WO2015196535A1 - 电池充电方法及装置 - Google Patents
电池充电方法及装置 Download PDFInfo
- Publication number
- WO2015196535A1 WO2015196535A1 PCT/CN2014/084118 CN2014084118W WO2015196535A1 WO 2015196535 A1 WO2015196535 A1 WO 2015196535A1 CN 2014084118 W CN2014084118 W CN 2014084118W WO 2015196535 A1 WO2015196535 A1 WO 2015196535A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery
- charging
- current
- voltage
- internal resistance
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to the field of electronic technologies, and in particular, to a battery charging method and apparatus.
- a battery charging method and apparatus BACKGROUND OF THE INVENTION
- lithium batteries have many advantages such as high voltage platform, high energy density, long service life, environmental protection and no memory effect, so that more and more mobile terminals use lithium batteries as their Rechargeable Battery.
- the user due to some limitations of the lithium battery itself, the user has strict requirements on the charging method when using the lithium battery. The user needs to formulate a reasonable charging method according to the characteristics of the lithium battery itself, so as to fully utilize the above advantages of the lithium battery. And ensure its service life.
- a lithium battery can be equivalent to an ideal voltage source and a variable resistance resistor. The resistance is the internal resistance of the battery.
- the voltage of the battery When the battery is charged, the voltage of the battery is equal to the voltage of the voltage source plus the voltage of the internal resistance. When the battery is discharged, the voltage of the battery is equal to the voltage of the voltage source minus its internal resistance.
- the internal resistance of the battery is related to the temperature of the battery and the percentage of the battery (ie, the remaining capacity of the battery). As the temperature decreases, the internal resistance of the battery increases sharply; and, the lower the percentage of the battery (the remaining battery) The lower the charge, the greater the internal resistance.
- the main object of embodiments of the present invention is to improve the charging speed of a battery and to increase the usable capacity of the battery under the premise of ensuring battery safety.
- An embodiment of the present invention provides a battery charging method to achieve at least the above object.
- the battery charging method includes the following steps: acquiring a current temperature of a battery and a percentage of a battery power; according to a current temperature of the battery and the battery Percentage of charge, query a pre-established battery characteristic relationship table, and obtain an internal resistance of the battery corresponding to a current temperature of the battery and a percentage of the battery; Obtaining a charging cut-off voltage of the battery according to a preset calculation rule according to an internal resistance of the battery, a charging current, and a preset charging limit voltage; charging the battery according to the charging cut-off voltage; When the percentage of charge of the battery changes during the time period, the above steps are reversed.
- the step of obtaining the current temperature of the battery and the percentage of the battery power further includes: measuring the internal resistance of the battery at different temperatures and different percentages of power, and establishing a battery temperature, a percentage of the battery, and a battery internal resistance according to the measurement result. Feature relationship table.
- the method further includes: when the percentage of the battery has not changed during the preset time period, and the charging current of the battery is lower than the preset charging end When the current is current, the charging is finished.
- I x R bat calculating the charge cut-off voltage of the battery; wherein, 1 ⁇ 4 is the charge cut-off voltage, V.
- I is the charging current
- R bat is the internal resistance.
- the battery is a lithium battery.
- the embodiment of the present invention further provides a battery charging device, where the battery charging device includes a temperature acquiring module, a power acquiring module, an internal resistance acquiring module, a charging cut-off voltage calculating module, a charging module, and a power determining module;
- the temperature acquisition module is configured to obtain a current temperature of the battery;
- the power acquisition module is configured to acquire a percentage of the battery power;
- the internal resistance acquisition module is configured to be based on a current temperature of the battery and the battery Percentage of charge, query a pre-established battery characteristic relationship table, and obtain an internal resistance of the battery corresponding to a current temperature of the battery and a percentage of the battery;
- the charging cut-off voltage calculation module is configured to calculate a charging cut-off voltage of the battery according to a preset calculation rule according to an internal resistance of the battery, a charging current, and a preset charging limit voltage;
- the charging module setting The battery is charged according to the charging cut-off voltage;
- the power determining module is configured to determine whether
- the battery charging device further includes a relationship table establishing module; the relationship table establishing module is configured to measure an internal resistance of the battery at different temperatures and different power percentages, and establish a battery temperature, a battery power percentage, and a battery according to the measurement result. Resistance battery characteristics relationship table.
- the battery charging device further includes a current detecting module and a current determining module; wherein the current detecting module is configured to detect a charging current of the battery; and the current determining module is configured to determine whether a charging current of the battery is low At the preset charge cut-off current.
- the charging cut-off voltage calculation module is specifically configured to: according to the internal resistance of the battery, the charging current, and the preset charging limit voltage, according to a calculation rule: V!
- V 0 + IXR bat V 0 + IXR bat , calculate the charging end of the battery Voltage; wherein, 1 ⁇ 4 is the charge cut-off voltage, V.
- I the charging current
- R bat the internal resistance.
- the battery is a lithium battery.
- the battery charging method of the embodiment of the present invention first, the current temperature of the battery and the percentage of the battery power are obtained; and then, according to the current temperature of the battery and the percentage of the battery power, the pre-established battery characteristic relationship table is obtained, and the battery is obtained.
- the current temperature and the battery's power percentage correspond to the internal resistance of the battery; then, according to the internal resistance of the battery, the charging current and the preset charging limit voltage, according to the preset calculation rule, calculate the charging cut-off voltage of the battery; The charging cut-off voltage charges the battery; finally, when the percentage of the battery's power changes during the preset time period, the current temperature of the battery, the percentage of the battery and the internal resistance of the battery are re-acquired according to the foregoing steps, and the battery is recalculated. Charging up to voltage, then based on recalculated charge The battery is charged by the electrical cut-off voltage.
- FIG. 1 is a schematic flow chart of another embodiment of a battery charging method according to the present invention
- FIG. 2 is a schematic flow chart of another embodiment of a battery charging method according to the present invention
- 4 is a block diagram showing another embodiment of a battery charging device of the present invention.
- FIG. 1 is a schematic flow chart of an embodiment of a battery charging method according to the present invention.
- the battery charging method includes the following steps: Step S01: Obtain a current temperature of the battery and a percentage of the battery.
- the battery charging method first acquires the current temperature of the battery and The percentage of charge of the battery.
- the correspondence between the resistance value R nte and the temperature (the correspondence table is determined by the manufacturer of the NTC thermistor), and the current temperature of the battery is obtained;
- the percentage of battery power also known as battery SOC, SOC, State Of Charge, state of charge
- Step S02 Query a pre-established battery characteristic relationship table according to the current temperature of the battery and the battery power percentage, and obtain an internal resistance of the battery corresponding to the current temperature of the battery and the battery power percentage Specifically, in this embodiment, when the current temperature of the battery and the percentage of the battery (the SOC of the battery) are acquired in step S01, the pre-established battery characteristic relationship table is obtained, and the current temperature of the battery and the current temperature are obtained. The internal resistance of the battery corresponding to the SOC of the battery.
