WO2015198577A1 - 回転位置検出装置に用いられるステータの製造方法、回転位置検出装置に用いられるステータおよび電動機 - Google Patents

回転位置検出装置に用いられるステータの製造方法、回転位置検出装置に用いられるステータおよび電動機 Download PDF

Info

Publication number
WO2015198577A1
WO2015198577A1 PCT/JP2015/003097 JP2015003097W WO2015198577A1 WO 2015198577 A1 WO2015198577 A1 WO 2015198577A1 JP 2015003097 W JP2015003097 W JP 2015003097W WO 2015198577 A1 WO2015198577 A1 WO 2015198577A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
turns
input
input winding
rotational position
Prior art date
Application number
PCT/JP2015/003097
Other languages
English (en)
French (fr)
Inventor
和弘 下田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2015198577A1 publication Critical patent/WO2015198577A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/08Forming windings by laying conductors into or around core parts
    • H02K15/095Forming windings by laying conductors into or around core parts by laying conductors around salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K24/00Machines adapted for the instantaneous transmission or reception of the angular displacement of rotating parts, e.g. synchro, selsyn

Definitions

  • the present invention relates to a stator used in a rotational position detection device, a method of manufacturing a stator used in the rotational position detection device, and an electric motor having a stator manufactured by this manufacturing method.
  • the rotational position detection device is used for a driving unit of a positioning device included in an industrial robot.
  • the rotational position detection device is also used in a drive unit of a screw tightening device that performs screw tightening at high speed.
  • the drive unit includes an electric motor controlled by the control unit.
  • the output signal detected by the rotational position detection device is taken into a servo amplifier or dedicated controller.
  • the output signal captured by the servo amplifier or the dedicated controller is calculated as rotational position information in the servo amplifier or the dedicated controller.
  • the servo amplifier and the dedicated controller transmit the calculated rotational position information to the control unit of the electric motor.
  • a control part controls an electric motor so that it may become a predetermined
  • Rotational position detection devices include a 1-phase input / 2-phase output method and a 2-phase input / 1-phase output method, depending on the control configuration of the servo amplifier and dedicated controller.
  • the servo amplifier and the dedicated controller include a resolver-digital converter (hereinafter referred to as “RD converter”).
  • a 2-phase signal is output from the rotational position detection device.
  • the output two-phase signals are a sin signal and a cos signal.
  • the RD converter calculates rotational position information using the two-phase signal output from the rotational position detection device.
  • a two-phase input signal is input to the rotational position detection device, and a sinusoidal signal is output from the rotational position detection device.
  • the input two-phase signals are a sin signal and a cos signal.
  • rotational position information can be directly calculated using a signal of one phase out of two input phases, for example, a sin signal and an output sinusoidal signal. Therefore, the two-phase input / 1-phase output method can simplify the configuration of the servo amplifier and the dedicated controller.
  • Patent Document 1 discloses a method for manufacturing a stator used in a one-phase input / 2-phase output type rotational position detection device. The stator manufacturing method described in Patent Document 1 will be described with reference to FIGS. 10A to 10C.
  • FIG. 10A is an explanatory diagram showing a winding process of an output winding included in a stator used in a conventional rotational position detection device.
  • FIG. 10B is an explanatory diagram showing another winding process of the output winding included in the stator used in the conventional rotational position detection device.
  • FIG. 10C is an explanatory diagram illustrating another winding process of the output winding included in the stator used in the conventional rotational position detection device.
  • a cos winding 101a that is an output winding A1 is wound around a magnetic pole 104 formed on a stator core.
  • the cos winding 101 a is positioned in the lowest layer with respect to the magnetic pole 104.
  • a sin winding 102 which is an output winding B is wound around the wound cosine winding 101a.
  • a cos winding 101b which is the output winding A2 is wound around the outer periphery of the wound sin winding 102.
  • Patent Document 2 discloses a method in which an insulating cap (corresponding to the insulator of the present application) included in a stator used in a rotational position detection device includes a winding separation wall.
  • FIG. 11 is an explanatory diagram of an insulating cap including a winding separation wall used in a conventional rotational position detection device.
  • the stator core 103 described in Patent Document 2 has a slot 105 formed between adjacent magnetic poles 104.
  • An insulating cap 106 is attached to the slot 105.
  • the insulating cap 106 includes an insulating cap inner wall 106a and a winding separation wall 106b.
  • a coil 107 is wound inside the insulating cap 106.
  • the coil 107 is insulated from the stator core 103 by the insulating cap 106.
  • the coil 107 is separated into the first coil portion 107a and the second coil portion 107b by the winding separation wall 106b.
  • One of the first coil portion 107a and the second coil portion 107b is used as a sin winding, and the other is used as a cos winding.
  • stator core 103 described in Patent Document 2 has a region in which the sin winding and the cosine winding are wound, the sin winding and the cosine winding are equally spaced from the magnetic pole 104 included in the stator core 103. Can be wound with.
  • a method of manufacturing a stator used in a rotational position detection device targeted by the present invention includes a step of preparing a stator core, a first winding step, a second winding step, and a third winding step.
  • the prepared stator core includes a yoke portion, a plurality of magnetic poles, and a slot.
  • the yoke part is formed in an annular shape.
  • the plurality of magnetic poles are positioned with a certain interval along the circumference of the yoke portion.
  • the plurality of magnetic poles protrude toward one of the inner diameter side of the yoke portion and the outer diameter side of the yoke portion.
  • a slot is formed between each of a pair of adjacent magnetic poles.
  • the input winding wound around the magnetic pole included in the stator core includes a first input winding and a second input winding.
  • the first input winding is distributed in a sinusoidal shape over the entire circumference of the yoke portion and is wound with the number of turns N1.
  • the first input winding includes a lower layer first input winding and an upper layer first input winding.
  • the lower layer first input winding refers to the number of turns N1a of the first input winding divided by the division ratio ⁇ with respect to the number of turns N1.
  • the upper layer first input winding refers to the other number of turns N1b of the first input winding divided by the division ratio ⁇ with respect to the number of turns N1.
  • the second input winding is distributed in a sinusoidal shape that is 90 degrees out of phase with the first input winding, and is wound with the number of turns N2.
  • the lower layer first input winding is continuously wound around each of the plurality of magnetic poles through the respective slots.
  • the second input winding is continuously wound around each of the plurality of magnetic poles through the slot from above the wound lower layer first input winding.
  • the upper layer first input winding is continuously wound around each of the plurality of magnetic poles through the slot from above the wound second input winding.
  • FIG. 1 is a schematic perspective view of a stator used in the rotational position detection device according to Embodiment 1 of the present invention.
  • FIG. 2 is a distribution diagram of the number of turns of the input winding included in the stator used in the rotational position detection device according to the first embodiment of the present invention.
  • FIG. 3A is a flowchart showing a method for manufacturing a stator used in the rotational position detection apparatus according to Embodiment 1 of the present invention.
  • FIG. 3B is an explanatory diagram illustrating a process in which the lower layer first input winding is applied to the stator used in the rotational position detection device according to Embodiment 1 of the present invention.
  • FIG. 1 is a schematic perspective view of a stator used in the rotational position detection device according to Embodiment 1 of the present invention.
  • FIG. 2 is a distribution diagram of the number of turns of the input winding included in the stator used in the rotational position detection device according to the first embodiment of the present invention.
  • FIG. 3C is an explanatory diagram illustrating a process in which the second input winding is applied to the stator used in the rotational position detection device according to Embodiment 1 of the present invention.
  • FIG. 3D is an explanatory diagram illustrating a process in which the upper layer first input winding is applied to the stator used in the rotational position detection device according to Embodiment 1 of the present invention.
  • 4 is a cross-sectional view taken along the line 4-4 shown in FIG.
  • FIG. 5 is an explanatory view of a main part of the stator used in the rotational position detection device according to Embodiment 1 of the present invention.
  • FIG. 6 is an explanatory diagram showing a difference between the offset voltage of the cos input voltage and the offset voltage of the sin input voltage generated in the rotational position detection device according to the first embodiment of the present invention.
  • FIG. 7 is an explanatory diagram illustrating a state in which the offset voltage of the cos input voltage and the offset voltage difference of the sin input voltage generated in the rotational position detection device according to the first embodiment of the present invention are corrected.
  • FIG. 8 is a comparison diagram comparing the angular accuracy error of rotation detection detected by the rotational position detection device according to Embodiment 1 of the present invention and the angular accuracy error of rotation detection detected by the conventional rotational position detection device.
  • FIG. 9 is a main part configuration diagram of the electric motor according to the second embodiment of the present invention.
  • FIG. 10A is an explanatory diagram illustrating a winding process of an output winding included in a stator used in a conventional rotational position detection device.
  • FIG. 10B is an explanatory diagram showing another winding process of the output winding included in the stator used in the conventional rotational position detection device.
  • FIG. 10C is an explanatory diagram illustrating another winding process of the output winding included in the stator used in the conventional rotational position detection device.
  • FIG. 11 is an explanatory diagram of an insulating cap including a winding separation wall used in a conventional rotational position detection device.
  • stator manufacturing method used in the rotational position detection device and the stator and motor used in the rotational position detection device which are embodiments of the present invention, have the following operational effects.
  • the stator or the like used in the rotational position detection device shown in the embodiment of the present invention has a two-phase input winding wound around a magnetic pole included in the stator core.
  • the two-phase input windings are 90 ° out of phase with each other.
  • Two-phase windings that are 90 ° out of phase can reduce offset voltage level deviation. Therefore, if the stator in the embodiment of the present invention is used, the accuracy of the rotational position angle detected by the rotational position detection device can be improved.
  • stator manufacturing method used in the conventional rotational position detection device has the following improvements.
  • a rotational position angle is calculated using a detection formula described later.
  • the amplitude of the input voltage be Er.
  • the amplitude of the input voltage is also called the amplitude of the excitation voltage.
  • the output voltage of the sin signal is Vsin.
  • the output voltage of the cos signal is Vcos.
  • the input frequency be f.
  • the input frequency is also called an excitation frequency.
  • time be t.
  • K be the voltage ratio, that is, the ratio of output voltage / input voltage.
  • the ratio K is determined by the number of windings and the width of the magnetic gap located between the stator and the rotor.
  • the rotational position angle is ⁇ .
  • the rotational position angle ⁇ is determined by the ratio between the amplitude value of the sin signal output voltage Vsin and the amplitude value of the cos signal output voltage Vcos. Therefore, in the rotational position detection device of the one-phase input / 2-phase output method, in order to calculate the rotational position angle, each winding is set so that the number of turns of the sin output winding coincides with the number of turns of the cos output winding. Wrap it around. In the one-phase input / 2-phase output type rotational position detection device, it is not necessary to consider the difference in offset voltage between the sin signal and the cos signal.
  • the distance from the magnetic pole 104 included in the stator core to the output winding A, and the starter core It is difficult to match the distance from the magnetic pole 104 including the output winding B to the sin winding 102.
  • the distance from the magnetic pole 104 included in the stator core to the output winding A is the distance from the magnetic pole 104 included in the stator core to the cos winding 101a that is the output winding A1, and the distance from the magnetic pole 104 included in the stator core to the output winding A2.
