WO2015194455A1 - High-durability silver mirror - Google Patents

High-durability silver mirror Download PDF

Info

Publication number
WO2015194455A1
WO2015194455A1 PCT/JP2015/066902 JP2015066902W WO2015194455A1 WO 2015194455 A1 WO2015194455 A1 WO 2015194455A1 JP 2015066902 W JP2015066902 W JP 2015066902W WO 2015194455 A1 WO2015194455 A1 WO 2015194455A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
layer
silver mirror
base material
durability
Prior art date
Application number
PCT/JP2015/066902
Other languages
French (fr)
Japanese (ja)
Inventor
健一 近江
廣川 智也
Original Assignee
岡本硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 岡本硝子株式会社 filed Critical 岡本硝子株式会社
Priority to JP2016529295A priority Critical patent/JP6340608B2/en
Priority to CN201580010120.2A priority patent/CN106062590B/en
Publication of WO2015194455A1 publication Critical patent/WO2015194455A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors

Definitions

  • the invention according to the present application is not only a reflection optical system for optical products such as cameras, copiers and projectors, but also a reflection optical system for vehicles such as a condensing mirror for concentrating solar cells and a head-up display (HUD) of an automobile.
  • the present invention relates to a highly durable silver mirror that combines high reflectivity and excellent durability that can withstand harsh usage environments.
  • an aluminum (Al) mirror that exhibits a high reflectance in a wide visible light region is generally used.
  • the Al mirror is a glass or resin substrate coated with an Al film and has an average reflectance of about 90% in the visible light region.
  • an interference film for increasing the reflectance that is, an increased reflection film is formed on the Al film.
  • the average reflectance of the Al mirror provided with the increased reflection film reaches about 95%.
  • the average reflectance is used as a simple average reflectance of reflectance at a wavelength of 420 to 680 nm of visible light. The same meaning is used hereinafter.
  • the Ag mirror is a mirror in which an Ag film is formed instead of the conventional Al film, and has a higher reflectance in a wide visible light region than the Al mirror, and the average reflectance is about 93%. Reach. And when an increased reflection film is formed on an Ag film, the average reflectance can be increased to 97% or more.
  • a large number of reflection mirrors are used to change an optical path.
  • the amount of light finally reaching the target optical element decreases exponentially according to the reflectance of the reflection mirror and the number of reflections. Therefore, when it is necessary to use a large number of reflecting mirrors in the reflecting optical system, maintaining the reflectance of the reflecting mirror at a high reflectance is a very important issue in increasing the amount of light and ensuring brightness. ing.
  • the increased reflection Al mirror that is most popular as a high-reflectance mirror has an average reflectivity of only about 95% at most, even when the reflectivity is increased by the increased reflection film that also functions as a protective film. In addition, there is a problem that it cannot be used for applications that require higher reflectance.
  • the Ag mirror has a higher reflectance than the Al mirror in a wide region of visible light, and when an increased reflection layer that also functions as a protective layer is provided, the average reflectance is 97% or more. Reach.
  • the Ag film since the Ag film has a lower durability than the Al film and is easily corroded, there is a problem that the Ag film is not suitable for applications requiring high durability.
  • the reason why the durability of the Ag film is low is that the film is peeled off or damaged when the adhesion with the substrate is insufficient. It is also known that when subjected to heat or ultraviolet rays, Ag atoms are easy to move and aggregate so as to form large grains, the film becomes non-uniform, and the reflectance decreases. The degree of deterioration becomes prominent when exposed to high temperatures and ultraviolet rays over a long period of time.
  • the concentrating mirror for concentrating solar cells is exposed to such an environment.
  • Non-Patent Document 1 discloses a means for improving durability by alloying Ag. However, at the same time, it is also described that the reflectance is likely to decrease due to alloying of Ag.
  • Patent Document 1 in order to improve the adhesion of an Ag film formed on a resin substrate, first, a base layer made of a silicon monoxide film (SiO film) is formed, and an intermediate layer is further formed between the SiO film and the Ag film.
  • SiO film silicon monoxide film
  • a technique for obtaining an Ag mirror excellent in moisture resistance and durability by improving the adhesion with a resin substrate by interposing a metal film (for example, Cu film) is disclosed.
  • Patent Document 1 improves the adhesion between the resin substrate and the Ag film.
  • the intensifying film only serves as the protective film. No mention is made of the durability against moisture, electrolyte and corrosive gas from the side, and there is no description as to whether or not strict requirement specifications for solar cells and automobiles are satisfied, for example.
  • Patent Document 2 a base layer made of an aluminum oxide film (Al 2 O 3 film) is formed in order to improve the adhesion between the substrate and the Ag film. Furthermore, it is also disclosed that an Al 2 O 3 film and a titanium oxide film (TiO 2 film) are formed on the Ag film to improve the corrosion resistance.
  • Patent Document 2 is intended to improve adhesion and durability with a small number of layers, and it has been described that tape peelability has been improved, but also from the surface side of the Ag film. No mention is made of durability against moisture, electrolytes and corrosive gases, and there is no description as to whether or not strict required specifications for solar cells and automobiles are met.
  • Patent Document 3 in a reflecting mirror in which a reflecting film is formed on a resin substrate, a base film made of Al 2 O 3 is formed between the resin substrate and the reflecting film, and a fluorine-containing silicon compound is further formed on the reflecting film.
  • a water-repellent film By forming a water-repellent film, preventing the penetration of moisture and electrolyte from the resin substrate side and film surface side, preventing corrosion of the reflective film, and ensuring a good balance of excellent reflective properties and durability Is described.
  • the technique disclosed in Patent Document 3 describes that the reflectance and durability of 97% or more are compatible, the protective film against the oxidation or corrosion of the Ag film is not formed on the Ag film. Therefore, it is unclear whether or not the high temperature test for solar cells and the durability against electrolytes and corrosive gases required for automobiles are satisfied.
  • Patent Document 4 uses an Al 2 O 3 underlayer described in Patent Document 2, and uses a nickel chromium alloy film (Ni—Cr alloy film) as an intermediate layer described in Patent Document 1, and an Ag film.
  • An upper buffer layer made of an Al 2 O 3 film and a silicon oxide film (SiO 2 film) is formed on the surface to prevent corrosion, and an increased reflection film made of a TiO 2 film is formed to further increase the reflectance. It is.
  • Patent Document 4 Although the technique disclosed in Patent Document 4 is described as having a high reflectance of 99% or more even after the heat cycle test, the high temperature and high humidity test, the high temperature exposure test, and the salt spray test, Does the protective film (anti-oxidation film) against heat, oxidation and corrosion of the Ag film on the Ag film satisfy the durability against high temperature test for solar cells and corrosive gas required for automobiles? Whether it is unknown.
  • Patent Document 5 a reflective film formed by sequentially laminating a base layer, an Ag layer, and a protective layer composed of a plurality of layers on a substrate, a layer in contact with the Ag layer among the plurality of layers constituting the protective layer is disclosed.
  • the Si layer free of oxygen
  • the antioxidant effect and moisture resistance are improved. It is said that a stable high reflectance can be obtained by using the Si layer.
  • Patent Document 5 discloses a technique for forming a Si protective film directly on the Ag film in order to improve the antioxidant effect and moisture resistance.
  • Only a high-temperature and high-temperature and high-humidity test are performed.
  • Patent Document 6 when a reflective layer containing Ag is formed on a resin base material, in order to cut UV light that is transmitted through the reflective layer and deteriorates the resin base material, A reflector having an ITO layer formed thereon is disclosed. Among them, a configuration is disclosed in which an ITO layer having a thickness of about 7 to 15 nm is also formed on the reflective layer in order to achieve both long-term weather resistance, gas barrier properties and transparency.
  • Patent Document 6 relates to a reflector for a lighting fixture, and is different in technical field and application from the present invention. Therefore, the film configuration is different from that of the reflection mirror of the optical device or optical apparatus, and it is different in that a melamine resin coating film is used as a base film or a protective film.
  • a melamine resin coating film is used as a base film or a protective film.
  • a dielectric multilayer film mirror in which a large number of high-refractive index transparent films and low-refractive index transparent films are alternately laminated can also achieve a high reflectivity by the interference of light, but compared to Al mirrors and Ag mirrors.
  • the wavelength range where high reflectivity can be obtained is narrow, and the number of film layers required to achieve high reflectivity is much higher, resulting in very high costs. Not popular.
  • the object of the invention according to the present application is to provide a highly durable silver mirror having both high reflectivity of a pure silver (Ag) mirror and excellent durability not inferior to an Al mirror or an Ag alloy mirror.
  • Concentrated solar power generation that not only satisfies the durability required when used in optical products such as projectors, which was the main application of this type of mirror, but also is exposed to heat and light over a long period of time.
  • It is to provide an Ag mirror that has improved durability to a level that can be used for a product including a reflective optical system for automobiles that is exposed to an environment close to the outdoors in an urban area for a long period of time. .
  • the present invention provides a highly durable silver mirror in which even when subjected to heat or ultraviolet rays over a long period of time, Ag atoms are not aggregated, the uniformity of the film is maintained, and the reflectance is not lowered.
  • corrosive gases such as sulfurous acid gas, hydrogen sulfide gas, nitrogen oxide gas, and chlorine gas exist in the environment, these gases are combined with Ag atoms, and AgS, AgCl, etc.
  • the present invention provides a metal film selected from a metal having a face-centered cubic crystal structure as a second layer and an oxide film as a first layer on a substrate.
  • a highly durable silver mirror comprising a silver film as a third layer, an ITO film having a thickness of 3 to 12 nm as a fourth layer, and a protective film as a fifth layer in this order.
  • the highly durable silver mirror of this invention has the basic film structure which consists of a film
  • a base material that can be used in the present invention the inventors have continued intensive research.
  • a semiconductor base material such as a Si substrate, a cycloolefin polymer resin (COP resin), etc. It has been found that even if a resin base material or a metal base material such as brass is used, the silver mirror having the basic film structure composed of the first layer to the fifth layer has high reflectivity and excellent durability. .
  • a silicon oxide (SiO x ) film, magnesium fluoride as a wear-resistant film is formed on the protective layer as the fifth layer. It is desirable to form a (MgF 2 ) film or a film of these two layers.
  • SiO x film means a film having an oxidation degree between the SiO film and the SiO 2 film.
  • the SiO x film may be an SiO 2 film. desirable.
  • the heat treatment is preferably performed in the temperature range of 400 to 500 ° C. for 30 to 90 minutes.
  • the substrate that can withstand the heat treatment in such a temperature range include a glass substrate, a semiconductor substrate, and a metal substrate.
  • the resin base material deteriorates when kept at such a temperature, the heat treatment cannot be performed. Note that when it is described as 400 to 500 ° C., it means 400 ° C. or more and 500 ° C. or less, and when it is described as 30 to 90 minutes, it also means 30 minutes or more and 90 minutes or less. The same meaning is used hereinafter.
  • the basic structure of the present invention is a film configuration in which the first to fifth layers are formed on various base materials.
  • a glass substrate a semiconductor substrate represented by a silicon (Si) substrate, or a metal substrate is used as the substrate, these substrates hardly change even when subjected to the action of light or heat, and are resistant to corrosion. Further, durability is further improved in that gas is not generated and the film is not deteriorated.
  • the oxide film as the first layer serves as an underlayer for ensuring adhesion between the base material and the silver (Ag) film. Even if an Ag film, which is a highly reflective layer, is formed directly on the base material, it will be immediately peeled off from the base material due to wear or the like, but if an oxide film is formed, the adhesion is improved.
  • the underlayer made of an oxide film also functions to trap oxygen gas diffusing from the base material side and prevent oxidation of the Ag film. Therefore, the oxide film does not have to be completely stoichiometric, and may be a composition in an oxygen-deficient state. Although an oxide film in an oxygen-deficient state often exhibits light absorption, in the present invention, since the first layer is formed on the lower side (base material side) of the Ag film, the reflectance of the Ag film is lowered. It doesn't matter.
  • the oxide film is formed as the first layer because the oxide film has good adhesion to a glass substrate that is also an oxide.
  • the semiconductor substrate other than the glass substrate is used.
  • an oxide film is formed as the first layer. This is considered to be related to the fact that a thin oxide film is formed on the surface of these base materials even if they are semiconductor base materials or metal base materials.
  • oxide films As the type of the oxide film, various oxide films that can be formed by a vapor deposition method or a sputtering method can be used, but an aluminum oxide film (Al 2 O 3 film), a silicon oxide film (SiO 2 film), or It is desirable that it is one of titanium oxide films (TiO 2 films). This is because these oxide films are easy to form, have a small residual stress, and have excellent adhesion to a glass substrate. These oxide films do not necessarily have a stoichiometric composition.
  • the composition of the aluminum oxide film is stoichiometrically Al 2 O 3 , but in the present invention, it is not necessarily Al 2 O 3 , and the composition in a state in which oxygen is slightly depleted (Al 2 O 3-X is often described).
  • the oxide film When an Al 2 O 3 film, a SiO 2 film, or a TiO 2 film is used as the oxide film, various durability of the highly durable silver mirror of the present invention can be enhanced. Furthermore, the Al 2 O 3 film is most excellent for improving heat resistance.
  • a film formed between the base material and the Ag film to improve the adhesion of the Ag film has been conventionally formed with a film thickness of about 40 to 200 nm, but the first oxide film in the present invention is A thinner film thickness is sufficient, specifically, a film thickness of about 10 nm to 60 nm may be used. Of course, even if it is formed with a film thickness of 60 nm or more, there is no problem in performance, but it should be noted that film stress is likely to occur. On the other hand, when the thickness is 10 nm or less, the performance of trapping corrosive gas from the glass substrate side may be insufficient.
  • the metal film of the second layer of the present invention is an intermediate layer for enhancing the adhesion between the base material and the oxide film of the first layer and the Ag film. Since a metal film is generally rich in ductility, it is easily deformed, and the force for peeling off the Ag film such as tensile stress and shear stress can be weakened. Further, since it has an affinity for oxygen atoms, it has an effect of preventing oxidation of the Ag film due to diffusion of moisture and the like from the substrate side. In the present invention, it is important to use a metal film selected from metals having a face-centered cubic crystal structure. This is because the crystal structure of the Ag film formed on the upper layer of the metal film is a face-centered cubic type. By using a metal film having the same face-centered cubic crystal structure as that of the Ag film as the intermediate layer, the crystallinity of the Ag film can be increased, and thus the reflectance can be increased.
  • the metal having a face-centered cubic crystal structure examples include aluminum (Al), copper (Cu), nickel (Ni), platinum (Pt), gold (Au), and the like.
  • the film is preferably an Al film, a Cu film, or a Ni film. This is because these metals are relatively inexpensive, easy to form, and the lattice constant is relatively close to the lattice constant of Ag, so that it is expected to promote crystallization of the Ag film. .
  • the second layer metal film of the present invention When an Al film, Cu film or Ni film is used as the second layer metal film of the present invention, crystallization of the Ag film can be promoted and durability can be improved. Furthermore, the Ni film is the most excellent for increasing heat resistance.
  • the thickness of the metal film is sufficient if it is about 10 to 60 nm.
  • Patent Document 1 relates to a resin base material, and a Cu film having a thickness of 100 to 200 nm is used as an intermediate layer.
  • a thinner metal film is sufficient in the present invention.
  • an Al 2 O 3 film is formed as a first layer with a thickness of 20 to 60 nm, and a Ni—Cr alloy layer is formed thereon with a thickness of 20 to 60 nm.
  • a slightly thinner metal film can be used. Even if the metal film is made thicker, the antioxidant effect and the crystallization promoting effect are not enhanced, and it is not preferable because it is disadvantageous in terms of film stress and cost.
  • the thickness is reduced to 10 nm or less, the effect of relaxing the tensile stress and the shear breaking force is weakened, and the crystallinity is lowered.
  • the third layer is an Ag film as a highly reflective film.
  • the Ag film is desirably formed with a thickness of about 100 to 200 nm. If it is thinner than 100 nm, the reflectance becomes insufficient. In particular, the reflectance on the short wavelength side tends to decrease. For example, at a wavelength of 380 nm, when the Ag film thickness is 50 nm, the reflectance decreases by about 1% compared to the case of 100 nm. On the other hand, even if it is thicker than 200 nm, the reflectance and durability hardly change. Since silver as a film forming material is expensive, it is desirable to make it as thin as possible within the range satisfying the reflectance and durability from the viewpoint of cost.
  • the third-layer Ag film is preferably made of pure silver substantially free of components other than silver (Ag).
  • the Ag film impurities of a level that cannot be removed even by purification of Ag cannot be mixed, but in order to achieve high reflectivity, the Ag film must be made of pure silver that does not substantially contain components other than Ag. This is because it is desirable.
  • an improvement in durability is expected by adding a metal such as palladium (Pd) or niobium (Nb) to silver. I can't escape. From this point, in the present invention, in order to obtain high reflectivity, it is desirable to use an Ag raw material of 3N grade (99.9% or more) or higher as the Ag material for film formation.
  • the present invention is characterized in that, while maintaining the high reflectance of pure silver, the durability is not improved by alloying silver but is improved by the action of the entire film structure.
  • the ITO film as the fourth layer is a film that should be said to be a deterioration preventing layer for achieving high reflectivity and excellent durability by preventing the Ag film from deteriorating in the film structure of the present invention. It is very important.
  • By forming the thin ITO film directly on the Ag film it is possible to prevent the Ag film from being deteriorated due to oxidation or the like when the protective film is formed as the fifth layer.
  • the inventors have obtained a high reflectance and excellent properties other than the ITO film. We could not find one that could satisfy both durability.
  • the thickness of the ITO film is desirably in the range of 3 to 12 nm, that is, 3 nm or more and 12 nm or less.
  • the film thickness of the ITO layer is out of this range, the effect of achieving both high reflectivity and excellent durability is significantly reduced. That is, when the thickness is less than 3 nm or exceeds 12 nm, the reflectance decreases immediately after film formation or by a durability test.
  • the action of the ITO film exhibiting an excellent protective effect on the Ag film is not clear, it may be considered to prevent the oxidation or corrosion of the Ag film by absorbing, adsorbing or binding oxygen and corrosive gas. it can.
  • ITO is an oxide in which tin oxide is doped in indium oxide, but the same effect was obtained when the ratio of tin oxide was in the range of 5 to 20 wt%.
  • the fifth layer is a protective film that reinforces the effect of preventing the deterioration of the Ag film by the ITO film. It functions as a layer for preventing moisture and corrosive gas from diffusing from the surface side of the film toward the Ag film.
  • the protective film may be a single layer film, but is preferably formed as a multilayer film. This is because when a single-layer thick film is formed, the film has a columnar structure, a gap is formed between the columns, and moisture and corrosive gas are diffused toward the Ag film. Because it becomes. Since the multi-layer structure inhibits the development of the columnar structure, the function as a protective film is improved.
  • the multilayer film can function as an increased reflection film that increases the reflectance.
  • it is effective to form the film by vacuum deposition using plasma assist or ion assist.
  • a three-layer film in which an aluminum oxide film having a thickness of 28 nm, a silicon oxide film having a thickness of 26 nm, and a titanium oxide film having a thickness of 44 nm are sequentially formed in a predetermined thickness can be exemplified.
  • This configuration it is possible to prevent the attack of moisture and corrosive gas from the surface side on the Ag film as the third layer, assist the effect of the ITO layer, and increase the reflectance by optical interference action.
  • These films directly affect the reflectance, unlike the first layer and second layer films formed on the lower side (glass substrate side) of the Ag film. That is, when these films are not transparent but have light absorption, the reflectivity decreases accordingly.
  • these films are preferably an Al 2 O 3 film, an SiO 2 film, and a TiO 2 film that are as close to the stoichiometric composition as possible.
  • a reflection enhancing film consisting of five or more layers can be increased. The effect is not improved so much, and on the contrary, there is a possibility that film stress becomes high and film peeling occurs.
  • a substrate having a conical or parabolic shape can also be used as the substrate. Since these base materials are not flat plates, a multilayer film constituting a highly durable silver mirror is formed on the inner surface of the cone formed by the concave portion, the inner surface of the paraboloid, the outer surface of the cone formed by the convex portion, and the outer surface of the paraboloid. . In this case, there is a high possibility that the thickness and the structure of each layer to be formed are not uniform depending on the position of the concave portion or the convex portion.
  • the present invention can achieve both high reflectivity and excellent durability.
  • heat treatment may be performed at a temperature range of 400 to 500 ° C. for 30 to 90 minutes. preferable.
  • the heat treatment means maintaining in the temperature range. This is because the film structure can be densified and the durability can be further improved by the heat treatment.