- Step S03 Calculate and obtain a charging cut-off voltage of the battery according to a preset calculation rule according to an internal resistance of the battery, a charging current, and a preset charging limit voltage.
- a preset calculation rule according to an internal resistance of the battery, a charging current, and a preset charging limit voltage.
- the internal resistance of the battery, the charging current of the battery, and the preset charging limit voltage are calculated according to a preset calculation rule.
- the battery is charged to the voltage.
- the preset charging limit voltage of the battery is the initial charging cut-off voltage V Q
- the specific value of Vo is set to the rated charging limit voltage marked on the battery casing.
- the preset calculation rule is : Among them, 1 ⁇ 4 is the charging cut-off voltage of the battery, V.
- Step S04 charging the battery according to the charging cut-off voltage.
- the charging cut-off voltage of the battery is calculated in step S03, the battery is charged according to the charging cut-off voltage.
- Step S05 When the percentage of the battery of the battery changes during the preset time period, the foregoing steps are performed. Specifically, in this embodiment, the preset time period is 10 seconds, that is, the percentage of the battery power is determined every 10 seconds. When the battery power percentage changes during the preset time period, the above step S01 is followed.
- the current temperature of the battery and the percentage of the battery are re-acquired, and then the internal resistance of the battery is reacquired as described in the above step S02, and then, as described in the above step S03, The charge cut-off voltage of the battery is newly calculated, and finally the battery is charged according to the recharged charge cut-off voltage.
- the battery charging method provided in this embodiment, first, the current temperature of the battery and the percentage of the battery power are obtained; then, according to the current temperature of the battery and the percentage of the battery power, the pre-established battery characteristic relationship table is obtained, and the current temperature of the battery is obtained. And the internal resistance of the battery corresponding to the battery power percentage; then, according to the internal resistance of the battery, the charging current and the preset charging limit voltage, according to the preset calculation rule, calculate the charging cut-off voltage of the battery; and then, according to the charging The voltage is used to charge the battery.
- the battery charging method of the embodiment improves the charging speed of the battery under the premise of ensuring the safety of the battery, and at the same time, improves the usable capacity of the battery.
- FIG. 2 is a schematic flow chart of another embodiment of a battery charging method according to the present invention.
- the embodiment further includes the following steps before the step S01 in the foregoing embodiment: Step S00: measuring the internal resistance of the battery at different temperatures and different percentages of power, and establishing battery temperature, percentage of battery power, and internal resistance of the battery according to the measurement result.
- the parameters of the battery need to be measured, and the measurement parameters include the temperature of the battery (T) and the percentage of the battery ( SOC) and the internal resistance (R bat ) of the battery at different temperatures (T) and different percentages of electricity (SOC); then, based on the measured battery temperature (T), the percentage of battery power (SOC), and the battery Internal resistance (R bat ), establish a battery temperature (T), battery percentage (SOC) and battery internal resistance (R bat ) battery characteristics, as shown in Table 1 (in this example, Table 1 only lists The internal resistance of the battery corresponding to a temperature of 25 ° C and a SOC value of 90 to 100).
- Step S041 determining whether the percentage of the battery power changes during the preset time period; specifically, when the battery is in the preset time period If the percentage of the battery has changed, the above step S01 is performed; when the percentage of the battery in the preset time period has not changed, the process proceeds to step S042.
- Step S042 When the percentage of the battery in the preset time period does not change, and the charging current of the battery is lower than the preset charging cutoff current, the charging is ended; specifically, the preset time period in this embodiment If the percentage of charge (SOC) of the internal battery does not change, and the charge current of the battery is lower than the preset charge cut-off current, it means that the battery is fully charged and the charge is terminated.
- the battery is a lithium battery.
- the battery charging method provided in this embodiment firstly establishes a battery characteristic relationship table; then, obtains the current temperature of the battery and the battery power percentage; and then, according to the current temperature of the battery and the battery power percentage, the pre-established battery characteristic relationship is queried. Obtaining the internal resistance of the battery corresponding to the current temperature of the battery and the percentage of the battery; then, according to the internal resistance of the battery, the charging current, and the preset charging limit voltage, according to the preset calculation rule, the charging of the battery is calculated.
- the battery charging method of the embodiment improves the charging speed of the battery under the premise of ensuring the safety of the battery, and at the same time, improves the usable capacity of the battery.
- the invention also provides a battery charging device. Referring to FIG.
- FIG. 3 is a block diagram of a battery charging apparatus according to an embodiment of the present invention.
- the battery charging device 100 includes a temperature acquisition module 101, a power consumption acquisition module 102, an internal resistance acquisition module 103, a charge-off voltage calculation module 104, a charging module 105, and a power determination module 106. 101, set to obtain the current temperature of the battery; specifically, the battery charging device 100 provided in this embodiment firstly acquires the current temperature of the battery by the temperature acquiring module 101.
- NTC Negative Temperature Coefficient
- the power acquisition module 102 is configured to obtain a percentage of the battery power; specifically, the range of the battery power (also referred to as the SOC, SOC, State Of Charge, and charge state) of the battery acquired by the power acquisition module 102 is 0. To 100. When the value of the SOC of the battery is 0, the available power of the battery is zero; when the value of the SOC of the battery is 100, it means that the battery is fully charged. In an actual application, the power acquisition module 102 is a fuel gauge in the object to be charged, and uses the fuel gauge in the object to be charged to acquire the value of the SOC of the battery.
- the internal resistance obtaining module 103 is configured to query a pre-established battery characteristic relationship table according to the current temperature of the battery and the battery power percentage, and obtain a location corresponding to the current temperature of the battery and the battery power percentage Specifically, in this embodiment, when the temperature acquisition module 101 acquires the current temperature of the battery and the power consumption obtaining module 102 acquires the percentage of the battery power (the SOC of the battery), the battery characteristics of the pre-established battery are queried.
- the relationship table obtains the internal resistance value of the battery corresponding to the current temperature of the battery and the SOC of the battery.
- the charge-off voltage calculation module 104 is configured to calculate the charge-off voltage of the battery according to the preset calculation rule according to the internal resistance of the battery, the charging current, and the preset charging limit voltage.
- the charging cut-off voltage calculation module 104 presses according to the internal resistance of the battery, the charging current of the battery, and the preset charging limit voltage.
- the charging cut-off voltage of the battery is calculated.