  • the rotational position detection device manufactured using the stator manufacturing method described in Patent Document 1 is in proportion to the rotational position angle in proportion to the number of turns wound in each slot.
  • a difference occurs in the level of the offset voltage between the cos output signal that is the sinusoidal output signal A and the sin output signal B that is the sinusoidal output signal B that is 90 ° out of phase with the output signal A. .
  • the inductance value of the output winding A for one phase which is the sum of the cosine winding 101a that is the output winding A1 for one phase and the cosine winding 101b that is the output winding A2 for one phase, It differs from the inductance value of the sin winding 102 which is the output winding B for one phase.
  • the cos winding 101a that is the output winding A1, the cos winding 101b that is the output winding A2, and the sin winding 102 that is the output winding B are different in the degree of overlapping of the windings. Further, since the degree of close contact between the windings is different, the capacitor components generated between the windings are also different.
  • the rotational position detection device manufactured using the stator manufacturing method described in Patent Document 1 has a difference between the detected rotational position angle because the offset voltage between the output signal A and the output signal B is shifted. There was a risk that the accuracy would be lowered.
  • the stator described in Patent Document 2 shown in FIG. 11 has a cosine winding as the output winding A and a sin winding as the output winding B at an equal distance from the magnetic pole 104 included in the stator core 103. It is winding. Therefore, the stator described in Patent Document 2 includes a cos output signal that is a sinusoidal output signal A corresponding to the rotation angle, and a sinusoidal output signal B that is 90 ° out of phase with the output signal A. The level of the offset voltage can be matched with a certain sin output signal.
  • the winding separation wall 106 b is located inside the insulating cap 106. That is, in the stator described in Patent Document 2, the volume of the coil 107 that forms the winding is reduced by the presence of the winding separation wall 106 b in the insulating cap 106. In other words, in order to obtain a desired output signal, the coil 107 having a predetermined winding is required, and it is difficult to reduce the size of the stator.
  • the stator described in Patent Document 2 constitutes the winding separation wall 106b, the shape of the insulating cap 106 becomes complicated. Therefore, the stator described in Patent Document 2 may cause burrs when the insulating cap 106 is formed. Therefore, the stator described in Patent Document 2 has an increased number of processes for processing burrs, so that productivity is lowered. Alternatively, the stator described in Patent Document 2 may be deteriorated in quality when burr processing leakage occurs.
  • a rotational position angle is calculated using a search formula described later.
  • the input voltage of the sin signal is Vrsin.
  • the amplitude of the input voltage Vrsin is Ersin.
  • the input voltage of the cos signal is Vrcos.
  • the amplitude of the input voltage Vrcos is Ercos.
  • the output voltage is Vo.
  • the input frequency be f.
  • the input frequency is also called an excitation frequency.
  • time be t.
  • K be the transformation ratio.
  • x be the phase shift between Vrsin and Vrcos.
  • the rotational position angle is ⁇ .
  • Vrsin Ersin ⁇ sin (2 ⁇ ft)
  • Vrcos Ercos ⁇ cos (2 ⁇ ft + x) Therefore, the output voltage Vo is as follows.
  • the rotational position angle is calculated from the angle difference between the zero cross points. . Specifically, 2 ⁇ ft when the output signal Vo crosses zero is obtained.
  • Equation (3) described above is expressed as sin (2 ⁇ ft). After reclassifying to cos (2 ⁇ ft) terms, both terms are divided by cos (2 ⁇ ft).
  • the stator used in the rotational position detection device has the number of turns N1 of the first input winding larger than the number N2 of turns of the second input winding.
  • the stator used in the rotational position detection device can reduce the difference in offset voltage generated between the input signal A and the input signal B by adjusting the following differences. .
  • the difference that occurs in the stator used in the rotational position detection device includes the distance between the first input winding and the magnetic pole included in the stator core, and the magnetic pole included in the second input winding and the stator core.
  • the inductance component is indicated by 2 ⁇ fL.
  • the winding arrangement of the first input winding and the winding arrangement of the second input winding are different, there is a difference in the degree of winding overlap and the degree of close contact between the windings. Differences occur in the capacitor components because of differences in the degree of winding overlap and the degree of close contact between the windings.
  • the capacitor component is indicated by 1 / 2 ⁇ fC.
  • the stator used in the rotational position detection device adjusts the number of turns difference between the number of turns N1 of the first input winding and the number of turns N2 of the second input winding for each magnetic pole. it can. Therefore, the stator used in the rotational position detection device in the embodiment of the present invention can reduce the difference in offset voltage generated between the input signal A and the input signal B. Therefore, the stator used in the rotational position detection device according to the embodiment of the present invention can reduce variations in the angle signal calculated using the input signal A and the input signal B. As a result, if the stator used in the rotational position detection device according to the embodiment of the present invention is used, the accuracy of the detection angle detected by the rotational position detection device can be improved.
  • FIG. 1 is a schematic perspective view of a stator used in the rotational position detection device according to Embodiment 1 of the present invention.
  • FIG. 2 is a distribution diagram of the number of turns of the input winding included in the stator used in the rotational position detection device according to the first embodiment of the present invention.
  • FIG. 3A is a flowchart showing a method for manufacturing a stator used in the rotational position detection device according to Embodiment 1 of the present invention.
  • FIG. 3B is an explanatory diagram illustrating a process in which the lower layer first input winding is applied to the stator used in the rotational position detection device according to Embodiment 1 of the present invention.
  • FIG. 3C is an explanatory diagram illustrating a process in which the second input winding is applied to the stator used in the rotational position detection device according to Embodiment 1 of the present invention.
  • FIG. 3D is an explanatory diagram illustrating a process in which the upper layer first input winding is applied to the stator used in the rotational position detection device according to Embodiment 1 of the present invention.
  • FIG. 4 is a cross-sectional view taken along the line 4-4 shown in FIG.
  • FIG. 5 is an explanatory view of a main part of the stator used in the rotational position detection device according to Embodiment 1 of the present invention.
  • FIG. 6 is an explanatory diagram showing a difference between the offset voltage of the cos input voltage and the offset voltage of the sin input voltage generated in the rotational position detection apparatus according to the first embodiment of the present invention.
  • FIG. 7 is an explanatory diagram illustrating a state in which the offset voltage of the cos input voltage and the offset voltage difference of the sin input voltage generated in the rotational position detection device according to the first embodiment of the present invention are corrected.
  • FIG. 8 is a comparison diagram comparing the angular accuracy error of rotation detection detected by the rotational position detection device according to Embodiment 1 of the present invention and the angular accuracy error of rotation detection detected by the conventional rotational position detection device.
  • the stator 30 includes a stator core 3, a lower layer first input winding 1 a, a second input winding 2, and an upper layer first input winding 1 b, Have
  • the stator core 3 includes an annular yoke portion 3a, a plurality of magnetic poles 14, and a slot 5.
  • the plurality of magnetic poles 14 are positioned with a certain interval along the circumference of the yoke portion 3a.
  • the plurality of magnetic poles 14 protrude toward one of the inner diameter side of the yoke portion 3a and the outer diameter side of the yoke portion 3a. In the first embodiment, the plurality of magnetic poles 14 protrude toward the inner diameter side of the yoke portion 3a.
  • the slot 5 is formed between each pair of adjacent magnetic poles 14.
  • the first input winding 1 is distributed in a sinusoidal shape over the entire circumference of the yoke portion 3a and is wound with the number of turns N1.
  • the lower layer first input winding 1a is the number of turns N1a of the first input winding 1 divided by the division ratio ⁇ with respect to the number of turns N1.
  • the lower layer first input winding 1 a passes through the respective slots 5 and is continuously wound around each of the plurality of magnetic poles 14.
  • the second input winding 2 is distributed in a sinusoidal shape that is 90 degrees out of phase with the first input winding 1 over the entire circumference of the yoke portion 3a, and is wound with the number of turns N2.
  • the second input winding 2 is continuously wound around each of the plurality of magnetic poles 14 through the slot 5 from above the wound lower layer first input winding 1a.
  • the upper layer first input winding 1b corresponds to the other number of turns N1b of the first input winding 1 divided by the division ratio ⁇ with respect to the number of turns N1.
  • the upper layer first input winding 1 b is continuously wound around each of the plurality of magnetic poles 14 through the slot 5 from above the wound second input winding 2.
  • the number of turns N1 is larger than the number of turns N2.
  • stator used in the rotational position detection device in the first embodiment will be described in detail with reference to the drawings.
  • the stator 30 includes a stator core 3, a winding described later, and an insulator 6.
  • the winding is wound around the stator core 3 through the slot 5 formed by the adjacent magnetic pole 14.
  • the insulator 6 is attached so as to cover both end faces 3 b and 3 c located in the direction of the axis 7 of the stator core 3.
  • the insulator 6 electrically insulates the stator core 3 and the winding.
  • the stator 30 according to the first embodiment includes a first input winding 1 and a second input winding 2 as windings.
  • the winding includes a first input winding 1 that generates a sinusoidal input signal A according to the rotational position angle of the rotor 40, and a sinusoidal input signal B that is 90 ° out of phase with the input signal A.
  • a second input winding 2 to be generated.
  • the first input winding 1 is distributed in a sinusoidal shape with respect to each magnetic pole 14.
  • the first input winding 1 is wound around the magnetic pole 14 through each slot so as to form a sine wave over the entire circumference of the stator core 3.
  • the first input winding 1 generates an input signal A.
  • the second input winding 2 is distributed sinusoidally with respect to each magnetic pole 14.
  • the second input winding 2 is wound around the magnetic pole 14 through each slot 5 so as to form a sine wave over the entire circumference of the stator core 3.
  • the second input winding 2 generates an input signal B.
  • FIG. 2 shows the distribution of the number of turns in each magnetic pole for the first input winding 1 and the second input winding 2. As shown in FIG. 2, the first input winding 1 and the second input winding 2 are 90 ° out of phase.
  • the stator manufacturing method includes a step S1 for preparing a stator core, a first winding step S2, a second winding step S3, and a third winding. Step S4.
  • Step S1 of preparing the stator core is a step of preparing the stator core 3 shown in FIG.
  • the description regarding the stator core 3 uses the content mentioned above.
  • the stator core 3 may be manufactured by itself or purchased from others.
  • the first winding step S2 is a step of winding the lower layer first input winding 1a of the first input winding 1 around the prepared stator core 3.
  • the description about the 1st input winding 1 and the lower layer 1st input winding 1a uses the content mentioned above.
  • the second winding step S3 is a step of winding the second input winding 2 after the lower layer first input winding 1a is wound.
  • the description regarding the 2nd input winding 2 uses the content mentioned above.
  • the third winding step S4 is a step of winding the upper layer first input winding 1b after the second input winding 2 is wound.
  • the description regarding the upper layer 1st input winding 1b uses the content mentioned above.
  • a method for manufacturing a stator used in a rotational position detecting device that exhibits particularly remarkable effects is as follows.
  • the number of turns N1 of the first input winding 1 is manufactured to be larger than the number of turns N2 of the second input winding 2.
  • the number of turns difference between the number of turns N1 of the first input winding 1 and the number of turns N2 of the second input winding 2 is manufactured to be different in each yoke portion 3a divided by the plurality of magnetic poles 14. In other words, the number of turns difference between the number of turns N1 and the number of turns N2 is different for each slot 5.
  • the first input winding 1 is wound around the magnetic pole 14 through each slot 5.
