WO2015196939A1 - 一种水体下固体充填开采设计方法 - Google Patents

一种水体下固体充填开采设计方法 Download PDF

Info

Publication number
WO2015196939A1
WO2015196939A1 PCT/CN2015/081522 CN2015081522W WO2015196939A1 WO 2015196939 A1 WO2015196939 A1 WO 2015196939A1 CN 2015081522 W CN2015081522 W CN 2015081522W WO 2015196939 A1 WO2015196939 A1 WO 2015196939A1
Authority
WO
WIPO (PCT)
Prior art keywords
mining
height
water body
coal
water
Prior art date
Application number
PCT/CN2015/081522
Other languages
English (en)
French (fr)
Inventor
黄艳利
张吉雄
郭帅
孙强
周楠
王旭峰
Original Assignee
黄艳利
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 黄艳利 filed Critical 黄艳利
Publication of WO2015196939A1 publication Critical patent/WO2015196939A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C41/00Methods of underground or surface mining; Layouts therefor
    • E21C41/16Methods of underground mining; Layouts therefor
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F15/00Methods or devices for placing filling-up materials in underground workings

Definitions

  • the invention relates to a design method for solid-filled coal mining under water, in particular to a mining design method suitable for coal resources under rivers and lakes.
  • the difficulty in mining coal resources under water is to control the degree of overburden damage caused by coal mining to ensure the protection of water resources, that is, to make the height of the fractured water in the mining overburden does not affect the water body and avoid water resources damage and mine flood.
  • the solid-filled coal mining method is one of the most effective measures for mining coal at high recovery rate and comprehensively controlling the degree of overburden damage and greatly reducing the height of the water-conducting fracture zone.
  • the filling rate of the solid filling in the goaf determines the height of the overburden fracture zone in the solid filling and mining.
  • the filling rate of solid filling mining is too low, which may cause the water-conducting fissure zone to affect the water body or not have sufficient protective tape thickness; on the contrary, the filling rate design is too high, although higher safety and reliability can be obtained, but the filling technology will be increased.
  • the filling rate of the goaf should be controlled by rationally designing the solid filling mining face to control the development height of the water guiding fracture zone and meet the requirements.
  • the thickness of the protective belt should not only meet the safety needs of protective mining under water, but also avoid the waste of manpower and material resources for the pursuit of excessive safety factor.
  • the object of the present invention is to provide a simple, safe and reliable design method for solid-filled coal mining under water body in view of the problems existing in the prior art.
  • the method for designing a solid filling mining under water body according to the present invention comprises the following steps:
  • ⁇ M is the cumulative height of the coal seam
  • the height of the fractured water conduction fracture zone H li is tested by the downhole drilling resistivity method
  • the present invention establishes a complete design method for solid filling mining under water, including: analysis of hydrogeological characteristics of protected water bodies, evaluation of mining level and allowable mining degree, type of safe coal rock columns and protection of water bodies
  • the filling rate of the goaf should be controlled by rationally designing the solid filling mining face to control the development height and satisfaction of the water-conducting fracture zone.
  • the required thickness of the protective tape should not only meet the safety requirements of protective mining under water, but also avoid the waste of manpower and material resources for pursuing an excessive safety factor.
  • the method is simple, easy to operate, high in accuracy, and can improve the filling effect. Avoiding excessive filling costs and having a wide range of practicalities.
  • Embodiment 1 The design method for the submerged solid filling mining of the present invention, the specific steps are as follows:
  • the average thickness of the Quaternary aquifer of a mine is 20.70m, directly above the bedrock, and the lithology is complex, consisting of gravel, gravel, clay gravel, coarse sand, medium sand, etc. Composition, no stable viscous water-repellent layer, strong water-rich, the average thickness of bedrock is 23.5m, mainly sandy shale, the average thickness of coal seam is 3.0m, and the coal seam design height is 3.0m, according to the 50th It is stipulated that the mining level of the water body in the mining area is Grade I, which is the waterproof and safe coal pillar of the roof. The water-conducting fissure zone is not allowed to reach the water body, that is, the height of the water-conducting fracture zone cannot be greater than 23.5m.
  • the height of the water-conducting fracture zone should not exceed 23.5m, and the maximum height of the overburden water-fracturing zone allowed by the protected water body is 28m, according to the appendix of the Regulations.
  • the calculation method of the height of the water-conducting fracture zone given in the sixth: Where H li is the water-conducting fracture zone with a height of 28 m and ⁇ M is the cumulative thickness, where ⁇ M M max . According to this inversion calculation, the maximum mining height M max that can be withstood by the protected water body is 0.81 m.
  • the solid filling material is ground-washed vermiculite, the particle size of the vermiculite after processing is less than 50mm; the comprehensive mechanized solid filling coal mining process is selected; every 1t coal is controlled in the control working surface, at least 1.3t vermiculite is filled, and the above measures are adopted to achieve The control enrichment rate cannot be lower than 0.73;
  • the height of the overburden water-fracture zone is tested by the underground borehole resistivity method.
  • the specific method is to construct several drill holes in the working face roadway in the borehole and wind (machine) roadway.
  • the electrodes are arranged, and the parallel resistivity method is used for real-time data acquisition.
  • the borehole resistivity imaging and the hole-injection electrical method combined with the inversion resistivity imaging the development height of the overburden hydraulic fracture zone is monitored.