- the preset charging limit voltage of the battery is an initial charging cut-off voltage V Q
- the specific value of Vo is set to a rated charging limit voltage marked on the battery casing;
- the preset calculation rule is: Among them, 1 ⁇ 4 is the charging cut-off voltage of the battery, V.
- the charging module 105 is configured to charge the battery according to the charging cut-off voltage; specifically, after the charging cut-off voltage calculation module 104 calculates the charging cut-off voltage of the battery, the charging module 105 is configured according to the charging cut-off voltage. The battery is charged.
- the power determining module 106 is configured to determine whether the percentage of the battery power in the preset time period changes.
- the temperature acquiring module 101 reacquires the current temperature of the battery
- the power acquiring module 102 reacquires the battery.
- the internal resistance acquisition module 103 reacquires the internal resistance of the battery according to the current temperature of the re-acquired battery and the battery power percentage.
- the charging cut-off voltage calculation module 104 is based on the re-acquired battery. Internal resistance, according to the above preset calculation rule, recalculate the charging cut-off voltage of the battery, and finally charge the battery according to the recalculated charging cut-off voltage.
- the battery is a lithium battery.
- the temperature acquisition module acquires the current temperature of the battery, and the power acquisition module acquires the percentage of the battery power; and then, the internal resistance acquisition module queries the pre-established according to the current temperature of the battery and the percentage of the battery power.
- the battery characteristic relationship table obtains the internal resistance of the battery corresponding to the current temperature of the battery and the percentage of the battery power; then, the charging cut-off voltage calculation module calculates according to the internal resistance of the battery, the charging current, and the preset charging limit voltage according to the preset Rule, calculating the charging cut-off voltage of the battery; then, the charging module charges the battery according to the charging cut-off voltage; finally, when the power determining module determines that the percentage of the battery has changed during the preset time period, the temperature acquiring module Reacquiring the current temperature of the battery, the power acquisition module reacquires the battery power percentage, and then the internal resistance acquisition module reacquires the internal resistance of the battery, and then, the charging cutoff voltage calculation module according to the internal resistance of the reacquired battery, According to the above-described preset Calculate the rule, recalculate the charge cut-off voltage of the battery, and finally charge the battery according to the recalculated charge cut-off voltage.
- the battery charging method of the embodiment improves
- FIG. 4 is a block diagram of another embodiment of a battery charging device of the present invention.
- the embodiment further includes a relationship table establishing module 107, a storage module 108, a current detecting module 109, and a current judging module 110 on the basis of the embodiment shown in FIG.
- the relationship table establishing module 107 is configured to measure the internal resistance of the battery at different temperatures and different power percentages, and establish a relationship table between the battery temperature, the battery power percentage, and the battery internal resistance according to the measurement result; specifically, the present In the embodiment, before the temperature acquisition module 101 acquires the current temperature of the battery and the power acquisition module 102 acquires the percentage of power (SOC) of the battery, the relationship table establishing module 107 measures the parameters of the battery, and the measurement parameters include the temperature (T) of the battery, and the battery.
- the storage module 108 is configured to store a battery characteristic relationship table established by the relationship table establishing module 107;
- the current detecting module 109 is configured to detect the charging current of the battery. Specifically, after the charging module 105 charges the battery according to the charging cut-off voltage, the current detecting module 109 detects the charging current of the battery. .
- the current judging module 110 is configured to determine whether the charging current of the battery is lower than a preset charging cutoff current. Specifically, when the power quantity determining module 106 determines that the battery power percentage (SOC) does not change within the preset time period, the current determining module 110 detects the battery charging current and the preset charging current detected by the current detecting module 109. The current is compared and judged. When the current determination module 110 determines that the charging current of the battery is lower than the preset charging current, the battery is fully charged and the charging is terminated. In this embodiment, the battery is a lithium battery.
- the relationship table establishing module establishes a battery characteristic relationship table, and at the same time, the storage module stores the battery characteristic relationship table; then, the temperature acquiring module acquires the current temperature of the battery, and the power acquiring module acquires the battery.
- the internal resistance acquisition module queries the pre-established battery characteristic relationship table according to the current temperature of the battery and the percentage of the battery power, and obtains the internal resistance of the battery corresponding to the current temperature of the battery and the percentage of the battery power;
- the charging cut-off voltage calculation module calculates the charging cut-off voltage of the battery according to the internal resistance of the battery, the charging current and the preset charging limit voltage according to a preset calculation rule; then, the charging module charges the battery according to the charging cut-off voltage;
- the temperature acquisition module reacquires the current temperature of the battery, and the power acquisition module reacquires the battery power percentage, and then, the internal resistance acquisition module The internal resistance of the battery is newly acquired.
- the charging cut-off voltage calculation module recalculates the charging cut-off voltage of the battery according to the preset calculation rule according to the internal resistance of the re-acquired battery, and finally obtains the charging according to the recalculation.
- the battery is charged up to the voltage; when the power determining module determines that the percentage of the battery has not changed within the preset time period, the current detecting module detects the charging current of the battery, and when the current determining module determines the charging current of the battery When the preset charging current is lower than the preset current, the charging of the battery is ended.
- the battery charging method of the embodiment improves the charging speed of the battery under the premise of ensuring the safety of the battery, and at the same time, improves the usable capacity of the battery.
