WO2019163080A1 - Voltage switching-type dc power supply - Google Patents

Voltage switching-type dc power supply Download PDF

Info

Publication number
WO2019163080A1
WO2019163080A1 PCT/JP2018/006653 JP2018006653W WO2019163080A1 WO 2019163080 A1 WO2019163080 A1 WO 2019163080A1 JP 2018006653 W JP2018006653 W JP 2018006653W WO 2019163080 A1 WO2019163080 A1 WO 2019163080A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching
voltage
series
parallel
power supply
Prior art date
Application number
PCT/JP2018/006653
Other languages
French (fr)
Japanese (ja)
Inventor
田中 正一
Original Assignee
田中 正一
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田中 正一 filed Critical 田中 正一
Priority to PCT/JP2018/006653 priority Critical patent/WO2019163080A1/en
Publication of WO2019163080A1 publication Critical patent/WO2019163080A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0092Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption with use of redundant elements for safety purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/19Switching between serial connection and parallel connection of battery modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a voltage switching DC power supply, and more particularly to a voltage switching DC power supply for a traction motor.
  • FIG. 1 shows a known motor driving device in which a boost chopper 100 is disposed between a battery 101 and an inverter 102.
  • the boost chopper 100 boosts the DC link voltage Vd applied to the smoothing capacitor 103 in the high speed region.
  • the weight and loss of the step-up chopper 100 are disadvantages of this motor drive device.
  • a known voltage-switching DC power supply having a series switch that connects two batteries in series and two parallel switches that connect two batteries in parallel can avoid the switching loss of the boost chopper.
  • One problem with this voltage-switching DC power supply is that the DC link voltage Vd changes abruptly. A sudden change in the DC link voltage Vd adversely affects the smoothing capacitor and the inverter.
  • Another problem is that the short circuit current flowing between the two batteries increases the battery loss when the voltages of the two batteries connected in parallel are different.
  • FIG. 2 shows an example of a voltage-switching DC power source disclosed in Patent Document 1.
  • Series relay 201 connects batteries 202 and 203 in series.
  • Two parallel relays 204 and 205 connect the batteries 202 and 203 in parallel.
  • the step-up chopper 208 shown in FIG. 2 gradually changes the DC link voltage Vd during a transition period for switching the battery connection. Thereby, it is possible to avoid an adverse effect on the smoothing capacitor 206 and the inverter 207 due to a sudden change in the DC link voltage at the time of voltage switching.
  • the addition of this step-up chopper increases manufacturing cost and switching loss. Furthermore, it is not easy to control the cooperative operation of the three relays and the step-up chopper of the voltage-switching DC power supply.
  • One object of the present invention is to provide a voltage-switching DC power source suitable for a traction motor.
  • the connection switching circuit that can select either serial connection or parallel connection of two batteries changes the DC link voltage applied to the inverter that drives the traction motor.
  • the connection switching circuit has one series transistor, one charging diode 4, and two parallel diodes, and an inductor.
  • the series transistor applies a series voltage to the inverter
  • the parallel diode applies a parallel voltage to the inverter.
  • the charging diode charges the battery with the regenerative current of the inverter.
  • This connection switching circuit can change the DC link voltage and reduce battery loss.
  • this voltage switching type DC power supply has a DC link voltage changing function and a defective battery separating function.
  • the series transistor is PWM-switched during the switching period between the parallel connection and the series connection.
  • the series transistor, parallel diode, and inductor of the connection switching circuit operate as a step-down chopper. Thereby, the DC link voltage can be gradually changed during the switching period.
  • the inverter is operated as a boost chopper during the regenerative braking period of the traction motor.
  • the inverter can charge a plurality of batteries connected in series by the serial transistor.
  • a magnet contactor is connected in parallel with the parallel diode.
  • the contact of the so-called relay called the magnetic contactor is consumed by the arc spark when it is off. In the worst case, a contact welding accident occurs.
  • the parallel diode prevents arc spark, the failure rate of the magnetic contactor is reduced.
  • the magnet contactor is turned off during the period when the series transistor is PWM-switched. It is also possible to individually connect two contacts of one magnetic contactor to two parallel diodes. Two magnetic contactors can be individually connected to two parallel diodes. According to this case, it is possible to avoid parallel charging and parallel discharging of a defective battery.
  • each of the two sub power supply sets includes two battery blocks and one connection switching circuit. Further, the two sub power supply sets are connected by a third connection switching circuit.
  • the voltage-switching DC power supply can generate three levels of DC link voltage. Furthermore, this voltage-switching DC power supply can execute the 2-parallel discharge mode and the 4-parallel discharge mode when one battery block becomes defective. Therefore, the reliability of the battery is improved.
  • FIG. 1 is a wiring diagram showing a conventional step-up chopper type variable voltage DC power supply.
  • FIG. 2 is a wiring diagram showing a conventional voltage-switching DC power supply.
  • FIG. 3 is a wiring diagram showing the voltage-switching type DC power source of the first embodiment.
  • FIG. 4 is a wiring diagram showing the step-down chopper operation of the connection switching circuit shown in FIG.
  • FIG. 5 is a wiring diagram showing a voltage-switching DC power supply having a relay box for parallel charging.
  • FIG. 6 is a schematic wiring diagram showing a boost chopper type regenerative braking operation.
  • FIG. 7 is a schematic wiring diagram showing a boost chopper type regenerative braking operation.
  • FIG. 1 is a wiring diagram showing a conventional step-up chopper type variable voltage DC power supply.
  • FIG. 2 is a wiring diagram showing a conventional voltage-switching DC power supply.
  • FIG. 3 is a wiring diagram showing the voltage-switching type DC power
  • FIG. 8 is a wiring diagram showing the voltage switching type DC power source of the second embodiment.
  • FIG. 9 is a diagram showing the relationship between the DC link voltage and the motor speed.
  • FIG. 10 is a wiring diagram showing a voltage-switching DC power supply having a relay box for parallel charging.
  • FIG. 11 is a wiring diagram showing a modification.
  • This voltage-switching DC power supply is connected to an inverter that drives a traction motor of an electric vehicle.
  • This voltage switching DC power supply can employ a capacitor instead of a battery.
  • This voltage-switching DC power supply can be connected to an inverter that drives another variable speed motor.
  • This voltage-switching DC power source includes batteries 1 and 2 and a connection switching circuit 10.
  • the connection switching circuit 10 includes a series transistor 3, a charging diode 4, parallel diodes 5 and 6, and an inductor 7.
  • the voltage-switching DC power supply applies a DC link voltage Vd to the smoothing capacitor 20 and the inverter 30.
  • Inverter 30 has three legs 31, 32, and 33.
  • Inverter 30 is connected to stator coil 40 of the three-phase motor.
  • the stator coil 40 includes a U-phase coil 41, a V-phase coil 42, and a W-phase coil 43.
  • Leg 31 is connected to phase coil 41, and leg 32 is connected to phase coil 42.
  • the leg 33 is connected to the phase coil 43.
  • the negative electrode of the battery 1 is connected to the negative terminals of the smoothing capacitor 20 and the inverter 30.
  • the positive electrode of the battery 2 is connected to the positive terminals of the smoothing capacitor 20 and the inverter 30 through the inductor 7.
  • the series transistor 3 and the charging diode 4 connect the batteries 1 and 2 in series.
  • the series transistor 3 can turn off the discharge of the batteries 1 and 2.
  • a charging diode 4 connected in antiparallel to the series transistor 3 can charge the batteries 1 and 2.
  • the anode of the parallel diode 5 is connected to the negative electrode of the battery 1, and the cathode of the parallel diode 5 is connected to the negative electrode of the battery 2.
  • the anode electrode of the parallel diode 6 is connected to the positive electrode of the battery 2, and the cathode electrode of the parallel diode 6 is connected to the positive electrode of the battery 1.
  • batteries 1 and 2 each have a voltage of 320V.
  • the connection switching circuit 10 and the inverter 30 are controlled by the controller 50.
  • the precharge operation of the smoothing capacitor 20 when the key switch of the electric vehicle is turned on will be described. Since the series transistor 3 is off, the smoothing capacitor 20 is charged through the parallel diodes 5 and 6. As a result, the inrush current flowing through the smoothing capacitor 20 is halved and the power loss is 1 ⁇ 4.
  • the series transistor 3 is switched at a predetermined PWM carrier frequency. Its PWM duty ratio, which is equal to the ratio of on period / (on period + off period), is gradually increased from 0 to 1.
  • PWM duty ratio which is equal to the ratio of on period / (on period + off period)
  • the series transistor 3 is turned on, a voltage sum (640V) is applied to the smoothing capacitor 20 through the inductor 7, and the inductor 7 stores magnetic energy.
  • the series transistor 3 is turned off, the inductor 7 suppresses a decrease in current flowing through the inductor 7. As a result, the DC link voltage Vd gradually increases from 320V to 640V.
  • the series transistor 3 is switched at a predetermined PWM carrier frequency. Its PWM duty ratio, which is equal to the ratio of on period / (on period + off period), is gradually reduced from 1 to 0. As a result, the DC link voltage Vd gradually decreases from 640V to 320V. Eventually, the parallel diodes 5 and 6, the series transistor 3, and the inductor 7 serve as a known step-down chopper.
  • FIG. 4 is a schematic diagram showing the operation of the step-down chopper.
  • the circuit 300 on the left shows a state where the series transistor 3 is turned on, and the circuit 400 on the right shows a state where the series transistor 3 is turned off.