  • the first input winding 1 is distributed in a sinusoidal shape over the entire circumference of the stator core 3.
  • the first input winding 1 has the number of turns N1.
  • the first input winding 1 is divided into a lower layer first input winding 1a having a turn number N1a and an upper first input winding 1b having a turn number N1b by a division ratio ⁇ with a constant turn number N1.
  • the first winding step S2 shown in FIG. 3A will be described with reference to FIG. 3B.
  • the lower layer first input winding 1 a is wound around each magnetic pole 14 included in the stator core 3 through the slot 5.
  • the lower layer first input winding 1 a is continuously wound around all the magnetic poles 14.
  • the lower layer first input winding 1a has the number of turns N1a.
  • the lower layer first input winding 1 a forms the lowermost layer with respect to the magnetic pole 14.
  • the second winding step S3 shown in FIG. 3A will be described with reference to FIG. 3C.
  • the second input winding 2 is wound on the magnetic poles 14 through the slots 5.
  • the second input winding 2 is continuously wound around all the magnetic poles 14.
  • the third winding step S4 shown in FIG. 3A will be described with reference to FIG. 3D.
  • the upper layer first input winding 1 b is wound on the magnetic pole 14 so as to overlap with each other through the slot 5.
  • the upper first input winding 1b is continuously wound around all the magnetic poles 14.
  • the upper layer first input winding 1b has the number of turns N1b.
  • the upper layer first input winding 1 b forms the uppermost layer with respect to the magnetic pole 14.
  • the winding end portion of the lower layer first input winding 1a and the winding start portion of the upper layer first input winding 1b are electrically connected.
  • the second input winding 2 is wound around the magnetic pole 14 included in the stator core 3.
  • the lower layer first input winding 1a is located in the layer located below the second input winding 2
  • the upper layer first input winding 1b is located in the layer located above the second input winding 2.
  • the first input winding 1 is configured to sandwich the second input winding 2.
  • the plurality of magnetic poles 14 included in the stator core 3 are wound in the order of the lower layer first input winding 1a, the second input winding 2, and the upper layer first input winding 1b from the center toward the outside.
  • the wire is wound.
  • the interlinkage magnetic flux formed by the first input winding 1 and the second input winding 2 is generated in the stator 30 according to the first embodiment.
  • the stator 30 by adjusting the division ratio ⁇ , it is possible to adjust the ratio of the first input winding 1 and the second input winding 2 contributing to the linkage flux.
  • the impedance of the windings included in the first input winding 1 and the second input winding 2 can be adjusted by adjusting the division ratio ⁇ .
  • the stator 30 detects the rotational position angle of the rotor 40 by reducing variations between the input signal of the first input winding 1 and the input signal of the second input winding 2. To improve accuracy.
  • Table 1 shows an example of the winding distribution of the input windings positioned on each magnetic pole 14 in the stator 30 used in the rotational position detection device according to the first embodiment of the present invention.
  • the peak number of turns of the first input winding 1 and the second input winding 2 is 170 turns.
  • the first input winding 1 is a cos input winding.
  • the second input winding 2 is a sin input winding.
  • the first input winding 1 having the number of turns N1 is divided into a lower layer first input winding 1a having a number N1a and an upper first input winding 1b having a number N1b.
  • the lower layer first input winding 1 a and the upper layer first input winding 1 b are configured to sandwich the second input winding 2.
  • FIG. 5 shows a state in which the lower layer first input winding 1a, the second input winding 2, and the upper layer first input winding 1b are wound around the stator core 3 in consideration of the winding locus. .
  • the windings 1 and 2 are wound around the magnetic pole 14 via the insulator 6, the following state is obtained. That is, the windings 1 and 2 positioned on the center side of the wound windings 1 and 2 are in close contact with the insulator 6 and the windings 1 and 2 are also in close contact with each other.
  • the lower layer first input winding 1 a shown in FIG. 5 is in close contact with the insulator 6.
  • the windings 1 and 2 positioned on the outer peripheral side of the wound windings 1 and 2 are swollen, the distance from the magnetic pole 14 may be different even in the windings 1 and 2 forming the same layer. is there. At this time, the windings 1 and 2 may be wound around the magnetic pole 14 without being in close contact with each other.
  • the impedance value included in each input winding is obtained by the following equation.
  • Z R + (2 ⁇ fL) + (1 / 2 ⁇ fC)
  • a distance from the stator core 3 to the second input winding 2 that is a sin input winding is defined as a second distance.
  • each of the windings 1 and 2 is located on the inner side with respect to the magnetic pole 14, the lower first input winding 1 a located on the inner side, the second input winding 2 located on the center portion, and the outer side.
  • the upper layer first input winding 1b is wound in this order. As the windings 1 and 2 are located on the outer side, the degree of adhesion between the windings 1 and 2 decreases.
  • a voltage difference is generated between the offset voltage of the cos input voltage and the offset voltage of the sin input voltage.
  • the capacitor component of each input winding is represented by 1 / 2 ⁇ fC.
  • Table 2 shows another example of the winding distribution of the input windings positioned on each magnetic pole 14 in the stator 30 used in the rotational position detection device according to the first embodiment of the present invention.
  • the first input winding 1 has a magnetic pole No. 1 to magnetic pole No. 12 are distributed sinusoidally.
  • the first input winding 1 has the above-described sinusoidal distribution of turns difference except for the 0 turns shown in the 4th and 10th rows in Table 2.
  • the cos winding is wound three times more than the sin winding.
  • the first input winding 1 is divided into a lower layer first input winding 1a having a turn number N1a and an upper first input winding 1b having a turn number N1b by a division ratio ⁇ with a constant turn number N1.
  • the peak number of turns of the cos winding is 173 turns.
  • the peak number of sin windings is 170 turns.
  • the division ratio ⁇ of the first input winding 1 is 1.2. That is, the number of turns N1a of the lower layer first input winding 1a is 1.2 times the number of turns N1b of the upper layer first input winding 1b.
  • the lower layer first input winding 1 a positioned at the lowest layer with respect to the magnetic pole 14 passes through all the slots 5 and is continuously wound around the entire magnetic pole 14.
  • the lower layer first input winding 1a has the number of turns N1a.
  • the second input winding 2 is wound on the wound lower layer first input winding 1a.
  • the second input winding 2 is also continuously wound around all the magnetic poles 14 through all the slots 5.
  • the upper layer first input winding 1b is wound on the wound second input winding 2 in an overlapping manner.
  • the upper layer first input winding 1 b is also wound continuously around all the magnetic poles 14 through all the slots 5.
  • the upper layer first input winding 1b has the number of turns N1b.
  • winding end part of the lower layer first input winding 1a and the winding start part of the upper layer first input winding 1b are electrically connected.
  • the number of turns N1 of the first input winding 1 is wound three times more than the number of turns N2 of the second input winding 2.
  • the number of turns N1 is a value obtained by adding the number of turns N1a and the number of turns N1b.
  • the average value of the distance from the stator core 3 to the lower layer first input winding 1a and the distance from the stator core 3 to the upper layer first input winding 1b is expressed as the distance from the stator core 3 to the first input winding 1 In other words.
  • the influence of the difference in inductance component caused by the difference between the distance from the stator core 3 to the first input winding 1 and the distance from the stator core 3 to the second input winding 2 can be obtained.
  • the inductance component is represented by 2 ⁇ fL.
  • the lower layer first input winding 1a is wound, the second input winding 2 is wound, and the upper first input winding 1b is wound. It is possible to compensate for the influence of the different capacitor components, which is caused by the difference from the current state.
  • the capacitor component is expressed by 1 / 2 ⁇ fC.
  • the following expression is established which is a detection expression for detecting the angular position.
  • the stator 30 used in the rotational position detection device according to the first embodiment can compensate for the difference between the offset voltage of the cos input voltage and the offset voltage of the sin input voltage. Therefore, the stator 30 used in the rotational position detection device according to the first embodiment shown in the specific example 2 can improve the detection accuracy of the rotational position angle of the rotor 40.
  • the number of turns N1 of the first input winding 1 distributed in a sinusoidal shape over the entire circumference of the stator core 3 may be wound three times less than the number of turns N2 of the second input winding 2.
  • This configuration can eliminate the term of the phase shift x in the angular position detection formula described above. Therefore, this configuration can be expected to obtain the same effect as the configuration in which the number of turns N1 is three times greater than the number of turns N2.
  • Table 3 shows still another example of the distribution of the number of turns of the input windings positioned at each magnetic pole 14 in the stator 30 used in the rotational position detection device according to the first embodiment of the present invention.
  • the first input winding 1 has a magnetic pole No. 1 to magnetic pole No. 12 are distributed sinusoidally.
  • the first input winding 1 is wound twice or three times for each magnetic pole 14 except for the number of turns 0 shown in the fourth and tenth rows in Table 3.
  • the first input winding 1 is divided into a lower layer first input winding 1a having a turn number N1a and an upper first input winding 1b having a turn number N1b by a division ratio ⁇ with a constant turn number N1.
  • the peak number of cosine windings in the ccw direction is 173 turns.
  • the peak number of turns of the cos winding in the cw direction is 172 turns.
  • the peak number of sin windings is 170 turns.
  • the division ratio ⁇ of the first input winding 1 is 1.2. That is, the number of turns N1a of the lower layer first input winding 1a is 1.2 times the number of turns N1b of the upper layer first input winding 1b.
  • the lower layer first input winding 1a positioned in the lowermost layer with respect to the magnetic pole 14 is continuously wound around all the magnetic poles 14 through all the slots.
  • the lower layer first input winding 1a has the number of turns N1a.
  • the second input winding 2 is wound on the wound lower layer first input winding 1a.
  • the second input winding 2 is also continuously wound around all the magnetic poles 14 through all the slots 5.
  • the upper layer first input winding 1b is wound on the wound second input winding 2 in an overlapping manner.
  • the upper layer first input winding 1 b is also wound continuously around all the magnetic poles 14 through all the slots 5.
  • the upper layer first input winding 1b has the number of turns N1b.
  • winding end part of the lower layer first input winding 1a and the winding start part of the upper layer first input winding 1b are electrically connected.
  • the number of turns N1 of the first input winding 1 is finely adjusted for each magnetic pole 14.
  • the inductance component is represented by 2 ⁇ fL.
  • the capacitor component is represented by 1 / 2 ⁇ fC.
  • the stator 30 used in the rotational position detection device in the first embodiment shown in the specific example 3 can improve the detection accuracy of the rotational position angle of the rotor 40.
  • the stator 30 used in the rotational position detection device according to the first embodiment can compensate for the difference between the offset voltage of the cos input voltage and the offset voltage of the sin input voltage.
  • the variation in the angle signal can be reduced.
  • the stator 30 used in the rotational position detection device according to the first embodiment shown in the specific example 3 has a rotational position angle detection accuracy, that is, an angular accuracy error of nearly 1/5 as shown in FIG. Can be improved.
  • FIG. 9 is a main part configuration diagram of the electric motor according to the second embodiment of the present invention.
  • the electric motor 50 according to the second embodiment of the present invention includes the rotor 40 and the stator 30 manufactured by the manufacturing method described in the first embodiment.
  • This configuration can provide an electric motor having a rotational position detecting device with high detection accuracy as already described in the first embodiment.
  • the detection accuracy of the rotational position angle of the rotor can be improved by adjusting the number of turns of the input winding.
  • the rotational position detection device of the present invention can also be configured with metal parts or resin parts without using electronic parts or the like. Therefore, if it is mounted on an electric motor, positioning accuracy is required as in industrial robots and machine tools, and it can also be applied to severe applications in terms of environmental resistance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