  • After the heat treatment it may be taken out to a room temperature atmosphere and naturally cooled as it is.
  • a multilayer film including an Ag film is heat-treated at such a high temperature, conventionally, Ag atoms move and aggregate due to thermal migration to form large crystal grains, resulting in a non-uniform film, and reflectivity and durability. Often caused a drop.
  • the heat treatment when using a substrate that can withstand the heat treatment, such as a glass substrate, a semiconductor substrate, or a metal substrate, the heat treatment is particularly required for applications that require excellent heat resistance. It is desirable to do.
  • the heat treatment not only has an effect on the densification of the film from the second layer to the fourth layer, but also has an effect on the densification of the film of the first layer and the fifth layer as the protective film. I can expect that. Note that it is not preferable that the heat treatment condition is out of the temperature range described above because the Ag film or the like is not sufficiently densified or conversely causes oxidation of the Ag film. In addition, when the heat treatment is performed outside the above-described time range, the same problem occurs.
  • a resin substrate represented by a cycloolefin polymer (COP) resin can also be used as the substrate.
  • COP cycloolefin polymer
  • a resin base material in order to increase the adhesion between the base material and the film, it is necessary to form a two-layer base layer composed of a SiO film / SiO 2 film as a base layer on the surface of the base material. .
  • An Al 2 O 3 film is preferably used as the oxide film of the first layer.
  • a SiO film / SiO 2 film is formed as a base layer on the surface of the resin substrate, it is considered that there is an effect of making the surface of the resin substrate equivalent to the surface of the glass substrate.
  • the above heat treatment cannot be performed because the resin substrate cannot withstand a high temperature of 400 to 500 ° C.
  • a SiO x film, a MgF 2 film, or a MgF 2 / SiO x 2 layer film is further formed as a wear-resistant film on the protective film of the fifth layer.
  • Abrasion resistance can be greatly improved.
  • the SiO x film, the MgF 2 film or the MgF 2 / SiO x 2 layer film is suitable as the wear-resistant film because these films are difficult to take a crystal structure and have a smooth surface, and are resistant to wear.
  • these films are also preferable in that they have a low refractive index and are not noticeable even if scratches are present.
  • the heat treatment for 30 to 90 minutes in the temperature range of 400 to 500 ° C. is preferably performed after these wear-resistant films are formed. This is because these wear-resistant films are also densified.
  • a water- and oil-repellent film made of a fluorine organic compound or the like is formed as an outermost layer on the fifth protective film or on the wear-resistant film formed on the protective film. You can also.
  • the water / oil repellent film functions to repel moisture in addition to functioning as a surface antifouling film. Therefore, excellent barrier properties are exhibited by repelling salt water, particularly in an environment exposed to salt water. Since the water / oil repellent film itself is colorless and transparent and the film thickness may be about several nanometers, the optical characteristics are not affected without affecting the light interference.
  • the water / oil repellent film when the heat treatment is performed, the water / oil repellent film must be formed after the heat treatment. This is because if formed before the heat treatment, the water / oil repellent film is decomposed by the heat treatment and disappears.
  • the highly durable silver mirror of the present invention can withstand a very severe heat resistance test when the heat treatment is performed.
  • the condensing mirror used in the concentrating solar power generation module has an average reflectance of 97% or more in the visible light region even after a heat resistance test of holding at a high temperature of 300 ° C. for 2,000 hours.
  • the highly durable silver mirror of the present invention subjected to the heat treatment can satisfy this requirement.
  • By having durability that can pass such a heat resistance test it can be used as a highly durable silver mirror that is exposed to direct sunlight over a long period of time.
  • Such heat resistance can also be considered as a result of improving the durability by the action of the entire film structure and heat treatment.
  • the highly durable silver mirror of the present invention can withstand a high concentration salt water immersion test (30 ° C, immersed in 15% salt water for 24 hours) and a salt spray test, and has an average reflectance of 97% or more even after the test. Can be maintained.
  • the salt water immersion test and salt water spray test are one of the test items required for solar power generation systems installed in coastal areas and parts used in automobiles traveling along the coastal areas. This is a test for evaluating possession.
  • the high durability silver mirror of the present invention can withstand a high concentration salt water immersion test and a salt spray test, such as the effect of ITO film, the effect of a predetermined heat treatment, the effect of a base film and the effect of a protective film. It can be thought of as a composite.
  • the highly durable silver mirror of the present invention has an average reflectance of 97% or more in the visible light region even after the corrosion-resistant gas test specified in JIS H8502.
  • This corrosion-resistant gas test is a severe test in which hydrogen sulfide (H 2 S) gas having a concentration of 10 ppm is used and exposed to an environment of 40 ° C. and 90% RH for 24 hours. This can be cleared. By having such durability, it can be used as a highly durable silver mirror for vehicle use that is used over a long period of time in an environment equivalent to the outdoors in an urban area.
  • Non-Patent Document 2 Even after the mixed corrosive gas test described in Non-Patent Document 2 corresponding to five years of exposure in the hot and humid Southeast Asian region, an average reflectance of 97% or more can be maintained. it can.
  • the durability against such a corrosive gas can also be considered as a result of improving the durability by the action of the entire film structure and the heat treatment.
  • the film configuration disclosed in the present invention a highly durable silver mirror capable of achieving both high reflectance and excellent durability in a wide visible light region can be obtained.
  • the Ag film of the third layer which is a light reflection layer, pure silver substantially free of impurities, it contributes to the realization of high reflectivity.
  • a highly durable silver mirror capable of achieving both high reflectivity and excellent durability including heat resistance in a wide range of visible light by heat treatment for 30-90 minutes in a temperature range of 400 to 500 ° C. after film formation; can do. And by combining these actions, we assumed severe heat tests for concentrating solar power generation, high-concentration salt water immersion tests and salt spray tests for coastal areas, and long-term use in urban areas. Even in a corrosion-resistant gas test required for in-vehicle optical products, it can be used as a highly durable silver mirror that can maintain an average reflectance of 97% or more in the visible light region.
  • the highly durable silver mirror of the present invention is a sunshine carbon arc lamp type weather resistance tester (6.8 mW / cm in an environment of 83 ° C.), which is an accelerated weather resistance test (light resistance) of automobile parts specified in JIS D0205. It was confirmed that an average reflectance of 97% or more can be maintained even after the test of spraying water while irradiating the carbon arc lamp 2 for 1,080 hours.
  • the silver mirror with the outstanding durability which was not able to be achieved by the prior art is realizable. Even after various durability tests, an average reflectance of 97% or more in a wide visible light region can be realized. As well as clearing the durability required for reflectors used in liquid crystal projectors, heat resistance tests, salt water immersion tests, salt spray tests, and automotive parts required for concentrating solar power collectors Even after a corrosion-resistant gas test, a salt-water immersion test, and a salt spray test that are required for use, a highly durable silver mirror that maintains a reflectance of 97% or more can be obtained.
  • the basic film configuration is composed of glass substrate / Al 2 O 3 / Ni / Ag / ITO / Al 2 O 3 / SiO 2 / TiO 2 (hereinafter referred to as the basic film configuration of the present invention) 7 It is a layer structure. These films were formed using a vacuum evaporation apparatus (Showa Vacuum product number SGC26WA). JEOL product number BS80020CPPS was used as the plasma assist device.
  • Examples 1 to 8 After the glass substrate was washed with warm water, it was set in a vacuum deposition apparatus and evacuated to a vacuum degree of 0.9 mPa. And the surface of the glass substrate was plasma-cleaned using oxygen as a reaction gas, and then the degree of vacuum (back pressure) was adjusted to 3 mPa. In the formation of the first oxide film (for example, Al 2 O 3 film), oxygen gas was introduced and the film was formed under the conditions described in Table 1. Similarly, the second and subsequent layers are formed under the conditions described in Table 1, so that No. 2 is formed on the glass substrate. 1-No. Up to 8 films were formed in order.
  • the first oxide film for example, Al 2 O 3 film
  • the second and subsequent layers are formed under the conditions described in Table 1, so that No. 2 is formed on the glass substrate. 1-No. Up to 8 films were formed in order.
  • VD in the column of the film formation method means normal vacuum evaporation, and the film was formed by evaporating the evaporation material using an electron gun.
  • PAD means vapor deposition using a plasma assist device, and a plasma gun that promotes ionization of the vapor deposition material is supplementarily used.
  • the plasma assist current at that time was described as PA current.
  • the fourth ITO film is formed in an argon gas atmosphere, Ni and Ag are not introduced with any gas, and other materials are formed in an oxygen gas atmosphere. It was.
  • the O 2 gas flow rate is described when the film is formed in an oxygen gas atmosphere
  • the Ar gas flow rate is described when the film is formed in an argon gas atmosphere
  • the pressure is described when the pressure during film formation is controlled.
  • the film was taken out from the vacuum deposition apparatus, placed in a furnace controlled at a temperature of 450 ° C., and heat-treated for 60 minutes.
  • Table 2 shows the film configurations of seven samples (Examples 1 to 7) prepared as examples using the film formation conditions shown in Table 1.
  • Example 1 to 4 the thickness of the ITO film was changed in 4 steps from 3 to 10 nm, and the thicknesses of the other layers were all the same.
  • Examples 5 and 6 instead of the Al 2 O 3 film used in Examples 1 to 4, a SiO 2 film or a TiO 2 film was used as the first layer film, respectively. In that case, the film formation conditions of the SiO 2 film and the TiO 2 film were in accordance with the film formation conditions of the first Al 2 O 3 film in Table 1.
  • Example 7 a Cu film was used instead of the Ni film as the second layer.
  • Comparative Examples 1 to 8 Table 3 shows a film configuration of a comparative example prepared for evaluation in comparison with the examples.
  • Comparative Example 1 has a film configuration in which an Ni film is directly formed on a glass substrate without using an oxide film as the first layer.
  • Comparative Example 2 and Comparative Example 3 are film configurations that do not use the fourth-layer ITO film in the present invention.
  • Comparative Example 4 and Comparative Example 5 are examples in which a Ni film or a Cu film is formed instead of the fourth layer ITO film in the present invention, and the film thickness is about 1 nm.
  • Comparative Example 6 has a film configuration using a Cr film as the second-layer metal film in the present invention.
  • Comparative Example 7 is the film configuration disclosed in Patent Document 2
  • Comparative Example 8 is the film structure disclosed in Patent Document 4.
  • a Ni—Cr alloy containing 15 wt% of Cr was used as a vapor deposition material as the second metal film, and a Ni film was formed.
  • a Ni—Cr film was formed under conditions according to the film conditions.
  • FIG. 2 shows the result of examining the relationship between the ITO film thickness, which plays an important role in the present invention, and the average reflectance.
  • the same film structure as in Examples 1 to 4 was used as the basic film structure, the ITO film thickness was changed from 3 nm to 15 nm, and then the reflectivity after heat treatment at 450 ° C. for 60 minutes was measured. Is.
  • two line graphs are the results of two sets of experiments, both of which have the same tendency. From this result, it was found that the thickness of the ITO film must be 12 nm or less in order to achieve an average reflectance of 97% or more.
  • test results are summarized in Table 5 for the examples and Table 6 for the comparative examples.
  • the circles in the result column of Test A in Table 5 and Table 6 indicate that film peeling did not occur in the adhesion test.
  • a cross indicates that the film has been peeled off.
  • Other annotations are shown outside Table 6.
  • Example 1 of the present invention showed an average reflectance of 97% or more after all the tests conducted, and had excellent durability and high reflectance.
  • Examples 2, 3 and 4 differ from Example 1 only in the thickness of the ITO film of the fourth layer, and since the ITO film thickness is thicker than Example 1, All tests are considered to be cleared. In the adhesion test conducted just in case, the film was not peeled off, and it was confirmed that the high reflectance of 97% or more was maintained after the salt water test A and the salt water test B.
  • the SiO 2 film or the TiO 2 film is used in place of the Al 2 O 3 film that is the base layer in Examples 1 to 4, and these oxide films are used as the first layer.
  • Example 7 the second-layer metal film in Examples 1 to 4 was constituted by using a Cu film instead of the Ni film, and it was confirmed that excellent durability was similarly exhibited. However, in Examples 5, 6 and 7, a decrease in reflectance of about 3 to 6% was observed only after test B (heat resistance test). From this, it was found that from the viewpoint of heat resistance, the Al 2 O 3 film is excellent as the first layer oxide film, and the Ni film is excellent as the second layer metal film.
  • Comparative Example 1 is an example in which the Al 2 O 3 film is not formed on the glass substrate, but the adhesion is poor and peeling occurred in the adhesion test.
  • Comparative Example 2 and Comparative Example 3 are examples in which the ITO film in the present invention was not formed, but it was observed that the film surface was deteriorated by the heat resistance test, and a large number of white and black particles were generated. Discoloration of the film has also been observed.
  • Comparative Example 4 and Comparative Example 5 are examples in which a Ni film or a Cu film having a thickness of 1 nm is formed instead of the ITO film in the present invention. %, The durability test was not performed.
  • Comparative Example 6 a Cr film was used instead of the Ni film as the metal film of the second layer in Examples 1 to 4, but the reflectivity was reduced to 93.3% by the heat treatment. The test was not conducted. As described above, Examples 1 to 8 using Ni and Cu having a face-centered cubic crystal structure as the second-layer metal film showed excellent durability. When Cr having a crystal structure is used as the metal film of the second layer, it has been clarified that the reflectance is lowered by the heat treatment. Comparative Example 7 is a silver mirror having a film configuration disclosed in Patent Document 2, and uses a thick Al 2 O 3 film as a base film. However, the heat resistance test revealed that the film deteriorated in a short time and part of the film peeled off.
  • Comparative Example 8 is a silver mirror having a film configuration disclosed in Patent Document 4, in which an ITO film is not formed as compared with the film configuration of the present invention, and the second metal film is Ni—Cr. An alloy film is formed, and the other films are slightly thicker than the present invention.
  • Test L and Test M are tests based on JIS B7080: 2015 newly established in accordance with ISO9211 series established as a test method for optical coating.
  • the designated sand eraser used in Test M is a uniform mixture of rubber and abrasive as described in the standard.
  • Example 8 shows the film configurations evaluated as examples and comparative examples.
  • Table 8 shows the film configurations evaluated as examples and comparative examples.
  • an MgF 2 film having a thickness of 120 nm was formed as a wear-resistant film on the seventh layer of TiO 2 film.
  • Example 9 a 20 nm thick SiO 2 film was formed on the MgF 2 film.
  • Example 10 a water / oil repellent film having a thickness of 3 nm was formed on the SiO 2 film.
  • an MgF 2 film having a thickness of 25 nm is formed on the seventh TiO 2 film.
  • an SiO 2 film having a thickness of 20 nm was formed as an abrasion resistant film, and a water / oil repellent film having a thickness of 3 nm was formed thereon.
  • the film forming conditions for each layer are as described in Table 1. Conditions for forming the MgF 2 film not listed in Table 1, using MgF 2 as the evaporation source, was evacuated to a pressure within the deposition chamber (back pressure) is below 0.9 mPa, the electron beam Vapor deposition was performed.
  • a commercially available pellet for vapor deposition impregnated with a fluorine-containing organosilicon compound eg, Surf Clear manufactured by Canon Optron
  • was used as a vapor deposition source and was also vapor deposited by the same electron beam method.
  • Example 11 The highly durable silver mirror of this invention was created on Si base material which is a semiconductor, and durability was evaluated.
  • Table 10 shows the evaluated film configuration. Up to the seventh layer is the basic film configuration of the present invention.
  • an SiO 2 film having a thickness of 20 nm is formed on the seventh layer as an abrasion resistant film.
  • Example 12 a 3 nm thick water / oil repellent film is formed on the SiO 2 film.
  • Table 11 shows the results of the salt spray test (Test K) for these two examples. The decrease in reflectance after the salt spray test was less than 1%, and it was found that the highly durable silver mirror of the present invention has excellent durability even on a Si substrate.
  • Example 13 to 16 and Comparative Examples 11 to 16 The highly durable silver mirror of this invention was created using the resin base material, and various durability was evaluated.
  • a resin substrate a cycloolefin polymer having a thickness of 2 mm (ZEONOR (registered trademark) manufactured by Zenon Japan Ltd., hereinafter abbreviated as COP) was used.
  • the film configurations and evaluation results of the evaluated examples and comparative examples are shown in Table 12 and Table 13, respectively.
  • Al 2 O 3 / Ni / Ag / ITO / Al 2 O 3 / SiO 2 / TiO 2 which is the basic film configuration of the present invention, is formed in this order.
  • the SiO / SiO 2 base film is formed in this order on the COP substrate. That is, unlike the film configuration on the glass substrate or the Si substrate, the Al 2 O 3 film is not formed first as the first layer for the COP substrate, but the thickness as the first base film.
  • a silicon monoxide (SiO) film having a thickness of about 5 nm is formed, a silicon dioxide (SiO 2 ) film having a thickness of about 150 to 300 nm is formed thereon as a second base film, and then an Al 2 O 3 film is formed. It is essential.
  • a base film composed of two layers of SiO film / SiO 2 film in this way, a highly durable silver mirror having high reflectivity and excellent durability can be obtained even if a resin base material is used. It can be done.
  • indicates that there was no corrosion or peeling of the film
  • X indicates that film corrosion or peeling was observed after the test.
  • the Al 2 O 3 film formed on the base film may have a thickness of about 5 nm by forming the base film composed of the two layers. It was also found that the thickness of the Ni film formed under the Ag film can be reduced.
  • a 20 nm thick SiO 2 film was formed as an abrasion resistant film, and in Example 14, a water / oil repellent film was further formed on the SiO 2 film. is there.
  • Comparative Example 13 is a case where an underlayer film having a two-layer structure is formed, but an Al 2 O 3 film is not formed thereon, and an abnormality occurs on the surface of the COP substrate in the moisture resistance test, and the tape drawing is performed. Also in the peeling test (Test A), peeling of the film was observed.
  • Comparative Examples 15 and 16 a base film having a two-layer structure is formed, and an Al 2 O 3 film is formed thereon.
  • the thickness of the SiO 2 film as the second base film is 50 nm. Since the film was thin as follows, the film peeling was also observed because the corrosion of the Ag film from the substrate side could not be sufficiently prevented and the film stress could not be sufficiently relaxed.
  • Example 13 a severe thermal shock test was conducted in which a cycle of holding at a temperature of ⁇ 40 ° C. for 1 hour, and then rapidly heating to 85 ° C. and holding for 1 hour was repeated 456 times. The initial value was 95.8%. It was also found that the highly durable silver mirror of the present invention on the COP substrate had excellent thermal shock resistance since the reflectivity decreased only to 94.5%.
  • FIG. 3 is a cross-sectional view, and an angle ABC formed by A and C and B on the bottom surface is ⁇ .
  • a substrate holder (often called a substrate dome) for setting a substrate to be coated in a vapor deposition apparatus is a spherical surface, and a large number of substrates are arranged in a circumferential direction or a diameter direction of the spherical surface.
  • a membrane is performed.
  • this base material is a plane, the thickness of the film
  • the thickness of the coating on the substrate differs depending on which position of the substrate holder is set in which direction.
  • Example 17 As shown in FIG. 4, the glass substrate is disposed at four positions on the substrate holder at an angle of 25 ° from the vertical plane, and the high durability of Example 17 shown in Table 14 and Example 1 shown in Table 2 A silver mirror was formed.
  • the protective film is a 20 nm thick SiO 2 single layer film, whereas in Example 1, Al 2 O 3 / SiO 2 / TiO 2 is used.
  • a three-layer protective film made of the above and an SiO 2 film as an abrasion resistant film are formed.
  • the Ag film is formed as thick as 500 nm.
  • Table 15 shows the results of measuring the average reflectance of the highly durable silver mirrors of Example 17 and Example 1 arranged at the four positions shown in FIG.
  • Example 1 the reflectivity varies greatly depending on the position and direction on the substrate holder, whereas in Example 17 where the protective film of the SiO2 single layer is formed by increasing the thickness of the silver film, the position on the substrate holder is It was found that high reflectivity was realized regardless of the direction.
  • Table 16 shows three types of film configurations formed on the conical slope using the brass base material shown in FIG. 3, and Table 17 shows the results of the constant temperature and humidity test performed on these film configurations.
  • Comparative Example 17 has a film configuration in which no ITO film is formed as compared with Example 18, and Comparative Example 18 has a film configuration in which neither an ITO film nor a protective film is formed on the silver film.
  • Example 18 an SiO 2 film having a thickness of 20 nm was formed as a protective layer on the ITO film, and the effect of increasing reflection by the protective film was not obtained, and the average reflection due to light absorption by the ITO film. Although the rate remained at about 95%, it was found that the reflectance did not decrease even when the constant temperature and humidity test (Test C) was conducted for more than 1,000 hours.
  • the initial reflectance is high, but the constant temperature. It turned out that the reflectance fall by a constant humidity test was large.
  • Example 1 About the highly durable silver mirror of Example 1, the sunshine carbon weather meter test (Test I: accelerated weathering test) was implemented using the test apparatus (made by Suga Test Instruments Co., Ltd.) prescribed
  • Example 1 As a result, it was found that the highly durable silver mirror of Example 1 did not cause a decrease in reflectance even in the accelerated weather resistance test and had excellent weather resistance.