  • the inductor 7 can have a lower inductance value than the inductor of the boost chopper shown in FIG.
  • the switching frequency of the series transistor 3 can have a higher switching frequency value than that of the boost chopper shown in FIG. As a result, the switching loss of the step-down chopper increases. However, since the high-frequency switching of the series transistor 3 is only in the connection switching period, this increase in switching loss can be ignored.
  • the connection switching circuit 10 has a relay box 8 and a connector 9.
  • the relay box 8 accommodates two magnet contactors 81 and 82.
  • the positive electrode of the battery 2 is connected to the positive terminal 91 of the connector 9, and the negative electrode of the battery 1 is connected to the negative terminal 92 of the connector 9.
  • Terminals 91 and 92 are connected to an external DC power supply (not shown).
  • Contactor 81 connects negative electrode terminal 92 to the negative electrode of battery 2, and contactor 82 connects positive electrode terminal 91 to the positive electrode of battery 1.
  • the contactors 81 and 82 When the contactors 81 and 82 are turned on, the contactor 81 is connected in parallel with the parallel diode 5, and the contactor 82 is connected in parallel with the parallel diode 6. Thereby, the external DC power supply charges the batteries 1 and 2 in parallel.
  • the batteries 1 and 2 apply a DC link voltage Vd of about 320V to the inverter 30. Thereby, the loss of the parallel diodes 5 and 6 is reduced.
  • the contactor 81 is connected in parallel with the parallel diode 5, and the contactor 82 is connected in parallel with the parallel diode 6. Accordingly, in the parallel discharge mode, the batteries 1 and 2 are already in the parallel discharge mode by the diodes 5 and 6 before the contactors 81 and 82 are turned on. Therefore, when the contactors 81 and 82 are turned on, the voltage difference between the batteries 1 and 2 can be sufficiently reduced. This means that when the contactors 81 and 82 are turned on, the short-circuit current flowing between the batteries 1 and 2 becomes substantially zero. Furthermore, when the contactor 81 and / or the contactor 82 is turned off, arcing of the contactor 81 and 82 is prevented by the diodes 5 and 6. Thereby, the lifetime and reliability of the ts contactors 81 and 82 are improved.
  • inverter 30 When the PWM duty ratio equal to the ratio of output period / (clamp period + output period) is low, inverter 30 generates a high output voltage. Thereby, the inverter 30 which functions as a step-up chopper can generate a high charging voltage.
  • the PWM duty ratio is controlled based on the battery charging current. Since the inverter 30 is operated as a step-up chopper, the ripple rate of the charging current supplied from the inverter 30 to the batteries 1 and 2 is increased. However, this ripple rate is reduced by the inductor 7 and the smoothing capacitor 20. The loss of the batteries 1 and 2 is reduced by this ripple rate reduction. Similarly, the losses of the batteries 1 and 2 are reduced in the parallel discharge mode compared to the series discharge mode under low load conditions of the traction motor. This suppresses an increase in battery temperature. In particular, this effect is superior in older batteries with increased internal resistance.
  • a second connection switching circuit 10A and a third connection switching circuit 10B are added to the voltage-switching DC power supply of the first embodiment.
  • the battery 1 of the first embodiment is divided into two battery blocks 1A and 1B each having a rated voltage of 160V.
  • the battery 2 of the first embodiment is divided into two battery blocks 2A and 2B each having a rated voltage of 160V.
  • the inductor 7 of the first embodiment is divided into two inductors 71 and 72. Inductors 71 and 72 can have a common core.
  • Each of the added connection switching circuits 10A and 10B has substantially the same circuit configuration as that of the connection switching circuit 10.
  • the connection switching circuit 10A includes a series transistor 3A, a charging diode 4A, parallel diodes 5A and 6A, and an inductor 7.
  • the series transistor 3A connects the block 2A and the block 2B.
  • the charging diode 4A is connected in antiparallel with the series transistor 3A.
  • the parallel diode 5A connects the negative electrode of the block 2A and the negative electrode of the block 2B.
  • the parallel diode 6A connects the positive electrode of the block 2A and the positive electrode of the block 2B.
  • the connection switching circuit 10B includes a series transistor 3B, a charging diode 4B, parallel diodes 5B and 6B, and an inductor 7.
  • the serial transistor 3B connects the block 1A and the block 1B.
  • the charging diode 4B is connected in antiparallel with the series transistor 3B.
  • the parallel diode 5B connects the negative electrode of the block 1A and the negative electrode of the block 1B.
  • the parallel diode 6B connects the positive electrode of the block 1A and the positive electrode of the block 1B.
  • the controller 50 has a series discharge mode, a 2-parallel discharge mode, and a 4-parallel discharge mode.
  • the 2-parallel discharge mode is essentially the same as the parallel discharge mode of the first embodiment.
  • the series transistor 3 is turned off and the series transistors 3A and 3B are turned on.
  • the DC link voltage Vd is approximately 320V.
  • the series transistors 3, 3A and 3B are turned off.
  • the DC link voltage Vd is approximately 160V.
  • the switching operation from the 2-parallel discharge mode to the series discharge mode will be described.
  • the series transistors 3A and 3B are turned off.
  • the serial transistor 3 is switched at a predetermined PWM carrier frequency, and its PWM duty ratio is gradually increased from 0 to 1.
  • the DC link voltage Vd gradually increases from 320V to 640V.
  • the switching operation from the series discharge mode to the 2-parallel discharge mode will be described.
  • the serial transistor 3 is switched at a predetermined PWM carrier frequency, and its PWM duty ratio is gradually reduced from 1 to 0.
  • the DC link voltage Vd gradually decreases from 640V to 320V.
  • the parallel diodes 5 and 6, the series transistor 3, and the inductor 7 serve as a known step-down chopper.
  • the series transistor 3 is turned off.
  • the series transistors 3A and 3B are switched at a predetermined PWM carrier frequency, and the PWM duty ratio is gradually increased from 0 to 1.
  • the DC link voltage Vd gradually increases from 160V to 320V.
  • the switching operation from the 2-parallel discharge mode to the 4-parallel discharge mode will be described.
  • the series transistors 3A and 3B are switched at a predetermined PWM carrier frequency, and the PWM duty ratio is gradually reduced from 1 to 0.
  • the DC link voltage Vd gradually decreases from 320V to 160V.
  • parallel diodes 5A and 6A, the series transistor 3A, and the inductor 7 function as a known step-down chopper.
  • parallel diodes 5B and 6B, series transistor 3B, and inductor 7 also function as a known step-down chopper.
  • FIG. 9 is a diagram showing the relationship between the motor rotation speed and the DC link voltage Vd when the motor torque is the maximum value.
  • the DC link voltage Vd is, for example, 160 V in a low speed region less than 40 km / h, for example, 320 V in a medium speed region in the range of 40-80 km / h, and 640 V in a high speed region exceeding 80 km / h.
  • connection switching circuit 10 has a relay box 8 and a connector 9 as in the first embodiment.
  • the contactors 81 and 82 can be turned on in the 2-parallel discharge mode and the regenerative braking mode. Thereby, the contactor 81 is connected in parallel with the parallel diode 5, and the contactor 82 is connected in parallel with the diode 6.
  • the DC link voltage Vd is 320 V in the 2-parallel discharge mode and the regenerative braking mode. Since the regenerative braking in this embodiment is essentially the same as in the first embodiment, description thereof is omitted.
  • the contactor 81 is connected in parallel with the parallel diode 5, and the contactor 82 is connected in parallel with the parallel diode 6. Therefore, in the 2-parallel discharge mode, the batteries 1 and 2 are already in the 2-parallel discharge mode by the diodes 5 and 6 before the contactors 81 and 82 are turned on. Therefore, when the contactors 81 and 82 are turned on, the voltage difference between the batteries 1 and 2 can be sufficiently reduced. This means that when the contactors 81 and 82 are turned on, the short-circuit current flowing between the batteries 1 and 2 becomes substantially zero. Furthermore, when the contactor 81 and the contactor 82 are turned off, the arc discharge of the contactors 81 and 82 is prevented by the diodes 5 and 6. Thereby, the lifetime and reliability of the contactors 81 and 82 are improved.
  • the discharge mode in the block failure state which means the case where the voltage of one of the blocks 1A, 1B, 2A, and 2B is out of the allowable range
  • the 2-parallel discharge mode one of the batteries 1 and 2 that does not include a defective block supplies a discharge current. In other words, 50% of the battery cells can continue to discharge.
  • the serial transistor 3 is turned off and the 2-parallel charging mode is employed. Further, the serial transistor 3A, 3B connected to the defective block is turned off. Thereby, 50% of battery cells can continue charging. Eventually, according to the second embodiment using three series transistors, it is possible to select a three-stage DC link voltage Vd and to disconnect a defective battery block.
  • the 4-parallel discharge mode employed in the low speed region significantly reduces battery loss. For this reason, the rise in battery temperature can be suppressed, and the battery life can be extended particularly in a high temperature environment. This effect is particularly noticeable in old batteries with high internal resistance.
  • FIG. 11 shows another variation.
  • the series transistors 3, 3A, and 3B shown in FIG. 8 each comprise a bidirectional insulated gate transistor.
  • the insulated gate transistor can have a body diode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Provided is a voltage switching-type DC power supply with which it is possible to reduce loss. The DC power supply has a connection switching circuit capable of selecting a series connection or a parallel connection of two or four batteries. The DC power supply applies a DC link voltage having two levels or three levels to an inverter for driving a variable speed motor. In the connection switching circuit, a series transistor is switched, whereby the connection switching circuit operates as a step-down chopper. If any of the batteries has failed, the series transistor is turned off.