本発明の回転位置検出装置に用いられるステータ(30)の製造方法は、ステータコア(3)を準備するステップと、第1の巻付けステップと、第2の巻付けステップと、第3の巻付けステップと、を有する。磁極(14)には、第1入力巻線と、第2入力巻線と、が巻き付けられる。第1入力巻線は、ヨーク部(3a)の全周に亘って正弦波状に分布して、巻数N1で巻き回される。第1入力巻線は、下層第1入力巻線と、上層第1入力巻線と、を含む。下層第1入力巻線は、第1入力巻線のうち、巻数N1に対して分割比αで分割された一方の巻数N1a分をいう。上層第1入力巻線は、第1入力巻線のうち、巻数N1に対して分割比αで分割された他方の巻数N1b分をいう。第2入力巻線は、ヨーク部(3a)の全周に亘って、第1入力巻線とは90度位相が異なる正弦波状に分布して、巻数N2で巻き回される。

Description

回転位置検出装置に用いられるステータの製造方法、回転位置検出装置に用いられるステータおよび電動機
 本発明は、回転位置検出装置に用いられるステータと、回転位置検出装置に用いられるステータの製造方法と、この製造方法で製造されたステータを有する電動機に関する。
 従来、回転位置検出装置は、産業用ロボットが有する位置決め装置の駆動部に用いられる。また、回転位置検出装置は、高速でネジ締めを行うネジ締め装置の駆動部にも用いられる。駆動部は、制御部で制御される電動機を有する。
 回転位置検出装置で検出された出力信号は、サーボアンプや専用コントローラに取り込まれる。サーボアンプや専用コントローラに取り込まれた出力信号は、サーボアンプや専用コントローラにおいて、回転位置情報として演算される。サーボアンプや専用コントローラは、演算した回転位置情報を電動機の制御部に送信する。制御部は、受信した回転位置情報に基づいて、所定の回転位置となるように、電動機を制御する。
 回転位置検出装置は、サーボアンプや専用コントローラの制御構成により、1相入力/2相出力方式や、2相入力/1相出力方式等がある。サーボアンプや専用コントローラには、レゾルバ-デジタルコンバータ(Resolver-Digital Converter。以下、「RDコンバータ」と記す。)が含まれる。
 1相入力/2相出力方式では、回転位置検出装置から2相の信号が出力される。出力される2相の信号は、sin信号と、cos信号と、である。RDコンバータは、回転位置検出装置から出力された2相の信号を用いて、回転位置情報を算出する。
 一方、2相入力/1相出力方式では、回転位置検出装置に2相の入力信号が入力され、回転位置検出装置から正弦波状の信号が出力される。入力される2相の信号は、sin信号と、cos信号と、である。ロータ40の回転位置角度は、入力される2相のうち1相の信号、例えば、sin信号と、出力された正弦波状の信号と、を用いて、直接、回転位置情報を算出できる。よって、2相入力/1相出力方式は、サーボアンプや専用コントローラの構成を簡素化できる。
 特許文献1には、1相入力/2相出力方式の回転位置検出装置に用いられるステータの製造方法が開示されている。図10Aから図10Cを用いて、特許文献1に記載されたステータの製造方法を説明する。
 図10Aは、従来の回転位置検出装置に用いられるステータが含む出力巻線の巻線工程を示す説明図である。図10Bは、従来の回転位置検出装置に用いられるステータが含む出力巻線の他の巻線工程を示す説明図である。図10Cは、従来の回転位置検出装置に用いられるステータが含む出力巻線の他の巻線工程を示す説明図である。
 特許文献1に記載された製造方法において、図10Aに示すように、出力巻線A1であるcos巻線101aは、ステータコアに形成された磁極104に巻き回される。cos巻線101aは、磁極104に対して、最下層に位置付けられる。
 図10Bに示すように、巻き回されたcos巻線101aの外周には、出力巻線Bであるsin巻線102が巻き回される。
 図10Cに示すように、さらに、巻き回されたsin巻線102の外周には、出力巻線A2であるcos巻線101bが巻き回される。
 また、特許文献2には、回転位置検出装置に用いられるステータが有する絶縁キャップ(本願のインシュレータに相当)に、巻線分離壁を含む方法が開示されている。
 図11は、従来の回転位置検出装置に用いられる、巻線分離壁を含む絶縁キャップの説明図である。
 図11に示すように、特許文献2に記載されたステータコア103は、隣接する磁極104間にスロット105が形成される。スロット105には、絶縁キャップ106が取り付けられる。絶縁キャップ106は、絶縁キャップ内壁106aと、巻線分離壁106bと、を含む。絶縁キャップ106の内部には、コイル107が巻き回される。
 コイル107は、絶縁キャップ106により、ステータコア103から絶縁される。コイル107は、巻線分離壁106bにより、第1のコイル部107aと、第2のコイル部107bとに、分離される。第1のコイル部107aと第2のコイル部107bとは、一方がsin巻線として用いられ、他方がcos巻線として用いられる。
 特許文献2に記載されたステータコア103は、sin巻線とcos巻線とが巻き回される領域が分けられているため、sin巻線とcos巻線とをステータコア103が含む磁極104から等しい距離で巻き回すことができる。
特許第5105029号公報 特開平9―121495号公報
 本発明が対象とする回転位置検出装置に用いられるステータの製造方法は、ステータコアを準備するステップと、第1の巻付けステップと、第2の巻付けステップと、第3の巻付けステップと、を有する。
 ステータコアを準備するステップにおいて、準備するステータコアは、ヨーク部と、複数の磁極と、スロットと、を含む。
 ヨーク部は、環状に形成される。複数の磁極は、ヨーク部の周に沿って一定の間隔を有して位置する。複数の磁極は、ヨーク部の内径側およびヨーク部の外径側のいずれか一方に向かって突出する。スロットは、隣接する一対の複数の磁極間のそれぞれに形成される。
 ステータコアが含む磁極に巻き付けられる入力巻線は、第1入力巻線と、第2入力巻線と、を含む。
 第1入力巻線は、ヨーク部の全周に亘って正弦波状に分布して、巻数N1で巻き回される。第1入力巻線は、下層第1入力巻線と、上層第1入力巻線と、を含む。下層第1入力巻線は、第1入力巻線のうち、巻数N1に対して分割比αで分割された一方の巻数N1a分をいう。上層第1入力巻線は、第1入力巻線のうち、巻数N1に対して分割比αで分割された他方の巻数N1b分をいう。
 第2入力巻線は、ヨーク部の全周に亘って、第1入力巻線とは90度位相が異なる正弦波状に分布して、巻数N2で巻き回される。
 第1の巻付けステップでは、下層第1入力巻線が、それぞれのスロットを通って、複数の磁極のそれぞれに連続して巻き付けられる。
 第2の巻付けステップでは、第2入力巻線が、巻き付けられた下層第1入力巻線の上から、スロットを通って、複数の磁極のそれぞれに連続して巻き付けられる。
 第3の巻付けステップでは、上層第1入力巻線が、巻き付けられた第2入力巻線の上から、スロットを通って、複数の磁極のそれぞれに連続して巻き付けられる。
図1は、本発明の実施の形態1における回転位置検出装置に用いられるステータの概要斜視図である。 図2は、本発明の実施の形態1における回転位置検出装置に用いられるステータが有する入力巻線の巻数分布図である。 図3Aは、本発明の実施の形態1における回転位置検出装置に用いられるステータの製造方法を示すフローチャートである。 図3Bは、本発明の実施の形態1における回転位置検出装置に用いられるステータに下層第1入力巻線が施される工程を示す説明図である。 図3Cは、本発明の実施の形態1における回転位置検出装置に用いられるステータに第2入力巻線が施される工程を示す説明図である。 図3Dは、本発明の実施の形態1における回転位置検出装置に用いられるステータに上層第1入力巻線が施される工程を示す説明図である。 図4は、図1中に示す4-4断面図である。 図5は、本発明の実施の形態1における回転位置検出装置に用いられるステータの要部説明図である。 図6は、本発明の実施の形態1における回転位置検出装置で生じるcos入力電圧のオフセット電圧とsin入力電圧のオフセット電圧差を示す説明図である。 図7は、本発明の実施の形態1における回転位置検出装置で生じるcos入力電圧のオフセット電圧とsin入力電圧のオフセット電圧差とを補正した状態を示す説明図である。 図8は、本発明の実施の形態1における回転位置検出装置が検出する回転検出の角度精度誤差と従来の回転位置検出装置が検出する回転検出の角度精度誤差とを比較した比較図である。 図9は、本発明の実施の形態2における電動機の要部構成図である。 図10Aは、従来の回転位置検出装置に用いられるステータが含む出力巻線の巻線工程を示す説明図である。 図10Bは、従来の回転位置検出装置に用いられるステータが含む出力巻線の他の巻線工程を示す説明図である。 図10Cは、従来の回転位置検出装置に用いられるステータが含む出力巻線の他の巻線工程を示す説明図である。 図11は、従来の回転位置検出装置に用いられる、巻線分離壁を含む絶縁キャップの説明図である。
 本発明の実施の形態である、回転位置検出装置に用いられるステータの製造方法、回転位置検出装置に用いられるステータおよび電動機は、つぎの作用効果を奏する。
 すなわち、本発明の実施の形態で示す、回転位置検出装置に用いられるステータ等は、ステータコアが含む磁極に巻き回された2相の入力巻線を有する。2相の入力巻線は、お互いの位相が90°ずれている。90°位相がずれた2相の巻線は、オフセット電圧のレベルずれを低減できる。よって、本発明の実施の形態におけるステータを用いれば、回転位置検出装置が検出する回転位置角度の精度を向上できる。
 つまり、従来の回転位置検出装置に用いられるステータの製造方法等には、つぎの改善点があった。
 まず、一般的に、1相入力/2相出力方式の回転位置検出装置では、後述する検出式を用いて、回転位置角度が算出される。
 つまり、入力電圧の振幅をErとする。入力電圧の振幅は、励磁電圧の振幅ともいう。sin信号の出力電圧をVsinとする。cos信号の出力電圧をVcosとする。入力周波数をfとする。入力周波数は、励磁周波数ともいう。時間をtとする。電圧比、すなわち、出力電圧/入力電圧の比率をKとする。比率Kは、巻線の巻数や、ステータとロータとの間に位置する磁気ギャップの幅によって定まる。回転位置角度をθとする。
 このとき、sin信号の出力電圧と、cos信号の出力電圧とは、次式で算出される。
 Vsin = K・Er・sin(2πft)・sinθ
 Vcos = K・Er・sin(2πft)・cosθ