Abstract

There exists a need for a high-reflectance, high-durability mirror that has higher reflectance than an enhanced-reflection aluminum mirror, and the durability required for use as an optical component in a projector or the like, as well as being serviceable as a collection mirror exposed to heat and light for extended periods, or as a reflecting optical component for an automobile. According to the present invention, a silver mirror of high reflectance and high durability is obtained by forming on a base material a first layer composed of an oxide film, a second layer composed of a film of metal selected from metals having a face-centered cubic crystalline structure, a third layer composed of a silver film, a fourth layer composed of an ITO film having thickness of 3-12 nm, and a fifth layer composed of a protective film, in that order. Glass, Si, or the like can be used as the base material. By forming a foundation layer that comprises SiO/SiO2, a high-durability silver mirror employing a resin base material can be obtained. Through a prescribed heat treatment, there can be obtained a high-reflectance, high-durability silver mirror having excellent heat resistance.

Description

高耐久性銀ミラーHigh durability silver mirror
本出願に係る発明は、カメラ、コピー機、プロジェクターなどの光学製品の反射光学系のみならず、集光型太陽電池用集光ミラー及び自動車のヘッドアップディスプレイ(HUD)など車載用の反射光学系を有する装置においても使用可能な耐久性を有する銀(Ag)ミラーに関し、特に、高い反射率と厳しい使用環境にも耐える優れた耐久性を兼ね備えた高耐久性銀ミラーに関する。 The invention according to the present application is not only a reflection optical system for optical products such as cameras, copiers and projectors, but also a reflection optical system for vehicles such as a condensing mirror for concentrating solar cells and a head-up display (HUD) of an automobile. In particular, the present invention relates to a highly durable silver mirror that combines high reflectivity and excellent durability that can withstand harsh usage environments.
反射率の高い反射ミラーとしては、可視光線の広い領域で高反射率を示すアルミ(Al)ミラーが一般的である。Alミラーはガラスや樹脂の基板上にAl膜をコーティングしたもので、可視光線領域での平均反射率は90%程度である。さらに反射率を高くしたい場合には、Al膜の上に反射率を高めるための干渉膜、すなわち増反射膜を形成する。増反射膜を設けたAlミラーの平均反射率は95%程度に達する。なお、ここで、平均反射率とは、可視光線の420~680nmの波長における反射率の単純平均反射率として用いる。以降も同じ意味で用いる。 As a reflective mirror having a high reflectance, an aluminum (Al) mirror that exhibits a high reflectance in a wide visible light region is generally used. The Al mirror is a glass or resin substrate coated with an Al film and has an average reflectance of about 90% in the visible light region. When it is desired to further increase the reflectance, an interference film for increasing the reflectance, that is, an increased reflection film is formed on the Al film. The average reflectance of the Al mirror provided with the increased reflection film reaches about 95%. Here, the average reflectance is used as a simple average reflectance of reflectance at a wavelength of 420 to 680 nm of visible light. The same meaning is used hereinafter.
Agミラーは、上記従来のAl膜に代えてAg膜を形成したミラーであって、Alミラーに比べて、可視光線の広い領域でさらに高い反射率を有し、平均反射率は93%程度に達する。そして、Ag膜の上に増反射膜を形成した場合には、平均反射率を97%以上まで高めることができる。 The Ag mirror is a mirror in which an Ag film is formed instead of the conventional Al film, and has a higher reflectance in a wide visible light region than the Al mirror, and the average reflectance is about 93%. Reach. And when an increased reflection film is formed on an Ag film, the average reflectance can be increased to 97% or more.
特開2000-241612号公報JP 2000-241612 A 特開2003-4919号公報JP 2003-4919 A 特許4307921号公報Japanese Patent No. 4307921 特開2007-147667号公報JP 2007-147667 A 特開2010-19875号公報JP 2010-19875 A 特開2012-47856号公報JP 2012-47856 A
プロジェクターなどの反射光学系を有する装置では、光路を変えるために多数の反射ミラーが用いられる。そして、何度も反射を繰り返す反射光学系では、最終的に目的の光学素子に到達する光の量は、反射ミラーの反射率と反射回数に応じて、指数関数的に減少する。したがって、反射光学系において多数の反射ミラーを用いる必要がある場合は、反射ミラーの反射率を高反射率に保つことは、光量を増大し明るさを確保する上で、極めて重要な課題となっている。 In an apparatus having a reflection optical system such as a projector, a large number of reflection mirrors are used to change an optical path. In a reflective optical system that repeats reflection many times, the amount of light finally reaching the target optical element decreases exponentially according to the reflectance of the reflection mirror and the number of reflections. Therefore, when it is necessary to use a large number of reflecting mirrors in the reflecting optical system, maintaining the reflectance of the reflecting mirror at a high reflectance is a very important issue in increasing the amount of light and ensuring brightness. ing.
高反射率ミラーとして最も普及している増反射Alミラーは、保護膜としても機能する増反射膜によって反射率を高めた場合でも、平均反射率は高々95%程度が達成されるに過ぎず、さらに高い反射率が要求される用途に対しては、対応できないという課題がある。 The increased reflection Al mirror that is most popular as a high-reflectance mirror has an average reflectivity of only about 95% at most, even when the reflectivity is increased by the increased reflection film that also functions as a protective film. In addition, there is a problem that it cannot be used for applications that require higher reflectance.
高い反射率を有することに加えて耐久性が高いことも重要である。これら反射ミラーは絶えず強い光を受け、光吸収によって高温に曝されることになるからである。そして、光や熱を受ける場合であっても、長期間にわたって高い反射率を維持することが要求されるからである。さらに、近年普及しつつある集光型太陽電池において太陽光を光電変換素子に集光するための光学系で用いられる凸面ミラーや、自動車用のヘッドアップディスプレイ等の車載用に使用される凹面ミラーにあっては、長期間にわたって屋外や屋外と同等の環境下に曝されることになることから、従来の投射プロジェクター用途と比較して、さらに長期間の耐久性や、市街地を想定した腐食性ガスに対する耐久性、海岸付近での使用を想定した塩害に対する耐久性を有することも要求されている。 In addition to having high reflectivity, high durability is also important. This is because these reflecting mirrors constantly receive intense light and are exposed to high temperatures by light absorption. This is because even when receiving light or heat, it is required to maintain a high reflectance over a long period of time. Furthermore, a convex mirror used in an optical system for concentrating sunlight on a photoelectric conversion element in a concentrating solar cell that has become widespread in recent years, and a concave mirror used for in-vehicle use such as an automotive head-up display In that case, it will be exposed to the outdoors or the same environment as the outdoors for a long period of time, so it will be more durable and corrosive assuming urban areas compared to conventional projection projector applications. It is also required to have durability against gas and salt damage assuming use near the coast.
一方、前記したようにAgミラーは可視光線の広い領域でAlミラーよりも高い反射率を有し、保護層としても機能する増反射層を設けた場合には、平均反射率は97%以上に達する。しかしながら、Ag膜はAl膜に比べて耐久性が低く腐食しやすいことから、高耐久性が要求される用途に適していないという課題がある。 On the other hand, as described above, the Ag mirror has a higher reflectance than the Al mirror in a wide region of visible light, and when an increased reflection layer that also functions as a protective layer is provided, the average reflectance is 97% or more. Reach. However, since the Ag film has a lower durability than the Al film and is easily corroded, there is a problem that the Ag film is not suitable for applications requiring high durability.
Ag膜の耐久性が低いのは、基板との密着力が不足しているときに、膜が剥がれたり、傷ついたりするためである。また、熱や紫外線を受けた場合には、Ag原子が動きやすく大きな粒を形成するよう凝集し、膜が不均一になり、反射率が低下することも知られている。劣化の程度は、長期間にわたって高温や紫外線に曝された場合に顕著となる。集光型太陽電池用集光ミラーは、まさにこのような環境に曝されるのである。 The reason why the durability of the Ag film is low is that the film is peeled off or damaged when the adhesion with the substrate is insufficient. It is also known that when subjected to heat or ultraviolet rays, Ag atoms are easy to move and aggregate so as to form large grains, the film becomes non-uniform, and the reflectance decreases. The degree of deterioration becomes prominent when exposed to high temperatures and ultraviolet rays over a long period of time. The concentrating mirror for concentrating solar cells is exposed to such an environment.
金属全般の塩害や腐食は、基本的には電解質や反応性ガスによる金属のイオン化と化学反応(酸化など)によるものと考えることができる。従って、Agミラーについても、電解質を金属まで到達させないこと、そして腐食性雰囲気に曝されないことが重要である。そのためには、金属膜に対する強力な保護膜の存在が重要であるが、従来のAgミラーの構成では保護機能が十分ではなかったと考えられる。環境中に亜硫酸ガス、硫化水素ガス及び塩素ガスのような腐食性ガスが存在する場合には、これら腐食性ガスが保護膜を透過し、Ag原子と結びついて、AgSやAgClとなって黒化し、反射が損なわれてしまうものと考えられる。 It can be considered that salt damage and corrosion of metals in general are due to ionization and chemical reaction (oxidation, etc.) of metals by electrolytes and reactive gases. Therefore, it is important that the Ag mirror does not allow the electrolyte to reach the metal and is not exposed to a corrosive atmosphere. For this purpose, the presence of a strong protective film against the metal film is important, but it is considered that the protection function was not sufficient with the configuration of the conventional Ag mirror. When corrosive gases such as sulfurous acid gas, hydrogen sulfide gas, and chlorine gas are present in the environment, these corrosive gases permeate the protective film and combine with Ag atoms to blacken as AgS or AgCl. It is considered that reflection is impaired.
このような熱的及び環境的要因のため、Agミラーを作製した直後には97%程度という高い平均反射率を達成していたとしても、種々の耐久性試験の後、すなわち長期間の使用の後には反射率が低下し、初期性能を維持していない場合が多いのである。このような熱的及び環境的要因は、決して特異なものではなく、海岸地域に設置される集光型太陽電池や市街地を走行する自動車が、絶えず曝されるものなのである。 Because of these thermal and environmental factors, even if an average reflectivity as high as 97% is achieved immediately after the production of the Ag mirror, after various durability tests, that is, long-term use. Later, the reflectivity decreases and the initial performance is often not maintained. Such thermal and environmental factors are by no means unique, and concentrating solar cells installed in coastal areas and automobiles traveling in urban areas are constantly exposed.
このような課題を解決するために、Agミラーを高耐久性化する技術が提案されてきている。例えば、非特許文献1には、Agを合金化することにより耐久性を向上させる手段が開示されている。しかし、同時に、Agの合金化によって反射率が低下しやすいことも記載されている。 In order to solve such a problem, a technique for making the Ag mirror highly durable has been proposed. For example, Non-Patent Document 1 discloses a means for improving durability by alloying Ag. However, at the same time, it is also described that the reflectance is likely to decrease due to alloying of Ag.
特許文献1には、樹脂基板上に形成するAg膜の密着性を高めるため、まず一酸化珪素膜(SiO膜)からなる下地層を形成し、さらにSiO膜とAg膜の間に、中間層として金属膜(例えばCu膜)を介在させることによって、樹脂基板との密着力を向上させ、耐湿性や耐久性に優れたAgミラーを得る技術が開示されている。しかしながら、特許文献1は樹脂基板とAg膜の密着性を改善したものであるが、Ag膜の表面側の保護膜としては、増反射膜が保護膜を兼ねるだけであって、Ag膜の表面側からの水分、電解質及び腐食性ガスに対する耐久性等についてはなんら言及されておらず、例えば太陽電池用や自動車用の厳しい要求スペックを満たすかどうかについてはなんら記載がない。 In Patent Document 1, in order to improve the adhesion of an Ag film formed on a resin substrate, first, a base layer made of a silicon monoxide film (SiO film) is formed, and an intermediate layer is further formed between the SiO film and the Ag film. A technique for obtaining an Ag mirror excellent in moisture resistance and durability by improving the adhesion with a resin substrate by interposing a metal film (for example, Cu film) is disclosed. However, Patent Document 1 improves the adhesion between the resin substrate and the Ag film. However, as the protective film on the surface side of the Ag film, the intensifying film only serves as the protective film. No mention is made of the durability against moisture, electrolyte and corrosive gas from the side, and there is no description as to whether or not strict requirement specifications for solar cells and automobiles are satisfied, for example.
特許文献2は、基板とAg膜との間の密着力を向上させるため、酸化アルミ膜(Al膜)からなる下地層を形成するものである。さらに、Ag膜の上にもAl膜と酸化チタン膜(TiO膜)を形成し、耐腐食性を改善することも開示されている。しかしながら、特許文献2は、少ない層数で密着性と耐久性の改善を目的としたものであって、テープ剥離性が改善されたことは記載されているが、やはりAg膜の表面側からの水分、電解質及び腐食性ガスに対する耐久性については言及されておらず、太陽電池用や自動車用の厳しい要求スペックを満たすかどうかについてはなんら記載がない。 In Patent Document 2, a base layer made of an aluminum oxide film (Al 2 O 3 film) is formed in order to improve the adhesion between the substrate and the Ag film. Furthermore, it is also disclosed that an Al 2 O 3 film and a titanium oxide film (TiO 2 film) are formed on the Ag film to improve the corrosion resistance. However, Patent Document 2 is intended to improve adhesion and durability with a small number of layers, and it has been described that tape peelability has been improved, but also from the surface side of the Ag film. No mention is made of durability against moisture, electrolytes and corrosive gases, and there is no description as to whether or not strict required specifications for solar cells and automobiles are met.
特許文献3は、樹脂基板上に反射膜を形成した反射鏡において、樹脂基板と反射膜の間にAlよりなる下地膜を形成し、さらに、反射膜の上に含フッ素珪素化合物を有する撥水膜を形成して、樹脂基板側及び膜表面側からの水分や電解質の浸入を防止することによって反射膜の腐食を防止して、優れた反射特性と耐久性をバランスよく確保することが記載されている。しかしながら、特許文献3で開示された技術は、97%以上の反射率と耐久性を両立させたと記載されているが、Ag膜上にAg膜の酸化や腐食に対する保護膜が形成されていないことから、太陽電池用の高温試験や自動車用に要求される電解質や腐食性ガスに対する耐久性を満たすかどうかは不明である。 In Patent Document 3, in a reflecting mirror in which a reflecting film is formed on a resin substrate, a base film made of Al 2 O 3 is formed between the resin substrate and the reflecting film, and a fluorine-containing silicon compound is further formed on the reflecting film. By forming a water-repellent film, preventing the penetration of moisture and electrolyte from the resin substrate side and film surface side, preventing corrosion of the reflective film, and ensuring a good balance of excellent reflective properties and durability Is described. However, although the technique disclosed in Patent Document 3 describes that the reflectance and durability of 97% or more are compatible, the protective film against the oxidation or corrosion of the Ag film is not formed on the Ag film. Therefore, it is unclear whether or not the high temperature test for solar cells and the durability against electrolytes and corrosive gases required for automobiles are satisfied.
特許文献4は、特許文献2に記載されたAl下地層を用い、その上に特許文献1に記載された中間層としてニッケルクロム合金膜(Ni-Cr合金膜)を用い、Ag膜の上に腐食を防止するためAl膜と酸化珪素膜(SiO膜)からなる上部バッファ層を形成し、さらに反射率を高めるためにTiO膜からなる増反射膜を形成したものである。しかしながら、特許文献4で開示された技術は、ヒートサイクル試験、高温高湿試験、高温暴露試験及び塩水噴霧試験の後においても、99%以上という高い反射率を保持したと記載されているが、Ag膜上にAg膜の熱、酸化及び腐食に対する保護膜(酸化防止膜)が形成されていないことから、太陽電池用の高温試験や自動車用に要求される腐食性ガスに対する耐久性を満たすかどうかは不明である。 Patent Document 4 uses an Al 2 O 3 underlayer described in Patent Document 2, and uses a nickel chromium alloy film (Ni—Cr alloy film) as an intermediate layer described in Patent Document 1, and an Ag film. An upper buffer layer made of an Al 2 O 3 film and a silicon oxide film (SiO 2 film) is formed on the surface to prevent corrosion, and an increased reflection film made of a TiO 2 film is formed to further increase the reflectance. It is. However, although the technique disclosed in Patent Document 4 is described as having a high reflectance of 99% or more even after the heat cycle test, the high temperature and high humidity test, the high temperature exposure test, and the salt spray test, Does the protective film (anti-oxidation film) against heat, oxidation and corrosion of the Ag film on the Ag film satisfy the durability against high temperature test for solar cells and corrosive gas required for automobiles? Whether it is unknown.
特許文献5は、基板上に下地層、Ag層、複数の層からなる保護層を順に積層して形成した反射膜において、保護層を構成する複数の層のうちで、Ag層に接する層を、酸素を含まないSi層とすることで、酸化防止効果及び耐湿性を向上させるものである。Si層を用いることにより、安定した高反射率が得られるとしている。しかしながら、特許文献5には、酸化防止効果と耐湿性の改善のため、Ag膜の直上にSi保護膜を形成する技術が開示されているが、高温放置試験と高温高湿放置試験だけが実施されただけであって、太陽電池用の高温試験や腐食性ガスに対する耐久性など自動車用として用いる場合に要求される長期間の耐久性を満たしているかどうかは不明である。 In Patent Document 5, a reflective film formed by sequentially laminating a base layer, an Ag layer, and a protective layer composed of a plurality of layers on a substrate, a layer in contact with the Ag layer among the plurality of layers constituting the protective layer is disclosed. By making the Si layer free of oxygen, the antioxidant effect and moisture resistance are improved. It is said that a stable high reflectance can be obtained by using the Si layer. However, Patent Document 5 discloses a technique for forming a Si protective film directly on the Ag film in order to improve the antioxidant effect and moisture resistance. However, only a high-temperature and high-temperature and high-humidity test are performed. However, it is unclear whether long-term durability required for use in automobiles, such as high-temperature tests for solar cells and durability against corrosive gases, is satisfied.
特許文献6は、樹脂基材の上にAgを含む反射層を形成する場合、該反射層を透過して樹脂基材を劣化させるUV光をカットするために、反射層と樹脂基材の間にITO層を形成したことを特徴とする反射板を開示している。その中で、長期耐候性、ガスバリヤ性と透明性を両立させるため、7~15nm程度の膜厚のITO層を該反射層の上にも形成する構成を開示している。しかしながら、特許文献6は、照明器具用反射板に関するもので、本発明とは技術分野や用途が異なる。そのため、光学機器や光学装置の反射ミラーとは膜構成も異なり、下地膜や保護膜としてメラミン樹脂塗膜が用いられたものである点でも異なる。また、Ag膜をITO膜で挟むことによって、所定の強度での水銀ランプの長時間照射には耐えるが、その他の耐久性試験、特に自動車用に求められる耐久性試験に耐えるかどうかは不明である。 In Patent Document 6, when a reflective layer containing Ag is formed on a resin base material, in order to cut UV light that is transmitted through the reflective layer and deteriorates the resin base material, A reflector having an ITO layer formed thereon is disclosed. Among them, a configuration is disclosed in which an ITO layer having a thickness of about 7 to 15 nm is also formed on the reflective layer in order to achieve both long-term weather resistance, gas barrier properties and transparency. However, Patent Document 6 relates to a reflector for a lighting fixture, and is different in technical field and application from the present invention. Therefore, the film configuration is different from that of the reflection mirror of the optical device or optical apparatus, and it is different in that a melamine resin coating film is used as a base film or a protective film. In addition, by sandwiching an Ag film between ITO films, it can withstand long-term irradiation of a mercury lamp at a predetermined intensity, but it is unclear whether it can withstand other durability tests, especially those required for automobiles. is there.
なお、高屈折率の透明膜と低屈折率の透明膜を交互に多数層積層した誘電体多層膜ミラーも、光の干渉作用によって高い反射率を達成できるが、AlミラーやAgミラーに比べて、高い反射率を得ることのできる波長域が狭く、また、高い反射率を達成するために必要な膜の層数がはるかに多く、結果としてコストが非常に高くなることから、特別な用途を除き普及していない。 A dielectric multilayer film mirror in which a large number of high-refractive index transparent films and low-refractive index transparent films are alternately laminated can also achieve a high reflectivity by the interference of light, but compared to Al mirrors and Ag mirrors. The wavelength range where high reflectivity can be obtained is narrow, and the number of film layers required to achieve high reflectivity is much higher, resulting in very high costs. Not popular.