- a battery charging method and apparatus provided by an embodiment of the present invention have the following beneficial effects: under the premise of ensuring battery safety, the charging speed of the battery can be improved, and at the same time, the battery can be used. capacity.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Secondary Cells (AREA)
Abstract
一种电池充电方法,该方法包括:获取电池的当前温度及所述电池的电量百分比;根据电池的当前温度及电池的电量百分比,查询预先建立的电池特性关系表,获得与电池的当前温度及电池的电量百分比对应的电池的内阻;根据电池的内阻、充电电流及预设的充电限制电压,按照预置计算规则,计算获得电池的充电截至电压;根据该充电截至电压对电池进行充电;当预置时间段内电池的电量百分比发生变化时,则根据前述步骤重新计算电池的充电截至电压,然后根据重新计算得到的充电截至电压对电池进行充电。以及一种电池充电装置。在保证电池安全的前提下,能够提升电池的充电速度,同时,还能够提升电池的可使用容量。
Description
电池充电方法及装置 技术领域 本发明涉及电子技术领域, 尤其涉及一种电池充电方法及装置。 背景技术 目前, 在众多种类的电池中, 锂电池因具有电压平台高、 能量密度大、 使用寿命 长、 环保及无记忆效应等众多优点, 使得越来越多的移动终端都采用锂电池作为其充 电电池。 然而, 由于锂电池本身一些特性的限制, 使得用户在使用锂电池时, 对其充 电方法的要求较严格, 用户需要根据锂电池本身的特性制定合理的充电方法, 才能充 分发挥锂电池的上述优点, 并确保其使用寿命。 锂电池可以等效为一个理想的电压源和一个阻值可变的电阻, 该电阻即为电池的 内阻, 当电池充电时, 电池的电压等于电压源的电压加上其内阻的电压, 当电池放电 时, 电池的电压等于电压源电压减去其内阻的电压。 而电池的内阻与电池的温度和电 池的电量百分比 (即电池的剩余电量) 有关, 随着温度的降低, 电池的内阻会急剧增 大; 并且, 电池的电量百分比越少 (电池的剩余电量越少), 其内阻也越大。 但是, 现 有技术中, 在对移动终端的锂电池进行充电时, 通常都没有考虑到锂电池的内阻对其 充电的分压问题, 即现有技术中, 对锂电池的充电通常都是按照电池外壳上所标注的 额定充电限制电压对其进行充电, 从而导致充电速度慢, 同时, 电池的容量也没有得 到充分利用。 发明内容 本发明实施例的主要目的是在保证电池安全的前提下, 提升电池的充电速度, 以 及提升电池的可使用容量。 本发明实施例提供一种电池充电方法, 以至少实现上述目的, 所述电池充电方法 包括以下步骤: 获取电池的当前温度及所述电池的电量百分比; 根据所述电池的当前温度及所述电池的电量百分比, 查询预先建立的电池特性关 系表, 获得与所述电池的当前温度及所述电池的电量百分比对应的所述电池的内阻;
根据所述电池的内阻、 充电电流及预设的充电限制电压, 按照预置计算规则, 计 算获得所述电池的充电截至电压; 根据所述充电截至电压对所述电池进行充电; 当预置时间段内所述电池的电量百分比发生变化时, 则转前述步骤。 所述获取电池的当前温度及电池的电量百分比的步骤之前还包括: 对电池在不同温度和不同电量百分比时的内阻进行测量, 根据测量结果建立电池 温度、 电池电量百分比与电池内阻的电池特性关系表。 所述根据所述充电截至电压对所述电池进行充电的步骤之后还包括: 当预置时间段内所述电池的电量百分比未发生变化, 且所述电池的充电电流低于 预置的充电截至电流时, 结束充电。 所述根据所述电池的内阻、充电电流及预设的充电限制电压,按照预置计算规则, 计算获得所述电池的充电截至电压的步骤具体为: 根据所述电池的内阻、充电电流及预设的充电限制电压,按照计算规则: V! = V0 +
I x Rbat, 计算获得所述电池的充电截至电压; 其中, ¼为所述充电截至电压, V。为所 述预设的充电限制电压, I为所述充电电流, Rbat为所述内阻。 所述电池为锂电池。
此外, 本发明实施例还提供了一种电池充电装置, 所述电池充电装置包括温度获 取模块、 电量获取模块、 内阻获取模块、 充电截至电压计算模块、 充电模块及电量判 断模块; 其中, 所述温度获取模块, 设置为获取电池的当前温度; 所述电量获取模块, 设置为获取所述电池的电量百分比; 所述内阻获取模块, 设置为根据所述电池的当前温度及所述电池的电量百分比, 查询预先建立的电池特性关系表, 获得与所述电池的当前温度及所述电池的电量百分 比对应的所述电池的内阻;
所述充电截至电压计算模块, 设置为根据所述电池的内阻、 充电电流及预设的充 电限制电压, 按照预置计算规则, 计算获得所述电池的充电截至电压; 所述充电模块, 设置为根据所述充电截至电压对所述电池进行充电; 所述电量判断模块, 设置为判断预置时间段内所述电池的电量百分比是否发生变 化。 所述电池充电装置还包括关系表建立模块; 所述关系表建立模块, 设置为对电池 在不同温度和不同电量百分比时的内阻进行测量, 根据测量结果建立电池温度、 电池 电量百分比与电池内阻的电池特性关系表。 所述电池充电装置还包括电流检测模块和电流判断模块; 其中, 所述电流检测模块, 设置为检测所述电池的充电电流; 所述电流判断模块, 设置为判断所述电池的充电电流是否低于预置的充电截至电 流。 所述充电截至电压计算模块具体设置为: 根据所述电池的内阻、充电电流及预设的充电限制电压,按照计算规则: V! = V0 + I X Rbat, 计算获得所述电池的充电截至电压; 其中, ¼为所述充电截至电压, V。为所述预设的充电限制电压, I为所述充电电 流, Rbat为所述内阻。 所述电池为锂电池。
本发明实施例的电池充电方法, 首先, 获取电池的当前温度及所述电池的电量百 分比; 然后, 根据电池的当前温度及电池的电量百分比, 查询预先建立的电池特性关 系表, 获得与电池的当前温度及电池的电量百分比对应的电池的内阻; 接着, 根据电 池的内阻、 充电电流及预设的充电限制电压, 按照预置计算规则, 计算获得电池的充 电截至电压; 然后, 根据该充电截至电压对电池进行充电; 最后, 当预置时间段内电 池的电量百分比发生变化时, 则根据前述步骤重新获取电池的当前温度、 电池的电量 百分比及电池的内阻, 并重新计算电池的充电截至电压, 然后根据重新计算得到的充
电截至电压对该电池进行充电。 本发明在保证电池安全的前提下, 能够提升电池的充 电速度, 同时, 还能够提升电池的可使用容量。 附图说明 图 1为本发明电池充电方法一实施例的流程示意图; 图 2为本发明电池充电方法另一实施例的流程示意图; 图 3为本发明电池充电装置一实施例的模块结构图; 图 4为本发明电池充电装置另一实施例的模块结构图。