 よって、回転位置角度θは、次式で算出される。
 θ=tan-1(Vsin/Vcos)=tan-1(sinθ/cosθ)
 上述した式から明らかなように、回転位置角度θは、sin信号の出力電圧Vsinの振幅値と、cos信号の出力電圧Vcosの振幅値との比率で決まる。従って、1相入力/2相出力方式の回転位置検出装置では、回転位置角度を算出するために、sin出力巻線の巻数と、cos出力巻線の巻数とを一致させるように、各巻線を巻き回せばよい。また、1相入力/2相出力方式の回転位置検出装置では、sin信号とcos信号とのオフセット電圧の差を考慮する必要はない。
 ところで、上述したように、図10Aから図10Cに示した、特許文献1に記載されたステータの製造方法を用いた場合、ステータコアが含む磁極104から出力巻線Aまでの距離と、スタータコアが含む磁極104から出力巻線Bであるsin巻線102までの距離とを、一致させることは、困難である。なお、ステータコアが含む磁極104から出力巻線Aまでの距離とは、ステータコアが含む磁極104から出力巻線A1であるcos巻線101aまでの距離と、ステータコアが含む磁極104から出力巻線A2であるcos巻線101bまでの距離とを平均した、平均距離をいう。
 さらに、後述する差異を有するため、特許文献1に記載されたステータの製造方法を用いて製造された回転位置検出装置は、各スロットに巻き回された巻数に比例して、回転位置角度に応じた正弦波状の出力信号Aであるcos出力信号と、出力信号Aに対して90°位相がずれた正弦波状の出力信号Bであるsin出力信号との間で、オフセット電圧のレベルに差が生じる。
 ここで、特許文献1に記載されたステータの製造方法を用いて製造された回転位置検出装置に生じる差異には、つぎのものがある。すなわち、1相分の出力巻線A1であるcos巻線101aと、1相分の出力巻線A2であるcos巻線101bと、を合わせた1相分の出力巻線Aのインダクタンス値と、1相分の出力巻線Bであるsin巻線102のインダクタンス値とは、異なる。また、出力巻線A1であるcos巻線101aと、出力巻線A2であるcos巻線101bと、出力巻線Bであるsin巻線102とは、各巻線の重なり具合が異なる。さらに、各巻線同士の密着具合が異なるため、各巻線間で生じるキャパシタ成分も異なる。
 以上の理由により、特許文献1に記載されたステータの製造方法を用いて製造された回転位置検出装置は、出力信号Aと出力信号Bとのオフセット電圧がずれるため、検出された回転位置角度の精度が低くなる虞があった。
 一方、図11に示した、特許文献2に記載されたステータは、出力巻線Aであるcos巻線と、出力巻線Bであるsin巻線とをステータコア103が含む磁極104から等しい距離で巻き回している。よって、特許文献2に記載されたステータは、回転角度に応じた、正弦波状の出力信号Aであるcos出力信号と、出力信号Aに対して90°位相がずれた正弦波状の出力信号Bであるsin出力信号との間で、オフセット電圧のレベルを一致させることができる。
 しかしながら、特許文献2に記載されたステータは、絶縁キャップ106の内部に巻線分離壁106bが位置する。つまり、特許文献2に記載されたステータは、絶縁キャップ106内において、巻線分離壁106bが存在する分、巻線を成すコイル107を巻き回す体積が少なくなる。換言すれば、所望の出力信号を得るには、所定の巻線を成すコイル107が必要となるため、ステータを小型化することは困難となる。
 さらに、特許文献2に記載されたステータは、巻線分離壁106bを構成するため、絶縁キャップ106の形状が複雑になる。よって、特許文献2に記載されたステータは、絶縁キャップ106を成形する際、バリが生じる虞がある。従って、特許文献2に記載されたステータは、バリを処理する工程が増えるため、生産性が低下する。あるいは、特許文献2に記載されたステータは、バリの処理漏れが生じた場合、品質が低下する虞もある。
 そこで、本発明の実施の形態において、2相入力/1相出力方式の回転位置検出装置を採用することを検討する。
 一般的に、2相入力/1相出力方式の回転位置検出装置では、後述する検索式を用いて、回転位置角度が算出される。
 つまり、sin信号の入力電圧をVrsinとする。入力電圧Vrsinの振幅をErsinとする。cos信号の入力電圧をVrcosとする。入力電圧Vrcosの振幅をErcosとする。出力電圧をVoとする。入力周波数をfとする。入力周波数は、励磁周波数ともいう。時間をtとする。変圧比をKとする。VrsinとVrcosとの位相ずれをxとする。回転位置角度をθとする。
 このとき、sin信号の入力電圧と、cos信号の入力電圧とは、次式で算出される。
 Vrsin = Ersin・sin(2πft)
 Vrcos = Ercos・cos(2πft+x)
 よって、出力電圧Voは、つぎのようになる。
 Vo = K[Ersin・cosθ・sin(2πft)-Ercos・sinθ・cos(2πft+x)] ・・・(1)式
 ここで、上述した式より、2相入力/1相出力方式の回転位置検出装置を用いて、算出される回転位置角度は、つぎのようになる。
 すなわち、正弦波状の出力信号と、入力信号の2相、つまりsin信号とcos信号のうち、1相の入力信号であるsin信号について、それぞれのゼロクロス点の角度差より、回転位置角度を算出する。具体的には、出力信号Voがゼロクロスするときの2πftを求める。
 よって、(1)式について、Vo=0の位置で考えると、以下の計算結果が得られる。
 0 = K[Ersin・cosθ・sin(2πft)-Ercos・sinθ・cos(2πft+x)]
 Ersin・cosθ・sin(2πft)-Ercos・sinθ・cos(2πft+x) = 0 ・・・(2)式
 ここで、上述した(2)式に加法定理を適用すると、cos(2πft+x)=cosx・cos(2πft)-sinx・sin(2πft)となるため、以下の(3)式を得る。
 Ersin・cosθ・sin(2πft)-Ercos・sinθ・[cosx・cos(2πft)-sinx・sin(2πft)] = 0 ・・・(3)式
 上述した(3)式を、sin(2πft)とcos(2πft)の項に分類し直した後、両方の項をcos(2πft)で割る。
 [Ersin・cosθ+Ercos・sinx・sinθ]sin(2πft)-Ercos・cosx・sinθ・cos(2πft) = 0
 [Ersin・cosθ+Ercos・sinx・sinθ]tan(2πft)-Ercos・cosx・sinθ = 0
 tan(2πft) = Ercos・cosx・sinθ/(Ersin・cosθ+Ercos・sinx・sinθ) ・・・(4)式
 上述した(4)式より、下記の(5)式が導き出される。(5)式を用いれば、それぞれの時間タイミングにおいて、2相入力/1相出力方式の回転位置検出装置で検出される回転位置角度θが求められる。
 2πft = tan-1[Ercos・cosx・sinθ/(Ersin・cosθ+Ercos・sinx・sinθ)] ・・・(5)式
 ところで、上述した(5)式には、位相ずれxが含まれる。よって、2相入力/1相出力方式の回転位置検出装置を用いて、回転位置角度情報を精度良く計算するには、位相ずれxの項を無くす必要がある。位相ずれxの項を無くすためには、sin信号とcos信号とのオフセット電圧の差を無くす必要がある。
 そこで、後述する本発明の実施の形態によれば、回転位置検出装置に用いられるステータは、第1入力巻線の巻数N1が第2入力巻線の巻数N2よりも多い。
 本構成とすれば、本発明の実施の形態における回転位置検出装置に用いられるステータは、以下の差異を調整して、入力信号Aと入力信号Bとの間に生じるオフセット電圧の差を低減できる。
 すなわち、本発明の実施の形態における回転位置検出装置に用いられるステータで生じる差異とは、第1入力巻線とステータコアが含む磁極との間の距離と、第2入力巻線とステータコアが含む磁極との間の距離とが異なることにより生じる、インダクタンス成分の違いである。インダクタンス成分は、2πfLで示される。
 また、第1入力巻線の巻線配置と、第2入力巻線の巻線配置とが異なるため、巻線の重なり具合や巻線同士の密着度に違いが生じる。巻線の重なり具合や巻線同士の密着度に違いが生じるため、キャパシタ成分に違いが発生する。キャパシタ成分は、1/2πfCで示される。
 さらに、本発明の実施の形態によれば、回転位置検出装置に用いられるステータは、第1入力巻線の巻数N1と、第2入力巻線の巻数N2との巻数差を、磁極毎に調整できる。よって、本発明の実施の形態における回転位置検出装置に用いられるステータは、入力信号Aと、入力信号Bとの間で生じるオフセット電圧の差を低減できる。従って、本発明の実施の形態における回転位置検出装置に用いられるステータは、入力信号Aと入力信号Bとを使って算出される角度信号のバラツキを低減できる。この結果、本発明の実施の形態における回転位置検出装置に用いられるステータを用いれば、回転位置検出装置が検出する、検出角度の精度を向上できる。
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、以下の実施の形態は、本発明を具現化した一例であって、本発明の技術的範囲を制限するものではない。
 (実施の形態1)
 図1は、本発明の実施の形態1における回転位置検出装置に用いられるステータの概要斜視図である。図2は、本発明の実施の形態1における回転位置検出装置に用いられるステータが有する入力巻線の巻数分布図である。
 図3Aは、本発明の実施の形態1における回転位置検出装置に用いられるステータの製造方法を示すフローチャートである。図3Bは、本発明の実施の形態1における回転位置検出装置に用いられるステータに下層第1入力巻線が施される工程を示す説明図である。図3Cは、本発明の実施の形態1における回転位置検出装置に用いられるステータに第2入力巻線が施される工程を示す説明図である。図3Dは、本発明の実施の形態1における回転位置検出装置に用いられるステータに上層第1入力巻線が施される工程を示す説明図である。
 図4は、図1中に示す4-4断面図である。図5は、本発明の実施の形態1における回転位置検出装置に用いられるステータの要部説明図である。
 図6は、本発明の実施の形態1における回転位置検出装置で生じるcos入力電圧のオフセット電圧とsin入力電圧のオフセット電圧差を示す説明図である。図7は、本発明の実施の形態1における回転位置検出装置で生じるcos入力電圧のオフセット電圧とsin入力電圧のオフセット電圧差とを補正した状態を示す説明図である。図8は、本発明の実施の形態1における回転位置検出装置が検出する回転検出の角度精度誤差と従来の回転位置検出装置が検出する回転検出の角度精度誤差とを比較した比較図である。