本出願に係る発明の目的は、純銀(Ag)ミラーの有する高い反射率と、AlミラーやAg合金ミラーに劣ることのない優れた耐久性を併せ持つ高耐久性銀ミラーを提供することにあり、この種のミラーの従来の主たる用途であったプロジェクターなどの光学製品に使用される場合に要求される耐久性を満たすだけでなく、長期間にわたって熱と光に曝される集光型太陽光発電用集光ミラーや、市街地において屋外に近い環境に長期間曝されるような自動車用の反射光学系を含む製品にも使用可能なレベルにまで耐久性を高めたAgミラーを提供することにある。 The object of the invention according to the present application is to provide a highly durable silver mirror having both high reflectivity of a pure silver (Ag) mirror and excellent durability not inferior to an Al mirror or an Ag alloy mirror. Concentrated solar power generation that not only satisfies the durability required when used in optical products such as projectors, which was the main application of this type of mirror, but also is exposed to heat and light over a long period of time. It is to provide an Ag mirror that has improved durability to a level that can be used for a product including a reflective optical system for automobiles that is exposed to an environment close to the outdoors in an urban area for a long period of time. .
より具体的には、長期間に亘って熱や紫外線を受けた場合でも、Ag原子が凝集せずに、膜の均一性が保たれ、反射率が低下しない高耐久性銀ミラーを提供するものであり、また、環境中に亜硫酸ガス、硫化水素ガス、酸化窒素ガス、塩素ガスのような腐食性ガスが存在する場合であっても、これらのガスがAg原子と結びついて、AgSやAgCl等となって黒化し反射が損なわれることのない高耐久性銀ミラーを実現するものである。 More specifically, it provides a highly durable silver mirror in which even when subjected to heat or ultraviolet rays over a long period of time, Ag atoms are not aggregated, the uniformity of the film is maintained, and the reflectance is not lowered. In addition, even when corrosive gases such as sulfurous acid gas, hydrogen sulfide gas, nitrogen oxide gas, and chlorine gas exist in the environment, these gases are combined with Ag atoms, and AgS, AgCl, etc. Thus, a highly durable silver mirror that is blackened and does not lose its reflection is realized.
上記従来の課題を解決するものとして本発明は、基材上に、第一層として酸化物膜が、第二層として面心立方型の結晶構造を有する金属から選ばれた金属の膜が、第三層として銀膜が、第四層として厚さ3~12nmのITO膜が、第五層として保護膜が、この順に形成されていることを特徴とする高耐久性銀ミラーである。 In order to solve the above-mentioned conventional problems, the present invention provides a metal film selected from a metal having a face-centered cubic crystal structure as a second layer and an oxide film as a first layer on a substrate. A highly durable silver mirror comprising a silver film as a third layer, an ITO film having a thickness of 3 to 12 nm as a fourth layer, and a protective film as a fifth layer in this order.
本発明の高耐久性銀ミラーは、それぞれが優れた機能を発揮するところの、前記第一層から第五層の膜からなる基本膜構成を有する。本発明において用いることのできる基材として、発明者らが鋭意研究を継続したところ、ガラス基材はもちろんのこと、Si基板のような半導体基材、シクロオレフィンポリマー樹脂(COP樹脂)のような樹脂基材、あるいは真鍮のような金属基材を用いても、前記第一層~第五層からなる基本膜構成を有する銀ミラーは、高い反射率と優れた耐久性を有することを見出した。 The highly durable silver mirror of this invention has the basic film structure which consists of a film | membrane of said 1st layer to the 5th layer in which each exhibits the outstanding function. As a base material that can be used in the present invention, the inventors have continued intensive research. As well as a glass base material, a semiconductor base material such as a Si substrate, a cycloolefin polymer resin (COP resin), etc. It has been found that even if a resin base material or a metal base material such as brass is used, the silver mirror having the basic film structure composed of the first layer to the fifth layer has high reflectivity and excellent durability. .
本発明において、特に摩耗に対する耐久性(耐摩耗性)が要求される場合には、前記第五層である保護層の上に、耐摩耗膜として、酸化珪素(SiO)膜、フッ化マグネシウム(MgF)膜又はこれら2層の膜を形成することが望ましい。ここでSiO膜という表記は、SiO膜からSiO膜の間の酸化度を有する膜という意味であるが、光吸収による反射率の低下を防止するためには、SiO膜であることが望ましい。耐摩耗膜としてのSiO膜と、MgF膜又はMgF/SiO2層膜を比較すると、MgF/SiO2層膜が最も優れた耐摩耗性を示す。 In the present invention, particularly when durability (wear resistance) against abrasion is required, a silicon oxide (SiO x ) film, magnesium fluoride as a wear-resistant film is formed on the protective layer as the fifth layer. It is desirable to form a (MgF 2 ) film or a film of these two layers. Here, the term “SiO x film” means a film having an oxidation degree between the SiO film and the SiO 2 film. However, in order to prevent a decrease in reflectance due to light absorption, the SiO x film may be an SiO 2 film. desirable. When comparing the SiO x film as the wear resistant film with the MgF 2 film or the MgF 2 / SiO x 2 layer film, the MgF 2 / SiO x 2 layer film shows the most excellent wear resistance.
本発明において、従来にない高い耐久性を達成するため、ガラス基板上に前記第一から第五の層を形成された後、又は前記第五層の上に前記耐摩耗膜が形成された後、400~500℃の温度範囲で30~90分の間、熱処理を行なうことが好ましい。このような温度範囲での熱処理に耐える基材はガラス基材、半導体基材あるいは金属基材を挙げることができる。一方、樹脂基材はこのような温度に保つと劣化してしまうことから、前記熱処理を行うことができない。なお、400~500℃と記載する場合は、400℃以上500℃以下という意味であり、30~90分と記載する場合も、30分以上90分以下という意味である。以後も同じ意味で使用する。 In the present invention, in order to achieve unprecedented high durability, after the first to fifth layers are formed on the glass substrate, or after the wear-resistant film is formed on the fifth layer. The heat treatment is preferably performed in the temperature range of 400 to 500 ° C. for 30 to 90 minutes. Examples of the substrate that can withstand the heat treatment in such a temperature range include a glass substrate, a semiconductor substrate, and a metal substrate. On the other hand, since the resin base material deteriorates when kept at such a temperature, the heat treatment cannot be performed. Note that when it is described as 400 to 500 ° C., it means 400 ° C. or more and 500 ° C. or less, and when it is described as 30 to 90 minutes, it also means 30 minutes or more and 90 minutes or less. The same meaning is used hereinafter.
 本発明は、種々の基材上に前記第一から第五の層が形成された膜構成を基本構造とする。そして、基材としてガラス基材、シリコン(Si)基板に代表される半導体基材あるいは金属基材を用いると、これら基材は光や熱の作用を受けてもほとんど変質せず、腐食に強く、ガスを発生して膜を劣化させることもないという点でさらに耐久性に優れたものとなる。 The basic structure of the present invention is a film configuration in which the first to fifth layers are formed on various base materials. When a glass substrate, a semiconductor substrate represented by a silicon (Si) substrate, or a metal substrate is used as the substrate, these substrates hardly change even when subjected to the action of light or heat, and are resistant to corrosion. Further, durability is further improved in that gas is not generated and the film is not deteriorated.
本発明において、第一層である酸化物膜は、基材と銀(Ag)膜との間の密着力を確保するための下地層として働く。基材上に直接、高反射層であるAg膜を形成しても、磨耗などによってすぐに基材から剥がれてしまうが、酸化物膜を形成しておくと密着性が向上する。酸化物膜からなる下地層は、基材側から拡散してくる酸素ガスをトラップして、Ag膜の酸化を防止する働きもする。従って、酸化物膜が完全に化学量論組成である必要はなく、酸素欠乏状態にある組成であってもよい。酸素欠乏状態にある酸化物膜は光吸収性を示すことが多いが、本発明において第一層はAg膜の下側(基材側)に形成されることからAg膜の反射率を低下させることはないので、問題とならない。 In the present invention, the oxide film as the first layer serves as an underlayer for ensuring adhesion between the base material and the silver (Ag) film. Even if an Ag film, which is a highly reflective layer, is formed directly on the base material, it will be immediately peeled off from the base material due to wear or the like, but if an oxide film is formed, the adhesion is improved. The underlayer made of an oxide film also functions to trap oxygen gas diffusing from the base material side and prevent oxidation of the Ag film. Therefore, the oxide film does not have to be completely stoichiometric, and may be a composition in an oxygen-deficient state. Although an oxide film in an oxygen-deficient state often exhibits light absorption, in the present invention, since the first layer is formed on the lower side (base material side) of the Ag film, the reflectance of the Ag film is lowered. It doesn't matter.
第一層として酸化物膜を形成するのは、酸化物膜が、同じく酸化物であるガラス基材との密着性がよいからであるが、本発明においては、ガラス基材以外の半導体基材や金属基材の場合であっても、第一層として酸化物膜を形成しておく。このことは、半導体基材や金属基材であっても、これら基材の表面には、薄い酸化膜が形成されていることと関係しているものと考えられる。 The oxide film is formed as the first layer because the oxide film has good adhesion to a glass substrate that is also an oxide. In the present invention, the semiconductor substrate other than the glass substrate is used. Even in the case of a metal substrate, an oxide film is formed as the first layer. This is considered to be related to the fact that a thin oxide film is formed on the surface of these base materials even if they are semiconductor base materials or metal base materials.
酸化物膜の種類としては、蒸着法やスパッタ法で成膜できる種々の酸化物膜を利用することができるが、酸化アルミ膜(Al膜)、酸化珪素膜(SiO膜)又は酸化チタン膜(TiO膜)のうちのいずれかであることが望ましい。これらの酸化物膜は成膜が容易であって、残留応力が小さく、ガラス基板との密着性に優れているからである。これらの酸化物膜も、必ずしも化学両論組成である必要はない。例えば、酸化アルミ膜の組成は、化学量論的にはAlであるが、本発明においては、必ずしもAlである必要はなく、やや酸素が欠乏した状態の組成(Al3-Xと記載される場合が多い)であってもよい。 As the type of the oxide film, various oxide films that can be formed by a vapor deposition method or a sputtering method can be used, but an aluminum oxide film (Al 2 O 3 film), a silicon oxide film (SiO 2 film), or It is desirable that it is one of titanium oxide films (TiO 2 films). This is because these oxide films are easy to form, have a small residual stress, and have excellent adhesion to a glass substrate. These oxide films do not necessarily have a stoichiometric composition. For example, the composition of the aluminum oxide film is stoichiometrically Al 2 O 3 , but in the present invention, it is not necessarily Al 2 O 3 , and the composition in a state in which oxygen is slightly depleted (Al 2 O 3-X is often described).
酸化物膜として、Al膜、SiO膜又はTiO膜を用いると、本発明の高耐久性銀ミラーの種々の耐久性を高めることができる。さらに、耐熱性を高めるにはAl膜が最も優れている。 When an Al 2 O 3 film, a SiO 2 film, or a TiO 2 film is used as the oxide film, various durability of the highly durable silver mirror of the present invention can be enhanced. Furthermore, the Al 2 O 3 film is most excellent for improving heat resistance.
基材とAg膜の間に形成してAg膜の密着性を向上させる膜は、従来40~200nm程度の膜厚で形成されていたが、本発明における第一層の酸化物膜は、それより薄い膜厚で十分であって、具体的には10nm~60nm程度の膜厚で形成すればよい。もちろん、60nm以上の膜厚で形成しても性能上の問題が生じることはないが、膜応力が発生しやすくなる点に注意が必要である。逆に10nm以下の厚みでは、ガラス基板側からの腐食ガスをトラップする性能が不十分となるおそれがある。 A film formed between the base material and the Ag film to improve the adhesion of the Ag film has been conventionally formed with a film thickness of about 40 to 200 nm, but the first oxide film in the present invention is A thinner film thickness is sufficient, specifically, a film thickness of about 10 nm to 60 nm may be used. Of course, even if it is formed with a film thickness of 60 nm or more, there is no problem in performance, but it should be noted that film stress is likely to occur. On the other hand, when the thickness is 10 nm or less, the performance of trapping corrosive gas from the glass substrate side may be insufficient.
本発明の第二層の金属の膜は、基材及び第一層の酸化物膜とAg膜との密着性を高めるための中間層である。金属の膜は一般に延性に富むことから変形しやすく、引張り応力や剪断応力などのAg膜を剥がそうとする力を弱めることができる。また、酸素原子と親和性のあることから、基材側からの水分等の拡散によるAg膜の酸化を防止する効果を有する。本発明においては、結晶構造が面心立方型の金属から選んだ金属の膜を用いることが重要である。これは、該金属の膜の上層に形成されるAg膜の結晶構造が面心立方型であるからである。Ag膜と同じ面心立方型の結晶構造を有する金属の膜を中間層として用いることによって、Ag膜の結晶性を高め、ひいては反射率を高めることができる。 The metal film of the second layer of the present invention is an intermediate layer for enhancing the adhesion between the base material and the oxide film of the first layer and the Ag film. Since a metal film is generally rich in ductility, it is easily deformed, and the force for peeling off the Ag film such as tensile stress and shear stress can be weakened. Further, since it has an affinity for oxygen atoms, it has an effect of preventing oxidation of the Ag film due to diffusion of moisture and the like from the substrate side. In the present invention, it is important to use a metal film selected from metals having a face-centered cubic crystal structure. This is because the crystal structure of the Ag film formed on the upper layer of the metal film is a face-centered cubic type. By using a metal film having the same face-centered cubic crystal structure as that of the Ag film as the intermediate layer, the crystallinity of the Ag film can be increased, and thus the reflectance can be increased.
面心立方型の結晶構造を有する金属としては、アルミニウム(Al)、銅(Cu)、ニッケル(Ni)、白金(Pt)、金(Au)などを挙げることができるが、本発明において用いる金属の膜としては、Al膜、Cu膜又はNi膜のいずれかであることが望ましい。これらの金属は比較的安価で、成膜が容易であり、かつ格子定数もAgの格子定数と比較的近似していることから、Ag膜の結晶化を促進することが期待されるからである。 Examples of the metal having a face-centered cubic crystal structure include aluminum (Al), copper (Cu), nickel (Ni), platinum (Pt), gold (Au), and the like. The film is preferably an Al film, a Cu film, or a Ni film. This is because these metals are relatively inexpensive, easy to form, and the lattice constant is relatively close to the lattice constant of Ag, so that it is expected to promote crystallization of the Ag film. .
本発明の第二層の金属の膜として、Al膜、Cu膜又はNi膜を用いると、Ag膜の結晶化を促進し、耐久性を向上させることができる。さらに、耐熱性を高めるにはNi膜が最も優れている。 When an Al film, Cu film or Ni film is used as the second layer metal film of the present invention, crystallization of the Ag film can be promoted and durability can be improved. Furthermore, the Ni film is the most excellent for increasing heat resistance.
前記金属の膜の厚みは10~60nm程度であれば十分である。特許文献1は樹脂基材に対するもので、100~200nmもの厚みのCu膜が中間層として使われているが、本発明ではもっと薄い金属の膜で十分である。特許文献3では、第一層としてAl膜を20~60nmの厚みで形成し、その上にNi-Cr合金層を20~60nmの厚みで形成しているが、本発明においては、それよりやや薄い金属の膜を用いることができる。金属の膜をさらに厚くしても、酸化防止効果や結晶化促進効果が高まるわけではなく、膜応力が高くなる点やコストの点で不利なだけであって好ましくない。逆に10nm以下まで薄くすると、引張り応力や剪断断力を緩和する効果が弱まり、また結晶性が低下することから、Ag膜の結晶化促進効果もなくなってしまうおそれがある。 The thickness of the metal film is sufficient if it is about 10 to 60 nm. Patent Document 1 relates to a resin base material, and a Cu film having a thickness of 100 to 200 nm is used as an intermediate layer. However, a thinner metal film is sufficient in the present invention. In Patent Document 3, an Al 2 O 3 film is formed as a first layer with a thickness of 20 to 60 nm, and a Ni—Cr alloy layer is formed thereon with a thickness of 20 to 60 nm. In the present invention, A slightly thinner metal film can be used. Even if the metal film is made thicker, the antioxidant effect and the crystallization promoting effect are not enhanced, and it is not preferable because it is disadvantageous in terms of film stress and cost. On the other hand, if the thickness is reduced to 10 nm or less, the effect of relaxing the tensile stress and the shear breaking force is weakened, and the crystallinity is lowered.
第三層は、高反射膜としてのAg膜である。Ag膜は紫外線領域に近づくにつれて反射率が低下するものの、可視光線の広い領域でAl膜より高い反射率を有し、反射膜として好適である。本発明においてAg膜は、100~200nm程度の厚みで形成するのが望ましい。100nmより薄いと反射率が不十分になる。特に短波長側の反射率が低下する傾向があり、例えば波長380nmでは、Ag膜厚が50nmのときは100nmの場合に比べて約1%低下する。逆に200nmより厚くしても反射率や耐久性はほとんど変化しない。成膜材料としての銀は高価であるので、コストの点から、反射率や耐久性を満足する範囲内であれば、可能な限り薄くすることが望ましい。 The third layer is an Ag film as a highly reflective film. Although the reflectance of the Ag film decreases as it approaches the ultraviolet region, it has a higher reflectance than the Al film in a wide visible light region and is suitable as a reflective film. In the present invention, the Ag film is desirably formed with a thickness of about 100 to 200 nm. If it is thinner than 100 nm, the reflectance becomes insufficient. In particular, the reflectance on the short wavelength side tends to decrease. For example, at a wavelength of 380 nm, when the Ag film thickness is 50 nm, the reflectance decreases by about 1% compared to the case of 100 nm. On the other hand, even if it is thicker than 200 nm, the reflectance and durability hardly change. Since silver as a film forming material is expensive, it is desirable to make it as thin as possible within the range satisfying the reflectance and durability from the viewpoint of cost.
本発明において第三層のAg膜は、実質的に銀(Ag)以外の成分を含まない純銀からなることが望ましい。Ag膜中に、Agの精製によっても除去しきれないレベルの不純物が混入することは致し方ないが、高い反射率を達成するためには、実質的にAg以外の成分を含まない純銀からなることが望ましいからである。非特許文献1の記載によると、パラジウム(Pd)やニオビウム(Nb)のような金属を銀に加えることによって耐久性の向上が期待されるが、一部の例外を除き、反射率の低下を免れない。この点から、本発明においては、高反射性を得るために、成膜用Ag材料として、3Nグレード(99.9%以上)以上のAg原料を用いることが望ましい。本発明は、純銀の有する高い反射率を維持しながら、銀の合金化によって耐久性を向上させるのではなく、膜構成全体の作用によって耐久性を向上させることを特徴とするものである。 In the present invention, the third-layer Ag film is preferably made of pure silver substantially free of components other than silver (Ag). In the Ag film, impurities of a level that cannot be removed even by purification of Ag cannot be mixed, but in order to achieve high reflectivity, the Ag film must be made of pure silver that does not substantially contain components other than Ag. This is because it is desirable. According to the description of Non-Patent Document 1, an improvement in durability is expected by adding a metal such as palladium (Pd) or niobium (Nb) to silver. I can't escape. From this point, in the present invention, in order to obtain high reflectivity, it is desirable to use an Ag raw material of 3N grade (99.9% or more) or higher as the Ag material for film formation. The present invention is characterized in that, while maintaining the high reflectance of pure silver, the durability is not improved by alloying silver but is improved by the action of the entire film structure.
第四層であるITO膜は、本発明の膜構成の中で、Ag膜が劣化するのを防止して、高い反射率と優れた耐久性を達成するための劣化防止層とでも言うべき膜で、きわめて重要である。薄いITO膜をAg膜の直上に形成しておくことによって、第五層として保護膜を形成する際にAg膜が酸化等により劣化することを防止することができる。発明者らは、Ag膜の劣化を防止するために、Ag膜の直上に形成する層としてどのような膜材料が最適であるかについて鋭意研究の結果、ITO膜以外では高い反射率と優れた耐久性の両方を満足できるものは見出せなかった。ITO膜に代えてNi、Nb、Tiなどの非常に薄い金属膜を用いた場合は、Ag膜の酸化防止としてはある程度の効果は有していたが、高い反射率を維持するためには、1nm以下という非常に薄い膜厚で形成する必要があり、膜厚の制御が難しく、耐久性や反射率が安定しなかった。 The ITO film as the fourth layer is a film that should be said to be a deterioration preventing layer for achieving high reflectivity and excellent durability by preventing the Ag film from deteriorating in the film structure of the present invention. It is very important. By forming the thin ITO film directly on the Ag film, it is possible to prevent the Ag film from being deteriorated due to oxidation or the like when the protective film is formed as the fifth layer. As a result of diligent research on what film material is optimal as a layer to be formed immediately above the Ag film in order to prevent the deterioration of the Ag film, the inventors have obtained a high reflectance and excellent properties other than the ITO film. We could not find one that could satisfy both durability. When a very thin metal film such as Ni, Nb, Ti or the like was used instead of the ITO film, it had a certain effect as an anti-oxidation of the Ag film, but in order to maintain a high reflectance, It was necessary to form the film with a very thin film thickness of 1 nm or less, it was difficult to control the film thickness, and durability and reflectance were not stable.