Description

電圧切替式直流電源Voltage switching DC power supply
本発明は電圧切替式直流電源に関し、特にトラクションモータ用の電圧切替式直流電源に関する。 The present invention relates to a voltage switching DC power supply, and more particularly to a voltage switching DC power supply for a traction motor.
トラクションモータ用のインバータに印加されるDCリンク電圧はモータ回転数に応じて変更されることが好適である。図1は、昇圧チョッパ100がバッテリ101とインバータ102との間に配置される周知のモータ駆動装置を示す。昇圧チョッパ100は高速領域において平滑キャパシタ103に印加されるDCリンク電圧Vdを昇圧する。しかし、昇圧チョッパ100の重量及び損失はこのモータ駆動装置の欠点となっている。 The DC link voltage applied to the inverter for the traction motor is preferably changed according to the motor rotation speed. FIG. 1 shows a known motor driving device in which a boost chopper 100 is disposed between a battery 101 and an inverter 102. The boost chopper 100 boosts the DC link voltage Vd applied to the smoothing capacitor 103 in the high speed region. However, the weight and loss of the step-up chopper 100 are disadvantages of this motor drive device.
2つのバッテリを直列接続する直列スイッチと、2つのバッテリを並列接続する2つの並列スイッチとをもつ公知の電圧切替式直流電源は、上記昇圧チョッパのスイッチング損失を回避することができる。この電圧切替式直流電源の1つの問題はDCリンク電圧Vdが急変することである。DCリンク電圧Vdの急変は平滑キャパシタ及びインバータに悪影響を与える。もう1つの問題は並列接続された2つのバッテリの電圧が異なる時、2つのバッテリ間を流れる短絡電流がバッテリ損失を増加させることである。 A known voltage-switching DC power supply having a series switch that connects two batteries in series and two parallel switches that connect two batteries in parallel can avoid the switching loss of the boost chopper. One problem with this voltage-switching DC power supply is that the DC link voltage Vd changes abruptly. A sudden change in the DC link voltage Vd adversely affects the smoothing capacitor and the inverter. Another problem is that the short circuit current flowing between the two batteries increases the battery loss when the voltages of the two batteries connected in parallel are different.
図2は特許文献1に開示される電圧切替式直流電源の一例を示す。直列リレー201はバッテリ202及び203を直列に接続する。2つの並列リレー204及び205はバッテリ202及び203を並列接続する。図2に示される昇圧チョッパ208はバッテリの接続を切り替えるための過渡期間においてDCリンク電圧Vdを徐々に変更する。これにより、電圧切替時のDCリンク電圧の急変が平滑キャパシタ206及びインバータ207に与える悪影響を回避することができる。しかし、この昇圧チョッパの追加は製造コスト及びスイッチングロスを増加させる。さらに、電圧切替式直流電源の3つのリレー及び昇圧チョッパの協調動作を制御することは簡単ではない。 FIG. 2 shows an example of a voltage-switching DC power source disclosed in Patent Document 1. Series relay 201 connects batteries 202 and 203 in series. Two parallel relays 204 and 205 connect the batteries 202 and 203 in parallel. The step-up chopper 208 shown in FIG. 2 gradually changes the DC link voltage Vd during a transition period for switching the battery connection. Thereby, it is possible to avoid an adverse effect on the smoothing capacitor 206 and the inverter 207 due to a sudden change in the DC link voltage at the time of voltage switching. However, the addition of this step-up chopper increases manufacturing cost and switching loss. Furthermore, it is not easy to control the cooperative operation of the three relays and the step-up chopper of the voltage-switching DC power supply.
特開2012-060838号公報JP 2012-060838 A
本発明の一つの目的はトラクションモータに好適な電圧切替式直流電源を提供することである。 One object of the present invention is to provide a voltage-switching DC power source suitable for a traction motor.
本発明によれば、2つのバッテリの直列接続及び並列接続のどちらかを選択可能な接続切替回路は、トラクションモータを駆動するインバータに印加するDCリンク電圧を変更する。接続切替回路は1つの直列トランジスタ、1つの充電ダイオード4、及び2つの並列ダイオード、及びインダクタをもつ。直列トランジスタは直列電圧をインバータに印加し、並列ダイオードは並列電圧をインバータに印加する。充電ダイオードはインバータの回生電流でバッテリを充電する。この接続切替回路は、DCリンク電圧を変更し、バッテリ損失を低減することができる。さらに、バッテリの1つが不良である時、もう1つの正常なバッテリは並列放電モードを実行することができる。すなわち、この電圧切替式直流電源はDCリンク電圧変更機能と不良バッテリ切り離し機能とをもつ。 According to the present invention, the connection switching circuit that can select either serial connection or parallel connection of two batteries changes the DC link voltage applied to the inverter that drives the traction motor. The connection switching circuit has one series transistor, one charging diode 4, and two parallel diodes, and an inductor. The series transistor applies a series voltage to the inverter, and the parallel diode applies a parallel voltage to the inverter. The charging diode charges the battery with the regenerative current of the inverter. This connection switching circuit can change the DC link voltage and reduce battery loss. In addition, when one of the batteries is defective, another normal battery can execute the parallel discharge mode. That is, this voltage switching type DC power supply has a DC link voltage changing function and a defective battery separating function.
さらに、この電圧切替式直流電源によれば、直列トランジスタは並列接続と直列接続との切替期間においてPWMスイッチングされる。これは、接続切替回路の直列トランジスタ、並列ダイオード、及びインダクタが降圧チョッパとして動作することを意味する。これにより、DCリンク電圧は切替期間に徐々に変更されることができる。 Further, according to this voltage-switching DC power supply, the series transistor is PWM-switched during the switching period between the parallel connection and the series connection. This means that the series transistor, parallel diode, and inductor of the connection switching circuit operate as a step-down chopper. Thereby, the DC link voltage can be gradually changed during the switching period.
好適な1つの態様において、インバータは、トラクションモータの回生制動期間に昇圧チョッパとして運転される。これにより、インバータは直列トランジスタにより直列接続された複数のバッテリを充電することができる。 In a preferred embodiment, the inverter is operated as a boost chopper during the regenerative braking period of the traction motor. Thereby, the inverter can charge a plurality of batteries connected in series by the serial transistor.
好適なもう1つの態様において、マグネットコンタクタが並列ダイオードと並列に接続される。いわゆるリレーと呼ばれるマグネットコンタクタの接点は、そのオフ時のアーク火花により消耗する。最悪のケースにおいて接点溶着事故が発生する。しかし、この態様によれば、並列ダイオードがアーク火花を防止するため、マグネットコンタクタの故障率は低減される。直列トランジスタがPWMスイッチングされる期間に、マグネットコンタクタはオフされることは当然である。1つのマグネットコンタクタの2つの接点を2つの並列ダイオードに個別に接続することも可能である。2つのマグネットコンタクタを2つの並列ダイオードに個別に接続することが可能である。このケースによれば、不良バッテリの並列充電及び並列放電を回避することができる。 In another preferred embodiment, a magnet contactor is connected in parallel with the parallel diode. The contact of the so-called relay called the magnetic contactor is consumed by the arc spark when it is off. In the worst case, a contact welding accident occurs. However, according to this aspect, since the parallel diode prevents arc spark, the failure rate of the magnetic contactor is reduced. Of course, the magnet contactor is turned off during the period when the series transistor is PWM-switched. It is also possible to individually connect two contacts of one magnetic contactor to two parallel diodes. Two magnetic contactors can be individually connected to two parallel diodes. According to this case, it is possible to avoid parallel charging and parallel discharging of a defective battery.
好適なもう1つ態様において、2つのサブ電源セットが採用される。2つのサブ電源セットはそれぞれ、2つのバッテリブロック及び1つの接続切替回路からなる。さらに、2つのサブ電源セットは第3の接続切替回路により接続される。これにより、電圧切替式直流電源は3つのレベルのDCリンク電圧を発生することができる。さらに、この電圧切替式直流電源は、1つのバッテリブロックが不良となる場合において、2-並列放電モード及び4-並列放電モードを実行することができる。したがって、バッテリの信頼性が改善される。 In another preferred embodiment, two sub power supply sets are employed. Each of the two sub power supply sets includes two battery blocks and one connection switching circuit. Further, the two sub power supply sets are connected by a third connection switching circuit. As a result, the voltage-switching DC power supply can generate three levels of DC link voltage. Furthermore, this voltage-switching DC power supply can execute the 2-parallel discharge mode and the 4-parallel discharge mode when one battery block becomes defective. Therefore, the reliability of the battery is improved.
図1は従来の昇圧チョッパ式可変電圧直流電源を示す配線図である。FIG. 1 is a wiring diagram showing a conventional step-up chopper type variable voltage DC power supply. 図2は従来の電圧切替式直流電源を示す配線図である。FIG. 2 is a wiring diagram showing a conventional voltage-switching DC power supply. 図3は第1実施例の電圧切替式直流電源を示す配線図である。FIG. 3 is a wiring diagram showing the voltage-switching type DC power source of the first embodiment. 図4は図3に示される接続切替回路の降圧チョッパ動作を示す配線図である。FIG. 4 is a wiring diagram showing the step-down chopper operation of the connection switching circuit shown in FIG. 図5は並列充電用のリレーボックスをもつ電圧切替式直流電源を示す配線図である。FIG. 5 is a wiring diagram showing a voltage-switching DC power supply having a relay box for parallel charging. 図6は昇圧チョッパ式回生制動動作を示す模式配線図である。FIG. 6 is a schematic wiring diagram showing a boost chopper type regenerative braking operation. 図7は昇圧チョッパ式回生制動動作を示す模式配線図である。FIG. 7 is a schematic wiring diagram showing a boost chopper type regenerative braking operation. 図8は第2実施例の電圧切替式直流電源を示す配線図である。FIG. 8 is a wiring diagram showing the voltage switching type DC power source of the second embodiment. 図9はDCリンク電圧とモータ回転数との関係を示す図である。FIG. 9 is a diagram showing the relationship between the DC link voltage and the motor speed. 図10は並列充電用のリレーボックスをもつ電圧切替式直流電源を示す配線図である。FIG. 10 is a wiring diagram showing a voltage-switching DC power supply having a relay box for parallel charging. 図11は変形態様を示す配線図である。FIG. 11 is a wiring diagram showing a modification.