本发明目的的实现、 功能特点及优点将结合实施例, 参照附图做进一步说明。 具体实施方式 以下结合说明书附图及具体实施例进一步说明本发明的技术方案。 应当理解, 此 处所描述的具体实施例仅仅用以解释本发明, 并不用于限定本发明。 本发明实施例提供一种电池充电方法。 参照图 1, 图 1为本发明电池充电方法一实施例的流程示意图。 在本实施例中, 该电池充电方法包括以下步骤: 步骤 S01 : 获取电池的当前温度及所述电池的电量百分比; 具体地, 本实施例提供的电池充电方法, 首先是获取电池的当前温度及所述电池 的电量百分比。 其中, 电池的当前温度的获取方法具体为: 对电池的 NTC 热敏电阻 (NTC, Negative Temperature Coefficient, 负温度系数) 输入一指定电流 Inte, 然后, 测量该 NTC热敏电阻两端的电压 Unte,将测量到的电压 Unte除以所输入的指定电流 Inte, 得到该 NTC热敏电阻的阻值 Rnte, 即 Rnte= Unte/Inte, 最后, 通过查询该 NTC热敏电阻 的阻值 Rnte与温度的对应关系表 (该对应关系表是 NTC热敏电阻的厂商制定的), 获 得电池的当前温度;
而电池的电量百分比(也称电池的 SOC, SOC, State Of Charge, 充电状态) 的范 围是 0到 100。当电池的 SOC的值为 0时,代表该电池的可用电量为零;当电池的 SOC 的值为 100时, 代表该电池已充满电。 本实施例中, 上述电池为锂电池。 步骤 S02: 根据所述电池的当前温度及所述电池的电量百分比, 查询预先建立的 电池特性关系表, 获得与所述电池的当前温度及所述电池的电量百分比对应的所述电 池的内阻; 具体地, 本实施例中, 当步骤 S01获取到电池的当前温度及该电池的电量百分比 (电池的 SOC) 时, 则查询预先建立的电池特性关系表, 获得与该电池的当前温度及 该电池的 SOC相对应的电池的内阻值。 步骤 S03 : 根据所述电池的内阻、 充电电流及预设的充电限制电压, 按照预置计 算规则, 计算获得所述电池的充电截至电压。 具体地, 本实施例中, 当步骤 S02获取到电池的内阻值后, 则根据该电池的内阻、 该电池的充电电流及预设的充电限制电压, 按照预置计算规则, 计算获得该电池的充 电截至电压。 其中, 该电池的预设的充电限制电压为初始的充电截至电压 VQ, Vo的 具体值设定为该电池外壳上所标注的额定充电限制电压; 本实施例中, 上述预置计算 规则为:
其中, ¼为电池的充电截至电压, V。为预设的充电限制电压(即上述初始的充电 截至电压 VQ, 也即电池外壳上所标注的额定充电限制电压), I为电池的充电电流, 为电池的内阻。 步骤 S04: 根据所述充电截至电压对所述电池进行充电; 本实施例中, 当步骤 S03计算获得了该电池的充电截至电压 ¼时,则根据该充电 截至电压 对电池进行充电。 步骤 S05 : 当预置时间段内所述电池的电量百分比发生变化时, 则转前述步骤。 具体地, 本实施例中, 上述预置时间段为 10秒, 即每隔 10秒对电池的电量百分 比进行判断, 当预置时间段内该电池的电量百分比发生变化时, 则按照上述步骤 S01 所描述的那样,重新获取电池的当前温度及电池的电量百分比,然后按照上述步骤 S02 所描述的那样, 重新获取该电池的内阻, 接着, 按照上述步骤 S03所描述的那样, 重
新计算该电池的充电截至电压, 最后根据重新计算所得到的充电截至电压对该电池进 行充电。
本实施例提供的电池充电方法, 首先,获取电池的当前温度及电池的电量百分比; 然后, 根据电池的当前温度及电池的电量百分比, 查询预先建立的电池特性关系表, 获得与电池的当前温度及电池的电量百分比对应的电池的内阻; 接着, 根据电池的内 阻、 充电电流及预设的充电限制电压, 按照预置计算规则, 计算获得电池的充电截至 电压; 然后, 根据该充电截至电压对电池进行充电; 最后, 当预置时间段内电池的电 量百分比发生变化时, 则根据前述步骤重新获取电池的当前温度、 电池的电量百分比 及电池的内阻, 并重新计算电池的充电截至电压, 然后根据重新计算得到的充电截至 电压对该电池进行充电。 本实施例电池充电方法在保证电池安全的前提下, 提升了电 池的充电速度, 同时, 还提升了电池的可使用容量。
参照图 2, 图 2为本发明电池充电方法另一实施例的流程示意图。 本实施例在上述实施例中的步骤 S01之前还包括以下步骤: 步骤 S00: 对电池在不同温度和不同电量百分比时的内阻进行测量, 根据测量结 果建立电池温度、 电池电量百分比与电池内阻的电池特性关系表; 具体地, 本实施例在获取电池的当前温度及所述电池的电量百分比之前, 需要对 电池的参数进行测量, 测量参数包括电池的温度(T) 、 电池的电量百分比 (SOC) 以 及电池在不同温度 (T)和不同电量百分比 (SOC) 时的内阻(Rbat); 然后, 根据测量 所得到的电池的温度 (T) 、 电池的电量百分比 (SOC) 以及电池的内阻(Rbat), 建立 电池温度 (T) 、 电池电量百分比 (SOC) 与电池内阻 (Rbat) 的电池特性关系表, 如 表 1所示 (本实施例中, 表 1仅列出了温度为 25°C、 SOC值为 90至 100时所对应的 电池的内阻)。
表 1
25 96 0.11175
25 95 0.11250
25 94 0.11300
25 93 0.11375
25 92 0.11475
25 91 0.11625
25 90 0.11625
并且, 本实施例在上述实施例中的步骤 S04之后还包括以下步骤: 步骤 S041 : 判断预置时间段内, 所述电池的电量百分比是否发生变化; 具体地, 当预置时间段内电池的电量百分比发生了变化, 则转上述步骤 S01 ; 当 预置时间段内电池的电量百分比未发生变化, 则转歩骤 S042。 步骤 S042: 当预置时间段内所述电池的电量百分比未发生变化, 且所述电池的充 电电流低于预置的充电截至电流时, 结束充电; 具体地, 本实施例当预置时间段内电池的电量百分比 (SOC) 未发生变化, 且电 池的充电电流低于预置的充电截至电流时, 则代表电池已充满电, 结束充电。 本实施 例中, 上述电池为锂电池。
本实施例提供的电池充电方法, 首先, 建立电池特性关系表; 然后, 获取电池的 当前温度及电池的电量百分比; 接着, 根据电池的当前温度及电池的电量百分比, 查 询预先建立的电池特性关系表, 获得与电池的当前温度及电池的电量百分比对应的电 池的内阻; 然后, 根据电池的内阻、 充电电流及预设的充电限制电压, 按照预置计算 规则, 计算获得电池的充电截至电压; 接着, 根据该充电截至电压对电池进行充电; 然后, 当预置时间段内电池的电量百分比发生变化时, 则根据前述步骤重新获取电池 的当前温度、 电池的电量百分比及电池的内阻, 并重新计算电池的充电截至电压, 然 后根据重新计算得到的充电截至电压对该电池进行充电; 最后, 当预置时间段内电池 的电量百分比未发生变化且电池的充电电流低于预置的充电截至电流时, 结束充电。 本实施例电池充电方法在保证电池安全的前提下, 提升了电池的充电速度, 同时, 还 提升了电池的可使用容量。