前記ITO膜の膜厚としては、3~12nmの範囲、すなわち3nm以上12nm以下であることが望ましい。ITO層の膜厚がこの範囲を外れると、高い反射率と優れた耐久性を両立させることのできる効果が著しく低下する。すなわち、厚みが3nm未満の場合や12nmを超えた場合には、成膜直後から、あるいは耐久性試験によって、反射率が低下する。ITO膜が、Ag膜に対して優れた保護効果を示す作用は、明確ではないが、酸素や腐食性ガスを吸収、吸着又は結合し、Ag膜の酸化や腐食を防止するためと考えることができる。なお、ITOは、酸化インジウムに酸化スズがドープされた酸化物であるが、酸化スズの割合として5~20wt%の範囲で、同等の効果が得られた。 The thickness of the ITO film is desirably in the range of 3 to 12 nm, that is, 3 nm or more and 12 nm or less. When the film thickness of the ITO layer is out of this range, the effect of achieving both high reflectivity and excellent durability is significantly reduced. That is, when the thickness is less than 3 nm or exceeds 12 nm, the reflectance decreases immediately after film formation or by a durability test. Although the action of the ITO film exhibiting an excellent protective effect on the Ag film is not clear, it may be considered to prevent the oxidation or corrosion of the Ag film by absorbing, adsorbing or binding oxygen and corrosive gas. it can. ITO is an oxide in which tin oxide is doped in indium oxide, but the same effect was obtained when the ratio of tin oxide was in the range of 5 to 20 wt%.
 第五層は保護膜であって、ITO膜によるAg膜の劣化防止効果を補強するものである。膜の表面側からAg膜に向かって、水分や腐食性ガスが拡散していくのを防止する層として働くものである。保護膜は単層膜であってもよいが、多層膜として形成するのが望ましい。これは、単層の厚い膜を形成した場合、膜が柱状構造を取りやすく、柱と柱の間に隙間が形成されて、水分や腐食性ガスがAg膜に向かって拡散していく経路になるからである。多層構造とすることによって、柱状構造の発達が阻害されることから、保護膜としての機能が向上する。また、多層膜の各層の屈折率と厚みを適切に選択することにより、反射率を増大させる増反射膜として機能させることもできる。なお、多層膜の各層をさらに緻密化して保護膜の機能を高めるためには、プラズマアシストやイオンアシストを利用した真空蒸着で成膜することが効果的である。 The fifth layer is a protective film that reinforces the effect of preventing the deterioration of the Ag film by the ITO film. It functions as a layer for preventing moisture and corrosive gas from diffusing from the surface side of the film toward the Ag film. The protective film may be a single layer film, but is preferably formed as a multilayer film. This is because when a single-layer thick film is formed, the film has a columnar structure, a gap is formed between the columns, and moisture and corrosive gas are diffused toward the Ag film. Because it becomes. Since the multi-layer structure inhibits the development of the columnar structure, the function as a protective film is improved. Further, by appropriately selecting the refractive index and thickness of each layer of the multilayer film, the multilayer film can function as an increased reflection film that increases the reflectance. In order to further refine each layer of the multilayer film and improve the function of the protective film, it is effective to form the film by vacuum deposition using plasma assist or ion assist.
増反射効果が得られる保護膜の膜材料、膜構成及び膜厚の組合せは数多くあるが、いずれかの層の膜厚が極端に厚く、いずれかの層の膜厚が極端に薄い構成は避けるのが望ましい。極端に厚い膜厚は、膜厚方向にいわゆる柱状構造の結晶成長が発達しやすく、柱状構造と柱状構造の間が疎な構造となり、水分や腐食性ガスに対するバリヤー性能が低下するからである。極端に薄い層は、バリヤー性能が低下する。 There are many combinations of film materials, film configurations and film thicknesses for protective films that can provide an enhanced reflection effect, but avoid the configuration where any layer is extremely thick and any layer is extremely thin. Is desirable. This is because an extremely thick film thickness easily develops crystal growth of a so-called columnar structure in the film thickness direction, resulting in a sparse structure between the columnar structure and the columnar structure, and the barrier performance against moisture and corrosive gas decreases. An extremely thin layer reduces the barrier performance.
保護膜の例としては、28nmの厚みの酸化アルミ膜と26nmの厚みの酸化珪素膜及び44nmの厚みの酸化チタン膜をこの順に所定の厚みで形成した3層膜を例示することができる。この構成により、第三層であるAg膜に対する表面側からの水分や腐食性ガスのアタックを防止して、ITO層の効果を補助し、かつ光学干渉作用により反射率を増大させる効果が得られる。これらの膜は、Ag膜の下方側(ガラス基板側)に形成される第一層や第二層の膜とは異なり、反射率に直接的に影響する。すなわち、これらの膜が透明ではなく光吸収がある場合には、その分だけ反射率が低下することになる。光吸収を無くすために、これらの膜は可能な限りその化学量論組成に近いAl膜、SiO膜及びTiO膜であることが望ましい。なお、増反射効果を高めるためには、層の数を増やして干渉効果を高めることも考えられるが、層の数をさらに2層以上重ねて5層以上からなる増反射膜としても、増反射効果はそれほど向上せず、逆に膜応力が高くなって膜剥がれを引き起こすおそれがある。 As an example of the protective film, a three-layer film in which an aluminum oxide film having a thickness of 28 nm, a silicon oxide film having a thickness of 26 nm, and a titanium oxide film having a thickness of 44 nm are sequentially formed in a predetermined thickness can be exemplified. With this configuration, it is possible to prevent the attack of moisture and corrosive gas from the surface side on the Ag film as the third layer, assist the effect of the ITO layer, and increase the reflectance by optical interference action. . These films directly affect the reflectance, unlike the first layer and second layer films formed on the lower side (glass substrate side) of the Ag film. That is, when these films are not transparent but have light absorption, the reflectivity decreases accordingly. In order to eliminate light absorption, these films are preferably an Al 2 O 3 film, an SiO 2 film, and a TiO 2 film that are as close to the stoichiometric composition as possible. In order to enhance the reflection enhancing effect, it is conceivable to increase the interference effect by increasing the number of layers. However, even if the number of layers is further increased to two or more layers, a reflection enhancing film consisting of five or more layers can be increased. The effect is not improved so much, and on the contrary, there is a possibility that film stress becomes high and film peeling occurs.
本発明においては、基材として、円錐面又は放物面の形状を有する基材を用いることもできる。これら基材は平板ではないので、凹部からなる円錐内側面や放物内面や凸部からなる円錐外側面や放物外面に、高耐久性銀ミラーを構成する多層膜が形成されることになる。この場合、凹部や凸部の位置によって、形成される各層の厚さや構造が均一でなくなるおそれが高い。特に、第三層の銀膜と第四層のITO膜の上の保護膜として、光干渉作用を生じる多層膜が形成された場合、干渉作用によって反射率が低くなったり、干渉色を呈したりして、好ましくない。そこで、このような平板でない基材を用いる場合には、第五層の保護膜としては、SiO単層膜を用いるのが望ましい。このような実施態様においても、本発明は、高い反射率と優れた耐久性を両立させることができる。 In the present invention, a substrate having a conical or parabolic shape can also be used as the substrate. Since these base materials are not flat plates, a multilayer film constituting a highly durable silver mirror is formed on the inner surface of the cone formed by the concave portion, the inner surface of the paraboloid, the outer surface of the cone formed by the convex portion, and the outer surface of the paraboloid. . In this case, there is a high possibility that the thickness and the structure of each layer to be formed are not uniform depending on the position of the concave portion or the convex portion. In particular, as a protective film on the third-layer silver film and the fourth-layer ITO film, when a multilayer film that generates an optical interference action is formed, the reflectivity decreases due to the interference action, or an interference color is exhibited. It is not preferable. Therefore, when such a non-flat substrate is used, it is desirable to use a SiO 2 single layer film as the protective film of the fifth layer. Even in such an embodiment, the present invention can achieve both high reflectivity and excellent durability.
本発明においては、基材上に前記第一層の酸化物膜から前記第五層の保護膜を形成した後、400~500℃の温度範囲で、30~90分の時間、熱処理することが好ましい。ここで熱処理とは、その温度範囲に保持することをいう。熱処理によって、膜構造を緻密化させることができ、さらに耐久性を高めることができるからである。熱処理後は常温雰囲気に取り出し、そのまま自然冷却すればよい。Ag膜を含む多層膜をこのような高温で熱処理すると、従来はAg原子が熱マイグレーションにより移動して凝集し大きな結晶粒を形成し、結果として膜が不均一になり、反射率と耐久性の低下を引き起こすことが多かった。極端なケースでは、粒成長したAg膜が上下にある層を突き破って成長し露出するといった現象も発生する。しかしながら、本発明の膜構成においては、このような熱処理を行なっても、Ag膜の凝集が抑制されることがわかった。 In the present invention, after the fifth protective film is formed from the first oxide film on the substrate, heat treatment may be performed at a temperature range of 400 to 500 ° C. for 30 to 90 minutes. preferable. Here, the heat treatment means maintaining in the temperature range. This is because the film structure can be densified and the durability can be further improved by the heat treatment. After the heat treatment, it may be taken out to a room temperature atmosphere and naturally cooled as it is. When a multilayer film including an Ag film is heat-treated at such a high temperature, conventionally, Ag atoms move and aggregate due to thermal migration to form large crystal grains, resulting in a non-uniform film, and reflectivity and durability. Often caused a drop. In an extreme case, a phenomenon occurs in which the grain-grown Ag film grows through the upper and lower layers and is exposed. However, in the film configuration of the present invention, it has been found that even when such heat treatment is performed, aggregation of the Ag film is suppressed.
本発明において、ガラス基材、半導体基材あるいは金属基材のように前記熱処理に耐えることの基材を用いる場合であって、特に優れた耐熱性が要求される用途に対しては、前記熱処理を行うことが望ましい。 In the present invention, when using a substrate that can withstand the heat treatment, such as a glass substrate, a semiconductor substrate, or a metal substrate, the heat treatment is particularly required for applications that require excellent heat resistance. It is desirable to do.
前記条件で熱処理を行なうことによって、Ag膜が凝集することなく耐久性を高めることができるという効果が、本発明の膜構成のいずれの作用に基づくものであるか解明できてはいないが、次のよう考えることができる。すなわち、第一には、熱処理によって第二層である金属の膜及び第三層であるAg膜の結晶性がいずれも向上し、構造の秩序性(結晶性)が高まっていることが考えられる。結晶性が高まることによってAg原子のマイグレーションが抑制されることが期待できる。第二には、第二層である金属膜及び第四層であるITO膜とAg膜の密着性が高いことにより、Ag原子の熱マイグレーションが抑制され、Ag膜が粒状構造を形成することなく緻密化しているためと考えることができる。第三には、熱処理の間にAg膜表面でITO膜中に含まれるSn原子とAg原子とが原子層オーダーの非常に薄いAg-Sn合金を形成し、反射率を低下させることなく、耐久性を向上させるという作用も考えられる。 Although the effect that the durability can be enhanced without aggregating the Ag film by performing the heat treatment under the above-mentioned conditions has not been elucidated based on which action of the film configuration of the present invention, Can be thought of as That is, first, it is considered that the crystallinity of both the metal film as the second layer and the Ag film as the third layer is improved by heat treatment, and the structural order (crystallinity) is increased. . It can be expected that migration of Ag atoms is suppressed by increasing the crystallinity. Second, due to the high adhesion between the second layer metal film and the fourth layer ITO film and the Ag film, thermal migration of Ag atoms is suppressed, and the Ag film does not form a granular structure. It can be thought that it is because it has become dense. Third, during the heat treatment, Sn atoms and Ag atoms contained in the ITO film on the surface of the Ag film form an extremely thin Ag-Sn alloy in the atomic layer order, which is durable without reducing the reflectance. The effect | action of improving a property is also considered.
さらに前記熱処理は、第二層から第四層までの膜の緻密化等に効果があるばかりでなく、第一層及び保護膜である第五層の膜の緻密化にも効果を及ぼしていることが期待できる。なお、熱処理条件が前記した温度範囲を外れると、Ag膜等の緻密化が十分でないか、逆にAg膜の酸化を引き起こしてしまうので好ましくない。また、前記した時間の範囲を外れて熱処理した場合にも、同様の不具合が生じてしまう。 Furthermore, the heat treatment not only has an effect on the densification of the film from the second layer to the fourth layer, but also has an effect on the densification of the film of the first layer and the fifth layer as the protective film. I can expect that. Note that it is not preferable that the heat treatment condition is out of the temperature range described above because the Ag film or the like is not sufficiently densified or conversely causes oxidation of the Ag film. In addition, when the heat treatment is performed outside the above-described time range, the same problem occurs.
本発明において、基材として、シクロオレフィンポリマー(COP)樹脂に代表される樹脂基材を用いることもできる。しかしながら、樹脂基材の場合は、基材と膜の間の密着力を高めるために、基材表面に下地層としてSiO膜/SiO膜からなる2層下地層を形成しておく必要がある。そして、前記第一層の酸化物膜としてAl膜を用いるのが好適である。樹脂基材表面に下地層としてSiO膜/SiO膜を形成すると、樹脂基材表面をガラス基材表面と同等の表面にする効果があると考えられる。なお、基材として、樹脂基材を用いる場合は、樹脂基材が400~500℃という高温に耐えることができないことから、前記した熱処理を行うことはできない。 In the present invention, a resin substrate represented by a cycloolefin polymer (COP) resin can also be used as the substrate. However, in the case of a resin base material, in order to increase the adhesion between the base material and the film, it is necessary to form a two-layer base layer composed of a SiO film / SiO 2 film as a base layer on the surface of the base material. . An Al 2 O 3 film is preferably used as the oxide film of the first layer. When a SiO film / SiO 2 film is formed as a base layer on the surface of the resin substrate, it is considered that there is an effect of making the surface of the resin substrate equivalent to the surface of the glass substrate. When a resin substrate is used as the substrate, the above heat treatment cannot be performed because the resin substrate cannot withstand a high temperature of 400 to 500 ° C.
本発明の高耐久性銀ミラーにおいては、前記したように、第五層の保護膜の上に、さらに耐摩耗膜としてSiO膜、MgF膜又はMgF/SiO2層膜を形成すると、耐摩耗性を大幅に向上させることができる。この場合、耐摩耗膜は10~20nm程度の厚さで形成するのが望ましい。これら耐摩耗膜は増反射効果をもたせるためではなく、耐摩耗性を向上させるために形成するからである。耐摩耗膜としてSiO膜、MgF膜又はMgF/SiO2層膜が適しているのは、これらの膜が結晶構造を取りにくく、表面が平滑であることから磨耗に対して強く、傷が付きにくいためである。また、これらの膜は屈折率が低く、たとえスクラッチ傷がついても目立ちにくいという点からも好適である。これら耐磨耗膜を形成した場合、前記した400~500℃の温度範囲での30~90分の熱処理は、これら耐摩耗膜を形成した後に行なうのが望ましい。これら耐磨耗膜も緻密化されるからである。 In the highly durable silver mirror of the present invention, as described above, when a SiO x film, a MgF 2 film, or a MgF 2 / SiO x 2 layer film is further formed as a wear-resistant film on the protective film of the fifth layer. Abrasion resistance can be greatly improved. In this case, it is desirable to form the wear-resistant film with a thickness of about 10 to 20 nm. This is because these wear-resistant films are formed not for providing an increased reflection effect but for improving the wear resistance. The SiO x film, the MgF 2 film or the MgF 2 / SiO x 2 layer film is suitable as the wear-resistant film because these films are difficult to take a crystal structure and have a smooth surface, and are resistant to wear. It is because it is hard to be damaged. These films are also preferable in that they have a low refractive index and are not noticeable even if scratches are present. When these wear-resistant films are formed, the heat treatment for 30 to 90 minutes in the temperature range of 400 to 500 ° C. is preferably performed after these wear-resistant films are formed. This is because these wear-resistant films are also densified.
本発明において、前記第五層の保護膜の上に、あるいは該保護膜の上に形成された耐摩耗膜の上に、最表面層としてフッ素有機化合物等からなる撥水撥油膜を形成することもできる。撥水撥油膜は、表面の汚れ防止膜として機能することに加え、水分をはじく作用がある。従って、特に塩水に曝される環境下において、塩水をはじくことによって優れたバリヤー性を発揮する。撥水撥油膜自体は無色透明であり膜厚も数nm程度でよいことから、光干渉には影響せず光学的特性が変化することはない。 In the present invention, a water- and oil-repellent film made of a fluorine organic compound or the like is formed as an outermost layer on the fifth protective film or on the wear-resistant film formed on the protective film. You can also. The water / oil repellent film functions to repel moisture in addition to functioning as a surface antifouling film. Therefore, excellent barrier properties are exhibited by repelling salt water, particularly in an environment exposed to salt water. Since the water / oil repellent film itself is colorless and transparent and the film thickness may be about several nanometers, the optical characteristics are not affected without affecting the light interference.
なお、本発明において、前記熱処理を行う場合には、該撥水撥油膜は、熱処理の後に形成しなければならない。熱処理の前に形成すると、熱処理によって撥水撥油膜が分解して、消失してしまうからである。 In the present invention, when the heat treatment is performed, the water / oil repellent film must be formed after the heat treatment. This is because if formed before the heat treatment, the water / oil repellent film is decomposed by the heat treatment and disappears.
本発明の高耐久性銀ミラーは、前記熱処理を行った場合には、非常に厳しい耐熱性試験に耐えることができる。集光型太陽光発電モジュールに用いられる集光ミラーには、300℃という高温で2,000時間保持するという耐熱性試験の後であっても、可視光線領域における平均反射率が97%以上であることが要求されるが、前記熱処理を行った本発明の高耐久性銀ミラーは、この要件をクリアすることができる。このような耐熱性試験に合格できる耐久性を有することにより、長期間に亘って太陽光の直射に曝される高耐久性銀ミラーとして用いることができる。このような耐熱性も、膜構成全体の作用と熱処理によって耐久性を向上させた結果と考えることができる。 The highly durable silver mirror of the present invention can withstand a very severe heat resistance test when the heat treatment is performed. The condensing mirror used in the concentrating solar power generation module has an average reflectance of 97% or more in the visible light region even after a heat resistance test of holding at a high temperature of 300 ° C. for 2,000 hours. Although it is required, the highly durable silver mirror of the present invention subjected to the heat treatment can satisfy this requirement. By having durability that can pass such a heat resistance test, it can be used as a highly durable silver mirror that is exposed to direct sunlight over a long period of time. Such heat resistance can also be considered as a result of improving the durability by the action of the entire film structure and heat treatment.
本発明の高耐久性銀ミラーは、濃度の高い塩水浸漬試験(30℃、15%塩水に24時間浸漬)や塩水噴霧試験に耐えることができ、試験後においても97%以上の平均反射率を維持できる。塩水浸漬試験や塩水噴霧試験は、海岸地域に設置される太陽光発電システムや、海岸地域を走行する自動車に使われる部品に要求される試験項目の一つであって、高度な耐腐食性能を有していることを評価するための試験である。本発明の高耐久性銀ミラーが、高濃度の塩水浸漬試験や塩水噴霧試験に耐えることができるのは、ITO膜の効果、所定の熱処理の効果、下地膜の効果及び保護膜の効果などの複合的なものと考えることができる。 The highly durable silver mirror of the present invention can withstand a high concentration salt water immersion test (30 ° C, immersed in 15% salt water for 24 hours) and a salt spray test, and has an average reflectance of 97% or more even after the test. Can be maintained. The salt water immersion test and salt water spray test are one of the test items required for solar power generation systems installed in coastal areas and parts used in automobiles traveling along the coastal areas. This is a test for evaluating possession. The high durability silver mirror of the present invention can withstand a high concentration salt water immersion test and a salt spray test, such as the effect of ITO film, the effect of a predetermined heat treatment, the effect of a base film and the effect of a protective film. It can be thought of as a composite.
また、本発明の高耐久性銀ミラーは、JIS H8502に規定される耐腐食性ガス試験の後であっても、可視光線領域における平均反射率が97%以上を有する。この耐腐食性ガス試験は、濃度10ppmの硫化水素(HS)ガスを用い、40℃90%RHという環境下に24時間曝すという厳しい試験であるが、本発明の高耐久性銀ミラーは、これをクリアすることができる。このような耐久性を有することにより、市街地における屋外と同等の環境下で長期間にわたって使用される車載用の高耐久性銀ミラーとして用いることができる。同様に、非特許文献2に記載されている高温多湿の東南アジア地域での5年間の暴露に相当するとされた混合腐食性ガス試験の後においても、97%以上の平均反射率を維持することができる。このような腐食性ガスに対する耐久性も、膜構成全体の作用と熱処理によって耐久性を向上させた結果と考えることができる。 In addition, the highly durable silver mirror of the present invention has an average reflectance of 97% or more in the visible light region even after the corrosion-resistant gas test specified in JIS H8502. This corrosion-resistant gas test is a severe test in which hydrogen sulfide (H 2 S) gas having a concentration of 10 ppm is used and exposed to an environment of 40 ° C. and 90% RH for 24 hours. This can be cleared. By having such durability, it can be used as a highly durable silver mirror for vehicle use that is used over a long period of time in an environment equivalent to the outdoors in an urban area. Similarly, even after the mixed corrosive gas test described in Non-Patent Document 2 corresponding to five years of exposure in the hot and humid Southeast Asian region, an average reflectance of 97% or more can be maintained. it can. The durability against such a corrosive gas can also be considered as a result of improving the durability by the action of the entire film structure and the heat treatment.