 まず、図1から図4を用いて、本発明の実施の形態1における回転位置検出装置に用いられるステータについて、説明する。
 図1、図4に示すように、本実施の形態1におけるステータ30は、ステータコア3と、下層第1入力巻線1aと、第2入力巻線2と、上層第1入力巻線1bと、を有する。
 ステータコア3は、環状に形成されたヨーク部3aと、複数の磁極14と、スロット5と、を含む。
 複数の磁極14は、ヨーク部3aの周に沿って一定の間隔を有して位置する。複数の磁極14は、ヨーク部3aの内径側およびヨーク部3aの外径側のいずれか一方に向かって突出する。本実施の形態1において、複数の磁極14は、ヨーク部3aの内径側に向かって突出する。
 スロット5は、隣接する一対の複数の磁極14間のそれぞれに形成される。
 図2、図4に示すように、第1入力巻線1は、ヨーク部3aの全周に亘って正弦波状に分布し、巻数N1で巻き回される。下層第1入力巻線1aは、第1入力巻線1のうち、巻数N1に対して分割比αで分割された一方の巻数N1a分である。下層第1入力巻線1aは、それぞれのスロット5を通って、複数の磁極14のそれぞれに連続して巻き付けられる。
 第2入力巻線2は、ヨーク部3aの全周に亘って、第1入力巻線1とは90度位相が異なる正弦波状に分布し、巻数N2で巻き回される。第2入力巻線2は、巻き付けられた下層第1入力巻線1aの上から、スロット5を通って、複数の磁極14のそれぞれに連続して巻き付けられる。
 上層第1入力巻線1bは、第1入力巻線1のうち、巻数N1に対して分割比αで分割された他方の巻数N1b分である。上層第1入力巻線1bは、巻き付けられた第2入力巻線2の上から、スロット5を通って、複数の磁極14のそれぞれに連続して巻き付けられる。
 巻数N1は、巻数N2よりも多い。
 さらに、図面を用いて、本実施の形態1における回転位置検出装置に用いられるステータについて、詳細に説明する。
 図1に示すように、本実施の形態1におけるステータ30は、ステータコア3と、後述する巻線と、インシュレータ6と、を有する。巻線は、隣接する磁極14によって形成されたスロット5を通って、ステータコア3に巻き回される。インシュレータ6は、ステータコア3の軸心7方向に位置する両方の端面3b、3cを覆うように取り付けられる。インシュレータ6は、ステータコア3と巻線とを電気的に絶縁する。
 図2、図4に示すように、本実施の形態1におけるステータ30は、巻線として、第1入力巻線1と、第2入力巻線2と、を有する。
 巻線は、ロータ40の回転位置角度に応じて、正弦波状の入力信号Aを発生させる第1入力巻線1と、入力信号Aに対して90°位相がずれた正弦波状の入力信号Bを発生させる第2入力巻線2と、を含む。
 図2に示すように、第1入力巻線1は、各磁極14に対して正弦波状に分布している。換言すれば、第1入力巻線1は、ステータコア3の全周に亘って、正弦波を形成するように、各スロットを通って磁極14に巻き付けられる。第1入力巻線1は、入力信号Aを発生させる。
 同様に、第2入力巻線2は、各磁極14に対して正弦波状に分布している。換言すれば、第2入力巻線2は、ステータコア3の全周に亘って、正弦波を形成するように、各スロット5を通って磁極14に巻き付けられる。第2入力巻線2は、入力信号Bを発生させる。
 図2には、第1入力巻線1と第2入力巻線2について、それぞれ各磁極における巻数の分布が示される。図2に示すように、第1入力巻線1と第2入力巻線2とは、位相が90°ずれている。
 つぎに、図3Aから図3Dを用いて、本発明の実施の形態1における回転位置検出装置に用いられるステータ30の製造方法について、説明する。
 図3Aに示すように、本実施の形態1におけるステータの製造方法は、ステータコアを準備するステップS1と、第1の巻付けステップS2と、第2の巻付けステップS3と、第3の巻付けステップS4と、を有する。
 ステータコアを準備するステップS1は、図1に示すステータコア3を準備する工程である。ステータコア3に関する説明は、上述した内容を援用する。ステータコア3は、自ら製造してもよく、他者から購入してもよい。
 第1の巻付けステップS2は、準備したステータコア3に対して、第1入力巻線1のうち、下層第1入力巻線1aを巻き付ける工程である。第1入力巻線1と、下層第1入力巻線1aに関する説明は、上述した内容を援用する。
 第2の巻付けステップS3は、下層第1入力巻線1aが巻き付けられた上に、第2入力巻線2を巻き付ける工程である。第2入力巻線2に関する説明は、上述した内容を援用する。
 第3の巻付けステップS4は、第2入力巻線2が巻き付けられた上に、上層第1入力巻線1bを巻き付ける工程である。上層第1入力巻線1bに関する説明は、上述した内容を援用する。
 特に顕著な作用効果を奏する、回転位置検出装置に用いられるステータの製造方法は、以下のとおりである。
 すなわち、第1入力巻線1の巻数N1は、第2入力巻線2の巻数N2よりも多くなるよう、製造される。
 あるいは、第1入力巻線1の巻数N1と第2入力巻線2の巻数N2との巻数差は、複数の磁極14で区切られた、それぞれのヨーク部3aで異なるよう、製造される。換言すれば、巻数N1と巻数N2との巻数差は、スロット5毎で異なるよう、製造される。
 さらに、図3Bから図3Dを用いて、本実施の形態1におけるステータの製造方法について、詳細に説明する。
 既に、図2を用いて説明したように、第1入力巻線1は、各スロット5を通って、磁極14に巻き回される。第1入力巻線1は、ステータコア3の全周に亘って、正弦波状に分布する。第1入力巻線1は、巻数N1である。第1入力巻線1は、巻数N1が一定の分割比αにより、巻数N1aの下層第1入力巻線1aと、巻数N1bの上層第1入力巻線1bとに分割される。
 図3Bを用いて、図3Aで示した第1の巻付けステップS2について、説明する。
 図3Bに示すように、ステータコア3に含まれる各磁極14には、スロット5を通って、下層第1入力巻線1aが巻き回される。下層第1入力巻線1aは、全ての磁極14に対して、連続して巻き回される。下層第1入力巻線1aは、巻数N1aである。下層第1入力巻線1aは、磁極14に対して最下層を形成する。
 図3Cを用いて、図3Aで示した第2の巻付けステップS3について、説明する。
 図3Cに示すように、各磁極14に下層第1入力巻線1aが巻き付けられた後、その上には、第2入力巻線2が、スロット5を通って、重ねて巻き回される。第2入力巻線2は、全ての磁極14に対して、連続して巻き回される。
 図3Dを用いて、図3Aで示した第3の巻付けステップS4について、説明する。
 図3Dに示すように、各磁極14に第2入力巻線2が巻き付けられた後、その上には、上層第1入力巻線1bが、スロット5を通って、重ねて巻き回される。上層第1入力巻線1bは、全ての磁極14に対して、連続して巻き回される。上層第1入力巻線1bは、巻数N1bである。上層第1入力巻線1bは、磁極14に対して最上層を形成する。なお、下層第1入力巻線1aの巻き終わり部分と、上層第1入力巻線1bの巻き始め部分とは、電気的に接続される。
 図4に示すように、本実施の形態1における回転位置検出装置に用いられるステータの製造方法を実施した結果、ステータコア3が含む磁極14に対して第2入力巻線2が巻き回される。第2入力巻線2の下側に位置する層には、下層第1入力巻線1aが位置し、第2入力巻線2の上側に位置する層には、上層第1入力巻線1bが位置する。つまり、第1入力巻線1は、第2入力巻線2を挟み込むよう、構成される。
 換言すれば、ステータコア3が含む複数の磁極14には、それぞれ、中心から外側に向かって、下層第1入力巻線1a、第2入力巻線2、上層第1入力巻線1bの順に、巻線が巻き回される。
 本構成とすれば、本実施の形態1におけるステータ30には、第1入力巻線1と第2入力巻線2とで形成する、鎖交磁束が生じる。ステータ30において、分割比αを調整すれば、第1入力巻線1と第2入力巻線2とが、鎖交磁束に対して寄与する割合を調整できる。また、ステータ30において、分割比αを調整すれば、第1入力巻線1と第2入力巻線2とに含まれる巻線のインピーダンスを調整できる。
 よって、本実施の形態1におけるステータ30は、第1入力巻線1の入力信号と、第2入力巻線2の入力信号と、のバラツキを低減させることで、ロータ40の回転位置角度を検出する精度が向上する。
 1.具体例1
 つぎに、表1には、本発明の実施の形態1における回転位置検出装置に用いられるステータ30において、各磁極14に位置する入力巻線の巻線分布の一例が示される。
Figure JPOXMLDOC01-appb-T000001
 表1中、「CW」とは、時計回り(ClockWise)を示す。「CCW」とは、反時計回り(Counter ClockWise)を示す。
 本実施の形態1で示す一例において、第1入力巻線1と第2入力巻線2とのピーク巻数は、170ターンとした。第1入力巻線1の分割比は、α=1.2とした。第1入力巻線1は、cos入力巻線である。第2入力巻線2は、sin入力巻線である。巻数N1の第1入力巻線1は、巻数N1aの下層第1入力巻線1aと、巻数N1bの上層第1入力巻線1bに分割される。各磁極14において、下層第1入力巻線1aと上層第1入力巻線1bとは、第2入力巻線2を挟み込むように構成された。
 図5に示すように、本実施の形態1におけるステータは、上述した製造方法により、各巻線1、2がステータコア3が含む磁極14に巻き回される。図5には、巻線軌跡を考慮して、ステータコア3に下層第1入力巻線1aと、第2入力巻線2と、上層第1入力巻線1bとが巻き回された状態が示される。
 実際に、巻線1、2が、インシュレータ6を介して、磁極14に何層も巻き重ねられると、つぎの状態となる。すなわち、巻き重ねられる巻線1、2の中心側に位置する巻線1、2は、インシュレータ6に密着し、巻線1、2同士も密着する。本実施の形態1において、図5に示す、下層第1入力巻線1aは、インシュレータ6に密着する。
 一方、巻き重ねられる巻線1、2の外周側に位置する巻線1、2は、巻き膨れるため、同じ層を成す巻線1、2であっても、磁極14からの距離が異なることがある。このとき、巻線1、2同士も密着することなく、磁極14に巻き回されることがある。
 cos入力巻線とsin入力巻線とにおいて、それぞれの入力巻線が含むインピーダンス値は、次式で求められる。
 Z=R+(2πfL)+(1/2πfC)