本发明还提供一种电池充电装置。 参照图 3, 图 3为本发明电池充电装置一实施例的模块结构图。 在一实施例中, 该电池充电装置 100包括温度获取模块 101、 电量获取模块 102、 内阻获取模块 103、 充电截至电压计算模块 104、 充电模块 105及电量判断模块 106; 其中, 上述温度获取模块 101, 设置为获取电池的当前温度; 具体地, 本实施例提供的电池充电装置 100, 首先是温度获取模块 101获取电池 的当前温度。 其中, 温度获取模块 101获取电池的当前温度的方法具体为: 对电池的 NTC热敏电阻 (NTC, Negative Temperature Coefficient, 负温度系数) 输入一指定电 流 Inte, 然后测量该 NTC热敏电阻两端的电压 Unte, 将测量到的电压 Unte除以所输入 的指定电流 Inte,得到该 NTC热敏电阻的阻值 Rnte(Rnte= Untc/Intc),最后通过查询该 NTC 热敏电阻的阻值 Rnte与温度的对应关系表(该对应关系表是 NTC热敏电阻的厂商制定 的), 获得电池的当前温度。 电量获取模块 102, 设置为获取所述电池的电量百分比; 具体地,电量获取模块 102所获取到的电池的电量百分比(也称电池的 SOC, SOC, State Of Charge, 充电状态) 的范围是 0到 100。 当电池的 SOC的值为 0时, 代表该 电池的可用电量为零; 当电池的 SOC的值为 100时, 代表该电池已充满电。 实际应用 中, 该电量获取模块 102为被充电对象中的电量计, 采用被充电对象中的电量计获取 电池的 SOC的值。 内阻获取模块 103, 设置为根据所述电池的当前温度及所述电池的电量百分比, 查询预先建立的电池特性关系表, 获得与所述电池的当前温度及所述电池的电量百分 比对应的所述电池的内阻; 具体地, 本实施例中, 当温度获取模块 101获取到电池的当前温度及电量获取模 块 102获取到电池的电量百分比 (电池的 SOC)后, 则查询预先建立的电池特性关系 表, 获得与上述电池的当前温度及电池的 SOC相对应的电池的内阻值。 充电截至电压计算模块 104, 设置为根据所述电池的内阻、 充电电流及预设的充 电限制电压, 按照预置计算规则, 计算获得所述电池的充电截至电压; 具体地, 本实施例中, 当内阻获取模块 103获取到电池的内阻值后, 则充电截至 电压计算模块 104根据该电池的内阻、 该电池的充电电流及预设的充电限制电压, 按
照预置计算规则, 计算获得该电池的充电截至电压。 其中, 该电池的预设的充电限制 电压为初始的充电截至电压 VQ, Vo的具体值设定为该电池外壳上所标注的额定充电 限制电压; 上述预置计算规则为:
其中, ¼为电池的充电截至电压, V。为预设的充电限制电压(即上述初始的充电 截至电压 VQ, 也即电池外壳上所标注的额定充电限制电压), I为电池的充电电流, 为电池的内阻。实际应用中, 上述充电电流 I可以通过被充电对象的充电芯片中的 模数转换器获取。 充电模块 105, 设置为根据所述充电截至电压对所述电池进行充电; 具体地,在充电截至电压计算模块 104计算获得电池的充电截至电压¼后, 则充 电模块 105根据该充电截至电压 ¼对所述电池进行充电。 电量判断模块 106, 设置为判断预置时间段内所述电池的电量百分比是否发生变 化。 具体地, 当电量判断模块 106判断到预置时间段内该电池的电量百分比 (电池的 SOC) 发生了变化时, 则温度获取模块 101重新获取电池的当前温度, 电量获取模块 102重新获取电池的电量百分比, 然后, 内阻获取模块 103根据上述重新获取到的电 池的当前温度及电池的电量百分比, 重新获取该电池的内阻, 接着, 充电截至电压计 算模块 104根据上述重新获取到的电池的内阻, 按照上述预置计算规则, 重新计算该 电池的充电截至电压, 最后根据重新计算所得到的充电截至电压对该电池进行充电。 本实施例中, 上述电池为锂电池。
本实施例提供的电池充电方法, 首先, 温度获取模块获取电池的当前温度, 电量 获取模块获取电池的电量百分比; 然后, 内阻获取模块根据电池的当前温度及电池的 电量百分比, 查询预先建立的电池特性关系表, 获得与电池的当前温度及电池的电量 百分比对应的电池的内阻; 接着, 充电截至电压计算模块根据电池的内阻、 充电电流 及预设的充电限制电压, 按照预置计算规则, 计算获得电池的充电截至电压; 然后, 充电模块根据该充电截至电压对电池进行充电; 最后, 当电量判断模块判断到预置时 间段内电池的电量百分比发生了变化时, 则温度获取模块重新获取电池的当前温度, 电量获取模块重新获取电池的电量百分比, 然后, 内阻获取模块重新获取该电池的内 阻, 接着, 充电截至电压计算模块根据上述重新获取到的电池的内阻, 按照上述预置
计算规则, 重新计算该电池的充电截至电压, 最后根据重新计算所得到的充电截至电 压对该电池进行充电。 本实施例电池充电方法在保证电池安全的前提下, 提升了电池 的充电速度, 同时, 还提升了电池的可使用容量。
参照图 4, 图 4为本发明电池充电装置另一实施例的模块结构图。 本实施例在图 3所示实施例的基础上还包括关系表建立模块 107、 存储模块 108、 电流检测模块 109和电流判断模块 110。 其中, 关系表建立模块 107, 设置为对电池在不同温度和不同电量百分比时的内 阻进行测量, 根据测量结果建立电池温度、 电池电量百分比与电池内阻的电池特性关 系表; 具体地, 本实施例在温度获取模块 101获取电池的当前温度及电量获取模块 102 获取电池的电量百分比 (SOC) 之前, 关系表建立模块 107对电池的参数进行测量, 测量参数包括电池的温度(T) 、 电池的电量百分比(SOC) 以及电池在不同温度(T) 和不同电量百分比(SOC)时的内阻(Rbat);然后,根据测量所得到的电池的温度(T)、 电池的电量百分比 (SOC) 以及电池的内阻(Rbat), 建立电池温度 (T) 、 电池电量百 分比 (SOC) 与电池内阻 (Rbat) 的电池特性关系表, 如表 1所示 (本实施例中, 表 1 仅列出了温度为 25 °C、 SOC值为 90至 100时所对应的电池的内阻)。 存储模块 108, 设置为存放上述关系表建立模块 107所建立的电池特性关系表;
表 1
电流检测模块 109, 设置为检测所述电池的充电电流; 具体地,本实施例在充电模块 105根据所述充电截至电压对所述电池进行充电后, 电流检测模块 109对电池的充电电流进行检测。 电流判断模块 110, 设置为判断所述电池的充电电流是否低于预置的充电截至电 流。 具体地, 当上述电量判断模块 106判断到预置时间段内电池的电量百分比(SOC) 未发生变化时, 电流判断模块 110对电流检测模块 109所检测到电池的充电电流和预 置的充电截至电流进行比较判断, 当电流判断模块 110判断到电池的充电电流低于预 置的充电截至电流时, 则代表电池已充满电, 结束充电。 本实施例中, 上述电池为锂 电池。
本实施例提供的电池充电方法, 首先, 关系表建立模块建立电池特性关系表, 同 时, 存储模块对该电池特性关系表进行存储; 接着, 温度获取模块获取电池的当前温 度, 电量获取模块获取电池的电量百分比; 然后, 内阻获取模块根据电池的当前温度 及电池的电量百分比, 查询预先建立的电池特性关系表, 获得与电池的当前温度及电 池的电量百分比对应的电池的内阻; 接着, 充电截至电压计算模块根据电池的内阻、 充电电流及预设的充电限制电压, 按照预置计算规则,计算获得电池的充电截至电压; 然后, 充电模块根据该充电截至电压对电池进行充电; 接着, 当电量判断模块判断到 预置时间段内电池的电量百分比发生了变化时, 则温度获取模块重新获取电池的当前 温度, 电量获取模块重新获取电池的电量百分比, 然后, 内阻获取模块重新获取该电 池的内阻, 接着, 充电截至电压计算模块根据上述重新获取到的电池的内阻, 按照上 述预置计算规则, 重新计算该电池的充电截至电压, 最后根据重新计算所得到的充电 截至电压对该电池进行充电; 当上述电量判断模块判断到预置时间段内电池的电量百 分比未发生变化时, 电流检测模块对电池的充电电流进行检测, 当电流判断模块判断 到电池的充电电流低于预置的充电截至电流时, 则结束对该电池的充电。 本实施例电 池充电方法在保证电池安全的前提下, 提升了电池的充电速度, 同时, 还提升了电池 的可使用容量。