以上のように、本発明で開示した膜構成とすることによって、可視光線の広い領域で高い反射率と優れた耐久性を両立できる高耐久性銀ミラーとすることができる。光反射層である第三層のAg膜を、実質的に不純物を含まない純銀とすることで、高反射率の実現に寄与する。 As described above, by using the film configuration disclosed in the present invention, a highly durable silver mirror capable of achieving both high reflectance and excellent durability in a wide visible light region can be obtained. By making the Ag film of the third layer, which is a light reflection layer, pure silver substantially free of impurities, it contributes to the realization of high reflectivity.
膜形成後に400~500℃の温度範囲で30-90分の間、熱処理することにより、可視光線の広い領域で高い反射率と耐熱性を含む優れた耐久性を両立できる高耐久性銀ミラーとすることができる。そして、これらの作用が組み合わされることにより、集光型太陽光発電用の厳しい耐熱試験や、海岸地域を想定した高濃度の塩水浸漬試験や塩水噴霧試験や、市街地での長期間使用を想定した車載用の光学製品に要求される耐腐食性ガス試験においても、可視光線領域における平均反射率が97%以上を維持できる高耐久性銀ミラーとして用いることができる。 A highly durable silver mirror capable of achieving both high reflectivity and excellent durability including heat resistance in a wide range of visible light by heat treatment for 30-90 minutes in a temperature range of 400 to 500 ° C. after film formation; can do. And by combining these actions, we assumed severe heat tests for concentrating solar power generation, high-concentration salt water immersion tests and salt spray tests for coastal areas, and long-term use in urban areas. Even in a corrosion-resistant gas test required for in-vehicle optical products, it can be used as a highly durable silver mirror that can maintain an average reflectance of 97% or more in the visible light region.
なお、本発明の高耐久性銀ミラーは、JIS D0205に規定される自動車部品の促進耐候性試験(耐光)であるサンシャインカーボンアーク灯式耐候試験機(83℃の環境で、6.8mW/cmのカーボンアーク灯を1,080時間照射しながら水を噴霧する試験)の後においても、97%以上の平均反射率が維持できることが確認された。 The highly durable silver mirror of the present invention is a sunshine carbon arc lamp type weather resistance tester (6.8 mW / cm in an environment of 83 ° C.), which is an accelerated weather resistance test (light resistance) of automobile parts specified in JIS D0205. It was confirmed that an average reflectance of 97% or more can be maintained even after the test of spraying water while irradiating the carbon arc lamp 2 for 1,080 hours.
本発明によって、従来技術では達成することができなかった優れた耐久性を有した銀ミラーを実現できる。種々の耐久性試験後においても可視光線の広い領域における平均反射率として97%以上を実現することができる。液晶プロジェクターの内部に用いられる反射鏡に要求される耐久性をクリアすることはもちろん、集光型太陽光発電用集光ミラーに求められる耐熱試験や耐塩水浸漬試験及び塩水噴霧試験、自動車部品として用いる場合に要求される耐腐食性ガス試験や耐塩水浸漬試験及び塩水噴霧試験の後においても、97%以上の反射率を維持する高耐久性銀ミラーとすることができる。その結果、集光型太陽光発電用集光ミラーや自動車用のヘッドアップディスプレイに用いられる凹面ミラーとして利用できるし、さらに厳しい環境下でも用いることのできる銀ミラーとして幅広い用途が期待できる。 By this invention, the silver mirror with the outstanding durability which was not able to be achieved by the prior art is realizable. Even after various durability tests, an average reflectance of 97% or more in a wide visible light region can be realized. As well as clearing the durability required for reflectors used in liquid crystal projectors, heat resistance tests, salt water immersion tests, salt spray tests, and automotive parts required for concentrating solar power collectors Even after a corrosion-resistant gas test, a salt-water immersion test, and a salt spray test that are required for use, a highly durable silver mirror that maintains a reflectance of 97% or more can be obtained. As a result, it can be used as a concave mirror used in a concentrating solar power collector mirror or a head-up display for automobiles, and can be expected to have a wide range of uses as a silver mirror that can be used in even more severe environments.
本発明の高耐久性銀ミラーの膜構成の一例を示す図である。It is a figure which shows an example of the film | membrane structure of the highly durable silver mirror of this invention. 本発明の高耐久性銀ミラーの膜構成の一例において、ITO膜の厚みと平均反射率の関係を示す図である。In an example of the film | membrane structure of the highly durable silver mirror of this invention, it is a figure which shows the relationship between the thickness of an ITO film | membrane, and an average reflectance. 本発明に用いることのできる傾斜表面を有する基材の一例を示す図である。It is a figure which shows an example of the base material which has the inclined surface which can be used for this invention. 平面形状ではない基材の、蒸着装置の基板ドームへの配置を示す図である。It is a figure which shows arrangement | positioning to the board | substrate dome of a vapor deposition apparatus of the base material which is not planar shape.
特にことわりのない限り、基本膜構成は、ガラス基板/Al/Ni/Ag/ITO/Al/SiO/TiO(以後、本発明の基本膜構成と呼ぶ)からなる7層構成である。これらの膜は、真空蒸着装置(昭和真空製 品番SGC26WA)を用いて形成した。プラズマアシスト装置としては、日本電子製 品番BS80020CPPSを用いた。 Unless otherwise specified, the basic film configuration is composed of glass substrate / Al 2 O 3 / Ni / Ag / ITO / Al 2 O 3 / SiO 2 / TiO 2 (hereinafter referred to as the basic film configuration of the present invention) 7 It is a layer structure. These films were formed using a vacuum evaporation apparatus (Showa Vacuum product number SGC26WA). JEOL product number BS80020CPPS was used as the plasma assist device.
(実施例1~8)
ガラス基板を温水洗浄した後、真空蒸着装置にセットし、真空度0.9mPaまで排気した。そして、反応ガスである酸素を用いてガラス基板の表面をプラズマ洗浄し、ついで、真空度(背圧)を3mPaに調整した。第一層の酸化物膜(例えば、Al膜)の成膜では、酸素ガスを導入して、表1に記載した条件で成膜した。第二層以降も同様に表1に記載した条件で成膜することで、ガラス基板上に、No.1~No.8までの膜を順番に形成した。表1中、成膜方式の欄の「VD」は、通常の真空蒸着という意味であり、電子銃を用いて蒸着材料を蒸発させて成膜した。「PAD」はプラズマアシスト装置を用いた蒸着を意味し、蒸着材料のイオン化を促進するプラズマ銃を補助的に用いている。その際のプラズマアシスト電流を、PA電流として記載した。なお、4層目であるITO膜の成膜はアルゴンガス雰囲気下で行い、Ni及びAgの成膜はいずれのガスも導入せず、これら以外の材料の成膜は、酸素ガス雰囲気中で行った。酸素ガス雰囲気で成膜した場合はOガス流量を、アルゴンガス雰囲気で成膜した場合はArガス流量を記載し、成膜時の圧力を制御した場合は、その圧力を記載している。成膜終了後、真空蒸着装置から取り出し、450℃に温度制御した炉の中に入れて、60分間の熱処理を行った。
Figure JPOXMLDOC01-appb-T000001
(Examples 1 to 8)
After the glass substrate was washed with warm water, it was set in a vacuum deposition apparatus and evacuated to a vacuum degree of 0.9 mPa. And the surface of the glass substrate was plasma-cleaned using oxygen as a reaction gas, and then the degree of vacuum (back pressure) was adjusted to 3 mPa. In the formation of the first oxide film (for example, Al 2 O 3 film), oxygen gas was introduced and the film was formed under the conditions described in Table 1. Similarly, the second and subsequent layers are formed under the conditions described in Table 1, so that No. 2 is formed on the glass substrate. 1-No. Up to 8 films were formed in order. In Table 1, “VD” in the column of the film formation method means normal vacuum evaporation, and the film was formed by evaporating the evaporation material using an electron gun. “PAD” means vapor deposition using a plasma assist device, and a plasma gun that promotes ionization of the vapor deposition material is supplementarily used. The plasma assist current at that time was described as PA current. The fourth ITO film is formed in an argon gas atmosphere, Ni and Ag are not introduced with any gas, and other materials are formed in an oxygen gas atmosphere. It was. The O 2 gas flow rate is described when the film is formed in an oxygen gas atmosphere, the Ar gas flow rate is described when the film is formed in an argon gas atmosphere, and the pressure is described when the pressure during film formation is controlled. After the film formation was completed, the film was taken out from the vacuum deposition apparatus, placed in a furnace controlled at a temperature of 450 ° C., and heat-treated for 60 minutes.
Figure JPOXMLDOC01-appb-T000001
表1に示した成膜条件を用いて、実施例として作成した7つの試料(実施例1~実施例7)の膜構成を表2に示す。実施例1~4では、ITO膜の膜厚を3~10nmまで4段階に変えたもので、他の層の膜厚はすべて同じにした。実施例5及び6は、第一層の膜として、実施例1~4で用いたAl膜に代えて、それぞれSiO膜又はTiO膜としたものである。その場合、SiO膜及びTiO膜の成膜条件は、表1中の第一層のAl膜の成膜条件に準じた。実施例7は、第二層としてNi膜に代えてCu膜を用いた構成である。
Figure JPOXMLDOC01-appb-T000002
Table 2 shows the film configurations of seven samples (Examples 1 to 7) prepared as examples using the film formation conditions shown in Table 1. In Examples 1 to 4, the thickness of the ITO film was changed in 4 steps from 3 to 10 nm, and the thicknesses of the other layers were all the same. In Examples 5 and 6, instead of the Al 2 O 3 film used in Examples 1 to 4, a SiO 2 film or a TiO 2 film was used as the first layer film, respectively. In that case, the film formation conditions of the SiO 2 film and the TiO 2 film were in accordance with the film formation conditions of the first Al 2 O 3 film in Table 1. In Example 7, a Cu film was used instead of the Ni film as the second layer.
Figure JPOXMLDOC01-appb-T000002
(比較例1~比較例8)
 実施例と対比して評価するために作製した比較例の膜構成を表3に示した。比較例1は、第一層としての酸化物膜を用いないで、ガラス基板上に直接Ni膜を形成した膜構成である。比較例2及び比較例3は、本発明における第四層のITO膜を用いていない膜構成である。比較例4及び比較例5では、本発明における第四層のITO膜に代えてNi膜又はCu膜を形成した例であって、その膜厚は約1nmである。比較例6は、本発明における第二層の金属の膜としてCr膜を用いた膜構成である。比較例7は特許文献2で開示された膜構成であり、比較例8は特許文献4で開示された膜構成である。なお、比較例8の作製においては、特許文献4に記載されている通り、第二層の金属の膜としては、Crを15wt%含有したNi-Cr合金を蒸着材料として用い、Ni膜の成膜条件に準じた条件でNi-Cr膜を成膜した。
Figure JPOXMLDOC01-appb-T000003
(Comparative Examples 1 to 8)
Table 3 shows a film configuration of a comparative example prepared for evaluation in comparison with the examples. Comparative Example 1 has a film configuration in which an Ni film is directly formed on a glass substrate without using an oxide film as the first layer. Comparative Example 2 and Comparative Example 3 are film configurations that do not use the fourth-layer ITO film in the present invention. Comparative Example 4 and Comparative Example 5 are examples in which a Ni film or a Cu film is formed instead of the fourth layer ITO film in the present invention, and the film thickness is about 1 nm. Comparative Example 6 has a film configuration using a Cr film as the second-layer metal film in the present invention. Comparative Example 7 is the film configuration disclosed in Patent Document 2, and Comparative Example 8 is the film structure disclosed in Patent Document 4. In preparation of Comparative Example 8, as described in Patent Document 4, a Ni—Cr alloy containing 15 wt% of Cr was used as a vapor deposition material as the second metal film, and a Ni film was formed. A Ni—Cr film was formed under conditions according to the film conditions.
Figure JPOXMLDOC01-appb-T000003
本発明において重要な役割を果たすITO膜厚と平均反射率の関係を調べた結果を図2に示す。ここでは、基本膜構成として実施例1~実施例4と同じ膜構成を用いて、ITOの膜厚を3nm~15nmまで変化させ、その後、450℃で60分間熱処理した後の反射率を測定したものである。図中、折れ線グラフが2本あるのは、2セットの実験を行った結果であって、どちらも同じ傾向であった。この結果から、97%以上の平均反射率を達成するためには、ITO膜の膜厚としては12nm以下でなければならないことが判明した。 FIG. 2 shows the result of examining the relationship between the ITO film thickness, which plays an important role in the present invention, and the average reflectance. Here, the same film structure as in Examples 1 to 4 was used as the basic film structure, the ITO film thickness was changed from 3 nm to 15 nm, and then the reflectivity after heat treatment at 450 ° C. for 60 minutes was measured. Is. In the figure, two line graphs are the results of two sets of experiments, both of which have the same tendency. From this result, it was found that the thickness of the ITO film must be 12 nm or less in order to achieve an average reflectance of 97% or more.
実施例および比較例の膜構成に対して、表4に示す各種耐久性試験を実施した。JISH8504に規定されているテープ剥離による密着性試験、太陽電池メーカーから要求される耐熱試験、太陽電池メーカー及び自動車部品メーカーから要求されている恒温恒湿試験及び塩水浸漬試験、自動車部品メーカーから要求されている腐食試験などである。塩水浸漬試験としては一般的な条件の塩水試験Aの他、一部から要求されているより厳しい条件の塩水試験Bも実施した。腐食試験は、JIS H8502に準じた腐食試験Aに加えて、非特許文献2に記載されている実暴露に対応した腐食試験Bも実施した。
Figure JPOXMLDOC01-appb-T000004
Various durability tests shown in Table 4 were carried out on the film configurations of Examples and Comparative Examples. Adhesion test by tape peeling specified in JISH8504, heat resistance test required by solar cell manufacturer, constant temperature and humidity test and salt water immersion test required by solar cell manufacturer and auto parts manufacturer, required by auto parts manufacturer Such as corrosion tests. As a salt water immersion test, a salt water test A under more severe conditions required by some parts was also conducted in addition to a salt water test A under general conditions. In addition to the corrosion test A according to JIS H8502, the corrosion test B was also performed as a corrosion test B corresponding to actual exposure described in Non-Patent Document 2.
Figure JPOXMLDOC01-appb-T000004
これら試験結果を、実施例については表5に、比較例については表6に整理して示した。表5及び表6の試験Aの結果欄における○印は、密着性試験で膜剥離が発生しなかったことを示している。×印は、膜が剥がれたことを示している。その他の注釈は、表6の欄外に示している。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
The test results are summarized in Table 5 for the examples and Table 6 for the comparative examples. The circles in the result column of Test A in Table 5 and Table 6 indicate that film peeling did not occur in the adhesion test. A cross indicates that the film has been peeled off. Other annotations are shown outside Table 6.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
以上より、本発明の実施例1では、実施したすべての試験後において、97%以上の平均反射率を示し、優れた耐久性と高い反射率を有することがわかった。実施例2、3、4は、実施例1と比べて第4層のITO膜の膜厚が異なるだけであって、ITO膜厚が実施例1よりも厚いことから、実施例1と同様にすべての試験をクリアするものと考えられる。念のため実施した密着性試験においても膜が剥がれることはなく、塩水試験A及び塩水試験Bの後も、97%以上の高い反射率を維持していることが確認された。実施例5及び実施例6は、実施例1~4における下地層であるAl膜に代えてSiO膜又はTiO膜を用いた構成あるが、これら酸化物膜を第一層として用いた場合であっても、試験A、試験D及び試験Eの結果、実施例1~4と同等の耐久性を有していることがわかった。実施例7は、実施例1~4における第二層の金属の膜でNi膜に代えてCu膜を用いた構成であるが、同様に優れた耐久性を示すことが確認された。但し、実施例5、6及び7では、試験B(耐熱試験)の後にのみ、3~6%程度の反射率の低下が観察された。このことから、耐熱性の観点からは、第一層の酸化物膜としてはAl膜が優れており、第二層の金属膜としてはNi膜が優れていることが判明した。 From the above, it was found that Example 1 of the present invention showed an average reflectance of 97% or more after all the tests conducted, and had excellent durability and high reflectance. Examples 2, 3 and 4 differ from Example 1 only in the thickness of the ITO film of the fourth layer, and since the ITO film thickness is thicker than Example 1, All tests are considered to be cleared. In the adhesion test conducted just in case, the film was not peeled off, and it was confirmed that the high reflectance of 97% or more was maintained after the salt water test A and the salt water test B. In Examples 5 and 6, the SiO 2 film or the TiO 2 film is used in place of the Al 2 O 3 film that is the base layer in Examples 1 to 4, and these oxide films are used as the first layer. Even when it was used, as a result of Test A, Test D, and Test E, it was found to have durability equivalent to that of Examples 1 to 4. In Example 7, the second-layer metal film in Examples 1 to 4 was constituted by using a Cu film instead of the Ni film, and it was confirmed that excellent durability was similarly exhibited. However, in Examples 5, 6 and 7, a decrease in reflectance of about 3 to 6% was observed only after test B (heat resistance test). From this, it was found that from the viewpoint of heat resistance, the Al 2 O 3 film is excellent as the first layer oxide film, and the Ni film is excellent as the second layer metal film.
 比較例についての試験結果から次のことが明らかになった。比較例1は、ガラス基板上にAl膜が形成されていない例であるが、密着性に乏しく、密着性試験で剥離が発生した。比較例2及び比較例3は、本発明におけるITO膜が形成されていない例であるが、耐熱試験によって膜表面が劣化し、白い粒や黒い粒が多数発生していることが観察され、また、膜の変色も観察されている。比較例4及び比較例5は、本発明におけるITO膜の代わりに厚さ1nmのNi膜又はCu膜が形成された例であるが、これほど薄い膜厚であっても、平均反射率が97%以下であったため、耐久性試験は実施しなかった。比較例6は、実施例1~4における第二層の金属の膜としてNi膜に代えてCr膜を用いた構成であるが、熱処理によって反射率が93.3%まで低下したので、耐久性試験は実施しなかった。前記したように面心立方型の結晶構造を有するNi及びCuを第二層の金属の膜として使用した実施例1~実施例8では優れた耐久性を示したが、体心立方構造型の結晶構造を有するCrを第二層の金属の膜として使用した場合は、熱処理によって反射率が低下することが明らかになった。比較例7は特許文献2に開示された膜構成の銀ミラーであって、膜厚の厚いAl膜を下地膜として用いるものであるが、腐食試験Bに対しては、高い反射率を維持できるものの、耐熱試験によって短時間のうちに膜が劣化し、一部膜が剥離することがわかった。比較例8は特許文献4に開示された膜構成の銀ミラーであって、本発明の膜構成と比べて、ITO膜が形成されておらず、第二層の金属の膜としてはNi-Cr合金膜が形成され、その他の膜の膜厚はそれぞれ本発明よりやや厚く形成されたものである。各種試験の結果、塩水試験A、腐食試験Bに対しては、高い反射率を維持できるものの、塩水試験Bの後の反射率低下が大きく、97%の反射率を維持できないこと、及び耐熱試験後に反射率低下がやや大きく、97%を下回ることがわかった。 The following became clear from the test results of the comparative examples. Comparative Example 1 is an example in which the Al 2 O 3 film is not formed on the glass substrate, but the adhesion is poor and peeling occurred in the adhesion test. Comparative Example 2 and Comparative Example 3 are examples in which the ITO film in the present invention was not formed, but it was observed that the film surface was deteriorated by the heat resistance test, and a large number of white and black particles were generated. Discoloration of the film has also been observed. Comparative Example 4 and Comparative Example 5 are examples in which a Ni film or a Cu film having a thickness of 1 nm is formed instead of the ITO film in the present invention. %, The durability test was not performed. In Comparative Example 6, a Cr film was used instead of the Ni film as the metal film of the second layer in Examples 1 to 4, but the reflectivity was reduced to 93.3% by the heat treatment. The test was not conducted. As described above, Examples 1 to 8 using Ni and Cu having a face-centered cubic crystal structure as the second-layer metal film showed excellent durability. When Cr having a crystal structure is used as the metal film of the second layer, it has been clarified that the reflectance is lowered by the heat treatment. Comparative Example 7 is a silver mirror having a film configuration disclosed in Patent Document 2, and uses a thick Al 2 O 3 film as a base film. However, the heat resistance test revealed that the film deteriorated in a short time and part of the film peeled off. Comparative Example 8 is a silver mirror having a film configuration disclosed in Patent Document 4, in which an ITO film is not formed as compared with the film configuration of the present invention, and the second metal film is Ni—Cr. An alloy film is formed, and the other films are slightly thicker than the present invention. As a result of various tests, although high reflectivity can be maintained for the salt water test A and the corrosion test B, the reflectivity drop after the salt water test B is large and 97% reflectivity cannot be maintained. Later it was found that the reflectivity drop was somewhat large, below 97%.
 半導体や樹脂を基材とした場合の本発明の高耐久性銀ミラーの環境耐久性、耐候性、耐摩耗性などを評価するため、表4に記載した各種試験以外に、表7に記載した各種耐久性試験を実施した。試験L及び試験Mは、光学コーティングに係る試験方法として制定されたISO9211シリーズに準じて、新たに制定されたJIS B7080:2015に基づいた試験である。試験Mで用いる指定の砂消しゴムは、当該規格中に記載されている通り、ゴムと研磨剤の均一な混合物である。
Figure JPOXMLDOC01-appb-T000007
In order to evaluate the environmental durability, weather resistance, wear resistance, etc. of the highly durable silver mirror of the present invention when a semiconductor or a resin is used as a base material, in addition to the various tests described in Table 4, it is described in Table 7. Various durability tests were conducted. Test L and Test M are tests based on JIS B7080: 2015 newly established in accordance with ISO9211 series established as a test method for optical coating. The designated sand eraser used in Test M is a uniform mixture of rubber and abrasive as described in the standard.