Abstract

一种水体下固体充填开采设计方法,包括:保护水体水文地质特征分析、采动等级与允许的采动程度评估、安全煤岩柱的类型与保护水体允许的覆岩导水裂隙带最大高度的确定、水体所能承受的最大采高与采空区临界充实率的设计、利用井下钻孔电阻率法测试覆岩导水裂隙带高度等相关方法,在具体矿区水体下固体充填开采防水煤岩柱尺寸设计时,通过合理设计固体充填开采工作面的采空区充实率,控制导水裂隙带发育高度和满足要求的保护带厚度,其方法简单,易操作,准确性高,可提高充填效果,避免充填成本过高,具有广泛的实用性。

Description

一种水体下固体充填开采设计方法 技术领域
本发明涉及一种水体下固体充填采煤设计方法,尤其是一种适用于河流、湖海下煤炭资源的开采设计方法。
背景技术
我国煤矿尤其是华东地区煤矿水文条件均比较复杂,受水体危害的煤炭资源储量巨大。国内的120余条较大河流下及微山湖、太湖、渤海等湖海下都有丰富的煤炭资源,仅处于龙口矿区的渤海海滨压煤约12亿t。在华北、东北和华东平原地区普遍被第四系的松散含水砂层覆盖,这些地区煤田的浅部开采都存在含水层下采煤的问题。水体下煤炭资源开采,难点在于控制采煤引起的覆岩破坏程度确保水体资源的保护,即:使得采动覆岩导水裂缝带高度不波及到水体而避免水资源的破坏和矿井水灾。在众多水体下安全采煤技术途径中,固体充填采煤方法是高采出率开采煤炭和全面控制覆岩破坏程度、大幅度缩小导水裂缝带高度的最有效措施之一。
在一定的地质采矿条件下,采空区固体充填的充实率决定了固体充填开采覆岩导水裂隙带高度。固体充填开采充实率设计过低,可能会造成导水裂隙带波及水体或没有足够的保护带厚度;反之,充实率设计过高,虽然可获得更高的安全可靠性,但将增大充填技术和管理难度,并造成充填矸石消耗量大和人力物力的浪费,特别是对一些矸石供应量较少的矿区,造成矸石材料供应的紧张局面。在具体矿区水体下固体充填开采防水煤岩柱尺寸设计时,要综合考虑矿区自身的条件,应通过合理设计固体充填开采工作面的采空区充实率,控制导水裂隙带发育高度和满足要求的保护带厚度,既要满足水体下保护性开采的安全需要,又不要为追求过高的安全系数而造成人力物力的浪费。
发明内容
技术问题:本发明的目的是针对已有技术中存在的问题,提供一种方法简单、安全可靠的用于水体下固体充填采煤的设计方法。
技术方案:本发明的水体下固体充填开采设计方法,包括如下步骤:
a.根据现场实际水体下煤层的水文地质信息,分析保护水体的类型、流态、规模、赋存条件、水文地质特征,按照《建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程》确定保护水体的采动等级与允许的采动程度;
b.确定安全煤岩柱的类型与保护水体允许的覆岩导水裂隙带高度Hli,通过公式;
Figure PCTCN2015081522-appb-000001
式中:∑M为煤层累计采高;
c.根据ηmin=1-Mmax/M反演计算临界充实率;式中:ηmin为采空区需要达到的最小充实率,M为煤层设计采高,反演计算出保护水体所能承受的最大采高Mmax
d.选择固体充填材料、配合固体充填采煤工艺、控制工作面采煤量与采空区充填量措施,从而控制充实率;
e.在固体充填开采实施过程中,通过井下钻孔电阻率法测试覆岩导水裂隙带高度Hli
f.根据覆岩导水裂隙带发育高度Hli的结果,及时调整控制采空区的充实率。
有益效果:本发明的建立了一套完整的水体下固体充填开采的设计方法,包括:保护水体水文地质特征分析、采动等级与允许的采动程度评估、安全煤岩柱的类型与保护水体允许的覆岩导水裂隙带最大高度的确定、水体所能承受的最大采高与采空区临界充实率的设计、利用井下钻孔电阻率法测试覆岩导水裂隙带高度等相关方法,可在具体矿区水体下固体充填开采防水煤岩柱尺寸设计时,要综合考虑矿区自身的条件,应通过合理设计固体充填开采工作面的采空区充实率,控制导水裂隙带发育高度和满足要求的保护带厚度,既要满足水体下保护性开采的安全需要,又不要为追求过高的安全系数而造成人力物力的浪费,其方法简单,易操作,准确性高,可提高充填效果,避免充填成本过高,具有广泛的实用性。