本発明の電圧切替式直流電源の好適な実施形態が図面を参照して説明される。この電圧切替式直流電源は電気自動車のトラクションモータを駆動するインバータに接続される。この電圧切替式直流電源はバッテリの代わりにキャパシタを採用することができる。この電圧切替式直流電源は他の可変速モータを駆動するインバータに接続されることができる。 A preferred embodiment of the voltage-switching DC power source of the present invention will be described with reference to the drawings. This voltage-switching DC power supply is connected to an inverter that drives a traction motor of an electric vehicle. This voltage switching DC power supply can employ a capacitor instead of a battery. This voltage-switching DC power supply can be connected to an inverter that drives another variable speed motor.
     第1実施例
第1実施例の電圧切替式直流電源が図3-図7を参照して説明される。この電圧切替式直流電源はバッテリ1及び2及び接続切替回路10からなる。接続切替回路10は直列トランジスタ3、充電ダイオード4、並列ダイオード5及び6、及びインダクタ7からなる。電圧切替式直流電源は平滑キャパシタ20及びインバータ30にDCリンク電圧Vdを印加する。インバータ30は3つのレグ31、32、及び33をもつ。インバータ30は3相モータのステータコイル40に接続される。ステータコイル40はU相コイル41、V相コイル42、及びW相コイル43からなる。レグ31は相コイル41に接続され、レグ32は相コイル42に接続され。レグ33は相コイル43に接続されている。
First Embodiment A voltage-switching type DC power source according to a first embodiment will be described with reference to FIGS. This voltage-switching DC power source includes batteries 1 and 2 and a connection switching circuit 10. The connection switching circuit 10 includes a series transistor 3, a charging diode 4, parallel diodes 5 and 6, and an inductor 7. The voltage-switching DC power supply applies a DC link voltage Vd to the smoothing capacitor 20 and the inverter 30. Inverter 30 has three legs 31, 32, and 33. Inverter 30 is connected to stator coil 40 of the three-phase motor. The stator coil 40 includes a U-phase coil 41, a V-phase coil 42, and a W-phase coil 43. Leg 31 is connected to phase coil 41, and leg 32 is connected to phase coil 42. The leg 33 is connected to the phase coil 43.
バッテリ1の負極は平滑キャパシタ20及びインバータ30の各負端子に接続されている。バッテリ2の正極はインダクタ7を通じて平滑キャパシタ20及びインバータ30の各正端子に接続されている。直列トランジスタ3及び充電ダイオード4はバッテリ1及び2を直列接続する。直列トランジスタ3はバッテリ1及び2の放電をオフすることができる。直列トランジスタ3に逆並列接続された充電ダイオード4はバッテリ1及び2を充電することができる。並列ダイオード5のアノード電極はバッテリ1の負極に接続され、並列ダイオード5のカソードはバッテリ2の負極に接続されている。並列ダイオード6のアノード電極はバッテリ2の正極に接続され、並列ダイオード6のカソード電極はバッテリ1の正極に接続されている。たとえば、バッテリ1及び2はそれぞれ320Vの電圧をもつ。接続切替回路10及びインバータ30はコントローラ50により制御される。まず、電気自動車のキースイッチがオンされた時の平滑キャパシタ20のプリチャージ動作が説明される。直列トランジスタ3はオフされているので、平滑キャパシタ20は並列ダイオード5及び6を通じて充電される。これにより、平滑キャパシタ20に流れる突入電流は半分となり、電力損失は1/4となる。 The negative electrode of the battery 1 is connected to the negative terminals of the smoothing capacitor 20 and the inverter 30. The positive electrode of the battery 2 is connected to the positive terminals of the smoothing capacitor 20 and the inverter 30 through the inductor 7. The series transistor 3 and the charging diode 4 connect the batteries 1 and 2 in series. The series transistor 3 can turn off the discharge of the batteries 1 and 2. A charging diode 4 connected in antiparallel to the series transistor 3 can charge the batteries 1 and 2. The anode of the parallel diode 5 is connected to the negative electrode of the battery 1, and the cathode of the parallel diode 5 is connected to the negative electrode of the battery 2. The anode electrode of the parallel diode 6 is connected to the positive electrode of the battery 2, and the cathode electrode of the parallel diode 6 is connected to the positive electrode of the battery 1. For example, batteries 1 and 2 each have a voltage of 320V. The connection switching circuit 10 and the inverter 30 are controlled by the controller 50. First, the precharge operation of the smoothing capacitor 20 when the key switch of the electric vehicle is turned on will be described. Since the series transistor 3 is off, the smoothing capacitor 20 is charged through the parallel diodes 5 and 6. As a result, the inrush current flowing through the smoothing capacitor 20 is halved and the power loss is ¼.
この電圧切替式直流電源の放電動作が説明される。直列トランジスタ3がオンされる直列放電モードにおいて、DCリンク電圧Vdはバッテリ1及び2の電圧和(=640V)と等しくなる。直列トランジスタ3がオフされる並列放電モードにおいて、DCリンク電圧Vdは、バッテリ1及び2の高い方の電圧(=約320V)と等しくなる。言い換えれば、2つのバッテリ1及び2の電圧差は並列ダイオード5及び6により並列放電モードにおいて自動的に解消される。 The discharge operation of this voltage-switching DC power supply will be described. In the series discharge mode in which the series transistor 3 is turned on, the DC link voltage Vd becomes equal to the voltage sum of the batteries 1 and 2 (= 640 V). In the parallel discharge mode in which the series transistor 3 is turned off, the DC link voltage Vd becomes equal to the higher voltage (= about 320 V) of the batteries 1 and 2. In other words, the voltage difference between the two batteries 1 and 2 is automatically eliminated in the parallel discharge mode by the parallel diodes 5 and 6.
次に、並列放電モードから直列放電モードへの切替動作が説明される。この切替動作において、直列トランジスタ3は所定のPWMキャリヤ周波数でスイッチングされる。オン期間/(オン期間+オフ期間)の比率に等しいそのPWMデユーティ比は0から1へ徐々に増加される。直列トランジスタ3がオンされる時、電圧和(640V)がインダクタ7を通じて平滑キャパシタ20に印加され、インダクタ7は磁気エネルギーを蓄積する。直列トランジスタ3がオフされる時、インダクタ7はインダクタ7を流れる電流の減少を抑制する。これにより、DCリンク電圧Vdは320Vから640Vへ徐々に上昇する。 Next, the switching operation from the parallel discharge mode to the series discharge mode will be described. In this switching operation, the series transistor 3 is switched at a predetermined PWM carrier frequency. Its PWM duty ratio, which is equal to the ratio of on period / (on period + off period), is gradually increased from 0 to 1. When the series transistor 3 is turned on, a voltage sum (640V) is applied to the smoothing capacitor 20 through the inductor 7, and the inductor 7 stores magnetic energy. When the series transistor 3 is turned off, the inductor 7 suppresses a decrease in current flowing through the inductor 7. As a result, the DC link voltage Vd gradually increases from 320V to 640V.
次に、直列放電モードから並列放電モードへの切替動作が説明される。この切替動作において、直列トランジスタ3は所定のPWMキャリヤ周波数でスイッチングされる。オン期間/(オン期間+オフ期間)の比率に等しいそのPWMデユーティ比は1から0へ徐々に減少される。これにより、DCリンク電圧Vdは640Vから320Vへ徐々に低下する。結局、並列ダイオード5及び6、直列トランジスタ3、及びインダクタ7は、公知の降圧チョッパとして働く。 Next, the switching operation from the series discharge mode to the parallel discharge mode will be described. In this switching operation, the series transistor 3 is switched at a predetermined PWM carrier frequency. Its PWM duty ratio, which is equal to the ratio of on period / (on period + off period), is gradually reduced from 1 to 0. As a result, the DC link voltage Vd gradually decreases from 640V to 320V. Eventually, the parallel diodes 5 and 6, the series transistor 3, and the inductor 7 serve as a known step-down chopper.
図4は、この降圧チョッパの動作を示す模式図である。左側の回路300は直列トランジスタ3がオンされた状態を示し、右側の回路400は直列トランジスタ3がオフされた状態を示す。インダクタ7は、図1に示される昇圧チョッパのインダクタよりも低いインダクタンス値をもつことができる。直列トランジスタ3のスイッチング周波数は、図1に示される昇圧チョッパよりも高いスイッチング周波数値をもつことができる。その結果、降圧チョッパのスイッチング損失は増加する。しかし、直列トランジスタ3の高周波スイッチングは接続切替期間だけであるため、このスイッチング損失の増加は無視されることができる。 FIG. 4 is a schematic diagram showing the operation of the step-down chopper. The circuit 300 on the left shows a state where the series transistor 3 is turned on, and the circuit 400 on the right shows a state where the series transistor 3 is turned off. The inductor 7 can have a lower inductance value than the inductor of the boost chopper shown in FIG. The switching frequency of the series transistor 3 can have a higher switching frequency value than that of the boost chopper shown in FIG. As a result, the switching loss of the step-down chopper increases. However, since the high-frequency switching of the series transistor 3 is only in the connection switching period, this increase in switching loss can be ignored.
次に、外部直流電源によるバッテリ1及び2の充電が図5を参照して説明される。バッテリ1及び2を並列に充電するために、この外部直流電源は約320Vの電圧をバッテリ1及び2に印加する。この並列充電のために、接続切替回路10はリレーボックス8及びコネクタ9をもつ。リレーボックス8は、2つのマグネットコンタクタ81及び82を収容する。バッテリ2の正極はコネクタ9の正極端子91に接続され、バッテリ1の負極はコネクタ9の負極端子92に接続されている。端子91及び92は図略の図略の外部直流電源に接続される。 Next, charging of the batteries 1 and 2 by the external DC power supply will be described with reference to FIG. In order to charge the batteries 1 and 2 in parallel, the external DC power supply applies a voltage of about 320V to the batteries 1 and 2. For this parallel charging, the connection switching circuit 10 has a relay box 8 and a connector 9. The relay box 8 accommodates two magnet contactors 81 and 82. The positive electrode of the battery 2 is connected to the positive terminal 91 of the connector 9, and the negative electrode of the battery 1 is connected to the negative terminal 92 of the connector 9. Terminals 91 and 92 are connected to an external DC power supply (not shown).
コンタクタ81は負極端子92をバッテリ2の負極に接続し、コンタクタ82は正極端子91をバッテリ1の正極に接続する。コンタクタ81及び82がオンされる時、コンタクタ81は並列ダイオード5と並列に接続され、コンタクタ82は並列ダイオード6と並列に接続される。これにより、外部直流電源はバッテリ1及び2は並列に充電する。コンタクタ81及び82がオンされる並列放電モードにおいて、バッテリ1及び2はインバータ30に約320VのDCリンク電圧Vdを印加する。これにより、並列ダイオード5及び6の損失が低減される。 Contactor 81 connects negative electrode terminal 92 to the negative electrode of battery 2, and contactor 82 connects positive electrode terminal 91 to the positive electrode of battery 1. When the contactors 81 and 82 are turned on, the contactor 81 is connected in parallel with the parallel diode 5, and the contactor 82 is connected in parallel with the parallel diode 6. Thereby, the external DC power supply charges the batteries 1 and 2 in parallel. In the parallel discharge mode in which the contactors 81 and 82 are turned on, the batteries 1 and 2 apply a DC link voltage Vd of about 320V to the inverter 30. Thereby, the loss of the parallel diodes 5 and 6 is reduced.