Figure JPOXMLDOC01-appb-T000007
 (実施例8、9、10及び比較例9、10)
 耐腐食性に加えて、特に優れた耐摩耗性が要求される用途に適した膜構成を有する高耐久性銀ミラーを作成し、試験A、試験K、試験L及び試験Mを実施して評価した。実施例及び比較例として評価した膜構成を表8に示した。ガラス基板上の7層目までは本発明の基本膜構成であって、実施例8、9、10及び比較例9,10とも同じである。実施例8では、第7層のTiO膜の上に、耐摩耗膜として厚さ120nmのMgF膜を形成している。実施例9では、MgF2膜の上に厚さ20nmのSiO膜を形成したものである。実施例10は、該SiO膜の上に、厚さ3nmの撥水撥油膜を形成したものである。一方、比較例9は、第7層のTiO膜の上に、厚さ25nmのMgF膜を形成している。また、比較例10は、耐摩耗膜として厚さ20nmのSiO膜を形成し、その上に厚さ3nmの撥水撥油膜を形成したものである。
(Examples 8, 9, and 10 and Comparative Examples 9 and 10)
In addition to corrosion resistance, a highly durable silver mirror having a film configuration suitable for applications requiring particularly excellent wear resistance was prepared and evaluated by performing tests A, K, L and M. did. Table 8 shows the film configurations evaluated as examples and comparative examples. Up to the seventh layer on the glass substrate is the basic film configuration of the present invention, and the same applies to Examples 8, 9, and 10 and Comparative Examples 9 and 10. In Example 8, an MgF 2 film having a thickness of 120 nm was formed as a wear-resistant film on the seventh layer of TiO 2 film. In Example 9, a 20 nm thick SiO 2 film was formed on the MgF 2 film. In Example 10, a water / oil repellent film having a thickness of 3 nm was formed on the SiO 2 film. On the other hand, in Comparative Example 9, an MgF 2 film having a thickness of 25 nm is formed on the seventh TiO 2 film. In Comparative Example 10, an SiO 2 film having a thickness of 20 nm was formed as an abrasion resistant film, and a water / oil repellent film having a thickness of 3 nm was formed thereon.
各層の成膜条件は、表1に記載した通りである。表1に記載していないMgF膜の成膜条件は、MgFを蒸着源として用いて、蒸着チャンバー内の圧力(背圧)が0.9mPa以下になるまで真空引きした後、電子ビームを用いて蒸着を行った。また、撥水撥油膜としては、フッ素含有有機ケイ素化合物を含浸させた市販の蒸着用ペレット(例:キャノンオプトロン社製サーフクリア)を蒸着源として用いて、同じく電子ビーム法で蒸着した。
Figure JPOXMLDOC01-appb-T000008
The film forming conditions for each layer are as described in Table 1. Conditions for forming the MgF 2 film not listed in Table 1, using MgF 2 as the evaporation source, was evacuated to a pressure within the deposition chamber (back pressure) is below 0.9 mPa, the electron beam Vapor deposition was performed. As the water / oil repellent film, a commercially available pellet for vapor deposition impregnated with a fluorine-containing organosilicon compound (eg, Surf Clear manufactured by Canon Optron) was used as a vapor deposition source, and was also vapor deposited by the same electron beam method.
Figure JPOXMLDOC01-appb-T000008
 表8に示した実施例及び比較例について、塩水噴霧試験(試験K)、塩水試験後のテープ引きはがしテスト(試験A)環境耐久性試験(試験L)及び耐摩耗試験(試験M)を実施した。それら結果を表9に示した。塩水噴霧試験では、試験後に反射率が1.0%以上低下したものはなく、実施例及び比較例とも優れた耐腐食性を有していた。また、塩水噴霧試験後に、テープ引きはがしテストを行った結果、いずれのサンプルについても、膜の剥離は観察されず、優れた密着性を有していた。次に、環境耐久性試験においても、試験前後の反射率変化は1%未満であって、優れた耐腐食性を有していた。耐摩耗試験については、実施例8、9及び10では、摩耗試験の後に光を照射して観察しても、摩耗傷に起因する光の透過は観察されなかったのに対して、比較例9及び10では、薄い光の筋が観察された。すなわち、比較例9及び10では、摩耗試験によって銀膜が摩耗して、光が透過してしまうものと考えられる。以上より、耐摩耗膜としてMgF膜を用いることにより、砂消しゴム試験に合格するレベルの優れた耐摩耗性を付与できることがわかった。但し、MgF単層膜を耐摩耗膜とする場合、膜厚が薄いと、砂消しゴム試験に合格できないことがわかった(比較例9)。
Figure JPOXMLDOC01-appb-T000009
For the examples and comparative examples shown in Table 8, a salt spray test (Test K), a tape peeling test after the salt water test (Test A), an environmental durability test (Test L), and an abrasion resistance test (Test M) did. The results are shown in Table 9. In the salt spray test, none of the reflectances decreased by 1.0% or more after the test, and both the examples and comparative examples had excellent corrosion resistance. Moreover, as a result of performing the tape peeling test after the salt spray test, no peeling of the film was observed for any of the samples, and excellent adhesion was obtained. Next, also in the environmental durability test, the change in reflectance before and after the test was less than 1% and had excellent corrosion resistance. As for the abrasion resistance test, in Examples 8, 9 and 10, even though light was observed after the abrasion test and observed, light transmission due to abrasion scratches was not observed, whereas Comparative Example 9 And 10, thin light streaks were observed. That is, in Comparative Examples 9 and 10, it is considered that the silver film is worn by the wear test and light is transmitted. From the above, it was found that by using the MgF 2 film as the wear resistant film, excellent wear resistance at a level that passes the sand eraser test can be imparted. However, it was found that when the MgF 2 single layer film is an abrasion resistant film, the sand eraser test cannot be passed if the film thickness is thin (Comparative Example 9).
Figure JPOXMLDOC01-appb-T000009
 (実施例11、12)
 半導体であるSi基材上に本発明の高耐久性銀ミラーを作成し、耐久性を評価した。評価した膜構成を表10に示した。第7層までは、本発明の基本膜構成である。実施例11では、第7層の上に、耐摩耗膜として厚さ20nmのSiO膜が形成されている。実施例12では、SiO膜の上に厚さ3nmの撥水撥油膜が形成されている。これら2つの実施例について、塩水噴霧試験(試験K)を実施した結果を表11に示した。塩水噴霧試験後の反射率低下は1%未満であって、本発明の高耐久性銀ミラーは、Si基板上であっても優れた耐久性を有していることがわかった。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
(Examples 11 and 12)
The highly durable silver mirror of this invention was created on Si base material which is a semiconductor, and durability was evaluated. Table 10 shows the evaluated film configuration. Up to the seventh layer is the basic film configuration of the present invention. In Example 11, an SiO 2 film having a thickness of 20 nm is formed on the seventh layer as an abrasion resistant film. In Example 12, a 3 nm thick water / oil repellent film is formed on the SiO 2 film. Table 11 shows the results of the salt spray test (Test K) for these two examples. The decrease in reflectance after the salt spray test was less than 1%, and it was found that the highly durable silver mirror of the present invention has excellent durability even on a Si substrate.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 (実施例13~16及び比較例11~16)
 樹脂基材を用いて本発明の高耐久性銀ミラーを作成し、各種耐久性を評価した。樹脂基材としては、厚さ2mmのシクロオレフィンポリマー(日本ゼノン株式会社製ZEONOR(登録商標)、以後COPと略す)を用いた。評価した実施例及び比較例の膜構成と評価結果を、それぞれ表12及び表13に示した。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
(Examples 13 to 16 and Comparative Examples 11 to 16)
The highly durable silver mirror of this invention was created using the resin base material, and various durability was evaluated. As the resin substrate, a cycloolefin polymer having a thickness of 2 mm (ZEONOR (registered trademark) manufactured by Zenon Japan Ltd., hereinafter abbreviated as COP) was used. The film configurations and evaluation results of the evaluated examples and comparative examples are shown in Table 12 and Table 13, respectively.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 COP基材上の高耐久性銀ミラーに関する各種耐久性の評価結果から、次の事項が明らかになった。実施例13~16では、本発明の基本膜構成であるAl/Ni/Ag/ITO/Al/SiO/TiOがこの順に形成されているが、第1層のAl膜を形成する前に、COP基材上に先にSiO/SiO下地膜がこの順に形成されている。すなわち、ガラス基材やSi基材上の膜構成とは異なり、COP基材に対しては第1層として最初にAl膜を形成するのではなく、第一の下地膜として厚さ5nm程度の一酸化珪素(SiO)膜を形成し、その上に第二の下地膜として厚さ150~300nm程度の二酸化珪素(SiO)膜を形成し、次いでAl膜を形成することが必須である。このようにSiO膜/SiO膜の2層からなる下地膜を形成しておくことで、樹脂基材を用いても高い反射率と優れた耐久性を有する高耐久性銀ミラーとすることができるのである。なお、表中の○印は膜の腐食や剥離がなかったことを示し、×印は試験後に膜の腐食や剥離が観察されたことを示している。 The following matters were clarified from the results of various durability evaluations regarding the highly durable silver mirror on the COP substrate. In Examples 13 to 16, Al 2 O 3 / Ni / Ag / ITO / Al 2 O 3 / SiO 2 / TiO 2, which is the basic film configuration of the present invention, is formed in this order. Before the 2 O 3 film is formed, the SiO / SiO 2 base film is formed in this order on the COP substrate. That is, unlike the film configuration on the glass substrate or the Si substrate, the Al 2 O 3 film is not formed first as the first layer for the COP substrate, but the thickness as the first base film. A silicon monoxide (SiO) film having a thickness of about 5 nm is formed, a silicon dioxide (SiO 2 ) film having a thickness of about 150 to 300 nm is formed thereon as a second base film, and then an Al 2 O 3 film is formed. It is essential. By forming a base film composed of two layers of SiO film / SiO 2 film in this way, a highly durable silver mirror having high reflectivity and excellent durability can be obtained even if a resin base material is used. It can be done. In the table, ◯ indicates that there was no corrosion or peeling of the film, and X indicates that film corrosion or peeling was observed after the test.
 前記2層からなる下地膜を形成しておくことにより、下地膜の上に形成するAl膜は、厚さ5nm程度でよいことがわかった。また、Ag膜の下に形成するNi膜の厚みも薄くできることが判明した。なお、実施例13、15及び16は、耐摩耗膜として厚さ20nmのSiO膜を形成したものであり、実施例14は、SiO膜の上にさらに撥水撥油膜を形成したものである。 It was found that the Al 2 O 3 film formed on the base film may have a thickness of about 5 nm by forming the base film composed of the two layers. It was also found that the thickness of the Ni film formed under the Ag film can be reduced. In Examples 13, 15 and 16, a 20 nm thick SiO 2 film was formed as an abrasion resistant film, and in Example 14, a water / oil repellent film was further formed on the SiO 2 film. is there.
 2層構成の下地膜を形成しない場合、COP基材上のAgミラーの耐久性は不十分なものとなってしまう。比較例11は、下地膜として厚さ100nmのSiO単層膜が形成されたものであり、比較例12は、下地膜として厚さ100nmのSiO単層膜が形成されたものであり、比較例14は下地膜を形成せずCOP基材上に直接Al膜を形成したものであるが、いずれの例も、耐湿試験(試験P)によってCOP基材表面に異常が発生し、その上に形成された膜が剥離してしまうか、大幅に反射率が低下することがわかった。比較例13は2層構成の下地膜が形成されているものの、その上にAl膜が形成されていない場合であって、耐湿試験でCOP基材表面に異常が発生し、テープ引きはがし試験(試験A)によっても、膜の剥離が観察された。比較例15及び16では、2層構成の下地膜を形成し、その上にAl膜が形成された膜構成であるが、第二の下地膜であるSiO膜の厚さが50nm以下と薄いため、基材側からのAg膜の腐食を十分に防止することができないこと、及び膜応力を十分に緩和できないことから、膜剥離も観察された。 When the base film having a two-layer structure is not formed, the durability of the Ag mirror on the COP substrate is insufficient. In Comparative Example 11, a SiO 2 single layer film having a thickness of 100 nm was formed as a base film, and in Comparative Example 12, a SiO single layer film having a thickness of 100 nm was formed as a base film. In Example 14, an Al 2 O 3 film was formed directly on the COP base material without forming a base film, but in each example, an abnormality occurred on the surface of the COP base material by the moisture resistance test (Test P). It turned out that the film | membrane formed on it peels or a reflectance falls significantly. Comparative Example 13 is a case where an underlayer film having a two-layer structure is formed, but an Al 2 O 3 film is not formed thereon, and an abnormality occurs on the surface of the COP substrate in the moisture resistance test, and the tape drawing is performed. Also in the peeling test (Test A), peeling of the film was observed. In Comparative Examples 15 and 16, a base film having a two-layer structure is formed, and an Al 2 O 3 film is formed thereon. The thickness of the SiO 2 film as the second base film is 50 nm. Since the film was thin as follows, the film peeling was also observed because the corrosion of the Ag film from the substrate side could not be sufficiently prevented and the film stress could not be sufficiently relaxed.
 実施例13について、温度-40℃で1時間保持し、その後急激に85℃まで加熱し1時間保持するサイクルを456回繰り返すという厳しいサーマルショック試験を実施したところ、95.8%であった初期反射率が94.5%までしか低下しなかったことから、COP基材上の本発明の高耐久性銀ミラーは、優れた耐サーマルショック性を有していることもわかった。 For Example 13, a severe thermal shock test was conducted in which a cycle of holding at a temperature of −40 ° C. for 1 hour, and then rapidly heating to 85 ° C. and holding for 1 hour was repeated 456 times. The initial value was 95.8%. It was also found that the highly durable silver mirror of the present invention on the COP substrate had excellent thermal shock resistance since the reflectivity decreased only to 94.5%.
 平板形状ではない基材上に高耐久性銀ミラーを作成し、耐久性を評価した。真鍮(Cu-Zn合金)を加工した基材20は、頂点Bに向かって、直方体の底面から円錐を削り取ったものである。図3は断面図であって、底面上のA及びCとBのなす角ABCはθである。本実施例では、θ=50°の真鍮基材を作成し、高耐久性銀ミラー膜を、斜面ABCに形成した。すなわち、この真鍮基材20では、ABCからなる傾斜した円錐斜面に膜が形成されることになる。 A highly durable silver mirror was created on a substrate that was not flat and the durability was evaluated. The base material 20 processed from brass (Cu—Zn alloy) has a cone cut away from the bottom surface of the rectangular parallelepiped toward the apex B. FIG. 3 is a cross-sectional view, and an angle ABC formed by A and C and B on the bottom surface is θ. In this example, a brass substrate with θ = 50 ° was prepared, and a highly durable silver mirror film was formed on the slope ABC. That is, in this brass base material 20, a film is formed on the inclined conical slope made of ABC.
 蒸着装置の中でコーティングを施す基材をセットする基材ホルダー(基板ドームと呼ばれることが多い。)は、球面であって、球面の円周方向や直径方向に多数の基材を並べて、成膜が行われる。そして、該基材が平面の場合、基材ホルダーの球面上のどの位置に基材をセットしても、基材平面上に形成される膜の厚みはほぼ同じになる。ところが、基材が平板形状でない場合は、基材ホルダーのどの位置にどの方向に向けて基材をセットするかによって、基材上のコーティングの厚みが異なってしまう。そして、多層膜を形成する場合には、各層の膜の厚み差が積み重なることによって、設計通りの光学特性(例えば反射率)を得ることが難しくなるのである。 A substrate holder (often called a substrate dome) for setting a substrate to be coated in a vapor deposition apparatus is a spherical surface, and a large number of substrates are arranged in a circumferential direction or a diameter direction of the spherical surface. A membrane is performed. And when this base material is a plane, the thickness of the film | membrane formed on a base-material plane becomes substantially the same, regardless of the position on the spherical surface of a base-material holder, a base material is set. However, when the substrate is not flat, the thickness of the coating on the substrate differs depending on which position of the substrate holder is set in which direction. In the case of forming a multilayer film, it is difficult to obtain optical characteristics (for example, reflectance) as designed by stacking the thickness differences of the layers.
 図4に示したように、基板ホルダー上の4か所に、垂直面から25°傾けてガラス基板を配置し、表14に示した実施例17と表2に示した実施例1の高耐久性銀ミラーを成膜した。実施例17と実施例1と対比すると、実施例17では、保護膜が厚さ20nmのSiO単層膜であるのに対して、実施例1では、Al/SiO/TiOからなる3層保護膜と耐摩耗膜としてのSiO膜が形成されている。また、実施例17ではAg膜の厚みが500nmと厚く形成されている。
Figure JPOXMLDOC01-appb-T000014
As shown in FIG. 4, the glass substrate is disposed at four positions on the substrate holder at an angle of 25 ° from the vertical plane, and the high durability of Example 17 shown in Table 14 and Example 1 shown in Table 2 A silver mirror was formed. In contrast to Example 17 and Example 1, in Example 17, the protective film is a 20 nm thick SiO 2 single layer film, whereas in Example 1, Al 2 O 3 / SiO 2 / TiO 2 is used. A three-layer protective film made of the above and an SiO 2 film as an abrasion resistant film are formed. In Example 17, the Ag film is formed as thick as 500 nm.
Figure JPOXMLDOC01-appb-T000014
 図4に示した4か所の位置に配置した実施例17及び実施例1の高耐久性銀ミラーについて平均反射率を測定した結果を表15に示す。実施例1では、基板ホルダー上の位置と方向によって反射率が大きく変動するのに対して、銀膜の厚みを厚くしてSiO2単層の保護膜とした実施例17では、基板ホルダー上の位置と方向によらず高い反射率が実現されることがわかった。
Figure JPOXMLDOC01-appb-T000015
Table 15 shows the results of measuring the average reflectance of the highly durable silver mirrors of Example 17 and Example 1 arranged at the four positions shown in FIG. In Example 1, the reflectivity varies greatly depending on the position and direction on the substrate holder, whereas in Example 17 where the protective film of the SiO2 single layer is formed by increasing the thickness of the silver film, the position on the substrate holder is It was found that high reflectivity was realized regardless of the direction.
Figure JPOXMLDOC01-appb-T000015
次に、図3に示した真鍮基材を用いて、その円錐斜面に形成した3種類の膜構成を表16に、それら膜構成について実施した恒温恒湿試験結果を表17に示した。比較例17は、実施例18と比べてITO膜が成膜されていない膜構成であり、比較例18は、銀膜の上にITO膜も保護膜も成膜されていない膜構成である。
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Next, Table 16 shows three types of film configurations formed on the conical slope using the brass base material shown in FIG. 3, and Table 17 shows the results of the constant temperature and humidity test performed on these film configurations. Comparative Example 17 has a film configuration in which no ITO film is formed as compared with Example 18, and Comparative Example 18 has a film configuration in which neither an ITO film nor a protective film is formed on the silver film.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
 実施例18は、ITO膜の上の保護層として厚さ20nmのSiO膜を形成したものであって、保護膜による増反射効果が得られず、またITO膜による光吸収のため、平均反射率は約95%に留まるものの、恒温恒湿試験(試験C)を、1,000時間を超えて実施しても、反射率が低下しないことがわかった。一方、ITO膜を形成せずにAg膜の上にSiO2膜を形成した比較例17や、Ag膜の上に保護膜を形成していない比較例18では、初期の反射率は高いものの、恒温恒湿試験による反射率低下が大きいことが判明した。 In Example 18, an SiO 2 film having a thickness of 20 nm was formed as a protective layer on the ITO film, and the effect of increasing reflection by the protective film was not obtained, and the average reflection due to light absorption by the ITO film. Although the rate remained at about 95%, it was found that the reflectance did not decrease even when the constant temperature and humidity test (Test C) was conducted for more than 1,000 hours. On the other hand, in Comparative Example 17 in which the SiO2 film is formed on the Ag film without forming the ITO film and in Comparative Example 18 in which the protective film is not formed on the Ag film, the initial reflectance is high, but the constant temperature. It turned out that the reflectance fall by a constant humidity test was large.
 実施例1の高耐久性銀ミラーについて、JIS B7753に規定された試験装置(スガ試験機株式会社製)を用い、サンシャインカーボンウェザーメーター試験(試験I:促進耐候性試験)を実施した。試験条件は、ブラックパネル温度を83℃として、カーボンアークを60分間照射中、12分間は水を噴霧し、これを1,080時間にわたって繰り返し実施した。試験結果を表18に示した。
Figure JPOXMLDOC01-appb-T000018
About the highly durable silver mirror of Example 1, the sunshine carbon weather meter test (Test I: accelerated weathering test) was implemented using the test apparatus (made by Suga Test Instruments Co., Ltd.) prescribed | regulated to JISB7753. The test conditions were such that the black panel temperature was 83 ° C., the carbon arc was irradiated for 60 minutes, water was sprayed for 12 minutes, and this was repeated for 1,080 hours. The test results are shown in Table 18.
Figure JPOXMLDOC01-appb-T000018
 この結果、実施例1の高耐久性銀ミラーは、促進耐候性試験によっても反射率低下を起こさず、優れた耐候性を有していることがわかった。 As a result, it was found that the highly durable silver mirror of Example 1 did not cause a decrease in reflectance even in the accelerated weather resistance test and had excellent weather resistance.
 1・・・・高耐久性銀ミラー
  10・・・ガラス基板
 11・・・第一層(Al膜)
 12・・・第二層(Ni膜)
 13・・・第三層(Ag膜)
 14・・・第四層(ITO膜)
 15・・・第五層(保護膜)
 16・・・耐摩耗層(SiO膜)
 20・・・真鍮基材
 151・・Al膜(保護膜の第一層)
 152・・SiO膜(保護膜の第二層)
 153・・TiO2膜(保護膜の第三層)
 
