially the same circuit configuration as the connection switching circuit (10).
  18.  前記コントローラは、前記4つのブロックを並列に接続する4-並列モードをさらにもつ請求項17記載の電圧切替式直流電源。 The voltage-switching DC power supply according to claim 17, wherein the controller further has a 4-parallel mode in which the four blocks are connected in parallel.
  19.  前記コントローラは、前記4つのブロック(1A、1B、2A、2B)のうちの3つを直列接続する3-直列モードをさらにもつ請求項17記載の電圧切替式直流電源。 The voltage-switching DC power supply according to claim 17, wherein the controller further has a 3-series mode in which three of the four blocks (1A, 1B, 2A, 2B) are connected in series.
PCT/JP2018/011684 2018-03-23 2018-03-23 Voltage switching type direct-current power supply WO2019180912A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/011684 WO2019180912A1 (en) 2018-03-23 2018-03-23 Voltage switching type direct-current power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/011684 WO2019180912A1 (en) 2018-03-23 2018-03-23 Voltage switching type direct-current power supply

Publications (1)

Publication Number Publication Date
WO2019180912A1 true WO2019180912A1 (en) 2019-09-26

Family

ID=67988413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011684 WO2019180912A1 (en) 2018-03-23 2018-03-23 Voltage switching type direct-current power supply

Country Status (1)

Country Link
WO (1) WO2019180912A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2592241A (en) * 2020-02-21 2021-08-25 Dyson Technology Ltd A System

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008067432A (en) * 2006-09-05 2008-03-21 Nissan Motor Co Ltd Power supply device and its control method
JP2010178421A (en) * 2009-01-27 2010-08-12 Nissan Motor Co Ltd Power supplying device
JP2010193589A (en) * 2009-02-17 2010-09-02 Hitachi Ltd Battery system
JP2014064416A (en) * 2012-09-21 2014-04-10 Honda Motor Co Ltd Power supply device
JP2015164385A (en) * 2013-11-18 2015-09-10 田中 正一 Variable-speed electric machine
JP2017118732A (en) * 2015-12-25 2017-06-29 セイコーエプソン株式会社 Power supply and electronic apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008067432A (en) * 2006-09-05 2008-03-21 Nissan Motor Co Ltd Power supply device and its control method
JP2010178421A (en) * 2009-01-27 2010-08-12 Nissan Motor Co Ltd Power supplying device
JP2010193589A (en) * 2009-02-17 2010-09-02 Hitachi Ltd Battery system
JP2014064416A (en) * 2012-09-21 2014-04-10 Honda Motor Co Ltd Power supply device
JP2015164385A (en) * 2013-11-18 2015-09-10 田中 正一 Variable-speed electric machine
JP2017118732A (en) * 2015-12-25 2017-06-29 セイコーエプソン株式会社 Power supply and electronic apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2592241A (en) * 2020-02-21 2021-08-25 Dyson Technology Ltd A System
GB2592241B (en) * 2020-02-21 2022-04-20 Dyson Technology Ltd A System

Similar Documents

Publication Publication Date Title
US10358041B2 (en) Electric vehicle
KR101266733B1 (en) Generator motor driving device and method for discharging capacitor of generator motor driving device
US9166415B2 (en) AC link bidirectional DC-DC converter, hybrid power supply system using the same and hybrid vehicle
US20210245612A1 (en) Multilevel motor drive with integrated battery charger
KR20210133374A (en) System and method for charging using motor driving system
JP5557898B2 (en) Load drive device
JP5105154B2 (en) Control device
JP2020005389A (en) Power supply system
JP2023114972A (en) Vehicular battery charge system using motor drive system
JP3816449B2 (en) Motor drive device
JP2004336836A (en) Motor driving device
JP2015216825A (en) Power switching device with smoothing circuit
JP2015216824A (en) Traction motor driving device
WO2019180912A1 (en) Voltage switching type direct-current power supply
JP6953634B2 (en) Vehicle charger with DC / DC converter
JP2004056881A (en) Controller for generator of vehicle, and power supply system for vehicle
JP2014124043A (en) Motor drive device having serial-parallel switching circuit for a plurality of dc power supplies
JP6671402B2 (en) Power supply for vehicles
CN117715788A (en) Electric drive system for a vehicle, vehicle having a corresponding electric drive system, and method for operating a corresponding electric drive system
WO2019163080A1 (en) Voltage switching-type dc power supply
JP4459532B2 (en) Motor control device
JPWO2020035969A1 (en) DC power supply
EP4108507A1 (en) System for charging vehicle battery using motor driving system
CN210617830U (en) Integrated electric drive device and electric vehicle comprising same
US20240039448A1 (en) Electrified vehicle and method of controlling same

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 18911056

Country of ref document: EP

Kind code of ref document: A1