この実施例によれば、コンタクタ81が並列ダイオード5と並列接続され、コンタクタ82が並列ダイオード6と並列接続されている。したがって、並列放電モードにおいて、コンタクタ81及び82がオンされる前に、バッテリ1及び2はダイオード5及び6により既に並列放電モードとなっている。したがって、コンタクタ81及び82がオンされる時、バッテリ1及び2の間の電圧差は十分に低減されることができる。これは、コンタクタ81及び82がオンされる時、バッテリ1及び2の間に流れる短絡電流がほぼゼロとなることを意味する。さらに、コンタクタ81及び/又はコンタクタ82がオフされる時、コンタクタ81及び82のアーク放電はダイオード5及び6により防止される。これにより、tsコンタクタ81及び82の寿命及び信頼性が改善される。 According to this embodiment, the contactor 81 is connected in parallel with the parallel diode 5, and the contactor 82 is connected in parallel with the parallel diode 6. Accordingly, in the parallel discharge mode, the batteries 1 and 2 are already in the parallel discharge mode by the diodes 5 and 6 before the contactors 81 and 82 are turned on. Therefore, when the contactors 81 and 82 are turned on, the voltage difference between the batteries 1 and 2 can be sufficiently reduced. This means that when the contactors 81 and 82 are turned on, the short-circuit current flowing between the batteries 1 and 2 becomes substantially zero. Furthermore, when the contactor 81 and / or the contactor 82 is turned off, arcing of the contactor 81 and 82 is prevented by the diodes 5 and 6. Thereby, the lifetime and reliability of the ts contactors 81 and 82 are improved.
バッテリ1及び2の並列充電期間において、バッテリ1の電圧だけが所定値を超える時、コンタクタ81だけがオフされる。同様に、バッテリ2の電圧だけが所定値を超える時、コンタクタ82だけがオフされる。バッテリ1及び2の並列放電期間において、バッテリ1の電圧だけが所定値未満となる時、コンタクタ81だけがオフされる。同様に、バッテリ2の電圧だけが所定値を超える時、コンタクタ82だけがオフされる。結局、不良バッテリは2つの独立コンタクタ81及び82により分離される。 In the parallel charging period of the batteries 1 and 2, when only the voltage of the battery 1 exceeds a predetermined value, only the contactor 81 is turned off. Similarly, when only the voltage of the battery 2 exceeds a predetermined value, only the contactor 82 is turned off. In the parallel discharge period of the batteries 1 and 2, when only the voltage of the battery 1 becomes less than a predetermined value, only the contactor 81 is turned off. Similarly, when only the voltage of the battery 2 exceeds a predetermined value, only the contactor 82 is turned off. Eventually, the bad battery is separated by two independent contactors 81 and 82.
次に、この電圧切替式直流電源の回生制動期間における充電動作が図6及び図7を参照して説明される。コンタクタ81及び82はオンされてもよく、オンされなくてもよい。この回生制動において、インバータ30の発電電圧がDCリンク電圧よりも低い時、コントローラ50はインバータ30に昇圧チョッパ動作を指令する。この昇圧チョッパ動作において、インバータ30の3つのレグ31-33は所定のPWMキャリヤ周波数で同期的にスイッチングされる。各PWMサイクル期間はそれぞれクランプ期間と出力期間との和からなる。図6に示されるクランプ期間において、レグ31-33の下アームトランジスタが同時にオンされる。図7に示される出力期間において、レグ31-33の下アームトランジスタが同時にオフされる。 Next, the charging operation in the regenerative braking period of this voltage-switching DC power supply will be described with reference to FIGS. Contactors 81 and 82 may or may not be turned on. In this regenerative braking, when the generated voltage of the inverter 30 is lower than the DC link voltage, the controller 50 instructs the inverter 30 to perform a boost chopper operation. In this step-up chopper operation, the three legs 31-33 of the inverter 30 are switched synchronously at a predetermined PWM carrier frequency. Each PWM cycle period is composed of a sum of a clamp period and an output period. In the clamp period shown in FIG. 6, the lower arm transistors of the legs 31-33 are simultaneously turned on. In the output period shown in FIG. 7, the lower arm transistors of the legs 31-33 are simultaneously turned off.
出力期間/(クランプ期間+出力期間)の比率に等しいPWMデユーティ比が低い時、インバータ30は高い出力電圧を発生する。これにより、昇圧チョッパとして働くインバータ30は高い充電電圧を発生することができる。PWMデユーティ比はバッテリ充電電流に基づいて制御される。インバータ30を昇圧チョッパとして動作させるため、インバータ30からバッテリ1及び2へ供給される充電電流のリップルレートは高くなる。しかし、このリップルレートはインダクタ7及び平滑キャパシタ20により低減される。バッテリ1及び2の損失はこのリップルレート低減により低減される。同様に、バッテリ1及び2の損失はトラクションモータの低負荷条件において並列放電モードにおいて直列放電モードよりも低減される。これは、バッテリ温度の上昇を抑制する。特に、この効果は増加された内部抵抗をもつ古いバッテリにおいて優れている。 When the PWM duty ratio equal to the ratio of output period / (clamp period + output period) is low, inverter 30 generates a high output voltage. Thereby, the inverter 30 which functions as a step-up chopper can generate a high charging voltage. The PWM duty ratio is controlled based on the battery charging current. Since the inverter 30 is operated as a step-up chopper, the ripple rate of the charging current supplied from the inverter 30 to the batteries 1 and 2 is increased. However, this ripple rate is reduced by the inductor 7 and the smoothing capacitor 20. The loss of the batteries 1 and 2 is reduced by this ripple rate reduction. Similarly, the losses of the batteries 1 and 2 are reduced in the parallel discharge mode compared to the series discharge mode under low load conditions of the traction motor. This suppresses an increase in battery temperature. In particular, this effect is superior in older batteries with increased internal resistance.
     第2実施例
第2実施例の電圧切替式直流電源が図8を参照して説明される。この実施例によれば、第2の接続切替回路10A及び第3の接続切替回路10Bが第1実施例の電圧切替式直流電源に追加されている。第1実施例のバッテリ1は、それぞれ160Vの定格電圧をもつ2つのバッテリブロック1A及び1Bに分割されている。同様に、第1実施例のバッテリ2は、それぞれ160Vの定格電圧をもつ2つのバッテリブロック2A及び2Bに分割されている。第1実施例のインダクタ7は2つのインダクタ71及び72に分割されている。インダクタ71及び72は共通のコアをもつことができる。追加された接続切替回路10A及び10Bはそれぞれ、接続切替回路10と本質的に同じ回路構成をもつ。
Second Embodiment A voltage-switching DC power source according to a second embodiment will be described with reference to FIG. According to this embodiment, a second connection switching circuit 10A and a third connection switching circuit 10B are added to the voltage-switching DC power supply of the first embodiment. The battery 1 of the first embodiment is divided into two battery blocks 1A and 1B each having a rated voltage of 160V. Similarly, the battery 2 of the first embodiment is divided into two battery blocks 2A and 2B each having a rated voltage of 160V. The inductor 7 of the first embodiment is divided into two inductors 71 and 72. Inductors 71 and 72 can have a common core. Each of the added connection switching circuits 10A and 10B has substantially the same circuit configuration as that of the connection switching circuit 10.
接続切替回路10Aは、直列トランジスタ3A、充電ダイオード4A、並列ダイオード5A及び6A、及びインダクタ7からなる。直列トランジスタ3Aはブロック2A及びブロック2Bを接続している。充電ダイオード4Aは直列トランジスタ3Aと逆並列に接続されている。並列ダイオード5Aはブロック2Aの負極とブロック2Bの負極とを接続している。並列ダイオード6Aはブロック2Aの正極とブロック2Bの正極とを接続している。 The connection switching circuit 10A includes a series transistor 3A, a charging diode 4A, parallel diodes 5A and 6A, and an inductor 7. The series transistor 3A connects the block 2A and the block 2B. The charging diode 4A is connected in antiparallel with the series transistor 3A. The parallel diode 5A connects the negative electrode of the block 2A and the negative electrode of the block 2B. The parallel diode 6A connects the positive electrode of the block 2A and the positive electrode of the block 2B.
接続切替回路10Bは、直列トランジスタ3B、充電ダイオード4B、並列ダイオード5B及び6B、及びインダクタ7からなる。直列トランジスタ3Bはブロック1A及びブロック1Bを接続している。充電ダイオード4Bは直列トランジスタ3Bと逆並列に接続されている。並列ダイオード5Bはブロック1Aの負極とブロック1Bの負極とを接続している。並列ダイオード6Bはブロック1Aの正極とブロック1Bの正極とを接続している。 The connection switching circuit 10B includes a series transistor 3B, a charging diode 4B, parallel diodes 5B and 6B, and an inductor 7. The serial transistor 3B connects the block 1A and the block 1B. The charging diode 4B is connected in antiparallel with the series transistor 3B. The parallel diode 5B connects the negative electrode of the block 1A and the negative electrode of the block 1B. The parallel diode 6B connects the positive electrode of the block 1A and the positive electrode of the block 1B.
この電圧切替式直流電源の放電動作が説明される。コントローラ50は直列放電モード、2-並列放電モード、4-並列放電モードをもつ。2-並列放電モードは本質的に実施例1の並列放電モードと同じである。3つの直列トランジスタ3、3A、及び3Bがオンされる直列放電モードにおいて、DCリンク電圧Vdは4つのブロック2A、2B、1A、及び1Bの電圧和(=640V)と等しくなる。2-並列放電モードにおいて、直列トランジスタ3がオフされ、直列トランジスタ3A及び3Bはオンされる。DCリンク電圧Vdはほぼ320Vとなる。4-並列放電モードにおいて、直列トランジスタ3、3A及び3Bはオフされる。DCリンク電圧Vdはほぼ160Vとなる。 The discharge operation of this voltage-switching DC power supply will be described. The controller 50 has a series discharge mode, a 2-parallel discharge mode, and a 4-parallel discharge mode. The 2-parallel discharge mode is essentially the same as the parallel discharge mode of the first embodiment. In the series discharge mode in which the three series transistors 3, 3A, and 3B are turned on, the DC link voltage Vd is equal to the voltage sum (= 640V) of the four blocks 2A, 2B, 1A, and 1B. In the 2-parallel discharge mode, the series transistor 3 is turned off and the series transistors 3A and 3B are turned on. The DC link voltage Vd is approximately 320V. In the 4-parallel discharge mode, the series transistors 3, 3A and 3B are turned off. The DC link voltage Vd is approximately 160V.