1 ... Robust silver mirror 10 ... glass substrate 11 ... first layer (Al 2 O 3 film)
12 ... Second layer (Ni film)
13 ... Third layer (Ag film)
14 ... Fourth layer (ITO film)
15 ... Fifth layer (protective film)
16 ... Wear-resistant layer (SiO 2 film)
20 ... Brass base material 151..Al 2 O 3 film (first layer of protective film)
152 .. SiO 2 film (second layer of protective film)
153 .. TiO2 film (third layer of protective film)

Claims (13)

  1.  基材上に、第一層として酸化物膜が、第二層として面心立方型の結晶構造を有する金属から選んだ金属の膜が、第三層として銀膜が、第四層として厚さ3~12nmのITO膜が、第五層として保護膜が、この順に形成されていることを特徴とする高耐久性銀ミラー。 On the substrate, an oxide film as the first layer, a metal film selected from a metal having a face-centered cubic crystal structure as the second layer, a silver film as the third layer, and a thickness as the fourth layer A highly durable silver mirror comprising an ITO film having a thickness of 3 to 12 nm and a protective film as a fifth layer formed in this order.
  2.  前記第五層の保護膜の上に、耐摩耗膜として酸化珪素膜、フッ化マグネシウム膜又はこれら2層の膜が形成されていることを特徴とする請求項1に記載の高耐久性銀ミラー。 2. The high durability silver mirror according to claim 1, wherein a silicon oxide film, a magnesium fluoride film, or a film of these two layers is formed as an abrasion resistant film on the protective film of the fifth layer. .
  3.  前記第五層の保護膜が形成された後又は保護膜の上に前記耐摩耗膜が形成された後、400~500℃の温度範囲で30~90分の間、熱処理されていることを特徴とする請求項1又は請求項2に記載の高耐久性銀ミラー。 After the fifth protective film is formed or after the wear resistant film is formed on the protective film, it is heat-treated at a temperature range of 400 to 500 ° C. for 30 to 90 minutes. The highly durable silver mirror of Claim 1 or Claim 2.
  4.  前記基材がガラス基材であることを特徴とする請求項1乃至請求項3に記載の高耐久性銀ミラー。 The high durability silver mirror according to claim 1, wherein the base material is a glass base material.
  5. 前記基材が、半導体基材であることを特徴とする請求項1乃至請求項3に記載の高耐久性銀ミラー。 The highly durable silver mirror according to claim 1, wherein the base material is a semiconductor base material.
  6. 前記基材が樹脂基材であって、前記第一層の酸化物膜が形成される前に、SiO/SiOの2層からなる下地層が形成されていることを特徴とする請求項1又は請求項2に記載の高耐久性銀ミラー。 The base material is a resin base material, and a base layer composed of two layers of SiO / SiO 2 is formed before the oxide film of the first layer is formed. Or the highly durable silver mirror of Claim 2.
  7. 前記基材が、円錐面又は放物面の形状を有する基材であって、該円錐面又は該放物面上に前記第五層として形成される保護層がSiO単層膜であることを特徴とする請求項1に記載の高耐久性銀ミラー。 The base material is a base material having a conical or parabolic shape, and the protective layer formed as the fifth layer on the conical or parabolic surface is a SiO 2 single layer film. The high durability silver mirror according to claim 1 characterized by these.
  8. 前記第三層の銀膜が、実質的に銀(Ag)以外の成分を含まない純銀からなることを特徴とする請求項1乃至請求項7に記載の高耐久性銀ミラー。 The highly durable silver mirror according to any one of claims 1 to 7, wherein the silver film of the third layer is made of pure silver substantially free of components other than silver (Ag).
  9. 前記第一層の酸化物膜が、酸化アルミ膜、酸化珪素膜又は酸化チタン膜から選ばれたいずれかであることを特徴とする請求項1乃至請求項8に記載の高耐久性銀ミラー。 9. The high durability silver mirror according to claim 1, wherein the oxide film of the first layer is any one selected from an aluminum oxide film, a silicon oxide film, and a titanium oxide film.
  10. 前記第一層の酸化物膜が、酸化アルミであることを特徴とする請求項1乃至請求項8に記載の高耐久性銀ミラー。 9. The highly durable silver mirror according to claim 1, wherein the oxide film of the first layer is aluminum oxide.
  11. 前記第二層の、結晶構造が面心立方型である金属から選ばれた金属の膜が、Ni膜、Cu膜又はAl膜のいずれかであることを特徴とする請求項1乃至請求項10に記載の高耐久性銀ミラー。 11. The metal film selected from metals having a crystal structure of face centered cubic in the second layer is any one of a Ni film, a Cu film, and an Al film. Highly durable silver mirror as described in
  12. 前記第二層の結晶構造が面心立方型である金属から選ばれた金属の膜が、Ni膜であることを特徴とする請求項1乃至請求項10に記載の高耐久性銀ミラー。 11. The high durability silver mirror according to claim 1, wherein the metal film selected from a metal whose crystal structure of the second layer is a face-centered cubic type is a Ni film.
  13. 最表面層として撥水撥油膜が形成されていることを特徴とする請求項1乃至請求項12に記載の高耐久性銀ミラー。
     
    13. The highly durable silver mirror according to claim 1, wherein a water / oil repellent film is formed as an outermost surface layer.
PCT/JP2015/066902 2014-06-17 2015-06-11 High-durability silver mirror WO2015194455A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016529295A JP6340608B2 (en) 2014-06-17 2015-06-11 High durability silver mirror
CN201580010120.2A CN106062590B (en) 2014-06-17 2015-06-11 A kind of manufacturing method of high-durability silver mirror

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014123990 2014-06-17
JP2014-123990 2014-06-17

Publications (1)

Publication Number Publication Date
WO2015194455A1 true WO2015194455A1 (en) 2015-12-23

Family

ID=54935442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066902 WO2015194455A1 (en) 2014-06-17 2015-06-11 High-durability silver mirror

Country Status (4)

Country Link
JP (1) JP6340608B2 (en)
CN (1) CN106062590B (en)
TW (1) TW201605610A (en)
WO (1) WO2015194455A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018135124A1 (en) * 2017-01-18 2018-07-26 旭硝子株式会社 Csp mirror and method for producing glass substrate with film for csp mirrors
US10241384B2 (en) 2017-08-03 2019-03-26 Seiko Epson Corporation Wavelength conversion element, light source device, and projector
KR20200011720A (en) * 2018-07-25 2020-02-04 유흥상 A method of forming a pattern by vacuum deposition on a mirror surface
US10725367B2 (en) 2018-03-20 2020-07-28 Seiko Epson Corporation Wavelength conversion element, method of manufacturing wavelength conversion element, light source device, and projector
US10859899B2 (en) 2017-08-03 2020-12-08 Seiko Epson Corporation Wavelength conversion element, method for producing wavelength conversion element, light source device, and projector
WO2022270475A1 (en) * 2021-06-25 2022-12-29 Agc株式会社 Mirror and method for manufacturing same
US11556050B2 (en) 2019-11-28 2023-01-17 Seiko Epson Corporation Wavelength conversion element, light source device, and projector

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106443847B (en) * 2016-11-08 2018-11-13 江苏北方湖光光电有限公司 A kind of outer anti-silver mirror and its low temperature plating method
CN108693578A (en) * 2017-04-12 2018-10-23 扬明光学股份有限公司 Reflecting element and speculum
CN109628894B (en) * 2018-12-29 2020-10-23 润坤(上海)光学科技有限公司 Preparation method of far ultraviolet high reflecting mirror
CN112848425A (en) * 2020-12-31 2021-05-28 宁波锦辉光学科技有限公司 Manufacturing process of free reflector applied to HUD

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005029142A1 (en) * 2003-09-22 2005-03-31 Murakami Corporation Silver mirror and method for preparation thereof
JP2007310335A (en) * 2006-04-21 2007-11-29 Central Glass Co Ltd Front surface mirror
JP2008260978A (en) * 2007-04-10 2008-10-30 Nidek Co Ltd Method for forming reflection film
JP2009099533A (en) * 2007-09-25 2009-05-07 Hitachi Maxell Ltd Heat radiating member, reflecting member, and illumination unit
JP2011095658A (en) * 2009-11-02 2011-05-12 Tamron Co Ltd Rear surface reflection mirror
JP2011128501A (en) * 2009-12-21 2011-06-30 Konica Minolta Opto Inc Film mirror, method of manufacturing film mirror and mirror for condensing sunlight
JP2011164552A (en) * 2010-02-15 2011-08-25 Osaka Univ Electronic component, electronic circuit device, and method for manufacturing electronic component
JP2012150295A (en) * 2011-01-19 2012-08-09 Kuramoto Seisakusho Co Ltd Ag REFLECTOR

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0918236A1 (en) * 1997-11-19 1999-05-26 Alusuisse Technology & Management AG Reflector with resistant surface
JP2006010929A (en) * 2003-06-27 2006-01-12 Asahi Glass Co Ltd High reflectance mirror
JP2006098856A (en) * 2004-09-30 2006-04-13 Ulvac Japan Ltd Ag REFLECTIVE FILM AND ITS MANUFACTURING METHOD

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005029142A1 (en) * 2003-09-22 2005-03-31 Murakami Corporation Silver mirror and method for preparation thereof
JP2007310335A (en) * 2006-04-21 2007-11-29 Central Glass Co Ltd Front surface mirror
JP2008260978A (en) * 2007-04-10 2008-10-30 Nidek Co Ltd Method for forming reflection film
JP2009099533A (en) * 2007-09-25 2009-05-07 Hitachi Maxell Ltd Heat radiating member, reflecting member, and illumination unit
JP2011095658A (en) * 2009-11-02 2011-05-12 Tamron Co Ltd Rear surface reflection mirror
JP2011128501A (en) * 2009-12-21 2011-06-30 Konica Minolta Opto Inc Film mirror, method of manufacturing film mirror and mirror for condensing sunlight
JP2011164552A (en) * 2010-02-15 2011-08-25 Osaka Univ Electronic component, electronic circuit device, and method for manufacturing electronic component
JP2012150295A (en) * 2011-01-19 2012-08-09 Kuramoto Seisakusho Co Ltd Ag REFLECTOR

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018135124A1 (en) * 2017-01-18 2018-07-26 旭硝子株式会社 Csp mirror and method for producing glass substrate with film for csp mirrors
US10241384B2 (en) 2017-08-03 2019-03-26 Seiko Epson Corporation Wavelength conversion element, light source device, and projector
US10859899B2 (en) 2017-08-03 2020-12-08 Seiko Epson Corporation Wavelength conversion element, method for producing wavelength conversion element, light source device, and projector
US10725367B2 (en) 2018-03-20 2020-07-28 Seiko Epson Corporation Wavelength conversion element, method of manufacturing wavelength conversion element, light source device, and projector
KR20200011720A (en) * 2018-07-25 2020-02-04 유흥상 A method of forming a pattern by vacuum deposition on a mirror surface
KR102125614B1 (en) 2018-07-25 2020-06-22 유흥상 A method of forming a pattern by vacuum deposition on a mirror surface
US11556050B2 (en) 2019-11-28 2023-01-17 Seiko Epson Corporation Wavelength conversion element, light source device, and projector
WO2022270475A1 (en) * 2021-06-25 2022-12-29 Agc株式会社 Mirror and method for manufacturing same

Also Published As

Publication number Publication date
CN106062590B (en) 2018-08-21
JP6340608B2 (en) 2018-06-13
TWI600535B (en) 2017-10-01
JPWO2015194455A1 (en) 2017-04-20
CN106062590A (en) 2016-10-26
TW201605610A (en) 2016-02-16

Similar Documents

Publication Publication Date Title
JP6340608B2 (en) High durability silver mirror
US10436955B2 (en) Temperature- and corrosion-stable surface reflector
US20050008848A1 (en) Barrier coating composition for a substrate
CN101809467B (en) Reflective film, reflective film laminate, LED, organic EL display, and organic EL illuminating device
JP5719179B2 (en) Reflective film laminate
CN111095037B (en) Antireflection film, optical element, and optical system
KR100796071B1 (en) Reflector and application thereof
CN110418855B (en) Method for producing transparent optical film and method for producing transparent multilayer film
JP2020523642A (en) Expanding the reflection bandwidth of silver-coated laminates for high reflectors
US11747520B2 (en) Optical thin film having metal layer containing silver and high standard electrode potential metal
US10641927B2 (en) Optical thin film, optical element, optical system, and method for producing optical thin film
JP2012068608A (en) Reflective film laminate
JP5280777B2 (en) Reflective film laminate
JP2007310335A (en) Front surface mirror
JP2011158888A (en) Reflector and visible light reflection member using the reflector
JP2008190036A (en) Reflecting film excellent in cohesion resistance and sulfur resistance
WO2005029142A1 (en) Silver mirror and method for preparation thereof
WO2017119335A1 (en) Method for manufacturing reflective film
JP2005275029A (en) Back reflection mirror and pentaprism equipped with same
JP5860335B2 (en) Reflective film laminate and manufacturing method thereof
WO2018135124A1 (en) Csp mirror and method for producing glass substrate with film for csp mirrors
JP2015108790A (en) Light reflective member
JP2019006035A (en) Laminate
WO2018105456A1 (en) Laminate
JP2006154587A (en) Surface mirror for rear projection tv

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15809490

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016529295

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15809490

Country of ref document: EP

Kind code of ref document: A1