以上所述仅为本发明的优选实施例, 并非因此限制本发明的专利范围, 凡是利用 本发明说明书及附图内容所作的等效结构或等效流程变换, 或直接或间接运用在其他 相关的技术领域, 均同理包括在本发明的专利保护范围内。 工业实用性 如上所述, 本发明实施例提供的一种电池充电方法及装置, 具有以下有益效果: 在保证电池安全的前提下, 能够提升电池的充电速度, 同时, 还能够提升电池的可使 用容量。
Claims
权 利 要 求 书 、 一种电池充电方法, 包括以下步骤: 获取电池的当前温度及电池的电量百分比; 根据所述电池的当前温度及所述电池的电量百分比, 查询预先建立的电池 特性关系表, 获得与所述电池的当前温度及所述电池的电量百分比对应的所述 电池的内阻; 根据所述电池的内阻、 充电电流及预设的充电限制电压, 按照预置计算规 贝 U, 计算获得所述电池的充电截至电压; 根据所述充电截至电压对所述电池进行充电;
当预置时间段内所述电池的电量百分比发生变化时, 则转前述步骤。 、如权利要求 1所述的电池充电方法, 其中, 所述获取电池的当前温度及电池的电量 百分比的步骤之前还包括:
对电池在不同温度和不同电量百分比时的内阻进行测量, 根据测量结果建 立电池温度、 电池电量百分比与电池内阻的电池特性关系表。 、如权利要求 2所述的电池充电方法, 其中, 所述根据所述充电截至电压对所述电池 进行充电的步骤之后还包括:
当预置时间段内所述电池的电量百分比未发生变化, 且所述电池的充电电 流低于预置的充电截至电流时, 结束充电。 、 如权利要求 3所述的电池充电方法, 其中, 所述根据所述电池的内阻、 充电电流及 预设的充电限制电压, 按照预置计算规则, 计算获得所述电池的充电截至电压 的步骤具体为:
根据所述电池的内阻、 充电电流及预设的充电限制电压, 按照计算规则: V^ Vo + I x Rbat, 计算获得所述电池的充电截至电压; 其中, ¼为所述充电截 至电压, V。为所述预设的充电限制电压, I为所述充电电流, Rbat为所述内阻。 、 如权利要求 1所述的电池充电方法, 其中, 所述电池为锂电池。 、 一种电池充电装置, 包括温度获取模块、 电量获取模块、 内阻获取模块、 充电截至 电压计算模块、 充电模块及电量判断模块; 其中,
所述温度获取模块, 设置为获取电池的当前温度;
所述电量获取模块, 设置为获取所述电池的电量百分比; 所述内阻获取模块, 设置为根据所述电池的当前温度及所述电池的电量百 分比, 查询预先建立的电池特性关系表, 获得与所述电池的当前温度及所述电 池的电量百分比对应的所述电池的内阻; 所述充电截至电压计算模块, 设置为根据所述电池的内阻、 充电电流及预 设的充电限制电压, 按照预置计算规则, 计算获得所述电池的充电截至电压; 所述充电模块, 设置为根据所述充电截至电压对所述电池进行充电; 所述电量判断模块, 设置为判断预置时间段内所述电池的电量百分比是否 发生变化。 、如权利要求 6所述的电池充电装置, 其中, 所述电池充电装置还包括关系表建立模 块; 所述关系表建立模块, 设置为对电池在不同温度和不同电量百分比时的内 阻进行测量, 根据测量结果建立电池温度、 电池电量百分比与电池内阻的电池 特性关系表。 、如权利要求 7所述的电池充电装置, 其中, 所述电池充电装置还包括电流检测模块 和电流判断模块; 其中,
所述电流检测模块, 设置为检测所述电池的充电电流;
所述电流判断模块, 设置为判断所述电池的充电电流是否低于预置的充电 截至电流。 、如权利要求 8所述的电池充电装置,其中,所述充电截至电压计算模块具体设置为: 根据所述电池的内阻、 充电电流及预设的充电限制电压, 按照计算规则: V^ Vo + I x Rbat, 计算获得所述电池的充电截至电压;
其中, ¼为所述充电截至电压, V。为所述预设的充电限制电压, I为所述 充电电流, Rbat为所述内阻。 0、 如权利要求 6所述的电池充电装置, 其中, 所述电池为锂电池。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410298572.2A CN105207281A (zh) | 2014-06-26 | 2014-06-26 | 电池充电方法及装置 |
CN201410298572.2 | 2014-06-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015196535A1 true WO2015196535A1 (zh) | 2015-12-30 |
Family
ID=54936545
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/084118 WO2015196535A1 (zh) | 2014-06-26 | 2014-08-11 | 电池充电方法及装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105207281A (zh) |
WO (1) | WO2015196535A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108448694A (zh) * | 2018-03-29 | 2018-08-24 | 北京小米移动软件有限公司 | 无线充电设备、方法及装置、电子设备 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102016205374A1 (de) * | 2016-03-31 | 2017-10-05 | Siemens Aktiengesellschaft | Verfahren und Vorrichtung zum Laden einer Batterie |
CN105958603B (zh) * | 2016-07-01 | 2018-10-26 | 宁德时代新能源科技股份有限公司 | 一种电池的充电方法和装置 |
CN106655398A (zh) * | 2017-01-13 | 2017-05-10 | 广东欧珀移动通信有限公司 | 充电控制方法、装置和终端 |
CN106549464A (zh) * | 2017-01-13 | 2017-03-29 | 广东欧珀移动通信有限公司 | 一种充电控制方法、装置和计算机设备 |
CN108051746A (zh) * | 2017-11-02 | 2018-05-18 | 福建联迪商用设备有限公司 | 一种电池正常供电的判断方法及终端 |
CN109860743B (zh) * | 2018-11-14 | 2021-05-11 | 维沃移动通信有限公司 | 一种充电方法及终端设备 |
CN110635186B (zh) * | 2019-08-29 | 2021-06-01 | 华为技术有限公司 | 一种充电方法及电子设备 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10145979A (ja) * | 1996-11-07 | 1998-05-29 | Nissan Motor Co Ltd | リチウムイオン電池の充電方法 |
US20020195999A1 (en) * | 2001-06-20 | 2002-12-26 | Matsushita Electric Industrial Co., Ltd. | Method of detecting and resolving memory effect |