具体实施方式
实施例1、本发明的水体下固体充填开采设计方法,具体步骤如下:
a.根据现场实际水体下煤层的水文地质信息,某矿第四系含水层平均厚度为20.70m,直接位于基岩上方,岩性复杂,由砾石、砂砾、粘土砾石、粗砂、中砂等组成,无稳定的粘性隔水层,富水性强,基岩平均厚度为23.5m,以砂质页岩为主,煤层平均厚度为3.0m,煤层设计采高3.0m,依据《规程》第50条规定,矿区的水体采动等级为I级,为顶板防水安全煤岩柱,不允许导水裂隙带波及到水体,即导水裂隙带高度不能大于23.5m。
b.为了进一步保证水体下固体充填采煤的安全,结合导水裂隙带高度不能大于23.5m的要求,最终确定保护水体所允许的覆岩导水裂隙带最大高度为28m,根据《规程》附录六中给出的导水裂隙带高度计算方法:
Figure PCTCN2015081522-appb-000002
其中Hli为导水裂隙 带高度28m,∑M为累计采厚,此处∑M=Mmax。据此反演计算可得到保护水体所能承受的最大采高Mmax为0.81m。
d.已知煤层设计采高M为3.0m,因此采空区的临界充实率为ηmin=1-Mmax/M=1-0.81/3.0=0.73,即固体充填采空区充实率不能低于0.73,才能满足保护水体的保护等级要求;
e.固体充填材料为地面洗选矸石,控制加工之后的矸石粒径小于50mm;选用综合机械化固体充填采煤工艺;控制工作面每采出1t煤,至少充填1.3t矸石,通过以上措施来达到控制充实率不能低于0.73;
f.在固体充填开采实施过程中,使用井下钻孔电阻率法测试覆岩导水裂隙带高度,具体方法为:在工作面巷道中施工若干个钻孔,在钻孔和风(机)巷道中布置电极,采用并行电阻率法进行数据实时采集,根据钻孔电阻率成像和孔巷电法联合反演电阻率成像,来监测覆岩导水裂隙带发育高度;
g.根据钻孔电阻率法测试覆岩导水裂隙带发育高度的结果,及时反馈并调整控制采空区的充实率。

Claims (1)

  1. 一种水体下固体充填开采设计方法,其特征在于,包括如下步骤:
    a.根据现场实际水体下煤层的水文地质信息,分析保护水体的类型、流态、规模、赋存条件、水文地质特征,按照《建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程》确定保护水体的采动等级与允许的采动程度;
    b.确定安全煤岩柱的类型与保护水体允许的覆岩导水裂隙带高度Hli,通过公式;
    Figure PCTCN2015081522-appb-100001
    式中:∑M为煤层累计采高;
    c.根据ηmin=1-Mmax/M反演计算临界充实率;式中:ηmin为采空区需要达到的最小充实率,M为煤层设计采高,反演计算出保护水体所能承受的最大采高Mmax
    d.选择固体充填材料、配合固体充填采煤工艺、控制工作面采煤量与采空区充填量措施,从而控制充实率;
    e.在固体充填开采实施过程中,通过井下钻孔电阻率法测试覆岩导水裂隙带高度Hli
    f.根据覆岩导水裂隙带发育高度Hli的结果,及时调整控制采空区的充实率。
PCT/CN2015/081522 2014-06-25 2015-06-16 一种水体下固体充填开采设计方法 WO2015196939A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410291416.3A CN104074541A (zh) 2014-06-25 2014-06-25 一种水体下固体充填开采设计方法
CN201410291416.3 2014-06-25