 ここで、ステータコア3からcos下層入力巻線である下層第1入力巻線1aまでの距離と、ステータコア3からcos上層入力巻線である上層第1入力巻線1bまでの距離とを平均した値を、第1の距離とする。また、ステータコア3からsin入力巻線である第2入力巻線2までの距離を、第2の距離とする。
 このとき、第1の距離と第2の距離との差が大きくなると、cos入力巻線のインダクタンス成分と、sin入力巻線のインダクタンス成分との間に差が生じる。
 この結果、図6に示すように、cos入力電圧のオフセット電圧とsin入力電圧のオフセット電圧との間で、電圧差が生じる。各入力巻線のインダクタンス成分は、2πfLで表される。
 さらに、図5に示すように、各巻線1、2は、磁極14に対して、内側に位置する下層第1入力巻線1a、中央部分に位置する第2入力巻線2、外側に位置する上層第1入力巻線1bの順で、巻き回される。各巻線1、2は、外側に位置するほど、巻線1、2同士の密着度が低くなる。
 よって、cos入力巻線のキャパシタ成分とsin入力巻線のキャパシタ成分との間に差が生じる。
 この結果、図6に示すように、cos入力電圧のオフセット電圧とsin入力電圧のオフセット電圧との間で、電圧差が生じる。各入力巻線のキャパシタ成分は、1/2πfCで表される。
 2.具体例2
 つぎに、表2には、本発明の実施の形態1における回転位置検出装置に用いられるステータ30において、各磁極14に位置する入力巻線の巻線分布の他の一例が示される。
Figure JPOXMLDOC01-appb-T000002
 表2中、「CW」とは、時計回り(ClockWise)を示す。「CCW」とは、反時計回り(Counter ClockWise)を示す。
 表2に示す、「cos巻数-sin巻数」には、以下の内容が示される。すなわち、cos入力電圧とsin入力電圧との間には、90°の位相差がある。この90°の位相差を反映して、例えば、表2中、1列目に記載された磁極No.1のcos巻数と、4列目に記載された磁極NO.4のsin巻数との差を比較する。この差が、cos巻線とsin巻線との正弦波状分布の巻数差となる。表2から明らかなように、cos巻線は、sin巻線より3回多く巻き回されている。
 さらに、詳細に表2を検討する。
 表2に示すように、第1入力巻線1は、磁極No.1から磁極No.12に亘って、正弦波状に分布している。第1入力巻線1は、表2中、4列目と10列目に示す、巻数0回を除いて、上述した正弦波状分布の巻数差が存在する。具体的には、cos巻線は、sin巻線より3回多く巻き回されている。
 第1入力巻線1は、巻数N1が一定の分割比αによって、巻数N1aの下層第1入力巻線1aと巻数N1bの上層第1入力巻線1bとに分割される。
 本具体例2において、cos巻線のピーク巻数は、173ターンである。また、sin巻線のピーク巻数は、170ターンである。第1入力巻線1の分割比αは、1.2である。つまり、下層第1入力巻線1aの巻数N1aは、上層第1入力巻線1bの巻数N1bの1.2倍である。
 具体例2において、磁極14に対して最下層に位置する下層第1入力巻線1aは、全スロット5を通って、全磁極14に連続して巻き回される。下層第1入力巻線1aは、巻数N1aである。
 第2入力巻線2は、巻き回された下層第1入力巻線1aの上に、重ねて巻き回される。第2入力巻線2も、全スロット5を通って、全磁極14に連続して巻き回される。
 上層第1入力巻線1bは、巻き回された第2入力巻線2の上に、重ねて巻き回される。上層第1入力巻線1bも、全スロット5を通って、全磁極14に連続して巻き回される。上層第1入力巻線1bは、巻数N1bである。
 なお、下層第1入力巻線1aの巻き終わり部と、上層第1入力巻線1bの巻き始め部とは、電気的に接続される。
 本具体例2において、第1入力巻線1の巻数N1は、第2入力巻線2の巻数N2よりも3回多く巻き回される。巻数N1は、巻数N1aと巻数N1bとを足し合わせた値である。
 ここで、ステータコア3から下層第1入力巻線1aまでの距離と、ステータコア3から上層第1入力巻線1bまでの距離との平均値を、ステータコア3から第1入力巻線1までの距離と言い換える。
 上述した構成とすれば、ステータコア3から第1入力巻線1までの距離と、ステータコア3から第2入力巻線2までの距離とが異なることで生じていた、インダクタンス成分が異なることの影響を補うことができる。なお、インダクタンス成分は、2πfLで表される。
 また、本構成とすれば、下層第1入力巻線1aが巻き回されている状態と、第2入力巻線2が巻き回されている状態と、上層第1入力巻線1bが巻き回されている状態とが異なることで生じていた、キャパシタ成分が異なることの影響を補うことができる。なお、キャパシタ成分は、1/2πfCで表される。
 よって、2相入力/1相出力方式の回転位置検出装置において、角度位置を検出する検出式である、次式が成り立つ。
 2πft = tan-1[Ercos・cosx・sinθ/(Ersin・cosθ+Ercos・sinx・sinθ)] ・・・(6)式
 (6)式では、位相ずれxの項を無くすことができる。よって、図7に示すように、本実施の形態1における回転位置検出装置に用いられるステータ30は、cos入力電圧のオフセット電圧と、sin入力電圧のオフセット電圧との差を補うことができる。よって、具体例2で示した、本実施の形態1における回転位置検出装置に用いられるステータ30は、ロータ40の回転位置角度の検出精度を向上できる。
 なお、ステータコア3の全周に亘って、正弦波状に分布される第1入力巻線1の巻数N1は、第2入力巻線2の巻数N2よりも3回少なく巻き回してもよい。
 本構成とすれば、前述した角度位置の検出式において、位相ずれxの項を無くすことができる。よって、本構成は、巻数N1が巻数N2よりも3回多い構成と、同様の効果を得ることが期待できる。
 3.具体例3
 つぎに、表3には、本発明の実施の形態1における回転位置検出装置に用いられるステータ30において、各磁極14に位置する入力巻線の巻数分布のさらに他の一例が示される。
Figure JPOXMLDOC01-appb-T000003
 表3中、「CW」とは、時計回り(ClockWise)を示す。「CCW」とは、反時計回り(Counter ClockWise)を示す。
 表3に示す、「cos巻数-sin巻数」にも、表2と同様、正弦波状分布の巻数差が示される。
 表3に示すように、第1入力巻線1は、磁極No.1から磁極No.12に亘って、正弦波状に分布している。第1入力巻線1は、表3中、4列目と10列目に示す、巻数0回を除いて、磁極14毎に2回または3回多く巻き回されている。
 第1入力巻線1は、巻数N1が一定の分割比αによって、巻数N1aの下層第1入力巻線1aと巻数N1bの上層第1入力巻線1bとに分割される。
 本具体例3において、ccw方向におけるcos巻線のピーク巻数は、173ターンである。cw方向におけるcos巻線のピーク巻数は、172ターンである。また、sin巻線のピーク巻数は、170ターンである。第1入力巻線1の分割比αは、1.2である。つまり、下層第1入力巻線1aの巻数N1aは、上層第1入力巻線1bの巻数N1bの1.2倍である。
 具体例3において、磁極14に対して最下層に位置する下層第1入力巻線1aは、全スロットを通って、全磁極14に連続して巻き回される。下層第1入力巻線1aは、巻数N1aである。
 第2入力巻線2は、巻き回された下層第1入力巻線1aの上に、重ねて巻き回される。第2入力巻線2も、全スロット5を通って、全磁極14に連続して巻き回される。
 上層第1入力巻線1bは、巻き回された第2入力巻線2の上に、重ねて巻き回される。上層第1入力巻線1bも、全スロット5を通って、全磁極14に連続して巻き回される。上層第1入力巻線1bは、巻数N1bである。
 なお、下層第1入力巻線1aの巻き終わり部と、上層第1入力巻線1bの巻き始め部とは、電気的に接続される。
 本具体例3において、第1入力巻線1の巻数N1は、磁極14毎に、増加させる巻数が細かく調整される。
 本構成とすれば、第1入力巻線1と第2入力巻線2との間で生じていたインダクタンス成分の差や、キャパシタ成分の差を、より0に近づけることができる。なお、インダクタンス成分は、2πfLで表される。また、キャパシタ成分は、1/2πfCで表される。
 よって、2相入力/1相出力方式の回転位置検出装置において、回転位置角度を検出する検出式である、次式が成り立つ。
 θ = 2πft = tan-1[Ercos・cosx・sinθ/(Ersin・cosθ+Ercos・sinx・sinθ)] ・・・(7)式
 (7)式では、位相ずれxの項を無くすことができる。よって、具体例3で示した、本実施の形態1における回転位置検出装置に用いられるステータ30は、ロータ40の回転位置角度の検出精度を向上させることができる。
 つまり、本実施の形態1における回転位置検出装置に用いられるステータ30は、cos入力電圧のオフセット電圧と、sin入力電圧のオフセット電圧の差を補うことができる。特に、磁極14毎に、第1入力巻線1の巻数を調整するため、角度信号のバラツキを低減できる。
 よって、具体例3で示した、本実施の形態1における回転位置検出装置に用いられるステータ30は、図8に示すように、回転位置角度の検出精度、すなわち角度精度誤差を、1/5近くにまで向上できる。
 (実施の形態2)
 図9は、本発明の実施の形態2における電動機の要部構成図である。
 図9に示すように、本発明の実施の形態2における電動機50は、ロータ40と、実施の形態1で説明した製造方法で製造されたステータ30と、を有する。
 本構成とすれば、既に、実施の形態1で説明したように、高い検出精度を備える回転位置検出装置を有する電動機を提供できる。
 本発明の回転位置検出装置に用いられるステータによれば、入力巻線の巻数を調整することで、ロータの回転位置角度の検出精度を向上できる。
 さらに、本発明の回転位置検出装置は、電子部品等を使用することなく、金属部品や樹脂部品で構成することもできる。よって、電動機に搭載すれば、産業用ロボットや工作機械のように、位置決め精度が要求され、且つ、耐環境面でも厳しい用途にも適用できる。
 1 第1入力巻線
 1a 下層第1入力巻線
 1b 上層第1入力巻線
 2 第2入力巻線
 3,103 ステータコア
 3a ヨーク部
 3b,3c 端面
 5,105 スロット
 6 インシュレータ
 7 軸心
 14,104 磁極
 30 ステータ
 40 ロータ
 50 電動機
 101a,101b cos巻線
 102 sin巻線
 106 絶縁キャップ
 106a 絶縁キャップ内壁
 106b 巻線分離壁
 107 コイル
 107a 第1のコイル部
 107b 第2のコイル部