次に、2-並列放電モードから直列放電モードへの切替動作が説明される。この切替動作において、直列トランジスタ3A及び3Bはオフされている。直列トランジスタ3は所定のPWMキャリヤ周波数でスイッチングされ、そのPWMデユーティ比は0から1へ徐々に増加される。これにより、DCリンク電圧Vdは320Vから640Vへ徐々に上昇する。次に、直列放電モードから2-並列放電モードへの切替動作が説明される。この切替動作において、直列トランジスタ3は所定のPWMキャリヤ周波数でスイッチングされ、そのPWMデユーティ比は1から0へ徐々に減少される。これにより、DCリンク電圧Vdは640Vから320Vへ徐々に低下する。結局、並列ダイオード5及び6、直列トランジスタ3、及びインダクタ7は、公知の降圧チョッパとして働く。 Next, the switching operation from the 2-parallel discharge mode to the series discharge mode will be described. In this switching operation, the series transistors 3A and 3B are turned off. The serial transistor 3 is switched at a predetermined PWM carrier frequency, and its PWM duty ratio is gradually increased from 0 to 1. As a result, the DC link voltage Vd gradually increases from 320V to 640V. Next, the switching operation from the series discharge mode to the 2-parallel discharge mode will be described. In this switching operation, the serial transistor 3 is switched at a predetermined PWM carrier frequency, and its PWM duty ratio is gradually reduced from 1 to 0. As a result, the DC link voltage Vd gradually decreases from 640V to 320V. Eventually, the parallel diodes 5 and 6, the series transistor 3, and the inductor 7 serve as a known step-down chopper.
次に、4-並列放電モードから2-並列放電モードへの切替動作が説明される。この切替動作において、直列トランジスタ3はオフされている。直列トランジスタ3A及び3Bは所定のPWMキャリヤ周波数でスイッチングされ、そのPWMデユーティ比は0から1へ徐々に増加される。これにより、DCリンク電圧Vdは160Vから320Vへ徐々に上昇する。次に、2-並列放電モードから4-並列放電モードへの切替動作が説明される。この切替動作において、直列トランジスタ3A及び3Bは所定のPWMキャリヤ周波数でスイッチングされ、そのPWMデユーティ比は1から0へ徐々に減少される。これにより、DCリンク電圧Vdは320Vから160Vへ徐々に低下する。結局、並列ダイオード5A及び6A、直列トランジスタ3A、及びインダクタ7は公知の降圧チョッパとして働く。同様に、並列ダイオード5B及び6B、直列トランジスタ3B、及びインダクタ7も公知の降圧チョッパとして働く。 Next, the switching operation from the 4-parallel discharge mode to the 2-parallel discharge mode will be described. In this switching operation, the series transistor 3 is turned off. The series transistors 3A and 3B are switched at a predetermined PWM carrier frequency, and the PWM duty ratio is gradually increased from 0 to 1. As a result, the DC link voltage Vd gradually increases from 160V to 320V. Next, the switching operation from the 2-parallel discharge mode to the 4-parallel discharge mode will be described. In this switching operation, the series transistors 3A and 3B are switched at a predetermined PWM carrier frequency, and the PWM duty ratio is gradually reduced from 1 to 0. As a result, the DC link voltage Vd gradually decreases from 320V to 160V. Eventually, the parallel diodes 5A and 6A, the series transistor 3A, and the inductor 7 function as a known step-down chopper. Similarly, parallel diodes 5B and 6B, series transistor 3B, and inductor 7 also function as a known step-down chopper.
図9はモータトルクが最大値である場合におけるモータ回転数とDCリンク電圧Vdとの関係を示す図である。DCリンク電圧Vdは、たとえば40km/h未満の低速領域において160Vとなり、たとえば40-80km/hの範囲の中速領域において320Vとなり、80km/hを超える高速領域において640Vとなる。 FIG. 9 is a diagram showing the relationship between the motor rotation speed and the DC link voltage Vd when the motor torque is the maximum value. The DC link voltage Vd is, for example, 160 V in a low speed region less than 40 km / h, for example, 320 V in a medium speed region in the range of 40-80 km / h, and 640 V in a high speed region exceeding 80 km / h.
次に、外部直流電源による4つのブロック1A、1B、2A、及び2Bの充電が図10を参照して説明される。直列トランジスタ3A及び3Bはオンされ、直列トランジスタ3はオフされる。これにより、直列接続されたブロック1A及び1Bは実質的にバッテリ1となる。同様に、直列接続されたブロック2A及び2Bは実質的にバッテリ2となる。バッテリ1及び2を並列に充電するために、この外部直流電源は約320Vの電圧をバッテリ1及び2に印加する。この並列充電のために、接続切替回路10は第1実施例と同様にリレーボックス8及びコネクタ9をもつ。 Next, charging of the four blocks 1A, 1B, 2A, and 2B by the external DC power supply will be described with reference to FIG. Series transistors 3A and 3B are turned on and series transistor 3 is turned off. Thereby, the blocks 1A and 1B connected in series substantially become the battery 1. Similarly, the blocks 2A and 2B connected in series become the battery 2 substantially. In order to charge the batteries 1 and 2 in parallel, the external DC power supply applies a voltage of about 320V to the batteries 1 and 2. For this parallel charging, the connection switching circuit 10 has a relay box 8 and a connector 9 as in the first embodiment.
コンタクタ81及び82は、2-並列放電モード及び回生制動モードにおいてオンされることができる。これにより、コンタクタ81は並列ダイオード5と並列接続され、コンタクタ82はダイオード6と並列接続される。DCリンク電圧Vdは、2-並列放電モード及び回生制動モードにおいて320Vとなる。この実施例における回生制動は、本質的に第1実施例と同じであるため、説明は省略される。 The contactors 81 and 82 can be turned on in the 2-parallel discharge mode and the regenerative braking mode. Thereby, the contactor 81 is connected in parallel with the parallel diode 5, and the contactor 82 is connected in parallel with the diode 6. The DC link voltage Vd is 320 V in the 2-parallel discharge mode and the regenerative braking mode. Since the regenerative braking in this embodiment is essentially the same as in the first embodiment, description thereof is omitted.
この実施例によれば、コンタクタ81が並列ダイオード5と並列接続され、コンタクタ82が並列ダイオード6と並列接続されている。したがって、2-並列放電モードにおいて、コンタクタ81及び82がオンされる前に、バッテリ1及び2はダイオード5及び6により既に2-並列放電モードとなっている。したがって、コンタクタ81及び82がオンされる時、バッテリ1及び2の間の電圧差は十分に低減されることができる。これは、コンタクタ81及び82がオンされる時、バッテリ1及び2の間に流れる短絡電流がほぼゼロとなることを意味する。さらに、コンタクタ81及びコンタクタ82がオフされる時、コンタクタ81及び82のアーク放電はダイオード5及び6により防止される。これにより、コンタクタ81及び82の寿命及び信頼性が改善される。 According to this embodiment, the contactor 81 is connected in parallel with the parallel diode 5, and the contactor 82 is connected in parallel with the parallel diode 6. Therefore, in the 2-parallel discharge mode, the batteries 1 and 2 are already in the 2-parallel discharge mode by the diodes 5 and 6 before the contactors 81 and 82 are turned on. Therefore, when the contactors 81 and 82 are turned on, the voltage difference between the batteries 1 and 2 can be sufficiently reduced. This means that when the contactors 81 and 82 are turned on, the short-circuit current flowing between the batteries 1 and 2 becomes substantially zero. Furthermore, when the contactor 81 and the contactor 82 are turned off, the arc discharge of the contactors 81 and 82 is prevented by the diodes 5 and 6. Thereby, the lifetime and reliability of the contactors 81 and 82 are improved.
次に、ブロック1A、1B、2A、及び2Bのうちの1つの電圧が許容範囲から離れている場合を意味するブロック不良状態における放電モードが説明される。4-並列放電モードが実行される時、不良ブロックを除く3つのブロックが放電電流を供給する。言い換えれば、75%のバッテリセルは放電を継続することができる。2-並列放電モードにおいて、バッテリ1及び2のうち、不良ブロックを含まない方が放電電流を供給する。言い換えれば、50%のバッテリセルは放電を継続することができる。 Next, the discharge mode in the block failure state which means the case where the voltage of one of the blocks 1A, 1B, 2A, and 2B is out of the allowable range will be described. 4-When the parallel discharge mode is executed, three blocks except the defective block supply the discharge current. In other words, 75% of the battery cells can continue to discharge. In the 2-parallel discharge mode, one of the batteries 1 and 2 that does not include a defective block supplies a discharge current. In other words, 50% of the battery cells can continue to discharge.
次に、ブロック不良状態における充電モードが説明される。直列トランジスタ3がオフされ、2-並列充電モードが採用される。さらに、直列トランジスタ3A、3Bのうち不良ブロックに接続される方がオフされる。これにより、50%のバッテリセルは充電を継続することができる。結局、3つの直列トランジスタを使用する第2実施例によれば、3段階のDCリンク電圧Vdを選択できるとともに、不良バッテリブロックを切り離すことができる。 Next, the charging mode in the block failure state will be described. The serial transistor 3 is turned off and the 2-parallel charging mode is employed. Further, the serial transistor 3A, 3B connected to the defective block is turned off. Thereby, 50% of battery cells can continue charging. Eventually, according to the second embodiment using three series transistors, it is possible to select a three-stage DC link voltage Vd and to disconnect a defective battery block.
この実施例の利点が説明される。この実施例によれば、低速領域において採用される4-並列放電モードは、バッテリ損失を大幅に低減する。このため、バッテリ温度の上昇を抑制することができ、特に高温環境下においてバッテリ寿命を延長することができる。この効果は特に高い内部抵抗をもつ古いバッテリにおいて顕著である。 The advantages of this embodiment are described. According to this embodiment, the 4-parallel discharge mode employed in the low speed region significantly reduces battery loss. For this reason, the rise in battery temperature can be suppressed, and the battery life can be extended particularly in a high temperature environment. This effect is particularly noticeable in old batteries with high internal resistance.
第1実施例及び第2実施例の変形態様が説明される。この変形態様によれば、図5又は図8に示される充電ダイオード4が省略される。コンタクタ81及び82は回生制動期間においてオンされ、インバータ30はコンタクタ81及び82を通じてバッテリ1及び2を並列充電する。コンタクタ81及び82の代わりにパワートランジスタを採用することができる。図11はもう一つの変形態様を示す。この変形態様において、図8に示される直列トランジスタ3、3A、及び3Bはそれぞれ、双方向性の絶縁ゲートトランジスタからなる。この絶縁ゲートトランジスタはボディダイオードをもつことができる。 Variations of the first and second embodiments will be described. According to this modification, the charging diode 4 shown in FIG. 5 or FIG. 8 is omitted. The contactors 81 and 82 are turned on during the regenerative braking period, and the inverter 30 charges the batteries 1 and 2 in parallel through the contactors 81 and 82. A power transistor can be employed in place of the contactors 81 and 82. FIG. 11 shows another variation. In this variation, the series transistors 3, 3A, and 3B shown in FIG. 8 each comprise a bidirectional insulated gate transistor. The insulated gate transistor can have a body diode.