Publications (1)

Publication Number Publication Date
WO2015196939A1 true WO2015196939A1 (zh) 2015-12-30

Family

ID=51596107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/081522 WO2015196939A1 (zh) 2014-06-25 2015-06-16 一种水体下固体充填开采设计方法

Country Status (2)

Country Link
CN (1) CN104074541A (zh)
WO (1) WO2015196939A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106979033A (zh) * 2017-05-09 2017-07-25 山东科技大学 一种厚煤层大采高采空区膏体充填施工方法
CN108868770A (zh) * 2018-06-12 2018-11-23 中国矿业大学 一种充填开采岩层位态精准控制设计方法
CN110765642A (zh) * 2019-11-05 2020-02-07 中煤能源研究院有限责任公司 一种煤层、采区或工作面顶板岩层结构的分带评价方法
US11143025B2 (en) * 2018-09-30 2021-10-12 China University Of Mining And Technology Mine exploitation based on stoping, separation and filling control
CN113569401A (zh) * 2021-07-22 2021-10-29 山东科技大学 深埋采场覆岩类型评价标准及薄基岩加厚改造设计方法
CN115259758A (zh) * 2022-07-25 2022-11-01 中国矿业大学 一种毫米级矸石料浆配比优化及制备方法
CN116150987A (zh) * 2023-02-09 2023-05-23 西安科技大学 水资源水量-水质综合保护下充实率及粒径级配设计方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104074541A (zh) * 2014-06-25 2014-10-01 中国矿业大学 一种水体下固体充填开采设计方法
CN107013215B (zh) * 2017-05-15 2018-11-30 太原理工大学 一种分区域构造充填开采以减小防水煤岩柱尺寸的方法
CN107944148A (zh) * 2017-11-28 2018-04-20 中国矿业大学 一种充填开采临界充实率设计方法
CN108625852B (zh) * 2018-04-18 2020-03-24 中国矿业大学 短壁开采法回收水体下边角煤开采参数的确定方法
CN109139109A (zh) * 2018-08-02 2019-01-04 缪协兴 一种固体充填采煤技术人造储水地层的方法
CN109236296B (zh) * 2018-08-02 2019-09-13 缪协兴 一种安全开采保水煤柱的设计方法
CN109973095B (zh) * 2019-05-14 2020-04-24 中国矿业大学 一种煤矿固体充填开采再造地下储水空间的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU94028311A (ru) * 1994-07-27 1996-06-10 Акционерное общество "Уралкалий" Способ управления кровлей пологих калийных пластов
CN101070759A (zh) * 2007-05-04 2007-11-14 中国矿业大学 一种薄基岩浅埋煤层保水开采适用条件分类方法
RU2341658C1 (ru) * 2007-06-20 2008-12-20 Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный горный институт имени Г.В. Плеханова (технический университет)" Способ предотвращения затопления калийных рудников и опасных деформаций земной поверхности при прорывах в рудники подземных вод
CN103513281A (zh) * 2013-10-23 2014-01-15 中国矿业大学 固体充填采煤覆岩导水裂隙带发育高度预计方法
CN104074541A (zh) * 2014-06-25 2014-10-01 中国矿业大学 一种水体下固体充填开采设计方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE412623B (sv) * 1978-08-03 1980-03-10 Graenges Ab Forfarande for selektiv underjordsbrytning och stabilisering av bergrum
CN103510984B (zh) * 2013-10-23 2015-05-20 中国矿业大学 固体充填采煤充采质量比设计方法
CN103527197B (zh) * 2013-10-28 2016-01-06 中国矿业大学 一种特厚煤层固体胶结充填巷式开采方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU94028311A (ru) * 1994-07-27 1996-06-10 Акционерное общество "Уралкалий" Способ управления кровлей пологих калийных пластов
CN101070759A (zh) * 2007-05-04 2007-11-14 中国矿业大学 一种薄基岩浅埋煤层保水开采适用条件分类方法
RU2341658C1 (ru) * 2007-06-20 2008-12-20 Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный горный институт имени Г.В. Плеханова (технический университет)" Способ предотвращения затопления калийных рудников и опасных деформаций земной поверхности при прорывах в рудники подземных вод
CN103513281A (zh) * 2013-10-23 2014-01-15 中国矿业大学 固体充填采煤覆岩导水裂隙带发育高度预计方法
CN104074541A (zh) * 2014-06-25 2014-10-01 中国矿业大学 一种水体下固体充填开采设计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI, JIAN: "Evolution Mechanism and Control Research on Waste Filling Overlying Strata Water Conducted Zone in Aquifer", DOCTORAL DISSERTATION OF CHINA UNIVERSITY OF MINING AND TECHNOLOGY, 25 March 2014 (2014-03-25) *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106979033A (zh) * 2017-05-09 2017-07-25 山东科技大学 一种厚煤层大采高采空区膏体充填施工方法
CN108868770A (zh) * 2018-06-12 2018-11-23 中国矿业大学 一种充填开采岩层位态精准控制设计方法
US11143025B2 (en) * 2018-09-30 2021-10-12 China University Of Mining And Technology Mine exploitation based on stoping, separation and filling control
CN110765642A (zh) * 2019-11-05 2020-02-07 中煤能源研究院有限责任公司 一种煤层、采区或工作面顶板岩层结构的分带评价方法
CN110765642B (zh) * 2019-11-05 2023-04-07 中煤能源研究院有限责任公司 一种煤层、采区或工作面顶板岩层结构的分带评价方法
CN113569401A (zh) * 2021-07-22 2021-10-29 山东科技大学 深埋采场覆岩类型评价标准及薄基岩加厚改造设计方法
CN113569401B (zh) * 2021-07-22 2022-09-20 山东科技大学 深埋采场覆岩类型评价标准及薄基岩加厚改造设计方法
CN115259758A (zh) * 2022-07-25 2022-11-01 中国矿业大学 一种毫米级矸石料浆配比优化及制备方法
CN115259758B (zh) * 2022-07-25 2023-06-23 中国矿业大学 一种毫米级矸石料浆配比优化及制备方法
CN116150987A (zh) * 2023-02-09 2023-05-23 西安科技大学 水资源水量-水质综合保护下充实率及粒径级配设计方法
CN116150987B (zh) * 2023-02-09 2023-10-20 西安科技大学 水资源水量-水质综合保护下充实率及粒径级配设计方法