CN1845418A (zh) * | 2006-04-11 | 2006-10-11 | 广州市番禺丰江电池制造有限公司 | 快速充电方法及充电装置 |
CN1955752A (zh) * | 2005-10-24 | 2007-05-02 | 中兴通讯股份有限公司 | 一种对移动终端电池充电过程的监测方法 |
CN101208847A (zh) * | 2005-06-30 | 2008-06-25 | Lg化学株式会社 | 估算电池健康状态的方法和装置 |
CN101641606A (zh) * | 2007-03-23 | 2010-02-03 | 株式会社丰田中央研究所 | 二次电池的状态估计装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103576091A (zh) * | 2012-07-19 | 2014-02-12 | 鸿富锦精密工业(深圳)有限公司 | 电池开路电压补偿系统及方法 |
CN103259305B (zh) * | 2013-04-03 | 2016-02-03 | 临清市供电公司 | 基于锂电池的直流电源智能充电控制方法 |
-
2014
- 2014-06-26 CN CN201410298572.2A patent/CN105207281A/zh not_active Withdrawn
- 2014-08-11 WO PCT/CN2014/084118 patent/WO2015196535A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10145979A (ja) * | 1996-11-07 | 1998-05-29 | Nissan Motor Co Ltd | リチウムイオン電池の充電方法 |
US20020195999A1 (en) * | 2001-06-20 | 2002-12-26 | Matsushita Electric Industrial Co., Ltd. | Method of detecting and resolving memory effect |
CN101208847A (zh) * | 2005-06-30 | 2008-06-25 | Lg化学株式会社 | 估算电池健康状态的方法和装置 |
CN1955752A (zh) * | 2005-10-24 | 2007-05-02 | 中兴通讯股份有限公司 | 一种对移动终端电池充电过程的监测方法 |
CN1845418A (zh) * | 2006-04-11 | 2006-10-11 | 广州市番禺丰江电池制造有限公司 | 快速充电方法及充电装置 |
CN101641606A (zh) * | 2007-03-23 | 2010-02-03 | 株式会社丰田中央研究所 | 二次电池的状态估计装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108448694A (zh) * | 2018-03-29 | 2018-08-24 | 北京小米移动软件有限公司 | 无线充电设备、方法及装置、电子设备 |
CN108448694B (zh) * | 2018-03-29 | 2020-12-25 | 北京小米移动软件有限公司 | 无线充电设备、方法及装置、电子设备 |
Also Published As
Publication number | Publication date |
---|---|
CN105207281A (zh) | 2015-12-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015196535A1 (zh) | 电池充电方法及装置 | |
US11022653B2 (en) | Deterioration degree estimation device and deterioration degree estimation method | |
CN108663621B (zh) | 一种动力电池组的荷电状态计算方法及系统 | |
TWI285270B (en) | Battery pack and remaining battery capacity calculation method | |
US9461495B2 (en) | Battery warm up system and method for warming up battery using the same | |
TWI616667B (zh) | 電池健康狀態的估算方法及其裝置 | |
JP2020060581A (ja) | 蓄電素子管理装置、socのリセット方法、蓄電素子モジュール、蓄電素子管理プログラム及び移動体 | |
JP6199999B2 (ja) | 電池のsoc推定方法及びシステム | |
US9065279B2 (en) | Charging time estimation device and charging time estimation method | |
US9506988B2 (en) | Condition estimation device and method of estimating condition | |
TWI261679B (en) | Battery pack and remaining battery power calculation method | |
WO2014153947A1 (zh) | 电池管理方法、装置和由电池供电的设备 | |
JP6200359B2 (ja) | 二次電池内部温度推定装置および二次電池内部温度推定方法 | |
CN110861535B (zh) | 一种充电控制方法及装置 | |
JP2015104225A (ja) | 蓄電システムおよび二次電池の充電方法 | |
CN108776308A (zh) | 估计电池剩余能量的方法及装置 | |
CN108287318A (zh) | 一种基于车辆动力电池包的检测方法及检测系统 | |
WO2016029392A1 (zh) | 电池老化程度的检测方法和装置 | |
CN112666463A (zh) | 电池充电剩余时间修正显示方法、修正装置及存储装置 | |
JP2004271342A (ja) | 充放電制御システム | |
WO2018158505A1 (en) | Method, controllling unit and electronic charging arrangement for determining state of charge of a battery during charging of the battery | |
CN112130077A (zh) | 一种不同工况下动力电池组的soc估算方法 | |
KR101352841B1 (ko) | 전지 soc 추정 방법 및 시스템 | |
JP3977215B2 (ja) | 充電装置、充電方法および該充電装置を備えた携帯端末 | |
JP2014059251A (ja) | 内部抵抗推定装置及び内部抵抗推定方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14896015 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14896015 Country of ref document: EP Kind code of ref document: A1 |