Claims (16)

  1.  複数のバッテリ(1、2)の直列接続及び並列接続の一方を選択可能な接続切替回路(10)を有して可変速モータ駆動用のインバータ(30)に接続される電圧切替式直流電源において、
     前記接続切替回路(10)は、
     前記バッテリ(1)及び前記バッテリ(2)を直列に接続する直列トランジスタ(3)と、
     前記2つのバッテリ(1、2)の負極を接続する並列ダイオード(5)と、
     前記2つのバッテリ(1、2)の正極を接続する並列ダイオード(6)と、
     前記電圧切替式直流電源及び前記インバータ(30)を接続するインダクタ(7)と、
     前記直列トランジスタ(3)を制御するコントローラ(50)とを備え、
     前記コントローラ(50)は、前記2つのバッテリ(1、2)を直列に放電する直列放電モードと、前記2つのバッテリ(1、2)を並列に放電する並列放電モードと、前記接続切替回路(10)を降圧チョッパとして運転するチョッパモードとを有することを特徴とする電圧切替式直流電源。
    In a voltage-switching DC power supply having a connection switching circuit (10) capable of selecting one of a series connection and a parallel connection of a plurality of batteries (1, 2) and connected to an inverter (30) for driving a variable speed motor ,
    The connection switching circuit (10)
    A series transistor (3) connecting the battery (1) and the battery (2) in series;
    A parallel diode (5) connecting the negative electrodes of the two batteries (1, 2);
    A parallel diode (6) connecting the positive electrodes of the two batteries (1, 2);
    An inductor (7) connecting the voltage-switching DC power source and the inverter (30);
    A controller (50) for controlling the series transistor (3),
    The controller (50) includes a series discharge mode for discharging the two batteries (1, 2) in series, a parallel discharge mode for discharging the two batteries (1, 2) in parallel, and the connection switching circuit ( A voltage-switching type DC power supply characterized by having a chopper mode in which 10) is operated as a step-down chopper.
  2.  前記コントローラ(50)は、前記直列放電モードにおいて前記直列トランジスタ(3)をオンし、前記並列放電モードにおいて前記直列トランジスタ(3)をオフし、前記チョッパモードにおいて前記直列トランジスタ(3)を所定のPWMキャリヤ周波数でスイッチングする請求項1記載の電圧切替式直流電源。 The controller (50) turns on the series transistor (3) in the series discharge mode, turns off the series transistor (3) in the parallel discharge mode, and turns on the series transistor (3) in the chopper mode. 2. The voltage switching type DC power source according to claim 1, wherein switching is performed at a PWM carrier frequency.
  3.  前記接続切替回路(10)は、前記直列トランジスタ(3)と逆並列接続される充電ダイオード(4)を有する請求項1記載の電圧切替式直流電源。 The voltage-switching DC power supply according to claim 1, wherein the connection switching circuit (10) has a charging diode (4) connected in antiparallel with the series transistor (3).
  4.  前記コントローラ(50)は、前記モータの回生制動期間において前記インバータ(30)を昇圧チョッパとして動作させる請求項3記載の電圧切替式直流電源。 The voltage-switching DC power supply according to claim 3, wherein the controller (50) operates the inverter (30) as a step-up chopper during a regenerative braking period of the motor.
  5.  前記コントローラ(50)は、前記直列放電モードと前記並列放電モードとの間の所定の切替期間において前記チョッパモードを採用する請求項1記載の電圧切替式直流電源。 The voltage-switching DC power supply according to claim 1, wherein the controller (50) adopts the chopper mode in a predetermined switching period between the series discharge mode and the parallel discharge mode.
  6.  前記コントローラ(50)は、前記2つのバッテリ(1、2)の一方の電圧が所定値未満となる条件において前記並列放電モードを採用する請求項1記載の電圧切替式直流電源。 The voltage-switching DC power supply according to claim 1, wherein the controller (50) adopts the parallel discharge mode under a condition that one voltage of the two batteries (1, 2) is less than a predetermined value.
  7.  前記接続切替回路(10)は、2つの前記並列ダイオード(5、6)と個別に並列接続される2つのコンタクタ(81、82)を有し、
     前記コントローラ(50)は、前記バッテリ(1、2)が外部直流電源により充電される時、前記2つのコンタクタ(81、82)の少なくとも1つをオンする請求項1記載の電圧切替式直流電源。
    The connection switching circuit (10) has two contactors (81, 82) individually connected in parallel with the two parallel diodes (5, 6),
    The voltage-switching DC power supply according to claim 1, wherein the controller (50) turns on at least one of the two contactors (81, 82) when the batteries (1, 2) are charged by an external DC power supply. .
  8.  前記コントローラ(50)は、前記並列放電モードにおいて、前記2つのコンタクタ(81、82)の少なくとも1つをオンする請求項7記載の電圧切替式直流電源。 The voltage-switching DC power supply according to claim 7, wherein the controller (50) turns on at least one of the two contactors (81, 82) in the parallel discharge mode.
  9.  前記バッテリ(1)は、第2の接続切替回路(10B)を通じて接続される2つのブロック(1A、1B)からなり、
     前記バッテリ(2)は、第3の接続切替回路(10A)を通じて接続され2つのブロック(2A、2B)からなり、
     前記第2及び第3の接続切替回路(10A、10B)は、本質的に前記接続切替回路(10)と本質的に同じ回路構成をもつ請求項1記載の電圧切替式直流電源。
    The battery (1) is composed of two blocks (1A, 1B) connected through a second connection switching circuit (10B).
    The battery (2) is connected through a third connection switching circuit (10A) and consists of two blocks (2A, 2B).
    The voltage-switching DC power supply according to claim 1, wherein the second and third connection switching circuits (10A, 10B) have essentially the same circuit configuration as the connection switching circuit (10).
  10.  前記コントローラ(50)は、前記直列放電モードにおいて前記3つの接続切替回路(10、10A、10B)の直列トランジスタ(3、3A、3B)の全てをオンし、前記並列放電モードにおいて前記直列トランジスタ(3)だけをオフする請求項9記載の電圧切替式直流電源。 The controller (50) turns on all the series transistors (3, 3A, 3B) of the three connection switching circuits (10, 10A, 10B) in the series discharge mode, and the series transistors (3, 3A, 3B) in the parallel discharge mode. The voltage-switching type DC power supply according to claim 9, wherein only 3) is turned off.
  11.  前記コントローラ(50)は、前記直列放電モードと前記並列放電モードとを切替える前記チョッパモードにおいて前記接続切替回路(10)だけを降圧チョッパとして運転する請求項10記載の電圧切替式直流電源。 The voltage switching DC power supply according to claim 10, wherein the controller (50) operates only the connection switching circuit (10) as a step-down chopper in the chopper mode for switching between the series discharge mode and the parallel discharge mode.
  12.  前記コントローラ(50)は、前記3つの直列トランジスタ(3、3A、3B)のすべてをオフする4-並列放電モードを有する請求項10記載の電圧切替式直流電源。 The voltage-switching DC power supply according to claim 10, wherein the controller (50) has a 4-parallel discharge mode in which all of the three series transistors (3, 3A, 3B) are turned off.
  13.  前記コントローラ(50)は、前記4-並列放電モードと前記並列放電モードとを切替える第2のチョッパモードにおいて前記第2及び第3の接続切替回路(10A、10B)を降圧チョッパとして運転し、
     前記コントローラ(50)は、前記第2のチョッパモードにおいて、前記第2及び第3の接続切替回路(10A、10B)の前記直列トランジスタ(3A、3B)を所定のPWMキャリヤ周波数でスイッチングする請求項12記載の電圧切替式直流電源。
    The controller (50) operates the second and third connection switching circuits (10A, 10B) as a step-down chopper in a second chopper mode for switching between the 4-parallel discharge mode and the parallel discharge mode,
    The controller (50) switches the series transistors (3A, 3B) of the second and third connection switching circuits (10A, 10B) at a predetermined PWM carrier frequency in the second chopper mode. 12. The voltage switching type DC power source according to 12.
  14.  前記接続切替回路(10、10A、10B)はそれぞれ、前記直列トランジスタ(3、3A、3B)と逆並列接続される充電ダイオード(4、4A、4B)を有する請求項10記載の電圧切替式直流電源。 The voltage-switching DC according to claim 10, wherein each of the connection switching circuits (10, 10A, 10B) has a charging diode (4, 4A, 4B) connected in antiparallel with the series transistor (3, 3A, 3B). Power supply.
  15.  前記コントローラ(50)は、前記モータの回生制動期間において前記インバータ(30)を昇圧チョッパとして動作させる請求項10記載の電圧切替式直流電源。 The voltage-switching DC power supply according to claim 10, wherein the controller (50) operates the inverter (30) as a step-up chopper during a regenerative braking period of the motor.
  16.  前記コントローラ(50)は、前記4つのブロック(1A、1B、2A、2B)の1つの電圧が所定値未満となる時、前記直列放電モードを禁止する請求項10記載の電圧切替式直流電源。 The voltage-switching DC power supply according to claim 10, wherein the controller (50) prohibits the series discharge mode when one voltage of the four blocks (1A, 1B, 2A, 2B) becomes less than a predetermined value.
PCT/JP2018/006653 2018-02-23 2018-02-23 Voltage switching-type dc power supply WO2019163080A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/006653 WO2019163080A1 (en) 2018-02-23 2018-02-23 Voltage switching-type dc power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/006653 WO2019163080A1 (en) 2018-02-23 2018-02-23 Voltage switching-type dc power supply