Claims (6)

  1.       環状に形成されたヨーク部と、
          前記ヨーク部の周に沿って一定の間隔を有して位置するとともに、前記ヨーク部の内径側および前記ヨーク部の外径側のいずれか一方に向かって突出する、複数の磁極と、
          隣接する一対の前記複数の磁極間のそれぞれに形成されるスロットと、
       を含む、ステータコアを準備するステップと、
       前記ヨーク部の全周に亘って正弦波状に分布し、巻数N1で巻き回される第1入力巻線のうち、前記巻数N1に対して分割比αで分割された一方の巻数N1a分を下層第1入力巻線として、それぞれの前記スロットを通って、前記複数の磁極のそれぞれに連続して巻き付ける、第1の巻付けステップと、
       前記ヨーク部の全周に亘って、前記第1入力巻線とは90度位相が異なる正弦波状に分布し、巻数N2で巻き回される第2入力巻線を、巻き付けられた前記下層第1入力巻線の上から、前記スロットを通って、前記複数の磁極のそれぞれに連続して巻き付ける、第2の巻付けステップと、
       前記第1入力巻線のうち、前記巻数N1に対して分割比αで分割された他方の巻数N1b分を上層第1入力巻線として、巻き付けられた前記第2入力巻線の上から、前記スロットを通って、前記複数の磁極のそれぞれに連続して巻き付ける、第3の巻付けステップと、
    を有する、回転位置検出装置に用いられるステータの製造方法。
  2. 前記巻数N1は、前記巻数N2よりも多い、請求項1に記載の回転位置検出装置に用いられるステータの製造方法。
  3. 前記巻数N1と前記巻数N2との巻数差は、前記複数の磁極で区切られた前記ヨーク部のそれぞれで異なる、請求項1または2のいずれか一項に記載の回転位置検出装置に用いられるステータの製造方法。
  4.       環状に形成されたヨーク部と、
          前記ヨーク部の周に沿って一定の間隔を有して位置するとともに、前記ヨーク部の内径側および前記ヨーク部の外径側のいずれか一方に向かって突出する、複数の磁極と、
          隣接する一対の前記複数の磁極間のそれぞれに形成されるスロットと、
       を含むステータコアと、
       前記ヨーク部の全周に亘って正弦波状に分布し、巻数N1で巻き回される第1入力巻線のうち、前記巻数N1に対して分割比αで分割された一方の巻数N1a分であって、それぞれの前記スロットを通って、前記複数の磁極のそれぞれに連続して巻き付けられる下層第1入力巻線と、
       前記ヨーク部の全周に亘って、前記第1入力巻線とは90度位相が異なる正弦波状に分布し、巻数N2で巻き回されるとともに、巻き付けられた前記下層第1入力巻線の上から、前記スロットを通って、前記複数の磁極のそれぞれに連続して巻き付けられる、第2入力巻線と、
       前記第1入力巻線のうち、前記巻数N1に対して分割比αで分割された他方の巻数N1b分であって、巻き付けられた前記第2入力巻線の上から、前記スロットを通って、前記複数の磁極のそれぞれに連続して巻き付けられる、上層第1入力巻線と、
    を有し、
    前記巻数N1は前記巻数N2よりも多い、回転位置検出装置に用いられるステータ。
  5. ロータと、請求項1または2のいずれか一項に記載の製造方法で製造されたステータと、を有する電動機。
  6. ロータと、請求項3に記載の製造方法で製造されたステータと、を有する電動機。
PCT/JP2015/003097 2014-06-26 2015-06-22 回転位置検出装置に用いられるステータの製造方法、回転位置検出装置に用いられるステータおよび電動機 WO2015198577A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014131119 2014-06-26
JP2014-131119 2014-06-26

Publications (1)

Publication Number Publication Date
WO2015198577A1 true WO2015198577A1 (ja) 2015-12-30

Family

ID=54937685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003097 WO2015198577A1 (ja) 2014-06-26 2015-06-22 回転位置検出装置に用いられるステータの製造方法、回転位置検出装置に用いられるステータおよび電動機

Country Status (1)

Country Link
WO (1) WO2015198577A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007285856A (ja) * 2006-04-17 2007-11-01 Mitsubishi Electric Corp 回転角度検出装置
JP2010259267A (ja) * 2009-04-27 2010-11-11 Mitsubishi Electric Corp 回転角度検出装置
WO2011158415A1 (ja) * 2010-06-18 2011-12-22 パナソニック株式会社 回転検出器用ステータの巻線方法とその構造及び回転検出器を有する電動機
JP2012210121A (ja) * 2011-03-30 2012-10-25 Japan Aviation Electronics Industry Ltd バリアブルリラクタンス型レゾルバ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007285856A (ja) * 2006-04-17 2007-11-01 Mitsubishi Electric Corp 回転角度検出装置
JP2010259267A (ja) * 2009-04-27 2010-11-11 Mitsubishi Electric Corp 回転角度検出装置
WO2011158415A1 (ja) * 2010-06-18 2011-12-22 パナソニック株式会社 回転検出器用ステータの巻線方法とその構造及び回転検出器を有する電動機
JP2012210121A (ja) * 2011-03-30 2012-10-25 Japan Aviation Electronics Industry Ltd バリアブルリラクタンス型レゾルバ

Similar Documents

Publication Publication Date Title
US8816675B2 (en) Variable reluctance resolver having correlation between a limited number of stator slots and a number of rotor convex positions
US7076395B2 (en) Angle detection apparatus and torque detection apparatus
US20160252403A1 (en) Temperature detection apparatus and rotation angle detection apparatus
KR100788598B1 (ko) 리졸버
US20170041168A1 (en) Signal converter and control device
JP4654348B1 (ja) 検出装置用巻線の正弦波巻線方法
US10871365B2 (en) Angle detection device and electric power steering apparatus
JP4294017B2 (ja) レゾルバの基準位置調整方法
WO2016117430A1 (ja) 回転角度検出装置
JP2005049183A (ja) バリアブルリラクタンス型レゾルバ
WO2009157307A1 (ja) 角度検出装置及びその製造方法
CN109327124B (zh) 旋转变压器以及电动机
JP6768075B2 (ja) レゾルバ
WO2015198577A1 (ja) 回転位置検出装置に用いられるステータの製造方法、回転位置検出装置に用いられるステータおよび電動機
JP2016169981A (ja) 回転角度検出装置
CN107040096B (zh) 电机及其分解器
JP2014020813A (ja) 角度センサ
JP6650188B2 (ja) レゾルバ
US10634518B2 (en) Resolver
JP2015114192A (ja) 回転数検出器
JP2000055610A (ja) ねじれ量検出装置
JP7029584B2 (ja) 回転位置検出器および回転位置検出器を備える電動機
JP2017083357A (ja) リラクタンスレゾルバのロータ芯出し方法
JP2014185900A (ja) モータ装置
CN117043552A (zh) 旋转变压器及搭载该旋转变压器的电动助力转向装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15812322

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15812322

Country of ref document: EP

Kind code of ref document: A1