Also Published As

Publication number Publication date
CN104074541A (zh) 2014-10-01

Similar Documents

Publication Publication Date Title
WO2015196939A1 (zh) 一种水体下固体充填开采设计方法
Zhang et al. The application of short-wall block backfill mining to preserve surface water resources in northwest China
Bukowski Water hazard assessment in active shafts in upper silesian coal basin mines
CN103899352B (zh) 煤炭开采中固体充填充实率设计及控制方法
Liu et al. Undersea safety mining of the large gold deposit in Xinli District of Sanshandao Gold Mine
Zhang et al. Overburden failure associated with mining coal seams in close proximity in ascending and descending sequences under a large water body
Cao et al. Evolution mechanism of water-conducting channel of collapse column in karst mining area of southwest China
Li et al. A novel treatment method and construction technology of the pipeline gushing water geohazards in karst region
Yang et al. Overburden failure and the prevention of water and sand inrush during coal mining under thin bedrock
CN105332738A (zh) 一种采煤沉陷灾变发生的预警方法
Liu et al. Field monitoring and numerical analysis of tunnel water inrush and the environmental changes
CN110749533B (zh) 一种基于等效隔水层厚度的保水采煤判别方法
Zhang et al. Directional drainage grouting technology of coal mine water damage treatment
Dai et al. Water inrush mechanism and safety control in drilling and blasting construction of subsea tunnel
Suo et al. Disastrous mechanism of water burst by karst roof channel in rocky desertification mining area in southwest China
Zhenfang et al. Technology research of large underwater ultra-deep curtain grouting in Zhong-guan iron ore
Rashid et al. Advances in Mineral Resources, Geotechnology and Geological Exploration: Proceedings of the 7th International Conference on Mineral Resources, Geotechnology and Geological Exploration (MRGGE 2022), Xining, China, 18-20 March, 2022
Singh et al. Design considerations for mine workings under accumulations of water
He et al. Study on gas control methods optimization for mining safety
Wang et al. Investigation on the Nanjing gypsum mine flooding
Chi et al. Water supply and regulation of underground reservoir in coal mine considering coal-water occurrence relationship
Luan et al. A Case Study on Development of Water-flow Fractured Zone During Close-Distance Repeated Coal Mining
Wu et al. Numerical modelling of fractures induced by coal mining beneath reservoirs and aquifers in China
Li et al. Rock strata failure and subsidence characteristics under the mining of short distance thick coal seams: a case in west China
Dong et al. Prevention and Control of Mine Water Hazards from Underlying Aquifers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15811018

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15811018

Country of ref document: EP

Kind code of ref document: A1