Publications (1)

Publication Number Publication Date
WO2019163080A1 true WO2019163080A1 (en) 2019-08-29

Family

ID=67688203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006653 WO2019163080A1 (en) 2018-02-23 2018-02-23 Voltage switching-type dc power supply

Country Status (1)

Country Link
WO (1) WO2019163080A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111497683A (en) * 2020-04-26 2020-08-07 东风汽车集团有限公司 High-voltage quick charging system capable of achieving double battery pack voltage and using method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0638550A (en) * 1992-07-15 1994-02-10 Honda Motor Co Ltd Inverter apparatus of electric vehicle
JP2008067432A (en) * 2006-09-05 2008-03-21 Nissan Motor Co Ltd Power supply device and its control method
JP2010178421A (en) * 2009-01-27 2010-08-12 Nissan Motor Co Ltd Power supplying device
JP2017118732A (en) * 2015-12-25 2017-06-29 セイコーエプソン株式会社 Power supply and electronic apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0638550A (en) * 1992-07-15 1994-02-10 Honda Motor Co Ltd Inverter apparatus of electric vehicle
JP2008067432A (en) * 2006-09-05 2008-03-21 Nissan Motor Co Ltd Power supply device and its control method
JP2010178421A (en) * 2009-01-27 2010-08-12 Nissan Motor Co Ltd Power supplying device
JP2017118732A (en) * 2015-12-25 2017-06-29 セイコーエプソン株式会社 Power supply and electronic apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111497683A (en) * 2020-04-26 2020-08-07 东风汽车集团有限公司 High-voltage quick charging system capable of achieving double battery pack voltage and using method thereof

Similar Documents

Publication Publication Date Title
US10358041B2 (en) Electric vehicle
KR102663664B1 (en) Multi-input charging system and method using motor driving system
US7982426B2 (en) Electric power system
JP4852644B2 (en) GENERATOR MOTOR DRIVE DEVICE AND METHOD OF DISCHARGING CHARGE OF CAPACITOR OF GENERATOR MOTOR DRIVE DEVICE
JP2018026973A (en) Power supply device for vehicle
JP2023114972A (en) Vehicular battery charge system using motor drive system
JP5105154B2 (en) Control device
WO2011108501A1 (en) Load driving device
JP2002320302A (en) Power unit
JP4591741B2 (en) Rotating electric machine drive device for vehicle
JP2007104789A (en) Power conversion system and electric vehicle equipped therewith
CN109219923B (en) Power output device
JP2015216824A (en) Traction motor driving device
WO2019163080A1 (en) Voltage switching-type dc power supply
JP5529393B2 (en) Discharge device for power storage device applied to generator motor drive device
JP2015216825A (en) Power switching device with smoothing circuit
CN116061765B (en) Battery heating system and electric truck
JP2014124043A (en) Motor drive device having serial-parallel switching circuit for a plurality of dc power supplies
JP6953634B2 (en) Vehicle charger with DC / DC converter
WO2019180912A1 (en) Voltage switching type direct-current power supply
CN117715788A (en) Electric drive system for a vehicle, vehicle having a corresponding electric drive system, and method for operating a corresponding electric drive system
KR101524879B1 (en) Power transformer for industrial vehicle
EP2916425B1 (en) Load current regenerating circuit and electrical device having load current regenerating circuit
JP4459532B2 (en) Motor control device
WO2024053424A1 (en) Power conversion apparatus and program

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 18907221

Country of ref document: EP

Kind code of ref document: A1